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1 Introduction

Let (M,F) be a smooth manifold with a Riemannian foliation is a foliation F on a

smooth manifold M such that the normal bundle Q = TM/L may be endowed with

a metric gQ whose Lie derivative is zero along leaf directions ([23]). Note that we

can choose a Riemannian metric gM on M such that gM ∣TF� = gQ; such a metric is

called bundle − like. Denote by (M,gM ,F). Recently, S. D. Jung and K. Richardson

([11]) proved the generalized Obata theorem which states that: (M,F) is transversally

isometric to (Sq(1/c),G), where G is the discete subgroup of O(q) acting by isometries

on the last q coordinates of the sphere Sq(1/c) of radius 1/c if and only if there exists

a non-constant basic function f such that

∇X∇f = −c
2fX

for all foliated normal vectors X, where c is a positive real number and ∇ is the

transverse Levi-Civita connection on the normal bundle Q.(See below)

Let R∇, ρ∇ and σ∇ be the transversal curvature tensor, transverse Ricci operator and

transversal scalar curvature with respect to the transversal Levi-Civita connection ∇

on Q ([23]). Let κB be the basic part of the mean curvature form of the foliation F

and κ♯B its dual vector field (see Section 2). Then we have the following well-known

theorem.

Theorem A. ([11]) Let (M,gM ,F) be a closed, connected Riemannian manifold with

a Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇. If
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M admits a transversal nonisometric conformal field Y satisfying one of the following

conditions:

(1) Y = ∇h for any basic function h, or

(2) θ(Y )ρ∇ = µgQ for some basic function µ, or

(3) ρ∇(∇fY ) =
σ∇

q ∇fY , gQ(κ
♯

B,∇fY ) = 0 and gQ(Aκ♯B
∇fY ,∇fY ) ≤ 0,

when fY =
1
qdiv∇Y ,

then (M,F) is transversally isometric to (Sq(1/c),G).

Now, we recall two tensor fields E∇ and Z∇ ([5], [10]) by

E∇(Y ) = ρ∇(Y ) −
σ∇

q
Y, Y ∈ TF�, (1.1)

Z∇(X,Y ) = R∇(X,Y ) −R∇σ (X,Y ), (1.2)

where R∇σ (X,Y )s =
σ∇

q(q−1){gQ(π(Y ), s)π(X) − gQ(π(X), s)π(Y )} for any vector field,

X,Y ∈ TM and s ∈ ΓQ. Trivially, if E∇ = 0 (resp. Z∇ = 0), then the foliation is

transversally Einsteinian (resp. transversally constant sectional curvature). The tensor

Z∇ is called as the transversal concircular curvature tensor, which is a generalization of

the concircular curvature tensor on a Riemannian manifold. In an ordinary manifold,

the concircular curvature tensor is invariant under a concircular transformation which

is a conformal transformation preserving geodesic circles ([25]). Then we have the well-

known theorem.
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Theorem B. ([5]) Let (M,gM ,F) be a closed, connected Riemannian manifold with a

Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇. If M

admits a transversal nonisometric conformal field Y such that

∫
M
gQ(E

∇
(∇fY ),∇fY ) ≥ 0,

then (M,F) is transversally isometric to (Sq(1/c),G).

Theorem C. ([7, 10]) Let (M,gM ,F) be a closed, connected Riemannian manifold

with a Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇,

and suppose that F is minimal. If M admits a transversal nonisometric conformal field

Y such that

(1)θ(Y )∣E∇∣2 = 0, ([7])

(2)θ(Y )∣Z∇∣2 = 0. ([10])

then (M,F) is transversally isometric to (Sq(1/c),G).

Namely, we extend Theorem C as follows: There are many results about the Rie-

mannian foliations admitting a transversal nonisometric conformal field ([5], [7], [10],

[11], [21]).

Main Theorem 1. Let (M,gM ,F) be a closed, connected Riemannian manifold with

a Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇, and

suppose that F is minimal. If M admits a transversal nonisometric conformal field Y
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such that

θ(Y )∣E∇∣2 = const. θ(Y )∣Z∇∣2 = const.

then (M,F) is transversally isometric to (Sq(1/c),G).

Also, we study a generalization of Theorem A (2) and (3) when F is minimal.

Main Theorem 2. Let (M,gM ,F) be a closed, connected Riemannian manifold with

a Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇, and

suppose that F is minimal. If M admits a transversal nonisometric conformal field Y

such that

θ(Y )gQ(θ(Y )E
∇,E∇) ≤ 0,

then (M,F) is transversally isometric to (Sq(1/c),G).

Remark. See also ([26]) for the ordinary manifold.

Main Theorem 3. Let (M,gM ,F) be a closed, connected Riemannian manifold with

a Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇. If M

admits a transversal conformal field Ȳ such that Y = K + ∇h, where K is a transver-

sal Killing field and h is a basic function, then (M,F) is transversally isometric to

(Sq(1/c),G).

Remark. Main Theorem 3 is a generalization of Theorem A (1).

On the other hand, a transverse Killing fields and conformal fields are very impor-

tant objects for studying mathematical and physical problems on foliated manifolds. As
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their generalizations, transverse Killing forms and conformal Killing forms were studied

by many authors ([7], [24]). In 2012, S. D. Jung and K. Richardson ([13]) studied the

parallelness of transverse Killing and conformal Killing forms on a compact manifold.

Namely, we have the following.

Theorem D. ([13]) Let F be a Riemannian foliation on a compact Riemannian mani-

fold M . If the transversal curvature endomorphism is nonpositive, then any transverse

conformal Killing r-form (1 ≤ r ≤ q − 1) is parallel, where q = codim F .

When (F , J) is a transverse Kähler foliation, the parallelness of such forms was

studied in ([6,8]), as follows.

Theorem E. Let (F , J) be a transverse Kähler foliation on a closed, connected Rie-

mannian manifold. Then

(1) if the mean curvature vector is transversally holomorphic, then any transverse

Killing r-form (r ≥ 2) is parallel ([6]);

(2) if the foliation is minimal, then for any transverse conformal Killing r-form ϕ

(2 ≤ r ≤ q − 2), Jϕ is parallel ([8]);

On a complete Riemannian foliation, the parallelness of L2-transverse forms was

studied in ([4]) and ([12]). Namely,

Theorem F. Let F be a Riemannian foliation on a complete foliated Riemannian

manifold M . Assume that all leaves are compact and the mean curvature is bounded. If
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the transversal curvature endomorphism is nonpositive, then

(1) L2-transverse Killing forms are parallel ([4]);

(2) L2-transverse conformal Killing forms are parallel ([12]);

The parallelness of L2-transverse conformal Killing forms on a transverse Kähler

foliation was studied by S. D. Jung and H. Liu ([12]). That is,

Theorem G. ([12]) Let (F , J) be a minimal transverse Kähler foliation on a complete

Riemannian manifold with all leaves be compact. Then for any L2-transverse conformal

Killing r-form ϕ (2 ≤ r ≤ q − 2), Jϕ is parallel.

Remark. Note that any transverse Killing form is a transverse conformal Killing form.

Hence from Theorem G, for any L2-transverse Killing ϕ, Jϕ is also parallel. But gen-

erally, the parallelness of Jϕ does not impty the parallelness of ϕ. Hence we study the

parallelness of L2-transverse Killing forms on a transverse Kähler foliation.

In Section 4, we study the parallelness and vanishing theorem of L2-transverse

Killing forms on a transverse Kähler foliation. That is,

Main Theorem 4. Let (F , J) be a transverse Kähler foliation on a complete Rieman-

nian manifold such that all leaves be compact. Assume that the mean curvature vector

field is transversally holomorphic, coclosed and bounded. Then L2-transverse Killing r-

forms (r ≥ 2) are parallel. In addition, if vol(M) is infinite, then L2-transverse Killing

r-forms (r ≥ 2) are trivial.
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2 Foliations

2.1 Definitions

Let Mp+q be a smooth manifold of dimensional n = p + q.

Definition 2.1 A family F ≡ {lα}α∈A of connected subsets of a manifoldMp+q is called

a p-dimensional ( or codimension q) foliation if

(1) M = ∪αlα,

(2) lα ∩ lβ = ∅ for any α ≠ β,

(3) for any point p ∈M , there exist a Cr-chart (φi, Ui), such that if Ui ∩ lα ≠ ∅, then

the connected component of Ui ∩ lα is homeomorphic to Ac, where

Ac = {(x, y) ∈ Rp
×Rq
∣y = constant}.

Here (φi, Ui) is called a distinguished ( or foliated) chart.

Remark. From (3) in definition 2.1, we know that on Ui ∩ Uj ≠ ∅, the coordinate

change φ−1j ○ φi ∶ φ
−1
i (Ui ∩Uj)→ φ−1j (Ui ∩Uj) has the form

φ−1j ○ φi(x, y) = (φij(x, y), γij(y)), (2.1)

where φij ∶ Rp+q → Rp is a differentiable map and γij ∶ Rq → Rq is a diffeomorphism.

Let (M,F) be a smooth manifold of dimension n = p + q endowed with a foliation

F given by an integrable subbundle L ⊂ TM of rank p. The set F is a partition of M
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into immersed submanifolds (leaves) such that the transition functions for the local

product neighborhoods (foliation charts) are smooth. The subbundle L is the tangent

bundle to the foliation; at each p ∈M , Lp is the tangent space to the leaf through p. We

assume throughout the paper that the foliation is Riemannian; this means that there is

a metric on the local space of leaves - a holonomy-invariant transverse metric gQ on the

normal bundle Q = TM/L. The phrase holonomy−invariant means θ(X)gQ = 0, where

θ(X) is the transversal Lie derivative for all leafwise vector fieldsX ∈ ΓL. This condition

is characterized by the existence of a unique metric and torsion-free connection ∇ on

Q ([1]).

We often assume that (M,gM ,F) be a Riemannian manifold with the foliation F

and a bundle − like metric gM ([22]), which is exactly a metric on the manifold such

that the leaves of the foliation are locally equidistant.

Now, we consider an exact sequence of vector bundles

0 // L // TM σ
// Qπoo // 0 (2.2)

where σ ∶ Q → L� is a bundle map satisfying π ○ σ = id. Let gQ be the holonomy

invariant metric on Q induced by gM = gL + gL� ; that is

gQ(s, t) = gM(σ(s), σ(t)) ∀s, t ∈ ΓQ. (2.3)

Let ∇ be the transverse Levi-Civita connection in Q, which is defined ([4]) by
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∇Xs =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

π([X,Ys]) ∀X ∈ ΓL

π(∇M
X Ys) ∀X ∈ ΓL�,

(2.4)

where s ∈ ΓQ and Ys = σ(s) ∈ ΓL
� correspinding to s under the canonical isomor-

phism Q ≅ L� and ∇M is the Levi-Civita connection on M . The curvature R∇ of ∇ is

defined by R∇(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ] for X,Y ∈ ΓTM . Since i(X)R∇ = 0 for any

X ∈ ΓL ([16]), we can define the transversal Ricci operator ρ∇ ∶ ΓQ→ ΓQ by

ρ∇(s) =
q

∑
a=1

R∇(s,Ea)Ea, (2.5)

where {Ea}a=1,⋯,q is an orthonormal basic frame of Q. And the transversal Ricci curva-

ture Ric∇ is given by Ric∇(s1, s2) = gQ(ρ
∇(s1), s2) for any s1, s2 ∈ ΓQ. The transversal

scalar curvature σ∇ is given by σ∇ = Trρ∇. The foliation F is said to be (transversally)

Einsteinian if the model spase is Einsteinian, that is,

ρ∇ =
1

q
σ∇ ⋅ id (2.6)

with constant transversal scalar curvature σ∇. The mean curvature vector τ of F is

defined by

τ = π(
p

∑
i=1

∇
M
Ei
Ei), (2.7)

where {Ei} is a local orthonomal basis of L. The foliation F is said to be minimal if

τ = 0. A differential form ω ∈ Ωr(M) is basic if

i(X)ω = 0, θ(X)ω = 0, ∀X ∈ ΓL. (2.8)
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Let Ωr
B(F) be the set of all basic r-forms onM . The foliation F is said to be isoparametric

if κ ∈ Ω1
B(F), where κ is a gQ-dual 1-form of τ . D. Domminguez ([2]) proved that any

Riemannian foliation is isoparametric for some bundle-like metric. It is well-known ([9])

that on an isoparametric Riemannian foliation F , the mean curvature form κ is closed,

i.e., dκ = 0. Let dB be the restriction of d on ΩB(F) and δB its formal adjoint operator

of dB with respect to the global inner product ≪ ⋅, ⋅≫, which is given by

≪ ϕ,ψ ≫= ∫
M
ϕ ∧ ∗̄ψ ∧ χF (2.9)

for any basic r-form ϕ and ψ, where χF is characteristic form of F ([20]) and ∗̄ is the

transversal star operator on Ω∗B(F), that is, ∗̄ ∶ Ω
r
B(F)→ Ωq−r

B (F) defined by

∗̄ϕ = (−1)p(q−r) ∗ (ϕ ∧ χF), ∀ϕ ∈ Ωr
B(F). (2.10)

The operator δB is given by

δBϕ = (−1)
q(r+1)+1

∗̄dB∗̄ϕ + i(κ
♯

B)ϕ

where dT = d − ϵ(κB). Here ϵ(X
∗) = X∗∧ is the adjoint operator of i(X), κB is the

basic part of the mean curvature form κ and (⋅)♯ is a gQ-dual vector to (⋅). By a direct

calculation, we have that for any ϕ ∈ Ωr
B(F),

ϵ(X∗)∗̄ϕ = (−1)r+1∗̄i(X)ϕ (2.11)

for any vector field X ∈ Q.

Note that the induced connection ∇ on Ω∗B(F) from the connection ∇ on Q and Rie-

mannian connection ∇M on M extends the partial Bott connection, which satisfies

10



∇Xϕ = θ(X)ϕ for any X ∈ ΓL ([8]). Locally, dB ad δB are given by

dB =
q

∑
a=1

θa ∧∇Ea
, δB = −

q

∑
a=1

i(Ea)∇Ea
+ i(κ♯B), (2.12)

where θa is the dual basic 1-form of Ea

The basic Laplacian ∆B acting on Ω∗B(F) is defined by

∆B = dBδB + δBdB.

Then for any basic function f , we have

∆Bf = δBdBf = −∑
a

∇Ea
∇Ea

f + κ♯B(f). (2.13)

Now, we recall the generalized maximum principle for foliation ([11]).

Theorem 2.2 ([11]) Let (M,gM ,F) be a closed, connected Riemannian manifold with

a foliation F and a bundle-like metric gM . For any basic function f , the condition

(∆B − κ♯B)f ≥ 0 implies that f is constant.

In ([8]), for any bundle-like metric with κ ∈ Ω1
B(F), it is proved that there exists

another bundle-like metric for which the mean curvature form is basic-harmonic. That

is, ∆Bκ = 0.
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2.2 Infinitesimal automorphisms

Let V (F) be the space of all vector fields Y on M satisfying [Y,Z] ∈ ΓL for all Z ∈ ΓL.

An element of V (F) is called an infinitesimal automorphism of F ([12]). Let

V̄ (F) = {Ȳ = π(Y )∣Y ∈ V (F)}. (2.14)

It is trivial that an element s of V̄ (F) satisfies ∇Xs = 0 for all X ∈ ΓL. Hence the

metric defined by (2.3) induces an identification ([17])

V̄ (F) ≅ Ω1
B(F). (2.15)

For the later use, we recall the transversal divergence theorem ([6]) and the tautness

theorem ([1, 18]) on a foliated Riemannian manifold.

Theorem 2.3 (Transversal divergence theorem) Let (M,gM ,F) be a closed, oriented

Riemannian manifold with a transversally oriented foliation F and a bundle-like metric

gM . Then

∫
M

div∇X̄ = ∫
M
gQ(X̄, τ) (2.16)

for all X ∈ V (F), where div∇X denotes the transversal divergence of X with respect to

the connection ∇ defined by (2.4).

Theorem 2.4 (Tautness theorem) Let (M,gM ,F) be a closed, oriented Riemannian

manifold with a foliation F of codimension q ≥ 2 and a bundle-like metric gM . If the

transversal Ricci operator ρ∇ is positive definite, then F is taut, i.e., there exists a

bundle-like metric ḡM for which all leaves are minimal submanifolds.
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We define an operator AY ∶ ΓQ→ ΓQ for any vector field Y ∈ V (F) by

AY s = θ(Y )s −∇Y s. (2.17)

Then it is proved ([13]) that, for any vector field Y ∈ V (F),

AY s = −∇Ys
Ȳ (2.18)

where Ys = σ(s) ∈ ΓTM . So AY depends only on Ȳ = π(Y ) and is a linear operator.

Moreover, AY extends in an obvious way to tensors of any type on Q (see [13] for

details). In particular, for any basic 1-form ϕ ∈ Ω1
B(F), the operator AY is given by

(AY ϕ)(s) = −ϕ(AY s) ∀s ∈ ΓQ. (2.19)

Now, we introduce the operator ∇∗tr∇tr ∶ Ω
∗

B(F)→ Ω∗B(F) as

∇
∗

tr∇trϕ = −∑
a

∇
2
Ea,Ea

ϕ +∇τϕ, (2.20)

where ∇2
X,Y = ∇X∇Y −∇∇M

X Y for any X,Y ∈ TM . It is well-known that ∇∗tr∇tr is a non-

negative and formally self-adjoint operator ([3]). Then we have the following generalized

Weitzenböck formula.

Theorem 2.5 ([3]) Let (M,gM ,F) be a Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gM . Then the generalized Weizenböck formula

is given by the following : for any basic form ϕ ∈ Ωr
B(F)

△Bϕ = ∇
∗

tr∇trϕ + F (ϕ) +Aτϕ, (2.21)
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where F (ϕ) = ∑a,bE
a ∧ i(Eb)R

∇(Eb,Ea)ϕ. In particular, if ϕ is a basic 1-form, then

F (ϕ)♯ = ρ∇(ϕ♯). Here for any basic form ϕ, ϕ♯ means that ϕ(X) = gQ(ϕ♯, π(X)) for all

X ∈ TM .

Corollary 2.6 Let (M,gM ,F) be a closed, oriented Riemannian manifold with a foli-

ation F of codimension q ≥ 2 and a bundle-like metric gM . Then, for any basic r-form

ϕ,

−
1

2
△B ∣ϕ∣

2
= −gQ(△Bϕ,ϕ) + ∣∇trϕ∣

2
+ gQ(F (ϕ), ϕ) + gQ(Aτϕ,ϕ), (2.22)

where ∣∇trϕ∣
2 = ∑agQ(∇Ea

ϕ,∇Ea
ϕ).

For any vector filed X ∈ V (F), if we put △BX̄ = (△Bϕ)♯, where ϕ♯ = X̄, then we

have the following corollary.

Corollary 2.7 Let (M,gM ,F) be a closed, oriented Riemannian manifold with a fo-

liation F of codimension q ≥ 2 and a bundle-like metric gM . Then, for any vector field

X ∈ V (F),

△BX̄ = ∇
∗

tr∇trX̄ + ρ
∇
(X̄) −At

τ X̄, (2.23)

where At is an adjoint operator of A.
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2.3 Transversal Killing and conformal fields

Let (M,gM ,F) be a (p + q)-dimensional Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gM such that κ ∈ Ω1
B(F). If Y ∈ V (F) satisfies

θ(Y )gQ = 0, then Y is called a transversal Killingfield of F . If Y ∈ V (F) satisfies

θ(Y )gQ = 2fY gQ for a basic function fY depending on Y , then Y is called a transversal

conformal field of F ; in this case, we have

fY =
1

q
div∇Y. (2.24)

Now we put, for any vector field Y ∈ V (F),

◻BY =△BY − 2ρ
∇
(Y ). (2.25)

Trivially, ◻B is a formally self-adjoint operator.

For any vector field Y ∈ V (F), let Bµ
Y ∶ ΓQ→ ΓQ(µ ∈ R) be given by

Bµ
Y ∶= AY +A

t
Y + µ ⋅ div∇Y ⋅ id. (2.26)

It is well-known ([13,19]) that Y is transversal conformal (resp. transversal Killing) if

and only if

B
2/q
Y = 0 (resp.B0

Y = 0). (2.27)

Theorem 2.8 ([10]) Let (M,gM ,F) be a closed, oriented Riemannian manifold with

a foliation of codimension q and a bundle-like metric gM . Then, for any vector field

Y ∈ V (F), the following holds:
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(1) Y is a transversal Killing field if and only if

(i) ◻B Y +A
t
τY +AY τ = 0, div∇Y = 0,

(ii)∫
M
gQ(B

0
Y Y, τ) ≥ 0.

(2) Y is a transversal conformal field if and only if

(i) ◻B Y +A
t
τ Ȳ +AY τ = (1 −

2

q
)dBdiv∇Y,

(ii)∫
M
gQ(B

2/q
Y Y, τ) ≥ 0.

Theorem 2.9 (cf. [19]) Let (M,gM ,F) be a closed, oriented Riemannian manifold

with a foliation of codimension q and a bundle-like metric gM and Y ∈ V (F). If a

transversal conformal field Y satisfies

(i)∫
M
gQ(B

0
Y Y,κ

♯) ≥ 0 and (ii) dBdiv∇Y = 0,

then Y is the transversal Killing field.

Lemma 2.10 ([7]) Let (M,gM ,F) be a Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gM . If Y is a transversal conformal field, i.e.,

θ(Y )gQ = 2fY gQ, then we have

gQ((θ(Y )∇)(Ea,Eb),Ec) = δ
c
bfa + δ

c
afb − δ

c
afc, (2.28)

(θ(Y )R∇)(Ea,Eb)Ec = (∇aθ(Y )∇)(Eb,Ec) − (∇bθ(Y )∇)(Ea,Ec), (2.29)

gQ((θ(Y )R
∇
)(Ea,Eb)Ec,Ed) = δ

d
b∇afc − δ

c
b∇afd − δ

d
a∇bfd + δ

c
a∇bfd, (2.30)

(θ(Y )Ric∇)(Ea,Eb) = −(q − 2)∇afb + δ
b
a(△BfY − κ

♯(fY )), (2.31)
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where ∇a = ∇Ea
and fa = ∇afY .

From (2.31), we have the following lemma.

Lemma 2.11 ([10]) Let (M,gM ,F) be a closed, oriented Riemannian manifold with a

foliation of codimension q and a bundle-like metric gM , if Y is the transversal conformal

field, i.e., θ(Y )gQ = 2fY gQ, then

θ(Y )σ∇ = 2(q − 1)(△BfY − κ
♯(fY )) − 2fY σ

∇. (2.32)

Proposition 2.12 ([10]) Let (M,gM ,F) be a closed, connected Riemannian manifold

with a foliation F of codimension q and a bundle-like metric gM such that κ ∈ Ω1
B(F)

and δBκ = 0. Assume that the transversal scalar curvature is constant. If Y is a transver-

sal conformal field with θ(Y )gQ = 2fY gQ, fY ≠ 0, then

△BfY =
σ∇

q − 1
fY + κ

♯(fY ) (2.33)

and consequently if σ∇ ≠ 0, then

∫
M
fY = −

q − 1

σ∇
∫
M
κ♯(fY ) = 0. (2.34)
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3 Riemannian foliations admitting transversal conformal

fields

Precisely, see [14] for this chapter.

3.1 Generalized Lichnerowicz-Obata theorem

Let (M,gM ,F) be a connected and oriented Riemannian manifold with a foliation F

of codimension q and a bundle-like metric gM such that κ ∈ Ω1
B(F).

Definition 3.1 Let G be a discrete group. Then (M,F) is transversally isometric to

(N,G), the isometric action of G on a Riemannian manifold N if there exists a smooth,

sujective map ϕ ∶M → N such that :

(1) The function ϕ induces a homeomorphism between the leaf space M/F and the

orbit space N/G.

(2) For each x ∈M , the push forward ϕ∗ restricts to an isometry ϕ∗ ∶ Qx → Tϕ(x)N ,

where Q is the normal bundle of the foliation and TN is the tangent bundle of N.

Now, we recall the generalized Obata Theorem for foliations which was proved by

Lee and Richardson ([17]).

Theorem 3.2 (Generalized Obata theorem, ([11])) Let (M,gM ,F) be a connected,

complete Riemannian manifold with a foliation F of codimension q ≥ 2 and a bundle-

like metric gM , and let c be a positive real number. Then the following are equivalent:
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(1) There exists a non-constant basic funtion f such that ∇X∇f = −c2fX for all vectors

X ∈ TF�.

(2) (M,F) is transversally isometric to (Sq(1/c),G), where the discrete subgroup G of

the ortogonal group O(q) acts by isometries on the last q coodinates of the q-sphere

Sq(1/c) of radius 1/c in Euclidean space Rq+1.

Now, we recall well-known facts for characterizing the Riemannian foliation admit-

ting the transversal conformal field.

Theorem 3.3 ([7]) Let (M,gM ,F) be a closed, connected Riemannian manifold with

a foliation F of codimension q and a bundle-like mertic gM and ρ∇(X) ≥ σ∇

q X(σ
∇ ≠ 0)

for any X ∈ ΓQ. If M admits a transversal conformal field Ȳ ∈ ΓQ such that θ(Y )gQ =

2fY gQ(fY ≠ 0), then (M,F) is transversally isometric to (Sq(1/c),G), with c = σ∇

q(q−1) .

Theorem 3.4 ([11]) Let (M,gM ,F) be a closed, connected Riemannian manifold with

a Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇. If

M admits a transversal nonisometric conformal field Y satisfying one of the following

conditions:

(1) Y = ∇h for any basic function h,

(2) θ(Y )ρ∇ = µgQ for some basic function µ,

(3) ρ∇(∇fY ) =
σ∇

q ∇fY , gQ(κ
♯

B,∇fY ) = 0 and gQ(Aκ♯B
∇fY ,∇fY ) ≤ 0,

then (M,F) is transversally isometric to (Sq(1/c),G).
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Now, we prove the generalization of Theorem 3.4 (1).

Theorem 3.5 Let (M,gM ,F) be a closed, connected Riemannian manifold with a Rie-

mannian foliation F of a nonzero constant transversal scalar curvature σ∇. IfM admits

a transversal conformal field Y such that Y =K +∇h, where K is a transversal Killing

field and h is a basic function, then (M,F) is transversally isometric to (Sq(1/c),G).

Proof. Let Y be a transversal conformal field such that θ(Y )gQ = 2fY gQ and Y =

K +∇h, where K is a transversal Killing field and h is a basic function. Then

gQ(∇XY,Z) + gQ(∇ZY,X) = 2fY gQ(X,Z)

for any normal vector field X,Z ∈ ΓQ. On the other hand, since the transversal scalar

curvature σ∇ is constant, from Proposition 2.12, we have

(△B − κ
♯

B)fY =
σ∇

q − 1
fY . (3.1)

Since Y =K +∇h, we have θ(Y )gQ = θ(∇h)gQ = 2fY gQ. That is,

gQ(∇X∇h,Z) + gQ(∇Z∇h,X) = 2fY gQ(X,Z). (3.2)

On the other hand, (∇∇h)(X,Z) = gQ(∇X∇h,Z) is symmetric. Therefore, from (3.2)

(∇∇h)(X,Z) = fY gQ(X,Z). (3.3)

Hence from (2.12) and (3.3), we have

(△B − κ
♯

B)h = −qfY . (3.4)
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From (3.1) and (3.4), we get

(△B − κ
♯

B)(fY +
σ∇

q(q − 1)
h) = 0.

By the generalized maximum principle (Theorem 2.2), we have

fY +
σ∇

q(q − 1)
h = const,

which implies

∇∇fY +
σ∇

q(q − 1)
∇∇h = 0. (3.5)

from (3.3) and (3.5), we have

∇X∇fY = −
σ∇

q(q − 1)
fYX.

for any X ∈ ΓQ.

By the generalized Obata theorem(Theorem 3.2), (M, F) is transversally isometric

to (Sq(1/c),G) with c2 = σ∇

q(q−1) . ◻

3.2 Transversal Einstein tensor

In this section, we characterize the Riemannian foliation by the Einstein tensor. First,we

define the tensor E∇ ∶ ΓQ→ ΓQ by

E∇(Y ) = ρ∇(Y ) −
σ∇

q
Y, Y ∈ ΓQ,

which is called the transversal Einstein tensor of F . Trivially, if E∇ = 0, then F is

transversal Einsteinian.

Let {Ea} be a local orthonormal basic frame on Q.
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Lemma 3.6 ([10]) Let (M,gM ,F) be a Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gM . If Y is a transversal conformal field, i.e.,

θ(Y )gQ = 2fY gQ Then

(i) trQE
∇
= 0, ∣E∇∣2 = ∣ρ∇∣2 −

(σ∇)2

q
, (3.6)

(ii) div∇E
∇
=
q − 2

2q
∇σ∇, (3.7)

(iii) (θ(Y )E∇)(Ea,Eb) = −(q − 2){∇afb +
1

q
(△Bf − κ

♯

B(f))δ
b
a},

where trQE
∇ = ∑

q
a=1gQ(E

∇(Ea),Ea) and E∇(X,Y ) = gQ(E
∇(X), Y ) for all vector

foeld X,Y ∈ ΓQ. If σ∇ is constant , then div∇E
∇ = 0.

Theorem 3.7 ([5]) Let (M,gM ,F) be a closed, oriented Riemannian manifold with

a foliation F of codimension q ≥ 2 and a bundle-like metric gM such that δBκB = 0.

Assume that the transversal scalar curvature σ∇ is non-zero constant. If M admits a

transversal nonisometric conformal field Y , i.e., θ(Y )gQ = 2fY gQ (fY ≠ 0), such that

∫
M
gQ(E

∇
(∇fY ),∇fY ) ≥ 0,

then F is transversally isometric to (Sq(1/c),G), where c2 = σ∇

q(q−1) and G is a discrete

subgroup of O(q).

For our main theorem, we prepare some lemmas.

Lemma 3.8 If a transversal conformal field Y satisfies θ(Y )E∇ = µgQ for some basic

function µ, then

θ(Y )E∇ = 0.
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Proof. Let Y be the transversal conformal field such that θ(Y )gQ = 2fY gQ. From

(2.31), we have

−(q − 2)∇afb + (∆BfY − κ
♯

B(fY ))δ
b
a = µδ

b
a. (3.8)

From (2.12) and (3.8), we have

µ =
2(q − 1)

q
(∆BfY − κ

♯

B(fY )). (3.9)

From (3.8) and (3.9), we have

−(q − 2){∇afb +
1

q
(∆BfY − κ

♯

B(fY ))δ
b
a} = 0. (3.10)

Therefore, the proof follows from Lemma 3.6 (iii). ◻

Lemma 3.9 If Y is a transversal conformal field, then

θ(Y )∣E∇∣2 = 2gQ(θ(Y )E
∇,E∇).

Proof. Let {Ea} be a local orthonormal basic frame on Q such that (∇Ea)x = 0 at a

point x. Let Y be the transversal conformal field such that θ(Y )gQ = 2fY gQ. Then at

x, we have

θ(Y )∣EQ
∣
2
=∑

a

θ(Y )gQ(E
∇
(Ea),E

∇
(Ea))

=∑
a

(θ(Y )gQ)(E
∇
(Ea),E

∇
(ea)) + 2∑

a

gQ((θ(Y )E
∇
)(Ea),E

∇
(Ea))

+ 2∑
a

gQ(E
∇
(θ(Y )Ea),E

∇
(Ea))

= 2fY ∣E
∇
∣
2
+ 2gQ(θ(Y )E

∇,E∇) + 2∑
a

gQ(E
∇
(θ(Y )Ea),E

∇
(Ea)). (3.11)
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Now, we calculate the last term in the above equation. That is,

∑
a

gQ(E
∇
(θ(Y )Ea),E

∇
(Ea))

=∑
a,b

gQ(E
∇
(θ(Y )Ea),Eb)gQ(E

∇
(Ea),Eb)

=∑
a,b

gQ(E
∇
(Eb), θ(Y )Ea)gQ(E

∇
(Eb),Ea)

=
1

2
∑
a,b

θ(Y ){gQ(E
∇
(Eb),Ea)gQ(E

∇
(Eb),Ea)} − 2fY ∣E

∇
∣
2

−∑
a

gQ((θ(Y )E
∇
)(Ea),E

∇
(Ea)) −∑

a

gQ(E
∇
(θ(Y )Ea),E

∇
(Ea)).

Hence we have

2∑
a

gQ(E
∇
(θ(Y )Ea),E

∇
(Ea)) =

1

2
θ(Y )∣E∇∣2 − 2fY ∣E

∇
∣
2

− gQ(θ(Y )E
∇,E∇). (3.12)

From (3.11) and (3.12), the proof is completed. ◻

Proposition 3.10 Let (M,gM ,F) be a closed, oriented Riemannian manifold with

a foliation F of codimension q ≥ 2 and a bundle-like metric gM . Assume that the

transversal scalar curvature is constant. If Y is a transversal nonisometric conformal

field with θ(Y )gQ = 2fY gQ (fY ≠ 0), then

2(q − 2)∫
M
gQ(E

∇
(∇fY ),∇fY ) =∫

M
{4f2Y ∣E

∇
∣
2
+ fY θ(Y )∣E

∇
∣
2
} (3.13)

+ 2(q − 2)∫
M
gQ(E

∇
(fY∇fY ), κ

♯

B).

Theorem 3.11 ([5]) Let (M,gM ,F) be a closed, connected Riemannian manifold with

a Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇, and
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suppose that F is minimal. If M admits a transversal nonisometric conformal field Y

such that

θ(Y )∣E∇∣2 = 0,

then (M,F) is transversally isometric to (Sq(1/c),G).

From the above lemmas, we prove our main theorem.

Theorem 3.12 Let (M,gM ,F) be a closed, connected Riemannian manifold with a

Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇, and

suppose that F is minimal. If M admits a transversal nonisometric conformal field Y

such that

θ(Y )∣E∇∣2 = const,

then (M,F) is transversally isometric to (Sq(1/c),G).

Proof. Let Y be the transversal nonisometric conformal field such that θ(Y )gQ = 2fY gQ

(fY ≠ 0). From Proposition 2.12 , we have

∫
M
fY = 0. (3.14)

Assume that F is minimal. Since θ(Y )∣E∇∣2 = const, from (3.14) and Proposition 3.10,

we have

2(q − 2)∫
M
gQ(E

∇
(∇fY ),∇fY ) = 4∫

M
f2Y ∣E

Q
∣
2
≥ 0

Hence from Theorem 3.7, the proof is completed. ◻
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Lemma 3.13 Let Y be a transversal conformal field such that θ(Y )gQ = 2fY gQ. Then

for any basic function h,

∫
M
hfY = −

1

q
∫
M
θ(Y )h +

1

q
∫
M

div∇(hY ).

Proof. Let ω = Y b be the dual basic 1-form of the transversal conformal form Y . Then

∫
M
h(δBω) = ∫

M
gQ(ω, dBh) = ∫

M
i(Y )dBh = ∫

M
θ(Y )h.

Since δB = δT + i(τB) and δTω = −div∇(Y ) = −qfY , we have

q∫
M
hfY = −∫

M
h(δTω)

= −∫
M
h(δBω) + ∫

M
hi(τB)ω)

= −∫
M
θ(Y )h + ∫

M
gQ(hY, τB)

= −∫
M
θ(Y )h + ∫

M
div∇(hY ).

Last equality in above follows from the transversal divergence theorem (Theorem 2.3).◻

From Lemma 3.13, we prove the followy theorem.

Theorem 3.14 Let (M,gM ,F) be a closed, connected Riemannian manifold with a

Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇, and

suppose that F is minimal. If M admits a transversal nonisometric conformal field Y

such that

θ(Y )gQ(θ(Y )E
∇,E∇) ≤ 0,

then (M,F) is transversally isometric to (Sq(1/c),G).
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Proof. Let Y be a transversal nonisometric conformal field, i.e., θ(Y )gQ = 2fY gQ(fY ≠

0). From (2.13) and Proposition 3.10, if we put h = gQ(θ(Y )E
∇,E∇), then from Lemma

3.13, we have

(q−2)∫
M
gQ(E(∇fY ),∇fY )

= 2∫
M
f2Y ∣E

∇
∣
2
+ ∫

M
hfY + (q − 2)∫

M
gQ(E(fY∇fY ), κ

♯

B)

= 2∫
M
f2Y ∣E

∇
∣
2
−
1

q
∫
M
θ(Y )h +

1

q
∫
M
gQ(hY,κ

♯

B)

+ (q − 2)∫
M
gQ(E

∇
(fY∇fY ), κ

♯

B).

Since F is minimal, we have

(q − 2)∫
M
gQ(E

∇
(∇fY ),∇fY ) = 2∫

M
f2Y ∣E

∇
∣
2
−
1

q
∫
M
θ(Y )gQ(θ(Y )E

∇,E∇).

Hence by the condition θ(Y )gQ(θ(Y )E
∇,E∇) ≤ 0, we have

∫
M
gQ(E

∇
(∇fY ),∇fY ) ≥ 0.

From Theorem 3.7, the proof of Theorem 3.14 is completed. ◻

Corollary 3.15 Theorem 3.14 is a generalization of Theorem 3.4 (3).

Proof. Assume that E∇(∇fY ) =
σQ

q ∇fY , that is, E
∇(∇fY ) = 0. By differentiation, we

have

(∇eaE
∇
)(∇fY ) +E

∇
(∇a∇fY ) = 0. (3.15)
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from (3.15), we have

0 =∑
a

gQ((∇eaE
∇
)(∇fY ) +E

∇
(∇a∇fY ), ea)

= gQ(∇fY ,div∇(E
∇
)) +∑

a

gQ(E
∇
(∇a∇fY ), ea)

=∑
a

gQ(∇a∇fY ,E
∇
(ea)). (3.16)

From (3.6), (3.7), div∇E
∇ = 0 and so the last equality in the above follows. Hence from

Lemma 3.9 (iii) and (3.16), we have

gQ(θ(Y )E
∇,E∇) =∑

a

gQ((θ(Y )E
∇
)(ea),E

∇
(ea))

= −(q − 2)∑
a

gQ(∇a∇fY ,E
∇
(ea))

−
q − 2

q
(△BfY )∑

a

gQ(ea,E
∇
(ea))

= −(q − 2)∑
a

gQ(∇a∇fY ,E
∇
(ea)) −

q − 2

q
(△BfY )trQE

∇

= 0.

The last equality follows from trQE
∇ = 0. Hence the conditions of Theorem 3.4 (3)

implies that gQ(θ(Y )E
∇,E∇) = 0. That is, by Theorem 3.14, (M,F) is transversally

isometric to the sphere. ◻

28



3.3 Transversal concircular curvature tensor

In this section, we study the Riemannian foliation by the some condition of the transver-

sal concircular curvature tensor Z∇.

Definition 3.16 The transversal concircular curvature tensor Z∇ of F is define by

Z∇(X,Y ) = R∇(X,Y ) −R∇σ (X,Y ), (3.17)

where

R∇σ (X,Y )s =
σ∇

q(q − 1)
{gQ(π(Y ), s)π(X) − gQ(π(X), s)π(Y )}

for any X,Y ∈ TM and s ∈ ΓQ.

Trivially, if Z∇ = 0, then F is a foliation of transversally constant sectional curvature.

In an ordinary manifold, the concircular curvature tensor is invariant under a concirclar

transformation which is a conformal transformation preserving geodesic circles ([25]).

It is well-known that for any s ∈ ΓQ,

∑
a

Z∇(σ(s),Ea)Ea = E
∇
(s). (3.18)

Also, we have ([10])

∣Z∇∣2 = ∣R∇∣2 −
2(σ∇)2

q(q − 1)
. (3.19)

Proposition 3.17 ([10]) Let (M,gM ,F) be a closed, oriented Riemannian manifold

with a foliation F of codimension q ≥ 2 and a bundle-like metric gM . Assume that
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the transversal scalar curvature σ∇ is constant. If Y is a transversal nonisometric

conformal field with θ(Y )gQ = 2fY gQ, fY ≠ 0, then

∫
M
gQ(E

∇
(∇fY ),∇fY ) =

1

2
∫
M
{fY

2
∣Z∇∣2 +

1

4
fY θ(Y )∣Z

∇
∣
2
}

+ ∫
M
gQ(ρ

∇
(fY∇fY ), κ

♯

B).

From Proposition 3.17 and Theorem 3.7, we have

Theorem 3.18 ([10]) Let (M,gM ,F) be a closed, connected Riemannian manifold with

a Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇, and

suppose that F is minimal. If M admits a transversal nonisometric conformal field Y

such that

θ(Y )∣Z∇∣2 = 0,

then (M,F) is transversally isometric to (Sq(1/c),G).

Now, we extend theorem 3.18. Namely, we have the following.

Theorem 3.19 Let (M,gM ,F) be a closed, connected Riemannian manifold with a

Riemannian foliation F of a nonzero constant transversal scalar curvature σ∇, and

suppose that F is minimal. If M admits a transversal nonisometric conformal field Y

such that

θ(Y )∣Z∇∣2 = const.,

then (M,F) is transversally isometric to (Sq(1/c),G).
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Proof. Let Y be the transversal nonisometric conformal field such that θ(X)gQ =

2fY gQ(fY ≠ 0). From Proposition 2.12, we have

∫
M
fY = 0. (3.20)

Assume that F is minimal. Since θ(Y )∣Z∇∣2 = const, from (3.20) and Proposition 3.24,

we have

∫
M
gQ(E

∇
(∇fY ),∇fY ) =

1

2
∫
M
f2Y ∣Z

∇
∣
2.

Hence from Theorem 3.7, the proof is completed. ◻

Corollary 3.20 Let (M,gM ,F) be a closed, connected Riemannian manifold with a

minimal foliation F of codimension q ≥ 2 and a bundle-like metric gM . Assume that

the transversal scalar curvature is nonzero constant and either θ(Y )∣ρ∣2 or θ(Y )∣R∣2

is constant. If M admits a transversal nonisometric conformal field, then (M,F) is

transversally isometric to (Sq(1/c),G).

Proof. The proof followe from (3.6), (3.19), Theorem 3.11 and Theorem 3.18. ◻
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4 L2-transverse Killing form

Precisely, see [15] for this chapter.

4.1 Basic facts

Let (M,gM ,F) be a Riemannian manifold with a foliation F of codimension q and a

bundle-like metric gM .

Definition 4.1 A basic r-form ϕ ∈ Ωr
B(F) is called a transverse conformal Killing

r-form if for any vector field X ∈ ΓQ,

∇Xϕ =
1

r + 1
i(X)dBϕ −

1

q − r + 1
X∗ ∧ δTϕ, (4.1)

where X∗ is the gQ-dual 1-form to X ans δT = δB − i(κ♯B). In addition, a basic r-form ϕ

satisfying (4.1) with δTϕ = 0 is called a transverse Killing r-form. That is, a transverse

Killing r-form ϕ satisfies

∇Xϕ =
1

r + 1
i(X)dBϕ. (4.2)

Trivially, a basic form ϕ is a transverse Killing form if and only if

i(X)∇Xϕ = 0 (4.3)

for any vector field X ∈ ΓQ.

Proposition 4.2 On a Riemannian foliation of codimension q, we have that

(1) ϕ is a transverse conformal Killing r-form if and only if ∗̄ϕ is a transverse con-

formal Killing (q − r)-form.
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(2) ϕ is a transverse Killing r-form if and only if ∗̄ϕ is a closed transverse conformal

Killing (q − r)-form.

Proof. (1) is proved ([13]). For the proof of (2), let ϕ be a transverse Killing r-form.

Since [∇, ∗̄] = 0, from (2.12) and (4.2), we have

∇X(∗̄ϕ) = (−1)
r 1

r + 1
ϵ(X∗)∗̄dBϕ. (4.4)

On the other hand, from (2.11) we have

δT ∗̄ϕ = (−1)
r2−1
∗̄dBϕ. (4.5)

Hence from (4.4) and (4.5), we have

∇X(∗̄ϕ) = −
1

r + 1
ϵ(X∗)δT ∗̄ϕ. (4.6)

Since δTϕ = 0, d∗̄ϕ = 0, i.e., ∗̄ϕ is closed. Hence from (4.1), ∗̄ϕ is a closed transverse

conformal Killing (q − r)-form, which completes the proof of (2). ◻

Remark. A transverse conformal Killing 1-form (resp. transverse Killing 1-form) is a

gQ-dual 1-form of a transverse conformal Killing vector field (resp. transverse Killing

vector field).

Proposition 4.3 ([13]) On a Riemannian foliation, a basic r-form ϕ is a transverse

Killing form if and only if

∆Bϕ =
r + 1

r
F (ϕ) + θ(κ♯B)ϕ, (4.7)

or

F (ϕ) =
r

r + 1
δTdBϕ. (4.8)
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Then we obtained the parallelness of the transverse conformal Killing form on com-

pact manifold.

Theorem 4.4 ([8]) Let F be a Riemannian foliation on a compact Riemannian mani-

fold M . If the transversal curvature endomorphism is nonpositive, then any transverse

conformal Killing r-form (1 ≤ r ≤ q − 1) is parallel, where q =codimF .

Definition 4.5 A basic form ϕ is said to be a L2-basic form if ϕ ∈ L2Ω∗B(F), i.e.,

∣∣ϕ∣∣2B <∞.

We recall the generalized maximum principle on a complete foliated Riemannian

manifold, that is, a Riemannian foliation with a complete bundle-like metric.

Theorem 4.6 ([8]) (Generalized maximum principle) Let F be a Riemannian foliation

on a complete foliated Riemannian manifold with all leaves be compact. Assume that κB

is coclosed and bounded. Then a nonnegative basic function f such that (∆B −κ♯B)f ≤ 0

with ∫M fp <∞ (for some p > 1) is constant.

By using the generalized maximum principle, we proved the parallelness of the

L2-transverse on complete manifolds.

Theorem 4.7 ([4, 12]) Let F be a Riemannian foliation on a complete foliated Rie-

mannian manifold M . Assume that all leaves are compact and the mean curvature is

bounded. If the transversal curvature endomorphism is nonpositive, then

(1) all L2-transverse Killing forms are parallel ([4]);
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(2) all L2-transverse conformal Killing forms are parallel ([12]);

4.2 Transverse conformal Killing form on Kähler foliation

In this section, we study the parallelness of the transverse conformal Killing form on a

transverse Kähler foliation.

Let (F , J) be a transverse Kähler foliation of codimension q = 2m on a Riemannian

manifold (Mp+q, gM). That is, the normal bundle Q = TM/L admits a holonomy invari-

ant almost complex structure J ∶ Q→ Q such that ∇J = 0 and gQ(JX,JY ) = gQ(X,Y )

for any X,Y ∈ Q ([16]). Note that for any X,Y ∈ ΓQ, the 2-form ω defined by

ω(X,Y ) = gQ(X,JY ) (4.9)

is a basic 2-form, which is closed as consequence of ∇gQ = 0 and ∇J = 0. Let {Ea}(a =

1,⋯, q) be a local orthonormal basic frame on Q and {θa} be its dual basic. Then

ω = −
1

2

2m

∑
a=1

θa ∧ Jθa. (4.10)

Definition 4.8 Let Λ ∶ Ωr
B(F) → Ωr−2

B (F) and J̃ ∶ Ω
r
B(F) → Ωr

B(F), which are given

by

Λ(ϕ) = i(ω)ϕ, J̃(ϕ) =
2m

∑
a=1

Jθa ∧ i(Ea)ϕ, (4.11)

respectively, where i(ϕ1 ∧ ϕ2) = i(ϕ♯2)i(ϕ
♯

1) and (Jϕ)(X) = −ϕ(JX) for any basic 1-

forms ϕi(i = 1,2) and ϕ. Trivially, if ϕ ∈ Ω
1
B(F), then J̃ϕ = Jϕ. From now on, we write

J̃ = J unless any confusion.

Then we have the following lemma.
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Lemma 4.9 ([6]) On a transverse Kähler foliation (F , J), we have

[F,Λ] = 0, [δB,Λ] = 0, [dB,Λ] = −δ
c
T , (4.12)

[∆B,Λ] = δT i(Jκ
♯

B) + i(Jκ
♯

B)δT , (4.13)

[Aκ♯B
,Λ] = [θ(κ♯B),Λ] = −(δ

c
T i(κ

♯

B) + i(κ
♯

B)δ
c
T ), (4.14)

where δcT = −∑
2m
a=1 i(JEa)∇Ea

. If κ♯B is transversally holomorphic, i.e., θ(κ♯B)J = 0,

then

δT i(Jκ
♯

B) + i(Jκ
♯

B)δT = −(δ
c
T i(κ

♯

B) + i(κ
♯

B)δ
c
T ),

which means

[∆B,Λ] = [θ(κ
♯

B),Λ]. (4.15)

Proposition 4.10 ([8]) On a transverse Kähler foliation, if ϕ is a transverse Killing

r-form (r ≥ 2), then Λϕ is a transverse Killing (r − 2)-form.

Now, we give some facts about a transverse Killing form on transverse Kähler foli-

ation.

Lemma 4.11 Let (F , J) be a transverse Kähler foliation and κ♯B be transversally holo-

morphic. Then any transverse Killing r-form ϕ satisfies

F (Λϕ) = 0, ∆BΛϕ = θ(κ
♯

B)(Λϕ).

Proof. Let ϕ be a transverse Killing r-form. Since Λϕ is also a transverse Killing

(r − 2)-form, from (4.7)

∆BΛϕ =
r − 1

r − 2
F (Λϕ) + θ(κ♯B)(Λϕ). (4.16)
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On the other hand, since κ♯B is transversally holomorphic, from (4.15) and (4.7) we

have

∆BΛϕ =
r + 1

r
F (Λϕ) + θ(κ♯B)(Λϕ). (4.17)

From (4.16) and (4.17), if r > 2, then

F (Λϕ) = 0. (4.18)

For r = 2, it is trivial that F (Λϕ) = 0. therefore, the proof of the second formula follows

from (4.16). ◻

Proposition 4.12 Let (F , J) be a transverse Kähler foliation on a closed Riemannian

manifold. Assume that κ♯B is transversally holomorphic. Then for any transverse Killing

r-form ϕ (r ≥ 2), Λϕ is parallel.

Proof. Let ϕ be a transverse Killing r-form (r ≥ 2). From Lemma 4.11 and (2.21), we

have

1

2
(∆B − κ

♯

B)∣Λϕ∣
2
= −∣∇trΛϕ∣

2. (4.19)

That is, (∆B−κB)∣Λϕ∣
2 ≤ 0. Hence by the generalized maximum principle ([11]), ∣Λϕ∣ is

constant. Therefore, from (4.19) again, Λϕ is parallel. ◻

Now we define the operators R∇
±
(X) ∶ Ωr

B(F) → Ωr±1
B (F) for any X ∈ TM by

R∇
+
(X)ϕ =

2n

∑
a=1

θa ∧R∇(X,Ea)ϕ, (4.20)

R∇
−
(X)ϕ =

2n

∑
a=1

i(Ea)R
∇
(X,Ea)ϕ. (4.21)

Then we have the following lemmas directly.
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Lemma 4.13 On a transverse Kähler foliation (F , J), we have

[R∇
+
(X),Λ] = R∇

−
(JX)

for any vector field X ∈ Q.

Proof. This is easy by using (4.20) and (4.21) ◻

Lemma 4.14 ([8]) On a transverse Kähler foliation, if ϕ is a transverse Killing r-

form, then

∇
2
X,Y ϕ =

1

r
i(Y )R∇

+
(X)ϕ

for any X,Y ∈ TM .

Proposition 4.15 Let (F , J) be a transverse Kähler foliation on a closed Riemannian

manifold. Assume that κ♯B is transversally holomorphic. Then for any transverse Killing

r-form (r ≥ 2),

F (ϕ) = 0.

Proof. Let ϕ be a transverse killing r-form (r ≥ 2). Since Λϕ is parallel, from Lemma

4.13 we have that

R∇
−
(JX)ϕ = −ΛR∇

+
(X)ϕ. (4.22)

On the other hand, from Lemma 4.14 we have

i(Y )ΛR∇
+
(X)ϕ = Λi(Y )R∇

+
(X)ϕ

= rΛ∇2
X,Y ϕ = r∇

2
X,Y Λϕ = 0.
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Since Y is arbitrary, we have

ΛR∇
+
(X)ϕ = 0. (4.23)

Hence from (4.22) we get

R∇
−
(JX)ϕ = 0,

Since X ∈ Q is also arbitrary, we have

R∇
−
(X)ϕ = 0, (4.24)

which implied F (ϕ) = −∑a θ
a ∧R∇

−
(Ea)ϕ = 0. So the proof follows. ◻

Theorem 4.16 ([8]) Let (F , J) be a transverse Kähler foliation on a closed Rieman-

nian manifold. Assume that κ♯B is transversally holomorphic.. Then any transverse

Killing r-form ϕ (r ≥ 2) is parallel.

4.3 L2-transverse Killing form

Lemma 4.17 Let (F , J) be a transverse Kähler foliation on a complete foliated Rie-

mannian manifold. Then for any L2-basic form ϕ, Λϕ is also a L2-basic form.

Proof. Let ϕ be a basic form. Then for any vector field X ∈ Q,

∣i(X)ϕ∣2 + ∣X∗ ∧ ϕ∣2 = ∣X ∣2∣ϕ∣2.

If we choose X = Ea, then ∣i(Ea)∣
2 + ∣θa ∧ ϕ∣2 = ∣ϕ∣2. Hence

∣i(Ea)ϕ∣
2
≤ ∣ϕ∣2.

Hence if ϕ ∈ L2Ω∗B(F), then i(Ea)ϕ ∈ L
2Ω∗B(F) for any a = 1, . . . , q. And so i(JEa)i(Ea) ∈

L2Ω∗B(F), which implies that ∑a i(JEa)i(Ea)ϕ ∈ L
2Ω∗B(F), that is, Λϕ is L2. ◻
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Proposition 4.18 Let (F , J) be a transverse Kähler foliation on a complete foliated

Riemannian manifold and all leaves be compact. Assume that κB is transversally holo-

morphic, coclosed and bounded. Then for any L2-transverse Killing r-form ϕ (r ≥ 2),

Λϕ is a parallel L2-transverse Killing (r − 2)-form.

Proof. Let ϕ be a L2-transverse Killing r-form. From Proposition 4.10 and Lemma

4.11, the generalized Weitzenböck formula (2.21) implies

1

2
(∆B − κ

♯

B)∣Λϕ∣
2
= −∣∇trΛϕ∣

2
≤ 0. (4.25)

Since Λϕ is a L2-form (Lemma 4.17), by the generalized maximum principle (Theorem

4.6), Eq. (4.25) implies that ∣Λϕ∣ is constant. So from (4.25) again, ∇trΛϕ = 0, i.e., Λϕ

is parallel. ◻

Proposition 4.19 Let (F , J) be a transverse Kähler foliation on a complete foliated

Riemannian manifold and all leaves be compact. Assume that κB is transversally holo-

morphic, coclosed and bounded. Then for a L2-transverse Killing r-form ϕ (r ≥ 2),

F (ϕ) = 0. (4.26)

Proof. Let ϕ be a L2-transverse Killing r-form. Since Λϕ is a parallel L2-transverse

Killing form (Proposition 4.18), the proof is the same to one of Proposition 4.15. ◻

Theorem 4.20 Let (F , J) be a transverse Kähler foliation on a complete Riemannian

manifold with all leaves be compact. Assume that the mean curvature vector field is

transversally holomorphic, coclosed and bounded. Then all L2-transverse Killing r-forms
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(r ≥ 2) are parallel. In addition, if vol(M) is infinite, then all L2-transverse Killing

r-forms (r ≥ 2) are trivial.

Proof. Let ϕ be a L2-transverse Killing r-form. From Proposition 4.3 and Proposition

4.19, we have

∆Bϕ = θ(κ
♯

B)ϕ.

Hence by the generalized Weitzenböck formula (2.21), we have

(∆B − κ
♯

B)∣ϕ∣
2
= −∣∇trϕ∣

2
≤ 0. (4.27)

Therefore, by Theorem 4.6, ∣ϕ∣ is constant, which implies that ∇trϕ = 0. That is, ϕ is

parallel. which proves the first statement in the Theorem 4.20.

If vol(M) is infinite, it is trivial that ∫M ∣ϕ∣
2 < ∞ implies ∣ϕ∣ = 0. Hence, the prove is

complete. ◻

Corollary 4.21 Let (F , J) be a minimal transverse Kähler foliation on a complete

Riemannian manifold with all leaves be compact. Then L2-transverse Killing r-forms

(r ≥ 2) are parallel. In addition, if vol(M) is infinite, then all L2-transverse Killing

r-forms (r ≥ 2) are trivial.

Corollary 4.22 On a complete Kähler manifold, all L2-Killing r-forms (r ≥ 2) are

parallel.
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