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1 Introduction

Let (M,F) be a smooth manifold with a Riemannian foliation is a foliation F on a
smooth manifold M such that the normal bundle @ = TM /L may be endowed with
a metric gg whose Lie derivative is zero along leaf directions ([23]). Note that we
can choose a Riemannian metric gy on M such that gay|rz: = gg; such a metric is
called bundle — like. Denote by (M, gy, F). Recently, S. D. Jung and K. Richardson
([11]) proved the generalized Obata theorem which states that: (M, F) is transversally
isometric to (S9(1/c),G), where G is the discete subgroup of O(q) acting by isometries
on the last g coordinates of the sphere S?(1/c) of radius 1/c¢ if and only if there exists

a non-constant basic function f such that

VxVf=-fX

for all foliated normal vectors X, where ¢ is a positive real number and V is the
transverse Levi-Civita connection on the normal bundle Q.(See below)

Let RV, pV and ¢V be the transversal curvature tensor, transverse Ricci operator and
transversal scalar curvature with respect to the transversal Levi-Civita connection V
on @ ([23]). Let kp be the basic part of the mean curvature form of the foliation F
and kb its dual vector field (see Section 2). Then we have the following well-known

theorem.

Theorem A. ([11]) Let (M, g, F) be a closed, connected Riemannian manifold with

a Riemannian foliation F of a nonzero constant transversal scalar curvature oV . If



M admits a transversal nonisometric conformal field Y satisfying one of the following

conditions:
(1) Y = Vh for any basic function h, or
(2) 0(Y)p" = ugq for some basic function u, or

(3) pY(Vfy) = %nyy 9Q(K%, Vfy) =0 and go(Aw Vv,V fy) <0,

when fy = %diva,
then (M, F) is transversally isometric to (S?(1/c),G).
Now, we recall two tensor fields EV and ZV ([5], [10]) by

\Y
EYY)=p"(V)-2Y, YeTF, (1.1)
q

ZV(X,Y)=RY(X,Y) - RY(X,Y), (1.2)

where RY (X,Y)s = q(‘;—:){gQ(ﬂ(Y),s)w(X) - g9o(m(X),s)m(Y)} for any vector field,
X,Y € TM and s € I'Q. Trivially, if EV = 0 (resp. ZV = 0), then the foliation is
transversally Einsteinian (resp. transversally constant sectional curvature). The tensor
ZV is called as the transversal concircular curvature tensor, which is a generalization of
the concircular curvature tensor on a Riemannian manifold. In an ordinary manifold,
the concircular curvature tensor is invariant under a concircular transformation which
is a conformal transformation preserving geodesic circles ([25]). Then we have the well-

known theorem.



Theorem B. ([5]) Let (M, g, F) be a closed, connected Riemannian manifold with a
Riemannian foliation F of a nonzero constant transversal scalar curvature oV . If M

admits a transversal nonisometric conformal field Y such that

[ng(Ev(va)anY) 2 07

then (M, F) is transversally isometric to (S1(1/c),G).

Theorem C. ([7, 10]) Let (M, g, F) be a closed, connected Riemannian manifold
with a Riemannian foliation F of a nonzero constant transversal scalar curvature oV,

and suppose that F is minimal. If M admits a transversal nonisometric conformal field

Y such that

(WOM)IEYP =0, ([7])

(2)6(Y)|2¥}=0. ([10])
then (M, F) is transversally isometric to (S9(1/c),G).

Namely, we extend Theorem C as follows: There are many results about the Rie-
mannian foliations admitting a transversal nonisometric conformal field ([5], [7], [10],

[11], [21)).

Main Theorem 1. Let (M, gy, F) be a closed, connected Riemannian manifold with
a Riemannian foliation F of a nonzero constant transversal scalar curvature oV, and

suppose that F is minimal. If M admits a transversal nonisometric conformal field Y



such that

O(Y)|EV|? = const. 0(Y)|ZV[? = const.

then (M, F) is transversally isometric to (S1(1/c),G).

Also, we study a generalization of Theorem A (2) and (3) when F is minimal.

Main Theorem 2. Let (M, gy, F) be a closed, connected Riemannian manifold with

V. and

a Riemannian foliation F of a nonzero constant transversal scalar curvature o
suppose that F is minimal. If M admits a transversal nonisometric conformal field Y

such that

0(Y)go(0(Y)EV,EY) <0,

then (M, F) is transversally isometric to (S1(1/c),G).

Remark. See also ([26]) for the ordinary manifold.

Main Theorem 3. Let (M, gy, F) be a closed, connected Riemannian manifold with
a Riemannian foliation F of a nonzero constant transversal scalar curvature o . If M
admits a transversal conformal field Y such that Y = K + Vh, where K is a transver-
sal Killing field and h is a basic function, then (M,F) is transversally isometric to

(5(1/¢), G).

Remark. Main Theorem 3 is a generalization of Theorem A (1).
On the other hand, a transverse Killing fields and conformal fields are very impor-

tant objects for studying mathematical and physical problems on foliated manifolds. As



their generalizations, transverse Killing forms and conformal Killing forms were studied
by many authors ([7], [24]). In 2012, S. D. Jung and K. Richardson ([13]) studied the
parallelness of transverse Killing and conformal Killing forms on a compact manifold.

Namely, we have the following.

Theorem D. ([13]) Let F be a Riemannian foliation on a compact Riemannian mani-
fold M. If the transversal curvature endomorphism is nonpositive, then any transverse

conformal Killing r-form (1 <r <q-1) is parallel, where q = codim F.

When (F,J) is a transverse Kéhler foliation, the parallelness of such forms was

studied in ([6,8]), as follows.

Theorem E. Let (F,J) be a transverse Kahler foliation on a closed, connected Rie-

mannian manifold. Then

(1) of the mean curvature vector is transversally holomorphic, then any transverse

Killing r-form (r > 2) is parallel ([6]);
(2) if the foliation is minimal, then for any transverse conformal Killing r-form ¢

(2<r<q-2), Jo is parallel (8]);

On a complete Riemannian foliation, the parallelness of L?-transverse forms was

studied in ([4]) and ([12]). Namely,

Theorem F. Let F be a Riemannian foliation on a complete foliated Riemannian

manifold M. Assume that all leaves are compact and the mean curvature is bounded. If



the transversal curvature endomorphism is nonpositive, then

(1) L2-transverse Killing forms are parallel ([4]);

(2) L2-transverse conformal Killing forms are parallel ([12]);

The parallelness of L?-transverse conformal Killing forms on a transverse Kéhler

foliation was studied by S. D. Jung and H. Liu ([12]). That is,

Theorem G. ([12]) Let (F,J) be a minimal transverse Kahler foliation on a complete
Riemannian manifold with all leaves be compact. Then for any L*-transverse conformal

Killing r-form ¢ (2<r <q-2), J¢ is parallel.

Remark. Note that any transverse Killing form is a transverse conformal Killing form.
Hence from Theorem G, for any L?-transverse Killing ¢, J¢ is also parallel. But gen-
erally, the parallelness of J¢ does not impty the parallelness of ¢. Hence we study the

parallelness of L2-transverse Killing forms on a transverse Kéhler foliation.

In Section 4, we study the parallelness and vanishing theorem of L2-transverse
Killing forms on a transverse Kahler foliation. That is,
Main Theorem 4. Let (F,J) be a transverse Kahler foliation on a complete Rieman-
nian manifold such that all leaves be compact. Assume that the mean curvature vector
field is transversally holomorphic, coclosed and bounded. Then L?*-transverse Killing r-
forms (r>2) are parallel. In addition, if vol(M) is infinite, then L?-transverse Killing

r-forms (r>2) are trivial.



2 Foliations

2.1 Definitions

Let MP*? be a smooth manifold of dimensional n =p +gq.

Definition 2.1 A family F = {l, }qca of connected subsets of a manifold MP*? is called

a p-dimensional ( or codimension ¢) foliation if
(1) M =Ugyla,
(2) lanlg=@  for any a # 3,

(3) for any point p € M, there exist a C"-chart (y;,U;), such that if U;nl, # @, then

the connected component of U; nl, is homeomorphic to A., where
Ac={(z,y) €e R” x Ry = constant}.
Here (p;,U;) is called a distinguished ( or foliated) chart.

Remark. From (3) in definition 2.1, we know that on U; nU; # &, the coordinate

change go;-l o (U;nU;j) — gpj_-l(Ui N Uj) has the form

05 o pi(x,y) = (i (@, 9).75(¥)), (2.1)

where ¢;; : RP*9 » RP is a differentiable map and 7;; : R? = R? is a diffeomorphism.
Let (M,F) be a smooth manifold of dimension n = p + ¢ endowed with a foliation

F given by an integrable subbundle L ¢ TM of rank p. The set F is a partition of M



into immersed submanifolds (leaves) such that the transition functions for the local
product neighborhoods (foliation charts) are smooth. The subbundle L is the tangent
bundle to the foliation; at each p € M, L, is the tangent space to the leaf through p. We
assume throughout the paper that the foliation is Riemannian; this means that there is
a metric on the local space of leaves - a holonomy-invariant transverse metric gg on the
normal bundle @ = T'M /L. The phrase holonomy—invariant means (X )gg = 0, where
0(X) is the transversal Lie derivative for all leafwise vector fields X € I'L. This condition
is characterized by the existence of a unique metric and torsion-free connection V on
Q ([1)-

We often assume that (M, gar, F) be a Riemannian manifold with the foliation F
and a bundle — like metric gy ([22]), which is exactly a metric on the manifold such
that the leaves of the foliation are locally equidistant.

Now, we consider an exact sequence of vector bundles

0 L TM <Z—=Q 0 (2.2)

where ¢ : Q - L* is a bundle map satisfying m oo = id. Let gg be the holonomy

invariant metric on @) induced by gas = g1, + gr+; that is

99(s,t) =gm(o(s),o(t)) Vs, tel'Q. (2.3)

Let V be the transverse Levi-Civita connection in ), which is defined ([4]) by



m([X,Ys]) VX eTL
Vxs= (2.4)

(VYY) VX eTTL*,

where s € 'Q and Y; = 0(s) € T'L* correspinding to s under the canonical isomor-
phism Q = L* and V¥ is the Levi-Civita connection on M. The curvature RV of V is
defined by RV(X,Y) = [Vx,Vy] - Vix,y] for X,Y e TTM. Since i(X)RY = 0 for any

X eT'L ([16]), we can define the transversal Ricci operator p¥ : T'Q - I'Q by

pV(s) = Zq: RV (s,E,)E,, (2.5)

a=1
where {Eg}q-1,.. 4 is an orthonormal basic frame of (). And the transversal Ricci curva-
ture RicV is given by RicV(s1,s2) = go(pV(s1), s2) for any s1, s3 € ['Q. The transversal
scalar curvature oV is given by oV = TrpV. The foliation F is said to be (transversally)

FEinsteinian if the model spase is Einsteinian, that is,
\Y 1 AR
p’ =—-0’-id (2.6)

with constant transversal scalar curvature V. The mean curvature vector T of F is

defined by

TZF(iVAE{Ei), (2.7)

i=1
where {E;} is a local orthonomal basis of L. The foliation F is said to be minimal if

7 =0. A differential form w € Q" (M) is basic if

i(X)w=0, 6(X)w=0, VXelL. (2.8)



Let Q5 (F) be the set of all basic r-forms on M. The foliation F is said to be isoparametric
if k € QL(F), where k is a gg-dual 1-form of 7. D. Domminguez ([2]) proved that any
Riemannian foliation is isoparametric for some bundle-like metric. It is well-known ([9])
that on an isoparametric Riemannian foliation F, the mean curvature form & is closed,
i.e., dk = 0. Let dp be the restriction of d on Qp(F) and dp its formal adjoint operator

of dp with respect to the global inner product <« -,- >, which is given by

L P, >>:A4¢A *)AXF (2.9)

for any basic r-form ¢ and 1, where x £ is characteristic form of F ([20]) and * is the

transversal star operator on Q5 (F), that is, * : Q(F) - QL " (F) defined by

= (-1)PUT) w (pAaxE), YoeQp(F). (2.10)

The operator g is given by
o= (~1)1 D rdpxe +i(rly)o

where dp = d — e(kp). Here e(X*) = X*A is the adjoint operator of i(X), kp is the
basic part of the mean curvature form « and (-)* is a gg-dual vector to (-). By a direct

calculation, we have that for any ¢ € QL (F),
e(X*)xp = (-1)%i(X) o (2.11)

for any vector field X € Q.
Note that the induced connection V on Q%(F) from the connection V on @ and Rie-
mannian connection VM on M extends the partial Bott connection, which satisfies

10



Vx¢=0(X)¢ for any X eI'L ([8]). Locally, dp ad dp are given by

q q
dg=> 0"AVE,, O6p=-Y i(E.)Vg, +i(kl), (2.12)

a=1 a=1
where ¢ is the dual basic 1-form of E,

The basic Laplacian Ap acting on Q5 (F) is defined by
Ap=dpdp+6pdp.
Then for any basic function f, we have
Apf=dpdpf=- Za: Ve Ve, f+r5(f). (2.13)
Now, we recall the generalized maximum principle for foliation ([11]).

Theorem 2.2 ([11]) Let (M, gu, F) be a closed, connected Riemannian manifold with
a foliation F and a bundle-like metric gar. For any basic function f, the condition

(Ap —kk) f >0 implies that f is constant.

In ([8]), for any bundle-like metric with x € Q5(F), it is proved that there exists
another bundle-like metric for which the mean curvature form is basic-harmonic. That

iS, ABK) =0.

11



2.2 Infinitesimal automorphisms

Let V(F) be the space of all vector fields Y on M satisfying [Y, Z] e T'L for all Z e L.

An element of V(F) is called an infinitesimal automorphism of F ([12]). Let
V(F)={Y =n(YV)|[Y e V(F)}. (2.14)

It is trivial that an element s of V(F) satisfies Vxs = 0 for all X € I'L. Hence the

metric defined by (2.3) induces an identification ([17])
V(F) =2 Qp(F). (2.15)

For the later use, we recall the transversal divergence theorem ([6]) and the tautness

theorem ([1, 18]) on a foliated Riemannian manifold.

Theorem 2.3 (Transversal divergence theorem) Let (M, gnr, F) be a closed, oriented
Riemannian manifold with a transversally oriented foliation F and a bundle-like metric

grr- Then
divg X = f X, 2.16
[ diveX = [ go(X.7) (2.16)
for all X € V(F), where divy X denotes the transversal divergence of X with respect to

the connection V defined by (2.4).

Theorem 2.4 (Tautness theorem) Let (M, gy, F) be a closed, oriented Riemannian
manifold with a foliation F of codimension q > 2 and a bundle-like metric gyr. If the
transversal Ricci operator pV is positive definite, then F is taut, i.e., there exists a
bundle-like metric gyr for which all leaves are minimal submanifolds.

12



We define an operator Ay : I'Q — I'Q for any vector field Y € V(F) by
Ays=0(Y)s—Vys. (2.17)
Then it is proved ([13]) that, for any vector field Y € V(F),
Ays=-VyY (2.18)

where Y; = 0(s) e 'TM. So Ay depends only on Y = 7(Y) and is a linear operator.
Moreover, Ay extends in an obvious way to tensors of any type on @ (see [13] for

details). In particular, for any basic 1-form ¢ € QL (F), the operator Ay is given by
(Ay¢)(s) =-¢(Ays) VselQ. (2.19)
Now, we introduce the operator V;.Vy : Qp(F) = Q5 (F) as
Vi Vi = - Zaj VE, 5.0+ Vo, (2.20)

where V%(,Y =VxVy -Vyuy for any X,Y e T'M. It is well-known that V}, V¢ is a non-
negative and formally self-adjoint operator ([3]). Then we have the following generalized

Weitzenbock formula.

Theorem 2.5 ([3]) Let (M, gn,F) be a Riemannian manifold with a foliation F of
codimension q and a bundle-like metric gyr. Then the generalized Weizenbock formula

is given by the following : for any basic form ¢ € Qp(F)

ABp =V Vud+ F(¢)+ A, (2.21)

13



where F(¢) = ¥y B Ni(Ey)RY (Ey, Eq)¢. In particular, if ¢ is a basic 1-form, then
F(¢)t=pV(g"). Here for any basic form ¢, ¢ means that ¢(X) = go(¢!, (X)) for all

XeTM.

Corollary 2.6 Let (M,gn, F) be a closed, oriented Riemannian manifold with a foli-

ation F of codimension q > 2 and a bundle-like metric gpr. Then, for any basic r-form

o,

5 8510 = ~00(556,0) + Vo + 9a(F(6),0) + g(Arr0),  (222)

where |V @ = ¥090(VE, 6, VE,9).

For any vector filed X € V(F), if we put ApX = (App)!, where ¢f = X, then we

have the following corollary.

Corollary 2.7 Let (M, gy, F) be a closed, oriented Riemannian manifold with a fo-
liation F of codimension q > 2 and a bundle-like metric gpr. Then, for any vector field
X e V(F),

ABX = V;rvtTX + pV(X) - Ain (223)

where A' is an adjoint operator of A.

14



2.3 Transversal Killing and conformal fields

Let (M, gy, F) be a (p + ¢)-dimensional Riemannian manifold with a foliation F of
codimension ¢ and a bundle-like metric gy such that x € QL(F). If Y € V(F) satisfies
0(Y)gg = 0, then Y is called a transversal Killingfield of F. If Y e V(F) satisfies
0(Y)gqg = 2fygq for a basic function fy depending on Y, then Y is called a transversal

conformal field of F; in this case, we have
fy = édiva. (2.24)

Now we put, for any vector field Y € V(F),
oY =AY -2pV(Y). (2.25)

Trivially, Op is a formally self-adjoint operator.

For any vector field Y € V(F), let By, :T'Q - I'Q(u € R) be given by
BY = Ay + Ay + p-divgY - id. (2.26)

It is well-known ([13,19]) that Y is transversal conformal (resp. transversal Killing) if
and only if

BA"-0 (resp.BY =0). (2.27)

Theorem 2.8 ([10]) Let (M, g, F) be a closed, oriented Riemannian manifold with
a foliation of codimension q and a bundle-like metric gyr. Then, for any vector field

Y e V(F), the following holds:

15



(1) Y s a transversal Killing field if and only if
()opY + ALY + Ayt =0, divgY =0,
(i0) [ go(BYY.7) >0,
(2) Y is a transversal conformal field if and only if
(’L) Op Y + AS_Y + AyT = (1 - 2)dBdiVVYV,
q

(iz’)fMgQ(Bf,/qY,T)ZO.

Theorem 2.9 (cf. [19]) Let (M,gn,F) be a closed, oriented Riemannian manifold
with a foliation of codimension q and a bundle-like metric gpr and Y € V(F). If a

transversal conformal field Y satisfies
(i) [MgQ(Bg/Y, k1) >0 and (i) dpdivgY =0,
then Y is the transversal Killing field.

Lemma 2.10 ([7]) Let (M, g, F) be a Riemannian manifold with a foliation F of
codimension q and a bundle-like metric gyr. If Y is a transversal conformal field, i.e.,

0(Y)gq =2fvgq, then we have

9Q((O(Y)V)(Ea, By), Be) = 6 fa + 5o fo = e fe, (2:28)
(O(Y)RY)(Eq, Ep)Ec = (Vo0(Y)V)(Ep, Ec) = (Vi(Y)V)(Ea, Ec), (2.29)
9((O(Y)RY)(Ea, Ey)Ec, Eq) = 63V afe = 55V afa = 63Vsfa+ 05Vsfa, (2.30)
(O )RicY)(Eas Ey) = ~(a-2)Vafo + 0o (2pfr = (fr)), (2:31)

16



where Vo =VE, and fo=Vafy.
From (2.31), we have the following lemma.

Lemma 2.11 ([10]) Let (M, gar, F) be a closed, oriented Riemannian manifold with a

foliation of codimension q and a bundle-like metric gyr, if Y is the transversal conformal

field, i.e., 0(Y)gg = 2fvgq, then
O(Y)oV =2(q-1)(2pfy - (fy)) - 2fya”. (2.32)

Proposition 2.12 ([10]) Let (M, g, F) be a closed, connected Riemannian manifold
with a foliation F of codimension q and a bundle-like metric gp; such that k € Q}B(}")
and dpk = 0. Assume that the transversal scalar curvature is constant. If Y is a transver-

sal conformal field with 6(Y)gg = 2fy9q, fv #0, then
O.V
Apfy = q—_lfy +k (fy) (2.33)

and consequently if oV # 0, then

[ =L [ s =0 (234

17



3 Riemannian foliations admitting transversal conformal

fields

Precisely, see [14] for this chapter.

3.1 Generalized Lichnerowicz-Obata theorem

Let (M, gn,F) be a connected and oriented Riemannian manifold with a foliation F

of codimension ¢ and a bundle-like metric gps such that x € QL (F).

Definition 3.1 Let G be a discrete group. Then (M,F) is transversally isometric to
(N, G), the isometric action of G on a Riemannian manifold N if there exists a smooth,

sujective map ¢ : M — N such that :

(1) The function ¢ induces a homeomorphism between the leaf space M|F and the

orbit space N|G.

(2) For each x € M, the push forward ¢. restricts to an isometry ¢. : Qp — Ty N,

where @Q is the normal bundle of the foliation and TN is the tangent bundle of N.

Now, we recall the generalized Obata Theorem for foliations which was proved by

Lee and Richardson ([17]).

Theorem 3.2 (Generalized Obata theorem, ([11])) Let (M, g, F) be a connected,
complete Riemannian manifold with a foliation F of codimension q > 2 and a bundle-

like metric gy, and let ¢ be a positive real number. Then the following are equivalent:

18



(1) There exists a non-constant basic funtion f such that VxVf = —c*>fX for all vectors

X eTF*.

(2) (M, F) is transversally isometric to (S9(1/c),G), where the discrete subgroup G of
the ortogonal group O(q) acts by isometries on the last q coodinates of the q-sphere

S9(1/c) of radius 1/c in Euclidean space RI*!,

Now, we recall well-known facts for characterizing the Riemannian foliation admit-

ting the transversal conformal field.

Theorem 3.3 ([7]) Let (M, ga,F) be a closed, connected Riemannian manifold with
a foliation F of codimension q and a bundle-like mertic gyr and p¥ (X) > %X(Uv #0)

for any X e Q. If M admits a transversal conformal field Y € T'Q such that 0(Y)ggq =

2fvgo(fy #0), then (M,F) is transversally isometric to (S4(1/c),G), with ¢ = q(il)'

Theorem 3.4 ([11]) Let (M, ga, F) be a closed, connected Riemannian manifold with
a Riemannian foliation F of a nonzero constant transversal scalar curvature oV. If
M admits a transversal nonisometric conformal field Y satisfying one of the following

conditions:
(1) Y =Vh for any basic function h,
(2) 0(Y)pY = ugq for some basic function p,
(3) pV(Vfy) = %ny, 9Q(r%, Vfy) =0 and go(Au Vfy, Vfy) <0,

then (M, F) is transversally isometric to (S9(1/c),G).

19



Now, we prove the generalization of Theorem 3.4 (1).

Theorem 3.5 Let (M, gy, F) be a closed, connected Riemannian manifold with a Rie-
mannian foliation F of a nonzero constant transversal scalar curvature oV . If M admits
a transversal conformal field Y such that Y = K + Vh, where K is a transversal Killing

field and h is a basic function, then (M,F) is transversally isometric to (S4(1/c),G).

Proof. Let Y be a transversal conformal field such that 6(Y)gg = 2fygg and Y =

K + Vh, where K is a transversal Killing field and h is a basic function. Then
9(VxY,2) + 9q(VzY, X) =2fygq(X, Z)

for any normal vector field X, Z € I'Q). On the other hand, since the transversal scalar

\

curvature oV is constant, from Proposition 2.12, we have

Vv
(85 =)y = 1 fv. (3.1)

Since Y = K + Vh, we have 0(Y)gq = 0(Vh)gg = 2fygq. That is,
9Q(VxVh, Z) + go(V2zVh, X) = 2fygq(X, Z). (3.2)
On the other hand, (VVh)(X,Z) = go(VxVh, Z) is symmetric. Therefore, from (3.2)
(VVh)(X,Z) = fygo(X, Z). (3.3)
Hence from (2.12) and (3.3), we have
(&g -KR)h=—qfy. (3.4)

20



From (3.1) and (3.4), we get

(AB—H%)(fy+ al h):O.
q\q

By the generalized maximum principle (Theorem 2.2), we have

fre—T
vy + = const,
q(g-1)
which implies
O.V
VVfy + —=VVh=0. (3.5)
q(g-1)
from (3.3) and (3.5), we have
f AR
VxViy =- Y
a(¢-1)

for any X € I'Q).

By the generalized Obata theorem(Theorem 3.2), (M, F) is transversally isometric

: 2_ _o¥
to (S9(1/c),G) with ¢* = D i

3.2 Transversal Einstein tensor

In this section, we characterize the Riemannian foliation by the Einstein tensor. First,we

define the tensor EV :T'Q — I'Q by
oV
EV(Y)=p"(Y)-—Y, YeTQ,
q

which is called the transversal Einstein tensor of F. Trivially, if EV = 0, then F is
transversal Einsteinian.
Let {E,} be a local orthonormal basic frame on Q.
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Lemma 3.6 ([10]) Let (M, gy, F) be a Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gpr. If Y is a transversal conformal field, i.e.,

0(Y)gq =2fyvgq Then

V2
(i) troE” =0, |EV|2=|pV|2—%, (3.6)

)
(i) dvaV:QE—va? (3.7)
q

(iid) WQQEVXEMEQ=—@—2%Vab+aABf—@ﬂf»£}

where troEV = Y1_,90(EV(E,), Eq) and EV(X,Y) = go(EV(X),Y) for all vector

foeld X,Y €T'Q. If oV is constant , then divgEY = 0.

Theorem 3.7 ([5]) Let (M,gnr,F) be a closed, oriented Riemannian manifold with
a foliation F of codimension q > 2 and a bundle-like metric gy such that dpkp = 0.

v

Assume that the transversal scalar curvature oV is non-zero constant. If M admits a

transversal nonisometric conformal field Y, i.e., (Y )gg = 2fvgg (fy #0), such that

| 9E¥ (V1)) 20,

2

then F is transversally isometric to (S9(1/c),G), where ¢ = and G is a discrete

AN
q(q-1)

subgroup of O(q).
For our main theorem, we prepare some lemmas.

Lemma 3.8 If a transversal conformal field Y satisfies (Y )EV = uggq for some basic
function u, then
O(Y)EY =0.
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Proof. Let Y be the transversal conformal field such that 6(Y)gg = 2fygg. From
(2.31), we have

~(q-2)Vafs + (A fy — K5 (fy))d, = udy. (3.8)
From (2.12) and (3.8), we have

2(g-1
=2 gy - (1)) (3.9
From (3.8) and (3.9), we have
1 i b
~(a=2{Vafo+ (Apfy = sb(fr))i} =0 (3.10)

Therefore, the proof follows from Lemma 3.6 (iii). O

Lemma 3.9 IfY is a transversal conformal field, then
0(Y)|EV? = 29(0(Y)EY, EV).

Proof. Let {E,} be a local orthonormal basic frame on @ such that (VE,); =0 at a
point z. Let Y be the transversal conformal field such that 8(Y")gq = 2fygq. Then at

x, we have
O(Y)|EC = ;H(Y)QQ(EV(Ea)aEV(Ea))
= g(e(Y)g@)(EV(Ea), EY(eq)) +2 ;QQ((G(Y)EV)(Ea)a EY(E,))
+23099(E7 (0(Y) Ea), BV (Ea))

=2fy|EV ] +290(0(Y)EV,EV) +2 > 90(EV(6(Y)E,),EV(E,)). (3.11)
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Now, we calculate the last term in the above equation. That is,

2 9Q(EV(0(Y)E,), EY (E,))

- Zng(EV(e(Y)EaLEb)gQ(EV(Ea),Eb)

= 2 00(E (). 00" E)sa (5" (F2). o)
- 5 00 {00(E (F). Fa)aa(E" (Fu). )} - 24y E°F
= 29000 ET)(Ea), B (Ea)) = X 9BV (0(Y) Ea), B (Fa)).
Hence we have
2 aq(E¥ (0(Y) E2). E¥(E0)) = 500 )7 - 24 |7
-g90(0(Y)EV,EV). (3.12)

From (3.11) and (3.12), the proof is completed.

Proposition 3.10 Let (M,gy,F) be a closed, oriented Riemannian manifold with
a foliation F of codimension q > 2 and a bundle-like metric gyr. Assume that the

transversal scalar curvature is constant. If Y is a transversal nonisometric conformal

field with (Y )gq = 2fvgq (fy #0), then
24-2) [ 9BV (V) Vi) = [ (ARIETE + OODIEYR)  (3.13)
+2(0-2) [ 9o(E(fyVfv)nh).

Theorem 3.11 ([5]) Let (M, gy, F) be a closed, connected Riemannian manifold with
a Riemannian foliation F of a nonzero constant transversal scalar curvature oV, and
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suppose that F is minimal. If M admits a transversal nonisometric conformal field Y
such that

0(Y)|EV] =0,

then (M, F) is transversally isometric to (S1(1/c),G).

From the above lemmas, we prove our main theorem.

Theorem 3.12 Let (M,gn, F) be a closed, connected Riemannian manifold with a

\%

Riemannian foliation F of a monzero constant transversal scalar curvature oV, and

suppose that F is minimal. If M admits a transversal nonisometric conformal field Y
such that

0(Y)|EY|? = const,

then (M, F) is transversally isometric to (S9(1/c),G).

Proof. Let Y be the transversal nonisometric conformal field such that (Y )gg = 2fy g¢g

(fy #0). From Proposition 2.12 , we have

/M fy =0. (3.14)

Assume that F is minimal. Since 6(Y)|EV|? = const, from (3.14) and Proposition 3.10,

we have
24-2) [ 9o(BV (V). V) =4 [ RIEYP >0

Hence from Theorem 3.7, the proof is completed. O
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Lemma 3.13 Let Y be a transversal conformal field such that 8(Y )gq = 2fygq. Then

for any basic function h,

[thy=—$/Me(y)h+$[Mdivv(hY).

Proof. Let w = Y? be the dual basic 1-form of the transversal conformal form Y. Then

th(5Bw)=fMgQ(w,ch)zfMi(Y)chsze(Y)h.

Since dp = 07 +i(7p) and drw = -divy (YY) = —qfy, we have

q/]\/[hf)/:—v/]\‘/jh(éTw)
:_th(éBw)Jrthi(TB)w)
:_fM@(Y)h+/MgQ(hY,TB)

:_fMe(Y)medivv(hY).

Last equality in above follows from the transversal divergence theorem (Theorem 2.3).0
From Lemma 3.13, we prove the followy theorem.

Theorem 3.14 Let (M,gn, F) be a closed, connected Riemannian manifold with a
Riemannian foliation F of a nonzero constant transversal scalar curvature oV, and
suppose that F is minimal. If M admits a transversal nonisometric conformal field Y

such that

0(Y)go(0(Y)EY,EV) <0,

then (M, F) is transversally isometric to (S9(1/c),G).
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Proof. Let Y be a transversal nonisometric conformal field, i.e., 8(Y)gg = 2fygo(fy #
0). From (2.13) and Proposition 3.10, if we put h = go(0(Y)EV, EV), then from Lemma

3.13, we have

(¢-2) [ 90T ). V1)

=2 [ RIETE+ [ hiv+(a-2) [ go(B(fy Vi) wh)

1 1
=2 [ RIEE -~ [ o [ gq(hyik}
Sy BIETP = [ 000h - [ ga(nY:sh)

+(1-2) [ 0BV (5 V). k).
Since F is minimal, we have
(1-2) [ 9B @) V) =2 [ RIETE - [ 00)aq(00)E . ).
Hence by the condition 8(Y)gq(0(Y)EV,EV) <0, we have
[ 9BV (1), 9 1v) 20
From Theorem 3.7, the proof of Theorem 3.14 is completed. |
Corollary 3.15 Theorem 3.14 is a generalization of Theorem 3.4 (3).

Proof. Assume that EV(Vfy) = %ny, that is, EV(V fy) = 0. By differentiation, we
have

(Ve EV)(Vfy) + EV(VaV fy) = 0. (3.15)
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from (3.15), we have

0= 90((Ve, EV)(Vfy) + EV(VaV fy),e€a)
= 90(Vfy,divg(EY)) + > 9o(EY(VaV fy), €a)

= > 90(VaV iy, EY (€q)). (3.16)

From (3.6), (3.7), divg EV = 0 and so the last equality in the above follows. Hence from

Lemma 3.9 (iii) and (3.16), we have

9Q(O(YV)EY, EV) = 37 9((0(Y)EY)(ea), EY (ea))
=-(¢-2) 2 90(VaV iy, B (ea))
q-2 v
_T(ABfY)ZgQ(ea’E (€a))
q-2
=—(q-2) > 90(VaV fy, EY (ea)) - T(ABfY)trQEV
=0.
The last equality follows from trgEV = 0. Hence the conditions of Theorem 3.4 (3)

implies that go(8(Y)EY,EV) = 0. That is, by Theorem 3.14, (M,F) is transversally

isometric to the sphere. O
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3.3 Transversal concircular curvature tensor

In this section, we study the Riemannian foliation by the some condition of the transver-

sal concircular curvature tensor ZV.

Definition 3.16 The transversal concircular curvature tensor ZV of F is define by
ZV(X,Y)=RV(X,Y)-RY(X,Y), (3.17)

where

O.V
q(g-1)

RY(X,Y)s = {90(7(Y), s)m(X) - go(m(X),s)m(Y)}

for any X, Y e TM and s €T'Q).

Trivially, if ZV = 0, then F is a foliation of transversally constant sectional curvature.
In an ordinary manifold, the concircular curvature tensor is invariant under a concirclar
transformation which is a conformal transformation preserving geodesic circles ([25]).

It is well-known that for any s € I'Q),

> ZV(0(s), Ea)Ea = EV(5). (3.18)
Also, we have ([10])
V2 _pY2 _ 2(Uv)2
2% = RV - (3.19)

Proposition 3.17 ([10]) Let (M, gn, F) be a closed, oriented Riemannian manifold

with a foliation F of codimension q > 2 and a bundle-like metric gpr. Assume that
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v

the transversal scalar curvature oV is constant. If Y is a transversal nonisometric

conformal field with 6(Y)gg = 2fy9q, fv #0, then

[ BT (W), 950) = 5 [ A2+ o027

+ [ 900" (Vv )ory).

From Proposition 3.17 and Theorem 3.7, we have

Theorem 3.18 ([10]) Let (M, gar, F) be a closed, connected Riemannian manifold with
a Riemannian foliation F of a nonzero constant transversal scalar curvature oV, and
suppose that F is minimal. If M admits a transversal nonisometric conformal field Y
such that

0(Y)|ZV [ =0,

then (M, F) is transversally isometric to (S1(1/c),G).
Now, we extend theorem 3.18. Namely, we have the following.

Theorem 3.19 Let (M, gy, F) be a closed, connected Riemannian manifold with a
Riemannian foliation F of a nonzero constant transversal scalar curvature oV, and
suppose that F is minimal. If M admits a transversal nonisometric conformal field Y
such that

0(Y)|ZV? = const.,

then (M, F) is transversally isometric to (S1(1/c),G).
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Proof. Let Y be the transversal nonisometric conformal field such that 6(X)gg =

2fygo(fy #0). From Proposition 2.12, we have

fM fy =0. (3.20)

Assume that F is minimal. Since 6(Y)|ZV[? = const, from (3.20) and Proposition 3.24,

we have
1
/MQQ(EV(VfY)vaY):§/Mf}2’|Zv|2-

Hence from Theorem 3.7, the proof is completed. O

Corollary 3.20 Let (M, gn,F) be a closed, connected Riemannian manifold with a
manimal foliation F of codimension q > 2 and a bundle-like metric gyr. Assume that
the transversal scalar curvature is nonzero constant and either 0(Y)|p|*> or 6(Y)|R|?
is constant. If M admits a transversal nonisometric conformal field, then (M,F) is

transversally isometric to (S4(1/c), Q).

Proof. The proof followe from (3.6), (3.19), Theorem 3.11 and Theorem 3.18. ]
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4 L2-transverse Killing form

Precisely, see [15] for this chapter.

4.1 Basic facts

Let (M, gnr,F) be a Riemannian manifold with a foliation F of codimension ¢ and a

bundle-like metric g;;.

Definition 4.1 A basic r-form ¢ € Qp(F) is called a transverse conformal Killing

r-form if for any vector field X e I'Q,

1
(X)dBo -
r+1Z( Yz q—7+

Vx¢=

X" 10, (4.1)

where X™ is the gg-dual 1-form to X ans dT = 0p —i(f@%). In addition, a basic r-form ¢
satisfying (4.1) with d7¢ =0 is called a transverse Killing r-form. That is, a transverse

Killing r-form ¢ satisfies

1
r+1

Vx¢ = i(X)dpo. (4.2)

Trivially, a basic form ¢ is a transverse Killing form if and only if

i(X)Vx¢p=0 (4.3)

for any vector field X € I'Q.

Proposition 4.2 On a Riemannian foliation of codimension q, we have that

(1) ¢ is a transverse conformal Killing r-form if and only if *¢ is a transverse con-
formal Killing (q —r)-form.
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(2) ¢ is a transverse Killing r-form if and only if *¢ is a closed transverse conformal

Killing (q —r)-form.

Proof. (1) is proved ([13]). For the proof of (2), let ¢ be a transverse Killing r-form.

Since [V, *] =0, from (2.12) and (4.2), we have

_ o1 .
Vx(*¢) = (-1) (X )xdpo. (4.4)
r+1
On the other hand, from (2.11) we have
Spxg = (-1)" 'sdpe. (4.5)
Hence from (4.4) and (4.5), we have
_ 1 e =
Vx(*¢)=- e(X)or*o. (4.6)
r+1

Since dp¢ = 0, dx¢ = 0, i.e., *¢ is closed. Hence from (4.1), *¢ is a closed transverse
conformal Killing (g —r)-form, which completes the proof of (2). O
Remark. A transverse conformal Killing 1-form (resp. transverse Killing 1-form) is a
gg-dual 1-form of a transverse conformal Killing vector field (resp. transverse Killing

vector field).

Proposition 4.3 ([13]) On a Riemannian foliation, a basic r-form ¢ is a transverse
Killing form if and only if

r+1
Apo =

F(¢) +0(kk)9, (4.7)

r

or

F(¢) = ﬁwm. (4.8)
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Then we obtained the parallelness of the transverse conformal Killing form on com-

pact manifold.

Theorem 4.4 ([8]) Let F be a Riemannian foliation on a compact Riemannian mani-
fold M. If the transversal curvature endomorphism is nonpositive, then any transverse

conformal Killing r-form (1 <r <q—-1) is parallel, where g =codimF.

Definition 4.5 A basic form ¢ is said to be a L*-basic form if ¢ € L*Q5(F), i.e.,

[plI% < oo.

We recall the generalized maximum principle on a complete foliated Riemannian

manifold, that is, a Riemannian foliation with a complete bundle-like metric.

Theorem 4.6 ([8]) (Generalized mazimum principle) Let F be a Riemannian foliation
on a complete foliated Riemannian manifold with all leaves be compact. Assume that kp
is coclosed and bounded. Then a nonnegative basic function f such that (Ap —ﬁ%)f <0

with /M fP < oo (for some p>1) is constant.

By using the generalized maximum principle, we proved the parallelness of the

L?-transverse on complete manifolds.

Theorem 4.7 ([4, 12]) Let F be a Riemannian foliation on a complete foliated Rie-
mannian manifold M. Assume that all leaves are compact and the mean curvature is

bounded. If the transversal curvature endomorphism is nonpositive, then

(1) all L?-transverse Killing forms are parallel ([4]);
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(2) all L?-transverse conformal Killing forms are parallel ([12]);
4.2 Transverse conformal Killing form on Kahler foliation

In this section, we study the parallelness of the transverse conformal Killing form on a
transverse Kahler foliation.

Let (F,J) be a transverse Kéahler foliation of codimension ¢ = 2m on a Riemannian
manifold (MP*? gpr). That is, the normal bundle @ = TM /L admits a holonomy invari-
ant almost complex structure J : Q - @ such that VJ =0 and go(JX,JY) = go(X,Y)

for any X,Y € @ ([16]). Note that for any X,Y € I'Q, the 2-form w defined by
W(X,Y) = go(X, JY) (4.9)

is a basic 2-form, which is closed as consequence of Vg, =0 and V.J = 0. Let {E,}(a =

1,---,q) be a local orthonormal basic frame on @ and {#*} be its dual basic. Then
1 2m
w=-3 6% A Jo" (4.10)
a=1

Definition 4.8 Let A : Q(F) » Q5 2F) and J : Q5 (F) —» QL(F), which are given
by
. 2m
A(g) =i(w)g, J(d) =) JO" Ni(Ea)o, (4.11)
a=1
respectively, where i(¢p1 A ¢2) = i(Ph)i(Ph) and (J¢)(X) = —¢(JX) for any basic 1-
forms ¢i(i =1,2) and ¢. Trivially, if ¢ € U5(F), then Jp = Jb. From now on, we write

J =J unless any confusion.

Then we have the following lemma.
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Lemma 4.9 ([6]) On a transverse Kahler foliation (F,J), we have

[F,A]=0, [0p,A]=0, [dp,A]=-07, (4.12)
[AB,A] = 5TZ(JHnB) + i(JIi%)(ST, (4.13)
(A, Al = [0(k}), A] = - (07i(kly) +i(kk)07), (4.14)

where 55 = —=Y2" i(JEL)VE,. If kb is transversally holomorphic, i.e., 0(kk)J = 0,
then

ori(JKl) +i(Jrl)or = =(07i(rl) +i(kl)07),
which means

[Ap,A] =[0(xk),A]. (4.15)

Proposition 4.10 ([8]) On a transverse Kahler foliation, if ¢ is a transverse Killing

r-form (r > 2), then A¢ is a transverse Killing (r — 2)-form.

Now, we give some facts about a transverse Killing form on transverse Kahler foli-

ation.

Lemma 4.11 Let (F,J) be a transverse Kahler foliation and ﬁ% be transversally holo-

morphic. Then any transverse Killing r-form ¢ satisfies
F(Ap) =0, ApAd=0(rl)(A¢).

Proof. Let ¢ be a transverse Killing r-form. Since A¢ is also a transverse Killing

(r — 2)-form, from (4.7)

2R (AG) + 00l ) (AD). (4.16)

ABA¢:T—2
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On the other hand, since kb is transversally holomorphic, from (4.15) and (4.7) we

have

r+1

ApAé = o F(Ag) +0(xly) (Ag). (4.17)

r

From (4.16) and (4.17), if r > 2, then
F(A¢) =0. (4.18)

For r = 2, it is trivial that F'(A¢) = 0. therefore, the proof of the second formula follows

from (4.16). o

Proposition 4.12 Let (F,J) be a transverse Kahler foliation on a closed Riemannian
manifold. Assume that Iﬁ% is transversally holomorphic. Then for any transverse Killing

r-form ¢ (r >2), Ao is parallel.

Proof. Let ¢ be a transverse Killing r-form (r > 2). From Lemma 4.11 and (2.21), we

have

(B = KBIAGE = |94 Ad (119

That is, (Ag—kp)|A¢|? < 0. Hence by the generalized maximum principle ([11]), |A¢| is
constant. Therefore, from (4.19) again, A¢ is parallel. O

Now we define the operators RY (X) : Q5 (F) — QpF1(F) for any X e TM by

RY(X)6= 3 0° n RY(X, Bu)o, (4:20)
a=1
RY(X)¢ = % i(E,)RY (X, Ey)¢. (4.21)
a=1

Then we have the following lemmas directly.
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Lemma 4.13 On a transverse Kahler foliation (F,J), we have
[RY(X),A] = RY(JX)
for any vector field X € Q.
Proof. This is easy by using (4.20) and (4.21) ]

Lemma 4.14 ([8]) On a transverse Kahler foliation, if ¢ is a transverse Killing r-

form, then
1.
V?X,YQS = ;Z(Y)RJY(XW

for any X, Y e TM.

Proposition 4.15 Let (F,J) be a transverse Kahler foliation on a closed Riemannian
manifold. Assume that /f% is transversally holomorphic. Then for any transverse Killing
r-form (r > 2),

F(9) = 0.

Proof. Let ¢ be a transverse killing r-form (r > 2). Since A¢ is parallel, from Lemma
4.13 we have that

RY(JX)¢=-ARY (X)o. (4.22)
On the other hand, from Lemma 4.14 we have
i(V)ARY (X) = Ai(Y)RY (X)o
= TAV_ZX,Y¢ = TV%(,Y/W =0.
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Since Y is arbitrary, we have

ARY(X)¢ =0. (4.23)
Hence from (4.22) we get

RY(JX)p =0,
Since X € () is also arbitrary, we have

RY(X)¢ =0, (4.24)

which implied F(¢) =-3,0%ARY(E,)$ = 0. So the proof follows. o

Theorem 4.16 ([8]) Let (F,J) be a transverse Kahler foliation on a closed Rieman-
nian manifold. Assume that /{33 is transversally holomorphic.. Then any transverse

Killing r-form ¢ (r > 2) is parallel.
4.3 L?-transverse Killing form

Lemma 4.17 Let (F,J) be a transverse Kahler foliation on a complete foliated Rie-

mannian manifold. Then for any L?-basic form ¢, A¢ is also a L?-basic form.
Proof. Let ¢ be a basic form. Then for any vector field X € Q,
()" + X" Aol =X gl
If we choose X = E,, then |i(E,)[> + 0% A ¢|* = |¢|*. Hence
[i(Ea)ol” < |l

Hence if ¢ € L?Q5(F), theni(E,)¢ € L*Q5(F) foranya =1,...,q. Andsoi(JE,)i(E,) €
L2Q%(F), which implies that ¥, i(JE,)i(Eq)¢ € L*Q5(F), that is, A¢ is L2 ]
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Proposition 4.18 Let (F,J) be a transverse Kahler foliation on a complete foliated
Riemannian manifold and all leaves be compact. Assume that kp is transversally holo-
morphic, coclosed and bounded. Then for any L*-transverse Killing r-form ¢ (r > 2),

A¢ is a parallel L*-transverse Killing (r — 2 )-form.

Proof. Let ¢ be a L2-transverse Killing r-form. From Proposition 4.10 and Lemma

4.11, the generalized Weitzenbock formula (2.21) implies
1 i 2 2
S (A5 = AB)IAGP = |7 AGP <0. (4.25)

Since A¢ is a L2-form (Lemma 4.17), by the generalized maximum principle (Theorem
4.6), Eq. (4.25) implies that |A¢| is constant. So from (4.25) again, Vi-A¢ =0, i.e., Ao

is parallel. O

Proposition 4.19 Let (F,J) be a transverse Kihler foliation on a complete foliated
Riemannian manifold and all leaves be compact. Assume that kp is transversally holo-

morphic, coclosed and bounded. Then for a L?-transverse Killing r-form ¢ (r>2),
F(¢)=0. (4.26)

Proof. Let ¢ be a L?transverse Killing r-form. Since A¢ is a parallel L?-transverse

Killing form (Proposition 4.18), the proof is the same to one of Proposition 4.15. O

Theorem 4.20 Let (F,J) be a transverse Kahler foliation on a complete Riemannian
manifold with all leaves be compact. Assume that the mean curvature vector field is
transversally holomorphic, coclosed and bounded. Then all L?-transverse Killing r-forms
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(r > 2) are parallel. In addition, if vol(M) is infinite, then all L*-transverse Killing

r-forms (r >2) are trivial.

Proof. Let ¢ be a L?-transverse Killing r-form. From Proposition 4.3 and Proposition

4.19, we have

Ap¢ = 0(rl)0.

Hence by the generalized Weitzenbock formula (2.21), we have

(Ap - k)| = —|Vuel* <0. (4.27)

Therefore, by Theorem 4.6, |¢| is constant, which implies that V;-¢ = 0. That is, ¢ is
parallel. which proves the first statement in the Theorem 4.20.
If vol(M) is infinite, it is trivial that [,,|¢[* < co implies |¢| = 0. Hence, the prove is

complete. O

Corollary 4.21 Let (F,J) be a minimal transverse Kahler foliation on a complete
Riemannian manifold with all leaves be compact. Then L*-transverse Killing r-forms
(r > 2) are parallel. In addition, if vol(M) is infinite, then all L*-transverse Killing

r-forms (r > 2) are trivial.

Corollary 4.22 On a complete Kihler manifold, all L*-Killing r-forms (r > 2) are

parallel.
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