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List of Abbreviations

ALT Alanine aminotransferase
ap2 Adipocyte protein-2
α-SMA Alpha smooth muscle actin
AST Aspartate aminotransferase
CAT Catalase
CCl4 Carbon tetrachloride
DPCs Dermal papilla cells
HO-1 Heme oxygenase-1
Iba-1 Ionized calcium-binding protein-1  
MCP-1 monocyte chemoattractant protein-1
NG Norgalanthamime
Nrf-2 Nuclear factor erythroid 2-related factor 2
IL Interleukin
PPARγ Peroxisome proliferator-activated receptor gamma
ROS Reactive oxygen species
SOD Superoxide dismutase
TNF Tumor necrosis factor
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General Introduction

Biological effects of Crinum asiaticum var. japonicum

Crinum asiaticum var. japonicum (Family: Amaryllidaceae), is an herbaceous 

plant of small to moderate size. The plant is distributed on South Korea’s Jeju 

Island, and was designated Korea’s 19th Natural Treasure. Crinum asiaticum has been 

used as a rheumatic remedy and as an antipyretic and antiulcer agent, and for the 

alleviation of local pain and fever in Korea and Malaysia (Kim et al., 2006a).

Phytochemical studies on Crinum asiaticum var. japonicum have reported 

several phenanthridine alkaloids, triterpene alcohols, and flavonoids (Kim et al., 

2006b). Alkaloids isolated from the bulbs of the tribe Amaryllidaceae have shown 

various pharmacological effects, such as anti-inflammatory activity (Kim et al., 2006a; 

Mahomoodally et al., 2020; Samud et al., 1999), antioxidant enzyme (Ghane et al., 

2018; Goswami et al., 2020; Ilavenil et al., 2011; Indradevi et al., 2012; 

Mahomoodally et al., 2020), and anti-obesity activities (Jeong et al., 2016); 

prevention of hair loss and improvement of hair growth (Kang et al., 2017; Kim et 

al., 2010; Yoon et al., 2019); cytotoxicity (Abdel-Halim et al., 2004; 

Likhitwitayawuid et al., 1993; Mahomoodally et al., 2020; Min et al., 2001; Weniger 

et al., 1995); antiviral (Dominguez et al., 1992; Gabrielsen et al., 1992; Ieven et al., 

1979), antimalarial (Likhitwitayawuid et al., 1993), anti-platelet (Singh et al., 2011), 

and antineoplastic activities (Hyun et al., 2008; Mahomoodally et al., 2020; Pettit et 

al., 1990); as well as effects on disease of the nervous system (Houghton et al., 

2004; Refaat J, 2013).

Amaryllidaceae alkaloids affect the central nervous system and have 

acetylcholinesterase-inhibitory, analgesic, anti-inflammatory, antiviral, antimalarial, 
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antitumor, or antineoplastic activity (Goswami et al., 2020; He et al., 2015; Hyun et 

al., 2008; Kim et al., 2006b; Refaat J, 2013) .

The major components of this plant are crinamine from the aerial parts, 

together with lycorine, norgalanthamine, galanthamine, and epinorgalanthamine (Endo 

et al., 2019; Mahomoodally et al., 2020; Park, 2000). Their medicinal properties 

were appreciated after the discovery of pancratistatin as a promising 

chemotherapeutic, as well as the commercialization of galanthamine for Alzheimer 

disease (AD) (Khumkhrong et al., 2019). Alkaloids isolated from the Amaryllidaceae 

family have a galanthamine-derived backbone and are potent acetylcholinesterase 

(AChE) inhibitors that have been used to treat the symptoms of AD (Lopez et al., 

2002; Maelicke et al., 2001).

Crinamine has a potent anticancer effect in cervical cancer cells. Its 

cytotoxicity is selective to cervical cancer cell lines and it is more effective at 

inhibiting anchorage-independent tumor spheroid growth than several established 

chemotherapeutics. In addition, the compound activates DNA damage-independent 

apoptosis, reduces cell migration by downregulating key EMT inducers, and 

suppresses vascular endothelial growth factor-A secretion and in vivo angiogenesis 

(Khumkhrong et al., 2019). Crinamine inhibits nitric oxide production and induced 

inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-activated 

macrophages (Kim et al., 2006b).

Lycorine is a natural alkaloid with immense therapeutic potential. Lycorine is 

active at a very low concentration and has high specificity against a number of 

cancers both in vivo and in vitro and against various drug-resistant cancer cells 

(Jiang and Liu, 2018; Liu et al., 2018; Roy et al., 2018; Shen et al., 2018; Wu et 

al., 2018). The first reported activity of lycorine as an inhibitor of termination of 
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protein synthesis was found in poliovirus-infected HeLa cells (Vrijsen et al., 1986). 

The main metabolite of lycorine degradation, ungeremine, and carbamate substitution 

at C-1 and C-2 of lycorine had stronger antibacterial activity toward the fish 

bacterial pathogen Flavobacterium columnare isolates than did lycorine. Lycorine 

shows significant inhibition of DNA topoisomerase-I activity, which is required for 

cell growth in parasites (Casu et al., 2011; Roy et al., 2018; Tan et al., 2011). The 

lycorine precursor norbelladine acts as an anti-inflammatory compound by inhibiting 

NF-kB signaling, which suppresses endplate-chondrocyte degeneration and prevents 

intervertebral disc degeneration (Wang et al., 2018). Degradation of acetylcholine 

(Ach) by AChE leads to brain cholinergic dysfunction in patients with AD. Lycorine 

also has analgesic, choleretic, and body-temperature lowering activity (Roy et al., 

2018).

Norgalanthamine has hair-growth promoting effects, including increasing 

hair-fiber length in cultured rat vibrissa follicles and increasing dermal papilla cell 

(DPC) proliferation (Kim et al., 2010; Yoon et al., 2019). Norgalanthamine can 

stimulate the anagen phase of the hair cycle in DPCs via activation of the ERK 1/2, 

PI3K/AKT, and Wnt/β-catenin pathways (Yoon et al., 2019). 

These studies revealed that a component norgalathamine possesses a variety of 

biological activity through cell activation signals. Little is known on the effect of 

norgalanthamine in oxidative stress induced in vivo models including CCl4 induced 

liver injury. The biological effects of norgalathamine remains to be further studied.   

Liver is one of the most important metabolic organs 

The liver is one of the most important metabolic organs of vertebrates and has 
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multiple functions. It receives oxygenated blood from the heart via the hepatic artery, 

and nutrient-rich blood from the gastrointestinal tract via the portal vein (Malarkey et 

al., 2005). The blood flows through liver sinusoids (terminal vessels between 

hepatocyte cords and lined with Kupffer cells and endothelial cells), empties into the 

central vein, and exits the liver via the hepatic veins (Hollander et al., 1987). 

Hepatocytes make up 70–85% of all liver cells  (Baratta et al., 2009). They are key 

functional cells with important metabolic, secretory, and endocrine functions (Treuting 

et al., 2017). Kupffer cells, another type of liver cell, are specialized macrophages on 

the walls of the liver sinusoids (Baratta et al., 2009). Hepatic stellate cells (HSCs) 

are pericytes in the space of Disse, which is located between the hepatocytes and the 

sinusoidal endothelium (Friedman, 2008). Quiescent HSCs can be activated in 

response to liver damage, leading to collagen formation, fibrosis, or cirrhosis 

(Friedman, 2008; Li et al., 2018; Solis-Herruzo et al., 2003; Zhao et al., 2014). Bile 

is secreted by hepatocytes, and drains into biliary ductules, which are lined with 

epithelial cells, and leaves the liver via the bile duct (Wang et al., 2017).

Animal models of hepatotoxicity

The liver filters toxic substances from the body. Hepatic damage may occur 

when accumulation of toxins is faster than the ability of the liver to remove them 

(Bigoniya P. et al., 2009). Hepatotoxicity may imply chemically driven liver damage. 

Some medical agents when taken at very high doses but also in therapeutic ranges 

can injure the liver (McGill and Jaeschke, 2019). Chemicals that cause liver injury 

are termed hepatotoxins (Bhakuni et al., 2016). Several other factors may also cause 

hepatotoxicity, including herbal remedies, viral infections, autoimmune disorders, 

intoxication, and an imbalanced diet, among others (Pandit et al., 2012). 
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Figure 1. Three-dimensional structure of a liver lobule. Blood in the branches of the 

hepatic artery and portal vein enters the sinusoids, between the cords of liver cells, 

and courses toward the central vein, which is a tributary of the hepatic vein. Bile 

flows in the opposite direction, from the center out, toward the tributaries of the bile 

duct. Bile canaliculi are tiny channels which exist between the cell surfaces of 

neighboring hepatic parenchymal cells. They are supported by a delicate connective 

tissue stroma. Hepatic sinusoids are lined by two cell types: (1) discontinuous 

endothelial cells and (2) phogocytic cells of kupffer. Modified from Springer Nature 

Publishing AG, Adams et al., Nat. Rev. Immunol., 2006.
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1) cited by Bhakuni et al., 2016

Table 1. Classification of animal models of hepatotoxicity1) 
In vivo model
A Non-invasive model

a. Chemically induced hepatotoxicity
CCl4 induced
Thioacetamide induced
Dimethyl or diethyl nitrosamine induced
Aflatoxin induced

b. Drug-induced hepatotoxicity
NSAID induced
Anticancer drugs induced
Antibiotic induced
Anti-TB drugs induced

c. Radiation-induced hepatotoxicity
d. Metal-induced hepatotoxicity

Mercury induced
e. Diet-induced hepatotoxicity

Alcohol induced
High fat diet induced

B. Invasive model
Bile duct ligation
Portal vein ligation

C. Genetic model
Transgenic animal model
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Mechanisms of carbon tetrachloride-induced liver injury

Carbon tetrachloride is an inorganic compound with the chemical formula CCl4. 

It is a clear liquid that evaporates easily and has a sweet odor. It is a common 

industrial solvent and is hepatotoxic (Abraham et al., 1999). It is the most widely 

used hepatic toxicant in studies of liver injury involving laboratory animals (Bhakuni 

et al., 2016). CCl4 is metabolized in the liver by the cytochrome P450 superfamily 

of monooxygenases (CYP family) to the trichloromethyl radical (CCl3
*). Subsequently, 

this radical reacts with nucleic acids, proteins, and lipids, thereby impairing key 

cellular processes and resulting in altered lipid metabolism (fatty degeneration and 

steatosis) and lower levels of proteins. Adduct formation between CCl3
* and DNA 

triggers mutations and the formation of HCC. The formation of trichloromethylperoxy 

radicals (CCl3OO*) by oxygenation of CCl3
* initiates lipid peroxidation and the 

destruction of polyunsaturated fatty acids. Consequently, the membrane permeability in 

all cellular compartments (mitochondria, endoplasmic reticulum, and plasma 

membrane) is lowered and generalized hepatic damage occurs, characterized by 

inflammation, fibrosis, cirrhosis, and HCC. A comprehensive summary of the 

pathogenic events that occur in the liver during CCl4-induced damage is given 

elsewhere. Besides its hepatotoxicity, minor acute systemic toxicity of CCl4 has been 

described, particularly in the peritoneum, mucosa, respiratory tract, and central 

nervous system (Brattin et al., 1985; Recknagel et al., 1989; Scholten et al., 2015; 

Starkel and Leclercq, 2011).
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Figure 2. Pathobiochemical sequence of events during carbon tetrachloride 

(CCl4)-induced liver damage. In the liver, CCl4 is metabolized by cytochrome P450 

(CYP) enzymes to a trichloromethyl radical that can be further oxygenated to the 

trichloromethylperoxy radical. Both radicals are highly reactive and induce complex 

cellular alterations that result in hepatotoxic damage, inflammation, fibrosis, cirrhosis 

and hepatocellular carcinoma (HCC). Modified from Scholten et al., 2015.



- 13 -

Hepatoprotective effects of medicinal plants

There are approximately 75,000 higher-plant species, about 10% of which have 

been used in traditional remedies. However, perhaps only about 1% of these have 

been recognized through scientific studies to have therapeutic value when used in 

extract form. One of the most common causes of liver disease is inflammation, often 

resulting from abuse of alcohol, poor diet, or malnutrition. Drug-induced liver 

damage or liver dysfunction is an important public-health challenge. According to the 

United States Acute Liver Failure Study Group, drug-induced liver injury accounts 

for more than 50% of acute liver failure, including hepatotoxicity caused by overdose 

of acetaminophen (39%) and idiosyncratic liver injury triggered by other drugs. 

Hepatic cell injury is caused by various toxic chemicals (certain antibiotics, 

chemotherapeutic agents, carbon tetrachloride, and thioacetamide), excessive alcohol 

consumption, and microbes. It is clear that medicinal plants play an important role in 

a variety of diseases. Different medicinal herbs and plants extracts have potent 

hepatoprotective activity in animal models. Extracts of leaves and some medicinal 

plants have therapeutic potential for hepatic diseases (Roy et al., 2014). Use of 

substances from natural sources for phytotherapy of various diseases, including liver 

diseases, is desirable because they are relatively inexpensive and widely available. 

Silymarin and resveratrol are two of many examples of natural substances with 

marked hepatoprotective potential as a result of their antioxidant, anti-inflammatory, 

and liver-regenerative capabilities (Farghali et al., 2015; Shakya, 2020).

The CCl4-injured liver has been used to test the efficacy of anti-inflammatory 

agents, with a particular focus on therapies based on a single compound.
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Table 2. Most frequently studied hepatoprotective phytochemicals2)  

Compound Major food resources Major biological activity

Silymarin

(Silybin)

Seeds of milk thistle

Silybum marianum

Antioxidant, anti-inflammatory, 
anti-fibrotic, protein synthesis 
increasing/regenerative, membrane 
stabilizing, and toxin blocking 
activities; it reduces tumor cell 
proliferation, angiogenesis as well as 
insulin resistance

Curcumin Rhizomes turmeric 
(Curcuma longa), 

yellow spice

Antioxidant, anti-inflammatory, 
antifibrotic, anticancer, 
anti-agreggatory, and potent 
cytochrome P450 inhibitory

activities

Quercetin Fruits (apples, cranberries), 
vegetables

(broccoli, onion), tea

leaves (Camellia

sinensis), grains

(buckwheat)

Antioxidant, anti-inflammatory, and 
anticancer activities

Resveratrol Berries, grapes, wine, 
peanuts

Antioxidant, anti-inflammatory, 
antiaging, antithrombotic, 
antifibrogenic, and regenerative 
properties; it reduces tumor cell

proliferation, angiogenesis as well as 
insulin resistance
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2) cited by Farghali et al., 2015; Shakya, 2020

Glycyrrhizin Root of Indian licorice

(Glycyrrhiza glabra)

Antioxidant, anti-inflammatory, 
anticancer, antiviral, and 
immunomodulatory activities

Colchicine Plants of the genus

Colchicum (autumn

crocus, Colchicum

autumnale)

Anti-inflammatory, antifibrotic, and 
immunomodulatory activities
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1. Abstract

Norgalanthamine is a major component of Crinum asiaticum var. 

japonicum that exhibits several biological activities. This study evaluated the 

anti-inflammatory and anti-oxidative properties of norgalanthamine in mice 

with carbon tetrachloride (CCl4)-induced acute liver injury. Norgalanthamine (1 

and 10 mg/kg) was orally administered to mice for 7 days, after which liver 

injury was induced by CCl4 (1.5 ml/kg, i.p.). The vehicle and positive 

controls consisted of phosphate-buffered saline and silymarin (100 mg/kg), 

respectively. The mice were euthanized 24 h after CCl4 administration. 

In CCl4-injured mice, norgalanthamine pretreatment significantly reversed 

the increases in serum alanine aminotransferase, aspartate aminotransferase, and 

total bilirubin levels, and the decrease in the serum glucose level. In the liver, 

norgalanthamine restored the activities of the antioxidant enzymes superoxide 

dismutase and catalase, while reducing lipid accumulation and, concurrently, 

the expression of genes involved in lipid synthesis, including peroxisome 

proliferator-activated receptor γ and adipocyte protein-2. Norgalanthamine also 

ameliorated inflammation by down-regulating the expression of the 

pro-inflammatory mediators TNF-α, IL-1β, and MCP-1, and up-regulating the 

Nrf2/HO-1 pathway. The hepatoprotective effect of norgalanthamine in 

CCl4-injured mice was also reflected in the histopathologic scores. In addition, 

norgalanthamine decreased collagen deposition in liver tissue as shown on 

picrosirius red staining by down-regulating expression of the fibrosis-related 

genes αSMA and fibronectin. The findings indicate that norgalanthamine 

attenuates liver fibrosis and could be a novel approach in its prevention. 
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Collectively, these findings imply that norgalanthamine mitigates CCl4-induced 

hepatic injury by increasing anti-oxidative activity, down-regulating 

pro-inflammatory mediators and fibrosis-related genes in the liver. 

Key words: Norgalanthamine; fibrosis; inflammation; steatosis.
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2. Introduction

Carbon tetrachloride (CCl4) is a hepatotoxic substance that is used in animal 

models of liver injury characterized by centrilobular hepatic necrosis (Ahn et al., 

2014; Cao et al., 2017; Li et al., 2016; Rahman and Hodgson, 2000; Recknagel et 

al., 1989), as well as pathophysiological changes, fatty changes (Unsal et al., 2020), 

inflammation, and fibrosis (Scholten et al., 2015; Unsal et al., 2020). CCl4 injury 

results from direct damage to tissue after injection and metabolism. CCl4 is converted 

to trichloromethyl radicals (CCl3
*) by cytochrome P450 (CYP), especially CYP2E1, 

CYP2B1, CYP2B2, and CYP3A (Kim et al., 2010; Scholten et al., 2015). The CCl4 

model of liver injury has been widely used to evaluate the therapeutic potential of 

drugs aimed at treating liver disease, and to study xenobiotic-induced liver injury, 

which resembles human liver disease both morphologically and in terms of the 

biochemical features of the cellular lesions(McGill and Jaeschke, 2019; Scholten et 

al., 2015). CCl4 induces hepatotoxicity after metabolite activation in the liver (McGill 

and Jaeschke, 2019; Scholten et al., 2015). The initial response to CCl4 consists of 

the activation of hepatic macrophages, including Kupffer cells, the generation of free 

radicals, and the production of inflammatory mediators, including the cytokine tumor 

necrosis factor-alpha (TNF-α) and interleukins (ILs) (Bansal et al., 2005; Decker, 

1990; Munakarmi et al., 2020; Zou et al., 2016), chemokines such as monocyte 

chemoattractant protein (MCP)-1 (Russmann et al., 2009), and pro-inflammatory 

mediators such as inducible nitric oxide synthase and cyclooxygenase, via the 

activation of nuclear factor kappa B (Liu et al., 2018a; Wu et al., 2018). Therefore, 

the CCl4-injured liver has been used to test the efficacy of anti-inflammatory agents 

(Badger et al., 1996; Liu et al., 2018b; Ma et al., 2015; Rocha et al., 2014; Son et 

al., 2007; Tipoe et al., 2010), with a particular focus on therapies based on a single 

compound (Ahn et al., 2014; Hansen et al., 2017; Kim et al., 2010; Munakarmi et 

al., 2020; Vargas-Mendoza et al., 2014; Yang et al., 2015; Zou et al., 2016). 
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Norgalanthamine, a major component of Crinum asiaticum var. japonicum, is a 

metabolite of galanthamine, a selective acetylcholinesterase inhibitor that promotes 

hair growth via the proliferation of dermal papilla, activation of the ERK 1/2, 

PI3K/AKT, and Wnt/β-catenin pathways (Yoon et al., 2019), and inhibition of 5α

-reductase activity and of the TGF-β1-induced canonical pathway (Kang et al., 2017). 

In this study, we investigated the hepatoprotective effects of norgalanthamine in the 

context of its effects on biochemical indicators of liver damage, the activities of 

oxidative stress enzymes, and the levels of inflammatory mediators.
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3. MATERIALS AND METHODS

Chemical and regents

Norgalanthamine (D292035) was obtained from Toronto Research Chemicals 

(Toronto, Canada). Silymarin, used as a positive control, was purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Commercial colorimetric assay kits for the 

measurement of superoxide dismutase (SOD) and catalase (CAT) activity were 

purchased from Abcam (Cambridge, UK). Polyclonal antibodies targeting Nrf-2 and 

HO-1 were purchased from Cell Signaling Technology (Beverly, MA, USA), and 

ionized calcium binding adapter molecule 1 (Iba-1) was provided by Wako Pure 

Chemical Industries, Ltd. (Osaka, Japan). The ABC Elite kit and diaminobenzidine 

(DAB) substrate were purchased from Vector Laboratories (Burlingame, CA, USA).

Animals

Six-week-old male C57BL/6 mice weighing 20–22 g (DBL, Chungbuk, Korea) 

were used for all experiments. The animals were maintained at a controlled 

temperature of 25–28℃ with a 12-h light/dark cycle, fed a standard diet and 

provided water ad libitum. All experimental procedures were conducted in accordance 

with the guidelines for the Care and Use of Laboratory Animals of Sangji University 

in Wonju City, Korea (permit number: 2020-11). The animal protocols conformed to 

current international laws and to the policies of the National Institutes of Health 

(NIH) Guide for the Care and Use of Laboratory Animals (NIH Publication no. 85–

23, 1985, revised 1996). Every effort was made to minimize the number of animals 

used in this study and to reduce their pain and suffering.
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Experimental design

In the acute model, the mice were randomly divided into five groups of six 

animals each. The norgalanthamine-treated CCl4-injured group was orally administered 

norgalanthamine (1 or 10 mg/mL [NG1 and NG10, respectively], diluted in 

phosphate-buffered saline [PBS], pH 7.4) for 7 consecutive days. In both the acute 

and chronic models, PBS, which served as the vehicle control and silymarin served 

as the positive control (100 mg/kg; (Ni and Wang, 2016)). Both were administered 

following the same protocol. Liver injury was induced with a 1:1 (v/v) mixture of 

CCl4 and sterile olive oil injected intraperitoneally (i.p., 1.5 mL/kg). CCl4 was given 

once 24 h after the last dose of test substance. In the chronic model, the mice were 

randomly divided into four groups of six animals each. PBS (pH 7.4) was 

administered orally to normal controls. The norgalanthamine-treated CCl4-injured group 

was orally administered norgalanthamine (10 mg/mL [NG10], diluted in PBS, pH 7.4) 

for 14 consecutive days. To induce liver injury, a 1:1 (v/v) mixture of CCl4 and 

sterile olive oil was injected intraperitoneally (i.p., 1.5 mL/kg). CCl4 was given every 

72 h for 14 days (Ahn et al., 2014) (Fig. 3).
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Figure 3. Shematic drawing of the experimental design used to evaluate the effects 

of norgalanthamine on CCl4-induced liver injury in mice. Acute model (top),  the 

norgalanthamine-treated CCl4-injured group was orally administered norgalanthamine (1 

or 10 mg/mL [NG1 and NG10, respectively], diluted in phosphate-buffered saline 

[PBS], pH 7.4) for 7 consecutive days. CCl4 was given once (i.p., 1.5 mL/kg) 24 h 

after the last dose of test substance. Chronic model (bottom), the 

norgalanthamine-treated CCl4-injured group was orally administered norgalanthamine 

(10 mg/mL [NG10], diluted in PBS, pH 7.4) for 14 consecutive days. CCl4 was 

given every 72 h for 14 days (i.p., 1.5 mL/kg). In both the acute and chronic 

models, PBS, which served as the vehicle control and silymarin served as the 

positive control (100 mg/kg).
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Sample collection and blood biochemistry analysis

The mice were fasted after treatment and euthanized 24 h after induction of 

CCl4 injury in the acute model, or the last dose of the drug in the chronic model. 

After anesthetization of the mice by isoflurane inhalation (Hana Pharm Co., Ltd, 

Seoul, Korea), blood was collected from the inferior vena cava for serum analysis 

the liver was dissected for histopathology, gene expression, and immunochemistry 

studies (Fig. 3). Liver pieces were fixed in 10% neutral buffered formalin for 

histopathology or immediately frozen and stored for RNA extraction. Blood samples 

were centrifuged at 13,000 rpm for 10 min at 4℃ to separate the serum. The serum 

levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total 

bilirubin (T-bil), and glucose were measured using a Beckman Coulter AU680 

analyzer (Beckman Coulter, Tokyo, Japan) according to the manufacturer’s 

instructions.

Histopathological examination of liver damage

Sections (4 µm) of paraffin-embedded liver were deparaffinized and then 

stained with hematoxylin and eosin (H&E) for light microscopy examination. The 

degree of necrosis after acute liver injury was evaluated using an injury score based 

on the severity of necrotic lesions in the liver parenchyma (Table 3). In brief, each 

sample was independently scored by three pathologists blinded to the group 

assignment. The scoring system was as follows: grade 0, no pathological change; 

grade 1, degenerated hepatocytes with rare foci of necrosis; grade 2, small areas of 

mild centrilobular necrosis around the central vein; grade 3, mild centrilobular 

necrosis, but more severe than grade 2; grade 4, centrilobular necrosis more severe 

than grade 3 (Dai et al., 2018; Li et al., 2013).
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Necrotic areas were evaluated in paraffin-embedded sections stained with 

toluidine blue, and the severity of fatty changes was assessed in fixed frozen sections 

stained with oil red O, which detects neutral triglycerides and lipids. Picrosirius red 

(Polysciences, Inc., PA, USA) staining was used for fibrillary collagen . The 

proportions of lipid (red-stained area as a percentage of the total area of the liver 

section), necrotic (light-blue-stained area as a percentage of the total area of the liver 

section) area, and collagen deposition (red-stained area as a percentage of the total 

area of the liver section) were determined using Aperio eSlide Manager software 

(Leica Biosystems, Buffalo Grove, IL, USA). 
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Table 3. Grading score for Acute liver injury3) 

3) cited by Dai et al., 2018; Li et al., 2013

Grade Criteria

0 No pathological change

1 Presence of degenerated hepatocytes with only rare foci of necrosis

2 Small area of mild centrilobular necrosis a round the central vein

3 Area of mild centrilobular necrosis severer than Grade 2

4 Centrilobular necrosis severer than Grade 3
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Assays of antioxidant enzyme activities in liver

Liver pieces from the mice were immediately frozen until use. The tissue was 

then homogenized in a pestle homogenizer, and SOD and CAT activities were 

determined according to the instructions supplied with the commercial assay kits 

(Abcam).

Western blot analysis 

Protein expression was analyzed quantitatively by western blot, performed as 

described in a previous study (Kim et al., 2017). The cytosolic and nuclear fractions 

were separated using NE-PER® nuclear and cytoplasmic extraction reagents, as 

recommended by the manufacturer (Thermo Scientific, Rockford, IL, USA). Proteins 

(40 μg/sample) were subjected to 10% (w/v) sodium dodecyl sulfate or sodium lauryl 

sulfate polyacrylamide gel electrophoresis (SDS- and SLS-PAGE, respectively) and 

transferred to a nitrocellulose membrane (Schleicher and Schuell, Keene, NH, USA).

Target proteins were immunodetected by incubation of the membrane for 2 h 

with specific primary antibodies (Table 4). The bound proteins were detected using a 

chemiluminescent substrate (Miracle-Star; iNtRON Biotech, Gyeonggi, Korea). The 

blots were then imaged and the densities of the bands were analyzed using ImageJ 

software (NIH, Bethesda, MD, USA). β-actin served as the internal control.

The optical density (OD; per mm2) of each band was measured and the 

density ratios relative to the β-actin band were determined using ImageJ. The data 

are presented as the means ± standard error of the mean (SEM).
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Table 4. Primary antibodies used in the present study

Abbreviations: HO-1, hemeoxygenase-1; Iba-1, Ionized calcium binding protein-1; IgG, 

immunoglobulin;.Nrf-2, nuclear factor erythroid 2-related factor-2.

Antigen Species, antibody type, manufacturer Concentration

Iba-1 Rabbit, polyclonal, 

Wako Pure Chemical Industries (019-19741)

250ng/ml

HO-1 Mouse, monoclonal,

Santa Cruz Biotechnology (sc-136960)

200ng/ml

Nrf-2 Rabbit, polyclonal,

Santa Cruz Biotechnology (sc-13032)

200ng/ml

β-actin Mouse, monoclonal

Sigma Aldrich (A-1978) 

500ng/ml
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Quantitative real-time PCR 

Gene-expression levels were analyzed in mRNA extracted from mouse liver 

using TRIzol® reagent (Ambion, Austin, TX, USA), CellScripttm all-in-one 5× 

first-strand cDNA, and cDNA Synthesis Master Mix (CellSafe, Gyeonggi-do, Korea). 

Real-time PCR was performed using Luna® Universal qPCR Master Mix (New 

England BioLabs, Ipswich, MA, USA). mRNA expression levels were calculated 

according to the 2-ΔΔCt method, with GAPDH as the internal control. The primers 

used in the PCRs are listed in Table 3 (Gavish et al., 2008; Nelson et al., 2004; 

Tipoe et al., 2010; Truong et al., 2016).
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Table 5. Primer sequences used in the present study  

Primer Sequence

α-SMA Sense 5′– GTCCCAGACATCAGGGAGTAA–3′

Antisense 5′– TCGGATACTTCAGCGTCAGGA–3′

AP-2 Sense 5′– CCGCAGACGACAGGA–3′

Antisense 5′– CTCATGCCCTTTCATAAACT –3′

CYP1A2
Sense

5′– AGTACATCTCCTTAGCCCCAG–3′

Antisense
5′– GGTCCGGGTGGATTCTTCAG–3′

CYP2E1
Sense

5′– CGTTGCCTTGCTTGTCTGGA–3′

Antisense
5′– AAGAAAGGAATTGGGAAAGGTCC–3′

Fibronectin forward 5′– CGAAGAGCCCTTACAGTTCC-3′

reverse 5′– CCGTGTAAGGGTCAAAGCAT-3′

IL-1β Sense 5′– AGGGCTGCTTCCAAACCTTTGAC –3′

Antisense 5′– ATACTGCCTGCCTGAAGCTCTTGT –3′

MCP-1 Sense 5′– AGGTCCCTGTCATGCTTCTG–3′

Antisense
5′– GCTGCTGGTGATCCTCTTGT–3′

PPARγ Sense 5′– CAAGAATACCAAAGTGCGATCAA–3′

Antisense 5′– GAGCAGGGTCTTTTCAGAATAATAAG–3′

TNF-α Sense 5′– GAGTGACAAGCCTGTAGCCCA –3′

Antisense
5′– CCC TTC TCC AGC TGG AAG A –3′
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Immunohistochemistry 

The liver sections were incubated with rabbit anti-Iba-1 antibody. The 

peroxidase reaction was visualized using a DAB kit (Vector Laboratories, Burlingame, 

CA, USA). The slides were counterstained with hematoxylin and then mounted. 

Iba-1-immunostained areas were semi-quantitatively analyzed using ImageJ (n=6 

animals per group). Five different sections from each liver were assessed and the 

positive area was calculated as a percentage of the total area of each section (n=5 

animals per group).

Measurement of liver hydroxyproline content

Hepatic hydroxyproline content was quantified colorimetrically in flash frozen 

liver samples using a hydroxyproline kit (Abcam, Cambridge, UK) according to the 

manufacturer’s instructions. The experimental results were quantified by comparison to 

a standard curve of known hydroxyproline concentrations and expressed as mg 

hydroxyproline/mg liver.

Statistical anaysis 

All results are presented as the means ± SEM. Statistical significance was 

defined as a P value < 0.05 based on the results of one-way analysis of variance 

followed by Bonferroni’s multiple comparison post-hoc test.                
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4. Results

Evaluation of biochemical parameters in serum

Serum levels of the enzymes ALT, AST, and T-bil were measured to 

determine the protective role of norgalanthamine against CCl4-induced hepatic injury 

(Fig. 4). In the control mice, serum ALT, AST and T-bil levels were in the normal 

range (31.8 ± 2.20, 42.2 ± 2.29, and 0.17 ± 0.00 U/L, respectively; Fig. 4) whereas 

they were significantly higher in the vehicle-treated CCl4-injured mice (6,088.0 ± 

697.47 U/L, p < 0.001) mice they were significantly higher than in the normal 

control mice (0.27 ± 0.02 U/L). 

Pretreatment with 1 mg norgalanthamine/kg significantly reduced levels of ALT 

(4,176.0 ± 441.97 U/L, p <0.05) and AST (2,952.0 ± 358.07 U/L, p < 0.05) in 

mice with CCl4-induced liver injury. At the higher dose of 10 mg 

norgalanthamine/kg, significant dose-dependent reductions compared to vehicle-treated 

CCl4-injured mice were determined for ALT (3,588.00 ± 281.13 U/L, p < 0.01), 

AST (2,236.00 ± 158.83 U/L, p < 0.001), and T-bil (0.22 ± 0.01 U/L, p < 0.05). 

In the positive control (silymarin 100), serum ALT (3,588.00 ± 225.73 U/L, p 

< 0.01), AST (1,840.00 ± 185.66 U/L, p < 0.001), and T-bil (0.21 ± 0.01 U/L, p < 

0.05) levels decreased significantly compared to the vehicle-treated mice. The absence 

of a significant difference between the silymarin and norgalanthamine groups implies 

that the effects on serum biomarkers of CCl4-induced liver injury were similar. 

Serum glucose levels were also measured and found to be significantly lower 

in the vehicle-treated mice (32.80 ± 3.53 U/L) than in the normal control mice 
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(296.60 ± 17.87 U/L, p < 0.001), but significantly higher in NG10 mice (104.40 ± 

6.95 U/L) than in vehicle-treated mice (32.80 ± 3.53 U/L, p < 0.05). 
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Figure 4. The effects of norgalanthamine on the serum levels of biochemical 

parameters in mice with CCl4-induced acute liver injury. (A) The inhibitory effects of 

norgalanthamine (1 and 10 mg/kg) on serum aspartate aminotransferase (AST), (B) 

alanine aminotransferase (ALT), (C) total bilirubin, and (D) glucose in mice with 

CCl4-induced acute liver injury. Silymarin (positive control) dose: 100 mg//kg. Values 

are mean ± SEM, n = 5 per group. *** P <0.001 vs. normal control; # P <0.05, ## 

P <0.01, ### P <0.001 vs. CCl4-induced acute injury with vehicle treatment.
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Norgalanthamine improves histopathological changes in the liver

The histopathological studies demonstrated protective effects of norgalanthamine 

against CCl4-induced liver injury (Fig. 5). In the normal control mice, the liver 

showed a normal histological architecture, including hepatic cells with well-preserved 

cytoplasm, a prominent nucleus, and a central vein (Fig. 5A). In the livers of 

CCl4-induced mice, however, large areas of pericentral necrosis were seen together 

with a loss of hepatic architecture, an inflammatory cell infiltrate, and cell swelling 

(Fig. 5B). The hepatic lesions were less severe in the livers of the NG1, NG10, and 

silymarin 100 CCl4-injured mice (Fig. 5C, 5D) than in those of the vehicle-treated 

CCl4 control mice (Fig. 5E).

Liver-injury grades were evaluated based on H&E staining. Based on the 

histological scores, pretreatment with either 1 or 10 mg norgalanthamine significantly 

inhibited acute hepatic injury compared to vehicle treatment (p < 0.001). Similar 

effects were observed in the silymarin 100 group (Fig. 5F). 

The extent of centrilobular necrosis around the central vein was assessed by 

toluidine blue staining (Fig. 5G). The semi-quantitative results showed a larger 

necrotic area in the vehicle-treated CCl4 control group, but a reduction in the extent 

of necrosis was seen in the NG10 and silymarin 100 groups.

The liver tissue of the mice was also examined for fatty changes (Fig. 6). In 

the normal control, lipid droplets were not detected by oil red O staining (Fig. 6A), 

whereas in the vehicle-treated CCl4-injured group staining revealed diffuse fatty 

degeneration throughout the liver (Fig. 6B). By contrast, in the NG1 and NG10 

groups (Fig.6C, 6D), and in the silymarin 100 group (Fig. 6E), there was a relative 

reduction in the extent of fatty changes in the livers of mice with CCl4-induced 
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injury. The percentage of oil-red-O-positive areas was significantly higher in the 

vehicle-treated group than in the normal control group (p < 0.001), but was 

significantly reduced in the NG1 and NG10 groups (p < 0.001), as well as the 

silymarin 100 group (p < 0.001) (Fig. 6F). These results imply that norgalanthamine 

treatment can mitigate CCl4-induced histopathological changes in mouse liver.
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Figure 5. Protective effects of norgalanthamine on the histology of the liver in mice 

with CCl4-induced acute liver injury. Liver tissues were stained with hematoxylin and 

eosin (H&E) and their histological characteristics were assessed by three blinded 

observers. (A) Normal control group; (B) CCl4 vehicle group; (C) CCl4 injury + 1 

mg norgalanthamine /kg; (D) CCl4 injury + 10 mg norgalanthamine/kg; (E) CCl4 

injury + 100 mg silymarin/kg; (F), histological score (0–4); (G) quantitative analysis 

of toluidine blue-negative areas in mouse liver. Values represent mean ± SEM, n = 

5 per group. ** p<0.01 and *** p<0.001 vs. normal control group; ## p<0.01 and 

### p<0.001 vs. CCl4-induced acute injury with vehicle treatment. Scale bar = 100 

µm. 
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Figure 6. Oil red O staining of frozen sections of liver tissue from treated and 

untreated mice reveals lipid accumulation. (A)  Normal control; (B), CCl4-induced 

vehicle-treated group; (C), CCl4 injury +1 mg norgalanthamine/kg; (D) CCl4 injury 

+10 mg norgalanthamine/kg; (E) positive control: CCl4 injury +100 mg silymarin/kg; 

(F) quantification of oil-red-O-positive areas. Values represent means ± SEM, n = 5 

per group. *** P <0.001 vs. normal control; ### P <0.001 vs. CCl4-induced acute 

injury with vehicle treatment. Scale bar = 100 µm.
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Norgalanthamine regulation of expression of hepatic CYP1A2 gene 

The hepatic mRNA expression of CYP1A2 and CYP2E1 was determined by 

qPCR analysis (Fig. 7). CYP2E1 mRNA expression was significantly decreased in all 

administration groups compared to the normal control group (vehicle-treated CCl4 

group and NG10, p <0.01; NG 1 and silymarin, p <0.05). However, in all the 

treatment groups, expression levels showed no changes. On the other hand, CYP1A2 

mRNA expression significantly decreased in the vehicle-treated CCl4 group compared 

to the normal control group, but increased significantly in the NG10 groups (p 

<0.05) and silymarin (p <0.001) groups.
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Figure 7. mRNA expression levels of CYPs in the liver (A–B). The mRNA 

expression levels of CYP2E1 and CYP1A2 were measured using the quantitative 

reverse transcription polymerase chain reaction. Gapdh was used as the housekeeping 

gene. The data are presented as the means± SEM. * p <0.05, ** p <0.01 and *** p 

<0.001 vs. the normal control group; # p <0.05 and ### p <0.001 vs. the 

CCl4-induced acute injury group with vehicle treatment. mRNA: messenger RNA; 

CYPs: Cytochrome P450.
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Norgalanthamine up-regulates SOD and catalase activities

The antioxidant effects of norgalanthamine on CCl4-induced liver injury were 

investigated by measuring the activities of the antioxidant enzymes SOD and CAT in 

the liver tissues of the five groups of mice (Fig. 8). In the CCl4-induced mice, SOD 

and CAT activities decreased significantly (80.37 ± 5.24 and 0.46 ± 0.04 U/L, 

respectively; both p < 0.05). Pre-treatment with norgalanthamine prior to CCl4 injury 

significantly up-regulated the levels of both enzymes compared to the vehicle-treated 

mice, with a significant effect on SOD seen in the NG10 group (102.22 ± 2.26 U/L, 

p < 0.01; Fig. 8A), and on CAT in both the NG1 and NG10 groups (0.62 ± 0.03, 

p < 0.01; 0.98 ± 0.21, p < 0.05, respectively; Fig. 8B). This implies that the 

hepatoprotective effect of norgalanthamine is derived from its antioxidant activity.
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Fig. 8. Antioxidant effect of norgalanthamine in mice with CCl4-induced acute liver 

injury. Injury is as indexed by the enzyme activities of (A) superoxide dismutase and 

(B) catalase. The data are expressed as means ± SEM, n = 5 per group.  * P <0.05 

vs. the normal control; # P < 0.05 and ## P < 0.01 vs. the CCl4-induced acute injury 

with vehicle treatment group.
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Norgalanthamine reduced inflammation in the liver 

The anti-inflammatory properties of norgalanthamine were further evaluated by 

assessing TNF-α, IL-1β, and MCP-1 mRNA levels in the livers of the mice (Fig. 9). 

TNF-α and IL-1β mRNA expression increased significantly in the vehicle-treated 

CCl4-injured group (3.41 ± 0.56 and  2.37 ± 0.27 U/L, respectively) versus the 

normal control group (0.71 ± 0.26 and 1.42 ± 0.45 U/L, respectively; both p < 0.01) 

but were significantly reduced in the norgalanthamine groups (2.30 ± 0.27 and 1.47 

± 0.02 U/L, respectively, both p < 0.05; Fig. 9A, B). In addition, the mRNA levels 

of the inflammatory chemokine MCP-1 were significantly higher in the vehicle-treated 

CCl4-injured group than in the normal control group (12.37 ± 1.00 vs. 1.31 ± 0.27 

U/L; p < 0.01) and significantly lower in the NG1 and NG10 groups than in the 

vehicle treatment group (6.36 ± 1.33-fold change, 6.94 ± 0.77-fold change, 

respectively, both p < 0.01; Fig. 9). 

Kupffer cells/macrophages are activated during liver injury (Ahn et al., 2016). 

In the mouse livers in the normal control group, Iba-1-positive Kupffer cells were 

detected along the sinusoids (Fig. 10A), but no infiltration of inflammatory cells was 

observed. By contrast, in the livers of CCl4-injured mice, activated Kupffer cells and 

an inflammatory cell infiltrate were detected (Fig. 10B). Pretreatment with 10 mg 

norgalanthamine/kg (Fig. 10D) or 100 mg silymarin/kg (Fig. 10E) reduced the 

numbers of Iba1-positive cells. Furthermore, while the percentages of Iba-1-positive 

areas were significantly higher in the vehicle-treated group than in the normal control 

group (p < 0.01), they were significantly lower in the NG10 (p < 0.01) and 

silymarin 100 (p < 0.01) groups than in the vehicle-treated group (Fig. 10F). 
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Figure 9. Norgalanthamine pretreatment attenuates CCl4-induced inflammatory 

responses in the liver at the transcriptional level. (A) TNFα mRNA; (B), IL1β 

mRNA; and (C), MCP-1 mRNA. Data are presented as means ± SEM, n = 5 per 

group. * P <0.05  and ** P <0.01 vs. the normal control; # P <0.05 and ## P 

<0.01  vs. the CCl4-induced acute-liver-injury with vehicle treatment group.
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Figure 10. (A–E) Immunohistochemical staining of Iba-1 in liver sections. (F) Bar 

graph shows the semi-quantitative analysis of Iba-1-positive areas. Scale bar = 100 μ

m. Values in (F) are means ± SEM, n = 5 per group. *** P < 0.001 vs. the 

normal control group; ## P < 0.01,  ### P <0.001 vs. the CCl4-induced 

acute-liver-injury with vehicle treatment group.



- 56 -

Norgalanthamine down-regulates the expression of mRNAs linked to 
adipogenesis in the liver

The molecular mechanisms underlying the anti-adipogenic effects of 

norgalanthamine were investigated by analyzing the mRNA levels of genes involved 

in lipid uptake and metabolism, including proliferator-activated receptor-γ (PPAR-γ) 

and adipocyte fatty acid-binding protein-2 (AP2) (Fig. 11). The results showed that 

the two genes were expressed at significantly higher levels in the vehicle-treated 

group (p < 0.01) whereas norgalanthamine treatment caused significant reductions in 

both genes (p < 0.05).
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Figure 11. Real-time PCR analyses of PPAR-γ and AP2 expression in liver tissues. 

Bar graph shows the expression of PPAR-γ and AP2 in CCl4-induced 

acute-liver-injury mice relative to that of the normal control mice. Data are presented 

as means ± SEM, n = 5 per group.  * P < 0.05, ** P < 0.01  vs. the normal 

control group; # P < 0.05 and # P < 0.01 vs. the CCl4-induced acute injury with 

vehicle treatment group.
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Norgalanthamine up-regulates Nrf-2 and HO-1 levels in mice with 
CCl4-induced liver injury

Western blotting was performed to determine the effect of norgalanthamine on 

Nrf-2 levels in the cytosol and nucleus of liver cells in the treated mice. Compared 

to the vehicle-treated group, norgalanthamine significantly increased both the 

cytoplasmic levels of Nrf-2 and the extent of the protein’s nuclear translocation (Fig. 

12A). Consistent with these findings, HO-1 protein levels were significantly higher in 

the NG10 group than in the vehicle-treated group (Fig. 12B). 
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Figure 12. Representative immunoblots of (A) Nrf-2 and HO-1 and (B) Nrf-2 and 

HO-1 expression relative to the β-actin level in CCl4-induced acute-liver-injury mice. 

Data are presented as mean ± SE, n = 5 per group. * P < 0.05 vs. the normal 

control group; # P < 0.05 and # P < 0.01 vs. the CCl4-induced acute injury with 

vehicle treatment group.
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Effects of norgalanthamine on CCl4-induced chronic liver injury

Liver sections were stained with Picrosirius red stain. Collagen fibers were 

detected around perivenular regions of the normal control group (Fig. 13A). However, 

collagen tissue proliferation by fibrosis was detected in the vehicle-treated group (Fig. 

13B). The norgalanthamine and silymarin treatments significantly reduced collagen 

tissue proliferation in the liver (Fig. 13C and 13D) compared with the vehicle-treated 

group. The positive areas with Picrosirius red staining were significantly higher in the 

vehicle-treated group (3.77 ± 0.27%, p < 0.01) than in the normal control group 

(1.60 ± 0.14%). The 10-mg/kg norgalanthamine group (3.00 ± 0.02%, p < 0.05) 

showed significantly lower percent areas of collagen tissue compared with the liver 

tissue in the vehicle-treated group (Fig. 13F). In liver tissue, hydroxyproline levels 

were significantly lower in the 10-mg/kg norgalanthamine group (189.26 ± 35.53 g, p 

< 0.05) than in the vehicle-treated group (33.87 ± 5.81g) (Fig. 13G). Changes in the 

biochemical serum and histopathological parameters of CCl4-induced 

chronic-liver-injury mice were similar to those in CCl4-induced acute-liver-injury mice 

(data not shown). In addition, the expression of α-SMA and fibronectin mRNA 

decreased significantly in the 10-mg/kg norgalanthamine group (3.33 ± 1.76-fold 

change, p < 0.01; 1.03 ± 0.15-fold change, p < 0.05) compared to the vehicle-treated 

group (5.24 ± 1.75-fold change; 1.48 ± 0.07, both p < 0.05) (Fig. 14).
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Figure 13. Effects of norgalanthamine in CCl4-induced chronic liver injury in mice. 

(A–D) Picrosirius red staining of liver sections. (F) Positive area of Picrosirius red 

staining. (G) Quantitative hydroxyproline in CCl4-induced chronic liver injury mice. 

Data are presented as means ± SEM, n = 5 per group. * P < 0.05 and ** P < 

0.01 vs. the normal control group; # P < 0.05  vs. the CCl4-induced acute injury 

with vehicle treatment group.
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Figure 14. Real-time PCR analyses of α-SMA and fibronectin expression in liver 

tissues. Bar graph shows the expression of αSMA and fibronectin in CCl4-induced 

acute-liver-injury mice relative to that of the normal control group. Data are 

presented as means ± SEM, n = 5 per group. * P < 0.05 vs. the normal control 

group; # P < 0.05 and ## P < 0.01  vs. CCl4-induced acute-liver-injury with vehicle 

treatment group.
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5. Discussion 

This study examined the effects of norgalanthamine, a principal component of 

Crinum asiaticum var. japonicum, in CCl4-induced acute- and chronic-liver-injury 

models in mice to determine whether norgalanthamine has preventive or therapeutic 

effects in acute and chronic liver damage. The CCl4-induced liver-injury model is 

characterized by excessive accumulation of ROS in hepatocytes or extracellular 

regions, increased activated inflammatory cells, hepatocellular necrosis, and liver 

fibrosis, and abnormal levels of liver enzymes in the blood (Ahn et al., 2016; 

Zeashan et al., 2008). We found that administration of norgalanthamine prior to CCl4 

induction in mice reduced the elevation of serum enzyme levels of ALT, AST, and 

T-bil, and increased glucose activity in blood serum. These findings imply that 

norgalanthamine has a preventive effect on hepatocytes in the CCl4-induced 

acute-liver-injury model.

The hepatoprotective effect of norgalanthamine was further demonstrated 

biochemically and histopathologically. The major cause of CCl4-induced liver injury is 

thought to be oxidative stress mediated by the free radical derivatives of CCl4. In 

this study, the activities of SOD and CAT and expression of Nrf-2 and HO-1 were 

significantly decreased in mouse liver after CCl4-induction (Ahn et al., 2016; Singh 

et al., 2015; Song et al., 2011). Of note, we found that expression was restored to 

almost normal levels in the norgalanthamine groups. Oxidative stress causes the 

escape by Nrf-2 of keap1-mediated proteasomal degradation, leading to Nrf-2 nuclear 

translocation and binding to ARE (Cao et al., 2017; Kensler et al., 2007). Nrf-2 and 

its downstream target HO-1, together with other antioxidant enzymes (e.g., SOD and 

glutathione peroxidase), play important roles in tissue protection, by regulating the 

expression of cytoprotective and antioxidant genes (Jiang et al., 2016). This study 

implies that norgalanthamine prevents nuclear translocation of Nrf-2 and by extension 
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its downstream effects on CCl4-injured liver, thereby protecting hepatocytes against 

oxidative stress.

Acute experimental liver injury induced by CCl4 drastically decreases the 

activities of the main liver P450 isoenzymes such as CYP1A2 and CYP2E1, as well 

as their protein expression (Song et al., 2011; Xie et al., 2014). The results of this 

study show that CYP1A2 mRNA expression increased in the norgalanthamine-treated 

groups. It is thought that norgalanthamine inhibits CYP1A2, which is involved in 

CCl4 metabolism in the liver.

This study further examined the effects of norgalanthamine on lipid 

metabolism, which is an important pathological event, and on protective and/or 

therapeutic targets in liver disease (Musso et al., 2017; Seo et al., 2015). In the 

treatment of patients with nonalcoholic steatohepatitis, a molecular target of therapy is 

the PPAR-mediated increase in the oxidation of free fatty acids (Musso et al., 2017). 

PPAR-γ participates in the modulation of metabolic disorders by activating the 

expression of genes involved in adipocyte maturation, lipid accumulation, and 

insulin-sensitive glucose transport (Lee et al., 2017; Nagai et al., 2009). These 

findings imply the potential of norgalanthamine as an anti-adipogenic agent, based on 

its ability to reduce lipid accumulation in the livers of mice with CCl4-induced liver 

injury.

Among the notable features of CCl4-induced liver injury are 

macrophage/Kupffer cell activation (Ahn et al., 2016) and the induction of several 

genes that encode cytokines, including TNF-α, IL-1β, and MCP-1, one of the key 

chemokines regulating the migration and infiltration of monocytes/macrophages 

(Deshmane et al., 2009). These results show that norgalanthamine treatment 

suppressed both macrophage infiltration and the levels of all three cytokines in the 
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mouse liver. Thus, the hepatoprotective role of norgalanthamine seems to be 

associated with its anti-inflammatory effects and decreased activation of 

macrophages/Kupffer cells.

In chronic liver disease, as well as in the CCl4-induced chronic-liver-injury 

animal model, hepatic fibrosis is accompanied by excessive accumulation of 

extracellular matrix proteins including α-SMA and fibronectin (Bataller and Brenner, 

2005; Brancaccio et al., 2018; Liu et al., 2016). In this study, we found that the 

presence of collagen fibers (positive areas of PSR staining) and hydroxyproline, and 

expression of α-SMA and fibronectin were significantly increased in the CCl4-induced 

chronic-liver-injury model. Of note, collagen fibers and hydroxyproline levels were 

significantly reduced in the norgalanthamine-treated group compared to the 

vehicle-treated control group, but no significant difference was observed between the 

silymarin-treated and vehicle-control groups. This implies that norgalanthamine 

administration is a candidate as an effective treatment option to reduce fibrosis in 

chronic liver disease through inhibition of α-SMA and fibronectin expression.
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Figure 15. Schematic diagram of the proposed molecular effects of norgalanthamine 

in mice with CCl4-induced liver injury.
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In conclusion, in our mouse model of liver injury, norgalanthamine suppressed 

oxidative stress, hepatic lipid accumulation, and inflammation via activation of 

antioxidant molecules and down-regulation of adipogenic markers associated with lipid 

accumulation, pro-inflammatory mediators and anti-fibrosis factors. Overall, the 

hepatoprotective effects of norgalanthamine in the CCl4 mouse model imply its 

therapeutic utility for treating liver injury (Fig. 15).
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Abstract in Korean 

사염화탄소유도 간 손상 마우스 모델에서 

노르갈란타민의 간 보호 효과 및 

그 기전에 대한 연구

노르갈란타민(Norgalanthamine)은 제주도에서 자생하는 문주란 추출물의 

주요 성분 중 하나이며, 털주머니의 증식을 통한 발모 촉진에 효과가 있다고 보고

되었다. 이에 본 연구는 노르갈란타민이 사염화탄소로 유도되는 간 손상으로부터 

간 보호 효과가 있음을 평가하기 위해 혈액생화학적 및 조직학적 검사를 실시하였

고, 분자생물학적 기법을 이용하여 그 기전을 확인하였다.

 사염화탄소유도 급성 간 손상 모델에서의 효능 평가는 노르갈란타민을 1 

및 10 mg/kg 용량으로 1일 1회, 7일간 경구 투여한 후, corn oil과 동량 희석한 

사염화탄소를 1.5ml/kg 용량으로 단회 복강투여하였다. 이후 만성 간 손상 모델에

서의 효능 평가를 위해서 2주간 노르갈란타민을 투여하면서 3일마다 사염화탄소를 

같은 용량으로 복강투여하였다. 정상 동물 대조군 및 사염화탄소 유도 대조군에는 

동량의 PBS를 투여하였고, 간 보호 효과가 있는 것으로 알려진 silymarin 100 

mg/kg 용량을 양성대조군으로 사용하였다.  

혈액생화학적 검사 결과, 간 손상 지표 중 aspartate aminotransferase( 

AST), alanine aminotransferase (ALT) 및 총 빌리루빈(T-bil) 농도는 정상 동

물군에 비해 대조군에서 유의성 있게 증가한 반면 노르갈란타민 투여군에서 유의

성 있게 감소하였다.  

조직학적 검사 결과, 노르갈란타민 투여에 의해 간의 중심 정맥 주위 괴사, 

지방구의 침윤 정도 및 간조직의 섬유화가 대조군에 비해 유의성 있게 감소되었으

며 cytochrome P4501A2 (CYP1A2)를 비교한 결과, 사염화탄소유도에 의해 감소

되었고, 노르갈란타민 투여에 의해 유의성 있게 증가되었다. 또한 노르갈란타민에 
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의한 항산화 효과를 평가한 결과, 항산화효소인 superoxide dismutase 및 

catalase가 대조군에 비해 유의성 있게 증가되었으며 간의 염증반응을 비교한 결

과, tumor necrosis factor alpha와 interleukin 싸이토카인의 발현이 노르갈란

타민 투여에 의해 유의적으로 감소되었고, monocyte chemoattractant 

protein-1 케모카인의 발현도 유사한 결과를 보였다. 다음으로 조직 내 ionized 

calcium binding adapter molecule-1 면역조직화학 염색을 통해 Kupffer cell 

및 monocyte의 활성화 정도를 평가한 결과, 노르갈란타민 투여에 의해 그 발현이 

유의성 있게 감소하였다. 지방생성 관련 유전자인 peroxisome 

proliferator-activated receptor gamma와 adipocyte protein-2의 발현도 노르

갈란타민 투여에 의해 유의적으로 감소되는 것을 확인하였다. 간 섬유화와 관련된 

α-SMA와 fibronectin의 발현도 노르갈란타민 투여에 의해 감소되었다. 또한 항산

화 관련 인자인 nuclear factor erythroid 2-related factor 2 (Nrf-2) 및 heme 

oxygenase-1 (HO-1)의 발현을 확인한 결과, 노르갈란타민 투여로 간세포의 세포

질에서 핵으로 Nrf-2가 전이된 발현이 증가되었고, 이로 인해 HO-1의 발현도 증

가한 것을 확인하였다. 

결론적으로 노르갈란타민은 사염화탄소유도 간 손상 모델에서 CYP1A2의 활

성을 감소시키고, Nrf-2 및 HO-1의 활성화로 산화적 손상, 지방구 침윤, 염증 반

응 및 섬유화를 완화시킴으로써 간을 보호한 것으로 판단된다. 

                                                                     

주요어 : 간손상, 노르갈란타민(norgalanthamine), 사염화탄소(CCl4), HO-1, 

Nrf-2
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힘을 얻을 수 있는 강인함을 가르쳐 주신 분들 덕분에 삶을 살아갈 수 있는 것 같

습니다. 모든 분들게 감사드립니다.
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