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I. MAIN RESEARCH GOALS

1. High throughput phenotyping for breeding drought resistance cultivars

Erratic climate change due to global warming is deriving frequent and

severe drought. Drought especially affects as a crucial threat to the

agricultural industry, therefore, drought solutions such as improving irrigation

systems, rainwater harvesting, damming, cloud seeding, changing cultivation

methods, and breeding resistance cultivars are developed and applied. Among

all the current drought solutions, breeding resistance cultivar is the most

efficient, effective method. However, conventional plant breeding requires an

amount of time and resources during all processes. This led to the high

throughput phenotyping (HTP), which is rapid, massive, accurate,

non-invasive, automated, and reliable breakthrough in the plant breeding cycle

researches by the combination of latest computing and sensor technologies.

Applying HTP methods in developing drought resistance cultivar must choose

the sensors and platforms that are appropriate to evaluate drought related

traits. Therefore, the current chapter will introduce various methods of HTP

in drought stress detection and possibilities to provide helpful guidelines for

breeders and researchers under their circumstances.

2. Sensor based drought evaluation method in soybean (Glycine max

L.)

Soybean (Glycine max L.) is one of the major food crops worldwide.

Affected by the drought impact, existing soybean cultivars might resist some

degrees of drought stresses. However, increased drought frequency and
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severity under global warming are now forcing rapidly responded solutions

through accelerated breeding cycles for more powerful resistance cultivars.

Conventional methods for drought evaluation in soybean are non-repeatable or

not fast enough to shorten the selection process. Manageable and reliable

drought-related traits are required in HTP methods for the acceleration.

Recent researchers found out that biomass and yield correlate positively with

the number of nodes and green area of canopy. Thus, we applied the RGB

sensor for fast and reliable screening green area of drought-stressed

soybeans and compared with other drought related traits. The goal of the

current chapter is to develop a fast and cost-effective method of screening

drought tolerance by means of image analysis in the early vegetative stages.

This thesis will focus to provide a useful tool for drought evaluations and the

basis for selection criteria in further drought tolerance experiments and

breeding processes.
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II. Chapter I: Literature review: Comparisons of

High-Throughput Phenotyping Methods for Detecting

Drought Tolerance

Abstract

Drought is crucial threat worldwide for crop production, especially present

rapid climate changing situation. Current drought solutions: improving

irrigation system, rainwater harvesting, damming, cloud seeding, and some

changes of cultivation methods, although they are effective each has their

economic, environmental, and temporal drawbacks. Among all solutions, the

most effective, inexpensive and manageable method is the use of drought

resistance cultivars, via plant breeding. However, conventional plant breeding

is a time-consuming and laborious task especially for the phenotypic data

acquisition of the targeting traits of numerous progenies. The recently

emerged method, high-throughput phenotyping (HTP), has potential to

overcome the foresaid issues. Its massive, accurate, rapid, and automatic data

acquisition in breeding procedure can be the breakthrough for developing

drought resistant/tolerant cultivar to solve current drought problems. Thus,

the current article will introduce various methods of HTP to detect drought

stress, which can accelerate the drought resistance cultivar breeding processes

in order to provide helpful guidelines for to choose the appropriate methods

for breeders and researchers under their circumstances.
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1. Introduction

Expanding global population demands the doubled crop production by

2050, which will be a significant challenge to achieve the goal (Araus and

Cairns, 2014). However, recently variation of drought frequency and location

are increasing tremendously due to the global warming and climate change

causing severe yield loss (Spinoni et al., 2014). Severe and frequent drought

would decrease yield significantly causing global food security.

Developing drought tolerant cultivar is an effective method to deal

with current situation by providing farmers to relatively inexpensive and

manageable plantation (Cattivelli et al., 2008). However, only few drought

tolerance cultivars of crops have been developed so far. Moreover,

conventional breeding takes many years even with the modern breeding such

as marker-assisted selection (Collard and Mackill, 2008; Tester and Langridge,

2010). To enable shorter breeding cycles, great rates of genetic gain with the

sufficient number of samples and reliable data set are required. This led the

advent of new field, high throughput phenotyping (HTP) (Rutkoski et al.,

2016). HTP is based on various kinds of sensors and computing technology

in order to accelerate phenotypic data acquisition process in accurate, fast,

non-invasive, automated, and reliable manners. Therefore, it would be worth

to reviewing various methods of HTP to evaluate drought stress in crop

plants so that researchers who want to phenotype drought tolerance level

could compare them to utilize in their own purposes under their

circumstances.

In order to monitor plant performance and identify traits under

drought condition, defining phenotypes of drought stresses are crucial.
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Dehydration under drought condition results in critical damage to plant, by

changing leaf and canopy temperature, transpiration rate and biomass

distribution decreasing growth rate and production (Khodarahmpour, 2011;

Passioura, 1983). Thus, there should be various ways to screen drought stress

level with various kinds of sensors to screen each of those components

mentioned above. This article will focus on reviewing high throughput

phenotyping methods and platforms.
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2. High throughput phenotyping methods for drought stresses in

plants

1) Red, green, and blue (RGB) image

Multispectral sensors generally comprise several bands including RGB

channels and near infrared (NIR) channels (Kelcey and Lucieer, 2012).

Relatively insensitive accessibility of spectral imagery made various forms of

its usage. RGB (Red, green, blue) band sensor is the most affordable and

accessible instrument because it takes images of most all of the

morphological features of plants, such as whole image or partial image of

plant, plant structure, shoot biomass, leaf density, leaf area, height, and color.

Due to its rapid measurement and affordable access, it has various

applications. For example, plant density of wheat was estimated with light

platform fixed RGB camera (Liu et al., 2017), time series of plant penology

was monitored with an automated time-lapse photography (Crimmins and

Crimmins, 2008), and leaf segmentation of sorghum was estimated by RGB

camera on UAVs (Chen et al., 2018). RGB images also can be applied to

acquire sophisticated information of water stress responses based on its

shape, compactness, solidity, and other visible parameters (Deery et al., 2014).

2) Infrared imaging

In the 700 nm to 1300 nm near infrared (NIR) wavelengths, its

reflectance on plant green area shows highest rates (Broge and Mortensen,

2002). It also shows relatively low reflection at the wavelength beyond 1300

nm. The former causes the scattering wave within the leaf mesophyll, and
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later is absorbed by water strongly (Knipling, 1970). Consequently, these

characteristics verifies compatibility on meaningful parameters against drought

stresses. Bei et al. (2011) measured grapevine water potentials using

custom-made spectrophotometer and handheld spectrometer to have significant

correlation with the results of pressure chamber in fields and glasshouses. In

addition, vegetation indices requires NIR channel shows significant correlation

on vegetation statuses. Bendig et al. (2015) and Yang et al. (2017) estimated

normalized difference vegetation index (NDVI) in order to monitor biomasses

in projected area expeditiously easily with combination of RGB and NIR

imagery on Unmanned Aerial Vehicles (UAVs). These sensors can be adapted

on not only UAVs but also on other platforms such as ground vehicles and

chambers to produce images of wide range and continuous images at each

platform (Chapman et al., 2014; Deery et al., 2014; Gago et al., 2015).

3) Hyperspectral imaging

Hyperspectral sensors consist of hundreds and thousands of bands per

one pixel compared to the multispectral sensors (Thenkabail et al., 2002). By

its narrow and numerous bands, band selection is relatively complicated for

imaging than the multispectral sensors. Nevertheless, it can differentiate

various stress responses by its feasibility in acquiring images in high

resolution and narrow spatial range. Thereby, generally it is used on indoor

imaging and high altitude aerial platforms based on the high level of details

in hyperspectral imagery. Due to its narrow ranges vegetation and water

indices, soil coverage status, photosynthesis rates, and levels of

phytochemicals such as nitrogen, cellulose, lignin, and pigments can be

derived (Hamada et al., 2007; Stagakis et al., 2010; Zhao et al., 2013).

However, the illumination issues on close range and the inconstant imaging

by environmental changes could be problematic for high-throughput
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phenotyping (Mishra et al., 2017). Nonetheless, physiological and

phytochemical parameters with hyperspectral imaging to detect drought stress

responses in crop plants is highly effective (Behmann et al., 2014).

4) Thermal imaging

Thermography, also known as infrared thermography, produces images

using the emitted radiation of object that increases with the object

temperature above absolute zero (Shekhawat, 2016). Thermal sensor can

detect temperature changes cause by transpiration occurrence due to the

stomatal closure with visualized image data (Peñuelas et al., 1992). Thereby,

temperature related traits such as water content, transpiration rate, and

stomatal conductance could be measured through the thermal imaging

(Prashar et al., 2013; Tattaris et al., 2016). For examples, stomatal

conductance in grapevine (Vitis vinifera) was estimated with a handheld

thermometer camera (Leinonen et al., 2006), and water stress in olives was

evaluated through correlation between soil and tree water status and thermal

imagery (Ben-Gal et al., 2009). HTP methods with thermal imagery are often

applied with other sensors to have comprehensive data. For instance, applying

thermal and multispectral sensors on UAVs for vegetation monitoring (Berni

et al., 2009) and water status was assessed in vineyard (Baluja et al., 2012;

Gago et al., 2015). Since thermal images have significant correlation with

water stress indicators, it may be one of the most useful sensors to

phenotype drought tolerance. However, various environmental factors such as

solar radiation, air temperature, wind speed, and background temperature can

easily influence the field measurement, which requires technical expertise to

overcome this limitation (Sugiura et al., 2007)



- 9 -

5) Fluorescence imaging

Fluorescence is luminescence of longer wavelength photons of

fluorescence lifetime after photon absorption by certain susceptible atom or

molecule. These longer wavelength and lower energy photon decays slow, so

that it can be measured by the sensors for 10E-12 seconds (picoseconds)

(Berezin and Achilefu, 2010). Thereby, plant fluorescence can be obtained

through those response of fluorescence by irradiating chloroplasts with blue

or actinic light. As fluorescence and chlorophyll contents are strong indicators

of drought tolerance to determine the metabolic status of plants, fluorescence

imaging can be effective for dissecting drought related traits such as

photosynthetic rate changes and pigment proportion changes (Li et al., 2006;

Ögren and Öquist, 1985; Zlatev and Yordanov, 2004). However, impropriety

for the early water stress detection, inadequacy on broad range imagery,

inconsistent illumination, environmental disruptions under field conditions for

remote sensing, and high-power requirements is its limitation (Jansen et al.,

2009; Shakoor et al., 2017). Despite fluorescence sensor applicable platforms

are limited, efficiency of fluorescence imaging is proved under drought

conditions by the combination with other sensors or automated facilities to

screen photosynthetic rates (Chaerle et al., 2006).

6) Light Detection and Ranging (LiDAR)

Lidar is newly emerged remoted sensing technology that measures

distance of target objects by analyzing the reflected light (Lefsky et al.,

2002). Various parameters of canopy and leaves, such as vegetation cover,

height, canopy structure, leaf area index, and nitrogen status are acquirable

(Eitel et al., 2014; Lin, 2015; Madec et al., 2017; Omasa et al., 2006; Zhang

and Grift, 2012). Furthermore, LiDAR measuring via 3D structuring can be
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done in only several minutes. It is generally applied in aerial platforms,

ground vehicles, and ground fixed & stationary platforms. Among them,

UAVs shows a highest potential and efficiency than the other platforms for

3D LiDAR mapping. However, this method has limited application for drought

stress study. One such application could be biomass, which results from slow

growth and wilting due to drought stress based on 3D images of canopy. In

summary, aerial platforms with LiDAR are effective for measuring canopy

area, while rough images might be unsuitable for accurate data for drought

tolerance. To overcome this, ground based platforms are suggested with

current image resolution of LiDAR.

Fig 1. Electromagnetic spectrum scheme (nm).
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Sensors Range Features Traits Reference
RGB
sensor

400~7
00nm

Images of visible
wavelengths are obtained.
Most easily accessible
sensor.

Vegetation indices, plant
height, plant structure, growth
rates, and morphological traits.

Crimmins and Crimmins (2008);
Deery et al. (2014); Liu et al. (2017)

NIR
sensor

700~1
400nm

Shows highest reflectance of
plant green area in
700~1300nm, while beyond
1300nm shows more
absorbance by water than
the visible spectrum.

Chlorophyll conductance, water
status, and vegetation indices.

Bei et al. (2011); Bendig et al.
(2015); Yang et al. (2017)

Hyperspe
ctral
sensor

- Consists thousands of bands
per one pixel. More detailed
images can be obtained than
the multispectral imaging if
the requirements are set.

vegetation and water indices,
soil coverage status,
photosynthesis rates, and
levels of phytochemicals.

Hamada et al. (2007); Stagakis et al.
(2010); Zhao et al. (2013)

Thermal
sensor

700~1
06 nm

Imaging sensor using the
emitted radiation of object
that increases with the object
temperature above absolute
zero. Suitable to image
temperature changes.

Canopy temperature,
transpiration rates, and water
stress responses.

Baluja et al. (2012); Berni et al.
(2009); Gago et al. (2015); Leinonen
et al. (2006)

Fluoresce
nce
sensor

180∼
800
nm

Capable to measure
fluorescence emitted by short
wave light absorption of
susceptible molecule.

Chlorophyll conductance,
photosynthetic rates, and
pigment composition.

Chaerle et al. (2006)

LiDAR 250 ~
2,000n
m

Distance measuring and
surface scanning of target
objects by analyzing the
reflected light.

Canopy and leaves, vegetation
cover, plant height, and
nitrogen status.

Lin (2015); Eitel et al. (2014); Madec
et al. (2017); Omasa et al. (2006);
Zhang and Grift (2012);

Table 1. Sensors for high throughput imaging and obtainable traits.
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3. Platforms for sensors to evaluate the drought tolerance

As mentioned above, various sensors can derive parameters for

high-throughput phenotyping. They are powerful imaging instruments that

allow accurate and massive phenotyping data at a glance off. However, it is

important to have appropriate platform such as aircrafts, vehicles, ground

fixed, and automated facilities to mount sensors in order to obtain visualized

parameters of plant response under drought conditions.

Traits from canopy and leaf area such as leaf area, transpiration

rates, canopy temperature, phytochemicals, and photosynthetic rates are highly

related with drought encounter. Among various platforms, aerial detection is

the most effective and most efficient way in terms of phenotyping speed. Its

rapid and accurate remote sensing allows to image massive amount of plant

in wide area within very short time. Visible traits of above canopy area

including plant height can be easily measured by aerial imaging with RGB

sensor (Bendig et al., 2014; Jin et al., 2017). Chlorophyll contents that can be

estimated by NIR and Red range by aerial imaging (Bendig et al., 2015; Yang

et al., 2017). Thermal sensor mounted on aerial vehicles is capable of aerial

water status detections (Baluja et al., 2012; Berni et al., 2009; Gago et al.,

2015). Also, aerial platform with high payload can apply hyperspectral sensor

for phytochemical and photosynthetic traits. However, application of thermal

and fluorescence sensors might be more appropriate to be mounted on ground

vehicles, ground fixed & stationary platforms, and indoor facilities for higher

resolution images due to formally mentioned issues (Busemeyer et al., 2013;

Deery et al., 2014; Shafiekhani et al., 2017; Tisné et al., 2013).

Although aerial platform has benefits for high throughput phenotyping,
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its detectable area is limited on canopy area only. Therefore, drought

influenced phenotypes below canopy area such as stem structure, biomass and

branching are remotely sensed by ground vehicles (Salas Fernandez et al.,

2017), ground fixed & stationary (Busemeyer et al., 2013; Shafiekhani et al.,

2017), and indoor (Hartmann et al., 2011) platforms. Ground vehicles are be

relatively less expensive than other two kinds of platforms, while its images

need analyzing process same as the aerial platform (Deery et al., 2014). They

are also very advantageous in term of much higher capacity for loading many

sensors with higher weights than aerial platform does. However, the

phenotyping speed is much slower than aerial platform. Indoor platforms have

benefits that can control the objective environment due to the inhibition of

other uncontrollable disturbances. By restricting interference of extrinsic

factors, almost all the sensors are available on this platform. Proper posture

rectified for each imaging sensor can make the measurement more accurate

and rapid with easier operation. Ground fixed & stationary platforms has

advantage that can produce time-lapsed image easily due to their fixed

imaging angle and constant imaging time although this must be durable

under the outdoor condition. Indoor facilities are also capable to phenotype

root whose formation under drought condition also provides important hints to

be tolerance to drought (Wasaya et al., 2018). However, restricted individual

numbers, high cost, and environmental settings are its limits. Cylinder growth

systems, hydroponic growth systems, aeroponic growth systems, X-rays,

nuclear magnetic resonance microscopy, magnetic resonance imaging, and

laser scanning are currently available for indoor root phenotyping (Clark et

al., 2013; Iyer-Pascuzzi et al., 2010; Marié et al., 2014; Taras et al., 2012).
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Platform
s

Categories Features Limits Reference

Aerial Satellites Rapid imaging of broad area
is available.
Payload limits.
Screening process is possible
irrespective of plant height.
Only orthoimages can be
obtained.

Relatively low resolution
images than platforms
on lower altitude.

Hamada et al. (2007); Stagakis
et al. (2010)

Aircrafts Manual control requires
expertise.

Chapman et al. (2014)

Easily influenced by
environmental factors.
Relatively low payloads.

Baluja et al. (2012); Bendig et
al. (2014); Bendig et al. (2015);
Berni et al. (2009); Gago et al.
(2015); Jin et al. (2017); Yang et
al. (2017)

Ground Tractors &
Buggies

Manually or remotely
controlled.
High resolution images
obtainable.
Sensor payload is irrespective.

Inappropriate to screen
very tall crops.

Deery et al. (2014); Salas
Fernandez et al. (2017)

Bicycles Liu et al. (2017)

Ground-Fixed &
Stationary

Suitable to time-lapsed
images.
More sensors are mountable
than the aerial platforms.

Requires durability
against outdoor
conditions.

Busemeyer et al. (2013);
Shafiekhani et al. (2017)

Indoor Facilities Environmental factors can be
controlled.
Uncontrollable disturbances
are inhibited.
Almost all sensors can be
applied.
Capable to root phenotyping.

Limited individuals. Clark et al. (2013);
Iyer-Pascuzzi et al. (2010);
Hartmann et al. (2011); Marié et
al. (2014); Taras et al. (2012);
Tisné et al. (2013); Wasaya et
al. (2018)

Table 2. Platforms for High Throughput Phenotyping.
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4. Conclusion

Present drought problems are one of the main casual factors of

incoming world food crisis, which can be overcome by developing drought

tolerance cultivars via plant breeding. Since drought occurs more often in

severe forms, the breeding cycle should be significantly shortened. To achieve

this, massive and accurate phenotypic data is crucial. Considering drought

stress responses are related with various morphological and physiological

traits, numerous methods could be applied using sensors such multispectral,

hyperspectral, thermal, fluorescence sensors, laser sensors on various

platforms. In the current article, currently developed methods were reviewed

to help researchers who need to do high throughput phenotyping for drought

responses. We sincerely hope that this article could help those who consider

to study drought response or to breed drought tolerance cultivars.
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III. Chapter II: Application of image analysis method to

study drought stress in soybean

Abstract

The steep increase of drought frequency under global warming has resulted

in massive losses to world crop production. Consequently, drought-tolerant

cultivars are required to overcome this crisis under the given circumstances.

In order to develop new drought-tolerant cultivars efficiently, it is crucial to

phenotype massive numbers of individuals in a fast, reliable, and precise

manner, which has led to the advent of high throughput phenotyping. In this

report, we demonstrate fast and reliable phenotyping methods to screen

drought tolerance in soybeans (Glycine max L.). Recent studies have revealed

that biomass and yield are positively correlated with the number of nodes and

canopy/green area. The results showed that green pixel percentage has a

significant correlation with the number of main nodes. This case study

demonstrates that the green pixel percentages would be useful for drought

evaluations in further experiments.
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1. Introduction

Climate change impacts on crop productivity and field water balance.

In particular, water scarcity during the early growing season and reproductive

stage poses a severe threat to crop yields (Spinoni et al., 2014). One of the

most sustainable methods to overcome the unpredictable occurrence of

drought is to introduce drought-tolerant cultivars within a short time frame

(Cattivelli et al., 2008). Consequently, quick and reliable phenotyping of the

correct traits is essential to achieve this.

Soybean (Glycine max L.) is one of the most important field crops

and requires sufficient water and temperature levels during its life cycle

(Wang et al., 2006). Nevertheless, studies of drought tolerance are heavily

focused on the reproductive stage. Furthermore, not many target traits were

developed for high throughput phenotyping, although Bai and Purcell (2019)

reported that the greenness intensity using vertical images demonstrated the

possibility for screening yields and responses under drought. While this

method is reliable and repeatable it is not fast enough to make breeding

cycles shorter. Most importantly, it requires expensive equipment.

There are several conventional yield components, such as root

formation, node formation, flowering, and pod formation (Dornbos et al., 1989;

Desclaux and Roumet, 1996; Fenta et al., 2014). Among those, biomass and

yield were found to be related to the number of nodes and canopy/green area

(Thomas and Raper, 1977; Cui and Yu, 2005). In addition, Kobraei et al.

(2011) reported that the number of nodes is associated with the number of

pods. This is possibly because the formation of main stem nodes results in

the formation of branches, which also increases the number of branch nodes
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(Nakano et al., 2019), having a positive effect on biomass and yield (Board,

1987; Cui and Yu, 2005). Therefore, it is possible to estimate biomass and

yield through the number of nodes by following the correlations.

Thus, we developed a fast and cost-effective method of screening

drought tolerance by means of image analysis in the early vegetative stages

using a commercial digital camera. To achieve this, the vertical images of the

green area of canopy were examined, which demonstrated a correlation

between the number of nodes and the number of pods.
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2. Materials and methods

1) Plant materials and experiments

The experiment was conducted between May 21, 2019 and September

20, 2019, at the greenhouse of Jeju National University, Korea (33°27′19.1″

N, 126°33′41.8″E, DMS). The average temperature of the greenhouse was

maintained at 29 ℃ during the day and 22 ℃ at night.

Parents of 28 nested association mapping (NAM) populations of

soybean (Glycine max L.) were provided by the Rural Development

Administration (RDA), Korea (Table 3). Each parent was planted using three

replications of individuals in each of the four pots, sized 38.5 × 28 cm. All

pots were randomly placed in 7 rows × 4 columns × 4 plots (total 112 pots)

at the greenhouse. Watering was evenly applied until June 9, 2019, 20 days

after planting (DAP), when 90% of the soybeans were in the 4th vegetative

stage (V4) and from June 24, 2019 to September 20, 2019 (35 DAP to 123

DAP). Drought stress with irrigation control was carried out from June 10 to

June 23, 2019 (21 DAP to 34 DAP). One pot of each parental line was fully

irrigated as a control sample, while the remaining three pots were irrigated

with 75ml once every three days.

At the end of drought treatment (June 23, 2019, 34 DAP) and after 14

days of recovery (July 6, 2019, 47 DAP), the number of main nodes was

counted and vertical RGB images of the whole plant were taken 120 cm

above ground with a Nikon COOLPIX A100 (Nikon, Japan). On September 20,

2019 (123 DAP), main stem nodes were measured, and the number of pods

were counted for the final yield evaluation. The treatment schedule is
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summarized in Fig 2.

NAM Number Varieties NAM Number Varieties

Common Daepung NAM14 Willians82

NAM1 Bangsa NAM15 Saedanbek

NAM2 Pungwon NAM16 Daewon

NAM3 Hannam NAM17 Hwanggeum

NAM4 Sowon NAM18 Chungja

NAM5 Galche NAM19 Chungja 3ho

NAM6 Somyeong NAM20 Sochung 2ho

NAM7 Sinhwa NAM21 Ilpumgeomjung

NAM8 Pureun NAM22 Daeheuk

NAM9 Taegwang NAM23 Josangseori

NAM10 Wuram NAM24 Yeunpung

NAM11 Danbek NAM25 Chunal

NAM12 PI96983 NAM26 Heukchung

NAM13 Haman NAM27 Seoritae

Table 3. Twenty-eight nested association mapping (NAM) population of soybean.

Fig 2. Treatment schedule of current experiment. (Control) well-watered; (Treat) drought

stressed; (Traits) measured traits; RGB image: red, green, and blue image.
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2) Image process

Vertical images of the whole plant acquired 34 DAP and 47 DAP

were analyzed by MATLAB (R2019a update 3 9.6.0.1135713, MathWorks)

application Canopeo (v1.1, canopeoapp.com) using a noise reduction value of

1000 and color thresholds with a 1.0 Red to Green (R/G) ratio and 1.0 Blue

to Green (B/G) ratio (Patrignani and Tyson, 2015). The process of estimating

GPP through Canopeo is shown in Fig 3.

Fig 3. Images of before/after (left/right) images and Canopeo process

of NAM number 20. Numbers in the white box indicate the

percentage of green area. (A) Images of after drought treatment,

June 23th, 2019; (B) Images of after recovery, July 6th, 2019.

3) Statistical analysis

Multivariate analysis of variance (MANOVA) was carried out to
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investigate the null hypothesis of no treatment and varieties effects or

interactions on the main nodes and GPP (Johnson and Wichern, 2007, p.

301-307). The data were gathered at the end of the drought treatment and

after 14 days of recovery.

The statistical model is as follows:

           

Where Yrlk is the r-th replication of the vector of the characters

(main node and GPP) measured at l-th variety and k-th treatment; μ is the

intercept; βr is the vector of the block effects; τl is the vector of the variety

effects; γk is the vector of the treatment effects; (τγ)lk is the vector of the

interaction effects and e lkr is the random error effects.

Pillai’s trace was used as a test statistic in MANOVA, i.e.

   



  




Where V(s) is the Pillai’s statistics; H is the hypotheses matrix; E is

the error matrix and λi is the eigenvalue of the E -1H . Orthogonal Contrast

was defined in an incidence matrix of a multivariate linear model to test the

null hypothesis of no difference between control and treatment.

A simple linear regression analysis was performed to verify the

relationships between main node and GPP and main node and number of pods

gathered, as measured at the final yield evaluation. A hypothesis test for the

slope of the regression line was applied to verify the null hypothesis of no

relationship between the variables. All computations were conducted using R

statistical software (R Core Team, 2020).
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3. Results

Results from MANOVA revealed significant outcomes for treatments

and varieties without interaction (Table 4). Each variety also had significant

differences from one another. Considering there is no difference among blocks,

this experiment in the greenhouse seems to be reliable. Furthermore, the

orthogonal contrasts for control versus treatments for GPP and main node

showed that GPP is a promising parameter considering both GPP and the

number of main nodes could discriminate the difference from control (Table

5). This becomes more evident with high correlation (0.71) between both

parameters (Fig 4). However, the correlation between the number of main

nodes and the number of pods was moderate (0.40). One of the possible

explanations could be that this is due to the outlier, as shown (b) in Fig 4.

Another reason, which may be more important, could be the different

recovery rate of each variety from drought stress based on the significant

differences between them, as stated above. This can also be supported by

Figure 2. This specific variety (NAM20) was treated with drought stress (a)

and recovered (b) (Fig 3). During the treatment, those treated individuals

were severely damaged; however, they recovered almost as much as the

control. Thus, the number of main nodes taken after the recovery stage was

not correlated with the number of pods figure as the GPP and the number of

main nodes was, given those two parameters are highly associated (Board

and Tan, 1995; Ball et al., 2001; Kahlon et al., 2011).
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Df Pillai F statistics P value
Blocks 2 0.00703 0.9579 0.4297
Treatments 3 0.25977 27.0183 < 0.001
Varieties 27 0.3569 4.3677 < 0.001
Interaction 81 0.2577 0.9917 0.561
Residuals 543

Table 4. Multivariate analysis for data from percentage of number of main nodes and green

pixels (P < 0.05).

Features Estimate t statistics P value

Green pixel
percentage

1.81545 11.954 < 0.001

Main node 0.79651 13.413 < 0.001

Table 5. T test for orthogonal contrasts: Control versus treatments for GPP and number of

main nodes (P < 0.05).
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Fig 4. Pearson correlation and simple regression analysis. (A) Pearson correlation between the

number of main nodes and green pixel percentage; (B) simple regression analysis for the

number of main nodes and number of pods.



- 26 -

4. Discussion

From this preliminary study, we conclude that GPP is useful in

measuring biomass as an indicator for drought stress in the early stage of

soybean cultivation by estimating the number of pods for those drought

susceptible varieties. Furthermore, this method provides the exact digital data,

enabling the quantitative measure, unlike the conventional methods that

provide only categorical data. In addition, GPP correlates estimate the number

of pods for those drought susceptible varieties and detect varieties that

recover from drought stress quickly. We expect that this method would be

helpful to researchers and breeders who are not familiar with complex

technologies and who have tight budgets for studying and pre-screening

drought-tolerant lines of soybean populations in a fast and cost-effective

manner.
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IV. Conclusions of this thesis

The main goal is to introduce the various high throughput

phenotyping methods with an appropriate guide to the drought researches and

to develop an efficient basis for the drought resistance cultivar breeding

processes and researches. Present extreme drought due to global warming is

menacing the agricultural industry. Immediate development of drought

resistance cultivar against frequent drought cycles will be the most effective

solution. Acceleration of the breeding cycle requires drought indicator

evaluation for selection criteria. Applying HTP method, which is feasible to a

rapid, massive, and accurate data analysis, is the consequent process to

achieve present demands.

Chapter I suggests the sensors such as RGB, NIR, multispectral,

hyperspectral, thermal, and fluorescence will be appropriate for image data

analysis and drought evaluation in HTP manners. We applied RGB sensor,

which is the most accessible and the most efficient among the spectral

sensors, to assess drought related traits in the early vegetative stages of

soybean. Concluding GPP has the possibility to evaluate biomass as an

indicator of drought stress of soybean in the early cultivation period by

estimating the number of pods for those drought susceptible varieties. Results

also demonstrated that while the conventional methods provide only

categorical data, digital data from sensors makes feasible of quantitative

measurement.

Although it has some difficult issues of technological, financial, and

other issues to apply HTP in drought researches, it is obvious that the HTP

method which has enormous benefits of acquiring and analyzing phenotyping
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data is a powerful tool for screening drought responses. Such challenges for

proper application of sensors and platforms from researchers worldwide will

circumspectly make the HTP technology more solid. Therefore, we hope this

paper to be a helpful guideline for researchers and breeders who considers

sensor based HTP drought screening methods under their circumstances and

objectives.
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석사과정 중에 있어 부족한 것 없게 늘 신경 써주시고 실수가 잦았던 저

를 지도해주신 정용석 교수님께, 부족한 모습을 많이 보여드려 죄송하고, 그래서

아닌척하며 위로해주시며 지도해주셔서 감사합니다. 실험실에서 같이 일하고, 공

부하고, 실험했던 육종학실험실의 지은, 지현, 정민, 그리고 최고봉 선생님, 지금

은 졸업한 민아, 영준, 임상휘 모두에게 ‘고맙습니다.’라는 말을 전해드리고 싶습

니다.

그리고 식물자원학과의 현해남 교수님, 김동순 교수님, 전용철 교수님, 김

주성 교수님 모든 분께 출장이 잦아 강의를 자주 빼먹고 수업에 제대로 참여하

지 못해 죄송하고 감사합니다. 서류업무 등 여러 가지로 저를 도와주셨던 이종훈

선생님, 이희선 선생님께도 감사합니다. 같은 실험실은 아니었지만, 기꺼이 도와

주었던 농학과 선배, 동기, 후배님들에게도 감사합니다. 마지막으로 지난 2년간

저를 지지해주셨고, 현재까지도 지지해주시는 부모님들께도 감사합니다.
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