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Abstract 

The fish farming industry has been receiving considerable attention and experiencing 

tremendous growth in the last decades around the world. Fish farming has the potential to overcome the 

requirement for the food because the world population is increasing day by day. Fish farm is one of the 

widely suggested fields for investing money because it supports a year-round production of fresh fish 

resources around 40% increased production rate in comparison to natural fish hunting. Ensuring healthy 

fish production involves elaborate monitoring and stable controlling of the fish farm; however, 

management of the resources inside fish tanks is a challenging task. It requires continuous monitoring 

and control, so energy consumption and labor cost are the central portions of the expenses. Using new 

advancement of technologies can support fish production improvement, cost reduction and automation 

of process. 

The Internet of Things (IoT) is one of the fast-growing technological areas which are 

influencing our daily life. Devices in our digital world are being furnished with various types of new 

types of technologies including microcontrollers, raspberry pies, sensors, transceivers, actuators, digital 

connectors, and Internet protocols. These technological advancements can give a wide range of 

opportunities for the development of interconnection among various devices and their users. The 

Internet of Things can support new types of services for companies, individuals, businesses, and 

governments with connecting various application scenarios to gather a number of parameters from the 

real world and using these data for future decisions and assessments by analyzing this data. The central 

key aspect of the embedded devices is a lightweight connectivity development for IoT devices and the 

development of fault tolerance interaction among them. These devices consist of light control actuators, 

video detector cameras, home automation tools, smart and autonomous vehicles, smart healthcare 

toolkits, intelligent actuators, and just to name a few. The installation of these smart devices can give 

various services to users, such as sensors collect the actual environmental information, and based on 

these gathered real data actuators are used to increase or decrease the environmental parameters via 

local network or Internet connectivity. Currently, IoT based applications are being widely utilized in 
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various domains, including healthcare, self-driving transportation, aquaculture, agriculture, industrial 

and home automation, power management, traffic controlling, aerospace engineering, and numerous 

other fields. 

Machine Learning(ML) allows electronic technologies to learn autonomously from historical 

data and to utilize this knowledge to make predictions, decisions, and assessments independently. These 

types of applications are highly compute-intensive. As a result, these applications are conventionally 

executed on local servers, cloud servers, and personal computers. A new type of powerful embedded 

processors and advancements in algorithms, now machine learning algorithms can be performed 

directly on devices in the field Embedded Machine Learning. Embedded Machine Learning based 

applications can accomplish a number of achievements in the century of Industry 4.0. For instance, IoT 

sensor devices which measure optical or acoustic discrepancies and inconsistencies, then directly 

activate quality assurance functionality to the production or system state observation. Moreover, during 

the activation of cameras and microphones, these devices automatically monitor visual parameters and 

minimize soundwave errors based on contact, vibration, voltage, speed, temperature, and pressure 

sensor parameters. Then, these collected parameters also can be used for future improvement of the 

products. Embedded Machine Learning Algorithms has attracted many researchers to seek solutions for 

complex real-world problems. The highest percentage of the existing literature is paid attention to 

develop and run applications on a PC, local, or cloud server. However, these methods are not able to 

bring expected income to users. In this work, we attempt to take Embedded ML and IoT applications 

to the autonomous system development with deploying the to the Fish Tank, which is one of the most 

fast-growing industries.   

 In this thesis, we propose an embedded optimal control platform based on ML and Optimization 

algorithms for efficient energy consumption and fish growth in Smart Fish Tank. We have developed 

the proposed embedded optimal control platform that integrates context-awareness, prediction, 

optimization, and control functionalities for controlling environmental parameters optimally in Fishtank. 

We have installed various IoT sensors and actuators to the fish tank and develop the context-awareness 

unit for the collection of sensing values from the real-fish tank environment. So the indoor environment 
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data used in this work is real data which is collected from the fish tank during the three months. External 

environmental data collected from the physical fish tank. We have used the RNN-LSTM algorithm for 

prediction, the mathematical formulation for optimization, and the fuzzy logic controller for actuator 

control. A novel objective function for optimization is formulated and implemented for compute the 

optimal environmental parameters according to the predicted and user-desired environmental 

parameters data. In addition, we implemented the platform by considering various cases, firstly, we 

implement the platform based on actual fish tank environmental parameters without prediction model. 

Secondly, we have implemented prediction, optimization and control module using fish tank sensing 

data. Thirdly, we used outdoor environmental parameters to the prediction module. Fourthly, we 

consider the actuators control parameters in order to optimize energy consumption. Lastly, we 

implement the proposed platform by considering the power policy data. Besides, the control of the 

environmental parameters is tested with and without optimization schemes. Performance evaluation 

results prove that the optimization module with predicted values is 18% and 28.5 % effective in terms 

of environmental parameter optimization and energy consumption minimization compared to without 

optimization scheme. Furthermore, the proposed prediction-optimization based environment control 

energy consumption is 27%, 23.6%, and 11.8% effective in energy consumption compared with without 

prediction-without optimization, with prediction-without optimization, without prediction, and with 

optimization results. Also it spends 918 krw, 753 krw, and  423 krw less money for compared to other 

schemes. 
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1. Introduction 

1.1 Motivation 

Humanity overcomes the enormous challenge for providing food and livelihoods as the population 

continuously increases, and it is expected that the population will be more than 9 billion until 2050 [1]. 

The inordinate influences of climate change, natural disasters, and environmental degradation will 

damage the natural existence of products [2]. World Fisheries and Aquaculture announced that fish 

production in 2016 reached the highest point compare to other years (171 million tons), 88% of this fish 

production was used for human consumption. Today, fishery products are one of the highly exported 

food items around the globe. According to the 2016 statistics, nearly 1/3 portion of world fish resources 

in international businesses are invested in human consumption or other purposes [2]. Fishers have been 

hunting 2.5 times more fish products from natural environments, such as sea, ocean, lake [3],  this means 

if fish are caught at a faster rate and quantity, then the remaining fish cannot reproduce, the populations 

of fish are likely to reduce in a short time. In the last four decades, the quantity of fish has decreased by 

half compared to 1970 years [4]. The natural balance of oceans is likely to be destroyed due to 

continuous pressure and uncontrolled usage of oceans’ wild resources. According to these existing and 

further coming problems, individuals, researchers, worldwide organizations, institutions, and societies 

have to work cooperatively to create practical and optimal ways for the development of alternative 

scenarios in fish farming.  One of the highlighted examples among solutions is the Aquaculture industry, 

which is the most productive and abundant concept which has been experiencing significant 

development in the last decades around the world. Aquaculture is the farming (raising, harvesting, and 

breeding) of fish, shellfish, or aquatic plants in brackish, fresh or saltwater [5]. From 202 currently 

existing countries and territories 194 countries are active users of the aquaculture industry [6]. The 

contribution of fish farming to the global production of fish related products and aquaculture combined 

increased steadily and reached nearly 47 % in 2016, and it was more than 20 percent compared to 2000. 

Generally, the advantages of fish farming include efficient fishery products, a new type of job 

opportunities, excellent economic support, fish farms can be installed anywhere; waste materials can 
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be reduced, reused, and recycled via fish farming [7]. However, with fish farming benefits, it has its 

own challenges, too. These challenges include lack of water source, predators’ effects, different fish 

diseases, difficulties in managing ponds, flooding and to name a few [8]. If we take management of fish 

farms as an example, SFP(Sustainable Fisheries Partnership Foundation) report describes that nearly 

40% of fish tanks and ponds have a terrible management system, and they produce fish products with 

various viruses [9]. To overcome the issues mentioned above, expert fish farmers need to combine a 

new type of technological advances with fish farms such as IoT devices, machine learning, and 

optimization algorithms, which can check, control and predict optimal conditions to the fish farm 

environment without human interference.  The Internet of Things can offer a variety of new services at 

every stage of our lifestyle. IoT application scenarios can provide overall accuracy, automatization, 

efficiency, minimizing the total expenses, and optimization of management processes in different real-

life problems [10,11,12].  After analyzing previous studies [13,14,15], we have categorized six essential 

benefits of the IoT based fish farming environment: (1) automated environment control, (2) reducing 

damages caused by disasters, (3) decreasing labor cost, (4) fish production cost-reducing, (5) 

improvement quality of fish products, and (6) designing and developing required fish farm environment 

without limitations. As the number of IoT devices increases, technologies become more mature, the 

quantity of the data being published also increases. IoT technologies are becoming the most significant 

sources of new data compared to other technologies, through analyzing and comparing the historical 

and real-time data IoT applications can provide a more optimal environment to the users. 

1.2 Background  

Fish farming is a raising, breeding, harvesting the various fish types in fish tanks or ponds with a 

fully or partly controlled environment for optimum fish production during the year. Figure 1 describes 

the model of fish farms with essential components. Effective management and control of the fish farm 

require a perfect understanding and setup of various control processes, including optimal filtering, 

energy saving, indoor design, oxygen dissolving, bio-security control, scalable design, continuous 

monitoring, and control. 



6 
 

 

Figure 1: Various essential components of Fish Farming [16]. 

These essential processes provide various advantages for fish farmers, such as effective fish tank 

design and construction, selection of suitable fish species for healthy fish production, water quality 

management, and real-time quality control. In this study, we aim to develop an embedded control 

framework to the fish tanks using ML and Optimization algorithms with controlling water quality 

parameters namely, water temperature, conductivity, pH and level using various sensors, and actuators. 

We have deployed Machine Learning, Optimization, and Control algorithms to the IoT device to control 

the fish tank actuators with low cost and high profit.  

1.3 Challenges 

Here, we briefly describe the typical issues and challenges faced for healthy fish production that 

requires continuous attention and care. There are given a list of some challenges identified during the 

study: 

• Over usage of chemicals: Viral resistance to antibiotics is attributed to the over usage of 

chemicals in our food, including fish and fish products. 

• Source of virus/disease transfer: If the fish tank environment is not well-managed, then it 

produces unhealthy products that are combined with various chemical viruses and illnesses. 
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• Ecological system pollution and destruction: Chemicals used fish tank facilities often have 

a negative influence on surrounding areas and can potentially pollute nearby underground 

water pathways. 

• Fish feeding: Less feeding or overfeeding fish can cause an adverse effect on fish growth 

and water quality.  

• Water quality: Water quality is one of the vital components of the maximization the healthy 

fish production. Poorly controlled water quality brings various illnesses and problems for 

fish growth. 

• Water usage: Too much freshwater is often needed to fish tanks and cages each year. Water 

purification and processing are used to reduce the need for freshwater by purifying water 

for aquaculture. 

• Energy consumption: Energy consumption and labor cost in fish farms account for more 

than 50% of the cost of fish farm production, so minor improvement in performance can 

lead to significant cost reduction. 

After analyzing the above-mentioned problems, advanced technologies such as IoT, Machine 

Learning, Optimization and Control algorithms can support automation of environment control, cost 

minimization in fish production, water quality improvement for healthy fish growth, and decreasing 

labor cost and human interaction as well as, the collected data using IoT sensors can be used for making 

future decisions and improvements.  

1.4 Scope of the Study 

We have proposed an Embedded Machine Learning based solution IoT Fishtank environment 

optimal control platform using TensorFlow Lite for efficient energy consumption and fish growth.  IoT 

devices are installed successfully to the real fish tank environment and collected data is used for 

prediction and optimization algorithms. We have developed a complex embedded solution to the fish 

farm from the initial installation and gradually work towards the system development. It is expected 
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that the developed system in this study will help to increase the effectiveness and productivity of fish 

tank with controlling in embedded IoT devices.  

The research methodology adopted for this study has three main phases is described in Figure 2: 

 

Figure 2: Development phases of the Proposed Embedded Control Platform for Fish Tank. 

• Study regarding Fish Tank requirements: 

⎯ Identification of fish production challenges 

⎯ A comprehensive study of existing solutions 

⎯ Important parameters selection 

⎯ Objectives and performance measure selection 

• Development of  Embedded Control Platform: 

⎯ Installation of the IoT devices to the Fish Tank 

⎯ Data collection from the real environment 
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⎯ Selection and implementation of various algorithms 

⎯ Deployment of these algorithms to the IoT devices. 

• Deployment of these algorithms to the IoT devices: 

⎯ Performing the platform evaluation based on real sensing values 

⎯ Comparative analysis of context awareness and prediction modules 

⎯ Comparative analysis of environmental parameters optimization 

⎯ Analysis of actuators’ control and energy consumption. 

In this study, we aim to implement embedded ML technologies based optimal control embedded 

platform for efficient energy consumption in Smart Fish Tank. The main goal of this work is directly 

performing optimal smart fish tank environment control processes on the IoT devices with minimum 

energy consumption and maximizing environmental comfort. 

The development of the proposed system includes the following five main phases: 

⎯ Firstly, installation of the sensors and actuators to the fish tank, and a real-time context 

awareness model from the environment; 

⎯ Secondly, the training the RNN- LSTM based prediction model using internal and external 

environmental parameters to predict temperature, pH, conductivity, and water level. As well as, 

converting this trained model to the TensorFlow Lite; 

⎯ Thirdly, the formulation of the optimization algorithm to calculate the most desirable 

environmental parameters for fish growth with efficient energy consumption; 

⎯ Fourthly, the development of the Fuzzy Logic control, which computes up activation level and 

activation duration to IoT actuators using predicted and optimal values.  

⎯ Lastly and most importantly, the deployment of the overall platform to the Embedded Device.             

The rest of the thesis is structured as follows. Chapter 2 presents the related works for the proposed 

topic. A discussion of the related studies is divided into three subsections. Namely, IoT based Fish Farm 

environmental monitoring, embedded machine learning solutions for smart environments, and IoT 

based control solutions for fish farming. Chapter 3 outlines the design of the proposed embedded 
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optimal control platform with a detailed discussion of the system components. In Chapter 4, the 

experimental and implementation environment is discussed briefly. Experimental results and 

performance analysis of the proposed system are represented in detail in Chapter 5. Experimental results 

and result analysis are categorized into four subsections: context awareness module analysis, 

experimental results of the RNN-LSTM prediction module, analysis of Optimization module results, 

and analysis of fuzzy logic control results. Finally, Chapter 6 presents the conclusion of the thesis with 

future work plans.  
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2. Related Work 

Discussion of the related studies is divided into three subsections, namely IoT based Fish Farm 

environmental monitoring, embedded machine learning solutions for smart environments, and 

optimization-based solutions. Simbeye et al. suggested a Wireless Sensor Network (WSN) based water 

condition control mechanism for aquaculture. This system measures various water quality values, 

including dissolved oxygen, water quantity, and water level as a real-time data [17]. Another WSN-

based water condition control system is outlined by Chen et al. [18]. Luo et al. implemented and 

deployed for a real-time water parameter change detection concept [19]. The authors utilized GPRS and 

ZigBee based communication protocol for the connectivity among sensors, control actuators, and the 

central management unit. In that project, data acquisition and low-latency are provided with improving 

the reliability of communication. Zhang et al. proposed that the financial efficiencies of the IoT devices 

utilization to the fish farms they proved that deployement of IoT devices to the fish tank environment 

minimizes the expenses and maximizes the income significantly [20]. Idachaba et al. suggested a pond 

management system which comprises various sensors to detect the changes in water quality of the pond 

that can be controlled from any distance through CCTV (closed-circuit television) technology [21]. 

Wang et al. suggested GPRS and ZigBee communication protocols based online water condition 

measurement concept for monitoring the chemical parameters’ condition in water [22].  This study 

described a distributed quality monitor framework to monitor various aquaculture parameters from any 

water-related field using variety of intelligent sensors [23]. Wireless Sensor Networks based water 

recycling system monitoring concept based on ZigBee connectivity are proposed in this study [2424]. 

Cario et al. designed and implemented an acoustic network that can detect fish farm underwater 

environmental values effectively [25]. For the assessment of the effectiveness of the fish growth, we 

need to collect, analyze, and pre-process the water EC, temperature, pH level, water level, dissolved 

oxygen, and turbidity data continuously. LoRa technology can provide faraway transmission of real-

time data with less energy consumption [26]. Another LoRa based study with faraway connectivity 

capability were utilized to build a LAN network for data transmission about the current condition of the 
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fish and food quality [27].  Lee et al. introduced machine learning integration to the embedded sensor 

technologies for Internet of Things applications [28]. Intelligent IoTSP- Machine Learning, Artificial 

Intelligence Tensorflow algorithms implementation to the embedded NVIDIA Jetson chips concept was 

suggested in this study [29]. Min et al. outlined an ML-based digital twin mechanism for optimizing 

the production in the petrochemical factories [30].  Robinson et al. proposed a signal language 

recognition system through a convolutional neural network embedded using Raspberry PI 3 [31]. Deep 

learning enabling approaches on IoT devices was discussed in this study [32]. Material recognition 

methodology was suggested using deep learning solutions in embedded software [33].  Venuto et al. 

presented a P300 Brain activity-based embedded system remotely driving mechanical device [34]. 

Zeroual et al. introduced the Tensorflow lite framework based on deep authentication methodology for 

mobile cloud computing [35]. Hasan et al. developed IoT and Tensorflow based smart parking models 

for the detection of free parking spaces [36].  

2.1 IoT based Fish Farm Environmental Monitoring and Control 

Over the last decades, IoT based applications have been applied to the number of studies as 

surveyed in [37,38]. The IoT based applications in the field of aquaculture are used to increase the fish 

production, quality and to decrease costs. These applications are helping fish farmers to make clear and 

better decisions [39,40]. South Korean largest telecommunications operator South Korean Telecom 

introduced an IoT-based fish farm management concept in North Jeolla Province [41]. Their proposed 

system increases the fish farm management process by connecting wireless embedded devices and it 

helps to enable farmers for monitoring their fish tanks remotely through their smartphones in real-time. 

Fish pond sensors continuously check the water temperature, oxygen, and pH, for detecting any minor 

changes in the water. SK Telecom’s open IoT platform controls the data flow through IoT Gateway and 

then analyzes the data, and the current environment results of the fish tank are sent automatically in 

real-time.  One of the widely used IoT based applications in the aquaculture field is Indian Eruvaka 

technology [42]. Their platform provides continuous monitoring of the water temperature and oxygen 

condition, and the user can check the fish farm environment and fish feeding processes through the 
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mobile application. This system helps to maximize profit by minimizing the monitoring cost. Shareef 

et al. [43] presented the real-time aquaculture environment monitoring framework based on IoT, with 

developing sensor node, actuator node, station, and decision making units. In that study, the 

measurement of the chemical parameters of the fish farm water was collected to the database, and the 

notifications were sent to the user to analyze the current condition of the fish farm. Based on decision-

making rules actuator nodes activated to improve the water quality. Minghu et al.[44] proposed an 

aquaculture multi-parameter monitoring system that included accurate data collection, real-time data 

analyzing, process control and notification services. Their proposed system structure was based on the 

master-slave concept of the network, fish tanks’ temperature, salinity and dissolved oxygen sensors as 

a slave collected data from the environment, and the collected sensing parameters were sent to the 

Master unit. PLF (Precision Livestock Farming) concept was presented [45] to continuously monitor 

and control the fish farm operational process using IoT based real-time video streaming. In that study, 

they utilized four types of IoT devices, namely, surface camera, stereo video, sonar and acoustic 

telemetry for analyzing the fish observation in commercial cages. Based on gathered data they 

controlled the fish feeding process and regularly maintained the fish growth rate with avoiding feed 

wastage. Ekaterina et al. [4646]  suggested an automatic fish detection and tracking system by installing 

low-quality video sensors to the fish farm. In this study, Kalman filter and Viola-jones methods were 

used to estimate fish parameters, they emphasized that controlling and understanding the natural fish 

migration could provide optimal fish feeding process, fish growth management and improve the quality 

of products. Wireless sensors based aquaculture monitoring system was introduced in this study. Their 

proposed system is described in Figure 3, as can be seen, sensors monitor pH, oxygen, water level, and 

temperature values of the fish tank via the various IoT sensors, and the ZigBee protocol is used to 

forward the collected sensing data to the server. Moreover, they developed the rule-based control 

module to activate or deactivate the water pump actuator based on sensing values. The rule-based 

control module included IF-THEN rules for activating the actuators. If the current water level is below 

than user assigned threshold, then the water pump is activated to increase the water level until the user 



14 
 

preferred level. If the sensor detects the overflow from the tank then automatically activates the 

overflow system in order to decrease the water level.  

 

 

Figure 3: IFTTT model for smart aquaculture using cloud and IoT[47]. 

Partical Swarm Optimization based Decision Support System (DSS) is proposed in this study 

[48]. The main aim of this study is the maximizing the production strategies for increasing the profit by 

considering various processes of the fish farm.  

Kodali [49] developed a smart greenhouse irrigation system with an attached water storage tank. 

That proposed system included humidity, temperature sensors, and a fogger actuator. Required water 

obtained from any sources such as rainwater harvesting, canal tube, firstly stored in the water tank. 

Ultrasonic embedded sensors installed to the fish tank, which monitors water level continuously and 

send notifications to the user as soon as the water level decreased from the requirement. The 
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microprocessor was used for the activation or deactivation of a water pump according to the water level. 

Their proposed approach decreased water consumption by 70-80%.  

 Prieyen et al. [50] introduced an IoT based smart water tank system control using an android 

application. Their proposed system included three central units, namely, sensing unit, control unit, and 

motor unit. They developed a simple rule to their system for controlling the motor if the current water 

level was below minimum level motor was activated until the water level reached the maximum level. 

In contrast, if the actual water quantity was the same as the maximum quantity, the motor was 

deactivated. ESP8266 and an ultrasonic sensor were utilized as microcontrollers and sensors, 

respectively.  

Narrow Band Internet of Things technology is proposed to remote water level meauserement 

system for industrial water storage tanks were suggested by [51]. The authors used two different sensors 

for sending alarm (Magnetic switch sensor) and checking water level (Floating sensor arrangement) for 

their proposed approach. Magnetic switch sensors installed with buoyant objects to the bottom and the 

top parts of the water tank. According to the water level, buoyant objects moved and magnetic switch 

influenced on the alarm and water level (in peak point or basement) were sent to the system. Alarm and 

LED actuators activated automatically at the same time when the current water level was below or 

above the desired ranges. The study [52] presents LabVIEW and Arduino based on a non-contact water 

level control system for water storage tanks. Ultrasonic sensors monitor the water quantity, according 

to the actual water level LabVIEW application forwards the data to the Arduino device, then the water 

pump is ctivated or deactivated automatically through the Arduino. The current water level data of the 

tank is visualized on the graphical user interface, which is provided by LabVIEW.   

Shankar et al. suggested an intelligent water level control model for regulating water 

consumption for tanks [53]. Their proposed system overcomes water wastage in water tanks based on 

an IoT and mobile application; more precisely, this system detects overwatering of the tank water tank 

and, based on overflow conditions the alarm is sent to the farmer. As the current water level increases 

and crosses from the user desired threshold, then the system automatically gives the notification to the 
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user. According to alarms and notifications, the user can activate or deactivate the water pump through 

the mobile application.  

 Fisher and Moore [54] developed a continuous optimization solution for water control valves 

based on pump pressure in different set-points. This system helps to minimize the pump energy 

consumption by keeping open one control valve nearly all times. Their control method is simple and 

does not require more hardware than a conventional control method. Each air handling scheme monitors 

chilled water to provide the discharge setpoint of the air temperature. The pump’s speed is controlled 

by the variable frequency drive in differential pressure. There was a 44% reduction in power 

consumption in the utilization of the new differential pressure reset program.  

Raju at al. designed and implemented a Raspberry Pi-based embedded environmental parameter 

collection system for aquaculture [55]. This system continuously checked the water condition using IoT 

devices and gathered information are analyzed on a cloud. The cloud server supports auto-generated 

alert/notification functionality. If any environmental value becomes out of threshold, then notification 

is sent to the user. However, their suggested concept does not include any optimization or control 

functionalities.  

2.2 Embedded Machine Learning Algorithms for Smart Solutions. 

Machine Learning(ML) allows electronic technologies to learn autonomously from historical 

data and to utilize this knowledge make predictions, decisions and assessments independently. These 

type of applications are highly compute-intensive, as a results these applications are conventionally 

executed on local servers, cloud servers and personal computers. A new type of powerful embedded 

processors and advancements on algorithms, now machine learning algorithms can be performed 

directly on devices in the field Embedded Machine Learning. Embedded Machine Learning based 

applications can accomplish a number of achievements in the century of Industry 4.0. For instance, IoT 

sensor devices which measures optical or acoustic discrepancies and inconsistencies, then directly 

activate quality assurance functionality to the production or system state observation. Moreover, during 
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the activation of cameras and microphones, these devices automatically monitor visual parameter and 

minimize soundwave errors based on contact, vibration, voltage, speed, temperature and pressure sensor  

parameters. Then, according to the collected parameters, the manufacturer can make future 

improvements of the products. 

The Internet of Things (IoT) is the leading reason of the evolution of embedded ML algorithms 

and IoT systems, as the amount of the collected data is also soaring with the dramatic growing number 

of sensors utilized. The Internet technology and data transmission techniques are developing fast, suchs  

currently 5G network communications have already widely utilized in many industries. However, 

sensor data transmission to the cloud servers is not always beneficial or feasible.  

There are a number of reasons why we need to pay attention to the deployment of Embedded 

Machine Learning techniques:  

• Network cost – data transmission to cloud servers or local servers requires continuous 

overloading the networks. As a consequence the price of the traffic increases. 

• Coverage – In some locations, such as tunnels, basements, caves, due to insufficient coverage, 

the network communication is difficult.  

• Latency – Excessive Round Trip Time for sensing data forwarding and receiving control 

commands to actuators. Real-time systems and applications are needed a quick response with 

low latency. 

• Privacy – Data espionage becomes more difficult because of the frequent requirement to protect 

external requests to video and audio files from industry systems. 

• Data Sovereignty – System administrators and operators require to have overall management 

over the data. 

• Safety – Various risks for the manipulation of data and devices. 

• Energy Consumption -  Data receivers and data transmitters consume a relatively high energy. 
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• Extra Devices -  Sensor and actuators are needed to accommodate with external data transmitter 

antennas and suitable cables. 

After analyzing the problems mentioned above, we propose optimal control embedded platform 

using TensorFlow Lite for efficient energy consumption and Fish Growth in Fish Tank. We train RNN-

LSTM based prediction module using TensorFlow, and we convert this trained model to the 

TensorFlow Lite format. RNN-LSTM model forecasts future temperature, water, pH level, and 

conductivity values to the fish tank, then this model deployed to the IoT microcontroller. As the new 

sensing values come to the already trained embedded machine learning model, the embedded ML 

predicts future environmental parameters to environment locally. Moreover, we also deploy 

optimization and fuzzy logic algorithms to the IoT microcontroller which can provide control 

functionalities to the proposed system. Prediction algorithms provide technologies to learn from 

historical data and assist accurate decisions for uncertain future to boost expected income or avoid 

potential risks. Basically, historical information is utilized to create a mathematical model for targeting 

essential trends. That created mathematical model is then used with actual data to predict what will 

occur next, or to recommend steps to reach optimal outcomes. In engineering fields historical data for 

using in the prediction algorithms usually comes out from sensors, connected systems, and instruments 

in the world. In business systems’ historical data at companies may include sales data, transaction results, 

marketing information and customer comments. That collected information can be inputted to the 

predictive algorithms to increase the capability of the existing systems, then these systems will be able 

to decrease operational expenses, predict energy requirements, anticipate equipment collapses. For 

instance, IoT sensor nodes measure vibrational values of vehicle parts and give alerts or notifications 

before vehicle fails on the road. Companies also deploy prediction algorithms to make more error-free 

forecasts, such as forecasting the electricity demand on the power grids. These predictions provide more 

effective resource planning, such as scheduling of different electricity plants. 

Machine Learning algorithms are utilized to find relations in data and to create models which 

forecast future outcomes. Several Machine Learning algorithms are available, including neural 

networks, linear and non-linear regression, support vector machines, decision trees, and many other 
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algorithms. Prediction algorithms are widely used in industries, such as healthcare, finance, 

pharmaceuticals, aerospace, automotive, and manufacture, in order to find out the future expected 

parameters based on various historical parameters.  

There are given some examples which are using prediction algorithms in industries and their use in 

various fields [56]:   

• Automotive – creating new advanced achievements in autonomous vehicles. Companies are 

developing driver assistance tools and new type of autonomous vehicles use prediction 

algorithms to analyze sensing data from connected vehicles and to set up driver assistance 

techniques.   

• Energy Production – forecasting the energy requirement and electricity price. Predictive 

analytics based applications are used to monitor historical trends, weather, and seasonality to 

provide accurate future decisions. 

• Medical Devices – utilizing pattern-detection algorithms to detect various illnesses, such as 

cancer. A cancer measurement device checks and analyzes the breathing process and sounds of 

patients, then gives feedback via a desktop or mobile application to detect the illness.  

• Agriculture – optimization of irrigation and detection of pesticides and herbicides of crops. 

Agricultural sensors measure the actual condition of the water, soil, crop condition and used as 

an input parameter for the prediction algorithms to forecast expected water, soil and illness 

condition for the crop.  

• Industrial Automation and Machinery – Prediction of machine failures. If we take a plastic and 

can production company as an example, they save 50 000 Euros in a month using a condition 

measurement and forecasting the maintenance of the application which reduces waste and 

minimize downtime.  

• Aerospace Engineering – Observing aircraft engine robustness. To increase aircrafts activation 

duration with reducing operational expenses, manufacturers developed a real-time apps to 
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predict the performance of fuel and oil consumption, liftoff, control failure detection, 

mechanical conditions.  

Predictive analytics is the process of utilizing historical information to make forecasts using the 

existing information. These processes require data or statistics, data analysis and ML model to build a 

prediction model to forecast future parameters.    

Figure 4 presents the general prediction algorithms workflow. Techniques that are described in 

the prediction workflow are needed to utilize to build accurate prediction applications. As can be seen 

from the diagram, there are four main phases: 

• Data import from different places, including databases, spreadsheets, and archives. In this study, 

we apply the real sensing data which are gathered from indoor fish tank. Used sensors are 

temperature, water level, pH level, and conductivity level sensors. Also, we also have outdoor 

environmental temperature, humidity, and solar radiation parameters which are con 

• Data preprocessing by removing outliers and combining various data sources. We have 

identified and removed missing data, data spikes, and abnormal  data points. Then we combine 

the collected data into a single CSV file; more precisely, tables in a CSV file are indoor 

temperature, pH, water level, conductivity, outdoor temperature, outdoor humidity, outdoor 

solar radiation, and time series values.  

• Development of the accurate prediction model using the aggregated data using AI, ML, 

statistics or curve fitting tools. Fish farm environmental parameters forecasting is a complex 

process due to various external and internal factors, so we select Recurrent Neural Network’s 

LSTM model to create and train the prediction model. We iterate the fish farm dataset with 

various approaches. After successful completion of the training, we test the trained model 

against new data to calculate the performance accuracy.  

• Model integration to the production environment. Once we train an accurate prediction model 

for forecasting temperature, water level, pH level, and conductivity levels, we deploy it to the 
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real fish farm environment IoT device using TensorFlow Lite, and connect it to the desktop 

application to analyze the future environmental parameters. 

 

 

Figure 4: The workflow diagram of prediction algorithms [56]. 

We now describe previous studies related to the prediction-optimization frameworks and their 

problems of interests. Amjady et al. presented a wind power prediction framework based on the 

prediction-optimization concept. In their proposed system, the hybrid neural network was deployed to 

forecast wind power, and the prediction module was combined with an enhanced PSO algorithm in 

order to increase wind energy prediction strategy, feature analysis capabilities, and forecasting engine 

[57].  The global optimization-based energy prediction concept was described in [58]. In that study, 

predicted temperature and humidity values were taken as input parameters to the ANN-based training 

module to investigate predicted energy requirements. The global optimization method was utilized to 

evaluate the effectiveness of the number of neurons to increase network layers for the accuracy, which 
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influenced prediction and identification.  Tulabandhula et al. presented a loss function minimization 

module for an unlabeled dataset with combining the prediction error and the operational cost 

optimization [59].  Ullah et al. suggested a water pump control module with efficient energy 

consumption for the smart fish farm which included prediction, optimization and control functionalities 

[60]. In their system, the current fish tank water level is monitored continuously using the water level 

sensor. Kalman filter-based prediction module predicts future conditions using historical data. Predicted 

values are used to compute an optimal condition to the fish farm based on user requirements and optimal 

resources environmental utilization. Finally, the rule-based control module provides an operational 

duration and pumping level to the water pump.   

2.3 Optimization algorithms and their use cases 

Growing demands are putting increasing pressure on experts and system designers to seek 

efficient and economical ways of resource utilization. Optimization methods are commonly used to 

meet complex user requirements with given constraints [61]. 

This is the sequence of steps that computer programs usually use to find the best solution to a 

problem. The optimization algorithm aims to maximize or minimize an existing solution by 

systematically selecting the input parameters from the assigned set and calculating the values of the 

functions. Optimization consists of finding the “most useful” values of certain objective functions, 

including various kinds of objective functions and various kinds of domains, depending on a specific 

area. However, the optimization does not always mean the selection of the best solution to problems. It 

is often included in the “Difficult problems” category because the nature of the problem can make this 

impossible. However, there are no polynomial-time algorithms for optimization problems that are NP-

complex. In other words, in the worst case, the algorithm used may require an exponential calculation 

time to be optimal, which leads to a calculation time that is too long for practical reasons. The 

optimization algorithm can be used in any field which requires mathematical calculations, such as 
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engineering, business, medicine, and so on. They can find the most optimal designing tradeoffs,  control 

parameters, and data pattern analysis [62]. 

In recent years, many studies have paid attention to use approximate methods such as artificial 

neural networks or heuristic solutions, instead of using conventional optimization algorithms, for 

instance, Lagrangian relaxation, linear or quadratic programming or Nelder–mead simplex method. 

Heuristic algorithms are considered a straightforward methodology that supports satisfactorily. 

However, they are not as optimal as expected [63].  

One of the most widely used solutions for solving complex optimization problems is dividing 

this optimization problem into various parts or a variety of steps, then step by step solving each portion 

of the problem and then combine all of the solutions in order to create complex problem solver for a 

complex problem. The methodology mentioned above plays an essential rule among researchers, and it 

is one of the widely used techniques. However, this type of solution is not accounted for in the 

theoretical explanations. In algorithms, computer science, mathematics, engineering researches, 

mathematical optimization is finding the optimal parameters among a number of existing alternatives. 

Basically, optimization algorithms aim is that increasing or decreasing the actual function parameters 

continuously by selecting input parameters from the mentioned set and estimate function parameters. 

Basically, the optimization algorithms are utilized to find the fittest ways of solution among all possible 

solutions. An optimization issue can be divided into two sections depending on whether the variables 

are continuous or discrete [64]. 

All optimization problems are driven by the known or unknown objective function, which is 

usually a mathematical expression that somehow relates the problem parameters in a way that can 

accurately assess and quantify the utility of selected candidate solutions. Any combination of problem 

parameters can be considered a candidate solution, and evaluation of objective function for the same 

combination can help us decide whether or not to consider them as a final solution [65]. 

Every problem is an optimization problem and it may have its own specific requirement, different 

from other problems. Therefore, there can be no single solution for solving all kinds of optimization 



24 
 

problems. At one end, recent developments in processor manufacturing technology enabled us to have 

enormous computation power while on the other hand, user requirements, problem nature and 

complexity is also on the rise. As a result, many different optimization algorithms are developed.  Figure 

5 presents a typical classification of famous optimization algorithms. Energy management and control 

systems are computer-based applications utilized by people who have special knowledge about power-

related fields to analyze, manage, and maximize the overall performance of the system. Therefore, 

inside the fish farm closed environment, we can manage, control, and optimize the usage of electrical 

energy using energy management and control. 

 

Figure 5: Typical classification of primitive optimization algorithms[66]. 

Morsly at al. studied this problem and has presented a binary particle swarm optimization (BPSO) 

based solution for optimal placement of cameras in the field [67]. Binary PSO is a variation of standard 

PSO for dealing with binary variables; here they consider camera placement in the grid is a binary 

variable i.e. its value will be one if a camera is placed in the grid cell, otherwise 0. Secondly, camera 
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calibration is also very important in surveillance application for improved quality of captured videos 

and images. 

Zheng et al. introduced a novel method using two vanishing points and a single vanishing line 

for minimum calibration condition in [68]. They formulated the camera calibration problem as a least-

squares optimization problem to address the limitation of existing methods to find the appropriate focal 

length for the camera along with principal point and rotation angles. Cooperative surveillance is also an 

interesting field where more than one cameras or micro aerial vehicles (MAVs) are deployed to monitor 

same area of interest (AoI). In cooperative surveillance, the same region is observed from different 

angles and thus capturing more information about the scene or mission. However, its very challenging 

to dynamically deploy and control multiple MAVs such that they shall maintain safe distance and have 

collision-free flight over AoI while keeping in view device limitation and environmental constraints. 

Saska et al. proposed a PSO based solution to solve this high dimensional optimization problem in 

[69]. For surveillance of traffic on particular road segment, unmanned aerial vehicle (UAV) can be 

deployed. Liu et al. modeled UAV route planning as multi-objective optimization problem in [70]. They 

tried to achieve this task with the minimum number of UAVs while ensuring minimum cruise distance 

among the UAVs using an adopted evolutionary algorithm NSGA based on Pareto optimality technique. 

Too many surveillance cameras generate an enormous amount of video data resulting in storage, 

transmission and analysis challenges. Exploiting the strong correlation between successive frames in 

video streams sharing the same background, Tain et al. proposed a novel encoding scheme using block-

level background modelling (BBM) algorithm for video compression by identifying static background 

in frames for long term reference [71]. For increasing the accuracy of the proposed encoding scheme, 

they developed an optimization algorithm using the rate-distortion concept for the surveillance source 

(SRDO) algorithm. Through experimental analysis, they have reported that BBM and SRDO can 

effectively increase compression performance and be used as a critical component of many video-based 

applications for smart cities. A review paper about the various optimization techniques is outlined in 

[72] for power consumption scheduling for smart homes. Evaluation is performed in monetary terms so 

that relative utility of each scheme can be the highlight and quantified. As the energy scheduling 
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problem is a linear optimization problem, therefore LP algorithm outperform all other schemes. Other 

optimization techniques also provide comparative solutions and are expected to perform well for more 

complex optimization problem where LP will fail. They observed that in online configuration, PSO 

wroks well, however, in extended offline scenarios, PSO can achieve a significant reduction in cost. 

Lorestani et.al. has developed an invasive weed optimization (IWO) algorithm for energy management 

controller (EMC) in order to optimize energy scheduling of associated resources to generate enhanced 

lookup tables [73]. They determine the power generation schedule for connected resources over hourly 

intervals. During the optimization process, constraints regarding operational limitations of power 

generating resources are considered along with varying electricity tariffs. To study the impact on 

operational cost of SHEMS, several scenarios are investigated. Zhang at al. has developed a framework 

for home energy management to support demand response program for domestic users in [74]. The 

proposed framework i.e. home energy management system (HEMS) allows the combination of 

domestic geothermal power resources in the future smart grid along with plug-in electric vehicles. Their 

proposed optimization scheme for scheduling flexible home appliances takes into account various 

factors such as predicted outdoor temperature, renewable resources output power, users preferences and 

electricity price. Through simulations, they verify the effectiveness of the proposed scheme and have 

reported 47.76% reduction in energy cost. Braun et al. [75] introduced the optimum controlling settings 

for water supplement systems without using storage; this system was based on optimization and system-

based controlling. Chilled water loop supplement and the return temperature difference was also thought 

to influence on the pump power and chiller loading. Their proposed ChW system was developed, and 

three variables were chosen for the optimization case. Optimization is 3.3% effective compared to the 

baseline in annual cost saving.  

Zhuhong Zhang [76] developed a multi-objective optimization algorithm for dynamics 

environments that aims to control the greenhouse environment. His proposed concept aims to build 

dynamic multi-objective optimization solutions to clarify and combine to environmental monitoring 

and improving. For greenhouse control, they created a decision rule for controlling based on MOIA 
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(Multi-Objective Immune Algorithm). The author deeply considered the algorithm side of the system; 

however, this work does not consider IoT devices and their role in the greenhouse.  

2.4 Limitations of Existing Solution 

Most of the studies in the literature are focused on a single key component or two components 

from environment monitoring, prediction, optimization and control. In addition, all of the existing 

systems can be used on a personal computer, local or cloud servers. To the best of knowledge, there is 

no related approaches presenting an integrated solution based on the three related key components in 

Embedded Hardware. The highest percentage of the existing solutions are paid attention to a selected 

AI algorithm which is once trained and then used. However, our proposed system can provide real-time 

environment monitoring, prediction, optimization and control directly on the IoT device. This attempt 

to take IoT based ML applications to the next level.  

With the deployment of ML control applications to the embedded hardware, various advantages 

can be achieved including network cost, coverage, latency, privacy, data sovereignty, safety, energy 

consumption and decreasing the extra device usage. 
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3. Embedded Optimal Control Platform in Fish Tank 

3.1 Conceptual Design of Embedded Optimal Control Platform 

The proposed optimal embedded platform includes IoT and Machine Learning based real-time 

environmental monitoring and optimal management process for the smart fish farm. Figure 6 presents 

the layered view of the proposed system, which comprises the environment of interest, embedded 

hardware, and embedded software environment.  

 

Figure 6: Layered view of the proposed embedded control platform in Fish Tank. 

An embedded hardware environment includes the installed sensors and actuators to the fish tank. 

Four types of sensors (temperature, water level, pH, and conductivity) and five kinds of actuators (heater, 

cooler, pH controller, water pump and fish feeder) were proposed in this work. Sensors measure the 

data from the fish farm environmental parameters, whereas actuators are used to control these resources 

automatically. 
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Embedded software environment includes the trained and deployed model to the IoT device. This 

trained model provides context awareness, optimization and control algorithms which can  calculate 

predicted, optimal and required control values for the environment using real-time sensing data. Fish 

tank actuators obtain control values from the top layer, and desired resources are provided to the 

environment.  

We have implemented and deployed an integrated system that comprises four main modules, 

namely, 1) context awareness 2) prediction  3) optimization, and 4) control. The conceptual design of 

the proposed system is presented in Figure 7.  The implementation of the proposed system includes four 

main stages.  

 

Figure 7: Conceptual design of the proposed embedded control platform in Fish Tank. 

In the first stage, we develop the context-awareness module, which gathers information about the 

user-desired, indoor and outdoor environmental parameters, energy control parameters, and power 

policy values, then provides the analysis and decision about each parameter for the future decision. In 

the second stage, we develop the prediction module for predicting the fish tank environmental 

parameters and the required energy using the real data. In stage 3, we develop an optimization scheme 
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for the calculation of the optimal fish tank environmental parameters using the predicted and user-

desired environmental parameters. Also, the learning module is also used to increase the performance 

of the optimization scheme. In the last stage, we design and implement a control algorithm to control 

the fish tank actuators automatically.   

Detailed conceptual design of the optimal control embedded platform for the fish tank efficient 

energy consumption is described in Figure 8. We have the environment of interest, the smart fish tank, 

which requires the IoT based automatic control for providing the healthy productive condition for the 

fish based on the fish farmer/user desired parameters with effective natural resource usage. The input 

data for the system includes the user-desired parameters, fish tank indoor environmental values such as, 

temperature, water level, pH and conductivity values which are collected using sensors, outdoor 

temperature, humidity, and solar radiation values, control parameters and power policy.  

 

Figure 8: Detailed Conceptual design of the proposed embedded control platform in Fish Tank. 

Figure 9 describes the proposed system architecture for the development of optimal control 

embedded platform using TensorFlow lite for the efficient energy consumption and fish growth in the 

fish tank. The proposed system comprises three environments, namely, fish farm environment, 

embedded hardware environment, and embedded software environment.  
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Embedded hardware environment comprises various IoT devices, sensing and actuator nodes, 

input/output ports, serial communication ports, power supply, and other essential tools to check and 

control the various fish farm environmental parameters. Sensing nodes are used to check the 

environmental parameters in real-time, whereas actuator nodes control these environmental parameters 

with increasing or decreasing the natural resources according to the user requirement.  

 

Figure 9: Proposed system architecture for the development of embedded control platform. 

The embedded software environment is computer software that is deployed to devices or machines 

for performing all functionalities on devices without executing these applications in highly compute-

intensive processes on PCs, local, and cloud servers.  With deploying machine learning (RNN-LSTM), 

optimization control algorithms (Fuzzy logic) as an embedded software, a number of advantages can 

be achieved in terms of network cost, latency, privacy, data sovereignty, and power consumption. 
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IoT sensor nodes are used to measure the indoor environmental parameters from the fish farm 

environment. Using the historical data, we trained the model to predict, optimize, and compute the 

optimal control parameters to the fish farm parameters. Then a trained model is deployed to the 

embedded hardware environment as an embedded software using TensorFlow Lite. As new sensing 

values come to the embedded software, the software calculates the required future optimal control 

values with considering cost minimization, and optimal usage of the resources. 

 

Figure 10: Detailed proposed system architecture for the development of an embedded control platform. 

The detailed proposed optimal control embedded platform architecture is represented in Figure 10. 

We considered temperature, water level, pH, and conductivity level values of the fish tank, among other 

various fish tank parameters. IoT sensors are used to measure these values from the fish tank and send 

them to the data collection unit. The context-awareness module provides the analysis and clarifies the 

required data ranges for better future performance. Based on the collected data, we train a model to 
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predict future environmental parameters with required energy consumption for the fish farm. These 

parameters are predicted temperature, predicted water level, predicted pH level, and predicted 

conductivity.  The optimization module is used to calculate the optimal environmental parameters based 

on user preferred and the system constraint settings. FLC is used as a control algorithm for the proposed 

system to calculate and set the optimal working level and activation duration.  In this work, we use a 

heater, cooler, pump, pH controller, and fish feeder actuators to control the environmental and feeding 

processes in the fish tank. The FLC module assigns the activation level and working duration for fish 

farm actuators. Based on these control values, actuators control the temperature, water level, pH, and 

conductivity level in an optimal condition by minimizing the energy consumption and maximizing the 

cost. In the coming subsections, we describe algorithms and modules in detail. 

 

Figure 11: Proposed embedded optimal control platform flowchart diagram. 

Proposed embedded predictive optimal control platform flowchart diagram is described in Figure 

11. As can be seen from the figure, several processes are combined in this study. Firstly, IoT sensors 
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monitor the fish tank water condition by measuring water quality parameters (e.g., temperature, water 

level, ph level, and conductivity) to the data collection unit. In the second step, we apply the context 

awareness and prediction unit to analyze the used desired min max settings, environmental parameters 

with predicting future indoor parameters for the fish tank. Thirdly, the objective function is used as an 

optimization algorithm to calculate optimal indoor parameters for the fish growth with efficient energy 

consumption with considering user desirable parameters, system and control constraints. At the end of 

the process, fish tank actuators’ operational level and activation duration are computed using the FLC. 

For the calculation of the control values optimized and predicted environmental parameters are used as 

input values to the FLC module.  

Table 1 gives a detail explanation of data with examples. Five types of data are used as input 

parameters for the proposed system.  

Table 1: A brief description of the data used in this work. 

Input data Description Example 

User-desired 

parameters 
User desired parameters are the most desired 

values for the environment. A fish farmer knows 

the most acceptable minimum and maximum 

temperature, water level, pH level or conductivity 

levels to the fish growth 

20°-25°C ranges for 

temperature 

6.5-8.0 acid ranges for pH level 

300–500 µS/cm ranges for 

cond. 

280-320 mm ranges for water 

Indoor 

environmental 

parameters 

Indoor environmental parameters are collected 

data from the fish tank using temperature, ph 

level, conductivity and water level sensors with 

time-series data 

18.7166 °C 2/5/2020 11:30 

P.M 

6 acid 2/5/2020 11:30 P.M 

812.60 µS/cm 2//2020 11:30  

247 mm 2/5/2020 11:30 P.M 

Outdoor 

environmental 

parameters 

Outdoor temperature, humidity, and solar 

radiation.  This data can increase the performance 

of the prediction model. Because if the outside is 

too cold, it will also influence on indoor 

temperature. 

5.08333 °C 2/5/2020 11:30 

P.M 

93.1% 2/5/2020 11:30 P.M 

403.6 nm 2/5/2020 11:30 P.M 

Energy 

Control 

Parameters 

Actuators’ control values are their operational 

level and activation duration. With controlling 

their working level and operational duration, we 

can control the power consumption 

Water pump: 1 min activation 

with minimum working level 

requires 800 watts energy, 

medium working level 1200 

watts energy. 

Power Policy Power policy describes the pricing rate of the 

energy for the actuators’ consumption. The 

pricing rate in Korea is 78.3 won for the first 200 

kWh, 147.3 won for the next 200 kWh, 215.6 won 

for all over 400 kWh      

In this work, to the simplicity 

of the calculation, we have 

considered  129 won for 1 kW 

energy for the calculation of the 

price   
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3.2 Embedded Optimization and Control Scheme using Fish Tank  

Sensing Data  

3.2.1 Embedded Optimal Control Scheme in Fish Tank 

In this section of the thesis, we present briefly proposed embedded control scheme for the 

controlling fish tank environmental parameters using actual sensing values and user-desired minimum 

and maximum parameters. Figure 12 describes the conceptual design of the proposed optimization and 

control based fish tank control mechanism. Input parameters for the fish tank are user desired minimum 

and maximum values for temperature, pH, conductivity and water level. Output parameters are heater, 

cooler, water pump and pH controller’s operational level and activation time. Optimization computes 

the optimal temperature, pH level, conductivity and water level to the fish tank according to the user-

desired indoor parameters. Control module calculates the operational level and activation duration to 

the IoT actuators based on optimal and actual values using IF-THEN rules. For instance, if the actual 

temperature is less than the user desired minimum, then the heater is activated and increases the 

temperature level.  

 

Figure 12: Conceptual design of the optimization and control based proposed system. 
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The detailed conceptual design of the proposed optimization and control based fish tank 

environmental control mechanism is described in Figure 13. Input parameters are the user-desired 

minimum and maximum parameters and actual temperature, water, pH and conductivity levels. Based 

on these parameters, the optimization module calculates the most optima environmental values to fish 

production.Input parameters are the user-desired minimum and maximum parameters and actual 

temperature, water, pH and conductivity levels. Based on these parameters, the optimization module 

calculates the most optima environmental values to fish production. Then the control module calculates 

the working level and activation duration to the fish tank actuators using optimal and actual values. It 

is important to note that this system design is based on optimization and control algorithms and does 

not include the prediction module. With developing with prediction and without prediction modules, 

we can evaluate the system and increasing the efficiency of the proposed system.  

 

Figure 13: Detailed Conceptual design of the optimization and control based proposed system. 

Figure 14 describes the detailed optimization and control based fish tank environmental control 

scheme using actual environmental parameters. As we mentioned above the proposed system comprises 

three environments, namely, fish tank environment, embedded hardware environment, embedded 

software environment. IoT sensors and actuators are installed to the fish tank environment as an 

embedded hardware environment for collecting temperature, water, pH level and conductivity values. 

Actual sensing values are used to calculate the optimal parameters based on user-desired parameters in 
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the optimization module. Fuzzy logic control module computes the working level and activation 

duration to the actuators based on actual environmental and optimal environmental data. Based on these 

control values heater, cooler, pump, pH controller and fish feeder are controlled automatically. 

 

Figure 14: Optimization and control based proposed system architecture. 

Figure 15 shows the flowchart diagram of the optimal control mechanism using the actual sensing 

data. In this study, we consider the prediction, optimization, and control based fish tank environment 

monitoring system with efficient energy consumption. We implemented the overall system by 

considering the various cases, as shown in this subsection. This subsection only considers the 

optimization and control based fish tank environment optimal control system without a prediction 

model. Optimization scheme computes the most optimal environmental parameters based on actual 

sensing values and user-desired settings, then fuzzy logic control module computes the working level 

and activation duration to the actuators using optimized and actual environmental values. 
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Figure 15: Flowchart diagram of the fish tank environmental control using sensing data. 

Figure 16 illustrates the sequence diagram of the proposed optimization and control based fish 

tank environmental control mechanism using actual sensing values. As we mentioned above, this 

subsection considers the development of optimal control embedded platform for the fish tank based on 

optimization and control model without considering the prediction module. As can be seen, the graph 

includes the fish tank environment, IoT sensors, actuators, the proposed system and user. Sensors are 

used to collect the actual temperature, water, pH and conductivity levels. The proposed system has data 

collection, optimization and control functionalities. Based on actual temperature, pH, water, and 

conductivity values, the objective function computes the optimal environmental parameters to the fish 

growth based on collected data and user-desired parameters with efficient energy consumption. Then 

the fuzzy logic-based control unit calculates the working level and activation duration to the actuators 
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using actual and optimal environmental parameters. The role of the user is assigning user-desired 

parameters to the proposed system and checking the results from the visualized charts. 

 

Figure 16: Optimization and control based proposed system architecture. 

3.2.2 Proposed Objective Function for Optimization algorithm using Fish Tank 

sensing data 

In this section of the paper, we described our model for fish farm environmental parameters 

optimization in detail. We developed an objective function for the maximization of fish farm 

environmental parameters with efficient energy consumption based on actual environmental values, 

user-desired settings, and system constraints. T, pH, C, and W describe water temperature, pH level, 

conductivity, and water levels, respectively. The fish tank indoor environmental control time is assumed 

as one day. One day is divided into T time slots, each slot duration is considered as 15 minutes; as a 

result, one day divided into T=96 slots. The actual environmental parameters for the fish farm (EPFa) 

are described in equation 1  

EPFa = [Ta, pHa, Ca, Wa] 
 (1) 
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Where, Ta, pHa, Ca, and Wa  are the actual temperature, actual pH, actual conductivity, and actual 

water-level values, respectively, which are collected using Fish Tank IoT sensors. Fish farm user/farmer 

can choose the range of highly desirable environmental parameters for the fish farm (EPFd) with desired 

settings for each value as described in (equation 2). 

EPFd = [Td pHd, Cd, Wd] 
 (2) 

Table 2 presents a brief description of the used notations in this formulation. 

Table 2:Description of notations used in the formulation. 

Notation Description 

T Number of time slots  

SD Slot duration [minute] 

EPFa Actual environmental parameters for fish tank 

EPFd User desired environmental parameters  

Ta, pHa, Ca, Wa The actual temperature, pH, conductivity and water level 

parameters  

Td, pHd, Cd, Wd User desired temperature, pH, conductivity and water level 

Tmin, pHmin, Cmin, Wmin The minimum ranges of the desired environmental parameters  

Tmax, pHmax, Cmax, Wmax The maximum ranges of the desired environmental parameters 

Topt, pHopt, Copt, Wopt The optimal level for environmental parameters 

EC Energy consumption for actuators {heater, cooler, water pump, 

pH and fish feeder} 

OE Optimal environment for the healthy fish production 

αEC,  αOE Objective weights of energy consumption, optimal environment. 

ECmin Total energy consumption with the minimum desired parameters 

ranges 

ECmax Total energy consumption with the maximum desired parameters 

ranges 

ECopt Optimal energy consumption with optimal environmental 

parameters 

gmax Maximum ranges between predicted and desired environmental 

parameters 

Gr The range between predicted and desired environmental 

parameters values at time t 

Amax Maximum working level for the actuators (fewer time slots and 

higher energy consumption required) 
Amin Minimum working level for the actuators (more time slots and 

less energy consumption required) 

EC* The convex combination of the energy consumption 

OE* The convex combination of the optimal condition    
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Where Td, pHd, Cd, and Wd  represents the user desired temperature, pH level, conductivity, and 

water level, respectively. User desired parameters are the most acceptable ranges for the fish growth, 

which can be inserted from the fish farmer to the system. The proposed objective function calculates 

the optimal fish farm indoor parameters based on user desired parameters. Because of the optimal 

temperature, pH level, conductivity need to fulfil the user requirement. User desired setting values are 

the allowed between the minimum and maximum ranges of each parameter such that, 

Td = [Tmin, Tmax] 

pHd = [pHmin, pHmax] 

Cd = [Cmin, Cmax] 

Wd = [Wmin, Wmax] 

 

(3) 

Where Tmin, pHmin, Cmin, and Wmin present the minimum user desired ranges for the temperature, 

pH level, conductivity and water level, respectively. While Tmax, pHmax, Cmax, and Wmax describes the 

maximum user desired parameters for the indoor values in the same order. Based on desired ranges, the 

maximum values obtain the most desired settings for the environment, and the minimum values are the 

least acceptable value for the environment parameters. Above mentioned, the minimum and maximum 

environmental parameters also describe the boundaries of the proposed objective function at the same 

time. For instance, the actual temperature (Ta) is between the minimum (Tmin) and maximum (Tmax) 

temperature boundaries, then no need to optimize the actual temperature because it is already inside of 

the boundaries or user-desired parameters. If the actual temperature lower than the minimum boundary 

(Ta<Tmin), then we need to activate the heater to increase the actual temperature until to reach between 

the minimum and maximum boundaries of the temperature (Tmin<Ta<Tmax). If the actual temperature is 

higher than the user desired maximum boundary (Ta>Tmax), then we need to activate the cooler actuator. 

It is true that a fish farmer obviously wants to boost the production by setting up maximum parameters 

for each value. However, the maximum configuration of actuators requires high energy consumption. 

Let us assume the optimal environmental parameters in time t that can achieve desired environmental 

settings are given by (4)  
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EPFopt = [Topt, pHopt, Copt, Wopt] 
 (4) 

Where EPFopt  describes the optimal environmental parameters for the fish tank, and Topt, pHopt, 

Copt, and Wopt present optimal temperature, optimal pH level, conductivity, and water level, respectively. 

Optimal environmental values have to be between the minimum and maximum user-desired ranges, as 

shown below (5), 

Topt ∈ [Tmin, Tmax] 

pHopt ∈ [pHmin, pHmax] 

Copt ∈ [Cmin, Cmax] 

Wopt ∈ [Wmin, Wmax] 

 

(5) 

In the following, the objective function takes into account two terms introduced, overall energy 

consumption (EC), and optimal environment (OE) to the fish tank. Overall energy consumption can be 

calculated according to the energy consumption of the actuators’ working level and operational duration. 

With a minimum working level, actuators consume less energy but spend more operational duration for 

achieving optimal condition as described in equation 6: 

ECmin = ∑ 𝑨𝑻
𝒕=𝟏 heatmin + ∑ 𝑨𝑻

𝒕=𝟏 coolermin + ∑ 𝑨𝑻
𝒕=𝟏 pumpmin + ∑ 𝑨𝑻

𝒕=𝟏 pHCont.min + ∑ 𝑨𝑻
𝒕=𝟏 feedermin 

 (6) 

ECmin describes the overall energy consumption of the actuators with activating them minimum 

working level, and Amin is the minimum working level for the heater, cooler, pump, pH controller and 

fish feeder actuators. ECmax is energy consumption of actuators with activating maximum (Amax) 

working levels (6). As we mentioned above, with maximum working level actuators consume more 

energy but spend less operational duration for achieving optimal condition: Activating the actuators’ 

with minimum working level requires a long time and less energy in per minute.  

ECmax = ∑ 𝑨𝑻
𝒕=𝟏 heatmax + ∑ 𝑨𝑻

𝒕=𝟏 coolermax + ∑ 𝑨𝑻
𝒕=𝟏 pumpmax + ∑ 𝑨𝑻

𝒕=𝟏 pHCont.max + ∑ 𝑨𝑻
𝒕=𝟏 feedermax 

 (7) 
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Optimal environment (OE) depends on the working level and activation duration of the actuators. 

If we run the heater actuator with a minimum working level, it spends different time for achieving the 

optimal environment and gmax (Maximum ranges between actual and desired levels for each fish farm 

parameter). The below-given equation describes the optimal environment based on the minimum, 

medium, and maximum working levels of the actuators. Actual input parameters are divided into three 

categories {Low, Normal, and Very High}, according to the level of the actual input parameter actuators 

spend different time and activation duration for achieving the optimal environment. For instance, if the 

predicted temperature level is Low, then we need to activate the heater, and if the heater is activated 

with minimum working level, then it spends 4-time slots for achieving an optimal environment. By 

activating the maximum working level, the heater requires 2-time slots to achieve optimal 

environmental parameters, as shown in equation 8. The same consideration applies to the other actuators 

too. 

OEmin = 𝒈max+ ∑ 𝒈𝒓 𝑻
𝒕=𝟏 *Aheat

min 

OEmax = 𝒈 max+ ∑ 𝒈𝒓 𝑻
𝒕=𝟏 *Aheat

max 

 

(8) 

Where OEmin and OEmax present optimal environment of the fish growth according to the 

minimum (Aheat
min) and maximum working level activation of the heater (Aheat

max). gr describes the 

ranges between actual and desired environmental parameters ranges at time t and T is various time slots 

for activating actuators. The objective function is a convex combination of the above two cost indices 

scaled as follows.  

EC* = (EC – ECmin)/(ECmax-ECmin) 

OE* = (OE – OEmin)(OEmax-OEmin) 

 
(9) 

Where EC* and OE* describe the convex combination of the optimization energyc 

consumption and environment, respectively. While ECmin, ECmax, OEmin, OEmax represent the minimum 

and maximum values achievable for energy consumption and an optimal environment. The final 

objective function to be minimized is 
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J = min(αEC(1-(EC*)2) + αOE(1-(OE*)2)  (10) 

Where αEC and  αOE represent the user desired objective weights for the energy consumption 

and optimal environment in the range [0, 1], respectively, for instance, if the user pays more attention 

to the energy consumption, then he or she gives 0.9 value to the energy consumption(αEC) weights and 

0.1 value for the optimal environmental parameters (αOE). If the energy consumption is not a problem 

for the user, then the user can boost the production by giving high weight to the optimal environment 

(αEC = 0 and αOE = 1). 

The system constraints: 

Ta < Td
min  < Topt < Td

max 

Wa < Wd
min  < Wopt < Wd

max 

pHa < pHd
min  < pHopt < pHd

max 

Ca < Cd
min  < Copt < Cd

max 

0 < ECmin< ECopt < ECmax 

0 < OEmin < OEopt < OEmax 

 

(11) 

 

3.2.3 Control Mechanism using Fuzzy Logic in Fish Tank  

Over the past several years, Fuzzy Logic Control (FLC) based applications have been considered 

as one of the main fruitful and active fields in industrial areas, mainly research-based studies. Applying 

traditional control methods to the industrial processes is difficult due to less available data for the input 

and output parameters. The basement of the FLC is a fuzzy logic, which is closer to people’ reasoning 

and their language description than the conventional control methodologies [86]. As we mentioned 

above, we developed the FLC module for computing operational level and activation duration to the 

actuators based on predicted and optimal environmental parameters.  

Input parameters to the fuzzy system are divided into two categories, namely actual and optimized 

levels of the temperature, water level, water humidity, and conductivity level sensing data. FLC  

computes control parameters for actuators based on the actual and optimal sensing levels. Figure 17 

describes the proposed fuz zy logic control mechanism for controlling the fish tank actuators. These 
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actuators are heater, cooler, pump, pH controller, and fish feeder.  As can be seen, the input parameters 

for the fuzzy logic are actual and optimized environmental parameters. Input actual values are labelled 

by dividing five categories, namely, very low, low, medium, high, very high and optimized. IF-THEN 

conditional statements are deployed to compute activation level and operational duration for actuators.  

 

Figure 17: Fuzzy logic control mechanism for controlling Fish Tank actuators. 

Fuzzification [90] is a process which converts crisp input parameters to the linguistic values. The 

below-given parameters describe the input and output parameters for the proposed fuzzy logic control 

module. Input parameters are actual temperature, pH level, water level and conductivity levels which is 

divided into five categories based on specific ranges as described in brackets. Second input parameters 

are optimal temperature, pH, water and conductivity. Whereas, outputs of the fuzzy logic are working 

level and activation duration for each actuator. Acceptable fuzzy linguistic variables are selected for 

each fuzzy variable. 

•Input: Actual Temperature, pH, Water and Conductivity levels {Very Low, Low, Normal, High, 

and Very High} 

•Input: Optimized Temperature, pH, Water and Conductivity {Optimal} 

•Output: Actuator working-level {Minimum, Medium, Maximum} 

•Output: Actuator activation duration {OffTime, Very Little, Little, Normal, Much, Very Much} 
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Figure 18 illustrates the detailed fish tank temperature parameters control flow diagram using 

heater and cooler actuators. As can be seen from the figure, there can be three conditions, a) if the actual 

and optimized temperature values are equal to each other in time t, then no need to activate the heater 

and cooler actuators. b) if the actual temperature is lower than the optimized temperature values, then 

fuzzy logic-based control unit computes and sets working level and operational duration based on 

below-mentioned rules. If the case a) fails and the actual temperature is higher than the optimized 

temperature, then the control unit sets working level and activation duration to the cooler actuator.  

 

Figure 18: Flow diagram of fuzzy logic-based temperature control. 

Water pump actuator control has two input parameters, namely actual water level and optimized 

water level as presented in Figure 19. The actual water level is the real-time collected data from the fish 

tank environment using the water level sensor, while the optimized water level is the computed optimal 

value using the objective function which we have formulated for the fish tank environmental parameters 

optimization. We do not need to operate actuators if the actual water level is equal to or higher than the 

optimal water level in case a. If case a) fails and the optimal water level is higher than the actual water 
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level parameters then fuzzy logic-based control unit computes the  operational duration and activation 

level to the water pump actuator.   

 

Figure 19: Flow diagram of fuzzy logic-based water level control. 

Fish tank pH level control process has two input parameters: the actual pH level and optimal pH 

level. Figure 20 represents the detailed fuzzy logic-based flow diagram of the proposed fish tank pH 

level control unit. The actual pH level is the real-time collected data from the fish tank environment 

using the pH level sensor, while the optimized pH level is the computed optimal pH values using the 

objective function which we have formulated for the fish tank environmental parameters optimization. 

As can be seen, there are two possible cases, case (a) when the actual pH level is equal to or higher than 

the optimized pH level; then any actuators are no need to activate. In case of b) if the actual fish tank 

pH level is less than the optimized pH level, then fuzzy logic-based control unit computes the 

operational level and activation duration to the pH controller. For controlling the fish feeding and 

conductivity level the same rules are considered as we described in above-mentioned figures. Their 

input parameters are the actual and optimized parameters. The proposed optimization algorithm can be 
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extended easily with other fish tank environmental parameters i.e. dissolved oxygen, humidity, and so 

on.  

 

Figure 20: Flow diagram of fuzzy logic-based pH level control. 

Table 3 describes the fish farm environmental values, available and optimal ranges. As we 

mentioned already, this work considers four environmental parameters of the fish tank environment, 

namely, temperature, pH level, conductivity and water level. The available ranges describe overall cases 

for each parameter in general, whereas, an optimal range provides the most acceptable values to the fish 

farm. Fish farm-related researches describe that the available value ranges for the first three parameters 

are 0-40°C, 0-14 acid, and 10-2000 µS/cm, respectively,  while optimal ranges are 20-25 °C, 6.5-8.0 

acid, and 150-500 µS/cm. Measurement of the water level is considered according to the height of the 

fish tank. Our experimental environment fish tank height is 350 mm, and we assumed that 300-320 mm 

water level is the most acceptable water level. 
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Table 3: Fishtank environmental values and user-desired ranges for fish growth. 

    Value name 
Available range 

User-desired range 

Min Max 

Temperature 0°- 40°C 20°C 25°C 

pH level 0-14 acid 6.5 8.0 

Conductivity 10-2000 µS/cm 300 µS/cm 500 µS/cm 

Water level 0-350 mm 280mm 320mm 

Input parameters show that actual environmental sensing data values are divided into five levels 

based on their specific ranges. The second input parameters are optimal environmental parameters 

which are calculated using the objective function. According to the input parameters, fuzzy logic control 

provides the operational level and activation duration for variable speed actuators. For the purpose of 

comparisons in this work, we consider actuators’ working level in three cases: maximum, medium and 

minimum operational levels. If variable speed operational level actuators are controlled with various 

speed, then they require various time and power for increasing or decreasing the actual environment 

values to the optimal values. Table 4 presents the linguistic description of the actual and optimized input 

values for the FLC. Actual and optimized levels are labelled as VL, L, N, H, and VH that are 

abbreviations of Very Low, Low, Normal, High and Very High. If we take fish tank water level as an 

example, the actual water level is anywhere between 0 and 100 mm, and then fuzzy set for water level 

is labelled as Very Low. If the water level was between 150 and 225 mm, it is labelled as normal. Above 

mentioned considerations are set to other fish tank parameters’ labels too. The optimized environmental 

parameters are needed to compute between the minimum and the maximum boundaries. These 

boundaries also describe the most acceptable ranges for fish growth. 

Table 4: Linguistic description of actual input values. 

No. Input Values  
Linguistic Description 

Very Low (x1, 

x2) 

Low (x2, 

x3) 

Normal (x3, 

x4) 

High (x4, 

x5) 

Very High(x6, 

x7) 

1 Actual Temperature (°C) 5–10 5–20 15–30 
20-35 30-40 

2 Actual pH 0-4 3–7 6–10 
9-13 12-14 

3 
Actual Conductivity 

(µS/cm) 
10-400  350–750 700–1100 

1050-1450 1400-2000 

4 Actual Water level (mm) 0-100 75–175 150–225 
200-300 275-350 
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Fuzzy Inference. A fuzzy knowledge [91] base is a combination of inference and knowledge 

conditions to solve particular issues. Generally, this concept is suggested to emulate people’s decision 

to find a solution to various problems using the existing information[92]. Fuzzy rules are evaluated by 

the performance of Fuzzy Associative Matrix (FAM) tables. FAM is a vital table for the description of 

the rule editors in a matrix form with describing all existing outputs based on all available input 

parameters. As we already explained in the above input parameters,  actual environmental data is 

labelled into five levels, such as Very Low, Low, Medium, High, and Very High, as described in Table 

5. A novel objective function calculates the second input parameters for the FLC based on user 

preferable parameters and the proposed system constraints. 

Based on the expert explanation, supervisor, and agriculture officers, we have developed labelled 

output for actuator working level and operational duration. Heater and Cooler work dependently 

because when the temperature is less compared to the optimal temperature, then the heater is needed to 

activate and improve the system temperature value until the temperature is levelled of the optimal level. 

Oppositely, when the actual temperature is more than the optimal temperature value, then the cooler 

actuator should be activated to decline the actual temperature up to it equalize the optimal temperature 

level. As a result, if one temperature control actuator is active, the other one’s is inactive. Actuators 

activate in three operational levels (the maximum, medium, and medium) with consuming different 

energy. Activation duration for actuators is labelled as very much time(vmt), much time(mt), normal 

time(nt), very little time(vlt) and off time. When actuators activate with the minimum working level, it 

consumes less energy but spends very much time (VMT). It can be seen from  

Table 5 there are two off points in both actuators. In the Medium point of the sensing data can be 

increased or decreased according to the difference between optimized and current sensing data.  As can 

be seen, the first input values to the FLC are the actual sensing data parameters are divided into Very 

Low, Low, Medium, High and Very High. The second input parameter is the optimal data which is 

calculated using the objective function. The output values of the proposed FLC unit are the heater and 

cooler actuators’ working level and activation duration. If actual sensing data is very low and optimized 

data is optimal, then the heater is needed to activate. 
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Table 5: FAM table for the Fish Tank temperature control. 

INPUT OUTPUT 

Actual Sensing 

Data 

Objective Function-

based Optimal data 

Heater (Level * 

Duration) 

Cooler (Level * 

Duration) 

 

 

Very Low 

 

 

Optimal data 

Minimum*vmt 

or 

Medium*mt 

or 

Maximum*nt 

Cooler OFF 

 

 

Low 

 

 

Optimal data 

Minimum*mt 

or 

Medium*nt 

or 

Maximum*lt 

Cooler OFF 

 

 

 

Medium 

 

 

 

Optimal data 

Minimum*NT 

or 

Medium*LT 

or 

Maximum*VLT 

or  

OFF 

Minimum*nt 

or 

Medium*lt 

or 

Maximum*vlt 

or  

OFF 

 

 

High 

 

 

Optimal data Heater OFF 

Minimum*mt 

or 

Medium*nt 

or 

Maximum*lt 

 

 

Very High 

 

 

Optimal data  Heater OFF 

Minimum*vmt 

or 

Medium*mt 

or 

Maximum*nt 

 If the heater actuator is activated with minimum working level then it requires the very much time 

to increase the actual temperature values to the optimal. When the heater actuator is activated with 

medium working level then it requires much time. Above mentioned Fuzzy Associative Matrix table 

applies to the fish tank pH level, water level, conductivity levels, as well as the water pump, pH 

controller, and fish feeder actuators too. Table 6 presents fuzzy logic inference rules for fish tank 

temperature based on FAM. The rules mentioned below also acceptable for the other fish tank 

environmental parameters, we have applied these rules for controlling the pH controller, water pump 

and conductivity control actuators. Our proposed embedded machine learning system provides 

automatization of fish tank for energy efficiency based on Machine Learning, Objective function and 

FLC. 
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Table 6: Fuzzy logic inference rules for the fish tank temperature value control. 

1. if (Predicted Temperature is Very Low) and (Optimal Temperature is Optimized)  

then ( (Heater is Minimum) (Duration is vmt)     

      or (Heater is Medium) (Duration is mt)  

    or (Heater is Maximum)(Duration is nt) 

 and (Cooler actuator status is OFF));  

  

2. if (Predicted Temperature is Low) and (Optimal Temperature is Optimized)  

then ( (Heater is Minimum) (Duration is mt)  

    or (Heater is Medium) (Duration is nt)  

   or (Heater is Maximum )(Duration is lt) 

 and (Cooler actuator status is OFF));  

 

3.  if (Predicted Temperature is Medium) and (Optimal Temperature is Optimized)  

then ( (Actuator is Minimum) (Duration is nt)  

    or (Actuator is Medium) (Duration is lt)  

   or (Actuator is Maximum)(Duration is vlt) 

 or (Heater or Cooler actuator status is OFF));  

 

4. if (Predicted Temperature is High) and (Optimal Temperature is Optimized)  

then ( (Cooler is Minimum) (Duration is mt)  

    or (Cooler is Medium) (Duration is nt)  

   or (Cooler is Maximum )(Duration is lt) 

 and (Heater actuator status is OFF));  

 

5. if (Predicted Temperature is VeryHigh) and (Optimal Temperature is Optimized)  

then ( (Cooler is Minimum) (Duration is vmt)  

    or (Cooler is Medium) (Duration is nt)  

   or (Cooler is Maximum )(Duration is lt) 

        and (Heater actuator status is OFF));  

Input values are labeled as vl, l, m, h, vh, and opt. Fuzzy rules are capable of evaluation of input 

parameters using if-then statements, according to these rules actuators operational level and activation 

duration can be calculated. In the defuzzification step, operational level and activation duration are 

converted to exact activation duration to actuators. For example, when the required operational time to 

the system is a low time, then FLC module sets 2 to 4 minutes working time to the actuators. After 

analyzing the objective function and FLC, the algorithm is developed for the proposed system. Table 7 

algorithm only describes temperature, prediction, optimization and control. However, the implemented 

system also includes an algorithm for other fish tank parameters. The optimal temperature control 

algorithm consists of “prediction”, “optimization scheme” section and “fuzzy logic control scheme” 

section.  
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Table 7: Proposed System Algorithm for Optimal Temperature Level Control 

Algorithm Proposed System Algorithm for Optimal Temperature Level Control    

Initial: Install sensors and actuators 

Set User desired settings: 𝑇𝑚𝑖𝑛 ,  𝑇𝑚𝑎𝑥    Using Equation (1) 

Set System Constraints                   Using Equation (10) 

Start sensing: 𝑇𝑎𝑐𝑡  

1: procedure PREDICTION MODULE  

2:       Comment: Predict future temperature values using RNN-LSTM trained model 

3:       Predict: 𝑇𝑝  

4:       then 

5:       send: Tpre 

6:       to the 

7:       OPTIMIZATION SCHEME(); 

8: procedure OPTIMIZATION SCHEME 

9:      Comment: Using Objective Function to calculate optimal temperature. 

10:      Calculate 𝑇𝑜𝑝𝑡  Using Equation (9) 

11:      then 

12:      send: 𝑇𝑝𝑟𝑒 , 𝑇𝑜𝑝𝑡 

13:      to the  

14:      FUZZY LOGIC CONTROL SCHEME (); 

15: end procedure 

16: procedure FUZZY LOGIC CONTROL SCHEME 

17: input 1: 𝑇𝑝𝑟𝑒 

18: input 2: 𝑇𝑜𝑝𝑡  

19:   if 𝑇𝑝𝑟𝑒 == 𝑇𝑜𝑝𝑡 then 

20:        activateActuator(ALL ,OFF)  

21:   else if 𝑇𝑝𝑟𝑒 == VeryLow and 𝑇𝑚𝑖𝑛 <𝑇𝑜𝑝𝑡 < 𝑇𝑚𝑎𝑥 then 

22:        activateActuator(Cooler, OFF) 

23:       activateActuator(Heater, Values=[Minimum*vmt, Medium*mt, Maximum*nt]) 

24:   else if 𝑇𝑝𝑟𝑒 == Low and 𝑇𝑚𝑖𝑛 <𝑇𝑜𝑝𝑡 < 𝑇𝑚𝑎𝑥  then  

25:        activateActuator(Cooler, OFF) 

26:        activateActuator(Heater, Values=[Minimum*mt, Medium*nt, Maximum*lt]) 

27:   else if 𝑇𝑝𝑟𝑒 == Medium and 𝑇𝑝𝑟𝑒 <  𝑇𝑜𝑝𝑡 then 

28:           activateActuator(Cooler, OFF) 

29:           activateActuator(Heater, Values=[Minimum*nt, Medium*lt, Maximum*vlt]) 

30:        if 𝑇𝑝𝑟𝑒 == Medium and 𝑇𝑝𝑟𝑒 >  𝑇𝑜𝑝𝑡  then 

31:           activateActuator(Heater, OFF) 

32:           activateActuator(Cooler, Values=[Minimum *nt, Medium*lt, Maximum *vlt]) 

33:        else activateActuator(ALL ,OFF) 

34:   else if 𝑇𝑝𝑟𝑒 == High and 𝑇𝑚𝑖𝑛  <𝑇𝑜𝑝𝑡 < 𝑇𝑚𝑎𝑥then 

35:        activateActuator(Heater, OFF) 

36:        activateActuator(Cooler, Values=[Minimum*mt, Medium*nt, Maximum*lt]) 

37:   else if 𝑇𝑝𝑟𝑒 == VeryHigh and 𝑇𝑚𝑖𝑛 <𝑇𝑜𝑝𝑡 < 𝑇𝑚𝑎𝑥  then  

38:        activateActuator(Heater, OFF) 

39:        activateActuator(Cooler, Values=[Minimum*vmt, Medium*mt, Maximum*nt]) 

40:   end if 

41: end procedure 
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Defuzzification[93]. It is a process which produces a set of output parameters from the crisp logic 

based on fuzzy sets and membership graphs. As we already mentioned, output values are operational 

level and activation duration of the fish tank actuators. Heater, cooler, pH controller, pump and feeder 

actuators are controlled themselves based on actual sensing data and optimal sensing data. When Ta < 

To, then the heater is operated, and if To < Ta then the cooler is needed to activate. In terms of fish tank 

water level if Wa < Wo then the water pump is activated. When Wo < Wa then the second water pump 

is operated in order to decrease the water level. Actuators’ power assigns are described in Figure 21. It 

can be seen that the power rating ranges are divided into three working speeds, namely, maximum, 

medium and minimum. x1, x2, x3, and x4 illustrate the ranges of degree of membership function for 

presenting the output values. Each fish tank actuator consumes various energy based on their activation 

level. 

 

Figure 21: Energy ratings for actuators' working level in Fish Tank. 

Table 8 shows the energy consumption rating for fish tank actuators based on maximum, medium, 

and minimum working levels in a minute. If we take the heater actuator as an example, when heater is 

operated with a minimum operational level, then it requires energy consumption ranges between 30 (x1) 

and 120 (x2) watts for a minute. When the heater is operated with the medium operational level, and it 
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spends 120 (x2) to 210 (x3) watts energy in a minute. With activating maximum operational level the 

heater, the heater requires from 210 (x3) to 300 (x4) energy for per minute. The same consideration is 

applied to all other fish tank actuators. 

Table 8: Energy consumption ratings of actuators’ working level in Fish Tank. 

No. Actuators 
Energy Rating (Watts) 

Minimum (x1, x2) Medium (x2, x3) Maximum (x3, x4) 

1 Water pump 600–1000 1000–1400 1400–1800 

2 Heater 30–120 120–210 210–300 

3 Cooler 700-800 800-900 900-1000 

4 pH Controller 400-500 500-600 600-700 

5 Fish Feeder 300–450 450–700 700–850 

As mentioned earlier, choosing the right actuators operational time length plays a key role in both 

the automation of fish farms and the efficient management of energy. If the marking of the actual 

detection data is very low, the actuator must use one of the operating levels (minimum, medium or 

maximum). Depending on the operating level or speed of the actuator, the operating time of the actuator 

also changes until the optimum environment for controlling the actuator environment is reached. In 

particular, if the water pump operates at the minimum operating level, it will take a long time. 

Conversely, if the water pump operates at the maximum operating level, little time is required. Figure 

22 shows a graphical representation of membership functions as a function of actuator time. The output 

variable operating time of the actuators has six membership functions. These membership functions are 

marked as OFF, VLT, LT, NT, MT and VMT and are reduced when the drive is turned off, very little 

time, little time, normal time, much time and very much time. The drive operating time is described in 

minutes, and the time range is determined based on agricultural and technical knowledge. This 

participation function is enabled during operation of all drives. If the current collection data matches 

the optimal data, the actuator runs for 0 minutes, and the actuator does not need to be activated (OFF).  

These parameters can be changed based on actuators’ operational parameters. With considering these 

points, we developed the system which user can assign the required control values as an input value to 

the system from the user interface.   
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Figure 22: Membership function graph for the actuators’ operational duration (min). 

3.3 Embedded Predictive Optimal Control Scheme using RNN-LSTM 

3.3.1 Embedded  Predictive Optimal Control in Fish Tank  

In this subsection, we describe our proposed embedded predictive optimal control environment 

using fish tank parameters. This system includes the prediction module, the prediction module helps to 

increase the performance environment parameter controlling. Figure 23 describes the conceptual design 

of the proposed system. As can be seen, we have an IoT based fish tank environment which includes 

various sensors and actuators to measure and control the environmental parameters of the fish tank. 

Input parameters for the system are user-desired min-max values and fish tank actual environmental 

parameters. Context-awareness and prediction model is used to analyze and predict the future 

environmental parameters using input parameters. The formulated objective function for optimization 

is used to calculate the optimal environmental parameters to temperature, pH level, conductivity and 

water level using predicted and user-desired values. The fuzzy logic-based control model computes the 

operational duration and activation level to the actuators using the predicted and optimal environmental 

parameters. Based on these control values heater, cooler, fish feeder, water pump actuators increase or 

decrease the predicted environmental parameters to the optimal environmental values. As a result, the 

optimal fish growth environment can be achieved with minimum energy consumption.  
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Figure 23: Conceptual design of the embedded predictive optimal control in Fish Tank. 

Figure 24 illustrates the detailed conceptual design of the proposed system using the fish tank and 

user-desired parameters. As shown in the figure, we have input data, context awareness and prediction, 

optimization and control units. According to the user desired minimum and maximum environmental 

parameters and predicted environmental parameters, the optimization module calculates the optimal 

environmental parameters with minimum energy consumption. Then these optimal environmental and 

predicted environmental parameters the control module sets working level and operational duration to 

fish tank actuators using IF-THEN rules. For instance, if the predicted temperature is less than the 

optimal temperature, then we need to activate the heater in order to increase the temperature level of 

the fish tank. If the predicted temperature level is higher than the optimal temperature level, then we 

need to activate the cooler actuator to decrease the fish tank temperature level. If the predicted and 

optimal environmental parameters are the same, we do not need to activate any actuators.  
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Figure 24: Detailed conceptual design of the embedded predictive optimal control in Fish Tank. 

Figure 25 describes the detailed system architecture for the embedded predictive optimal control 

in the fish tank. As can be seen, we have three environments, namely, fish tank, embedded hardware 

and embedded software environments. Each environment has various functionalities, such as fish tank 

environment for breeding, harvesting or producing the fish products.  Embedded hardware environment 

includes a number of sensors and actuators which are used to measure the fish tank temperature, water 

level, pH level and conductivity levels in real-time, whereas, the IoT actuators are utilized to control 

these measured parameters with optimal controlling.  Embedded software environment comprises the 

various functionalities which we implemented to control the fish tank environmental parameters with 

optimal resource utilization. These functionalities are sensing data collection, context awareness, 

prediction, optimization and control. According to the collected temperature, water level, pH, and 

conductivity level data, the prediction model predicts the future environmental parameters to the fish 

tank and based on these predicted parameters the objective function computes the most optimal 

parameters to the environment with considering the user-desired parameters and the system constraints. 

According to the optimized and predicted data fuzzy logic control module calculates the operational 

level and activation duration for the actuators. With these control values heater, cooler, water pump, 

and fish feeder actuators are activated automatically in the required time in order to provide the optimal 

environmental values to the fish growth.  
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Figure 25: System architecture of the embedded predictive optimal control in Fish Tank. 

Figure 26 describes the flowchart diagram of the proposed embedded prediction optimal control 

scheme using the user-desired and actual fish tank environmental parameters. As we already explained 

above, RNN-LSTM is used to predict the future temperature, water level, conductivity and pH level 

parameters to the fish tank using the collected actual environmental parameters, then predicted and user-

desired parameters are used as input values to the optimization module. The objective function 

calculates the most optimal temperature, water, conductivity and pH level environmental values to the 

fish tank with efficient energy consumption, and then the FLC module assigns operational level and 

activation duration to the fish tank actuators based on predicted and optimal environmental parameters.  
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Figure 26: Flowchart diagram of the embedded predictive optimal control in Fish Tank. 

 Figure 27 describes the sequence diagram of the proposed embedded predictive optimal control 

scheme. The proposed system has data collection, context awareness and prediction, optimization and 

control functionalities. Actual fish tank temperature, water level, pH level and conductivity levels are 

collected to the data collection unit using IoT sensors, and this data is used to train prediction module. 

As the new sensing values are forwarded to the prediction module this module computes the future 

environmental parameters for the fish tank, then optimization module computes the optimal fish tank 

environmental parameters according to the predicted and user-desired parameters. The objective 

function calculates the optimal temperature, optimal water level, optimal conductivity, and optimal pH 

level for fulfilling the user-requirement. Then optimal fish tank environmental and predicted 

environmental parameters the fuzzy logic-based control unit computes the control values to the fish 

tank actuators, and these control value results are visualized to the user. With controlling the actuators 

with various working level and operational duration, we can control energy consumption.  
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Figure 27: Sequence diagram of the embedded predictive optimal control in Fish Tank. 

3.3.2 RNN-LSTM based Prediction Algorithm for Predictive Embedded Optimal 

Control 

In the last decades, the development of advanced technologies has been created a dramatic 

improvement in a number of industries around the world. Machine Learning has begun to play an 

essential role in our daily life with extending our ability and knowledge to increase the condition around 

us. Machine Learning covers various algorithms and models, and they can be used according to the area 

of interest. However, in this work we have used Long Short-Term Memory Networks (LSTM) for 

forecasting the future environmental parameters of the fish tank. LSTM is one of the special types of 

the RNN which have capabilities to learn long-term dependencies. LSTMs were presented by 

Hochreiter and Schmidhuber [77] in 1997. Compared with many other RNNs types, the LSTM model 

is a novel recurrent network concept, and support various capabilities in terms of gradient explosions, 

gradient disappearance, and lack of long-term memory of RNNs [78,79,80,81]. The LSMT network 

contains a forget and preservation mechanisms that let the network architecture to impact constant fails 

to flow via the internal state of a particular cell. These portions provide an effective implementation of 

the non-linear mapping between input values and output values. The LSTM is different from other 
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neural networks in terms of fault tolerance and accurate results. An LSTM layer and a sequence input 

layer are the central components of the LSMT network. The sequence input layer of the network 

presents the time-series data or sequence data, which is used as an input parameter to network, whereas 

the LSTM layer supports the long-term dependency learning process using the time steps of the 

sequence data. 

Figure 28 presents the flow of a time series X with C channels (features) of lengths S through the 

LSMT layer. As described in the given diagram, the output or hidden state is denoted with ht, while the 

cell state of the network is illustrated with ct at time step (t). The first LSTM uses the initial state of the 

network and the first time step of the sequence to calculate the first output and the updated state of the 

cell. At time t, the unit calculates the output signal and the updated state of the cell ct using the current 

state of the network (ct-1, ht-1) and the next sequence time step. A layer state consists of a hidden state 

(also called an initial state) and a cell state. The latent state at time step t contains the output of the 

LSTM layer for this time step. The cell state contains information obtained in the previous time step. 

At each time step, the level adds or removes cell state information. Layers use gates to manage these 

updates. 

 

Figure 28: LSTM network layer architecture [82]. 
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The LSMT network hidden layer structure is described in Figure 29.  Given a, f, c, o parameters 

describes the input, the forget, the internal state, and the output gates, respectively. The sigmoid 

activation function is represented with σ, whereas the hyperbolic tangent activation function is given 

with tan h. Table 9 presents the components of the LSMT networks with their purpose. The main role 

of the input gate is controlling the current internal state’s input. The forget gate is used to discard or 

retain the timing data, only the output h(ti-1) of the network is forwarded to this unit. The network state 

is updated by the internal state. The final output signal of the network is determined jointly by the output 

valve and the internal state and will be used as the input of the entire network module at the next moment 

and controlled by the input valve. As presented in Figure 29, The input parameter for the LSTM 

networks is the input value x(ti) of the time series data at time ti, the LSTM network output value h(ti-1) 

at time ti-1, and the internal state c(ti-1) at time ti-1. 

 

Figure 29: Hidden layer structure of the LSTM. 

The output parameters of the LSTM networks is the LSTM network output value h(ti) at time ti, 

and the network internal state c(ti). Where in the time series data x(ti) presents the data at time ti, the 

output value of the network is h(ti-1) at the time ti-1 and the initial statue value of h(ti-1) is 0. Threshold 

layer has the threshold values, which is described as b = {ba, bf, bc, bo}, each parameter of the threshold 
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presents the input gate, the forget gate, and the internal state and the output gate. Weight matrixes for 

the threshold layer for the input gate, forget gate, the internal state and the output gate are assigned as 

w1 = {wa, wf, wc, wo}, respectively. Below given formulas describe the forward learning in sequence: 

a(ti) = σ(wax(ti) + whah(ti-1) + ba) 
 (12) 

f(ti) = σ(wfx(ti) + whfh(ti-1) + bf) 
 (13) 

c(ti) = ft × c(ti-1) + at × tan h(wcx(ti) + whch(ti-1) + bc) 
 (14) 

o(ti) = σ(wox(ti) + whoh(ti-1) + bo) 
 (15) 

h(ti) = o(ti) + tan h(c(ti)) 
 (16) 

The LSTM network output value weight matrixes to the threshold layer are described as w2 = {wha, 

whf, whc, who}, for each gate. The output result of the LSTM network  is a = {a(ti), f(ti), c(ti), o(ti)}, where 

each parameter comprises the output result input gate, forget gate, internal status and output gate.  The 

role and description of the RNN-LSTM hidden layer gates are described detailly in Table 9.  

Table 9: RNN-LSTM hidden layer gates and their purpose. 

Component Purpose 

Input gate(a) Management layer of cell state update 

Forget gate(f) Management layer of cell state reset (forget) 

Internal state(c) Adds information to cell state 

Output gate(o) Management layer of cell state added to the hidden 

state 

The training process in the LSTM network model utilizes a time-based backpropagation with a 

time algorithm that comprises four-phase calculations, as described in Equation 12 to 16. The LSTM 

network error terms are computed in revers, and the error is transferred to the output, internal, forget, 

and the input gates. The gradient value of the weights in each gate is successively computed based on 

the corresponding error term. The weight values of all gates are updated using the optimization 

algorithm. After iterative computation, the optimal threshold b and weight w are used to predict the fish 

farm temperature, water level, pH, and conductivity data of the fish tank.   
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The detailed framework of the specific LSTM based prediction model is described in  Figure 30. 

As can be seen, the figure comprises five functional modules, namely, the input layer, hidden layer, 

output layer, network training, and network output layer.  The proposed system supports a multi-input 

multi-output prediction model based on indoor and outdoor environmental values time series data, the 

prediction model output will be predicted temperature, predicted pH level, predicted water level and 

predicted conductivity results. However, for the formulation of the proposed system is described with 

temperature values of the fish farm in order to simplicity of the explanation. 

 

Figure 30: Proposed configuration of sensing data prediction using RNN-LSTM in Fish Tank. 

In the input layer step if the time axis of the water temperature data of fish farm is t1, t2, t3, …, tN, 

after that the water temperature value corresponding to t1, t2, t3, …, tN is x1, x2, x3, …, xN, then the water 

temperature data of the fish farm can be demonstrated as {x(ti), i = 1, 2, 3, … , N}, and N describes data 

length. 
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The water temperature data x(ti) of fish tank is split into two sets, which are the set for training 

{xtr(ti), i = 1,2, …, m} and the testing set { xte(ti), i = m + 1, m + 2, …, N}, satisfying the constraints m 

< N and m, N∈N+, whereas N+ describes a positive integer values. The training set values of the training 

comprise the sequence { xve(ti), i = r + 1, r + 2, …, m}, satisfying the constraints r < m and r ∈ N+, and 

it is mainly used to establish the model. The verification set sequence is used to adjust the network 

parameters in the model construction and assist the training set sequence to establish the model. 

The training set x is converted to xreshape by using the python function called reshape, which is 

described as: 

𝒙𝒓𝒆𝒔𝒉𝒂𝒑𝒆 = [𝒓𝟏, 𝒓𝟐, … , 𝒓𝒎−𝑳,] 
 (17) 

 

In the hidden layer step. The sequence x of fish farm temperature training set pre-processed by the 

input layer. As described in Figure 30, the network has the hidden layer includes a double layer LSTM 

neural Network. The output of the training set sequence x after the hidden layer can be expressed as: 

P = [P1, P2, …, Pm-L]
T 

 (18) 

Pq = LSTMforward(xq,C2(ti-1), H2(ti-1)) 
 (19) 

where C2(ti-1) and H2(ti-1) are, respectively, represented as the state and output of the second layer 

LSTM network at time ti-1, LSTMforward represents the forward propagation algorithm formulas (1)–(5) 

mentioned in above.  

In the network training module.  The actual output value of the input layer and the output value of 

the hidden layer are passed to the network training module; and the loss function (loss) in the network 

training process was defined as follows: 

𝒍𝒐𝒔𝒔 =  ∑ (𝒚𝒊 − 𝑷𝒊)
𝟐/

𝑳(𝒎−𝑳)

𝒊=𝟏

(𝑳(𝒎 − 𝑳)) 

 

(20) 
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3.3.3 Deployment of RNN-LSTM module to the IoT device using TensorFlow Lite 

TensorFlow Lite is a special tool which can be used to deploy and run TensorFlow models on IoT, 

embedded and mobile devices. Machine Learning algorithms can be delay can be activated with small 

size and low latency[83]. TensorFlow Lite comprises two main modules:  

The TensorFlow Lite interpreter works with specially optimized models on various types of 

equipment, including cell phones, embedded Linux devices, and microcontrollers [84]. 

The TensorFlow Lite converter that can convert TensorFlow models to an efficient format that can 

be used by interpreters and provides optimization techniques to decrease file size in binary format and 

supports high-level performance [85].  

Figure 31 describes the conversion diagram of the TensorFlow based module to the TensorFlow 

Lite format.  

 

Figure 31: Deployment of a prediction model based on RNN-LSTM using TensorFlow Lite[86]. 

Server Embedded Hardware
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TensorFlow Lite is built to simplify machine learning on a "at the edge" network device, not to 

send and receive data from a server. TensorFlow Lite can be deployed to various types of devices, 

from small microcontrollers to powerful IoT devices and mobile devices. There are several 

advantages of running machine learning algorithms on devices, which can support: 

• Low latency: all processes are directly performance on devices and no need to send the 

data or files to the server; 

• High privacy: There is no data forwarding to the server or cloud using the Internet, so 

privacy is high; 

• Cheap connection: Internet connectivity is not mandatory; 

• Less Energy requirement: Internet connectivity requires extra devices and simultaneous 

activation period, then devices require a lot of power for activation.  

The deployment of Tensorflow Lite requires four essential processes as described in the 

below-mentioned steps:  

• Model selection: Training new TensorFlow model, or finding TensorFlow models from 

the Internet, or selection of model from Pre-trained models. 

• Model Conversion: After training or selection of conventional TensorFlow model, then 

convert this model to the TensorFlow Lite format using the TensorFlow Lite converter 

with Python code.  

• Model deployment: In this step, the converted model is needed to deploy to the end devices 

using the TensorFlow Lite interpreter. 

• Model Optimization: In this step, the deployed model size, efficiency and accuracy can be 

improved using the model optimization toolkit to reduce your model's size and increase 

its efficiency with minimal impact on accuracy. TensorFlow time is improving the 

Tensorflow lite capabilities for supporting high-performance on end devices for deploying 

any TensorFlow model.  
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3.4 Embedded Predictive Optimal Control Scheme using Outdoor 

Environmental Data 
 

In this subsection, we describe the proposed embedded predictive optimal control scheme using 

outdoor and fish tank sensing data. The main difference between this scheme and the above-mentioned 

scheme is the outdoor environmental parameters. Outdoor environmental parameters influence on the 

fish tank environmental parameters. For instance, if the outdoor temperature becomes very cold, then it 

impacts on the fish tank indoor temperature. If the outdoor temperature is remarkably warm, then these 

temperature parameters can increase the fish tank water temperature, so we need to consider the outdoor 

environmental parameters for achieving the optimal environmental control. Figure 32 shows the 

conceptual design of the embedded predictive control scheme using outdoor and fish tank 

environmental parameters.  

 

Figure 32: Conceptual design of the embedded optimal control scheme using fish tank and outdoor 

parameters. 
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It can be clearly seen, input parameters to the context awareness and prediction model are user-

deisred min-max environmental parameters, fish tank environmental parameters and outdoor 

environmental values. Outdoor environmental parameters are used to increase the accuracy of the 

proposed prediction module. Figure 33 illustrates the detailed embedded optimal control scheme 

conceptual design, which is based on fish tank and outdoor environmental parameters. Input data to the 

prediction module is outdoor temperature, humidity and solar radiation, and fish tank environmental 

parameters namely temperature, water level, pH level and conductivity. Based on this input data 

prediction module forecasts the future environmental temperature, water level, pH level and 

conductivity levels, while the optimization module uses these predicted values to compute optimal 

environmental parameters to the fish growth based on user desired parameters. Fuzzy logic-based 

control module computes working level and operational duration to the actuators.  

 

Figure 33: Detailed Conceptual design of the embedded optimal control scheme using fish tank and 

outdoor parameters. 

Figure 34  presents the embedded optimal control scheme architecture in detail. As we mentioned 

above, the proposed system architecture comprises the layers, namely, fish tank environment, embedded 

hardware environment and embedded software environment. The fish tank and embedded hardware 

environment have the same functionalities which were described above. However, the embedded 

software environment is implemented with considering the outdoor environmental parameters in order 

to increase the capability of the prediction module. Prediction module forecasts the future fish tank 
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temperature, water, pH and conductivity levels using indoor and outdoor environmental parameters. 

Predicted parameters and user-desired min-max values are used as input parameters to the optimization 

module.  

 

Figure 34: System architecture of the embedded predictive optimal control using Fish tank and outdoor 

parameters. 

An objective function based optimization module computes the most optimal temperature, 

water level, conductivity and pH level values for the fish tank. Fuzzy logic control unit computes the 

working level and activation duration to the actuators based on predicted and optimized data. Then 

actuators are activated automatically in the required time in order to control actuators namely, heater, 

cooler, water pump, pH controller and fish feeder actuators. Heater and cooler actuators are used to 

control the water temperature values. The water pump is used to control the water level in the fish tank. 

pH controller is used to controlling the pH level of the fish tank. Figure 35 represents the flowchart 

diagram of the proposed embedded predictive optimal control scheme architecture. As can be seen, the 
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input parameters are desired settings and outdoor parameters for the prediction module. Outdoor 

environmental parameters are used to increase the performance of the prediction module. As we know, 

outdoor environmental parameters impact on the prediction model.   

 

Figure 35: System architecture of the embedded predictive optimal control using Fish tank and outdoor 

parameters. 

Figure 36 presents the sequence diagram of the proposed embedded predictive optimal control 

scheme using Fish Tank internal and external environmental parameters. The indoor and outdoor 

environmental parameters are used to predict the future fish tank temperature, water, pH and 

conductivity levels. Then predicted parameters and user-desired minimum and maximum temperature, 

water level, pH level and conductivity levels are used as input parameters to the objective function. 

Objective function is used to calculate the optimal environmental parameters to the fish tank. Based on 

optimal and predicted temperature, pH level, conductivity and water level, FLC module assigns the 

operational level and activation duration for fish tank actuators. 
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Figure 36: Sequence diagram of the embedded predictive optimal control using Fish tank and outdoor 

parameters. 

3.5 Embedded Predictive Optimal Control Scheme based on Actuators’ 

Control Parameters 

In this subsection, we describe our proposed embedded predictive optimal control scheme based 

on actuators’ control parameters in order to minimize energy consumption. As we mentioned above, 

actuators’ control settings are their operational level and activation duration. Usually, variable and fixed 

speed heaters, coolers, water pumps, and fish feeders are used in fish tanks. The fixed speed 

technologies can only activate in the same levels and consume a fixed quantity of power because they 

do not have the speed or working level increasing/decreasing function. Conversely, the variable speed 

or operational level actuators are able to be activated with various speed levels to provide required 

resources according to the requirement. These variable speed devices consume the various energy based 

on activation speed, more precisely if the device is activated with higher speed, then the device requires 
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higher energy by compared to lower speed activation. In fish farming or the greenhouse environment, 

the power consumption of the devices can be optimized by controlling actuators in variable speed, but 

this type of activation requires various time to finish the specific task. For instance, if the pump requires 

to be activated with the flow rate of 80 𝒇𝒕𝟑/𝒎𝒊𝒏 for 4 hours in a day, then operating the same water 

pump with 20 𝒇𝒕𝟑/𝒎𝒊𝒏 will require 16 h of operation in a day. So actuators’ control parameters are 

needed to consider to achieve high efficiency. Figure 37Figure 36 presents the conceptual design of the 

proposed embedded predictive optimal control scheme using energy control parameters.  

 

Figure 37: Conceptual design of the embedded predictive optimal control scheme using energy 

control parameters. 
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Energy control parameters actuators’ operational level and activation duration are one of the input 

parameters to the system. Context-awareness module is used to analysis and decision for the energy 

consumption parameters according to the control values. Then actuators’ working level and activation 

duration are used as the input parameter to the optimization module with user-desired and predicted 

environmental parameters. Optimization module computes the optimal environmental parameters to the 

fish tank with efficient energy consumption and finds the optimal working level to the fish tank 

actuators. Figure 38 presents the detailed conceptual design of the proposed embedded predictive 

optimal control scheme using energy control parameters. The energy control parameters actuators 

working level and operational duration are the input parameter to the optimization module. 

Optimization module outputs are optimal energy consumption and optimal environment parameters.  

 

Figure 38: Detailed conceptual design of the embedded predictive optimal control scheme using energy 

control parameters. 

  Figure 39 and Figure 40 present the proposed system architecture for the proposed embedded 

predictive optimal control scheme by considering the actuators working level and activation duration. 

As we use actuators’ control parameters to the objective function as one of the input parameters, then 

we can formulate their energy consumption too. As a result, we can achieve the minimum energy 

consumption from the actuators and maximum and healthy fish productivity by providing the optimal 

environmental parameters to the fish tank.  
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Figure 39: Proposed system architecture of the embedded predictive optimal control scheme using energy 

control parameters. 

RNN-LSTM based prediction module predicts the future indoor environmental parameters to 

the fish tank, and this predicted data, user-desired parameters and control data are used as input 

parameters to the optimization module. Predicted environmental parameters are predicted temperature, 

predicted pH level, predicted water level and predicted conductivity levels in time-series.  Optimization 

module computes the most optimal future environmental parameters to the fish growth with efficient 

energy consumption. Figure 40 presents the flowchart diagram of the proposed embedded predictive 

control scheme based using energy control parameters. As can be seen, input parameters to the 

awareness and prediction module are user-desired parameters, outdoor environmental parameters and 
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actuators’ working level and operational duration. Based on these input parameters, the prediction 

model forecasts future environmental values to the fish tank.  

 

Figure 40: Flowchart diagram of the embedded predictive optimal control scheme using energy control 

parameters. 

Figure 41 presents the sequence diagram of the proposed embedded predictive optimal control 

scheme using energy control parameters. The indoor and outdoor environmental parameters are used to 

predict the future fish tank temperature, water, pH and conductivity levels. Then predicted parameters 

and user-desired minimum and maximum temperature, water level, pH level and conductivity levels 

are used as input parameters to the objective function. The objective function computes the optimal 

environmental parameters to the fish tank. Based on optimal and predicted temperature, pH level, 

conductivity and water level, the fuzzy logic control module sets the working level and operational 

duration to the actuators. 
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Figure 41: Sequence diagram of the embedded predictive optimal control scheme using energy control 

parameters. 

3.6 Embedded Predictive Optimal Control Scheme based on Power Policy 
 

In this subsection, we describe our proposed embedded predictive optimal control scheme with 

power policy data. Power policy is used to calculate the price of energy consumption. Based on the 

proposed novel objective function, we can achieve energy efficiency with optimal resource utilization.   

Figure 42 presents the proposed embedded predictive optimal control scheme, including the power 

policy parameters. As can be seen, in this suggestion, we have all input parameters as describes in 

section 3.1. Input parameters are user-desired environmental parameters, actual temperature, water level, 

conductivity, pH level values, and outdoor environmental parameters and power policy value. Context 

Awareness module is used to analyze all input parameters, while the prediction module predicts fish 

tank environmental parameters using fish tank and outdoor environmental data. Then minimum and 

maximum user-desired values, predicted environmental parameters and actuators energy consumption 

values are used as inputs to the optimization module. Optimization module computes the most desirable 

values to the fish tank with achieving minimum energy requirement.  
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Figure 42: Conceptual design of the embedded predictive optimal control scheme using power policy 

parameters. 

Then, user-desired, predicted, energy control parameters, and power policy parameters are used as 

input values to the optimization module. Optimization module computes the fish tank environmental 

parameters to the fish tank with efficient energy consumption and optimal price. Figure 43 describes 

the detailed conceptual design of the proposed predictive optimal control scheme using power policy 

parameters.  

 

Figure 43: Detailed conceptual design of the embedded predictive optimal control scheme using power 

policy parameters. 
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Figure 44 represents the proposed system architecture of the embedded predictive optimal control 

scheme using power policy. The optimization module is used to calculate the optimal environmental 

parameters based on user preferred and the system constraint settings. FLC is used as a control algorithm 

for the proposed system to calculate and set the optimal working level and activation duration.  In this 

work, we use a heater, cooler, pump, pH controller, and fish feeder actuators to control the 

environmental and feeding processes in the fish tank. The FLC module assigns the activation level and 

working duration for fish farm actuators. Based on these control values, actuators control the 

temperature, water level, pH, and conductivity level in an optimal condition by minimizing the energy 

consumption and maximizing the cost.  

 

Figure 44: Proposed system architecture of the embedded predictive optimal control scheme using power 

policy. 
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Figure 45 illustrates the flowchart of the proposed IoT based fish tank embedded control 

framework. As it was described above, the overall procedure comprises four phases. First, we monitor 

the fish tank by collecting the various environmental data (e.g., temperature, water level, ph level, and 

conductivity) using IoT sensors, and these collected environmental data is stored to the data collection 

module. In the second phase, we apply the context awareness and prediction unit to analyze the used 

desired min max settings, environmental parameters with predicting future indoor parameters for the 

fish tank. Thirdly, the optimization module is used to calculate optimal indoor parameters for fish 

growth with energy efficiency based on user preferred values, control parameters, and constraints. At 

the end of the process, the FLC control is utilized to compute operational level and activation duration 

to the fish tank actuators according to optimal and predicted environmental data.  

 

Figure 45: Flowchart diagram of the embedded predictive optimal control scheme using power policy. 
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Figure 46 presents the sequence diagram of the proposed embedded predictive optimal control 

scheme using power policy. The indoor and outdoor environmental parameters are used to predict the 

future fish tank temperature, water, pH and conductivity levels. Then predicted parameters and user-

desired minimum and maximum temperature, water level, pH level and conductivity levels are used as 

input parameters to the objective function. The objective function computes the optimal environmental 

parameters to the fish tank. Based on optimal and predicted temperature, pH level, conductivity and 

water level, FLC module calculates the operational level and activation duration to the actuators. 

 

Figure 46: Sequence diagram of the embedded predictive optimal control scheme using power policy. 
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4. Experimental Embedded Optimal Control Platform in Fish 

Tank. 

4.1 Embedded Hardware Environment of Fish Tank 

In this section, we represent the implementation technologies and experimental environment of 

the proposed fish tank environment control platform in detail. The experiment was conducted in MCL 

laboratory; at D423 room at Jeju National University during the period January 2020 to May 2020. 

Figure 47 shows the real fish tank environment, which we designed as a case study. There are several 

connectivities, such as sensors and actuators’ connection to the one Arduino board. Arduino plays a 

role as an IoT gateway. As we mentioned above the proposed system includes various types of sensors 

and actuators, also some functionalities which we deployed to the IoT devices including prediction, 

optimization, control algorithms.  

 

Figure 47: Experimental Environment of the proposed system. 

Before moving to the implementation section, we have described the sensors and actuators' 

installation process for the experimental purpose of this work. For our experimental fish tank 
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environment, we utilized Open Aquarium Fish Tank Monitoring tools manufactured by LibeLium. 

Open Aquarium has been fabricated for the management of fish tanks and ponds environment without 

human interference. Open Aquarium includes two various types of complementary kits, namely, Basic 

and Aquaponics, as well as some extra accessories. Open Aquarium platform includes five types of 

sensors, namely, temperature, conductivity, water, and pH level sensors. Also, the platform includes 

four different actuators for automatization of water temperature controlling, feeding process control, 

activating the water pumps for the controlling water level, and LED lamp for the intensity of the 

required light. The experimental environment presents four types of sensors, namely, temperature, water 

level, conductivity, and pH level sensors. Five types of actuators: heater, cooler, water pump, fish feeder, 

and pH-conductivity controller were installed to the Fish Tank. Figure 48 illustrates the relationship 

diagram among IoT devices and their role. In our proposed system we have used four types of IoT 

sensors, five types of actuators, Arduino and raspberry board. IoT sensors are used to get environmental 

sensing values, whereas, the actuators are utilized to control the environmental values with increasing 

and decreasing the actual environmental parameters. Arduino board plays a role as IoT gateway for the 

collection of the data from the environment and forwarding the sensing values to the Raspberry Pi board. 

 

Figure 48: Embedded Control Environment of IoT sensors, actuators and embedded hardware. 
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We have deployed Embedded ML, Optimization and Fuzzy logic control functionalities to this 

board. We deploy RNN-LSTM based prediction module using TensorFlow Lite to the Raspberry Pi as 

Embedded ML, and this model forecasts environmental parameters. Then predicted values are used as 

input parameters to the optimization module.  The Optimization module calculates the optimal 

environmental values with minimizing the energy consumption to the environment based on user 

desired parameters and the system constraints. The fuzzy logic control module calculates control values 

based on predicted and optimized values. These control values comprise working level and activation 

duration to the actuators. Arduino board has actuators’ control functionality, which can activate or 

deactivate the actuators in the required time. Table 10 and Table 11 describe the IoT sensors and 

actuators which were used in this work, respectively. 

Table 10: Description of IoT sensors for the experimental fish farm environment. 

 

 

 

 

 

 

 

 

 

IoT Device 

(Sensors) 

Item 
Description 

 

Water Level 

Sensor 

 

Water level sensor produced by Geekri 

and is used for measurement of water 

level, activation voltage 3–5 V DC, 

operating current less than 20 mA. 

 

pH Level 

Sensor 

 

Measures the pH level of the water. 

Detection ranges: 0~14pH, Can be 

used temperature: 0~60°C, connection 

type: BNC and the length of the cable 

2.9 meter 

 

 

Conductivity 

sensor 

 

A conductivity sensor measures the  

electrical conduction of can be used in 

temperature: 0~60°C,  connection type: 

BNC and the length of the cable 2.9 

meter, Analogic output 

 

Temperature 

sensor 

 

Temperature sensor is sealed is used 

to measuer temperature levels, power 

range 3.0-5.5V, can detect -55°C 

to+125°C temperature ranges, 

accuracy ±0.5°C 1 wire connection  
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Table 11: Description of IoT actuators for the experimental fish farm environment. 

As can be seen from the list of sensors, these sensors can measure water level, pH level, 

conductivity, and temperature sensing values from the environment in real-time. According to the 

measured fish tank environmental parameters,  we have five types of fish tank actuators, as presented.      

It is important to note that all actuators are programmable, which means these devices can be 

activated at various speeds or working levels.  As we know, the Arduino board can not support a wide 

range of sensors and actuators connected to the one board. When the user wants to add some extra 

technologies like wifi, Bluetooth, motor-drives, actuators, etc., it can be pretty tricky for connecting all 

of them for the Arduino. It can be seen that we have enough actuators for controlling each environmental 

IoT Device 

(Actuators) 

Item 
Description 

 

 

Water Pump  

Actuator 

 

Variable speed peristaltic pump for fish 

tank, power ranges: 10-30 W, flow: 20-

60 ml/min, 12V DC input voltage. 

 

 pH Control  

Actuator 

 

Immersible pH control actuator for open 

garden and aquarium, power range: 

0.5W-5W, power supply: 3.5~12V 

DC,65mA-500mA. 

 

 

Fish Feeder  

Actuator 

 

Programmable fish feeder, power range: 

3,3 V, size:11 x 6.5x0.7 cm 

 

 

Heater & Cooler 

Actuator 

 

Energy: 100W, voltage: 220/240V 

50/60Hz length: 22cm 

diameter: 2.2cm length of power cord: 

85cm recommended tank size: 20 to 33 

gallon temperature range between 17°C 

and 35°C). 

 

Arduino and Open 

Aquarium Shield 

 

Provides connection of all sensors and 

actuators to the one board and server. 

Manufactured by Libelium, power supply 

12V-2A.   
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values. For instance, the temperature sensor is used to measure the water temperature parameters, and 

according to the optimized parameters and predicted temperature values fuzzy logic control module 

activates or deactivates the heater or cooler actuators. 

So we need extra devices, which are called IoT Shield, for connecting the four sensors and five 

actuators to the one board in order to centralize the control unit.  We have used Open Aquarium IoT 

shield, which was produced by Libelium, external power supply 12V-2A for attaching all sensors and 

actuators to the one board. Figure 49 presents the open aquarium IoT shield, as can be seen, this IoT 

shield has the capability for connecting various sensors and actuators to the one board. For instance 

water level connector, Arduino/raspberry jumpers, light Led, digital input/output connectors, 

temperature connectors, RF connector, water leak sensor connector, pH level sensor connector, 

peristaltic pump connector and so on.  

 

Figure 49: Open Aquarium IoT Shield for connecting various IoT sensors and actuators to one board. 

We have connected temperature, water level, pH level, conductivity level sensors and heater, 

cooler, water pump, pH controller, fish feeder actuators to IoT shield in this work. However, the 
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proposed system architecture, the objective function is adaptable and flexible for other fish tank 

environmental values. The architecture, prediction, optimization and control modules can be easily 

extended with other sensor parameters, such as dissolved oxygen, humidity, and CO2 level. 

Figure 50 describes the embedded hardware environment for the data collection and actuator 

control units using IoT shield and Arduino board.  

 

Figure 50: Embedded hardware environment for data collection and actuator control using Arduino and 

IoT Shield. 

Arduino is an open-source lightweight electronic platform that can provide hardware and software 

services. There are several advantages of the Arduino platform, such as they are inexpensive, can 

operate in different operating systems, open-source, clear programming environment, and extensible 

hardware. As we already mentioned above, the Arduino board can not support a wide range of device 

connectivity, so we have used an open aquarium IoT shield to centralize the connectivity and control of 

sensors and actuators to the one board.  After connecting all sensors and actuators to one board, we 
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attached the IoT shield to the Arduino board as shown in Figure 50. Arduino board is played a role as 

IoT gateway between the fish tank environment and Raspberry Pi. More precisely, the Arduino board 

has two main functionality environmental Data Collection from the fish tank using sensors and sending 

the actual values to the Raspberry Pi and Actuator control unit for the activation and deactivation of the 

actuators with turning off and on the actuators in the estimated time. Fish Tank sensors measure the 

indoor environmental values from the fish tank and forward these data to the embedded software which 

were deployed to the Raspberry PI using USB connectivity. Figure 51 presents an embedded hardware 

environment of the proposed system using Raspberry Pi. As we have mentioned above, IoT sensors and 

actuators are connected to the Arduino board using IoT shield for receiving the sensing values. Then 

the Arduino board is connected to the Raspberry PI device.  Also, this device has network connectivity, 

the connection to the monitor, power connectivity, and memory.  

 

Figure 51: Embedded hardware environment for prediction, optimization, and control using Raspberry 

Pi. 

We deploy RNN-LSTM based prediction, optimization, and control functionalities to this device. 

As the actual sensing values come from the environment via the Arduino board, an embedded system 

calculates the optimal environmental parameters and required control parameters to the actuators. Then 
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control values are forwarded to the Arduino’s control unit, and this unit switches on and off the actuators 

to manage the environmental parameters.  

4.2 Software Experimental Environment of Fish Tank 

The implementation environment and the development of the proposed platform are divided into 

two phases, firstly we wrote and developed the proposed system in our personal computer then, we have 

deployed these models to the embedded IoT device. Table 12 presents the tools utilized on a general-

purpose PC for the development of the proposed framework. RNN-LSTM based prediction model is 

developed using the Tensorflow library using external and internal environmental data which are 

described in Section 3. For the implementation of the proposed optimization system, we developed a 

C# based desktop application. The fuzzy logic control module algorithm is implemented in MATLAB 

and integrated with the desktop application. Indoor temperature, pH level, conductivity and water level 

values are sent to the PC server using serial cables, and these values are stored to the database. Direct 

communication provided between Fish Farm and the application using Arduino IDE. Operating system 

of the PC is Windows 10, and primary memory is 12 GB. .NET, PyCharm, Arduino, MATLAB 

integrated development environments were used to implement the proposed desktop-based system. 

Model training libraries for the prediction model are Pandas, Tensorflow, and Sklearn. As we mentioned 

above the proposed system firstly implemented on PC and then deployed to the IoT device. 

Table 12: Implementation environment of the general-purpose PC. 

Component Description 

Operating System Windows 10 

CPU Intel (R) Core (TM) i5-4570 CPU @ 3.20 GHz 

Primary Memory 12 GB 

Programming Language Python, C# 

Integrated Development Environment 

(IDE) 
.NET, PyCharm, Arduino, MATLAB 

Model Training Libraries Pandas, TensorFlow, SKlearn 

Framework .NET Framework 

Connectivity Serial connection 

TensorFlow is a comprehensive open-source machine learning platform. Researchers can easily 

implement several applications using this complete and flexible tool, libraries and ecosystem of 
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community resources to help advance ML's cutting-edge technology, and developers can quickly create 

and deploy ML-based applications. Building a model using Tensorflow has the following advantages:  

• Simple modelling: With quick execution, we can easily create and train ML models using 

intuitive, advanced APIs like Keras to iterate and debug ML models instantly. 

• Reliable ML production anywhere: Simple training and model delivery of the model from 

the cloud, place, browser or device regardless of the language used. 

• Powerful research experiments: A simple and flexible architecture for conveying new 

ideas from concept to code, including the latest models and quick publishing. 

After implementing the proposed system successfully in PC, we deployed the proposed model to 

the Raspberry Pi and Arduino board, as described in Figure 51.  Table 13 shows the technologies used 

for the embedded software implementation environment. For the implementation of the embedded 

software environment we have used Raspberry Pi and Arduino, the programming language is Python. 

PyCharm, Arduino Studio, .NET framework are used for the integrated development environment. 

Pandas, Tensorflow, and Sklearn based Trained libraries are deployed to the Raspberry Pi using 

Raspbian OS and TensorFlow lite. The core programming language is Python. 

Table 13: Implementation environment of the embedded software. 

Component Description 

Hardware Raspberry Pi 3 Model B, Arduino 

Operating System Raspbian OS 

Memory 32 GB 

Programming Language Python, C# 

Integrated Development Environment 

(IDE) 
Visual Studio, PyCharm, Arduino 

Framework .NET Framework, TensorFlow Lite 

Connectivity Serial connection 

 As we have mentioned above, we have deployed Embedded ML, Optimization and Fuzzy logic 

control functionalities to embedded hardware. We deploy RNN-LSTM based prediction module using 

TensorFlow Lite to the Raspberry Pi as Embedded ML, and this model forecasts environmental 

parameters. Then predicted values are used as input parameters to the optimization module.  The 

Optimization module calculates the optimal environmental values with minimizing the energy 
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consumption to the environment based on user desired parameters and the system constraints. The FLC 

module calculates control values based on predicted and optimized values. These control values 

comprise working level and activation duration to the actuators. Arduino board has actuators’ control 

functionality, which can activate or deactivate the actuators in the required time. Table 5 describes the 

IoT sensors which were used in this work. Figure 52 describes the implemented modules for the 

proposed embedded control environment with their description. Mainly we have three modules, namely, 

sensing data collection, prediction, optimization, and control. We have used temperature, pH level, 

conductivity, and water level sensors to collect the data from the environment using Arduino board, and 

this Arduino board is connected to the Raspberry Pi for the connection to another functionality.  

 

Figure 52: Sensing data collection module of Fish Tank. 

Figure 53 presents the RNN-LSTM based prediction model using TensorFlow and python, and 

this trained model is deployed to the embedded device using TensorFlow lite.  
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Figure 53: RNN-LSTM based Prediction model in Fish tank. 

An objective function based optimization formulation and Fuzzy logic based control unit using  

C#. C# is developed in the .NET framework, so it is challenging to use the .NET framework in Raspbian 

because it has limited memory, so we deployed the .exe file of the C# based application to the embedded 

system using Mono. Mono is a free open-source and cross-platform implementation of the .NET 

Framework.  

4.3 Fish Tank Environment Modeling 

In this section of the thesis, we describe the proposed a fish tank environment modeling for the 

deploying the proposed system for the various environments with formulating mathematically various 

fish tank data acquisition and device control processes according to the studies [96,97,98]. This work 

considers the fish tank as a parallelepiped shape which comprises tank side height (𝑇𝑠ℎ), tank length 

(𝑇𝑙), and tank width (𝑇𝑤) as described in Figure .  

Fish tank floor area  𝑇𝑎𝑟𝑒𝑎 can be computed using the following equation, where 𝑇𝑙 presents the 

length of the tank, and 𝑇𝑤 is the width of the tank. 

𝑇𝑎𝑟𝑒𝑎 = 𝑇𝑙 × 𝑇𝑤 

The overall volume of the fish tank can be calculated with computing the length, width, and side height 

of the fish tank as described in 

𝑇𝑣𝑜𝑙 = 𝑇𝑙 × 𝑇𝑤 × 𝑇𝑠ℎ 
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Figure 54: Fish Tank modelling with parallelepiped shape. 

Figure 54 presents the fish tank model used in this study. As we mentioned earlier, four fish tank 

parameters are considered for controlling the fish tank indoor environment, i.e. temperature, pH, 

conductivity, and water level. Figure 55 describes the used parameters for the fish tank environment 

and actuators. Fish tank parameters are internal temperature, pH level, conductivity level and water 

level.  

 

Figure 55: Outdoor environment configuration with essential components and processes in Fish Tank. 
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For experimental analysis, we have used real sensing data from the fish tank, which we constructed 

in Mobile Computing Laboratory at Jeju National University. Temperature, water level, pH level and 

conductivity level sensors are used to collect the real-time data from the environment as an indoor 

environmental data. We also used outdoor environmental data, which were collected from online 

weather site Meteoblue [95] for Jeju as described in Figure 56, South Korea. The outdoor environmental 

data includes outdoor temperature, humidity, and solar radiation information collected half-hourly 

interval based. In this thesis work, our objective is to provide optimally indoor temperature, pH level, 

conductivity, water level, and fish feeding based on user-desired settings with efficient energy 

consumption.  

 

Figure 56: External data collection from Meteoblue website. 
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Table 14 describes the sample data collection, which is used in this study. As can be seen the 

dataset includes the number of data, date time, indoor temperature, pH level, conductivity, water level. 

In addition we use outdoor environmental temperature, humidity and solar radiation parameters. In 

these experiments, we have used 70% of available data for training and rest of the 30% is used for 

testing. For training and testing the accuracy of learning modules, we have conducted a repeated number 

of experiments and collected the data. 

Table 14: Dataset example which is used in this study. 

No Date Time Indoor 

Temp 

pH  Conduc

t 

Water 

level 

Outdoor 

Temp 

Outdoor 

Humid 

Solar 

Rad 

1 1/31/20

20 

11:30:00 PM 18.7166 6 812.60 247 1.08333 93.1 403.6 

2 2/1/202

0 

12:00 AM 19.1803 6.26 775.33 245 0.90556 93.2 403.1 

3 2/1/202

0 

12:30 AM 21.340 6.62 733.40 242 -1.6278 90.1 404.8 

4 2/1/202

0 

1:00:00 AM 19.953 6.49 730.32 243 -1.36667 93.5 404 

5 2/1/202

0 

1:30:00 AM 18.043 6.8 665.43 235 -2.0333 85.3 405.4 

6 2/1/202

0 

2:00:00 AM 23.276 6.9 628.54 239 -2.112 80.2 404.4 

7 2/1/202

0 

2:30:00 AM 20.366 6.38 642.03 240 1.38 81.2 402.2 

8 2/1/202

0 

3:00:00 AM 18.084 6.4 640.04 241 1.40 79.8 400.1 
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3000 4/3/202

0 

10:30 AM 16.734 6.38 613.20 265 17.03889 10.2 405.6 

3001 4/3/202

0 

11:00 AM 18.516 6.4 620.15 268 16.68889 12.2 405.4 

 

 

4.4 Implementation Results of the Proposed System 

In this subsection we present the implementation results of the proposed system. Figure 57 

describes the implementation result of the data collection unit using the Arduino board. Arduino board 

is attached with an IoT shield which comprises the various sensors for the collecting the real data from 

the fish tank environment. As can be seen, the indoor environmental parameters temperature, pH level, 

conductivity and water level are collected successfully using Arduino board in Rasbian OS.  
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Figure 57: The implementation result of the data collection unit in Fish Tank. 

Figure 58 describes the optimization and control unit simulator interface, which is deployed to the 

Raspbian OS using Mono cross-platform. Using user-interface users can easily monitor the system 

status, and update the user desired parameters. This interface is used for the visualizing results. As can 

be seen, the simulator has sensors and actuators modules which are numbered with 1 and 2, respectively. 

User can connect temperature, pH level, water and conductivity level sensors with ticking them and 

clicking the connect sensor button. Heater, cooler, water pump, pH controller and fish feeder actuators 

can also be connected with this section. User-set points assignment which is described with number 3, 

is used to insert minimum and maximum user-desired temperature, pH level, water level, and 

conductivity level parameters based on user requirement by clicking apply changes button user can 

easily update user-desired parameters. Based on updated user-desired parameters, the objective function 

computes the optimal environmental parameters to the fish tank. Prediction model section helps to 

activate the RNN-LSTM based prediction algorithm to predict the future environmental parameters. By 

clicking the optimization scheme button proposed system computes the most optimal environmental 

parameters to the fish tank. The FLC can be started, paused or cancelled using the fuzzy logic control 
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module section. In the results section, the user can see the prediction, optimization, fuzzy logic control, 

and energy consumption results.  

 

Figure 58: The implementation results of the optimization and control units. 

Figure 59 describes the implementation result of the overall system in using Main.py code. The 

primary role of the Main python code is providing communication among all of the developed modules. 

As we developed several modules, then we can control all modules using the python Main command. 

As we run the python Main command using the Raspbian OS command prompt, then the system 

automatically describes the actual sensing data collection results, prediction module results, 

optimization module results and control module results in the black window. Table 3 illustrate the 

summary of the collected temperature and pH level data values with the user desired minimum and 

maximum points. We have included the actual temperature and pH level data from Kaggle.com [94]. 

Actual temperature values are around 25°C in most of the time because data is actual and collected from 

the already fixed fish tank environment. However, in this work we propose the novel objective function 

which can calculate the optimal temperature, pH level, conductivity and water level for the fish tank 

based on various input data. 
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Figure 59: The implementation results of the main python module. 

If the input data for the optimization module becomes nearly the same parameters, then the testing 

of the optimization module is difficult. Our target is finding the optimal parameter for the fish tank 

according to the various input parameters and controlling the heater and cooler actuators for increasing 

and decreasing the water temperature. In order to test the accuracy and performance of the proposed 

system were need to consider various input data for the optimization module, as described in Table 4. 

4.5 Performance Results of Embedded Optimization and Control Scheme 

using Fish Tank Sensing Data  

In this subsection of the paper, we describe the proposed embedded control scheme performance 

evaluation results in detail. As we mentioned above, two parameters are used as an input, namely, user-

desired parameters and actual environmental values. Based on user-desired parameters, the proposed 

platoform calculates the optimization and control values to the actuators. Figure 60 presents the 

optimization of the temperature parameters in the fish tank based on actual sensing data.  As can be 

seen, the actual temperature parameters are between 10-40°C in the fish tank. Using an optimization 

algorithm, the system calculates the optimal temperature values to the environment between user 

desired maximum and minimum values. User-desired minimum and maximum values are 20 and 25°C, 

respectively. 
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Figure 60: Temperature optimization results based on actual temperature data. 

Figure 61 presents the actual pH level optimization result based on proposed novel objective 

function. It can be seen that the actual pH level parameters are between 0-14 acid  in fish tank. With 

using an optimization algorithm, the system calculates the optimal pH level values to the environment 

between user desired maximum and minimum values. Optimization scheme is based on an objective 

function which calculates the optimal pH level values based on that formulation. 

 

Figure 61: pH level optimization results based on the actual pH level. 

Figure 62 presents the conductivity level optimization results of the proposed embedded optimal 

control framework. It can be seen that the actual conductivity level parameters are between 10-2000  in 

the fish tank. Using an optimization algorithm, the system calculates the optimal conductivity level 

values to the environment between user desired maximum and minimum values. 
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Figure 62: Conductivity level optimization results based on the actual conductivity. 

Figure 63 describes the proposed embedded optimization and control scheme results for the water 

level optimization in the fish tank based on actual and user-desired parameters. It can be seen that the 

actual water level parameters are between 0-350 mm in fish tank. Using an optimization algorithm, the 

system calculates the optimal water level values to the environment between user desired maximum 

and minimum values. As can be seen, the proposed optimization module computed the optimal water 

level between the user desired parameters. By controlling the water level, we can decrease the wastage 

of the water level from the fish tanks.  

 

Figure 63: Water level optimization results based on the actual water level. 
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Based on optimized temperature, pH level, conductivity, and water level parameters and actual 

environmental parameters, fuzzy logic control module compute the working level and activation 

duration to the actuators. In this work, we consider a heater, cooler, water pump, pH controller, and fish 

feeder actuators. Figure 64 presents the actuator control results based on actual and optimized 

environmental parameters. The FLC module computes the required working level and duration. 

 

Figure 64: Actuator control results based on actual and optimal parameters. 
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4.6 Performance Results of Embedded Predictive Optimal Control 

Scheme using RNN-LSTM 

In this subsection of the thesis, we describe the proposed embedded predictive optimal control 

scheme results based on prediction, optimization, and control using the fish indoor environmental 

parameters. For the implementation of the proposed RNN LSTM prediction module, we have conducted 

a number of experiments using the collected time series data. As we know,  A Recurrent Neural Network 

(RNN) is a type of neural network well-suited to time series data. RNNs process a time series step-by-

step, maintaining an internal state summarizing the information. Figure 65 describes the time series 

based on indoor environmental parameters data which is used for the training of the proposed prediction 

model. 

 

Figure 65: The experimental results of the uploaded indoor environmental data for the training. 

In the beginning, we have used the one-step forward prediction concept to analyze the accuracy 

of the historical data, actual future, and model prediction values. Figure 66 describes the one-step 

forward prediction module results for each fish tank parameter. In a single step setup, the model learns 
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to predict a single point in the future based on historical data. One-step forward prediction model results 

show that fish tank water level and conductivity level prediction results’ model prediction and true 

future results are nearly the same values, which means the prediction model is accurate. However, there 

are a few differences between model prediction and the true future in temperature value prediction. In 

terms of pH level prediction, there is a remarkable high difference between the true future and model 

prediction. 

a) Temperature 

b) Water level 

c) Conductivity d) pH level 

Figure 66: The experimental results of the one step forward prediction model results: a) temperature, b) 

water level c) conductivity and d) pH level. 

The prediction module results provide predicted temperature, predicted water level, predicted 

conductivity and predicted pH level results. Then these predicted values and user-desired setpoints are 

used as input parameters to the optimization module. Optimization module computes the most desirable 

temperature, water level, conductivity and pH level results in the fish growth with energy efficiency. 
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Figure 67 presents temperature level optimization based on predicted temperature parameters. As can 

be seen, user-desired minimum and maximum environmental temperature values are 20 and 25 °C, 

respectively. Predicted environmental parameters help to analyze the future environmental temperature 

and utilize this temperature data for the optimization module as an input parameter. Then based on 

predicted temperature parameters, the optimization module computes the optimal temperature level for 

the healthy fish growth.  

     

Figure 67: Temperature optimization results based on predicted temperature. 

 

Figure 68: pH level optimization results based on predicted pH level. 

Figure 68 presents the pH level optimization results of the proposed embedded predictive optimal 

control framework for the fish tank using indoor environmental parameters and user-desired settings. 

Predicted pH level parameters of the fish tank are between 2-11 acid in time t, at each predicted value 

are applied to the optimization module to calculate the most desirable environmental parameters to the 

fish tank pH level, and optimal environmental parameters are between the user-desired parameters. 
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Figure 69 describes the conductivity level optimization results of the proposed embedded predictive 

optimal control framework for the fish tank using indoor environmental parameters and user-desired 

settings. Predicted conductivity level parameters of the fish tank are between 400-1000 in time t. 

However, the user-desired optimal environmental values are between 300 and 500. Each predicted value 

are applied to the optimization module to calculate the most desirable environmental parameters to the 

fish tank conductivity, and optimal environmental parameters are between the user-desired parameters. 

 

Figure 69: Conductivity level optimization results based on predicted conductivity level. 

Figure 70 presents the water level optimization results of the proposed embedded predictive 

optimal control framework for the fish tank using indoor environmental parameters and user-desired 

settings. As can be seen the optimal water level is between user-desired water level.  

 

Figure 70: Water level optimization results based on the predicted water level. 
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4.7 Performance Results of Predictive Optimal Control Scheme using 

Outdoor and Fish Tank sensing data. 

In a multi-step prediction model, based on indoor and outdoor environmental parameters, the RNN-

LSTM model learns to predict a range of future values. Thus, unlike a single-step model, where only a 

single future point is predicted, a multi-step model predicts a sequence of the future. Figure 71 describes 

the multi-step prediction model results for the fish tank indoor parameters. The multi-step prediction 

model can predict more accurately and long term environmental parameters for the fish tank. As can be 

seen from the figure predicted future and actual future values are becoming nearly the same direction. 

 

a) Temperature 

 

b) pH level 
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     Figure 71:The experimental results of the multi-step prediction model results: a) temperature, b) pH 

level, and c) water level. 

Analysis of the one-step forward and multi-step prediction model results for temperature, pH level, 

conductivity, and water level results are described in Figure 66 and Figure 71. However, the difference 

is not clearly visible in the graphical results; therefore, we conduct a statistical analysis of the prediction 

results using three different measures. Various statistical indicators are used to summarize these results 

into a single statistical value for quantitative comparative analysis. Our model produces output for each 

input or set of inputs so that we can compare this estimate to the actual predicted value. The difference 

between the actual value and the delay in evaluating the model. We can calculate the delay for each 

point in the data set, and each of these delays is useful for estimation. These residues play an essential 

role in evaluating the effectiveness of the proposed model: 

Mean Absolute Error(MAE) is the easiest measure of regression error. We just need to take the 

absolute values of each and calculate the remainder for each data point so that negative and positive 

residues do not destroy each other. Then all residues are averaged. Indeed, MAE describes a typical 

degree of residuals. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑃𝑖 − 𝑃�̂�|

𝑛

𝑘=0

 

 

c) Water level 
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Mean Squared Error (MSE): MSE is considered one of the most commonly used statistics to 

evaluate the effectiveness of the prediction algorithm. Squared the magnitude of the error not only 

eliminates the problem of negative and positive errors, but also provides a larger penalty for higher 

prediction errors compared to lower errors. MSE is calculated using the following formula: 

𝑀𝑆𝐸 =
∑ (𝑃𝑖 − 𝑃�̂�)

2𝑛
𝑖=1

𝑛
 

Mean Absolute Percentage Error (MAPE): MAPE is also one of the widely utilized statistics for 

the evaluation of the prediction algorithms’ performance. In this statistic measurement, the average of 

absolute errors is divided by the actual parameters, and then they multiplied by 100 to turn the results 

to the percentage parameters. 

𝑀𝐴𝑃𝐸 =
∑ |

𝑃𝑖 − 𝑃�̂�

𝑃𝑖
|𝑛

𝑖=1

𝑛
× 100 

Figure 72 describes the implementation results of the proposed prediction model training and testing 

loss results based on the three above mentioned error metrics. Training a model simply means learning 

(determining) good values for all the weights and the bias from llabelled examples. In supervised 

learning, a machine learning algorithm builds a model by examining many examples and attempting to 

find a model that minimizes loss; this process is called empirical risk minimization.  

 

a) Training Loss 
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b) Testing Loss 

Figure 72: Training and testing loss of the RNN-LSTM based prediction model a) training loss b) testing 

loss 

Loss is the penalty for a bad prediction. That is, the loss is a number indicating how bad the model's 

prediction was on a single example. If the model's prediction is perfect, the loss is zero; otherwise, the 

loss is greater. The goal of training a model is to find a set of weights and biases that have low loss, on 

average, across all examples. Figure 73 describes that MSE has high accuracy compared with other 

regression error metrics. For the implementation and experiment, the RNN LSTM models are 

configured to be 200, 500, 1000 times training epochs to test the prediction performances using Mean 

Square Error. The number of epochs is a hyperparameter that defines the number times that the learning 

algorithm will work through the entire training dataset. The number of epochs is traditionally large, 

often hundreds or thousands, allowing the learning algorithm to run until the error from the model has 

been sufficiently minimized. It can be clearly seen that in 1000 number of epochs has been minimized 

error sufficiently. Training an LSTM based Tensorflow model requires various operational duration. 

Figure f presents the activation duration of the prediction model training based on various error metrics 

and the number of epochs.  
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Figure 73: Activation time of the training the prediction model. 

Based on 200, 500, 1000 times training epochs configuration, we have calculated overall 

training time for each error metric. As can be seen, less training duration is required based on MAE and 

MAPE for 200 epochs, 7.5, and 7.8 minutes, respectively. However, MSE spends 18.03 and 33.4 

minutes in terms of 500 and 1000 epochs.  

Table 15 presents the statistical summary of the prediction results for RNN-LSTM based on 

various statistical measures and the number of epochs. Comparative analysis shows that MSE with 1000 

epochs have high accuracy results outperform the two other statistical measures.   

Table 15: The accuracy of the prediction model based on various performance evaluations. 

Indoor Parameter 

 

Number of 

epochs 

Statistical Measure 

MAE MSE MAPE 

Temperature 

200 epochs 0.24 0.23 0.37 

500 epochs 0.16 0.06 0.26 

1000 epochs 0.13 0.05 0.18 

pH level 
200 epochs 0.25 0.17 0.39 
500 epochs 0.15 0.05 0.25 

1000 epochs 0.13 0.03 0.21 

Conductivity 
200 epochs           0.26 0.22 0.31 
500 epochs 0.18 0.09 0.19 

1000 epochs 0.14 0.04 0.17 

Water Level 
200 epochs 0.22 0.19 0.26 

500 epochs 0.18 0.07 0.19 

1000 epochs 0.1 0.03 0.14 
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After successful training and testing the RNN-LSTM based prediction model, we converted this 

model to the Tensorflow Lite format to deploy this prediction model to the embedded IoT device in 

order to predict new environmental parameters for the fish tank based on actual sensing values in real-

time. The real-time predicted parameters are forwarded as an input parameter to the Optimization 

module, which is used to compute the optimal environmental parameters to the fish tank based on user 

desired settings and the system constraints.   

4.8 Performance Results of Embedded Predictive Optimal Control 

Scheme based on Actuators’ Control Parameters  

As already explained above, fuzzy logic control is used to analyze predicted and optimized data 

to determine actuators’ operating level and operating time. By providing an optimal environment for 

the fish tank, an optimal production environment for fish can be designed. Fuzzification, fuzzy inference 

engine and defuzzification are important components of fuzzy logic system design. Fuzzification is the 

process by which actual pure values are transformed into linguistic values. The fuzzy inference 

mechanism is the core unit of the fuzzy logic system for making decisions based on if-then rules and is 

a connector to provide important decision rules. Defuzzification is the process of converting language 

variables to numeric values. Fuzzy logic describes human preferences and experiences through fuzzy 

rules and membership features. Each language variable is assigned a confidence value, so each has a 

unique confidence value. The definition of the language variable is used to describe the membership 

function diagram.  Input values are labelled with very low, low, medium, high, very high, and optimized. 

We can use fuzzy inference rules to evaluate input values based on IF-THEN conditional statements. 

This rule tells us the level and duration of the IoT actuators. To determine the operating level and 

operating time, the reverse purge removal step defines a rule with the exact operating level and minutes 

of the drive. For example, if the time required by the system is short, the purge logic determines the 

drive operating time from 3 to 6 minutes. The following subsections detail the purging, inference, and 

inverse purging elimination processes according to the proposed approach. 

A fuzzy knowledge base is a group of knowledge and inference rules for solving specific 

problems. It is developed to imitate human decision for finding a solution to problems and providing 
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information. Fuzzy inference is the process where the controller analyzes and evaluates input values 

based on conditional statements. Fuzzy rule evaluation can be performed using Fuzzy Associative 

Matrix (FAM). FAM table is essential for describing the rule editor into matrix form showing all 

possible outputs according to all possible inputs. Fuzzy logic control module computes level and 

activation duration to the actuators based on predicted and optimized sensing values. Figure 74 a and b 

describe the heater and cooler actuators' working level and activation duration results, respectively. It 

can be seen that heater and cooler actuators are activated dependently on each other.  

 

a) Heater 

 

b) Cooler 

Figure 74: Fuzzy logic control module results: a) heater b)cooler. 

This means if the predicted temperature is higher than the optimal temperature, then the cooler 

actuator is activated automatically. If the predicted temperature is lower than optimal temperature, then 

the heater is activated automatically and increases the temperature level of the fish tank. Afterwards, 
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heater and cooler are operated after certain intervals when indoor temperature drops below the desired 

minimum level, and temperature increases above the maximum desired limit.  Figure 75 describes the 

water pump, fish feeder, and pH controller working level and operational duration results. If the 

predicted temperature is higher than the optimal temperature, then the cooler actuator is activated 

automatically.  

 

a) Water Pump 

 

b) Fish feeder 

 

c) pH Controller 

Figure 75: Fuzzy logic control module results a) pump b) fish feeder c) pH controller. 
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If the predicted water level is lower than the optimal water level, then we activate the water 

pump. Then the water pump increases the water level of the fish tank. As the water level reaches the 

optimal level, then the water pump is deactivated water level automatically and activation duration 

become 0.   

4.9  Performance Results of Embedded Predictive Optimal Control Scheme based on 

Power Policy 

In this subsection, we describe the power policy results of the proposed embedded predictive 

optimal control scheme. For the calculation of the power policy we consider 1 kWh electricity cost  129 

won on average for a typical spring day in Jeju, South Korea. As we mentioned above the optimal power 

policy can be achieved with controlling the actuators with an optimal way. Actuators can be activated 

with minimum, medium, and maximum working level, and they require various activation duration 

based on these working levels. Various working level and operational duration consumes different 

energy consumption and power policy. If actuators are activated with a minimum working level, then 

they require long time activation. If actuators are run with a maximum working level, then they require 

a short time activation period. Figure 76 presents the power policy results of the proposed embedded 

predictive control scheme results based on actuators working levels. It can be seen in order to achieve 

optimal power policy fish feeder and heater are needed to activate with minimum working level. Fish 

feeder requires 20446.5 won, 31401 won and 30948 won, with activating the actuator minimum, 

medium, and maximum levels, respectively.  Maximum level activation requires the least pricy policy 

in terms of pH controller, water pump, and cooler actuators; these actuators spend 14476, 41229.6, and 

26545.4 won power policy, respectively.  
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Figure 76: Power Policy results of the proposed embedded predictive control. 
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5. Performance and Comparison Analysis  

In this chapter, we present a detailed discussion of the comparison and performance analysis results. 

For a clear explanation, we describe our performance analysis in four phases. Firstly, we will discuss 

the optimization module results along with other necessary system parameters and settings. The second 

phase presents the actuators’ control module results. In the third phase, we present a comparative 

analysis of energy consumption results. Lastly, optimization of power policy results is described based 

on optimization and without optimization schemes in order to evaluate the advantages of the proposed 

system.  

5.1 Comparison and Performance Analysis of Optimization Scheme 

This section presents the analysis of the optimization module results. For analysis of the 

effectiveness of the proposed optimization module, we have conducted numerous experiments and 

based on actual sensing values and predicted values. In addition, we have tested the proposed system 

effectiveness the optimization module by comparing the with and without optimization module results. 

The optimization scheme is based on a mathematical formula, which is described in detail in Chapter 

3.2; this objective function can calculate the optimal temperature, water level, conductivity and water 

level parameters with efficient energy consumption to the fish tank based on user-desired parameters 

and the system constraints. Without optimization, module does not have any optimization formulations, 

and it is based on the selection of the midpoint of the user-specified range for each parameter.  If the 

predicted sensing values are outside of the user desired ranges, then the system automatically considers 

the optimal values as a midpoint of the user-desired minimum and maximum values. Table 4 describes 

the fish farm environmental values, available and optimal ranges. As we mentioned already, this work 

considers four environmental parameters of the fish tank environment, namely, temperature, pH level, 

conductivity and water level. The available ranges describe overall cases for each parameter in general, 

whereas, an optimal range provides the most acceptable values to the fish farm. Fish farm related 

researches describe that the available value ranges for the first three parameters are 10-40°C, 0-14 acid, 

and 10-2000 µS/cm, respectively,  while optimal ranges are 20-25 °C, 6.5-8.0 acid, and 300-500 µS/cm.   
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Table 16  presents the objective function weights and alpha parameters which are performed for 

these experiments. In the simulation process, we mention the time interval of and fish tank sensor data 

collection in every 15 minutes; then, the objective function is activated in the required period. Actuators 

operational level is divided into three levels, namely, minimum, medium, and maximum.  

Table 16: Parameter settings for the optimization algorithm. 

Parameter Value Ranges 

αEC 0.5 

αOE 0.5 

Tmin 20 

Tmax 25 

pHmin 6.5 

pHmax 8.0 

Cmin 300 

Cmax 500 

Wmin 280 

Wmax 320 

 

Figure 77 describes the temperature optimization module results based on optimization and 

without optimization schemes using actual sensing values.  It can be seen that the actual temperature 

parameters are between 10-40 °C in the fish tank. Using an optimization algorithm, the system 

calculates the optimal temperature values to the environment between user desired maximum and 

minimum values. Baseline scheme based optimization calculates the midpoint of the user maximum 

and minimum values.  

 

a) 
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b) 

Figure 77: Analysis of  temperature level optimization module results without predicted values a) without 

optimization b) with optimization. 

Figure 78 presents the pH level optimization module results based on optimization and baseline 

scheme.  It can be seen that the actual pH level parameters are between 0-14 acid  in fish tank. With 

using an optimization algorithm, the system calculates the optimal pH level values to the environment 

between user desired maximum and minimum values. Baseline scheme based optimization calculates 

the midpoint of the user maximum and minimum values. If the actual pH level is outside from 6.5-8 

values then the system automatically takes (6.5+8)/2 = 7.25. Optimization scheme is based on an 

objective function which calculates the optimal pH level values based on that formulation. 

 

a) 
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b) 

Figure 78: Analysis of pH level optimization module results without predicted values a) without 

optimization b) with optimization. 

Figure 79 illustrates the conductivity level optimization module results based on optimization 

and baseline scheme.  It can be seen that the actual conductivity level parameters are between 10-2000  

in the fish tank. Using an optimization algorithm, the system calculates the optimal conductivity level 

values to the environment between user desired maximum and minimum values. Baseline scheme based 

optimization calculates the midpoint of the user maximum and minimum values. If the actual 

conductivity level is outside from 300-500 values, then the system automatically takes (300+500)/2 = 

400.  

 

a) 



121 
 

 

b) 

Figure 79: Analysis of conductivity optimization module results without predicted values a) without 

optimization b) with optimization. 

Figure 80 shows the water level optimization module results based on optimization and baseline 

scheme.  It can be seen that the actual water level parameters are between 0-350 mm in fish tank. Using 

an optimization algorithm, the system calculates the optimal water level values to the environment 

between user desired maximum and minimum values. Baseline scheme based optimization calculates 

the midpoint of the user maximum and minimum values.  

 

a) 
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b) 

Figure 80: Analysis of conductivity optimization module results without predicted values a) without 

optimization b) with optimization. 

Figure 81 compares the optimization and without optimization scheme based optimization 

module results with user-desired set points. It can be clearly seen that in both cases the optimization 

scheme based optimal temperature and pH level results are more optimal with comparing without 

optimization schemes. Also, it is important to note that during the mentioned period, temperature and 

pH level values are between the user-desired minimum and maximum set-points, which means the 

optimization module is working accurately.  

 
a) Temperature 
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b) pH level 

Figure 81: Comparisons of Optimization and without optimization module results a) temperature b) pH 

level 

Figure 82 compares the optimization and baseline scheme based optimization module results 

with user-desired set points. It can be clearly seen that in both cases, the optimization scheme based 

optimal conductivity and water level level results are more optimal with comparing baseline scheme 

based optimization. Also, it is essential to note that during the mentioned period, temperature and pH 

level values are between the user-desired minimum and maximum set-points, which means the 

optimization module is working accurately. 

 

a) Conductivity 
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b) Water level 

Figure 82:Comparisons of Optimization, and without optimization module results a) 

conductivity b) water level. 

Optimization scheme results represent that optimized sensing values always come inside of the 

user desired minimum and maximum values. Furthermore, the optimization scheme based results are 

more optimal compared to without optimization scheme results.        

5.2 Comparison and Performance Analysis of Actuator Control  

Generally, fixed and variable working-level heater, cooler, water pumps, pH control, and fish 

feeder are utilized in real-life solutions. The fixed working-level actuators operate with a specific speed 

and consume the same amount of energy for each task. On the other hand, the variable speed or working 

level devices can operate with various working levels to produce different temperature, water, ph or 

feeding level according to the user demand. A high working level requires more energy as compared to 

the lower working levels. In the fish farm or the greenhouse environment, the power consumption of 

the actuators can be minimized by decreasing the working level, but it requires to operate actuators with 

extra time. Figure 83 illustrates the heater and cooler working level and activation duration results in 

the first 150 sensing data instances. Heater and Cooler system work dependently. If the predicted 

temperature level is lower than the optimal temperature level, then the heater is activated for reaching 

the optimal temperature level. If the predicted temperature level is higher than the optimal temperature 
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level, the cooler operates for decreasing the predicted temperature to the optimal temperature level. 

When actuators are working with a different level, they require different time for achieving the optimal 

point. For instance, in the first sensing data, the water pump is spending 4.5, 7.5, and 10.5 minutes with 

the minimum, medium, and maximum working levels, respectively.  

 

a) Heater 

 

b) Cooler 

Figure 83:Activation duration results based on different working levels for the Heater and 

Cooler. 

Figure 84 (a) and (b) describes the working level and duration results of the water level and pH 

values. For instance, for the 3-4 sensing data, the water pump is spending about 12.5, 9.5, and 8.6 

minutes with the minimum, medium, and maximum working level, respectively.  We make a group of 

the results according to the actuators working level. However, the proposed fuzzy logic control module 

selects the optimal working level and duration to the actuators according to the predicted and optimal 
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data. Controlling actuators not only helps the optimal utilization of resources but also provides 

automation of the fish farm.  

 

a) Water Pump 

 

b) pH Controller 

Figure 84: Activation duration results based on different working levels for the Water Pump and pH 

controller. 

Figure 85 describes the fish feeders' operational duration according to the various working 

levels. The feeding process is based on the data, which is collected in the historical feeding process. 

With activating the fish feeder with various working-level, we can achieve various energy consumption 

then we can find out the minimum energy consumption level based on the various working level and 

operational duration. 
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Figure 85: Fish feeder actuator’s activation duration with various working level. 

Based on the working-level level and activation duration, we can calculate the overall activation 

duration for each actuator, namely, heater, cooler, pump, pH controller, fish feeder. Computing the 

activation period of the actuators based on different working-level helps us to calculate energy 

consumption for each level as shown in Figure 86.   

 

Figure 86: Comparative analysis of actuators operational duration results based on different working 

levels. 

With activating the actuators with various working levels, actuators require various activation 

duration. As can be seen, if we activate the heater actuator with minimum working level then actuator 

requires 501.5 minutes to achieving the optimal temperature for the 1-week data.   
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5.3 Comparison and Performance Analysis of Energy Consumption 

To calculate energy consumption analysis, we have selected power ratings as in Table 16. For 

every actuator, we assume three working-level operations with different energy consumption. When the 

water pump is activated with maximum working level, 1400-1800 watts energy is needed with little 

operational duration. For module simplicity, we have taken the mid-point of the power rating ranges of 

the working levels. For instance, with the minimum, medium, and maximum working level, the water 

pump requires 800, 1200, and 1600 watts, respectively. Figure 87 illustrates the actuators' energy 

consumption results in kWh according to the different working levels. As can be seen from the graphs, 

power consumption by the water pump is dominating comparing with other actuators. The water pump 

is spending 333, 373.2, and 318.3 kWh with activating minimum, medium, and the maximum level, 

respectively.  

      

Figure 87: Comparative analysis of energy consumption of the actuators. 

If the water pump is activated with maximum working level, then it consumes less energy, and 

when it works with the medium working level, it spends the most power compared to other working 

levels. For decreasing the energy consumption results, we need to activate the fish feeder and heater 
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actuators with a minimum working level. However, the rest of the actuators, namely, pH controller, 

water pump, and cooler, needs to be activated with a maximum working level.  

As we have mentioned above, the optimization module provides the optimal temperature, pH 

level, conductivity, and water levels to the environment based on user-desired settings and constraints. 

According to the optimal level, the predicted values of the environment can be increased with 

controlling actuators.  For the development of without optimization scheme, we have used the baseline 

scheme, which is relatively simple. The without optimization scheme is based on the selection of the 

midpoint of user-desired ranges for each parameter.  For instance, if user desired maximum and 

minimum ranges water level ranges are equal to 280 mm and 320 mm, respectively. Optimal water level 

becomes equal to 300 mm ((280+320)/2 = 300 mm). The water pump is needed to activate for increasing 

or decreasing the predicted water level for achieving the optimal point. From the above-mentioned user-

desired mid-point level selection, temperature, water level, pH level, and conductivity level optimal 

levels become 22.5°C, 300 mm,  7.25 acid, 400 µS/cm, respectively. Our target is controlling the 

actuators for reaching the current levels for these levels. The maximum working level, operational 

durations, and fuzzy logic rules are also applied to the for all four cases. Figure 88 describes the 

comparative analysis of the energy consumption results based on various cases of the relations between 

without prediction, prediction, without optimization and optimization cases. As expected, the proposed 

prediction-optimization based system has less energy consumption. It can be seen that without 

prediction-without optimization case heater, cooler, pump, pH controller, and fish feed have spent 10.8, 

34.6, 50.7, 22.7, and 32.8 kW energy, respectively, for one day. In the prediction-optimization case, 

these actuators have spent 6.8, 29.3, 42.5, 14.9, and 22.5 kW energy for the same task. If we take the 

heater actuator as an example, the prediction-optimization based system has 37.2%, 33.3%, and 8.1% 

energy efficiency compared to without prediction-without optimization, with prediction-without 

optimization, without prediction, and with optimization results.  



130 
 

 

Figure 88: Comparative analysis of energy consumption results based on various cases. 

Overall, the proposed prediction-optimization based environment control energy consumption 

is 27%, 23.6%, and 11.8% effective in energy consumption compared with without prediction-without 

optimization, with prediction-without optimization, without prediction, and with optimization results, 

respectively. 

5.4 Comparison and Performance Analysis of Power Policy  

In order to conduct cost and power consumption analysis, we have to assign power ratings to 

the  1 kWh electricity costs 129 won on average for a typical spring day in Jeju, South Korea. According 

to the actuators' overall energy consumption, we can calculate the overall pricy policy to each actuators’ 

working level. Figure 89 illustrates the power policy results of the proposed system. Power policy 

results show that fish feeder and heater minimum level activation requires the least payment compared 

with other activation levels. However, the pH controller, water pump, and cooler actuators spend less 

price with activating the maximum level. The diagram compares how much money is spent on fish tank 

actuators in four different cases. Overall, more money is spent on water pump activation than any other 

product. Also, without prediction-without optimization case is required the highest amount among the 

compared other cases, while the lowest spending levels are attributed to proposed with prediction-with 

optimization case. In overall, the proposed system spends 918 krw, 753 krw, and  423 krw less money 
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compared to without prediction-without optimization, without prediction-with optimization, with 

prediction-With Optimization cases. 

 

Figure 89: Comparative analysis of power policy results of the actuators. 
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6. Conclusion and Future Directions 

In this thesis, we have proposed an embedded machine learning technologies based optimal 

embedded control platform for efficient energy consumption and fish growth in the fish tank. The 

contribution of the proposed embedded solution is as followed. Firstly we installed temperature, pH 

level, conductivity, and water level sensors, and various actuators to the fish tank and collected real-

time sensing values from the environment. Secondly, we trained RNN-LSTM based prediction model 

using internal and external environmental parameters to predict temperature, pH, conductivity, and 

water level parameters. As well as we converted this model to the Tensorflow Lite format. Thirdly, we 

have formulated the objective function for the optimization to calculate the most desirable 

environmental parameters for fish growth with efficient energy consumption. Fourthly, the 

development of the fuzzy logic-based control module which sets up working level and operational 

duration to the actuators using predicted and optimal values. Lastly and the most important, the 

deployment of the overall platform to the Embedded Device. Power policy results show that fish feeder 

and heater minimum level activation requires the least payment compared with other activation levels. 

However, pH controller, water pump, and cooler actuators spend less price with activating the 

maximum level. If the water pump is activated with maximum working level, then it consumes less 

energy, and when it works with the medium working level, it spends the most power compared to other 

working levels. For decreasing the energy consumption results, we need to activate the fish feeder and 

heater actuators with a minimum working level. However, the rest of the actuators, namely, pH 

controller, water pump, and cooler, needs to be activated with a maximum working level. Energy 

consumption results show that through an optimization scheme, we can achieve a significant reduction 

(22.8%) in energy consumption. The proposed prediction-optimization based environment control 

energy consumption is 27%, 23.6%, and 11.8% effective in energy consumption compared with without 

prediction-without optimization, with prediction-without optimization, without prediction, and with 

optimization results. Also it spends 918 krw, 753 krw, and  423 krw less money compared to without 

prediction-without optimization, without prediction-with optimization, with prediction-With 

Optimization cases.          



133 
 

References 
 

1. The World Population Prospects: 2015 Revision; U.N. Department of Economic and Social 

Affairs: New York, NY, USA, 2014. Available online: 

http://www.un.org/en/development/desa/news/population/2015 report.html  (accessed on 5 March 

2020). 

2. Meat and Meat Products, FAOSTAT Statistical Database; U.N. Food and Agriculture 

Organization (FAO): Rome, Italy, January 2003. Available online: 

http://www.fao.org/docrep/005/y9141e/y9141e13.htm (accessed on 10 March 2020). 

3. The State of World Fisheries and Aquaculture; Food and Agriculture Organization of the United 

Nations: Rome, Italy, 2014. Available online: http://www.fao.org/3/a-i3720e.pdf  (accessed on 5 

July 2019). 

4. Living Blue Planet Report 2015; World Wildlife Fund: Morges, Switzerland, 2015. Available 

online: http://www.worldwildlife.org/publications/living-blue-planet-report-2015 (accessed on 13 

June 2018). 

5. The Aquaculture Industry: An Ocean of Investment Opportunity. Available online: 

https://www.forbes.com/sites/michaelhelmstetter/2019/04/04/the-aquaculture-industry-an-ocean-

of-investment-opportunity/#377109835666 (accessed on 10 March 2020). 

6. The State of World Fisheries and Aquaculture; Food and Agriculture Organization of the United 

Nations: Rome, Italy, 2018. Available online: http://www.fao.org/3/I9540EN/i9540en.pdf 

(accessed on 10 March 2020). 

7. Berillis, P., Mente, E., & Kormas, K. A. (2017). The use of copper alloy in aquaculture fish net 

pens: mechanical, economic and environmental advantages. Journal of FisheriesSciences. com, 

11(4), 1-3. 

8. DeLorme, A. L., Gavenus, E. R., Salmen, C. R., Benard, G. O., Mattah, B., Bukusi, E., & Fiorella, 

K. J. (2018). Nourishing networks: A social-ecological analysis of a network intervention for 

improving household nutrition in Western Kenya. Social Science & Medicine, 197, 95-103. 

9. Veiga, P.; Stoner, J.; Lee-Harwood, B. Reduction Fisheries SFP Fisheries Sustainability Overview 

2016. Sustainable Fisheries Partnership Foundation. Available online: http://www.fishsource.com  

(accessed on 10 March 2020). 

10. Khudoyberdiev, A., Jin, W., & Kim, D. (2019). A Novel Approach towards Resource Auto-

Registration and Discovery of Embedded Systems Based on DNS. Electronics, 8(4), 442. 

11. Mehmood, F.; Ullah, I.; Ahmad, S.; Kim, D. Object detection mechanism based on deep learning 

algorithm using embedded IoT devices for smart home appliances control in CoT. J. Ambient 

Intell. Humanize. Comput. 2019. 

12. Gronau, N., Ullrich, A., & Teichmann, M. (2017). Development of the industrial IoT competences 

in the areas of organization, process, and interaction based on the learning factory concept. 

Procedia Manufacturing, 9, 254-261. 

13. Sung, W. T., Chen, J. H., Huang, D. C., & Ju, Y. H. (2014, October). Multi sensors realtime data 

fusion optimization for IOT systems. In 2014 IEEE International Conference on Systems, Man, 

and Cybernetics (SMC) (pp. 2299-2304). IEEE. 

14. Dupont, C., Wussah, A., Malo, S., Thiare, O., Niass, F., Pham, C., ... & Cousin, P. (2018, May). 

Low-Cost IoT Solutions for Fish Farmers in Africa. In 2018 IST-Africa Week Conference (IST-

Africa) (pp. Page-1). IEEE. 

http://www.un.org/en/development/desa/news/population/2015%20report.html
http://www.fao.org/docrep/005/y9141e/y9141e13.htm
http://www.fao.org/3/a-i3720e.pdf
http://www.worldwildlife.org/publications/living-blue-planet-report-2015
https://www.forbes.com/sites/michaelhelmstetter/2019/04/04/the-aquaculture-industry-an-ocean-of-investment-opportunity/#377109835666
https://www.forbes.com/sites/michaelhelmstetter/2019/04/04/the-aquaculture-industry-an-ocean-of-investment-opportunity/#377109835666
http://www.fao.org/3/I9540EN/i9540en.pdf
http://www.fishsource.com/


134 
 

15. Ullah, I., & Kim, D. (2018). An optimization scheme for water pump control in smart fish farm 

with efficient energy consumption. Processes, 6(6), 65. 

16. Fish indoor industrial production recirculating aquaculture system: Our projects around the world. 

Available online:  https://ro.pinterest.com/pin/401101910534327733/ (accessed on 5 April 2020). 

17. Simbeye, D.S., Zhao, J., Yang, S., 2014. Design and deployment of wireless sensor networks for 

aquaculture monitoring and control based on virtual instruments. Comput. Electron. Agric. 102, 

31–42. 

18. Chen, J.H., Sung, W.T., Lin, G.Y., 2015. Automated monitoring system for the fish farm 

aquaculture environment. In: Proceedings of the 2015 IEEE International Conference on Systems, 

Man, and Cybernetics (SMC), Kowloon, China, 9–12 October 2015, pp. 1161–1166. 

19. Luo, Hongpin, Guanglin, L., Weifeng, P., Jie, S., Qiuwei, B., 2015. Real-time remote monitoring 

system for aquaculture water quality. Int. J. Agric. Biol. Eng. 8 (6), 136–143. 

20.  Zhang, Y., Hua, J., Wang, Y.B., 2013. Application effect of aquaculture IOT system. Appl. Mech. 

Mater. 303, 1395–1401. 

21. Idachaba, Francis E., Olowoleni, Joseph O., Ibhaze, Augustus E., Oni, Oluyinka O., 2017. IoT 

enabled real-time fishpond management system. Proceedings of the World Congress on 

Engineering and Computer Science 2017 Vol I , WCECS 2017, October 25-27, San Francisco, 

USA. 

22. Wang, Xin, Ma, Longquan, Yang, Huizhong, 2011. Online water monitoring system based on 

ZigBee and GPRS. Procedia Eng. 15, 2680–2684. 

23. Tai, Haijiang, Liu, Shuangyin, Li, Daoliang, Ding, Qisheng, Ma, Daokun, 2012. A 

multienvironmental factor monitoring system for aquiculture based on wireless sensor networks. 

Sens. Lett. 10 (1), 265–270. 

24.  Epinosa-Faller, Francisco J., Rendon-Rodriguez, Guillermo E., 2012. A ZigBee wireless sensor 

network for monitoring an aquaculture recirculating system. J. Appl. Res. Technol. 10 (3), 380–

387. 

25. Cario, G., Casavola, A., Gjanci, P., Lupia, M., Petrioli, C., Spaccini, D., 2017. Long lasting 

underwater wireless sensors network for water quality monitoring in fish farms. 

26.  Elshabrawy, T., Robert, J., 2018. Closed-form approximation of LoRa modulation BER 

performance. IEEE Commun. Lett. 22 (9), 1778–1781. 

27. Zhang, Y.J., Wang, W.S., Yan, L., Glamuzin, Branko, Zhang, X.S., 2019. Development and 

evaluation of an intelligent traceability system for waterless live fish transportation. Food Control 

95, 283–297. 

28.  Lee, J., Stanley, M., Spanias, A., & Tepedelenlioglu, C. (2016, December). Integrating machine 

learning in embedded sensor systems for Internet-of-Things applications. In 2016 IEEE 

international symposium on signal processing and information technology (ISSPIT) (pp. 290-294). 

IEEE. 

29.  Lipnicki, P., Lewandowski, D., Syfert, M., Sztyber, A., & Wnuk, P. (2019, August). Inteligent 

IoTSP-Implementation of Embedded ML AI Tensorflow Algorithms on the NVIDIA Jetson Tx 

Chip. In 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud) (pp. 

296-302). IEEE. 

30.  Min, Q., Lu, Y., Liu, Z., Su, C., & Wang, B. (2019). Machine learning based digital twin 

framework for production optimization in petrochemical industry. International Journal of 

Information Management, 49, 502-519. 

https://ro.pinterest.com/pin/401101910534327733/


135 
 

31. Jiménez, R., Hernández, R. D., & Avilés, O. F. (2018). Signal Language Recognition System 

Through Convolutional Neural Network Embedded in Raspberry PI 3. International Journal of 

Applied Engineering Research, 13(14), 11495-11500. 

32. Tang, J., Sun, D., Liu, S., & Gaudiot, J. L. (2017). Enabling deep learning on IoT devices. 

Computer, 50(10), 92-96. 

33. Younis, K. S., Ayyad, W., & Al-Ajlony, A. (2017, October). Embedded system implementation 

for material recognition using deep learning. In 2017 IEEE Jordan Conference on Applied 

Electrical Engineering and Computing Technologies (AEECT) (pp. 1-6). IEEE. 

34. De Venuto, D., Annese, V. F., & Mezzina, G. (2017, March). An embedded system remotely 

driving mechanical devices by P300 brain activity. In Design, Automation & Test in Europe 

Conference & Exhibition (DATE), 2017 (pp. 1014-1019). IEEE. 

35. Zeroual, A., Derdour, M., Amroune, M., & Bentahar, A. (2019, June). Using a Fine-Tuning 

Method for a Deep Authentication in Mobile Cloud Computing Based on Tensorflow Lite 

Framework. In 2019 International Conference on Networking and Advanced Systems (ICNAS) 

(pp. 1-5). IEEE. 

36. Hasan, M. O., Islam, M. M., & Alsaawy, Y. (2019, June). Smart Parking Model based on Internet 

of Things (IoT) and TensorFlow. In 2019 7th International Conference on Smart Computing & 

Communications (ICSCC) (pp. 1-5). IEEE. 

37. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions 

on industrial informatics, 10(4), 2233-2243. 

38. Li, S., Da Xu, L., & Zhao, S. (2015). The internet of things: a survey. Information Systems 

Frontiers, 17(2), 243-259. 

39. Chen, J. H., Sung, W. T., & Lin, G. Y. (2015, October). Automated monitoring system for the fish 

farm aquaculture environment. In 2015 IEEE International Conference on Systems, Man, and 

Cybernetics (pp. 1161-1166). IEEE. 

40. Raju, K. R. S. R., & Varma, G. H. K. (2017, January). Knowledge based real time monitoring 

system for aquaculture using IoT. In 2017 IEEE 7th International Advance Computing Conference 

(IACC) (pp. 318-321). IEEE. 

41. SK Telecom Starts Pilot Operation of IoT-based Fish Farm Management System. Available online: 

http://en.c114.com.cn/576/a855896.html  (accessed on 15 March 2020). 

42. Dhenuvakonda, K., & Sharma, A. Mobile apps and internet of things (IoT): A promising future for 

Indian fisheries and aquaculture sector. 

43. Shareef, Z., Reddy, S. R. N., & IGDTUW, D. (2016, July). Design and development of IOT Based 

Framework for Aquaculture. In National Conference on Product Design (NCPD 2016). 

44. Wu, M., Zhang, X., & Wu, T. (2010, March). Research on the aquaculture multi-parameter 

monitoring system. In 2010 2nd International Asia Conference on Informatics in Control, 

Automation and Robotics (CAR 2010) (Vol. 1, pp. 76-79). IEEE. 

45. Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J. A., Dempster, T., ... & Schellewald, 

C. (2018). Precision fish farming: A new framework to improve production in aquaculture. 

biosystems engineering, 173, 176-193. 

46. Lantsova, E., Voitiuk, T., Zudilova, T., & Kaarna, A. (2016, July). Using low-quality video 

sequences for fish detection and tracking. In 2016 SAI Computing Conference (SAI) (pp. 426-

433). IEEE. 

http://en.c114.com.cn/576/a855896.html


136 
 

47. Simbeye, D.S.; Zhao, J.; Yang, S. Design and deployment of wireless sensor networks for 

aquaculture monitoring and control based on virtual instruments. Comput. Electron. Agric. 2014, 

102, 31–42. 

48. Cobo, Á., Llorente, I., Luna, L., & Luna, M. (2019). A decision support system for fish farming 

using particle swarm optimization. Computers and Electronics in Agriculture, 161, 121-130. 

49. Kodali, R. K., Jain, V., & Karagwal, S. (2016, December). IoT based smart greenhouse. In 2016 

IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 1-6). IEEE. 

50. Shah, P. P., Patil, A. A., & Ingleshwar, S. S. (2017, February). IoT based smart water tank with 

Android application. In 2017 International Conference on I-SMAC (IoT in Social, Mobile, 

Analytics and Cloud)(I-SMAC) (pp. 600-603). IEEE. 

51. Anand, S., & Regi, R. (2018, February). Remote monitoring of water level in industrial storage 

tanks using NB-IoT. In 2018 International Conference on Communication information and 

Computing Technology (ICCICT) (pp. 1-4). IEEE. 

52. Shrenika, R. M., Chikmath, S. S., Kumar, A. R., Divyashree, Y. V., & Swamy, R. K. (2017, 

March). Non-contact water level monitoring system implemented using labview and arduino. In 

2017 International Conference on Recent Advances in Electronics and Communication 

Technology (ICRAECT) (pp. 306-309). IEEE. 

53. Shankar, S., & Dakshayini, M. (2018, September). IoT-Mobile Enabled Smart Water Level 

Controlling System to Regulate Water Wastage. In 2018 International Conference on Advances in 

Computing, Communications and Informatics (ICACCI) (pp. 2045-2048). IEEE. 

54. B.J. Moore, D.S. Fisher Pump pressure differential setpoint reset based on chilled water valve 

position ASHRAE Transactions, 109 (1) (2003), pp. 373-379 

55. J.E. Braun, S.A. Klein, J.W. Mitchell, W.A. Beckman Applications of optimal control to chilled 

water systems without storage ASHRAE Transactions, 95 (1) (1989), pp. 663-675 

56. MathWorks:Predictive Analytics 3 Things you Need to Know, 2020. Available online: 

https://www.mathworks.com/discovery/predictive-analytics.html (Accessed on 5 May 2020)  

57. N. Amjady, F. Keynia and H. Zareipour, "Wind Power Prediction by a New Forecast Engine 

Composed of Modified Hybrid Neural Network and Enhanced Particle Swarm Optimization," in 

IEEE Transactions on Sustainable Energy, vol. 2, no. 3, pp. 265-276, July 2011. 

58. Yokoyama, R., Wakui, T., & Satake, R. (2009). Prediction of energy demands using a neural 

network with model identification by global optimization. Energy Conversion and 

Management, 50(2), 319-327. 

59. Tulabandhula, T., & Rudin, C. (2013). Machine learning with operational costs. The Journal of 

Machine Learning Research, 14(1), 1989-2028. 

60. Ullah, I., & Kim, D. (2018). An optimization scheme for water pump control in the smart fish farm 

with efficient energy consumption. Processes, 6(6), 65. 

61. Bentley, P. J., & Wakefield, J. P. (1998). Finding acceptable solutions in the pareto-optimal range 

using multiobjective genetic algorithms. In Soft computing in engineering design and 

manufacturing (pp. 231-240). Springer, London. 

62. García-Álvarez-Coque, M. C., Torres-Lapasió, J. R., & Baeza-Baeza, J. J. (2006). Models and 

objective functions for the optimisation of selectivity in reversed-phase liquid chromatography. 

Analytica chimica acta, 579(2), 125-145. 

63. Shen, Z., Andrews, J. G., & Evans, B. L. (2005). Adaptive resource allocation in multiuser OFDM 

systems with proportional rate constraints. IEEE transactions on wireless communications, 4(6), 

2726-2737. 

https://www.mathworks.com/discovery/predictive-analytics.html


137 
 

64. Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial optimization: algorithms and 

complexity. Courier Corporation. 

65. Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five evolutionary-based 

optimization algorithms. Advanced engineering informatics, 19(1), 43-53. 

66. Vardakas, J. S., Zorba, N., & Verikoukis, C. V. (2014). A survey on demand response programs 

in smart grids: Pricing methods and optimization algorithms. IEEE Communications Surveys & 

Tutorials, 17(1), 152-178. 

67. Y. Morsly, N. Aouf, M. S. Djouadi, and M. Richardson, “Particle swarm optimization inspired 

probability algorithm for optimal camera network placement,” IEEE Sens. J., vol. 12, no. 5, pp. 

1402–1412, 2012. 

68. Y. Zheng and S. Peng, “A practical roadside camera calibration method based on least squares 

optimization,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 2, pp. 831–843, 2014. 

69. M. Saska et al., “Autonomous deployment of swarms of micro-aerial vehicles in cooperative 

surveillance,” in Unmanned Aircraft Systems (ICUAS), 2014 International Conference on, 2014, 

pp. 584–595. 

70. X. Liu, Z. Guan, Y. Song, and D. Chen, “An optimization model of UAV route planning for road 

segment surveillance,” J. Cent. South Univ., vol. 21, no. 6, pp. 2501–2510, 2014. 

71. L. Tian, H. Wang, Y. Zhou, and C. Peng, “Video big data in smart city: Background construction 

and optimization for surveillance video processing,” Futur. Gener. Comput. Syst., 2018. 

72. B. Asare-Bediako, P. F. Ribeiro, and W. L. Kling, “Integrated energy optimization with smart 

home energy management systems,” in Innovative Smart Grid Technologies (ISGT Europe), 2012 

3rd IEEE PES International Conference and Exhibition on, 2012, pp. 1–8. 

73. M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, “Coordinated scheduling of residential 

distributed energy resources to optimize smart home energy services,” IEEE Trans. Smart Grid, 

vol. 1, no. 2, pp. 134–143, 2010. 

74. K. M. Tsui and S.-C. Chan, “Demand response optimization for smart home scheduling under real-

time pricing,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1812–1821, 2012. 

75. J.E. Braun, S.A. Klein, J.W. Mitchell, W.A. Beckman Applications of optimal control to chilled 

water systems without storage ASHRAE Transactions, 95 (1) (1989), pp. 663-675 

76. Zhang, Z. (2008). Multi-objective optimization immune algorithm in dynamic environments and 

its application to greenhouse control. Applied Soft Computing, 8(2), 959-971. 

77. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—big data, machine learning, and 

clinical medicine. The New England journal of medicine, 375(13), 1216. 

78. Yeh, S. H., Wang, C. J., & Tsai, M. F. (2014, July). Corporate default prediction via deep learning. 

In Proceedings of the 34th International Symposium on Forecasting (ISF’14), Rotterdam, The 

Netherlands (Vol. 29). 

79. Fallah, S. N., Deo, R. C., Shojafar, M., Conti, M., & Shamshirband, S. (2018). Computational 

intelligence approaches for energy load forecasting in smart energy management grids: state of the 

art, future challenges, and research directions. Energies, 11(3), 596. 

80. Lv, Z., Song, H., Basanta-Val, P., Steed, A., & Jo, M. (2017). Next-generation big data analytics: 

State of the art, challenges, and future research topics. IEEE Transactions on Industrial Informatics, 

13(4), 1891-1899. 

81. Amasyali, K., & El-Gohary, N. M. (2018). A review of data-driven building energy consumption 

prediction studies. Renewable and Sustainable Energy Reviews, 81, 1192-1205. 



138 
 

82. MathWorks: Long Short Term Memory Networks. Available online: 

https://www.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html. 

(accessed on 7 May 2020).  

83. Jiang, X., Wang, H., Chen, Y., Wu, Z., Wang, L., Zou, B., ... & Lv, C. (2020). MNN: A Universal 

and Efficient Inference Engine. arXiv preprint arXiv:2002.12418. 

84. Hu, H. (2019). An educational Arduino robot for visual Deep Learning experiments. International 

Journal of Intelligent Robotics and Applications, 1-9. 

85. Larsen, R. M., & Shpeisman, T. (2019). TensorFlow Graph Optimizations. 

86. Tensorflow.org: Tenforflow for Mobile and IoT, Tenforflow converter. Available online: 

https://www.tensorflow.org/lite/convert (accessed on 3 May 2020). 

87. Larsen, P. M. (1980). Industrial applications of fuzzy logic control. International Journal of Man-

Machine Studies, 12(1), 3-10. 

88. Do, H., Massa, F., & Tison, T. (2016). Using fuzzy logic control approach and model reduction 

for solving frictional contact problems. Engineering Computations. 

89. Baldi, P., Fermüller, C. G., & Hofer, M. F. (2020). On fuzzification mechanisms for unary 

quantification. Fuzzy Sets and Systems. 

90. Radhika, C., & Parvathi, R. (2016). Intuitionistic fuzzification functions. Global Journal of Pure 

and Applied Mathematics, 12(2), 1211-1227. 

91. Muravyova, E. A., Sharipov, M. I., & Bondarev, A. V. (2017, May). Fuzzification concept using 

the any-time algorithm on the basis of precise term sets. In 2017 International Conference on 

Industrial Engineering, Applications and Manufacturing (ICIEAM) (pp. 1-4). IEEE. 

92. Liu, Q., & Shi, F. G. (2019). A new approach to the fuzzification of groups. Journal of Intelligent 

& Fuzzy Systems, (Preprint), 1-14. 

93. Baldovino, R. G., Ong, A. P. R., Baniqued, P. D. E., & Dadios, E. P. (2017). A Fuzzy-Based Pulse-

Width Modulation (PWM) Control for Low Speed Autonomous Emergency Braking (AEB) 

System: A Mini-Fuzzy Associative Matrix (FAM) Approach. Advanced Science Letters, 23(11), 

11404-11408. 

94. Fish farm monitoring data. Available online: https://www.kaggle.com/alexisaucapuri/notebook 

(Accessed on 5 June 2020). 

95. “Weather in Jeju City-Meteoblue,” 2020. Available online: 

https://www.meteoblue.com/en/weather/archive/export/jeju-city_republic-of-korea_1846266 (accessed on 3 

June  2020). 

96. M. C. Bozchalui, C. A. Cañizares, and K. Bhattacharya, “Optimal energy management of 

greenhouses in smart grids,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 827–835, 2015. 

97. E. ToolBox, “Mixing Liquids and/or Solids - Final Temperatures,” Engineering ToolBox, 2011. 

[Online]. Available: https://www.engineeringtoolbox.com/temperature-mixing-liquid-solids-

d_1754.html. [Accessed: 02-June-2020]. 

98. M. C. Bozchalui, “Optimal Operation of Energy Hubs in the Context of Smart Grids,” University 

of Waterloo, 2011. 

https://www.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html
https://www.tensorflow.org/lite/convert
https://www.kaggle.com/alexisaucapuri/notebook
https://www.meteoblue.com/en/weather/archive/export/jeju-city_republic-of-korea_1846266?daterange=2020-06-26%20to%202020-07-03&min=2020-06-26&max=2020-07-03&domain=NEMSAUTO&params=&params%5B%5D=temp2m&params%5B%5D=relhum2m&params%5B%5D=swrad&utc_offset=9&timeResolution=hourly&temperatureunit=CELSIUS&velocityunit=KILOMETER_PER_HOUR&energyunit=watts&lengthunit=metric

	Abstract 
	1. Introduction .
	1.1 Motivation 
	1.2 Background .
	1.3 Challenges 
	1.4 Scope of the Study .

	2. Related Work 
	2.1 IoT based Fish Farm Environmental Monitoring and Control 
	2.2 Embedded Machine Learning Algorithms for Smart Solutions. 
	2.3 Optimization algorithms and their use cases 
	2.4 Limitations of Existing Solution 

	3. Embedded Optimal Control Platform in Fish Tank 
	3.1 Conceptual Design of Embedded Optimal Control Platform .
	3.2 Embedded Optimization and Control Scheme using Fish Tank Sensing Data 
	3.2.1 Embedded Optimal Control Scheme in Fish Tank 
	3.2.2 Proposed Objective Function for Optimization algorithm using Fish Tank


	data .
	3.2.3 Control Mechanism using Fuzzy Logic in Fish Tank 
	3.3 Embedded Predictive Optimal Control Scheme using RNN-LSTM 
	3.3.1 Embedded Predictive Optimal Control in Fish Tank .
	3.3.2 RNN-LSTM based Prediction Algorithm for Predictive Embedded


	Control .
	3.3.3 Deployment of RNN-LSTM module to the IoT device using TensorFlow Lite .
	3.4 Embedded Predictive Optimal Control Scheme using Outdoor and Fish Tank

	Data . 
	3.5 Embedded Predictive Optimal Control Scheme based on Actuators'

	Parameters .
	3.6 Embedded Predictive Optimal Control Scheme based on Power Policy .

	4. Experimental Embedded Optimal Control Platform in Fish Tank. 
	4.1 Embedded Hardware Environment of Fish Tank .
	4.2 Software Experimental Environment of Fish Tank .
	4.3 Fish Tank Environment Modeling 
	4.4 Implementation Results of the Proposed System .
	4.5 Performance Results of Embedded Optimization and Control Scheme using Fish

	Sensing Data 
	4.6 Performance Results of Embedded Predictive Optimal Control Scheme using

	.
	4.7 Performance Results of Predictive Optimal Control Scheme using

	Environmental Data. .
	4.8 Performance Results of Embedded Predictive Optimal Control Scheme based

	Actuators' Control Parameters .
	4.9 Performance Results of Embedded Predictive Optimal Control Scheme based

	Power Policy 
	5. Performance and Comparison Analysis of Embedded Platform
	5.1 Comparison and Performance Analysis of Optimization Scheme 
	5.2 Comparison and Performance Analysis of Actuator Control .
	5.3 Comparison and Performance Analysis of Energy Consumption 
	5.4 Comparison and Performance Analysis of Power Policy 

	6. Conclusion and Future Directions .
	References 


<startpage>13
Abstract  1
1. Introduction . 4
 1.1 Motivation  4
 1.2 Background . 5
 1.3 Challenges  6
 1.4 Scope of the Study . 7
2. Related Work  11
 2.1 IoT based Fish Farm Environmental Monitoring and Control  12
 2.2 Embedded Machine Learning Algorithms for Smart Solutions.  16
 2.3 Optimization algorithms and their use cases  22
 2.4 Limitations of Existing Solution  27
3. Embedded Optimal Control Platform in Fish Tank  28
 3.1 Conceptual Design of Embedded Optimal Control Platform . 28
 3.2 Embedded Optimization and Control Scheme using Fish Tank Sensing Data  35
  3.2.1 Embedded Optimal Control Scheme in Fish Tank  35
  3.2.2 Proposed Objective Function for Optimization algorithm using Fish Tank sensing
data . 39
  3.2.3 Control Mechanism using Fuzzy Logic in Fish Tank  44
 3.3 Embedded Predictive Optimal Control Scheme using RNN-LSTM  56
  3.3.1 Embedded Predictive Optimal Control in Fish Tank . 56
  3.3.2 RNN-LSTM based Prediction Algorithm for Predictive Embedded Optimal
Control . 61
  3.3.3 Deployment of RNN-LSTM module to the IoT device using TensorFlow Lite . 67
 3.4 Embedded Predictive Optimal Control Scheme using Outdoor and Fish Tank Sensing
Data .  69
 3.5 Embedded Predictive Optimal Control Scheme based on Actuators' Control
Parameters . 73
 3.6 Embedded Predictive Optimal Control Scheme based on Power Policy . 78
4. Experimental Embedded Optimal Control Platform in Fish Tank.  83
 4.1 Embedded Hardware Environment of Fish Tank . 83
 4.2 Software Experimental Environment of Fish Tank . 90
 4.3 Fish Tank Environment Modeling  93
 4.4 Implementation Results of the Proposed System . 96
 4.5 Performance Results of Embedded Optimization and Control Scheme using Fish Tank
Sensing Data  99
 4.6 Performance Results of Embedded Predictive Optimal Control Scheme using RNNLSTM
. 103
 4.7 Performance Results of Predictive Optimal Control Scheme using Outdoor
Environmental Data. . 107
 4.8 Performance Results of Embedded Predictive Optimal Control Scheme based on
Actuators' Control Parameters . 112
 4.9 Performance Results of Embedded Predictive Optimal Control Scheme based on
Power Policy  115
5. Performance and Comparison Analysis of Embedded Platform 117
 5.1 Comparison and Performance Analysis of Optimization Scheme  117
 5.2 Comparison and Performance Analysis of Actuator Control . 124
 5.3 Comparison and Performance Analysis of Energy Consumption  128
 5.4 Comparison and Performance Analysis of Power Policy  130
6. Conclusion and Future Directions . 132
References  133
</body>

