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Abstract

The fish farming industry has been receiving considerable attention and experiencing
tremendous growth in the last decades around the world. Fish farming has the potential to overcome the
requirement for the food because the world population is increasing day by day. Fish farm is one of the
widely suggested fields for investing money because it supports a year-round production of fresh fish
resources around 40% increased production rate in comparison to natural fish hunting. Ensuring healthy
fish production involves elaborate monitoring and stable controlling of the fish farm; however,
management of the resources inside fish tanks is a challenging task. It requires continuous monitoring
and control, so energy consumption and labor cost are the central portions of the expenses. Using new
advancement of technologies can support fish production improvement, cost reduction and automation

of process.

The Internet of Things (IoT) is one of the fast-growing technological areas which are
influencing our daily life. Devices in our digital world are being furnished with various types of new
types of technologies including microcontrollers, raspberry pies, sensors, transceivers, actuators, digital
connectors, and Internet protocols. These technological advancements can give a wide range of
opportunities for the development of interconnection among various devices and their users. The
Internet of Things can support new types of services for companies, individuals, businesses, and
governments with connecting various application scenarios to gather a number of parameters from the
real world and using these data for future decisions and assessments by analyzing this data. The central
key aspect of the embedded devices is a lightweight connectivity development for 10T devices and the
development of fault tolerance interaction among them. These devices consist of light control actuators,
video detector cameras, home automation tools, smart and autonomous vehicles, smart healthcare
toolkits, intelligent actuators, and just to name a few. The installation of these smart devices can give
various services to users, such as sensors collect the actual environmental information, and based on
these gathered real data actuators are used to increase or decrease the environmental parameters via

local network or Internet connectivity. Currently, 10T based applications are being widely utilized in



various domains, including healthcare, self-driving transportation, aquaculture, agriculture, industrial
and home automation, power management, traffic controlling, aerospace engineering, and numerous

other fields.

Machine Learning(ML) allows electronic technologies to learn autonomously from historical
data and to utilize this knowledge to make predictions, decisions, and assessments independently. These
types of applications are highly compute-intensive. As a result, these applications are conventionally
executed on local servers, cloud servers, and personal computers. A new type of powerful embedded
processors and advancements in algorithms, now machine learning algorithms can be performed
directly on devices in the field Embedded Machine Learning. Embedded Machine Learning based
applications can accomplish a number of achievements in the century of Industry 4.0. For instance, loT
sensor devices which measure optical or acoustic discrepancies and inconsistencies, then directly
activate quality assurance functionality to the production or system state observation. Moreover, during
the activation of cameras and microphones, these devices automatically monitor visual parameters and
minimize soundwave errors based on contact, vibration, voltage, speed, temperature, and pressure
sensor parameters. Then, these collected parameters also can be used for future improvement of the
products. Embedded Machine Learning Algorithms has attracted many researchers to seek solutions for
complex real-world problems. The highest percentage of the existing literature is paid attention to
develop and run applications on a PC, local, or cloud server. However, these methods are not able to
bring expected income to users. In this work, we attempt to take Embedded ML and 10T applications
to the autonomous system development with deploying the to the Fish Tank, which is one of the most

fast-growing industries.

In this thesis, we propose an embedded optimal control platform based on ML and Optimization
algorithms for efficient energy consumption and fish growth in Smart Fish Tank. We have developed
the proposed embedded optimal control platform that integrates context-awareness, prediction,
optimization, and control functionalities for controlling environmental parameters optimally in Fishtank.
We have installed various 10T sensors and actuators to the fish tank and develop the context-awareness

unit for the collection of sensing values from the real-fish tank environment. So the indoor environment



data used in this work is real data which is collected from the fish tank during the three months. External
environmental data collected from the physical fish tank. We have used the RNN-LSTM algorithm for
prediction, the mathematical formulation for optimization, and the fuzzy logic controller for actuator
control. A novel objective function for optimization is formulated and implemented for compute the
optimal environmental parameters according to the predicted and user-desired environmental
parameters data. In addition, we implemented the platform by considering various cases, firstly, we
implement the platform based on actual fish tank environmental parameters without prediction model.
Secondly, we have implemented prediction, optimization and control module using fish tank sensing
data. Thirdly, we used outdoor environmental parameters to the prediction module. Fourthly, we
consider the actuators control parameters in order to optimize energy consumption. Lastly, we
implement the proposed platform by considering the power policy data. Besides, the control of the
environmental parameters is tested with and without optimization schemes. Performance evaluation
results prove that the optimization module with predicted values is 18% and 28.5 % effective in terms
of environmental parameter optimization and energy consumption minimization compared to without
optimization scheme. Furthermore, the proposed prediction-optimization based environment control
energy consumption is 27%, 23.6%, and 11.8% effective in energy consumption compared with without
prediction-without optimization, with prediction-without optimization, without prediction, and with
optimization results. Also it spends 918 krw, 753 krw, and 423 krw less money for compared to other

schemes.



1. Introduction

1.1 Motivation

Humanity overcomes the enormous challenge for providing food and livelihoods as the population
continuously increases, and it is expected that the population will be more than 9 billion until 2050 [1].
The inordinate influences of climate change, natural disasters, and environmental degradation will
damage the natural existence of products [2]. World Fisheries and Aquaculture announced that fish
production in 2016 reached the highest point compare to other years (171 million tons), 88% of this fish
production was used for human consumption. Today, fishery products are one of the highly exported
food items around the globe. According to the 2016 statistics, nearly 1/3 portion of world fish resources
in international businesses are invested in human consumption or other purposes [2]. Fishers have been
hunting 2.5 times more fish products from natural environments, such as sea, ocean, lake [3], this means
if fish are caught at a faster rate and quantity, then the remaining fish cannot reproduce, the populations
of fish are likely to reduce in a short time. In the last four decades, the quantity of fish has decreased by
half compared to 1970 years [4]. The natural balance of oceans is likely to be destroyed due to
continuous pressure and uncontrolled usage of oceans’ wild resources. According to these existing and
further coming problems, individuals, researchers, worldwide organizations, institutions, and societies
have to work cooperatively to create practical and optimal ways for the development of alternative
scenarios in fish farming. One of the highlighted examples among solutions is the Aquaculture industry,
which is the most productive and abundant concept which has been experiencing significant
development in the last decades around the world. Aquaculture is the farming (raising, harvesting, and
breeding) of fish, shellfish, or aquatic plants in brackish, fresh or saltwater [5]. From 202 currently
existing countries and territories 194 countries are active users of the aquaculture industry [6]. The
contribution of fish farming to the global production of fish related products and aquaculture combined
increased steadily and reached nearly 47 % in 2016, and it was more than 20 percent compared to 2000.
Generally, the advantages of fish farming include efficient fishery products, a new type of job

opportunities, excellent economic support, fish farms can be installed anywhere; waste materials can



be reduced, reused, and recycled via fish farming [7]. However, with fish farming benefits, it has its
own challenges, too. These challenges include lack of water source, predators’ effects, different fish
diseases, difficulties in managing ponds, flooding and to name a few [8]. If we take management of fish
farms as an example, SFP(Sustainable Fisheries Partnership Foundation) report describes that nearly
40% of fish tanks and ponds have a terrible management system, and they produce fish products with
various viruses [9]. To overcome the issues mentioned above, expert fish farmers need to combine a
new type of technological advances with fish farms such as 10T devices, machine learning, and
optimization algorithms, which can check, control and predict optimal conditions to the fish farm
environment without human interference. The Internet of Things can offer a variety of new services at
every stage of our lifestyle. 10T application scenarios can provide overall accuracy, automatization,
efficiency, minimizing the total expenses, and optimization of management processes in different real-
life problems [10,11,12]. After analyzing previous studies [13,14,15], we have categorized six essential
benefits of the 10T based fish farming environment: (1) automated environment control, (2) reducing
damages caused by disasters, (3) decreasing labor cost, (4) fish production cost-reducing, (5)
improvement quality of fish products, and (6) designing and developing required fish farm environment
without limitations. As the number of 10T devices increases, technologies become more mature, the
guantity of the data being published also increases. 10T technologies are becoming the most significant
sources of new data compared to other technologies, through analyzing and comparing the historical

and real-time data 10T applications can provide a more optimal environment to the users.
1.2 Background

Fish farming is a raising, breeding, harvesting the various fish types in fish tanks or ponds with a
fully or partly controlled environment for optimum fish production during the year. Figure 1 describes
the model of fish farms with essential components. Effective management and control of the fish farm
require a perfect understanding and setup of various control processes, including optimal filtering,
energy saving, indoor design, oxygen dissolving, bio-security control, scalable design, continuous

monitoring, and control.
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Figure 1: Various essential components of Fish Farming [16].

These essential processes provide various advantages for fish farmers, such as effective fish tank
design and construction, selection of suitable fish species for healthy fish production, water quality
management, and real-time quality control. In this study, we aim to develop an embedded control
framework to the fish tanks using ML and Optimization algorithms with controlling water quality
parameters namely, water temperature, conductivity, pH and level using various sensors, and actuators.
We have deployed Machine Learning, Optimization, and Control algorithms to the 10T device to control

the fish tank actuators with low cost and high profit.

1.3 Challenges

Here, we briefly describe the typical issues and challenges faced for healthy fish production that
requires continuous attention and care. There are given a list of some challenges identified during the

study:

e Over usage of chemicals: Viral resistance to antibiotics is attributed to the over usage of
chemicals in our food, including fish and fish products.
e Source of virus/disease transfer: If the fish tank environment is not well-managed, then it

produces unhealthy products that are combined with various chemical viruses and illnesses.



o Ecological system pollution and destruction: Chemicals used fish tank facilities often have
a negative influence on surrounding areas and can potentially pollute nearby underground
water pathways.

o Fish feeding: Less feeding or overfeeding fish can cause an adverse effect on fish growth
and water quality.

e Water quality: Water quality is one of the vital components of the maximization the healthy
fish production. Poorly controlled water quality brings various illnesses and problems for
fish growth.

e Water usage: Too much freshwater is often needed to fish tanks and cages each year. Water
purification and processing are used to reduce the need for freshwater by purifying water
for aquaculture.

e Energy consumption: Energy consumption and labor cost in fish farms account for more
than 50% of the cost of fish farm production, so minor improvement in performance can

lead to significant cost reduction.

After analyzing the above-mentioned problems, advanced technologies such as 10T, Machine
Learning, Optimization and Control algorithms can support automation of environment control, cost
minimization in fish production, water quality improvement for healthy fish growth, and decreasing
labor cost and human interaction as well as, the collected data using loT sensors can be used for making

future decisions and improvements.
1.4 Scope of the Study

We have proposed an Embedded Machine Learning based solution 10T Fishtank environment
optimal control platform using TensorFlow Lite for efficient energy consumption and fish growth. loT
devices are installed successfully to the real fish tank environment and collected data is used for
prediction and optimization algorithms. We have developed a complex embedded solution to the fish

farm from the initial installation and gradually work towards the system development. It is expected



that the developed system in this study will help to increase the effectiveness and productivity of fish

tank with controlling in embedded 10T devices.

The research methodology adopted for this study has three main phases is described in Figure 2:

1) Study regarding Fish Tank
requirements

* Identification of fish production
challenges

* Comprehensive study of existing
solutions

* Important parameters selection

* Olyectwes and performance
measure selection

2) Development of Embedded 3) Evaluation of Embedded
Control Platform Control Platform

s TInstallation of the IoT dewices to the _ . .
* Comparative analysis of context

Fish Tank -
. awareness and prediction modules
¢ Data collection from the real e  Comparative analvsis of
environment Ommp: analy

environmental parameters
optimization

s  Analysis of actuators” control and
Energy consumption

* Selection and mplementation of
various algonthms

* Deployment of these algorithms to
the IoT devices.

Figure 2: Development phases of the Proposed Embedded Control Platform for Fish Tank.

Study regarding Fish Tank requirements:
— ldentification of fish production challenges
— A comprehensive study of existing solutions
— Important parameters selection
— Obijectives and performance measure selection
o Development of Embedded Control Platform:
— Installation of the 10T devices to the Fish Tank

— Data collection from the real environment



— Selection and implementation of various algorithms
— Deployment of these algorithms to the IoT devices.

e Deployment of these algorithms to the 10T devices:
— Performing the platform evaluation based on real sensing values
— Comparative analysis of context awareness and prediction modules
— Comparative analysis of environmental parameters optimization

— Analysis of actuators’ control and energy consumption.

In this study, we aim to implement embedded ML technologies based optimal control embedded
platform for efficient energy consumption in Smart Fish Tank. The main goal of this work is directly
performing optimal smart fish tank environment control processes on the 10T devices with minimum

energy consumption and maximizing environmental comfort.

The development of the proposed system includes the following five main phases:

— Firstly, installation of the sensors and actuators to the fish tank, and a real-time context
awareness model from the environment;

— Secondly, the training the RNN- LSTM based prediction model using internal and external
environmental parameters to predict temperature, pH, conductivity, and water level. As well as,
converting this trained model to the TensorFlow L.ite;

— Thirdly, the formulation of the optimization algorithm to calculate the most desirable
environmental parameters for fish growth with efficient energy consumption;

— Fourthly, the development of the Fuzzy Logic control, which computes up activation level and
activation duration to loT actuators using predicted and optimal values.

— Lastly and most importantly, the deployment of the overall platform to the Embedded Device.

The rest of the thesis is structured as follows. Chapter 2 presents the related works for the proposed
topic. A discussion of the related studies is divided into three subsections. Namely, 10T based Fish Farm
environmental monitoring, embedded machine learning solutions for smart environments, and loT

based control solutions for fish farming. Chapter 3 outlines the design of the proposed embedded



optimal control platform with a detailed discussion of the system components. In Chapter 4, the
experimental and implementation environment is discussed briefly. Experimental results and
performance analysis of the proposed system are represented in detail in Chapter 5. Experimental results
and result analysis are categorized into four subsections: context awareness module analysis,
experimental results of the RNN-LSTM prediction module, analysis of Optimization module results,
and analysis of fuzzy logic control results. Finally, Chapter 6 presents the conclusion of the thesis with

future work plans.
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2. Related Work

Discussion of the related studies is divided into three subsections, namely loT based Fish Farm
environmental monitoring, embedded machine learning solutions for smart environments, and
optimization-based solutions. Simbeye et al. suggested a Wireless Sensor Network (WSN) based water
condition control mechanism for aquaculture. This system measures various water quality values,
including dissolved oxygen, water quantity, and water level as a real-time data [17]. Another WSN-
based water condition control system is outlined by Chen et al. [18]. Luo et al. implemented and
deployed for a real-time water parameter change detection concept [19]. The authors utilized GPRS and
ZigBee based communication protocol for the connectivity among sensors, control actuators, and the
central management unit. In that project, data acquisition and low-latency are provided with improving
the reliability of communication. Zhang et al. proposed that the financial efficiencies of the 10T devices
utilization to the fish farms they proved that deployement of 10T devices to the fish tank environment
minimizes the expenses and maximizes the income significantly [20]. Idachaba et al. suggested a pond
management system which comprises various sensors to detect the changes in water quality of the pond
that can be controlled from any distance through CCTV (closed-circuit television) technology [21].
Wang et al. suggested GPRS and ZigBee communication protocols based online water condition
measurement concept for monitoring the chemical parameters’ condition in water [22]. This study
described a distributed quality monitor framework to monitor various aquaculture parameters from any
water-related field using variety of intelligent sensors [23]. Wireless Sensor Networks based water
recycling system monitoring concept based on ZigBee connectivity are proposed in this study [2424].
Cario et al. designed and implemented an acoustic network that can detect fish farm underwater
environmental values effectively [25]. For the assessment of the effectiveness of the fish growth, we
need to collect, analyze, and pre-process the water EC, temperature, pH level, water level, dissolved
oxygen, and turbidity data continuously. LoRa technology can provide faraway transmission of real-
time data with less energy consumption [26]. Another LoRa based study with faraway connectivity

capability were utilized to build a LAN network for data transmission about the current condition of the
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fish and food quality [27]. Lee et al. introduced machine learning integration to the embedded sensor
technologies for Internet of Things applications [28]. Intelligent l0TSP- Machine Learning, Artificial
Intelligence Tensorflow algorithms implementation to the embedded NVIDIA Jetson chips concept was
suggested in this study [29]. Min et al. outlined an ML-based digital twin mechanism for optimizing
the production in the petrochemical factories [30]. Robinson et al. proposed a signal language
recognition system through a convolutional neural network embedded using Raspberry PI 3 [31]. Deep
learning enabling approaches on 10T devices was discussed in this study [32]. Material recognition
methodology was suggested using deep learning solutions in embedded software [33]. Venuto et al.
presented a P300 Brain activity-based embedded system remotely driving mechanical device [34].
Zeroual et al. introduced the Tensorflow lite framework based on deep authentication methodology for
mobile cloud computing [35]. Hasan et al. developed 10T and Tensorflow based smart parking models

for the detection of free parking spaces [36].
2.1 10T based Fish Farm Environmental Monitoring and Control

Over the last decades, 10T based applications have been applied to the number of studies as
surveyed in [37,38]. The 10T based applications in the field of aquaculture are used to increase the fish
production, quality and to decrease costs. These applications are helping fish farmers to make clear and
better decisions [39,40]. South Korean largest telecommunications operator South Korean Telecom
introduced an loT-based fish farm management concept in North Jeolla Province [41]. Their proposed
system increases the fish farm management process by connecting wireless embedded devices and it
helps to enable farmers for monitoring their fish tanks remotely through their smartphones in real-time.
Fish pond sensors continuously check the water temperature, oxygen, and pH, for detecting any minor
changes in the water. SK Telecom’s open IoT platform controls the data flow through loT Gateway and
then analyzes the data, and the current environment results of the fish tank are sent automatically in
real-time. One of the widely used 10T based applications in the aquaculture field is Indian Eruvaka
technology [42]. Their platform provides continuous monitoring of the water temperature and oxygen

condition, and the user can check the fish farm environment and fish feeding processes through the
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mobile application. This system helps to maximize profit by minimizing the monitoring cost. Shareef
et al. [43] presented the real-time aquaculture environment monitoring framework based on loT, with
developing sensor node, actuator node, station, and decision making units. In that study, the
measurement of the chemical parameters of the fish farm water was collected to the database, and the
notifications were sent to the user to analyze the current condition of the fish farm. Based on decision-
making rules actuator nodes activated to improve the water quality. Minghu et al.[44] proposed an
aquaculture multi-parameter monitoring system that included accurate data collection, real-time data
analyzing, process control and notification services. Their proposed system structure was based on the
master-slave concept of the network, fish tanks’ temperature, salinity and dissolved oxygen sensors as
a slave collected data from the environment, and the collected sensing parameters were sent to the
Master unit. PLF (Precision Livestock Farming) concept was presented [45] to continuously monitor
and control the fish farm operational process using loT based real-time video streaming. In that study,
they utilized four types of 10T devices, namely, surface camera, stereo video, sonar and acoustic
telemetry for analyzing the fish observation in commercial cages. Based on gathered data they
controlled the fish feeding process and regularly maintained the fish growth rate with avoiding feed
wastage. Ekaterina et al. [4646] suggested an automatic fish detection and tracking system by installing
low-quality video sensors to the fish farm. In this study, Kalman filter and Viola-jones methods were
used to estimate fish parameters, they emphasized that controlling and understanding the natural fish
migration could provide optimal fish feeding process, fish growth management and improve the quality
of products. Wireless sensors based aquaculture monitoring system was introduced in this study. Their
proposed system is described in Figure 3, as can be seen, sensors monitor pH, oxygen, water level, and
temperature values of the fish tank via the various 10T sensors, and the ZigBee protocol is used to
forward the collected sensing data to the server. Moreover, they developed the rule-based control
module to activate or deactivate the water pump actuator based on sensing values. The rule-based
control module included IF-THEN rules for activating the actuators. If the current water level is below

than user assigned threshold, then the water pump is activated to increase the water level until the user
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preferred level. If the sensor detects the overflow from the tank then automatically activates the

overflow system in order to decrease the water level.
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Figure 3: IFTTT model for smart aquaculture using cloud and 10T[47].

Partical Swarm Optimization based Decision Support System (DSS) is proposed in this study
[48]. The main aim of this study is the maximizing the production strategies for increasing the profit by

considering various processes of the fish farm.

Kodali [49] developed a smart greenhouse irrigation system with an attached water storage tank.
That proposed system included humidity, temperature sensors, and a fogger actuator. Required water
obtained from any sources such as rainwater harvesting, canal tube, firstly stored in the water tank.
Ultrasonic embedded sensors installed to the fish tank, which monitors water level continuously and

send notifications to the user as soon as the water level decreased from the requirement. The
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microprocessor was used for the activation or deactivation of a water pump according to the water level.

Their proposed approach decreased water consumption by 70-80%.

Prieyen et al. [50] introduced an 10T based smart water tank system control using an android
application. Their proposed system included three central units, namely, sensing unit, control unit, and
motor unit. They developed a simple rule to their system for controlling the motor if the current water
level was below minimum level motor was activated until the water level reached the maximum level.
In contrast, if the actual water quantity was the same as the maximum quantity, the motor was
deactivated. ESP8266 and an ultrasonic sensor were utilized as microcontrollers and sensors,

respectively.

Narrow Band Internet of Things technology is proposed to remote water level meauserement
system for industrial water storage tanks were suggested by [51]. The authors used two different sensors
for sending alarm (Magnetic switch sensor) and checking water level (Floating sensor arrangement) for
their proposed approach. Magnetic switch sensors installed with buoyant objects to the bottom and the
top parts of the water tank. According to the water level, buoyant objects moved and magnetic switch
influenced on the alarm and water level (in peak point or basement) were sent to the system. Alarm and
LED actuators activated automatically at the same time when the current water level was below or
above the desired ranges. The study [52] presents LabVIEW and Arduino based on a non-contact water
level control system for water storage tanks. Ultrasonic sensors monitor the water quantity, according
to the actual water level LabVIEW application forwards the data to the Arduino device, then the water
pump is ctivated or deactivated automatically through the Arduino. The current water level data of the

tank is visualized on the graphical user interface, which is provided by LabVIEW.

Shankar et al. suggested an intelligent water level control model for regulating water
consumption for tanks [53]. Their proposed system overcomes water wastage in water tanks based on
an loT and mobile application; more precisely, this system detects overwatering of the tank water tank
and, based on overflow conditions the alarm is sent to the farmer. As the current water level increases

and crosses from the user desired threshold, then the system automatically gives the notification to the
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user. According to alarms and notifications, the user can activate or deactivate the water pump through

the mobile application.

Fisher and Moore [54] developed a continuous optimization solution for water control valves
based on pump pressure in different set-points. This system helps to minimize the pump energy
consumption by keeping open one control valve nearly all times. Their control method is simple and
does not require more hardware than a conventional control method. Each air handling scheme monitors
chilled water to provide the discharge setpoint of the air temperature. The pump’s speed is controlled
by the variable frequency drive in differential pressure. There was a 44% reduction in power

consumption in the utilization of the new differential pressure reset program.

Raju at al. designed and implemented a Raspberry Pi-based embedded environmental parameter
collection system for aquaculture [55]. This system continuously checked the water condition using loT
devices and gathered information are analyzed on a cloud. The cloud server supports auto-generated
alert/notification functionality. If any environmental value becomes out of threshold, then notification
is sent to the user. However, their suggested concept does not include any optimization or control

functionalities.

2.2 Embedded Machine Learning Algorithms for Smart Solutions.

Machine Learning(ML) allows electronic technologies to learn autonomously from historical
data and to utilize this knowledge make predictions, decisions and assessments independently. These
type of applications are highly compute-intensive, as a results these applications are conventionally
executed on local servers, cloud servers and personal computers. A new type of powerful embedded
processors and advancements on algorithms, now machine learning algorithms can be performed
directly on devices in the field Embedded Machine Learning. Embedded Machine Learning based
applications can accomplish a number of achievements in the century of Industry 4.0. For instance, loT
sensor devices which measures optical or acoustic discrepancies and inconsistencies, then directly

activate quality assurance functionality to the production or system state observation. Moreover, during
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the activation of cameras and microphones, these devices automatically monitor visual parameter and

minimize soundwave errors based on contact, vibration, voltage, speed, temperature and pressure sensor

parameters. Then, according to the collected parameters, the manufacturer can make future

improvements of the products.

The Internet of Things (loT) is the leading reason of the evolution of embedded ML algorithms
and loT systems, as the amount of the collected data is also soaring with the dramatic growing number

of sensors utilized. The Internet technology and data transmission techniques are developing fast, suchs

currently 5G network communications have already widely utilized in many industries. However,

sensor data transmission to the cloud servers is not always beneficial or feasible.

There are a number of reasons why we need to pay attention to the deployment of Embedded

Machine Learning techniques:

e Network cost — data transmission to cloud servers or local servers requires continuous
overloading the networks. As a consequence the price of the traffic increases.

e Coverage — In some locations, such as tunnels, basements, caves, due to insufficient coverage,
the network communication is difficult.

e Latency — Excessive Round Trip Time for sensing data forwarding and receiving control
commands to actuators. Real-time systems and applications are needed a quick response with

low latency.

e Privacy — Data espionage becomes more difficult because of the frequent requirement to protect

external requests to video and audio files from industry systems.

o Data Sovereignty — System administrators and operators require to have overall management

over the data.
o Safety — Various risks for the manipulation of data and devices.

e Energy Consumption - Data receivers and data transmitters consume a relatively high energy.
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e ExtraDevices - Sensor and actuators are needed to accommodate with external data transmitter

antennas and suitable cables.

After analyzing the problems mentioned above, we propose optimal control embedded platform
using TensorFlow L.ite for efficient energy consumption and Fish Growth in Fish Tank. We train RNN-
LSTM based prediction module using TensorFlow, and we convert this trained model to the
TensorFlow Lite format. RNN-LSTM model forecasts future temperature, water, pH level, and
conductivity values to the fish tank, then this model deployed to the loT microcontroller. As the new
sensing values come to the already trained embedded machine learning model, the embedded ML
predicts future environmental parameters to environment locally. Moreover, we also deploy
optimization and fuzzy logic algorithms to the loT microcontroller which can provide control
functionalities to the proposed system. Prediction algorithms provide technologies to learn from
historical data and assist accurate decisions for uncertain future to boost expected income or avoid
potential risks. Basically, historical information is utilized to create a mathematical model for targeting
essential trends. That created mathematical model is then used with actual data to predict what will
occur next, or to recommend steps to reach optimal outcomes. In engineering fields historical data for
using in the prediction algorithms usually comes out from sensors, connected systems, and instruments
in the world. In business systems’ historical data at companies may include sales data, transaction results,
marketing information and customer comments. That collected information can be inputted to the
predictive algorithms to increase the capability of the existing systems, then these systems will be able
to decrease operational expenses, predict energy requirements, anticipate equipment collapses. For
instance, 10T sensor nodes measure vibrational values of vehicle parts and give alerts or notifications
before vehicle fails on the road. Companies also deploy prediction algorithms to make more error-free
forecasts, such as forecasting the electricity demand on the power grids. These predictions provide more

effective resource planning, such as scheduling of different electricity plants.

Machine Learning algorithms are utilized to find relations in data and to create models which
forecast future outcomes. Several Machine Learning algorithms are available, including neural

networks, linear and non-linear regression, support vector machines, decision trees, and many other
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algorithms. Prediction algorithms are widely used in industries, such as healthcare, finance,
pharmaceuticals, aerospace, automotive, and manufacture, in order to find out the future expected

parameters based on various historical parameters.

There are given some examples which are using prediction algorithms in industries and their use in

various fields [56]:

e Automotive — creating new advanced achievements in autonomous vehicles. Companies are
developing driver assistance tools and new type of autonomous vehicles use prediction
algorithms to analyze sensing data from connected vehicles and to set up driver assistance
techniques.

e Energy Production — forecasting the energy requirement and electricity price. Predictive
analytics based applications are used to monitor historical trends, weather, and seasonality to
provide accurate future decisions.

o Medical Devices — utilizing pattern-detection algorithms to detect various illnesses, such as
cancer. A cancer measurement device checks and analyzes the breathing process and sounds of
patients, then gives feedback via a desktop or mobile application to detect the illness.

e Agriculture — optimization of irrigation and detection of pesticides and herbicides of crops.
Agricultural sensors measure the actual condition of the water, soil, crop condition and used as
an input parameter for the prediction algorithms to forecast expected water, soil and illness
condition for the crop.

e Industrial Automation and Machinery — Prediction of machine failures. If we take a plastic and
can production company as an example, they save 50 000 Euros in a month using a condition
measurement and forecasting the maintenance of the application which reduces waste and
minimize downtime.

e Aerospace Engineering — Observing aircraft engine robustness. To increase aircrafts activation

duration with reducing operational expenses, manufacturers developed a real-time apps to
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predict the performance of fuel and oil consumption, liftoff, control failure detection,

mechanical conditions.

Predictive analytics is the process of utilizing historical information to make forecasts using the

existing information. These processes require data or statistics, data analysis and ML model to build a

prediction model to forecast future parameters.

Figure 4 presents the general prediction algorithms workflow. Techniques that are described in

the prediction workflow are needed to utilize to build accurate prediction applications. As can be seen

from the diagram, there are four main phases:

Data import from different places, including databases, spreadsheets, and archives. In this study,
we apply the real sensing data which are gathered from indoor fish tank. Used sensors are
temperature, water level, pH level, and conductivity level sensors. Also, we also have outdoor

environmental temperature, humidity, and solar radiation parameters which are con

Data preprocessing by removing outliers and combining various data sources. We have
identified and removed missing data, data spikes, and abnormal data points. Then we combine
the collected data into a single CSV file; more precisely, tables in a CSV file are indoor
temperature, pH, water level, conductivity, outdoor temperature, outdoor humidity, outdoor

solar radiation, and time series values.

Development of the accurate prediction model using the aggregated data using Al, ML,
statistics or curve fitting tools. Fish farm environmental parameters forecasting is a complex
process due to various external and internal factors, so we select Recurrent Neural Network’s
LSTM model to create and train the prediction model. We iterate the fish farm dataset with
various approaches. After successful completion of the training, we test the trained model

against new data to calculate the performance accuracy.

Model integration to the production environment. Once we train an accurate prediction model

for forecasting temperature, water level, pH level, and conductivity levels, we deploy it to the
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real fish farm environment loT device using TensorFlow Lite, and connect it to the desktop

application to analyze the future environmental parameters.

ACCESS AND PREPROCESS DEN EI._OP. INTEGRATE
EXPLORE DATA DATA PREDICTIVE ANALYTICS WITH
HaE e MODELS SYSTEMS
- 7. & J
Files Working with Model Creation Desktop Apps
Messy Data e.g. Machine Leaming

i 5“:.'('.;“,],:”“ f‘,f’

Databases Data Reduction/ Parameter Enterprise
Transformation Optimization Scale Systems
® A - MATLAB ¢ |
Data N e s 1\ A Java ¢/
= /A NET C/Ca+ exe
dll Python
Sensors i
Feature Extraction Model Validation B D.ences
i N and Hardware

Figure 4: The workflow diagram of prediction algorithms [56].

We now describe previous studies related to the prediction-optimization frameworks and their
problems of interests. Amjady et al. presented a wind power prediction framework based on the
prediction-optimization concept. In their proposed system, the hybrid neural network was deployed to
forecast wind power, and the prediction module was combined with an enhanced PSO algorithm in
order to increase wind energy prediction strategy, feature analysis capabilities, and forecasting engine
[57]. The global optimization-based energy prediction concept was described in [58]. In that study,
predicted temperature and humidity values were taken as input parameters to the ANN-based training
module to investigate predicted energy requirements. The global optimization method was utilized to

evaluate the effectiveness of the number of neurons to increase network layers for the accuracy, which
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influenced prediction and identification. Tulabandhula et al. presented a loss function minimization
module for an unlabeled dataset with combining the prediction error and the operational cost
optimization [59]. Ullah et al. suggested a water pump control module with efficient energy
consumption for the smart fish farm which included prediction, optimization and control functionalities
[60]. In their system, the current fish tank water level is monitored continuously using the water level
sensor. Kalman filter-based prediction module predicts future conditions using historical data. Predicted
values are used to compute an optimal condition to the fish farm based on user requirements and optimal
resources environmental utilization. Finally, the rule-based control module provides an operational

duration and pumping level to the water pump.

2.3 Optimization algorithms and their use cases

Growing demands are putting increasing pressure on experts and system designers to seek
efficient and economical ways of resource utilization. Optimization methods are commonly used to

meet complex user requirements with given constraints [61].

This is the sequence of steps that computer programs usually use to find the best solution to a
problem. The optimization algorithm aims to maximize or minimize an existing solution by
systematically selecting the input parameters from the assigned set and calculating the values of the
functions. Optimization consists of finding the “most useful” values of certain objective functions,
including various kinds of objective functions and various kinds of domains, depending on a specific
area. However, the optimization does not always mean the selection of the best solution to problems. It
is often included in the “Difficult problems” category because the nature of the problem can make this
impossible. However, there are no polynomial-time algorithms for optimization problems that are NP-
complex. In other words, in the worst case, the algorithm used may require an exponential calculation
time to be optimal, which leads to a calculation time that is too long for practical reasons. The

optimization algorithm can be used in any field which requires mathematical calculations, such as
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engineering, business, medicine, and so on. They can find the most optimal designing tradeoffs, control

parameters, and data pattern analysis [62].

In recent years, many studies have paid attention to use approximate methods such as artificial
neural networks or heuristic solutions, instead of using conventional optimization algorithms, for
instance, Lagrangian relaxation, linear or quadratic programming or Nelder—mead simplex method.
Heuristic algorithms are considered a straightforward methodology that supports satisfactorily.

However, they are not as optimal as expected [63].

One of the most widely used solutions for solving complex optimization problems is dividing
this optimization problem into various parts or a variety of steps, then step by step solving each portion
of the problem and then combine all of the solutions in order to create complex problem solver for a
complex problem. The methodology mentioned above plays an essential rule among researchers, and it
is one of the widely used techniques. However, this type of solution is not accounted for in the
theoretical explanations. In algorithms, computer science, mathematics, engineering researches,
mathematical optimization is finding the optimal parameters among a number of existing alternatives.
Basically, optimization algorithms aim is that increasing or decreasing the actual function parameters
continuously by selecting input parameters from the mentioned set and estimate function parameters.
Basically, the optimization algorithms are utilized to find the fittest ways of solution among all possible
solutions. An optimization issue can be divided into two sections depending on whether the variables

are continuous or discrete [64].

All optimization problems are driven by the known or unknown objective function, which is
usually a mathematical expression that somehow relates the problem parameters in a way that can
accurately assess and quantify the utility of selected candidate solutions. Any combination of problem
parameters can be considered a candidate solution, and evaluation of objective function for the same

combination can help us decide whether or not to consider them as a final solution [65].

Every problem is an optimization problem and it may have its own specific requirement, different

from other problems. Therefore, there can be no single solution for solving all kinds of optimization

23



problems. At one end, recent developments in processor manufacturing technology enabled us to have
enormous computation power while on the other hand, user requirements, problem nature and
complexity is also on the rise. As a result, many different optimization algorithms are developed. Figure
5 presents a typical classification of famous optimization algorithms. Energy management and control
systems are computer-based applications utilized by people who have special knowledge about power-
related fields to analyze, manage, and maximize the overall performance of the system. Therefore,
inside the fish farm closed environment, we can manage, control, and optimize the usage of electrical

energy using energy management and control.
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Figure 5: Typical classification of primitive optimization algorithms[66].

Morsly at al. studied this problem and has presented a binary particle swarm optimization (BPSO)
based solution for optimal placement of cameras in the field [67]. Binary PSO is a variation of standard
PSO for dealing with binary variables; here they consider camera placement in the grid is a binary

variable i.e. its value will be one if a camera is placed in the grid cell, otherwise 0. Secondly, camera
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calibration is also very important in surveillance application for improved quality of captured videos

and images.

Zheng et al. introduced a novel method using two vanishing points and a single vanishing line
for minimum calibration condition in [68]. They formulated the camera calibration problem as a least-
squares optimization problem to address the limitation of existing methods to find the appropriate focal
length for the camera along with principal point and rotation angles. Cooperative surveillance is also an
interesting field where more than one cameras or micro aerial vehicles (MAVS) are deployed to monitor
same area of interest (Aol). In cooperative surveillance, the same region is observed from different
angles and thus capturing more information about the scene or mission. However, its very challenging
to dynamically deploy and control multiple MAVSs such that they shall maintain safe distance and have

collision-free flight over Aol while keeping in view device limitation and environmental constraints.

Saska et al. proposed a PSO based solution to solve this high dimensional optimization problem in
[69]. For surveillance of traffic on particular road segment, unmanned aerial vehicle (UAV) can be
deployed. Liu et al. modeled UAV route planning as multi-objective optimization problem in [70]. They
tried to achieve this task with the minimum number of UAVs while ensuring minimum cruise distance
among the UAVSs using an adopted evolutionary algorithm NSGA based on Pareto optimality technique.
Too many surveillance cameras generate an enormous amount of video data resulting in storage,
transmission and analysis challenges. Exploiting the strong correlation between successive frames in
video streams sharing the same background, Tain et al. proposed a novel encoding scheme using block-
level background modelling (BBM) algorithm for video compression by identifying static background
in frames for long term reference [71]. For increasing the accuracy of the proposed encoding scheme,
they developed an optimization algorithm using the rate-distortion concept for the surveillance source
(SRDO) algorithm. Through experimental analysis, they have reported that BBM and SRDO can
effectively increase compression performance and be used as a critical component of many video-based
applications for smart cities. A review paper about the various optimization techniques is outlined in
[72] for power consumption scheduling for smart homes. Evaluation is performed in monetary terms so

that relative utility of each scheme can be the highlight and quantified. As the energy scheduling
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problem is a linear optimization problem, therefore LP algorithm outperform all other schemes. Other
optimization techniques also provide comparative solutions and are expected to perform well for more
complex optimization problem where LP will fail. They observed that in online configuration, PSO
wroks well, however, in extended offline scenarios, PSO can achieve a significant reduction in cost.
Lorestani et.al. has developed an invasive weed optimization (IWO) algorithm for energy management
controller (EMC) in order to optimize energy scheduling of associated resources to generate enhanced
lookup tables [73]. They determine the power generation schedule for connected resources over hourly
intervals. During the optimization process, constraints regarding operational limitations of power
generating resources are considered along with varying electricity tariffs. To study the impact on
operational cost of SHEMS, several scenarios are investigated. Zhang at al. has developed a framework
for home energy management to support demand response program for domestic users in [74]. The
proposed framework i.e. home energy management system (HEMS) allows the combination of
domestic geothermal power resources in the future smart grid along with plug-in electric vehicles. Their
proposed optimization scheme for scheduling flexible home appliances takes into account various
factors such as predicted outdoor temperature, renewable resources output power, users preferences and
electricity price. Through simulations, they verify the effectiveness of the proposed scheme and have
reported 47.76% reduction in energy cost. Braun et al. [75] introduced the optimum controlling settings
for water supplement systems without using storage; this system was based on optimization and system-
based controlling. Chilled water loop supplement and the return temperature difference was also thought
to influence on the pump power and chiller loading. Their proposed ChW system was developed, and
three variables were chosen for the optimization case. Optimization is 3.3% effective compared to the

baseline in annual cost saving.

Zhuhong Zhang [76] developed a multi-objective optimization algorithm for dynamics
environments that aims to control the greenhouse environment. His proposed concept aims to build
dynamic multi-objective optimization solutions to clarify and combine to environmental monitoring

and improving. For greenhouse control, they created a decision rule for controlling based on MOIA
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(Multi-Objective Immune Algorithm). The author deeply considered the algorithm side of the system;

however, this work does not consider 10T devices and their role in the greenhouse.
2.4 Limitations of Existing Solution

Most of the studies in the literature are focused on a single key component or two components
from environment monitoring, prediction, optimization and control. In addition, all of the existing
systems can be used on a personal computer, local or cloud servers. To the best of knowledge, there is
no related approaches presenting an integrated solution based on the three related key components in
Embedded Hardware. The highest percentage of the existing solutions are paid attention to a selected
Al algorithm which is once trained and then used. However, our proposed system can provide real-time
environment monitoring, prediction, optimization and control directly on the 10T device. This attempt

to take 10T based ML applications to the next level.

With the deployment of ML control applications to the embedded hardware, various advantages
can be achieved including network cost, coverage, latency, privacy, data sovereignty, safety, energy

consumption and decreasing the extra device usage.
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3. Embedded Optimal Control Platform in Fish Tank

3.1 Conceptual Design of Embedded Optimal Control Platform

The proposed optimal embedded platform includes IoT and Machine Learning based real-time

environmental monitoring and optimal management process for the smart fish farm. Figure 6 presents

the layered view of the proposed system, which comprises the environment of interest, embedded

hardware, and embedded software environment.
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Figure 6: Layered view of the proposed embedded control platform in Fish Tank.

An embedded hardware environment includes the installed sensors and actuators to the fish tank.

Four types of sensors (temperature, water level, pH, and conductivity) and five kinds of actuators (heater,

cooler, pH controller, water pump and fish feeder) were proposed in this work. Sensors measure the

data from the fish farm environmental parameters, whereas actuators are used to control these resources

automatically.
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Embedded software environment includes the trained and deployed model to the 10T device. This
trained model provides context awareness, optimization and control algorithms which can calculate
predicted, optimal and required control values for the environment using real-time sensing data. Fish
tank actuators obtain control values from the top layer, and desired resources are provided to the

environment.

We have implemented and deployed an integrated system that comprises four main modules,
namely, 1) context awareness 2) prediction 3) optimization, and 4) control. The conceptual design of
the proposed system is presented in Figure 7. The implementation of the proposed system includes four

main stages.
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Figure 7: Conceptual design of the proposed embedded control platform in Fish Tank.

In the first stage, we develop the context-awareness module, which gathers information about the
user-desired, indoor and outdoor environmental parameters, energy control parameters, and power
policy values, then provides the analysis and decision about each parameter for the future decision. In
the second stage, we develop the prediction module for predicting the fish tank environmental

parameters and the required energy using the real data. In stage 3, we develop an optimization scheme
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for the calculation of the optimal fish tank environmental parameters using the predicted and user-
desired environmental parameters. Also, the learning module is also used to increase the performance
of the optimization scheme. In the last stage, we design and implement a control algorithm to control

the fish tank actuators automatically.

Detailed conceptual design of the optimal control embedded platform for the fish tank efficient
energy consumption is described in Figure 8. We have the environment of interest, the smart fish tank,
which requires the 10T based automatic control for providing the healthy productive condition for the
fish based on the fish farmer/user desired parameters with effective natural resource usage. The input
data for the system includes the user-desired parameters, fish tank indoor environmental values such as,
temperature, water level, pH and conductivity values which are collected using sensors, outdoor

temperature, humidity, and solar radiation values, control parameters and power policy.
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Figure 8: Detailed Conceptual design of the proposed embedded control platform in Fish Tank.

Figure 9 describes the proposed system architecture for the development of optimal control
embedded platform using TensorFlow lite for the efficient energy consumption and fish growth in the
fish tank. The proposed system comprises three environments, namely, fish farm environment,

embedded hardware environment, and embedded software environment.
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Embedded hardware environment comprises various 10T devices, sensing and actuator nodes,
input/output ports, serial communication ports, power supply, and other essential tools to check and
control the various fish farm environmental parameters. Sensing nodes are used to check the
environmental parameters in real-time, whereas actuator nodes control these environmental parameters

with increasing or decreasing the natural resources according to the user requirement.
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Figure 9: Proposed system architecture for the development of embedded control platform.

The embedded software environment is computer software that is deployed to devices or machines
for performing all functionalities on devices without executing these applications in highly compute-
intensive processes on PCs, local, and cloud servers. With deploying machine learning (RNN-LSTM),
optimization control algorithms (Fuzzy logic) as an embedded software, a number of advantages can

be achieved in terms of network cost, latency, privacy, data sovereignty, and power consumption.
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10T sensor nodes are used to measure the indoor environmental parameters from the fish farm
environment. Using the historical data, we trained the model to predict, optimize, and compute the
optimal control parameters to the fish farm parameters. Then a trained model is deployed to the
embedded hardware environment as an embedded software using TensorFlow Lite. As new sensing
values come to the embedded software, the software calculates the required future optimal control

values with considering cost minimization, and optimal usage of the resources.
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Figure 10: Detailed proposed system architecture for the development of an embedded control platform.

The detailed proposed optimal control embedded platform architecture is represented in Figure 10.
We considered temperature, water level, pH, and conductivity level values of the fish tank, among other
various fish tank parameters. 10T sensors are used to measure these values from the fish tank and send
them to the data collection unit. The context-awareness module provides the analysis and clarifies the

required data ranges for better future performance. Based on the collected data, we train a model to
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predict future environmental parameters with required energy consumption for the fish farm. These
parameters are predicted temperature, predicted water level, predicted pH level, and predicted
conductivity. The optimization module is used to calculate the optimal environmental parameters based
on user preferred and the system constraint settings. FLC is used as a control algorithm for the proposed
system to calculate and set the optimal working level and activation duration. In this work, we use a
heater, cooler, pump, pH controller, and fish feeder actuators to control the environmental and feeding
processes in the fish tank. The FLC module assigns the activation level and working duration for fish
farm actuators. Based on these control values, actuators control the temperature, water level, pH, and
conductivity level in an optimal condition by minimizing the energy consumption and maximizing the

cost. In the coming subsections, we describe algorithms and modules in detail.
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Figure 11: Proposed embedded optimal control platform flowchart diagram.

Proposed embedded predictive optimal control platform flowchart diagram is described in Figure

11. As can be seen from the figure, several processes are combined in this study. Firstly, 10T sensors
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monitor the fish tank water condition by measuring water quality parameters (e.g., temperature, water
level, ph level, and conductivity) to the data collection unit. In the second step, we apply the context
awareness and prediction unit to analyze the used desired min max settings, environmental parameters
with predicting future indoor parameters for the fish tank. Thirdly, the objective function is used as an
optimization algorithm to calculate optimal indoor parameters for the fish growth with efficient energy
consumption with considering user desirable parameters, system and control constraints. At the end of
the process, fish tank actuators’ operational level and activation duration are computed using the FLC.
For the calculation of the control values optimized and predicted environmental parameters are used as

input values to the FLC module.

Table 1 gives a detail explanation of data with examples. Five types of data are used as input

parameters for the proposed system.

Table 1: A brief description of the data used in this work.

Input data Description Example
User-desired  \yser desired parameters are the most desired tzeom_zesraijre ranges for
parameters values for the environment. A fish farmer knows 6 5_% 0 acid ranaes for pH level
the most acceptable minimum and maximum 3'00_500 S/c?n ranpes for
temperature, water level, pH level or conductivity cond H g
levels to the fish growth 280-320 mm ranges for water
Indoor Z Indoor environmental parameters are collected é8|§;166 C 2/5/2020 11:30
environmental  data from the fish tank using temperature, ph . _ . ,
parameters level, conductivity and water level sensors with 6 a2c id 2/5//202%;%'320 P'M
time-series data 812.60 uS/cm 2//2020 11:30
247 mm 2/5/2020 11:30 P.M
Outdoor Outdoor temperature, humidity, and solar o .
environmental rail:dir?tion.dTh?s data (éa? increase t_f}e rp})erforrr_w((;mc_e 508333 CF?./EA/ZOZO 11:30
temperattjre 403.6 nm 2/5/2020 11:30 P.M
Energy Actuators’ control values are their operational vvx?;ermﬁﬂmun% :Inv:)r;ka;(r:]tlv?:\;)er:
Control level and activation duration. With controlling o .o ang o gner
Parameters their working level and operational duration, we g 9y,

can control the power consumption

medium working level 1200
watts energy.

Power Policy

Power policy describes the pricing rate of the
energy for the actuators’ consumption. The
pricing rate in Korea is 78.3 won for the first 200
kWh, 147.3 won for the next 200 kWh, 215.6 won
for all over 400 kWh

In this work, to the simplicity
of the calculation, we have
considered 129 won for 1 kW
energy for the calculation of the
price
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3.2 Embedded Optimization and Control Scheme using Fish Tank
Sensing Data

3.2.1 Embedded Optimal Control Scheme in Fish Tank

In this section of the thesis, we present briefly proposed embedded control scheme for the
controlling fish tank environmental parameters using actual sensing values and user-desired minimum
and maximum parameters. Figure 12 describes the conceptual design of the proposed optimization and
control based fish tank control mechanism. Input parameters for the fish tank are user desired minimum
and maximum values for temperature, pH, conductivity and water level. Output parameters are heater,
cooler, water pump and pH controller’s operational level and activation time. Optimization computes
the optimal temperature, pH level, conductivity and water level to the fish tank according to the user-
desired indoor parameters. Control module calculates the operational level and activation duration to
the 10T actuators based on optimal and actual values using IF-THEN rules. For instance, if the actual
temperature is less than the user desired minimum, then the heater is activated and increases the

temperature level.
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Figure 12: Conceptual design of the optimization and control based proposed system.
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The detailed conceptual design of the proposed optimization and control based fish tank
environmental control mechanism is described in Figure 13. Input parameters are the user-desired
minimum and maximum parameters and actual temperature, water, pH and conductivity levels. Based
on these parameters, the optimization module calculates the most optima environmental values to fish
production.Input parameters are the user-desired minimum and maximum parameters and actual
temperature, water, pH and conductivity levels. Based on these parameters, the optimization module
calculates the most optima environmental values to fish production. Then the control module calculates
the working level and activation duration to the fish tank actuators using optimal and actual values. It
is important to note that this system design is based on optimization and control algorithms and does
not include the prediction module. With developing with prediction and without prediction modules,

we can evaluate the system and increasing the efficiency of the proposed system.
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Figure 13: Detailed Conceptual design of the optimization and control based proposed system.

Figure 14 describes the detailed optimization and control based fish tank environmental control
scheme using actual environmental parameters. As we mentioned above the proposed system comprises
three environments, namely, fish tank environment, embedded hardware environment, embedded
software environment. 10T sensors and actuators are installed to the fish tank environment as an
embedded hardware environment for collecting temperature, water, pH level and conductivity values.

Actual sensing values are used to calculate the optimal parameters based on user-desired parameters in
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the optimization module. Fuzzy logic control module computes the working level and activation
duration to the actuators based on actual environmental and optimal environmental data. Based on these

control values heater, cooler, pump, pH controller and fish feeder are controlled automatically.
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Figure 14: Optimization and control based proposed system architecture.

Figure 15 shows the flowchart diagram of the optimal control mechanism using the actual sensing
data. In this study, we consider the prediction, optimization, and control based fish tank environment
monitoring system with efficient energy consumption. We implemented the overall system by
considering the various cases, as shown in this subsection. This subsection only considers the
optimization and control based fish tank environment optimal control system without a prediction
model. Optimization scheme computes the most optimal environmental parameters based on actual
sensing values and user-desired settings, then fuzzy logic control module computes the working level

and activation duration to the actuators using optimized and actual environmental values.
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Figure 15: Flowchart diagram of the fish tank environmental control using sensing data.

Figure 16 illustrates the sequence diagram of the proposed optimization and control based fish
tank environmental control mechanism using actual sensing values. As we mentioned above, this
subsection considers the development of optimal control embedded platform for the fish tank based on
optimization and control model without considering the prediction module. As can be seen, the graph
includes the fish tank environment, 10T sensors, actuators, the proposed system and user. Sensors are
used to collect the actual temperature, water, pH and conductivity levels. The proposed system has data
collection, optimization and control functionalities. Based on actual temperature, pH, water, and
conductivity values, the objective function computes the optimal environmental parameters to the fish
growth based on collected data and user-desired parameters with efficient energy consumption. Then

the fuzzy logic-based control unit calculates the working level and activation duration to the actuators
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using actual and optimal environmental parameters. The role of the user is assigning user-desired

parameters to the proposed system and checking the results from the visualized charts.
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Figure 16: Optimization and control based proposed system architecture.
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3.2.2 Proposed Objective Function for Optimization algorithm using Fish Tank

sensing data

In this section of the paper, we described our model for fish farm environmental parameters

optimization in detail. We developed an objective function for the maximization of fish farm

environmental parameters with efficient energy consumption based on actual environmental values,

user-desired settings, and system constraints. T, pH, C, and W describe water temperature, pH level,

conductivity, and water levels, respectively. The fish tank indoor environmental control time is assumed

as one day. One day is divided into T time slots, each slot duration is considered as 15 minutes; as a

result, one day divided into T=96 slots. The actual environmental parameters for the fish farm (EPF.)

are described in equation 1

EPFa = [Ta, pHa, Ca, W)
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Where, Ta, pHa, Ca, and W are the actual temperature, actual pH, actual conductivity, and actual
water-level values, respectively, which are collected using Fish Tank IoT sensors. Fish farm user/farmer
can choose the range of highly desirable environmental parameters for the fish farm (EPFq) with desired

settings for each value as described in (equation 2).

EPFq = [Ta pHa, C4, Wd] (2)

Table 2 presents a brief description of the used notations in this formulation.

Table 2:Description of notations used in the formulation.

Notation Description

T Number of time slots

SD Slot duration [minute]

EPF, Actual environmental parameters for fish tank

EPFq User desired environmental parameters

Ta, pPHa, Ca, Wa The actual temperature, pH, conductivity and water level
parameters

Ta, pHa, Cy, Wy User desired temperature, pH, conductivity and water level

Tmin, I:)Hmin, Cmin, Wmin
Tmax, pHmax, Cmax, \/\/max

Topt, pHopt, Copt, \\/ont
EC

The minimum ranges of the desired environmental parameters

The maximum ranges of the desired environmental parameters

The optimal level for environmental parameters

Energy consumption for actuators {heater, cooler, water pump,
pH and fish feeder}

OE Optimal environment for the healthy fish production

OEC, OOE Obijective weights of energy consumption, optimal environment.

ECMin Total energy consumption with the minimum desired parameters
ranges

ECmax Total energy consumption with the maximum desired parameters
ranges

ECort Optimal energy consumption with optimal environmental
parameters

Qmax Maximum ranges between predicted and desired environmental
parameters

Gr The range between predicted and desired environmental
parameters values at time t

Amax Maximum working level for the actuators (fewer time slots and
higher energy consumption required)

Amin Minimum working level for the actuators (more time slots and
less energy consumption required)

EC* The convex combination of the energy consumption

OE* The convex combination of the optimal condition
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Where Tq, pHq, Cq, and Wy represents the user desired temperature, pH level, conductivity, and
water level, respectively. User desired parameters are the most acceptable ranges for the fish growth,
which can be inserted from the fish farmer to the system. The proposed objective function calculates
the optimal fish farm indoor parameters based on user desired parameters. Because of the optimal
temperature, pH level, conductivity need to fulfil the user requirement. User desired setting values are

the allowed between the minimum and maximum ranges of each parameter such that,

Td - [Tmin, TmaX]
pHd - [pHmin, pHmaX]
3)
Cd - [Cmin’ CmaX]

Wq = [W™n, Wmax]

Where T™" pH™MN C™M" and W™ present the minimum user desired ranges for the temperature,

pH level, conductivity and water level, respectively. While T, pH™ C™® and W™ describes the
maximum user desired parameters for the indoor values in the same order. Based on desired ranges, the
maximum values obtain the most desired settings for the environment, and the minimum values are the
least acceptable value for the environment parameters. Above mentioned, the minimum and maximum
environmental parameters also describe the boundaries of the proposed objective function at the same
time. For instance, the actual temperature (T) is between the minimum (T™") and maximum (T™)
temperature boundaries, then no need to optimize the actual temperature because it is already inside of
the boundaries or user-desired parameters. If the actual temperature lower than the minimum boundary
(Ta<T™"), then we need to activate the heater to increase the actual temperature until to reach between
the minimum and maximum boundaries of the temperature (T""<T,<T™®). If the actual temperature is
higher than the user desired maximum boundary (T.>T™), then we need to activate the cooler actuator.
It is true that a fish farmer obviously wants to boost the production by setting up maximum parameters
for each value. However, the maximum configuration of actuators requires high energy consumption.
Let us assume the optimal environmental parameters in time t that can achieve desired environmental

settings are given by (4)
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EPFopt — [Topt’ pHopt, Copt, Wopt] (4)

Where EPF™ describes the optimal environmental parameters for the fish tank, and T°, pH°",
C°' and W present optimal temperature, optimal pH level, conductivity, and water level, respectively.
Optimal environmental values have to be between the minimum and maximum user-desired ranges, as

shown below (5),

Topt = [Tmin TmaX]
pHopt € [pHmin, pHmaX]
Copt c [Cmin, CmaX] (5)

Wopt = [Wmin WmaX]

In the following, the objective function takes into account two terms introduced, overall energy
consumption (EC), and optimal environment (OE) to the fish tank. Overall energy consumption can be
calculated according to the energy consumption of the actuators’ working level and operational duration.
With a minimum working level, actuators consume less energy but spend more operational duration for

achieving optimal condition as described in equation 6:

ECmin = 2{21 Anea™n + Z{:l Acooler™ + Z{:l Apumpmm + Z{:l ApHConf.mi” + Z'{:l Afeedermm (6)

EC™n describes the overall energy consumption of the actuators with activating them minimum
working level, and A™" is the minimum working level for the heater, cooler, pump, pH controller and
fish feeder actuators. EC™ is energy consumption of actuators with activating maximum (A™)
working levels (6). As we mentioned above, with maximum working level actuators consume more
energy but spend less operational duration for achieving optimal condition: Activating the actuators’

with minimum working level requires a long time and less energy in per minute.

ECmax = T= Aneat™™* + T= Acooley™™ + T= Apumpmux + T= ApHCont.n'ux+ T= Afeedermax (7)
t=1 t=1 t=1 t=1 t=1
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Optimal environment (OE) depends on the working level and activation duration of the actuators.
If we run the heater actuator with a minimum working level, it spends different time for achieving the
optimal environment and gmax (Maximum ranges between actual and desired levels for each fish farm
parameter). The below-given equation describes the optimal environment based on the minimum,
medium, and maximum working levels of the actuators. Actual input parameters are divided into three
categories {Low, Normal, and Very High}, according to the level of the actual input parameter actuators
spend different time and activation duration for achieving the optimal environment. For instance, if the
predicted temperature level is Low, then we need to activate the heater, and if the heater is activated
with minimum working level, then it spends 4-time slots for achieving an optimal environment. By
activating the maximum working level, the heater requires 2-time slots to achieve optimal
environmental parameters, as shown in equation 8. The same consideration applies to the other actuators

too.

OE™n = Gmaxt Z{:l ar *Aheatmin ®)

OE™™ = g max+ Yi—q T *Anea™

Where OE™" and OE™* present optimal environment of the fish growth according to the
minimum (Aneat™") and maximum working level activation of the heater (Aneat™). gr describes the
ranges between actual and desired environmental parameters ranges at time t and T is various time slots
for activating actuators. The objective function is a convex combination of the above two cost indices
scaled as follows.

EC* = (EC — EC™")/(EC™-EC™")
OE* = (OE — OE™")(OE™-OE™") ®)

Where EC* and OE* describe the convex combination of the optimization energyc
consumption and environment, respectively. While EC™", EC™* OE™", OE™ represent the minimum

and maximum values achievable for energy consumption and an optimal environment. The final

objective function to be minimized is
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J = min(oec(1-(EC*)?) + aoe(1-(OE*)?) (10)

Where aec and ooe represent the user desired objective weights for the energy consumption
and optimal environment in the range [0, 1], respectively, for instance, if the user pays more attention
to the energy consumption, then he or she gives 0.9 value to the energy consumption(oec) weights and
0.1 value for the optimal environmental parameters (oog). If the energy consumption is not a problem
for the user, then the user can boost the production by giving high weight to the optimal environment

((lEc =0and OoE = 1).

The system constraints:
Ta < Tdmin < Topt < Tdmax
Wa < dein < Wopt < deax

pHa < pHdmin < pHopt < pHdmax

Ca < Cdmin < Copt < Cdmax (11)

0 < Ecmin< Ecopt < Ecmax
0 < OEmin < OEopt < OEmax

3.2.3 Control Mechanism using Fuzzy Logic in Fish Tank

Over the past several years, Fuzzy Logic Control (FLC) based applications have been considered
as one of the main fruitful and active fields in industrial areas, mainly research-based studies. Applying
traditional control methods to the industrial processes is difficult due to less available data for the input
and output parameters. The basement of the FLC is a fuzzy logic, which is closer to people’ reasoning
and their language description than the conventional control methodologies [86]. As we mentioned
above, we developed the FLC module for computing operational level and activation duration to the
actuators based on predicted and optimal environmental parameters.

Input parameters to the fuzzy system are divided into two categories, namely actual and optimized
levels of the temperature, water level, water humidity, and conductivity level sensing data. FLC
computes control parameters for actuators based on the actual and optimal sensing levels. Figure 17

describes the proposed fuz zy logic control mechanism for controlling the fish tank actuators. These
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actuators are heater, cooler, pump, pH controller, and fish feeder. As can be seen, the input parameters
for the fuzzy logic are actual and optimized environmental parameters. Input actual values are labelled
by dividing five categories, namely, very low, low, medium, high, very high and optimized. IF-THEN

conditional statements are deployed to compute activation level and operational duration for actuators.

Fuzzy Logic Control E
he:ater
Data Acmal >
Acquisition [ T.WpH.C - Fuzzification <> % D
¥ 1 » 1 .
A n 1 Optimized % ool
st T.W pH.C v 20
T.W.pH.C < » ==
4 J Fuzzy Inference Rules < z pump
=
Optimization R a
~ _—
Y 8 Level and
Defuzzification «—> = Duration PH cogtrolle
Feeder

Figure 17: Fuzzy logic control mechanism for controlling Fish Tank actuators.

Fuzzification [90] is a process which converts crisp input parameters to the linguistic values. The
below-given parameters describe the input and output parameters for the proposed fuzzy logic control
module. Input parameters are actual temperature, pH level, water level and conductivity levels which is
divided into five categories based on specific ranges as described in brackets. Second input parameters
are optimal temperature, pH, water and conductivity. Whereas, outputs of the fuzzy logic are working
level and activation duration for each actuator. Acceptable fuzzy linguistic variables are selected for

each fuzzy variable.

«Input: Actual Temperature, pH, Water and Conductivity levels {Very Low, Low, Normal, High,
and Very High}

Input: Optimized Temperature, pH, Water and Conductivity {Optimal}

*Output: Actuator working-level {Minimum, Medium, Maximum}

*Output: Actuator activation duration {OffTime, Very Little, Little, Normal, Much, Very Much}
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Figure 18 illustrates the detailed fish tank temperature parameters control flow diagram using
heater and cooler actuators. As can be seen from the figure, there can be three conditions, a) if the actual
and optimized temperature values are equal to each other in time t, then no need to activate the heater
and cooler actuators. b) if the actual temperature is lower than the optimized temperature values, then
fuzzy logic-based control unit computes and sets working level and operational duration based on
below-mentioned rules. If the case a) fails and the actual temperature is higher than the optimized

temperature, then the control unit sets working level and activation duration to the cooler actuator.

Inputs
Actual Temperature Optimized Temperature
T, T,
N
o control for e true
Actuators
alse
true true
A 4 A 4
AT=Min(5,Abs(T T, )) AW=Min(5,Abs( T, T, ))
durl*levell/3 >= AT durl*levell/3 >= AT
HeaterDuration=dur; CoolerDuration=dur;
HeaterLevel=rate; Coolerlevel=rate;
| |
activation activation
\)
Heater Cooler

Figure 18: Flow diagram of fuzzy logic-based temperature control.

Water pump actuator control has two input parameters, namely actual water level and optimized
water level as presented in Figure 19. The actual water level is the real-time collected data from the fish
tank environment using the water level sensor, while the optimized water level is the computed optimal
value using the objective function which we have formulated for the fish tank environmental parameters
optimization. We do not need to operate actuators if the actual water level is equal to or higher than the

optimal water level in case a. If case a) fails and the optimal water level is higher than the actual water
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level parameters then fuzzy logic-based control unit computes the operational duration and activation

level to the water pump actuator.

Inputs

Actual Water Level Optimized Water Level
W, W
|

[+]

true

l false

No control for Water
Pump true
h J
AW=Min(10,Abs(W_-W,})
durl®*levell/3 == AW
WaterPumpDuration=dur;
WaterPumplLevel=lev;

T
activation

"

Water Pump

Figure 19: Flow diagram of fuzzy logic-based water level control.

Fish tank pH level control process has two input parameters: the actual pH level and optimal pH
level. Figure 20 represents the detailed fuzzy logic-based flow diagram of the proposed fish tank pH
level control unit. The actual pH level is the real-time collected data from the fish tank environment
using the pH level sensor, while the optimized pH level is the computed optimal pH values using the
objective function which we have formulated for the fish tank environmental parameters optimization.
As can be seen, there are two possible cases, case (a) when the actual pH level is equal to or higher than
the optimized pH level; then any actuators are no need to activate. In case of b) if the actual fish tank
pH level is less than the optimized pH level, then fuzzy logic-based control unit computes the
operational level and activation duration to the pH controller. For controlling the fish feeding and
conductivity level the same rules are considered as we described in above-mentioned figures. Their

input parameters are the actual and optimized parameters. The proposed optimization algorithm can be
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extended easily with other fish tank environmental parameters i.e. dissolved oxygen, humidity, and so

on.

Inputs

Actual pH Level Optimized pH Level
PH, pH,

true

l false

Mo control for true
actuators h 4
ApH=Min(2,Abs( pH ,pH,))
durl*levell/3 == ApH
pHControllerDuration=dur;
pHControllerLevel=lewv;

I
activation

rH
Contreller

Figure 20: Flow diagram of fuzzy logic-based pH level control.

Table 3 describes the fish farm environmental values, available and optimal ranges. As we
mentioned already, this work considers four environmental parameters of the fish tank environment,
namely, temperature, pH level, conductivity and water level. The available ranges describe overall cases
for each parameter in general, whereas, an optimal range provides the most acceptable values to the fish
farm. Fish farm-related researches describe that the available value ranges for the first three parameters
are 0-40°C, 0-14 acid, and 10-2000 puS/cm, respectively, while optimal ranges are 20-25 °C, 6.5-8.0
acid, and 150-500 uS/cm. Measurement of the water level is considered according to the height of the
fish tank. Our experimental environment fish tank height is 350 mm, and we assumed that 300-320 mm

water level is the most acceptable water level.
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Table 3: Fishtank environmental values and user-desired ranges for fish growth.

Value name , User-desired range
Available range .
Min Max
Temperature 0°-40°C 20°C 25°C
pH level 0-14 acid 6.5 8.0
Conductivity 10-2000 puS/cm 300 uS/cm 500 pS/cm
Water level 0-350 mm 280mm 320mm

Input parameters show that actual environmental sensing data values are divided into five levels
based on their specific ranges. The second input parameters are optimal environmental parameters
which are calculated using the objective function. According to the input parameters, fuzzy logic control
provides the operational level and activation duration for variable speed actuators. For the purpose of
comparisons in this work, we consider actuators’ working level in three cases: maximum, medium and
minimum operational levels. If variable speed operational level actuators are controlled with various
speed, then they require various time and power for increasing or decreasing the actual environment
values to the optimal values. Table 4 presents the linguistic description of the actual and optimized input
values for the FLC. Actual and optimized levels are labelled as VL, L, N, H, and VH that are
abbreviations of Very Low, Low, Normal, High and Very High. If we take fish tank water level as an
example, the actual water level is anywhere between 0 and 100 mm, and then fuzzy set for water level
is labelled as Very Low. If the water level was between 150 and 225 mm, it is labelled as normal. Above
mentioned considerations are set to other fish tank parameters’ labels too. The optimized environmental
parameters are needed to compute between the minimum and the maximum boundaries. These

boundaries also describe the most acceptable ranges for fish growth.

Table 4: Linguistic description of actual input values.

Linguistic Description

No. Input Values Very Low (x1, Low (x2, Normal (x3, High (x4, Very High(x6,
x2) x3) x4) x5) X7)
20-35 30-40
1 Actual Temperature (°C) 5-10 5-20 15-30
9-13 12-14
2 Actual pH 0-4 3-7 6-10

Actual Conductivity 1050-1450 1400-2000

10-400 350-750 7001100
(nS/em)

4 Actual Water level (mm) 0-100 75175  150-225 200-300 275-350
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Fuzzy Inference. A fuzzy knowledge [91] base is a combination of inference and knowledge
conditions to solve particular issues. Generally, this concept is suggested to emulate people’s decision
to find a solution to various problems using the existing information[92]. Fuzzy rules are evaluated by
the performance of Fuzzy Associative Matrix (FAM) tables. FAM is a vital table for the description of
the rule editors in a matrix form with describing all existing outputs based on all available input
parameters. As we already explained in the above input parameters, actual environmental data is
labelled into five levels, such as Very Low, Low, Medium, High, and Very High, as described in Table
5. A novel objective function calculates the second input parameters for the FLC based on user
preferable parameters and the proposed system constraints.

Based on the expert explanation, supervisor, and agriculture officers, we have developed labelled
output for actuator working level and operational duration. Heater and Cooler work dependently
because when the temperature is less compared to the optimal temperature, then the heater is needed to
activate and improve the system temperature value until the temperature is levelled of the optimal level.
Oppositely, when the actual temperature is more than the optimal temperature value, then the cooler
actuator should be activated to decline the actual temperature up to it equalize the optimal temperature
level. As a result, if one temperature control actuator is active, the other one’s is inactive. Actuators
activate in three operational levels (the maximum, medium, and medium) with consuming different
energy. Activation duration for actuators is labelled as very much time(vmt), much time(mt), normal
time(nt), very little time(vIt) and off time. When actuators activate with the minimum working level, it

consumes less energy but spends very much time (VMT). It can be seen from

Table 5 there are two off points in both actuators. In the Medium point of the sensing data can be
increased or decreased according to the difference between optimized and current sensing data. As can
be seen, the first input values to the FLC are the actual sensing data parameters are divided into Very
Low, Low, Medium, High and Very High. The second input parameter is the optimal data which is
calculated using the objective function. The output values of the proposed FLC unit are the heater and
cooler actuators’ working level and activation duration. If actual sensing data is very low and optimized

data is optimal, then the heater is needed to activate.

50



Table 5: FAM table for the Fish Tank temperature control.

INPUT OUTPUT
Actual Sensing Objective Function- Heater (Level * Cooler (Level *
Data based Optimal data Duration) Duration)
Minimum*vmt
or
Very Low Optimal data Medium*mt Cooler OFF
or
Maximum®*nt
Minimum*mt
or
Low Optimal data Medium*nt Cooler OFF
or
Maximum*1t
Minimum*NT Minimum®*nt
or or
Medium*LT Medium*1t
Medium Optimal data or or
Maximum*VLT Maximum*vlt
or or
OFF OFF
Minimum*mt
or
High Optimal data Heater OFF Medium*nt
or
Maximum*It
Minimum*vmt
or
Very High Optimal data Heater OFF Medium*mt
or
Maximum*nt

If the heater actuator is activated with minimum working level then it requires the very much time
to increase the actual temperature values to the optimal. When the heater actuator is activated with
medium working level then it requires much time. Above mentioned Fuzzy Associative Matrix table
applies to the fish tank pH level, water level, conductivity levels, as well as the water pump, pH
controller, and fish feeder actuators too. Table 6 presents fuzzy logic inference rules for fish tank
temperature based on FAM. The rules mentioned below also acceptable for the other fish tank
environmental parameters, we have applied these rules for controlling the pH controller, water pump
and conductivity control actuators. Our proposed embedded machine learning system provides
automatization of fish tank for energy efficiency based on Machine Learning, Objective function and

FLC.
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Table 6: Fuzzy logic inference rules for the fish tank temperature value control.

1. if (Predicted Temperature is Very Low) and (Optimal Temperature is Optimized)
then ( (Heater is Minimum) (Duration is vmt)
or (Heater is Medium) (Duration is mt)
or (Heater is Maximum)(Duration is nt)
and (Cooler actuator status is OFF));

2. if (Predicted Temperature is Low) and (Optimal Temperature is Optimized)
then ( (Heater is Minimum) (Duration is mt)
or (Heater is Medium) (Duration is nt)
or (Heater is Maximum )(Duration is It)
and (Cooler actuator status is OFF));

3. if (Predicted Temperature is Medium) and (Optimal Temperature is Optimized)
then ( (Actuator is Minimum) (Duration is nt)
or (Actuator is Medium) (Duration is [t)
or (Actuator is Maximum)(Duration is vlt)
or (Heater or Cooler actuator status is OFF));

4. if (Predicted Temperature is High) and (Optimal Temperature is Optimized)
then ( (Cooler is Minimum) (Duration is mt)
or (Cooler is Medium) (Duration is nt)
or (Cooler is Maximum )(Duration is If)
and (Heater actuator status is OFF));

5. if (Predicted Temperature is VeryHigh) and (Optimal Temperature is Optimized)
then ( (Cooler is Minimum) (Duration is vmt)
or (Cooler is Medium) (Duration is nt)
or (Cooler is Maximum )(Duration is If)
and (Heater actuator status is OFF));

Input values are labeled as vl, I, m, h, vh, and opt. Fuzzy rules are capable of evaluation of input
parameters using if-then statements, according to these rules actuators operational level and activation
duration can be calculated. In the defuzzification step, operational level and activation duration are
converted to exact activation duration to actuators. For example, when the required operational time to
the system is a low time, then FLC module sets 2 to 4 minutes working time to the actuators. After
analyzing the objective function and FLC, the algorithm is developed for the proposed system. Table 7
algorithm only describes temperature, prediction, optimization and control. However, the implemented
system also includes an algorithm for other fish tank parameters. The optimal temperature control
algorithm consists of “prediction”, “optimization scheme” section and “fuzzy logic control scheme”

section.
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Table 7: Proposed System Algorithm for Optimal Temperature Level Control

Algorithm Proposed System Algorithm for Optimal Temperature Level Control

Initial: Install sensors and actuators

Set User desired settings: Ty, Tinax € Using Equation (1)
Set System Constraints < Using Equation (10)
Start sensing: Ty

1:  procedure PREDICTION MODULE

2 Comment: Predict future temperature values using RNN-LSTM trained model
3 Predict: T,

4: then

5: send: Tpre

6: to the

7 OPTIMIZATION SCHEME();

8:  procedure OPTIMIZATION SCHEME

9: Comment: Using Objective Function to calculate optimal temperature.
10: Calculate T,,; € Using Equation (9)

11: then

12: send: Ty, Topt

13: to the

14: FUZZY LOGIC CONTROL SCHEME ();

15:  end procedure

16: procedure FUZZY LOGIC CONTROL SCHEME
17: input 1: T,

18: input 2: T,

19:  if Ty, == T,y then

20: activateActuator(ALL ,OFF)

21:  elseif Ty, == VeryLow and Tip, <Tope < Tipax then

22: activateActuator(Cooler, OFF)

23: activateActuator(Heater, Values=[Minimum*vmt, Medium*mt, Maximum®*nt])
24:  elseif T, == Low and Ty, <Tppe < Tipay then

25: activateActuator(Cooler, OFF)

26: activateActuator(Heater, Values=[Minimum*mt, Medium*nt, Maximum?*1t])
27:  elseif Ty, == Medium and Ty, < T,,, then

28: activateActuator(Cooler, OFF)

29: activateActuator(Heater, Values=[Minimum*nt, Medium*It, Maximum®*vlt])
30: if Ty,.e == Medium and T,,.. > T,, then

31: activateActuator(Heater, OFF)

32: activateActuator(Cooler, Values=[Minimum *nt, Medium*1t, Maximum *vlt])
33: else activateActuator(ALL ,OFF)

34:  elseif Ty, == High and Ty, <Topt < Trpaxthen

35: activateActuator(Heater, OFF)

36: activateActuator(Cooler, Values=[Minimum*mt, Medium*nt, Maximum?®*It])
37:  elseif Ty, == VeryHigh and Ty <Tppt < Tppayx then

38: activateActuator(Heater, OFF)

39: activateActuator(Cooler, Values=[Minimum*vmt, Medium*mt, Maximum?*nt])
40:  end if

41: end procedure
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Defuzzification[93]. It is a process which produces a set of output parameters from the crisp logic
based on fuzzy sets and membership graphs. As we already mentioned, output values are operational
level and activation duration of the fish tank actuators. Heater, cooler, pH controller, pump and feeder
actuators are controlled themselves based on actual sensing data and optimal sensing data. When T, <
To, then the heater is operated, and if T, < T, then the cooler is needed to activate. In terms of fish tank
water level if W, < W, then the water pump is activated. When W, < W, then the second water pump
is operated in order to decrease the water level. Actuators’ power assigns are described in Figure 21. It
can be seen that the power rating ranges are divided into three working speeds, namely, maximum,
medium and minimum. x1, x2, x3, and x4 illustrate the ranges of degree of membership function for
presenting the output values. Each fish tank actuator consumes various energy based on their activation
level.
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Figure 21: Energy ratings for actuators’ working level in Fish Tank.
Table 8 shows the energy consumption rating for fish tank actuators based on maximum, medium,
and minimum working levels in a minute. If we take the heater actuator as an example, when heater is
operated with a minimum operational level, then it requires energy consumption ranges between 30 (x1)

and 120 (x2) watts for a minute. When the heater is operated with the medium operational level, and it
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spends 120 (x2) to 210 (x3) watts energy in a minute. With activating maximum operational level the
heater, the heater requires from 210 (x3) to 300 (x4) energy for per minute. The same consideration is
applied to all other fish tank actuators.

Table 8: Energy consumption ratings of actuators’ working level in Fish Tank.

Energy Rating (Watts)
No. Actuators Minimum (x1, x2) Medium (x2,x3) Maximum (x3, x4)
1 Water pump 600-1000 1000-1400 1400-1800
2 Heater 30-120 120-210 210-300
3 Cooler 700-800 800-900 900-1000
4  pH Controller 400-500 500-600 600-700
5 Fish Feeder 300-450 450-700 700-850

As mentioned earlier, choosing the right actuators operational time length plays a key role in both
the automation of fish farms and the efficient management of energy. If the marking of the actual
detection data is very low, the actuator must use one of the operating levels (minimum, medium or
maximum). Depending on the operating level or speed of the actuator, the operating time of the actuator
also changes until the optimum environment for controlling the actuator environment is reached. In
particular, if the water pump operates at the minimum operating level, it will take a long time.
Conversely, if the water pump operates at the maximum operating level, little time is required. Figure
22 shows a graphical representation of membership functions as a function of actuator time. The output
variable operating time of the actuators has six membership functions. These membership functions are
marked as OFF, VLT, LT, NT, MT and VMT and are reduced when the drive is turned off, very little
time, little time, normal time, much time and very much time. The drive operating time is described in
minutes, and the time range is determined based on agricultural and technical knowledge. This
participation function is enabled during operation of all drives. If the current collection data matches
the optimal data, the actuator runs for 0 minutes, and the actuator does not need to be activated (OFF).
These parameters can be changed based on actuators’ operational parameters. With considering these
points, we developed the system which user can assign the required control values as an input value to

the system from the user interface.
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Figure 22: Membership function graph for the actuators’ operational duration (min).

3.3 Embedded Predictive Optimal Control Scheme using RNN-LSTM

3.3.1 Embedded Predictive Optimal Control in Fish Tank

In this subsection, we describe our proposed embedded predictive optimal control environment
using fish tank parameters. This system includes the prediction module, the prediction module helps to
increase the performance environment parameter controlling. Figure 23 describes the conceptual design
of the proposed system. As can be seen, we have an 10T based fish tank environment which includes
various sensors and actuators to measure and control the environmental parameters of the fish tank.
Input parameters for the system are user-desired min-max values and fish tank actual environmental
parameters. Context-awareness and prediction model is used to analyze and predict the future
environmental parameters using input parameters. The formulated objective function for optimization
is used to calculate the optimal environmental parameters to temperature, pH level, conductivity and
water level using predicted and user-desired values. The fuzzy logic-based control model computes the
operational duration and activation level to the actuators using the predicted and optimal environmental
parameters. Based on these control values heater, cooler, fish feeder, water pump actuators increase or
decrease the predicted environmental parameters to the optimal environmental values. As a result, the

optimal fish growth environment can be achieved with minimum energy consumption.
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Figure 23: Conceptual design of the embedded predictive optimal control in Fish Tank.

Figure 24 illustrates the detailed conceptual design of the proposed system using the fish tank and
user-desired parameters. As shown in the figure, we have input data, context awareness and prediction,
optimization and control units. According to the user desired minimum and maximum environmental
parameters and predicted environmental parameters, the optimization module calculates the optimal
environmental parameters with minimum energy consumption. Then these optimal environmental and
predicted environmental parameters the control module sets working level and operational duration to
fish tank actuators using IF-THEN rules. For instance, if the predicted temperature is less than the
optimal temperature, then we need to activate the heater in order to increase the temperature level of
the fish tank. If the predicted temperature level is higher than the optimal temperature level, then we
need to activate the cooler actuator to decrease the fish tank temperature level. If the predicted and

optimal environmental parameters are the same, we do not need to activate any actuators.
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Figure 24: Detailed conceptual design of the embedded predictive optimal control in Fish Tank.

Figure 25 describes the detailed system architecture for the embedded predictive optimal control
in the fish tank. As can be seen, we have three environments, namely, fish tank, embedded hardware
and embedded software environments. Each environment has various functionalities, such as fish tank
environment for breeding, harvesting or producing the fish products. Embedded hardware environment
includes a number of sensors and actuators which are used to measure the fish tank temperature, water
level, pH level and conductivity levels in real-time, whereas, the IoT actuators are utilized to control
these measured parameters with optimal controlling. Embedded software environment comprises the
various functionalities which we implemented to control the fish tank environmental parameters with
optimal resource utilization. These functionalities are sensing data collection, context awareness,
prediction, optimization and control. According to the collected temperature, water level, pH, and
conductivity level data, the prediction model predicts the future environmental parameters to the fish
tank and based on these predicted parameters the objective function computes the most optimal
parameters to the environment with considering the user-desired parameters and the system constraints.
According to the optimized and predicted data fuzzy logic control module calculates the operational
level and activation duration for the actuators. With these control values heater, cooler, water pump,
and fish feeder actuators are activated automatically in the required time in order to provide the optimal

environmental values to the fish growth.
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Figure 25: System architecture of the embedded predictive optimal control in Fish Tank.

Figure 26 describes the flowchart diagram of the proposed embedded prediction optimal control
scheme using the user-desired and actual fish tank environmental parameters. As we already explained
above, RNN-LSTM is used to predict the future temperature, water level, conductivity and pH level
parameters to the fish tank using the collected actual environmental parameters, then predicted and user-
desired parameters are used as input values to the optimization module. The objective function
calculates the most optimal temperature, water, conductivity and pH level environmental values to the
fish tank with efficient energy consumption, and then the FLC module assigns operational level and

activation duration to the fish tank actuators based on predicted and optimal environmental parameters.
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Figure 26: Flowchart diagram of the embedded predictive optimal control in Fish Tank.

Figure 27 describes the sequence diagram of the proposed embedded predictive optimal control
scheme. The proposed system has data collection, context awareness and prediction, optimization and
control functionalities. Actual fish tank temperature, water level, pH level and conductivity levels are
collected to the data collection unit using loT sensors, and this data is used to train prediction module.
As the new sensing values are forwarded to the prediction module this module computes the future
environmental parameters for the fish tank, then optimization module computes the optimal fish tank
environmental parameters according to the predicted and user-desired parameters. The objective
function calculates the optimal temperature, optimal water level, optimal conductivity, and optimal pH
level for fulfilling the user-requirement. Then optimal fish tank environmental and predicted
environmental parameters the fuzzy logic-based control unit computes the control values to the fish
tank actuators, and these control value results are visualized to the user. With controlling the actuators

with various working level and operational duration, we can control energy consumption.
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Figure 27: Sequence diagram of the embedded predictive optimal control in Fish Tank.

3.3.2 RNN-LSTM based Prediction Algorithm for Predictive Embedded Optimal
Control

In the last decades, the development of advanced technologies has been created a dramatic
improvement in a number of industries around the world. Machine Learning has begun to play an
essential role in our daily life with extending our ability and knowledge to increase the condition around
us. Machine Learning covers various algorithms and models, and they can be used according to the area
of interest. However, in this work we have used Long Short-Term Memory Networks (LSTM) for
forecasting the future environmental parameters of the fish tank. LSTM is one of the special types of
the RNN which have capabilities to learn long-term dependencies. LSTMs were presented by
Hochreiter and Schmidhuber [77] in 1997. Compared with many other RNNSs types, the LSTM model
is a novel recurrent network concept, and support various capabilities in terms of gradient explosions,
gradient disappearance, and lack of long-term memory of RNNs [78,79,80,81]. The LSMT network
contains a forget and preservation mechanisms that let the network architecture to impact constant fails
to flow via the internal state of a particular cell. These portions provide an effective implementation of

the non-linear mapping between input values and output values. The LSTM is different from other
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neural networks in terms of fault tolerance and accurate results. An LSTM layer and a sequence input
layer are the central components of the LSMT network. The sequence input layer of the network
presents the time-series data or sequence data, which is used as an input parameter to network, whereas
the LSTM layer supports the long-term dependency learning process using the time steps of the

sequence data.

Figure 28 presents the flow of a time series X with C channels (features) of lengths S through the
LSMT layer. As described in the given diagram, the output or hidden state is denoted with ht, while the
cell state of the network is illustrated with c: at time step (t). The first LSTM uses the initial state of the
network and the first time step of the sequence to calculate the first output and the updated state of the
cell. At time t, the unit calculates the output signal and the updated state of the cell ct using the current
state of the network (ct1, ht1) and the next sequence time step. A layer state consists of a hidden state
(also called an initial state) and a cell state. The latent state at time step t contains the output of the
LSTM layer for this time step. The cell state contains information obtained in the previous time step.

At each time step, the level adds or removes cell state information. Layers use gates to manage these

updates.
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Figure 28: LSTM network layer architecture [82].
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The LSMT network hidden layer structure is described in Figure 29. Given a, f, ¢, 0 parameters
describes the input, the forget, the internal state, and the output gates, respectively. The sigmoid
activation function is represented with o, whereas the hyperbolic tangent activation function is given
with tan h. Table 9 presents the components of the LSMT networks with their purpose. The main role
of the input gate is controlling the current internal state’s input. The forget gate is used to discard or
retain the timing data, only the output h(ti.1) of the network is forwarded to this unit. The network state
is updated by the internal state. The final output signal of the network is determined jointly by the output
valve and the internal state and will be used as the input of the entire network module at the next moment
and controlled by the input valve. As presented in Figure 29, The input parameter for the LSTM
networks is the input value x(t;) of the time series data at time ti, the LSTM network output value h(ti-1)

at time ti.1, and the internal state c(ti.1) at time ti..

A h(t,)

('(’} l) C(’i)

h(t_,) | (ht_.x(2)) hit)
—

x(;)

Figure 29: Hidden layer structure of the LSTM.

The output parameters of the LSTM networks is the LSTM network output value h(t;) at time t;,
and the network internal state c(t)). Where in the time series data x(t;) presents the data at time t;, the
output value of the network is h(ti.1) at the time ti; and the initial statue value of h(ti.1) is 0. Threshold

layer has the threshold values, which is described as b = {ba, bs, bc, bo}, each parameter of the threshold
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presents the input gate, the forget gate, and the internal state and the output gate. Weight matrixes for
the threshold layer for the input gate, forget gate, the internal state and the output gate are assigned as

wi = {wa, Wr, We, Wo}, respectively. Below given formulas describe the forward learning in sequence:

a(ti) = o(wax(ti) + Wnah(ti-1) + ba) (12)

f(ti) = o(wix(t)) + Wieh(ti1) + br) (13)

c(ti) = fi x c(ti-1) + ar X tan h(Wex(ti) + Wheh(tia) + be) (14)
o(ti) = a(WoX(ti) + Whoh(ti-1) + bo) (15)

h(t) = o(t;) + tan h(c(t:)) (16)

The LSTM network output value weight matrixes to the threshold layer are described as wo = {Wha,
Whi, Whe, Who}, fOr each gate. The output result of the LSTM network is a = {a(t;), f(ti), c(ti), o(ti)}, where
each parameter comprises the output result input gate, forget gate, internal status and output gate. The

role and description of the RNN-LSTM hidden layer gates are described detailly in Table 9.

Table 9: RNN-LSTM hidden layer gates and their purpose.

Component

Purpose
Input gate(a) Management layer of cell state update
Forget gate(f) Management layer of cell state reset (forget)

Internal state(c) Adds information to cell state

Output gate(o) Management layer of cell state added to the hidden
state

The training process in the LSTM network model utilizes a time-based backpropagation with a
time algorithm that comprises four-phase calculations, as described in Equation 12 to 16. The LSTM
network error terms are computed in revers, and the error is transferred to the output, internal, forget,
and the input gates. The gradient value of the weights in each gate is successively computed based on
the corresponding error term. The weight values of all gates are updated using the optimization
algorithm. After iterative computation, the optimal threshold b and weight w are used to predict the fish

farm temperature, water level, pH, and conductivity data of the fish tank.
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The detailed framework of the specific LSTM based prediction model is described in Figure 30.
As can be seen, the figure comprises five functional modules, namely, the input layer, hidden layer,
output layer, network training, and network output layer. The proposed system supports a multi-input
multi-output prediction model based on indoor and outdoor environmental values time series data, the
prediction model output will be predicted temperature, predicted pH level, predicted water level and
predicted conductivity results. However, for the formulation of the proposed system is described with

temperature values of the fish farm in order to simplicity of the explanation.
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Figure 30: Proposed configuration of sensing data prediction using RNN-LSTM in Fish Tank.

In the input layer step if the time axis of the water temperature data of fish farm is ty, to, ts, ..., ty,
after that the water temperature value corresponding to ti, to, ts, ..., tn IS X1, X2, X3, ..., XN, then the water
temperature data of the fish farm can be demonstrated as {x(t)), i=1, 2, 3, ..., N}, and N describes data

length.
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The water temperature data x(ti) of fish tank is split into two sets, which are the set for training
{xe(ti), i=1,2, ..., m} and the testing set { Xe(t), i=m+ 1, m+ 2, ..., N}, satisfying the constraints m

<Nand m, NN+, whereas N+ describes a positive integer values. The training set values of the training

comprise the sequence { Xw(ti), i=r+ 1, r+2, ..., m}, satisfying the constraints r <mand r € N+, and
it is mainly used to establish the model. The verification set sequence is used to adjust the network
parameters in the model construction and assist the training set sequence to establish the model.

The training set x is converted to Xreshape DY Using the python function called reshape, which is

described as:

Xreshape = [T, ra, .-, rm—L,] 17)

In the hidden layer step. The sequence x of fish farm temperature training set pre-processed by the
input layer. As described in Figure 30, the network has the hidden layer includes a double layer LSTM

neural Network. The output of the training set sequence x after the hidden layer can be expressed as:

P= [P1, Pz, ceey Pm.L]T (18)
Pq= LSTMforward(quCZ(ti-l), H2(ti-l)) (19)

where Ca(ti.1) and Ha(ti-1) are, respectively, represented as the state and output of the second layer
LSTM network at time ti.1, LSTMrorward represents the forward propagation algorithm formulas (1)—(5)

mentioned in above.

In the network training module. The actual output value of the input layer and the output value of
the hidden layer are passed to the network training module; and the loss function (loss) in the network

training process was defined as follows:

L(m-L)

loss =y (i~ P/ (Lm 1)) (20)
i=1
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3.3.3 Deployment of RNN-LSTM module to the 10T device using TensorFlow Lite

TensorFlow Lite is a special tool which can be used to deploy and run TensorFlow models on 10T,
embedded and mobile devices. Machine Learning algorithms can be delay can be activated with small
size and low latency[83]. TensorFlow Lite comprises two main modules:

The TensorFlow Lite interpreter works with specially optimized models on various types of
equipment, including cell phones, embedded Linux devices, and microcontrollers [84].

The TensorFlow Lite converter that can convert TensorFlow models to an efficient format that can
be used by interpreters and provides optimization techniques to decrease file size in binary format and

supports high-level performance [85].

Figure 31 describes the conversion diagram of the TensorFlow based module to the TensorFlow

Lite format.
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Figure 31: Deployment of a prediction model based on RNN-LSTM using TensorFlow Lite[86].



TensorFlow Lite is built to simplify machine learning on a "at the edge" network device, not to
send and receive data from a server. TensorFlow Lite can be deployed to various types of devices,
from small microcontrollers to powerful 10T devices and mobile devices. There are several

advantages of running machine learning algorithms on devices, which can support:

e Low latency: all processes are directly performance on devices and no need to send the
data or files to the server;

e High privacy: There is no data forwarding to the server or cloud using the Internet, so
privacy is high;

o Cheap connection: Internet connectivity is not mandatory;

e Less Energy requirement: Internet connectivity requires extra devices and simultaneous

activation period, then devices require a lot of power for activation.

The deployment of Tensorflow Lite requires four essential processes as described in the

below-mentioned steps:

e Model selection: Training new TensorFlow model, or finding TensorFlow models from
the Internet, or selection of model from Pre-trained models.

e Model Conversion: After training or selection of conventional TensorFlow model, then
convert this model to the TensorFlow Lite format using the TensorFlow Lite converter
with Python code.

o Model deployment: In this step, the converted model is needed to deploy to the end devices
using the TensorFlow Lite interpreter.

¢ Model Optimization: In this step, the deployed model size, efficiency and accuracy can be
improved using the model optimization toolkit to reduce your model's size and increase
its efficiency with minimal impact on accuracy. TensorFlow time is improving the
Tensorflow lite capabilities for supporting high-performance on end devices for deploying

any TensorFlow model.
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3.4 Embedded Predictive Optimal Control Scheme using Outdoor
Environmental Data

In this subsection, we describe the proposed embedded predictive optimal control scheme using
outdoor and fish tank sensing data. The main difference between this scheme and the above-mentioned
scheme is the outdoor environmental parameters. Outdoor environmental parameters influence on the
fish tank environmental parameters. For instance, if the outdoor temperature becomes very cold, then it
impacts on the fish tank indoor temperature. If the outdoor temperature is remarkably warm, then these
temperature parameters can increase the fish tank water temperature, so we need to consider the outdoor
environmental parameters for achieving the optimal environmental control. Figure 32 shows the

conceptual design of the embedded predictive control scheme using outdoor and fish tank

environmental parameters.
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Figure 32: Conceptual design of the embedded optimal control scheme using fish tank and outdoor

parameters.
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It can be clearly seen, input parameters to the context awareness and prediction model are user-
deisred min-max environmental parameters, fish tank environmental parameters and outdoor
environmental values. Outdoor environmental parameters are used to increase the accuracy of the
proposed prediction module. Figure 33 illustrates the detailed embedded optimal control scheme
conceptual design, which is based on fish tank and outdoor environmental parameters. Input data to the
prediction module is outdoor temperature, humidity and solar radiation, and fish tank environmental
parameters namely temperature, water level, pH level and conductivity. Based on this input data
prediction module forecasts the future environmental temperature, water level, pH level and
conductivity levels, while the optimization module uses these predicted values to compute optimal
environmental parameters to the fish growth based on user desired parameters. Fuzzy logic-based

control module computes working level and operational duration to the actuators.

Lo . Fish Tank
Input Data Optimization Control
Actuators

...................... .
| i Min-max environmental i } Optimal i ‘ | Heate i
I User-desired parameters i— vnlu;; for fich tank ’ B | —Temppm‘mﬁ i i L_———
‘ | 1 1 : |

””””””””””” I | I . __
17777777777777777777777: [ i } OplilllWl i i }r (OOIEI ‘}

. 2= | - <
| Outdoor Environmental | Ly L g Water level T } LS
| Parameters (femperature. | Temperature., > I =T :""b - ’U_’]"I”"} | vl
| 261 S c 1 eve
| humidity. solar | Humidity. solr | & —3l _ | N o plia U ontinal || ,‘é. L [Eessasssss \
| T 2 ai

! radiation) ! bl 20| £ o Enviomment L O, g "¢ Ny Pump
] | [ = D e pH Q1 | Duwaton [ _________]
L ' gl 1272 2 o | ‘
______________________ i
1 Fish Tank i - I il O | ‘ | ! ~— —
I . ! [ Al 1 i Optimal | ! i ! P |
; Environmental ! | 5= ‘ | 0 ! [ ouduclivity*l | L_Conoller__
i Parameters (temperature, | | 3 Lo i ! i }
| [
‘ water, pH and I ! | ; —
| B ' ] i ‘ | Fish Feeder |
| conductivity levels) ! ! i ! } |
Y e L | ] e

Predicted temperature,
water level, pH and conduetivity

Figure 33: Detailed Conceptual design of the embedded optimal control scheme using fish tank and
outdoor parameters.

Figure 34 presents the embedded optimal control scheme architecture in detail. As we mentioned
above, the proposed system architecture comprises the layers, namely, fish tank environment, embedded
hardware environment and embedded software environment. The fish tank and embedded hardware
environment have the same functionalities which were described above. However, the embedded
software environment is implemented with considering the outdoor environmental parameters in order

to increase the capability of the prediction module. Prediction module forecasts the future fish tank
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temperature, water, pH and conductivity levels using indoor and outdoor environmental parameters.

Predicted parameters and user-desired min-max values are used as input parameters to the optimization

module.
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Figure 34: System architecture of the embedded predictive optimal control using Fish tank and outdoor
parameters.

An objective function based optimization module computes the most optimal temperature,
water level, conductivity and pH level values for the fish tank. Fuzzy logic control unit computes the
working level and activation duration to the actuators based on predicted and optimized data. Then
actuators are activated automatically in the required time in order to control actuators namely, heater,
cooler, water pump, pH controller and fish feeder actuators. Heater and cooler actuators are used to
control the water temperature values. The water pump is used to control the water level in the fish tank.
pH controller is used to controlling the pH level of the fish tank. Figure 35 represents the flowchart

diagram of the proposed embedded predictive optimal control scheme architecture. As can be seen, the
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input parameters are desired settings and outdoor parameters for the prediction module. Outdoor
environmental parameters are used to increase the performance of the prediction module. As we know,

outdoor environmental parameters impact on the prediction model.

Sensors

Sensing Datr———————| /Q /6
Rl

A Temperature Waterlevel ~ pHlevel  Conductivity

Data Collection )
i (Collect temperature, level, pH.and | Sensing
: conductivify from sensors) : Env: 1.ronmmt
| .
Sensing da
Desired settings m’:g 2
(desired minimum and " Awareness and Prediction
maximum levels i (Analysis of user desired parameters | _
Outdoor Parameters ' and prediction of fish tank :
(temperature, humidity ___environmental parameters)
and solar radiation 1
Predicted data Predicted
; Y | data 4 { |
{ Otimistien : .- FishTank
i (compute optimal environmental 7 , .
| parameters using predicted data, —
desired seftings agq.c_gp_strmms) ¥
Optimized data
5 I
Heating Cooling pHlevel WaterLevel  Feeder
Fuzzy Logic Control Comol  Comtnl  Coml  Comol  Conwl
(Compute optimal working level and -4— | | | | |
activation duration for actuators) A tiators
Setup Workmg Level and N
Activation Duration
Heater Cooler  pH controller Feeder

Figure 35: System architecture of the embedded predictive optimal control using Fish tank and outdoor
parameters.

Figure 36 presents the sequence diagram of the proposed embedded predictive optimal control
scheme using Fish Tank internal and external environmental parameters. The indoor and outdoor
environmental parameters are used to predict the future fish tank temperature, water, pH and
conductivity levels. Then predicted parameters and user-desired minimum and maximum temperature,
water level, pH level and conductivity levels are used as input parameters to the objective function.
Obijective function is used to calculate the optimal environmental parameters to the fish tank. Based on
optimal and predicted temperature, pH level, conductivity and water level, FLC module assigns the

operational level and activation duration for fish tank actuators.
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Figure 36: Sequence diagram of the embedded predictive optimal control using Fish tank and outdoor
parameters.

3.5 Embedded Predictive Optimal Control Scheme based on Actuators’
Control Parameters

In this subsection, we describe our proposed embedded predictive optimal control scheme based
on actuators’ control parameters in order to minimize energy consumption. As we mentioned above,
actuators’ control settings are their operational level and activation duration. Usually, variable and fixed
speed heaters, coolers, water pumps, and fish feeders are used in fish tanks. The fixed speed
technologies can only activate in the same levels and consume a fixed quantity of power because they
do not have the speed or working level increasing/decreasing function. Conversely, the variable speed
or operational level actuators are able to be activated with various speed levels to provide required
resources according to the requirement. These variable speed devices consume the various energy based

on activation speed, more precisely if the device is activated with higher speed, then the device requires
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higher energy by compared to lower speed activation. In fish farming or the greenhouse environment,
the power consumption of the devices can be optimized by controlling actuators in variable speed, but
this type of activation requires various time to finish the specific task. For instance, if the pump requires
to be activated with the flow rate of 80 ft3/min for 4 hours in a day, then operating the same water
pump with 20 ft3/min will require 16 h of operation in a day. So actuators’ control parameters are
needed to consider to achieve high efficiency. Figure 37Figure 36 presents the conceptual design of the

proposed embedded predictive optimal control scheme using energy control parameters.
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Figure 37: Conceptual design of the embedded predictive optimal control scheme using energy
control parameters.
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Energy control parameters actuators’ operational level and activation duration are one of the input
parameters to the system. Context-awareness module is used to analysis and decision for the energy
consumption parameters according to the control values. Then actuators’ working level and activation
duration are used as the input parameter to the optimization module with user-desired and predicted
environmental parameters. Optimization module computes the optimal environmental parameters to the
fish tank with efficient energy consumption and finds the optimal working level to the fish tank
actuators. Figure 38 presents the detailed conceptual design of the proposed embedded predictive
optimal control scheme using energy control parameters. The energy control parameters actuators
working level and operational duration are the input parameter to the optimization module.

Optimization module outputs are optimal energy consumption and optimal environment parameters.
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Figure 38: Detailed conceptual design of the embedded predictive optimal control scheme using energy
control parameters.

Figure 39 and Figure 40 present the proposed system architecture for the proposed embedded
predictive optimal control scheme by considering the actuators working level and activation duration.
As we use actuators’ control parameters to the objective function as one of the input parameters, then
we can formulate their energy consumption too. As a result, we can achieve the minimum energy
consumption from the actuators and maximum and healthy fish productivity by providing the optimal

environmental parameters to the fish tank.
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Figure 39: Proposed system architecture of the embedded predictive optimal control scheme using energy
control parameters.

RNN-LSTM based prediction module predicts the future indoor environmental parameters to
the fish tank, and this predicted data, user-desired parameters and control data are used as input
parameters to the optimization module. Predicted environmental parameters are predicted temperature,
predicted pH level, predicted water level and predicted conductivity levels in time-series. Optimization
module computes the most optimal future environmental parameters to the fish growth with efficient
energy consumption. Figure 40 presents the flowchart diagram of the proposed embedded predictive
control scheme based using energy control parameters. As can be seen, input parameters to the

awareness and prediction module are user-desired parameters, outdoor environmental parameters and
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actuators’ working level and operational duration. Based on these input parameters, the prediction

model forecasts future environmental values to the fish tank.
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Figure 40: Flowchart diagram of the embedded predictive optimal control scheme using energy control
parameters.

Figure 41 presents the sequence diagram of the proposed embedded predictive optimal control

scheme using energy control parameters. The indoor and outdoor environmental parameters are used to

predict the future fish tank temperature, water, pH and conductivity levels. Then predicted parameters

and user-desired minimum and maximum temperature, water level, pH level and conductivity levels

are used as input parameters to the objective function. The objective function computes the optimal

environmental parameters to the fish tank. Based on optimal and predicted temperature, pH level,

conductivity and water level, the fuzzy logic control module sets the working level and operational

duration to the actuators.
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Figure 41: Sequence diagram of the embedded predictive optimal control scheme using energy control
parameters.

3.6 Embedded Predictive Optimal Control Scheme based on Power Policy

In this subsection, we describe our proposed embedded predictive optimal control scheme with
power policy data. Power policy is used to calculate the price of energy consumption. Based on the
proposed novel objective function, we can achieve energy efficiency with optimal resource utilization.
Figure 42 presents the proposed embedded predictive optimal control scheme, including the power
policy parameters. As can be seen, in this suggestion, we have all input parameters as describes in
section 3.1. Input parameters are user-desired environmental parameters, actual temperature, water level,
conductivity, pH level values, and outdoor environmental parameters and power policy value. Context
Awareness module is used to analyze all input parameters, while the prediction module predicts fish
tank environmental parameters using fish tank and outdoor environmental data. Then minimum and
maximum user-desired values, predicted environmental parameters and actuators energy consumption
values are used as inputs to the optimization module. Optimization module computes the most desirable

values to the fish tank with achieving minimum energy requirement.
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Figure 42: Conceptual design of the embedded predictive optimal control scheme using power policy

parameters.

Then, user-desired, predicted, energy control parameters, and power policy parameters are used as

input values to the optimization module. Optimization module computes the fish tank environmental

parameters to the fish tank with efficient energy consumption and optimal price. Figure 43 describes

the detailed conceptual design of the proposed predictive optimal control scheme using power policy

parameters.
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Figure 43: Detailed conceptual design of the embedded predictive optimal control scheme using power

policy parameters.
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Figure 44 represents the proposed system architecture of the embedded predictive optimal control
scheme using power policy. The optimization module is used to calculate the optimal environmental
parameters based on user preferred and the system constraint settings. FLC is used as a control algorithm
for the proposed system to calculate and set the optimal working level and activation duration. In this
work, we use a heater, cooler, pump, pH controller, and fish feeder actuators to control the
environmental and feeding processes in the fish tank. The FLC module assigns the activation level and
working duration for fish farm actuators. Based on these control values, actuators control the
temperature, water level, pH, and conductivity level in an optimal condition by minimizing the energy

consumption and maximizing the cost.
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Figure 44: Proposed system architecture of the embedded predictive optimal control scheme using power
policy.
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Figure 45 illustrates the flowchart of the proposed loT based fish tank embedded control
framework. As it was described above, the overall procedure comprises four phases. First, we monitor
the fish tank by collecting the various environmental data (e.g., temperature, water level, ph level, and
conductivity) using 10T sensors, and these collected environmental data is stored to the data collection
module. In the second phase, we apply the context awareness and prediction unit to analyze the used
desired min max settings, environmental parameters with predicting future indoor parameters for the
fish tank. Thirdly, the optimization module is used to calculate optimal indoor parameters for fish
growth with energy efficiency based on user preferred values, control parameters, and constraints. At
the end of the process, the FLC control is utilized to compute operational level and activation duration

to the fish tank actuators according to optimal and predicted environmental data.
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Figure 45: Flowchart diagram of the embedded predictive optimal control scheme using power policy.
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Figure 46 presents the sequence diagram of the proposed embedded predictive optimal control
scheme using power policy. The indoor and outdoor environmental parameters are used to predict the
future fish tank temperature, water, pH and conductivity levels. Then predicted parameters and user-
desired minimum and maximum temperature, water level, pH level and conductivity levels are used as
input parameters to the objective function. The objective function computes the optimal environmental
parameters to the fish tank. Based on optimal and predicted temperature, pH level, conductivity and

water level, FLC module calculates the operational level and activation duration to the actuators.
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Figure 46: Sequence diagram of the embedded predictive optimal control scheme using power policy.
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4. Experimental Embedded Optimal Control Platform in Fish
Tank.

4.1 Embedded Hardware Environment of Fish Tank

In this section, we represent the implementation technologies and experimental environment of
the proposed fish tank environment control platform in detail. The experiment was conducted in MCL
laboratory; at D423 room at Jeju National University during the period January 2020 to May 2020.
Figure 47 shows the real fish tank environment, which we designed as a case study. There are several
connectivities, such as sensors and actuators’ connection to the one Arduino board. Arduino plays a
role as an loT gateway. As we mentioned above the proposed system includes various types of sensors
and actuators, also some functionalities which we deployed to the 10T devices including prediction,

optimization, control algorithms.
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Figure 47: Experimental Environment of the proposed system.

Before moving to the implementation section, we have described the sensors and actuators'

installation process for the experimental purpose of this work. For our experimental fish tank
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environment, we utilized Open Aquarium Fish Tank Monitoring tools manufactured by LibeLium.
Open Aquarium has been fabricated for the management of fish tanks and ponds environment without
human interference. Open Aquarium includes two various types of complementary kits, namely, Basic
and Aquaponics, as well as some extra accessories. Open Aquarium platform includes five types of
sensors, namely, temperature, conductivity, water, and pH level sensors. Also, the platform includes
four different actuators for automatization of water temperature controlling, feeding process control,
activating the water pumps for the controlling water level, and LED lamp for the intensity of the
required light. The experimental environment presents four types of sensors, namely, temperature, water
level, conductivity, and pH level sensors. Five types of actuators: heater, cooler, water pump, fish feeder,
and pH-conductivity controller were installed to the Fish Tank. Figure 48 illustrates the relationship
diagram among 10T devices and their role. In our proposed system we have used four types of loT
sensors, five types of actuators, Arduino and raspberry board. 10T sensors are used to get environmental
sensing values, whereas, the actuators are utilized to control the environmental values with increasing
and decreasing the actual environmental parameters. Arduino board plays a role as 10T gateway for the

collection of the data from the environment and forwarding the sensing values to the Raspberry Pi board.

Fish Tank Environment JoT Sensors Embedded Control Hardware

/ 9 Arduino Raspberry Pi

Temperature pH level
sensor sensor

|_’ ——
Environment y) /6

SESINZ - Witer level

Conductivity
sensor i ;
Sensor Sensmg
values
RNN-LSTM Prediction
IoT Actuators I
Actual |
* " Data Collection values Predicted values
'
n
Environment i OPtIIHlZaUOH
i Pump Heater
control I
1 Optimized values
OFF/ON “ontr ¥
. : Actuator Control ~ fe—p-C2
i e Fuzzy Logic Control
pH controller Cooler gt

4

Fish feeder

Figure 48: Embedded Control Environment of 10T sensors, actuators and embedded hardware.
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We have deployed Embedded ML, Optimization and Fuzzy logic control functionalities to this
board. We deploy RNN-LSTM based prediction module using TensorFlow Lite to the Raspberry Pi as
Embedded ML, and this model forecasts environmental parameters. Then predicted values are used as
input parameters to the optimization module. The Optimization module calculates the optimal
environmental values with minimizing the energy consumption to the environment based on user
desired parameters and the system constraints. The fuzzy logic control module calculates control values
based on predicted and optimized values. These control values comprise working level and activation
duration to the actuators. Arduino board has actuators’ control functionality, which can activate or
deactivate the actuators in the required time. Table 10 and Table 11 describe the 10T sensors and

actuators which were used in this work, respectively.

Table 10: Description of 10T sensors for the experimental fish farm environment.

loT Device Item

(Sensors) Description

Water level sensor produced by Geekri

Water Level -
and is used for measurement of water
Sensor level, activation voltage 3-5 V DC,
operating current less than 20 mA.
Measures the pH level of the water.
pH Level Detection ranges: 0~121pH, Can 'be
Sensor used temperature: 0~60°C, connection
type: BNC and the length of the cable
2.9 meter
A conductivity sensor measures the
Conductivity electrical conduction of can be used in
sensor temperature: 0~60°C, connection type:
BNC and the length of the cable 2.9
meter, Analogic output
Temperature sensor is sealed is used
Temperature to measuer temperature levels, power
sensor range 3.0-5.5V, can detect -55°C

to+125°C temperature ranges,
accuracy +0.5°C 1 wire connection
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Table 11: Description of 10T actuators for the experimental fish farm environment.

loT Device Item

(Actuators) Description

Water Pump Variable speed peristaltic pump for fish
Actuator tank, power ranges: 10-30 W, flow: 20-
60 ml/min, 12V DC input voltage.
pH Control Immersible pH control actuator for open
Actuator garden and aquarium, power range:
0.5W-5W, power supply: 3.5~12V
DC,65mA-500mA.
Fish Feeder Programmable fish feeder, power range:
Actuator 3,3V,size:11 x 6.5x0.7 cm
Energy: 100W, voltage: 220/240V
50/60Hz length: 22cm
Heater & Cooler diameter: 2.2cm length of power cord:
Actuator 85cm recommended tank size: 20 to 33
gallon temperature range between 17°C
and 35°C).
Ardum.o and (,)pen Provides connection of all sensors and
Aquarium Shield actuators to the one board and server.

Manufactured by Libelium, power supply
12V-2A.

As can be seen from the list of sensors, these sensors can measure water level, pH level,
conductivity, and temperature sensing values from the environment in real-time. According to the

measured fish tank environmental parameters, we have five types of fish tank actuators, as presented.

It is important to note that all actuators are programmable, which means these devices can be
activated at various speeds or working levels. As we know, the Arduino board can not support a wide
range of sensors and actuators connected to the one board. When the user wants to add some extra
technologies like wifi, Bluetooth, motor-drives, actuators, etc., it can be pretty tricky for connecting all

of them for the Arduino. It can be seen that we have enough actuators for controlling each environmental
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values. For instance, the temperature sensor is used to measure the water temperature parameters, and
according to the optimized parameters and predicted temperature values fuzzy logic control module

activates or deactivates the heater or cooler actuators.

So we need extra devices, which are called 10T Shield, for connecting the four sensors and five
actuators to the one board in order to centralize the control unit. We have used Open Aquarium loT
shield, which was produced by Libelium, external power supply 12V-2A for attaching all sensors and
actuators to the one board. Figure 49 presents the open aquarium 10T shield, as can be seen, this loT
shield has the capability for connecting various sensors and actuators to the one board. For instance
water level connector, Arduino/raspberry jumpers, light Led, digital input/output connectors,
temperature connectors, RF connector, water leak sensor connector, pH level sensor connector,

peristaltic pump connector and so on.
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Figure 49: Open Aquarium loT Shield for connecting various 10T sensors and actuators to one board.

We have connected temperature, water level, pH level, conductivity level sensors and heater,

cooler, water pump, pH controller, fish feeder actuators to 10T shield in this work. However, the
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proposed system architecture, the objective function is adaptable and flexible for other fish tank
environmental values. The architecture, prediction, optimization and control modules can be easily

extended with other sensor parameters, such as dissolved oxygen, humidity, and CO2 level.

Figure 50 describes the embedded hardware environment for the data collection and actuator

control units using loT shield and Arduino board.

i A
AqQuarium

IoT Shield

Figure 50: Embedded hardware environment for data collection and actuator control using Arduino and
10T Shield.

Arduino is an open-source lightweight electronic platform that can provide hardware and software
services. There are several advantages of the Arduino platform, such as they are inexpensive, can
operate in different operating systems, open-source, clear programming environment, and extensible
hardware. As we already mentioned above, the Arduino board can not support a wide range of device
connectivity, so we have used an open aquarium loT shield to centralize the connectivity and control of

sensors and actuators to the one board. After connecting all sensors and actuators to one board, we
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attached the 10T shield to the Arduino board as shown in Figure 50. Arduino board is played a role as
loT gateway between the fish tank environment and Raspberry Pi. More precisely, the Arduino board
has two main functionality environmental Data Collection from the fish tank using sensors and sending
the actual values to the Raspberry Pi and Actuator control unit for the activation and deactivation of the
actuators with turning off and on the actuators in the estimated time. Fish Tank sensors measure the
indoor environmental values from the fish tank and forward these data to the embedded software which
were deployed to the Raspberry Pl using USB connectivity. Figure 51 presents an embedded hardware
environment of the proposed system using Raspberry Pi. As we have mentioned above, loT sensors and
actuators are connected to the Arduino board using 10T shield for receiving the sensing values. Then
the Arduino board is connected to the Raspberry Pl device. Also, this device has network connectivity,

the connection to the monitor, power connectivity, and memory.

-

Monitor

Figure 51: Embedded hardware environment for prediction, optimization, and control using Raspberry
Pi.

We deploy RNN-LSTM based prediction, optimization, and control functionalities to this device.

As the actual sensing values come from the environment via the Arduino board, an embedded system

calculates the optimal environmental parameters and required control parameters to the actuators. Then
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control values are forwarded to the Arduino’s control unit, and this unit switches on and off the actuators

to manage the environmental parameters.

4.2 Software Experimental Environment of Fish Tank

The implementation environment and the development of the proposed platform are divided into
two phases, firstly we wrote and developed the proposed system in our personal computer then, we have
deployed these models to the embedded 0T device. Table 12 presents the tools utilized on a general-
purpose PC for the development of the proposed framework. RNN-LSTM based prediction model is
developed using the Tensorflow library using external and internal environmental data which are
described in Section 3. For the implementation of the proposed optimization system, we developed a
C# based desktop application. The fuzzy logic control module algorithm is implemented in MATLAB
and integrated with the desktop application. Indoor temperature, pH level, conductivity and water level
values are sent to the PC server using serial cables, and these values are stored to the database. Direct
communication provided between Fish Farm and the application using Arduino IDE. Operating system
of the PC is Windows 10, and primary memory is 12 GB. .NET, PyCharm, Arduino, MATLAB
integrated development environments were used to implement the proposed desktop-based system.
Model training libraries for the prediction model are Pandas, Tensorflow, and Sklearn. As we mentioned

above the proposed system firstly implemented on PC and then deployed to the 10T device.

Table 12: Implementation environment of the general-purpose PC.

Component Description

Operating System Windows 10

CPU Intel (R) Core (TM) i5-4570 CPU @ 3.20 GHz
Primary Memory 12GB

Programming Language Python, C#

Integrated Development Environment NET, PyCharm, Arduino, MATLAB

(IDE)

Model Training Libraries Pandas, TensorFlow, SKlearn
Framework .NET Framework
Connectivity Serial connection

TensorFlow is a comprehensive open-source machine learning platform. Researchers can easily

implement several applications using this complete and flexible tool, libraries and ecosystem of
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community resources to help advance ML's cutting-edge technology, and developers can quickly create

and deploy ML-based applications. Building a model using Tensorflow has the following advantages:

o Simple modelling: With quick execution, we can easily create and train ML models using
intuitive, advanced APIs like Keras to iterate and debug ML models instantly.

e Reliable ML production anywhere: Simple training and model delivery of the model from
the cloud, place, browser or device regardless of the language used.

o Powerful research experiments: A simple and flexible architecture for conveying new

ideas from concept to code, including the latest models and quick publishing.

After implementing the proposed system successfully in PC, we deployed the proposed model to
the Raspberry Pi and Arduino board, as described in Figure 51. Table 13 shows the technologies used
for the embedded software implementation environment. For the implementation of the embedded
software environment we have used Raspberry Pi and Arduino, the programming language is Python.
PyCharm, Arduino Studio, .NET framework are used for the integrated development environment.
Pandas, Tensorflow, and Sklearn based Trained libraries are deployed to the Raspberry Pi using

Raspbian OS and TensorFlow lite. The core programming language is Python.

Table 13: Implementation environment of the embedded software.

Component Description

Hardware Raspberry Pi 3 Model B, Arduino
Operating System Raspbian OS

Memory 32GB

Programming Language Python, C#

Integrated Development Environment Visual Studio, PyCharm, Arduino

(IDE)
Framework .NET Framework, TensorFlow Lite
Connectivity Serial connection

As we have mentioned above, we have deployed Embedded ML, Optimization and Fuzzy logic
control functionalities to embedded hardware. We deploy RNN-LSTM based prediction module using
TensorFlow Lite to the Raspberry Pi as Embedded ML, and this model forecasts environmental
parameters. Then predicted values are used as input parameters to the optimization module. The

Optimization module calculates the optimal environmental values with minimizing the energy
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consumption to the environment based on user desired parameters and the system constraints. The FLC
module calculates control values based on predicted and optimized values. These control values
comprise working level and activation duration to the actuators. Arduino board has actuators’ control
functionality, which can activate or deactivate the actuators in the required time. Table 5 describes the
10T sensors which were used in this work. Figure 52 describes the implemented modules for the
proposed embedded control environment with their description. Mainly we have three modules, namely,
sensing data collection, prediction, optimization, and control. We have used temperature, pH level,
conductivity, and water level sensors to collect the data from the environment using Arduino board, and

this Arduino board is connected to the Raspberry Pi for the connection to another functionality.

3 FishFarm | Arduing 1.8.9 - ] X
File Edit Sketch Tools Help

Ii!!!!!!iiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

kinclude <Openfquarium.h> ~
finclude "Wire.h"

float temperature;

fdefine calibration point_4 2221 //Write here your measured value in mV of pH 4

fdefine calibration_point_7 2104 //Write here your measured value in mV of pH 7

fdefine calibration point_10 2031 //Write here your measured value in mV of pH 10

fdefine point_1_cond 40000 // Write here your EC calibration value of the solution 1 in psS/cm
fdefine point_1_cal 40 // Write here your EC value measured in resistance with solution 1
fdefine point_2_cond 10500 // Write here your EC calibration value of the solution 2 in pS/cm

fdefine point_2_cal 120 // Write here your EC value measured in resistance with solution 2

DateTime now;

int status = 0;

void sstup() {
Openfguarium.init();
Serial.bsgin(115200);
Openfguarium.initRTC();
Openfquarium.setTims () ;
Openfguarium.calibratepH (calibration_point_4,calibration_point_7,calibration_point_10);
Openiguarium.calibrateEC (point_1 cond,point_1 cal,point_ 2 cond,point 2 cal);
delay (2000) ;
}

void loop() {

//temperature v

Figure 52: Sensing data collection module of Fish Tank.
Figure 53 presents the RNN-LSTM based prediction model using TensorFlow and python, and

this trained model is deployed to the embedded device using TensorFlow lite.
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multi_step_model = tf.keras.models.Sequential()
multi_step_model.add(tf.keras.layers.L5TM(32,
return_sequences=True,
input_shape=x_train_multi.shape[-2:]))

multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
multi_step_model.add(tf.keras.layers.Dense(72))

multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.8), loss='mae’)

Figure 53: RNN-LSTM based Prediction model in Fish tank.
An objective function based optimization formulation and Fuzzy logic based control unit using
C#. C# is developed in the .NET framework, so it is challenging to use the .NET framework in Raspbian
because it has limited memory, so we deployed the .exe file of the C# based application to the embedded
system using Mono. Mono is a free open-source and cross-platform implementation of the .NET

Framework.

4.3 Fish Tank Environment Modeling

In this section of the thesis, we describe the proposed a fish tank environment modeling for the
deploying the proposed system for the various environments with formulating mathematically various
fish tank data acquisition and device control processes according to the studies [96,97,98]. This work
considers the fish tank as a parallelepiped shape which comprises tank side height (), tank length
(T}), and tank width (T,,) as described in Figure .

Fish tank floor area T,,., can be computed using the following equation, where T; presents the
length of the tank, and T, is the width of the tank.

Tarea =Ty X Ty

The overall volume of the fish tank can be calculated with computing the length, width, and side height

of the fish tank as described in

Tyor =Ty X Ty X Tgp,
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Figure 54 presents the fish tank model used in this study. As we mentioned earlier, four fish tank
parameters are considered for controlling the fish tank indoor environment, i.e. temperature, pH,
conductivity, and water level. Figure 55 describes the used parameters for the fish tank environment

and actuators. Fish tank parameters are internal temperature, pH level, conductivity level and water

level.

Tw

Figure 54: Fish Tank modelling with parallelepiped shape.
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Figure 55: Outdoor environment configuration with essential components and processes in Fish Tank.
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For experimental analysis, we have used real sensing data from the fish tank, which we constructed
in Mobile Computing Laboratory at Jeju National University. Temperature, water level, pH level and
conductivity level sensors are used to collect the real-time data from the environment as an indoor
environmental data. We also used outdoor environmental data, which were collected from online
weather site Meteoblue [95] for Jeju as described in Figure 56, South Korea. The outdoor environmental
data includes outdoor temperature, humidity, and solar radiation information collected half-hourly
interval based. In this thesis work, our objective is to provide optimally indoor temperature, pH level,

conductivity, water level, and fish feeding based on user-desired settings with efficient energy

consumption.
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Figure 56: External data collection from Meteoblue website.
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Table 14 describes the sample data collection, which is used in this study. As can be seen the
dataset includes the number of data, date time, indoor temperature, pH level, conductivity, water level.
In addition we use outdoor environmental temperature, humidity and solar radiation parameters. In
these experiments, we have used 70% of available data for training and rest of the 30% is used for
testing. For training and testing the accuracy of learning modules, we have conducted a repeated number

of experiments and collected the data.

Table 14: Dataset example which is used in this study.

No Date Time Indoor pH Conduc Water Outdoor Outdoor  Solar
Temp t level Temp Humid Rad
1 1/31/20  11:30:00PM  18.7166 6 812.60 247 1.08333 93.1 403.6
2 391/202 12:00 AM 19.1803 6.26 775.33 245 0.90556 93.2 403.1
3 2/1/202 12:30 AM 21.340 6.62 733.40 242 -1.6278 90.1 404.8
4 2/1/202 1:00:00 AM 19.953 6.49 730.32 243 -1.36667 93.5 404
5 2/1/202 1:30:00AM  18.043 6.8 66543 235 -2.0333  85.3 405.4
6 2/1/202 2:00:00 AM 23.276 6.9 628.54 239 -2.112 80.2 404.4
7 2/1/202 2:30:00 AM 20.366 6.38 642.03 240 1.38 81.2 402.2
8 2/1/202 3:00:00 AM 18.084 6.4 640.04 241 1.40 79.8 400.1
0
30'00 4/3/'202 10:30 AM 16.7.34 6.3l8 613:20 265 17.03889 10.2. 405'.6
3001 %/3/202 11:00 AM 18.516 6.4 620.15 268 16.68889 12.2 405.4

4.4 Implementation Results of the Proposed System

In this subsection we present the implementation results of the proposed system. Figure 57
describes the implementation result of the data collection unit using the Arduino board. Arduino board
is attached with an loT shield which comprises the various sensors for the collecting the real data from
the fish tank environment. As can be seen, the indoor environmental parameters temperature, pH level,

conductivity and water level are collected successfully using Arduino board in Rasbian OS.
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(dev/tty ACMO v A %

Send

Tenp:23.09 pH =6.38 EC=12.73 uS/cm wWater: 297.8€115.00 -
Tenp:22.94 pH =6.26 EC=12.94 uS/cm Water: 206.44114.69
Tenp:22.94 pH =6.62 EC=12.94 uS/cm Water: 206.44114.69
Tenp:23.08 pH =6.38 EC=12.73 uS/cm Water: 287.06115.00
Tenp:22.94 pH =6.38 EC=12.94 uS/cm Water: 206.44114.69
Tenp:23.09 pH =6.38 EC=12.94 uS/cm water: 207.00115.00
Tenp:23.09 pH =6.13 EC=12.34 uS/cm Water: 207.00115.00
Tenp:23.00 pH =6.49 EC=12.73 uS/cm Water: 207.00115.00
Tenp:23.09 pH =6.38 EC=12.94 uS/cm Water: 297.06115.600
Tenp:23.09 pH =6.38 EC=12.94 uS/cm water: 287.06115.00
Tenp:23.09 pH =6.13 EC=13.15 uS/cm Water: 2087.06115.00
Tenp:22.94 pH =6.38 EC=12.94 uS/cm water: 296.44114.69
Tenp:22.94 pH =6.38 EC=13.15 uS/cm Water: 206.44114.69
Tenp:22.94 pH =6.38 EC=13.15 uS/cm water: 206.44114.69
Tenp:22.94 pH =6.62 EC=12.94 uS/cm water: 206.44114.69
Tenp:23.00 pH =6.49 EC=12.94 uS/cm Water: 207.00115.00
Tenp:22.94 pH =6.26 EC=12.94 uS/cm water: 206.44114.69
Tenp:23.08 pH =6.38 EC=13.15 uS/cm Water: 207.00115.60
Tenp:23.00 pH =6.38 EC=12.94 uS/cm Water: 207.00115.00
Tenp:23.09 pH =6.00 EC=12.94 uS/cm water: 287.00115.00
Tenp:23.09 pH =6.38 EC=13.15 uS/cm Water: 207.00115.00
Tenp:22.94 pH =5.87 EC=13.15 US/Cm wWater: 206.44114.69
Tenp:.22.94 pH =6.49 EC=12.94 uS/cm wWater: 206.44114.69
Tenp:22.94 pH =6.62 EC=12.94 uS/cm Water: 206.44114.69
Tenp:23.09 pH =6.49 EC=12.94 uS/cm Water: 207 606115.00
Tenp:22.94 pH =6.38 EC=12.94 uS/cm wWater: 206.44114.69
Tenp:23.09 pH =6.49 EC=12.94 uS/cm Water: 297.00115.00
Tenp:23.00 pH =6.62 EC=12.73 uS/cm water: 207.06115.00
Tenp:22.94 pH =6.38 EC=12.94 uS/cm Water: 296.44114.69
Tenp:23.09 pH =6.38 EC=12.94 uS/cm water: 297.0€115.00
Tenp:23.090 pH =6.38 EC-12.94 uS/cm wWater: 297.00115.00
Tenp:23.00 pH =6.62 EC=12.94 uS/cm Water: 207.00115.00
Tenp:22.94 pH =6.38 EC-12.94 uS/cm Water: 206.44114.69
Tenp:22.94 pH =6.38 EC=12.94 uS/cm water: 206.44114.69
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Figure 57: The implementation result of the data collection unit in Fish Tank.

Figure 58 describes the optimization and control unit simulator interface, which is deployed to the
Raspbian OS using Mono cross-platform. Using user-interface users can easily monitor the system
status, and update the user desired parameters. This interface is used for the visualizing results. As can
be seen, the simulator has sensors and actuators modules which are numbered with 1 and 2, respectively.
User can connect temperature, pH level, water and conductivity level sensors with ticking them and
clicking the connect sensor button. Heater, cooler, water pump, pH controller and fish feeder actuators
can also be connected with this section. User-set points assignment which is described with humber 3,
is used to insert minimum and maximum user-desired temperature, pH level, water level, and
conductivity level parameters based on user requirement by clicking apply changes button user can
easily update user-desired parameters. Based on updated user-desired parameters, the objective function
computes the optimal environmental parameters to the fish tank. Prediction model section helps to
activate the RNN-LSTM based prediction algorithm to predict the future environmental parameters. By
clicking the optimization scheme button proposed system computes the most optimal environmental

parameters to the fish tank. The FLC can be started, paused or cancelled using the fuzzy logic control
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module section. In the results section, the user can see the prediction, optimization, fuzzy logic control,

and energy consumption results.

o2 Fish Farm Simulator = &)
Sensors Actautors Results
b 1
[ Temperature [ Heater 2 } Prediction Model Results  Optimization Module Results ' Fuzzy Logic Control Module Results  Energy Consumption Results 7 i
] [ Cooler 4
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ater Bty Temperature e
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Connect Sensor Connect
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Figure 58: The implementation results of the optimization and control units.

Figure 59 describes the implementation result of the overall system in using Main.py code. The
primary role of the Main python code is providing communication among all of the developed modules.
As we developed several modules, then we can control all modules using the python Main command.
As we run the python Main command using the Raspbian OS command prompt, then the system
automatically describes the actual sensing data collection results, prediction module results,
optimization module results and control module results in the black window. Table 3 illustrate the
summary of the collected temperature and pH level data values with the user desired minimum and
maximum points. We have included the actual temperature and pH level data from Kaggle.com [94].
Actual temperature values are around 25°C in most of the time because data is actual and collected from
the already fixed fish tank environment. However, in this work we propose the novel objective function
which can calculate the optimal temperature, pH level, conductivity and water level for the fish tank

based on various input data.
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timi Temp=24.88 p=6.80 EC=15.00 Water286.0f
Required Enrgy: Actual=323.80 wats/min Optimal=29

e ———
————— e =SS B

ACTUAL : Tmp=22.87 p=6.49 E=12.94 Water=2085.88

P‘D{_:TI_ED‘: Temp=23.18 pH=6.62 EC=13.0 Water=207.93

Otimized: Temp=23.88 pH=6.80 EC=18.80 Water=294.08
Requird Energy: Actual=32860 watts/min Optimal=28.00 watts/min

ACTUAL : Tp287 p6.26 =12.94 Water=285.8
PREDICTED: Temp23.10 pH=6.38 EC=3.87 Water=287.93
ptimized: Temp21.8@ pH=6.80 EC=6.08 Water=314.80
equired Energy: Actual=313.08 watts/min Optimal=288.80 watts/min

" |pifraspberrypi:~ $ python Main >> FishTank
pi@raspberrypi:- s i

Figure 59: The implementation results of the main python module.

If the input data for the optimization module becomes nearly the same parameters, then the testing
of the optimization module is difficult. Our target is finding the optimal parameter for the fish tank
according to the various input parameters and controlling the heater and cooler actuators for increasing
and decreasing the water temperature. In order to test the accuracy and performance of the proposed

system were need to consider various input data for the optimization module, as described in Table 4.

4.5 Performance Results of Embedded Optimization and Control Scheme

using Fish Tank Sensing Data

In this subsection of the paper, we describe the proposed embedded control scheme performance
evaluation results in detail. As we mentioned above, two parameters are used as an input, namely, user-
desired parameters and actual environmental values. Based on user-desired parameters, the proposed
platoform calculates the optimization and control values to the actuators. Figure 60 presents the
optimization of the temperature parameters in the fish tank based on actual sensing data. As can be
seen, the actual temperature parameters are between 10-40°C in the fish tank. Using an optimization
algorithm, the system calculates the optimal temperature values to the environment between user
desired maximum and minimum values. User-desired minimum and maximum values are 20 and 25°C,

respectively.
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Figure 60: Temperature optimization results based on actual temperature data.

Figure 61 presents the actual pH level optimization result based on proposed novel objective
function. It can be seen that the actual pH level parameters are between 0-14 acid in fish tank. With
using an optimization algorithm, the system calculates the optimal pH level values to the environment
between user desired maximum and minimum values. Optimization scheme is based on an objective

function which calculates the optimal pH level values based on that formulation.
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Figure 61: pH level optimization results based on the actual pH level.

Figure 62 presents the conductivity level optimization results of the proposed embedded optimal
control framework. It can be seen that the actual conductivity level parameters are between 10-2000 in
the fish tank. Using an optimization algorithm, the system calculates the optimal conductivity level

values to the environment between user desired maximum and minimum values.
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Figure 62: Conductivity level optimization results based on the actual conductivity.

Figure 63 describes the proposed embedded optimization and control scheme results for the water
level optimization in the fish tank based on actual and user-desired parameters. It can be seen that the
actual water level parameters are between 0-350 mm in fish tank. Using an optimization algorithm, the
system calculates the optimal water level values to the environment between user desired maximum
and minimum values. As can be seen, the proposed optimization module computed the optimal water
level between the user desired parameters. By controlling the water level, we can decrease the wastage

of the water level from the fish tanks.
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Figure 63: Water level optimization results based on the actual water level.
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Based on optimized temperature, pH level, conductivity, and water level parameters and actual
environmental parameters, fuzzy logic control module compute the working level and activation
duration to the actuators. In this work, we consider a heater, cooler, water pump, pH controller, and fish
feeder actuators. Figure 64 presents the actuator control results based on actual and optimized

environmental parameters. The FLC module computes the required working level and duration.
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Figure 64: Actuator control results based on actual and optimal parameters.
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4.6 Performance Results of Embedded Predictive Optimal Control
Scheme using RNN-LSTM

In this subsection of the thesis, we describe the proposed embedded predictive optimal control
scheme results based on prediction, optimization, and control using the fish indoor environmental
parameters. For the implementation of the proposed RNN LSTM prediction module, we have conducted
a number of experiments using the collected time series data. As we know, A Recurrent Neural Network
(RNN) is a type of neural network well-suited to time series data. RNNs process a time series step-by-
step, maintaining an internal state summarizing the information. Figure 65 describes the time series
based on indoor environmental parameters data which is used for the training of the proposed prediction

model.
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Figure 65: The experimental results of the uploaded indoor environmental data for the training.
In the beginning, we have used the one-step forward prediction concept to analyze the accuracy
of the historical data, actual future, and model prediction values. Figure 66 describes the one-step

forward prediction module results for each fish tank parameter. In a single step setup, the model learns
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to predict a single point in the future based on historical data. One-step forward prediction model results
show that fish tank water level and conductivity level prediction results’ model prediction and true
future results are nearly the same values, which means the prediction model is accurate. However, there
are a few differences between model prediction and the true future in temperature value prediction. In

terms of pH level prediction, there is a remarkable high difference between the true future and model

prediction.
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Figure 66: The experimental results of the one step forward prediction model results: a) temperature, b)
water level ¢) conductivity and d) pH level.

The prediction module results provide predicted temperature, predicted water level, predicted
conductivity and predicted pH level results. Then these predicted values and user-desired setpoints are
used as input parameters to the optimization module. Optimization module computes the most desirable

temperature, water level, conductivity and pH level results in the fish growth with energy efficiency.
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Figure 67 presents temperature level optimization based on predicted temperature parameters. As can
be seen, user-desired minimum and maximum environmental temperature values are 20 and 25 °C,
respectively. Predicted environmental parameters help to analyze the future environmental temperature
and utilize this temperature data for the optimization module as an input parameter. Then based on

predicted temperature parameters, the optimization module computes the optimal temperature level for

the healthy fish growth.
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Figure 67: Temperature optimization results based on predicted temperature.
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Figure 68: pH level optimization results based on predicted pH level.

Figure 68 presents the pH level optimization results of the proposed embedded predictive optimal
control framework for the fish tank using indoor environmental parameters and user-desired settings.
Predicted pH level parameters of the fish tank are between 2-11 acid in time t, at each predicted value
are applied to the optimization module to calculate the most desirable environmental parameters to the

fish tank pH level, and optimal environmental parameters are between the user-desired parameters.
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Figure 69 describes the conductivity level optimization results of the proposed embedded predictive
optimal control framework for the fish tank using indoor environmental parameters and user-desired
settings. Predicted conductivity level parameters of the fish tank are between 400-1000 in time t.
However, the user-desired optimal environmental values are between 300 and 500. Each predicted value
are applied to the optimization module to calculate the most desirable environmental parameters to the

fish tank conductivity, and optimal environmental parameters are between the user-desired parameters.
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Figure 69: Conductivity level optimization results based on predicted conductivity level.
Figure 70 presents the water level optimization results of the proposed embedded predictive
optimal control framework for the fish tank using indoor environmental parameters and user-desired

settings. As can be seen the optimal water level is between user-desired water level.
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Figure 70: Water level optimization results based on the predicted water level.
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4.7 Performance Results of Predictive Optimal Control Scheme using
Outdoor and Fish Tank sensing data.

In a multi-step prediction model, based on indoor and outdoor environmental parameters, the RNN-
LSTM model learns to predict a range of future values. Thus, unlike a single-step model, where only a
single future point is predicted, a multi-step model predicts a sequence of the future. Figure 71 describes
the multi-step prediction model results for the fish tank indoor parameters. The multi-step prediction
model can predict more accurately and long term environmental parameters for the fish tank. As can be

seen from the figure predicted future and actual future values are becoming nearly the same direction.
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Figure 71:The experimental results of the multi-step prediction model results: a) temperature, b) pH
level, and c) water level.

Analysis of the one-step forward and multi-step prediction model results for temperature, pH level,
conductivity, and water level results are described in Figure 66 and Figure 71. However, the difference
is not clearly visible in the graphical results; therefore, we conduct a statistical analysis of the prediction
results using three different measures. Various statistical indicators are used to summarize these results
into a single statistical value for quantitative comparative analysis. Our model produces output for each
input or set of inputs so that we can compare this estimate to the actual predicted value. The difference
between the actual value and the delay in evaluating the model. We can calculate the delay for each

point in the data set, and each of these delays is useful for estimation. These residues play an essential
role in evaluating the effectiveness of the proposed model:

Mean Absolute Error(MAE) is the easiest measure of regression error. We just need to take the
absolute values of each and calculate the remainder for each data point so that negative and positive

residues do not destroy each other. Then all residues are averaged. Indeed, MAE describes a typical

degree of residuals.

1 _
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Mean Squared Error (MSE): MSE is considered one of the most commonly used statistics to
evaluate the effectiveness of the prediction algorithm. Squared the magnitude of the error not only
eliminates the problem of negative and positive errors, but also provides a larger penalty for higher

prediction errors compared to lower errors. MSE is calculated using the following formula:

MSE = (P - 131)2
n

Mean Absolute Percentage Error (MAPE): MAPE is also one of the widely utilized statistics for
the evaluation of the prediction algorithms’ performance. In this statistic measurement, the average of
absolute errors is divided by the actual parameters, and then they multiplied by 100 to turn the results
to the percentage parameters.

P,—B
P

n
i=1

MAPE = x 100

Figure 72 describes the implementation results of the proposed prediction model training and testing
loss results based on the three above mentioned error metrics. Training a model simply means learning
(determining) good values for all the weights and the bias from Ilabelled examples. In supervised
learning, a machine learning algorithm builds a model by examining many examples and attempting to

find a model that minimizes loss; this process is called empirical risk minimization.
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Figure 72: Training and testing loss of the RNN-LSTM based prediction model a) training loss b) testing
loss

Loss is the penalty for a bad prediction. That is, the loss is a number indicating how bad the model's
prediction was on a single example. If the model's prediction is perfect, the loss is zero; otherwise, the
loss is greater. The goal of training a model is to find a set of weights and biases that have low loss, on
average, across all examples. Figure 73 describes that MSE has high accuracy compared with other
regression error metrics. For the implementation and experiment, the RNN LSTM models are
configured to be 200, 500, 1000 times training epochs to test the prediction performances using Mean
Square Error. The number of epochs is a hyperparameter that defines the number times that the learning
algorithm will work through the entire training dataset. The number of epochs is traditionally large,
often hundreds or thousands, allowing the learning algorithm to run until the error from the model has
been sufficiently minimized. It can be clearly seen that in 2000 number of epochs has been minimized
error sufficiently. Training an LSTM based Tensorflow model requires various operational duration.
Figure f presents the activation duration of the prediction model training based on various error metrics

and the number of epochs.
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Figure 73: Activation time of the training the prediction model.

Based on 200, 500, 1000 times training epochs configuration, we have calculated overall
training time for each error metric. As can be seen, less training duration is required based on MAE and
MAPE for 200 epochs, 7.5, and 7.8 minutes, respectively. However, MSE spends 18.03 and 33.4

minutes in terms of 500 and 1000 epochs.

Table 15 presents the statistical summary of the prediction results for RNN-LSTM based on
various statistical measures and the number of epochs. Comparative analysis shows that MSE with 1000

epochs have high accuracy results outperform the two other statistical measures.

Table 15: The accuracy of the prediction model based on various performance evaluations.

Indoor Parameter Number of Statistical Measure
epochs MAE MSE MAPE
200 epochs 0.24 0.23 0.37
Temperature 500 epochs 0.16 0.06 0.26
1000 epochs 0.13 0.05 0.18
200 epochs 0.25 0.17 0.39
pH level 500 epochs 0.15 0.05 0.25
1000 epochs 0.13 0.03 0.21
200 epochs 0.26 0.22 0.31
Conductivity 500 epochs 0.18 0.09 0.19
1000 epochs 0.14 0.04 0.17
200 epochs 0.22 0.19 0.26
Water Level 500 epochs 0.18 0.07 0.19
1000 epochs 0.1 0.03 0.14
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After successful training and testing the RNN-LSTM based prediction model, we converted this
model to the Tensorflow Lite format to deploy this prediction model to the embedded loT device in
order to predict new environmental parameters for the fish tank based on actual sensing values in real-
time. The real-time predicted parameters are forwarded as an input parameter to the Optimization
module, which is used to compute the optimal environmental parameters to the fish tank based on user
desired settings and the system constraints.

4.8 Performance Results of Embedded Predictive Optimal Control

Scheme based on Actuators’ Control Parameters

As already explained above, fuzzy logic control is used to analyze predicted and optimized data
to determine actuators’ operating level and operating time. By providing an optimal environment for
the fish tank, an optimal production environment for fish can be designed. Fuzzification, fuzzy inference
engine and defuzzification are important components of fuzzy logic system design. Fuzzification is the
process by which actual pure values are transformed into linguistic values. The fuzzy inference
mechanism is the core unit of the fuzzy logic system for making decisions based on if-then rules and is
a connector to provide important decision rules. Defuzzification is the process of converting language
variables to numeric values. Fuzzy logic describes human preferences and experiences through fuzzy
rules and membership features. Each language variable is assigned a confidence value, so each has a
unique confidence value. The definition of the language variable is used to describe the membership
function diagram. Input values are labelled with very low, low, medium, high, very high, and optimized.
We can use fuzzy inference rules to evaluate input values based on IF-THEN conditional statements.
This rule tells us the level and duration of the loT actuators. To determine the operating level and
operating time, the reverse purge removal step defines a rule with the exact operating level and minutes
of the drive. For example, if the time required by the system is short, the purge logic determines the
drive operating time from 3 to 6 minutes. The following subsections detail the purging, inference, and

inverse purging elimination processes according to the proposed approach.

A fuzzy knowledge base is a group of knowledge and inference rules for solving specific

problems. It is developed to imitate human decision for finding a solution to problems and providing
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information. Fuzzy inference is the process where the controller analyzes and evaluates input values
based on conditional statements. Fuzzy rule evaluation can be performed using Fuzzy Associative
Matrix (FAM). FAM table is essential for describing the rule editor into matrix form showing all
possible outputs according to all possible inputs. Fuzzy logic control module computes level and
activation duration to the actuators based on predicted and optimized sensing values. Figure 74 aand b
describe the heater and cooler actuators' working level and activation duration results, respectively. It

can be seen that heater and cooler actuators are activated dependently on each other.
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Figure 74: Fuzzy logic control module results: a) heater b)cooler.

This means if the predicted temperature is higher than the optimal temperature, then the cooler
actuator is activated automatically. If the predicted temperature is lower than optimal temperature, then

the heater is activated automatically and increases the temperature level of the fish tank. Afterwards,
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heater and cooler are operated after certain intervals when indoor temperature drops below the desired

minimum level, and temperature increases above the maximum desired limit. Figure 75 describes the

water pump, fish feeder, and pH controller working level and operational duration results. If the

predicted temperature is higher than the optimal temperature, then the cooler actuator is activated

automatically.
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If the predicted water level is lower than the optimal water level, then we activate the water
pump. Then the water pump increases the water level of the fish tank. As the water level reaches the
optimal level, then the water pump is deactivated water level automatically and activation duration

become 0.

4.9 Performance Results of Embedded Predictive Optimal Control Scheme based on
Power Policy

In this subsection, we describe the power policy results of the proposed embedded predictive
optimal control scheme. For the calculation of the power policy we consider 1 kWh electricity cost 129
won on average for a typical spring day in Jeju, South Korea. As we mentioned above the optimal power
policy can be achieved with controlling the actuators with an optimal way. Actuators can be activated
with minimum, medium, and maximum working level, and they require various activation duration
based on these working levels. Various working level and operational duration consumes different
energy consumption and power policy. If actuators are activated with a minimum working level, then
they require long time activation. If actuators are run with a maximum working level, then they require
a short time activation period. Figure 76 presents the power policy results of the proposed embedded
predictive control scheme results based on actuators working levels. It can be seen in order to achieve
optimal power policy fish feeder and heater are needed to activate with minimum working level. Fish
feeder requires 20446.5 won, 31401 won and 30948 won, with activating the actuator minimum,
medium, and maximum levels, respectively. Maximum level activation requires the least pricy policy
in terms of pH controller, water pump, and cooler actuators; these actuators spend 14476, 41229.6, and

26545.4 won power policy, respectively.
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Figure 76: Power Policy results of the proposed embedded predictive control.
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5. Performance and Comparison Analysis

In this chapter, we present a detailed discussion of the comparison and performance analysis results.
For a clear explanation, we describe our performance analysis in four phases. Firstly, we will discuss
the optimization module results along with other necessary system parameters and settings. The second
phase presents the actuators’ control module results. In the third phase, we present a comparative
analysis of energy consumption results. Lastly, optimization of power policy results is described based
on optimization and without optimization schemes in order to evaluate the advantages of the proposed

system.
5.1 Comparison and Performance Analysis of Optimization Scheme

This section presents the analysis of the optimization module results. For analysis of the
effectiveness of the proposed optimization module, we have conducted numerous experiments and
based on actual sensing values and predicted values. In addition, we have tested the proposed system
effectiveness the optimization module by comparing the with and without optimization module results.
The optimization scheme is based on a mathematical formula, which is described in detail in Chapter
3.2; this objective function can calculate the optimal temperature, water level, conductivity and water
level parameters with efficient energy consumption to the fish tank based on user-desired parameters
and the system constraints. Without optimization, module does not have any optimization formulations,
and it is based on the selection of the midpoint of the user-specified range for each parameter. If the
predicted sensing values are outside of the user desired ranges, then the system automatically considers
the optimal values as a midpoint of the user-desired minimum and maximum values. Table 4 describes
the fish farm environmental values, available and optimal ranges. As we mentioned already, this work
considers four environmental parameters of the fish tank environment, namely, temperature, pH level,
conductivity and water level. The available ranges describe overall cases for each parameter in general,
whereas, an optimal range provides the most acceptable values to the fish farm. Fish farm related
researches describe that the available value ranges for the first three parameters are 10-40°C, 0-14 acid,

and 10-2000 uS/cm, respectively, while optimal ranges are 20-25 °C, 6.5-8.0 acid, and 300-500 puS/cm.
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Table 16 presents the objective function weights and alpha parameters which are performed for
these experiments. In the simulation process, we mention the time interval of and fish tank sensor data
collection in every 15 minutes; then, the objective function is activated in the required period. Actuators

operational level is divided into three levels, namely, minimum, medium, and maximum.

Table 16: Parameter settings for the optimization algorithm.

Parameter Value Ranges
QEC 0.5
OOE 0.5
Tmin 20
Tmax 25
pHmin 6.5
pHmax 8.0
Cmin 300
Cmax 500
Wmin 280
Wmax 320

Figure 77 describes the temperature optimization module results based on optimization and
without optimization schemes using actual sensing values. It can be seen that the actual temperature
parameters are between 10-40 °C in the fish tank. Using an optimization algorithm, the system
calculates the optimal temperature values to the environment between user desired maximum and
minimum values. Baseline scheme based optimization calculates the midpoint of the user maximum

and minimum values.
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Figure 77: Analysis of temperature level optimization module results without predicted values a) without
optimization b) with optimization.

Figure 78 presents the pH level optimization module results based on optimization and baseline
scheme. It can be seen that the actual pH level parameters are between 0-14 acid in fish tank. With
using an optimization algorithm, the system calculates the optimal pH level values to the environment
between user desired maximum and minimum values. Baseline scheme based optimization calculates
the midpoint of the user maximum and minimum values. If the actual pH level is outside from 6.5-8
values then the system automatically takes (6.5+8)/2 = 7.25. Optimization scheme is based on an

objective function which calculates the optimal pH level values based on that formulation.
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Figure 78: Analysis of pH level optimization module results without predicted values a) without
optimization b) with optimization.

Figure 79 illustrates the conductivity level optimization module results based on optimization
and baseline scheme. It can be seen that the actual conductivity level parameters are between 10-2000
in the fish tank. Using an optimization algorithm, the system calculates the optimal conductivity level
values to the environment between user desired maximum and minimum values. Baseline scheme based
optimization calculates the midpoint of the user maximum and minimum values. If the actual

conductivity level is outside from 300-500 values, then the system automatically takes (300+500)/2 =

400.
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Figure 79: Analysis of conductivity optimization module results without predicted values a) without
optimization b) with optimization.

Figure 80 shows the water level optimization module results based on optimization and baseline
scheme. It can be seen that the actual water level parameters are between 0-350 mm in fish tank. Using
an optimization algorithm, the system calculates the optimal water level values to the environment
between user desired maximum and minimum values. Baseline scheme based optimization calculates

the midpoint of the user maximum and minimum values.
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Figure 80: Analysis of conductivity optimization module results without predicted values a) without
optimization b) with optimization.

Figure 81 compares the optimization and without optimization scheme based optimization
module results with user-desired set points. It can be clearly seen that in both cases the optimization
scheme based optimal temperature and pH level results are more optimal with comparing without
optimization schemes. Also, it is important to note that during the mentioned period, temperature and
pH level values are between the user-desired minimum and maximum set-points, which means the

optimization module is working accurately.
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Figure 81: Comparisons of Optimization and without optimization module results a) temperature b) pH
level

Figure 82 compares the optimization and baseline scheme based optimization module results
with user-desired set points. It can be clearly seen that in both cases, the optimization scheme based
optimal conductivity and water level level results are more optimal with comparing baseline scheme
based optimization. Also, it is essential to note that during the mentioned period, temperature and pH
level values are between the user-desired minimum and maximum set-points, which means the

optimization module is working accurately.
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Figure 82:Comparisons of Optimization, and without optimization module results a)
conductivity b) water level.

Optimization scheme results represent that optimized sensing values always come inside of the
user desired minimum and maximum values. Furthermore, the optimization scheme based results are

more optimal compared to without optimization scheme results.
5.2 Comparison and Performance Analysis of Actuator Control

Generally, fixed and variable working-level heater, cooler, water pumps, pH control, and fish
feeder are utilized in real-life solutions. The fixed working-level actuators operate with a specific speed
and consume the same amount of energy for each task. On the other hand, the variable speed or working
level devices can operate with various working levels to produce different temperature, water, ph or
feeding level according to the user demand. A high working level requires more energy as compared to
the lower working levels. In the fish farm or the greenhouse environment, the power consumption of
the actuators can be minimized by decreasing the working level, but it requires to operate actuators with
extra time. Figure 83 illustrates the heater and cooler working level and activation duration results in
the first 150 sensing data instances. Heater and Cooler system work dependently. If the predicted
temperature level is lower than the optimal temperature level, then the heater is activated for reaching

the optimal temperature level. If the predicted temperature level is higher than the optimal temperature
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level, the cooler operates for decreasing the predicted temperature to the optimal temperature level.
When actuators are working with a different level, they require different time for achieving the optimal
point. For instance, in the first sensing data, the water pump is spending 4.5, 7.5, and 10.5 minutes with

the minimum, medium, and maximum working levels, respectively.
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Figure 83:Activation duration results based on different working levels for the Heater and
Cooler.

Figure 84 (a) and (b) describes the working level and duration results of the water level and pH
values. For instance, for the 3-4 sensing data, the water pump is spending about 12.5, 9.5, and 8.6
minutes with the minimum, medium, and maximum working level, respectively. We make a group of
the results according to the actuators working level. However, the proposed fuzzy logic control module

selects the optimal working level and duration to the actuators according to the predicted and optimal
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data. Controlling actuators not only helps the optimal utilization of resources but also provides

automation of the fish farm.

—
-

—
[

Activation Duration(min)

Activation Duration(min)

—
(=]

— e
(=

(= A A ]

ss2be0e

AL

Shee

Shunmme
L L L L L]

%0 Se Sete e

Medium Level == == == Maximum Level

*eeeee Minimum Level

I it 3 TR Y : :
e ye 8 3 se . . e0:® - . H
o 230 2 Ly se 3 . 8 .8 . 3 :
w ¢330 - se v & t- - % . o o :
e 2282 - sele o i e 2 ce e . :
P o *a P o0 e 2
. > Se el e oo . Ll
oon £uT 2 e e - % 7 e % 4
RE R* . H — o - ! -
b - o s o o . . - *e
> - . [ o Ve . . 4 *e
- . .. LY . . . - :-
. . .
b " 3 N T ik 21 | .
» ! » ) s ’
N
y 4 i > ! i .
l.’ LN »H 1 » ! o g r i
i B u M ‘Al _—— ’ '
ol : 1t i { )
" 1 [ [ ] i
I ! 1
A Y ' . 4
i
{
O A O M A VMO M SO M VO M =W QM W O~ WO
A NN ST TN O OO0 0BANND OO —— A
== ac I (B S0 S (kB g A A
Sensing Data

a) Water Pump

Medium Level e= e == Maximum Level

seeeee Minimum Level

. .
. 13
3 . s
‘q.‘ (] .
._:, g A o 2, H ®
Lo 2 3
:..: . e ® -, -
o o 1 . 'g- > . s
> e &%
J” o —
ol 9
\ .
i 2 51 '
J : [~
l A ' '
" U
— O =~ O =~ O =~ O = O = O =~ O r~
— = oAt OO ®

Sensing Data

b) pH Controller

Figure 84: Activation duration results based on different working levels for the Water Pump and pH

controller.

Figure 85 describes the fish feeders' operational duration according to the various working

levels. The feeding process is based on the data, which is collected in the historical feeding process.

With activating the fish feeder with various working-level, we can achieve various energy consumption

then we can find out the minimum energy consumption level based on the various working level and

operational duration.
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Figure 85: Fish feeder actuator’s activation duration with various working level.

Based on the working-level level and activation duration, we can calculate the overall activation

duration for each actuator, namely, heater, cooler, pump, pH controller, fish feeder. Computing the

activation period of the actuators based on different working-level helps us to calculate energy

consumption for each level as shown in Figure 86.

600

Lh
(=]
o

FeS
(=]
(=]

Activation duration (min)
|3 [¥%]
[=] (=]
(=] (=]

ot
(=]
(=]

#Minimum Level ®Medium Level ®Maximum Level
501.5
471
416.8
385
317 311 339.9
264
226
216 199
172
Heater Cooler Pump pH controller

421.2

307

Fish Feeder

Figure 86: Comparative analysis of actuators operational duration results based on different working

levels.

With activating the actuators with various working levels, actuators require various activation

duration. As can be seen, if we activate the heater actuator with minimum working level then actuator

requires 501.5 minutes to achieving the optimal temperature for the 1-week data.
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5.3 Comparison and Performance Analysis of Energy Consumption

To calculate energy consumption analysis, we have selected power ratings as in Table 16. For
every actuator, we assume three working-level operations with different energy consumption. When the
water pump is activated with maximum working level, 1400-1800 watts energy is needed with little
operational duration. For module simplicity, we have taken the mid-point of the power rating ranges of
the working levels. For instance, with the minimum, medium, and maximum working level, the water
pump requires 800, 1200, and 1600 watts, respectively. Figure 87 illustrates the actuators' energy
consumption results in kWh according to the different working levels. As can be seen from the graphs,
power consumption by the water pump is dominating comparing with other actuators. The water pump
is spending 333, 373.2, and 318.3 kWh with activating minimum, medium, and the maximum level,

respectively.

m Maximum Level ®mMedium Level = Minimum Level
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Figure 87: Comparative analysis of energy consumption of the actuators.

If the water pump is activated with maximum working level, then it consumes less energy, and
when it works with the medium working level, it spends the most power compared to other working

levels. For decreasing the energy consumption results, we need to activate the fish feeder and heater
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actuators with a minimum working level. However, the rest of the actuators, namely, pH controller,

water pump, and cooler, needs to be activated with a maximum working level.

As we have mentioned above, the optimization module provides the optimal temperature, pH
level, conductivity, and water levels to the environment based on user-desired settings and constraints.
According to the optimal level, the predicted values of the environment can be increased with
controlling actuators. For the development of without optimization scheme, we have used the baseline
scheme, which is relatively simple. The without optimization scheme is based on the selection of the
midpoint of user-desired ranges for each parameter. For instance, if user desired maximum and
minimum ranges water level ranges are equal to 280 mm and 320 mm, respectively. Optimal water level
becomes equal to 300 mm ((280+320)/2 = 300 mm). The water pump is needed to activate for increasing
or decreasing the predicted water level for achieving the optimal point. From the above-mentioned user-
desired mid-point level selection, temperature, water level, pH level, and conductivity level optimal
levels become 22.5°C, 300 mm, 7.25 acid, 400 uS/cm, respectively. Our target is controlling the
actuators for reaching the current levels for these levels. The maximum working level, operational
durations, and fuzzy logic rules are also applied to the for all four cases. Figure 88 describes the
comparative analysis of the energy consumption results based on various cases of the relations between
without prediction, prediction, without optimization and optimization cases. As expected, the proposed
prediction-optimization based system has less energy consumption. It can be seen that without
prediction-without optimization case heater, cooler, pump, pH controller, and fish feed have spent 10.8,
34.6, 50.7, 22.7, and 32.8 kW energy, respectively, for one day. In the prediction-optimization case,
these actuators have spent 6.8, 29.3, 42.5, 14.9, and 22.5 kW energy for the same task. If we take the
heater actuator as an example, the prediction-optimization based system has 37.2%, 33.3%, and 8.1%
energy efficiency compared to without prediction-without optimization, with prediction-without

optimization, without prediction, and with optimization results.
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Figure 88: Comparative analysis of energy consumption results based on various cases.

Overall, the proposed prediction-optimization based environment control energy consumption
is 27%, 23.6%, and 11.8% effective in energy consumption compared with without prediction-without
optimization, with prediction-without optimization, without prediction, and with optimization results,

respectively.
5.4 Comparison and Performance Analysis of Power Policy

In order to conduct cost and power consumption analysis, we have to assign power ratings to
the 1 kWh electricity costs 129 won on average for a typical spring day in Jeju, South Korea. According
to the actuators' overall energy consumption, we can calculate the overall pricy policy to each actuators’
working level. Figure 89 illustrates the power policy results of the proposed system. Power policy
results show that fish feeder and heater minimum level activation requires the least payment compared
with other activation levels. However, the pH controller, water pump, and cooler actuators spend less
price with activating the maximum level. The diagram compares how much money is spent on fish tank
actuators in four different cases. Overall, more money is spent on water pump activation than any other
product. Also, without prediction-without optimization case is required the highest amount among the
compared other cases, while the lowest spending levels are attributed to proposed with prediction-with

optimization case. In overall, the proposed system spends 918 krw, 753 krw, and 423 krw less money
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compared to without prediction-without optimization, without prediction-with optimization, with

prediction-With Optimization cases.

B With Prediction-With Optimization = Without Prediction-With Optimization
B With Prediction-Without Optimization m Without Prediction-Without Optimization

Fish Feeder
PH controller
60759
s | -
65403
37.7
Cooler 43989
4463 4
2772
1070.7
Heater 1315.8
13932

1000 2000 3000 4000 5000 6000 7000
Power policy (krw)

[=]

Figure 89: Comparative analysis of power policy results of the actuators.
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6. Conclusion and Future Directions

In this thesis, we have proposed an embedded machine learning technologies based optimal
embedded control platform for efficient energy consumption and fish growth in the fish tank. The
contribution of the proposed embedded solution is as followed. Firstly we installed temperature, pH
level, conductivity, and water level sensors, and various actuators to the fish tank and collected real-
time sensing values from the environment. Secondly, we trained RNN-LSTM based prediction model
using internal and external environmental parameters to predict temperature, pH, conductivity, and
water level parameters. As well as we converted this model to the Tensorflow Lite format. Thirdly, we
have formulated the objective function for the optimization to calculate the most desirable
environmental parameters for fish growth with efficient energy consumption. Fourthly, the
development of the fuzzy logic-based control module which sets up working level and operational
duration to the actuators using predicted and optimal values. Lastly and the most important, the
deployment of the overall platform to the Embedded Device. Power policy results show that fish feeder
and heater minimum level activation requires the least payment compared with other activation levels.
However, pH controller, water pump, and cooler actuators spend less price with activating the
maximum level. If the water pump is activated with maximum working level, then it consumes less
energy, and when it works with the medium working level, it spends the most power compared to other
working levels. For decreasing the energy consumption results, we need to activate the fish feeder and
heater actuators with a minimum working level. However, the rest of the actuators, namely, pH
controller, water pump, and cooler, needs to be activated with a maximum working level. Energy
consumption results show that through an optimization scheme, we can achieve a significant reduction
(22.8%) in energy consumption. The proposed prediction-optimization based environment control
energy consumption is 27%, 23.6%, and 11.8% effective in energy consumption compared with without
prediction-without optimization, with prediction-without optimization, without prediction, and with
optimization results. Also it spends 918 krw, 753 krw, and 423 krw less money compared to without
prediction-without optimization, without prediction-with optimization, with prediction-With

Optimization cases.
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