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Abstract 

The blockchain technology is known as an innovation that powers the cryptocurrency Bitcoin. 

Blockchain is a potential technology for migrating the processing burden from the central server 

into a decentralized, secure, and transparent manner. This technology is expected to make a 

significant impact and lead to a revolution in various types of industries. However, one issue 

holding them back is their limited transaction throughput, especially compared to established 

solutions such as distributed database systems. Transaction per second (tps) is one of the 

performance indexes widely used to evaluate the transaction processing capability of applications 

in enterprise use cases. Many well-known blockchain platforms such as Bitcoin, Ethereum have 

been widely adopted into different application domains such as the Internet of Things (IoT), supply 

chain, healthcare, etc. So far, there has been much confusion about whether the blockchain 

performs with scale, and admittedly, a lack of information about best practices that can improve 

the performance and scale. Besides, more analysis and evaluation of the performance of these 

platforms are urgent.  

In this paper, we propose two transaction traffic control approaches using fuzzy logic to 

improve the blockchain performance, such as increasing the transaction throughput while reducing 

transaction latency. Besides, this paper conducts a comprehensive evaluation of various 

configurable parameters that can affect network performance. For the first approach, we propose 

the transaction traffic control based on a fuzzy controller in the smart contract. The proposed fuzzy 

controller is implemented in the smart contract that makes to adjust the transaction traffic flow 

according to the network conditions collected in real-time. For the second approach, we propose 

additional learning to prediction module to enhance the performance of the fuzzy controller in the 

smart contract. The learning to prediction is implemented in an external module, which is 
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extensible enough to adopt different algorithms. To demonstrate the significance of the proposed 

transaction traffic control approaches, we apply these two approaches into a blockchain-based 

clinical trial testbed from our previous work. Lastly, we deploy the proposed approaches with 

existing performance-enhancing tools, and the results indicate that our approaches are flexible and 

scalable to be used with any other projects. 

To be more precise, configurable parameters can be mainly summarized into two categories: 

software and hardware. For the case of software, it contains various parameters, including block 

size, block frequency, ledger database, ordering service, the programming language of smart 

contract, use of Transport Layer Security (TLS), number of clients, number endorser peers, 

number of organizations, and the endorsement policy. For the case of hardware, it contains the 

number of vCPUS, memory allocation, disk type and speed, network speed, and CPU speed. We 

evaluated each configurable parameter to analyze the impact on network performance. For 

example, the blockchain performance can be significantly affected by increasing the number of 

peers and the use of TLS since more messages are generated within the entire network.  

For the first transaction traffic control approach, we deploy the fuzzy controller into the smart 

contract to regulate the transaction traffic across the network automatically. The fuzzy controller 

is comprised of the fuzzy inference system and the transaction control module. We observe the 

blockchain network benchmark results in real-time, and these values are passed to the smart 

contract. These benchmark results are used as the input variables of the fuzzy controller, and the 

control command is computed to perform different transaction control operations on the received 

transactions accordingly. 

For the second transaction traffic control approach, we extend the architecture of the fuzzy 

controller by introducing additional learning to prediction module. We use the Kalman Filter as 

the prediction module to estimate the actual transaction throughput. In contrast, the Artificial 

Neural Network (ANN) is used as the learning module to tune the parameter of the Kalman Filter. 
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The dataset for the learning to prediction is the performance benchmark results collected in one 

week. Besides, we perform a 4-fold cross-validation test on the training and testing data to select 

the best model for the ANN algorithm.  

We set up an optimized network in terms of the evaluation results of each configurable 

parameter to achieve better performance. For example, we set the block size to 30 transactions per 

block, block frequency to 250ms, the number of clients to 5, and use OR endorsement policy to 

achieve higher transaction throughput and lower transaction latency. We evaluated the 

performance of the proposed approaches by applying them into a clinical trial testbed from the 

previous work using different performance metrics. The results of the proposed approaches are 

compared with two other schemes: the baseline scheme and an optimized scheme. The evaluation 

results show that the proposed approaches can enhance network performance compared to the 

baseline and optimized schemes.  

For the case of baseline scheme using one client, the network with optimized configurable 

parameters increases the transaction throughput by 19.6% and decrease the transaction latency by 

20% compared to the baseline. The transaction throughput is increased by 27.6% and 29.7%; the 

transaction latency is decreased by 41.5% and 47.7% with the fuzzy logic and learning to 

prediction approaches, respectively.  

For the case of the network with optimized configurable parameters using one client, the 

transaction throughput is increased by 10.9% and 13.7%; the transaction latency is decreased by 

40.4% and 46.2% with the fuzzy logic and learning to prediction approaches, respectively. For the 

case of baseline scheme using five clients, the network with optimized configurable parameters 

increases the transaction throughput by 9.3% and decrease the transaction latency by 17.4% 

compared to the baseline network. The transaction throughput is increased by 21.8% and 26.5%; 

the transaction latency is decreased by 26.8% and 40% with the fuzzy logic and learning to 

prediction approaches, respectively. For the case of the network with optimized configurable 
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parameters using five clients, the transaction throughput is increased by 13.7% and 18.4%; the 

transaction latency is decreased 17% and 36.6% with the fuzzy logic and learning to prediction 

approach.  

Furthermore, the proposed approaches are deployed with one of the existing performance-

enhancing tools called Accelerator. For the case of using one client, the network with Accelerator 

increases the transaction throughput by 67.2% and decrease the transaction latency by 35.4% 

compared to the baseline. The transaction throughput is increased by 77.7% and 80.7%; the 

transaction latency is decreased by 52.3% and 56.9% with the fuzzy logic and learning to 

prediction approaches, respectively. For the case of using five clients, the network with 

Accelerator increases the transaction throughput by 82.1%and decreases the transaction latency 

by 20% compared to the baseline. The transaction throughput is increased by 96.9% and 99.9%; 

the transaction latency is decreased by 37.9% and 43.6% with the fuzzy logic and learning to 

prediction approaches, respectively. The results indicate that the proposed approaches are flexible 

enough to integrate with other approaches. 
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1. Introduction 

Distributed ledger technologies such as blockchain offer a way to conduct transactions in a 

secure and verifiable manner without the need for a trusted third party [1]. Blockchain technology 

is progressively turning into in style, with applications in varied domains like finance, supply 

chains, real estate, etc. A blockchain is a distributed ledger of transactions, which is maintained 

by all the taking part nodes of the blockchain network. The transactions represent the business 

logic and are formed into a chain of blocks that are attached to the ledger. Every node within the 

network updates its copy of the ledger with the new block when the agreement is reached amongst 

the nodes. 

As such, it is widely believed that blockchain will significantly impact industries ranging from 

finance and real estate to public administration, energy, and transportation [2]. However, to be 

viable in practice, blockchain must support transaction rates comparable to those supported by 

existing database management systems, which can provide some of the same transactional 

guarantees. Performance is considered as one of the main challenges in adopting blockchain 

implementations as an alternative to current centralized servers [3]. The inefficient transaction 

processing capability and lack of standardization can put an obstacle in the development of the 

blockchain, such as limited scalability, throughput bottleneck, transaction latency, and storage 

constraints [4]. For example, the block size of Bitcoin is limited to 1 MB, and a new block is 

created every 10 minutes. Subsequently, the Bitcoin network is restricted to a rate of 7 transactions 

per second, which is incapable of dealing with high-frequency trading. Besides, a transaction of 

bitcoin needs six affirmations before it is confirmed that it can take around an hour on average. 

The transaction confirmation time of Ethereum takes around 15 seconds; however, the average 

time would increment exponentially as indicated by differed network situations. In a 

permissionless blockchain like Bitcoin and Ethereum, anybody is permitted to take part, and each 
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member is mysterious. This implies neither can there be a privacy of the agreements themselves, 

nor of the exchange information that they procedure. 

All in all, these platforms issue their tokens to incent exorbitant mining or to fuel transaction 

execution to relieve the absence of privacy. The transaction cost and speed can be altogether 

influenced by a negative relationship with the use of native digital currencies. Furthermore, it 

hinders the cooperation with other decentralized platforms, as the token utilized in both platforms 

must be consistent. 

Due to its relatively poor performance, many observers do not believe that blockchain 

technology is suitable for large-scale applications. In contrast to permissionless blockchains, 

which do not restrict network membership, we focus on permissioned blockchains, in which the 

identities of all participating nodes are known. A permissioned blockchain provides a way to 

secure the interactions among a group of entities that have a common goal but which may not fully 

trust each other. By relying on the identities of the participants, a permissioned blockchain can use 

more traditional crash fault tolerant (CFT) or byzantine fault tolerant (BFT) consensus protocols 

that do not require costly mining.  

Recent developments in blockchain technology are creating new opportunities for artificial 

intelligence (AI) applications [5]. AI technologies could help solve many blockchain challenges. 

For instance, there is always a supervisor who is responsible for determining whether the contract 

condition is satisfied. In the case of self-driving, AI technologies can be applied in the smart 

contract to make autonomous decisions in terms of the rules of the road and traffic laws to limit 

misbehaviors made by driverless cars. The authors in [6] discussed how the integration of AI and 

blockchain could help in developing a new decentralized ecosystem. Besides, multiple use cases 

of AI applications and implementations utilizing blockchain are discussed, covering intelligent 

transportation [7], intelligent precision farming [8], supply chain industry [9], swarm robotic 

system [10], etc. However, most of the existing blockchain-enabled AI applications only utilize 
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the blockchain infrastructure to provide users with qualitatively new data models, shared control 

of AI training data and models, and leads to improved trustworthiness on data. None of these 

studies explore the use of AI to enhance the blockchain performance. 

To the best knowledge of the author, this paper is the first attempt to discuss how the use of 

AI techniques can help in improving the network performance of blockchain. This paper 

introduces two transaction traffic control approaches based on fuzzy logic. For the first approach, 

we implement the fuzzy controller in the smart contract. For the second approach, we implement 

additional learning to prediction module to enhance the performance of the fuzzy controller in the 

smart contract. The former mechanism implements a fuzzy controller specified to control the 

transaction traffic flow according to network feedback collected in real-time. The fuzzy controller 

is implemented in the smart contract to automate the process of transaction traffic control without 

third-party intervention. The latter mechanism extends the structure of the first mechanism by 

introducing additional learning to prediction module. We use the Kalman Filter as the prediction 

model to estimate the transaction throughput and use the artificial neural network (ANN) as the 

learning model to tune the parameter of the Kalman Filter. The learning to prediction module 

estimates the transaction throughput according to the real-time network conditions. The predicted 

transaction throughput is used as the fuzzy input for the fuzzy controller in the smart contract to 

automate the process of transaction traffic control. In this paper, we implement the learning to 

prediction module as an external module since it requires time-consuming and challenging training 

that can tax the smart contract.  

Additionally, we perform a comprehensive experiment for various configurable network 

parameters, which have an impact on blockchain performance. These configurable parameters can 

be mainly summarized into two categories: software and hardware. For the case of software, it 

contains various parameters, including block size, block frequency, ledger database, ordering 

service, the programming language of smart contract, use of TLS, number of clients, number 
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endorser peers, number of organizations, and the endorsement policy. For the case of hardware, it 

contains the number of vCPUS, memory allocation, disk type and speed, network speed, and CPU 

speed. According to the evaluation results, optimized values of each parameter are selected to 

form an optimized network to achieve optimum performance.  

We deploy the proposed transaction traffic control mechanisms in a clinical trial testbed from 

our previous work. The clinical trial testbed is built on a permissioned network, where the 

identities of all the network participants are known to each other. The results of the proposed 

approaches are compared with two other schemes: the baseline scheme and an optimized scheme. 

The evaluation results indicate that the proposed transaction traffic control mechanisms can 

significantly improve transaction throughput while decreasing network latency compared to the 

baseline and optimized schemes. We also apply the design approaches with one of the existing 

performance-enhancing tools, and the results show that our approaches are flexible enough to be 

with existing studies. The contributions of this paper are discussed as follows:  

• Novelty: This paper introduces the use of machine learning techniques to enhance the 

blockchain performance. The fuzzy controller is defined in the smart contract to automate 

the transaction traffic control. The proposed system also supports the interaction with the 

external machine learning module. Learning to prediction module is proposed in this paper 

to improve the performance of the fuzzy controller further.  

• Universality: This paper considers various configurable network parameters that can 

affect the blockchain performance. A comprehensive experiment is performed to analyze 

the impact of each configurable parameter on the blockchain performance. According to 

the evaluation results, an optimized network is set up to achieve better network 

performance. Although some of the parameters may be specified to particular blockchain 

platforms, this experiment points out a clear indicator to evaluate the performance of the 

blockchain network. 
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• Scalability: The proposed system is implemented in a modular and extensible architecture, 

which supports an interface to interact with different external machine learning modules. 

It can also interact with the existing performance-enhancing tool without much 

modification of the original system. 

• Usability: The proposed mechanisms have been tested in a case study of the clinical trial 

using a permissioned network. Many other smart contracts enabled blockchain platforms 

can also potentially profit by the significance of this work.  

The remainder of this paper is organized as follows, Chapter 2 gives a brief of the blockchain 

technology, and blockchain platforms analyze some of the related studies that focus on improving 

the blockchain performance and introduces blockchain performance benchmark tool. Chapter 3 

introduces the performance metrics, overviews configurable parameters that affect blockchain 

performance, and illustrates the evaluation results of each configurable parameter. Chapter 4 

presents the proposed transaction traffic control mechanism based on fuzzy logic, provides the 

details of the implementation of the proposed mechanism, and evaluates the performance. Chapter 

5 presents the proposed transaction traffic control mechanism based on learning to prediction, 

provides the details of the implementation of the proposed mechanism, and evaluates the 

performance. Chapter 6 describes the clinical trial testbed, which is used as the simulation 

environment to evaluate the proposed approaches and illustrates the evaluation results. Finally, 

Chapter 7 concludes the paper and discusses future research directions. 
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2. Related Work 

2.1 Blockchain Technology and Platform 

Figure 1 shows the structure of blockchain at an abstract level. Blockchain is an entirely secure, 

decentralized info comprised of various peers, which provides storage to record data from an 

outsized form of entities [11]. It is a series of linked blocks of transferred data between different 

connected nodes that form the network of the blockchain. Transparency is recognized as one of 

the most important characteristics of blockchain since it enables instant access to data since it is 

replicated on all nodes without interventions of third parties. The blockchain technology has been 

widely applied to hatch practical use cases in varied application fields [12], like intelligent 

transport system [13], health sector [14, 15, 16], distributed applications [17, 18], and prediction 

platforms [19, 20]. 

In the case of permissionless blockchain, there is no centralized authority, and no party has 

more power than the remainder. Here every member seems to be hospitable, be a part of or leave 

as they want. The blockchain is publicly open, and everybody has the proper to validate a group 

action. In the case of Bitcoin [22], one of the best examples of a permissionless network, it is the 

miners who can validate the transaction. They get bitcoins within the sort of transaction validation 

fees, and therefore the new bitcoins are generated for the effort they place into solving the puzzle 

problem. Ethereum [23] is incredibly almost like Bitcoin; however, it differs in many aspects. As 

an example, it is a versatile programing language for smart contracts [24]. 
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Figure 1. The basic structure of the blockchain 

The consortium blockchain [25] belongs to a permissioned network; not everybody has equal 

rights to the validation of transactions. Only several selected individuals are permitted to perform 

validation on transactions. A slightly different version between the consortium blockchain and the 

permissioned blockchain is that the permissioned blockchain is based on a centralized structure 

with one entity, and this entity conjointly controls the validation processing. The centralized head 

can check that the consensus that's followed is that the one it projected. This is often additional, 

like having a centralized body just like the government in several nations. Permissioned 

blockchains are quicker, additional energy-efficient, and only implementable compared to 

permissionless blockchains. Relying upon the requirement and implementation atmosphere, one 

ought to prefer that algorithmic rule to deploy. Algorithms supported permissioned blockchain are 

the foremost used, and additional applications supported it are being researched on. 

Ripple [26] connects banks and payment suppliers via RippleNet to produce one resistance 

expertise for causation and receiving cash globally. It is ascendible, secure, and interoperates with 

totally different networks. Banks, payment suppliers, and digital asset exchanges method and 

supply liquidity for payments on RippleNet, making new, competitive cross-border payments 

services for customers. Stellar [27] is another platform that connects banks, payments systems, 
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and people. Integrate to maneuver cash quickly, reliably, and at virtually no cost. Corda [28] could 

be a blockchain implementation that focuses on automating money documents besides as 

maintains records of them. They embody legal documents sculpturesque as planned by law, which 

is predicated on laptop codes and is mechanically generated. These legal documents contain info 

on the rights of the individual mentioned. This technology may revolutionize the money and legal 

sectors in several countries. Table 1 compares the various options of some well-known blockchain 

platforms. 

In contrast to the Bitcoin and Ethereum, which are permissionless-based networks, 

Hyperledger Fabric [29] is a permissioned-based, where all of the participants are trusted to each 

other. One of the most critical differences in support of multiple consensus algorithms that make 

this platform additional effectively to be adaptable for specific use cases. Fabric leverages 

consensus algorithms that do not need a native cryptocurrency to incent expensive mining or to 

fuel transaction execution. The rejection of a cryptocurrency reduces some vital risk/attack vectors. 

Therefore, the absence of cryptologic mining operations implies that the platform may be deployed 

with roughly a similar operational cost as the other distributed system. It also supports the 

employment of general programming languages like Java and Go instead of domain-specific 

language to smart contracts. 

Table 1. Comparison of some well-known blockchain platforms 

Name Support of 

Smart Contract 

Consensus 

Algorithm 

Native 

Cryptocurrency 

Blockchain 

Type 

Bitcoin No Proof of Work BTC Permissionless 

Ethereum Yes (Solidity) Proof of Work ETH Permissionless 

Hyperledger 

Fabric 

Yes (Java, Go, 

etc.) 

Pluggable 

Consensus 

No Permissioned 

 



 
 

13 
 

Table 2 presents a comparative analysis by comparing different types of blockchains. The 

results indicate that the permissioned network has high efficiency compared to the permissionless 

network since the consensus is determined by one or a selected set of nodes. However, a 

permissioned network can result in a fully centralized architecture against the idea of 

decentralization. This paper focuses on the consortium blockchain, Hyperledger Fabric, as it is a 

permissioned network with a decentralized characteristic. So far, Hyperledger Fabric is considered 

as an ideal blockchain platform to implement distributed applications for enterprise use cases. 

Table 2. Comparison of different types of blockchain platforms 

Property Public Blockchain 

(Permissionless) 

Private Blockchain 

(Permissioned) 

Consortium 

Blockchain 

(Permissioned) 

Consensus 

Participant 

All nodes Single node A selected number of 

nodes 

Permission Public Either public or 

private 

Either public or private 

Efficiency Low High High 

Centralized No Yes Partial 

Consensus Permissionless based Permissioned based Permissioned based 

Use Case Bitcoin, Ethereum MultiChain [30], 

OpenChain [31] 

Hyperledger Fabric 

 

This paper focuses on the permissioned network, and this section provides a concise 

description of one of the most well-known consortium blockchain platforms, Hyperledger Fabric. 

The Fabric is comprised of miscellaneous components such as peers, membership service 

providers (MSPs), clients, and ordering services. The basic transaction workflow goes through the 

following stages: the endorsement stage, the ordering stage, and the validation stage. Each stage 

runs independently and does not affect the other stages. Performance bottlenecks are slightly 

different at each stage, depending on the network configuration environment. Many existing 



 
 

14 
 

studies on blockchain performance have emphasized the transaction validation as one of the main 

bottlenecks except as the bottleneck in the ordering service. For the case of transaction validation, 

current optimization approaches include parallel transaction validation, bulk reading of slow 

CouchDB, and identity certificate caching. However, these studies modify the original architecture 

of the Fabric network either by updating some stages of the transaction process or adding external 

user-specific modules. As mentioned earlier, the development of the Hyperledger Fabric is still in 

progress, and there are times when new versions outside of the user-specified release cycles that 

may lead to instability and compatibility issues. 

The business logic of Fabric is provided by the smart contracts that serve as a trustworthy 

decentralized program, gaining its trust and security from the blockchain and conjointly the 

fundamental agreement across the entire network. Fabric introduces a brand-new approach known 

as an execute-order-validate to perform transactions in three different stages. In simple terms, a 

submitted transaction will be executed, thus being endorsed, ordered in a block, and before 

appending to the ledger, these endorsed transactions must be validated against the predefined 

endorsement policy. 

Figure 2 illustrates the workflow of the transaction execution taken place across the whole 

network. The client application should have credentials issued by the Certificate Authority (CA) 

to induce the approved permission for submitting dealings proposals. The CA issues credentials 

to clients who want to submit transaction proposals and authenticates the identities of these clients 

before they are allowed to participate in the network. Transactions are generated from client 

applications, and the application software development kit (SDK) is used to form connections 

between the client application and the peers within the network. These peers are the basic units to 

form the network, and they can be separated into endorser peers or committer peers depending on 

the type of task. Endorser peers simulate and sign proposals with their signatures, reply to grant, 

or deny approvals. Committer peers validate each endorsed transaction against the endorsement 
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policy and append the block of transactions to the ledger. The orderer is an individual node that is 

responsible for sorting the transaction that happened on a first-come-first-serve basis over the 

whole network. Furthermore, it supports various ordering service implementations like Kafka and 

Raft and contains the cryptographic credentials linked to each network entity.  

Endorser peers execute the received transaction proposal by invoking the associated function 

defined by the smart contract in a simulated environment. It is worth noting that these transaction 

execution results will not be mirrored within the ledger in the current stage. Every endorser peer 

simulates the received transaction, signs the Read and Write (RW) set using their endorsing 

signatures, and returns proposal responses to the client application for inspection. The client 

verifies the endorsing signatures to check if the required endorsement policy (e.g., the required 

number of endorser peers that have to endorse the transaction execution results) has been 

consummated. Besides, it extracts the results from the RW sets to compare whether the transaction 

execution result simulated by each endorser peer is consistent or not. Afterward, these signed 

transactions are packaged and submitted along with RW sets to the orderer by the client application. 

The batched data is ordered into a block by the orderer and delivered to any or all committer peers. 

Every committer peer validates the transaction by checking whether the RW sets match the current 

state or not. Once the committer peer validates the transaction, it writes the transaction to the 

ledger, and also update the state by using the Write data from the RW set. Finally, the committer 

peers send events to the client application to inform whether the submitted transaction succeeded 

or not. The client application can subscribe to events to be notified by every committer peer once 

an event happens. 
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Figure 2. Blockchain platform transaction workflow (e.g., Hyperledger Fabric) 

 

2.2 Existing Studies of Performance Improvement in Blockchain 

Network 

In recent years, blockchain technology has emerged as a powerful technology to provide 

robust data integrity guarantees, especially in trust-less networks. The data integrity of blockchain 

can be guaranteed by the use of consensus algorithms such as Proof of Work (PoW), a consensus 

schema based on solving a CPU cost function that can deter denial-of-service attacks and any other 

service abuses such as network spam. Despite the characteristic of data integrity, utilizing 

blockchain to enhance distributed systems implies coping with mandatory performance penalties 

such as high latency and low throughput [32]. 

This paper concentrate on the performance improvement of one of the permissioned based 

blockchain networks called Hyperledger Fabric. The architecture of Hyperledger Fabric is still on 

the way, undergoing multiple changes in development and bug fixing. Therefore, there are 
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relatively few studies on fabric performance analysis or architecture optimization. The authors in 

[33] analyzed the performance of different Hyperledger Fabric versions (v0.6 and v1.0). The 

results indicate that Fabric v1.0 performs better than Fabric v0.6 in terms of throughput and latency. 

The authors in [34] investigated the performance of the Fabric network by varying different block 

sizes, resource allocation, state DB, and endorsement policies. In [35], the impact of peer CPU, 

disk type is evaluated on blockchain latency and throughput. These studies go partway towards 

explaining some parameters that can affect the blockchain performance and scale; however, not 

comprehensive. This paper first conducts a full survey on configurable parameters that can affect 

the Hyperledger Fabric network performance. Multiple rounds of experiments for each 

configurable parameter are performed to obtain the optimized configurable parameter value, 

which is used to set up the network for the experiment. 

TPS is an essential factor for industrial application, and stable operation is possible. However, 

due to the nature of the blockchain, it is difficult to improve performance due to the high 

complexity of the consensus process, and the operation and maintenance costs are high because 

the block data is redundantly stored in the nodes constituting the blockchain. Currently, most of 

the researchers have tried to build the blockchain network based on high-performance hardware 

to improve throughput. However, due to the high cost, it is challenging to use blockchain in small 

and medium-sized enterprises with insufficient funds. To solve these difficulties, the authors 

propose a configurable blockchain system with a new consensus algorithm that can adjust the 

verification process [36]. They improve the tps performance according to the network scale-up/out, 

space efficiency, and security level. As a constraint, the basic authentication procedure is 

performed with a private blockchain, and general network security is in place. Besides, all P2P 

data transmission utilizes the PKI encryption module. 

In the existing blockchain, the nodes participating in the consensus process are fixed in both 

ways, in which all nodes participate in consensus or select a specific leader. On the other side, in 
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the proposed blockchain, the consensus is achieved by selecting a random node based on a preset 

value defined according to the CPU utilization rate and an arbitrary validate node to reduce the 

computational overload of a specific node due to a fixed consensus node. Hyperledger Fabric is 

built on a modular architecture composed of multiple components, such as peers, ordering node, 

consensus, and secure storage. These components play an independent role in committing the 

block to the hash chain through the steps of assurance, ordering, verification, and modification. 

Each step is performed as a container and does not affect other steps. The bottleneck is slightly 

different in terms of the network configuration, but the main latency stage can be considered as 

the endorsement stage and the ordering stage. 

As shown in Figure 3, when a client requests a transaction from a peer in the endorsement 

stage, it always checks whether the requested client is a node in the blockchain network. When 

the same client repeatedly makes a request, the node verification process may cause a decrease in 

performance. To reduce this process, a client that has been authenticated once performs processing 

for a transaction without verifying the node at the peer for a certain period [37].  

Client

channel

Endorser Peer n

Verify Node
Execute 

Chaincode

Response Endorsement

Transaction

Response

Generate after 
verifying node

Client that verified by the endorser peer will 
skip the node verification step via channel 

 

Figure 3. Endorsement channel function and generation process in endorser peer [37] 

Hyperledger Fabric uses Kafka as an external project plug-in for Crash Fault Tolerance (CFT) 

during the sequencing phase to create blocks. Because it uses an external project that is heavier 
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than the local environment, a bottleneck may occur while performing the ordering step in the 

ordering node. Therefore, the proposed optimization works directly in the ordering node and 

proposes a protocol that can satisfy the CFT. As shown in Figure 4, when a transaction arrives 

from the ordering node, it separates the channel ID from the transaction contents, executes the 

thread corresponding to the channel, and manages and collects the transaction in a different file 

for each channel. Transactions are stored in the ordering node's file system. Even if a fault occurs 

in the ordering node, the fault can be repaired using another ordering node that has stored the 

transaction as a file using the proposed protocol. Depending on the ordering node setting, this 

thread also clears transactions when the maximum number of transactions is accumulated or when 

the waiting time is reached. The ordered node creates a block by including its signature in the 

organized transaction. The order service node then delivers the block to the leader peer, and the 

leader peer delivers the block to the commit peer on the same channel. This optimization method  

 

Figure 4. Optimized ordering service process in blockchain network [37] 

Nexledger Accelerator [38] is a novel transaction processing engine, that has an independent 

and modular structure, acts as an intermediate between application clients and the blockchain 

network, as shown in Figure 5. Such a feature is appropriate for adopting IoT applications since 

IoT devices might not have enough computing power to run a novel approach for improving 

blockchain performance. The accelerator provides a straightforward, however robust transaction 

processing algorithm by using the batch scheduling. Accelerator classifies the incoming 
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transactions into a batched transaction. To this end, Accelerator is fastidiously designed to settle 

on the self-adaptive batch size, counting on the characteristic of requested transactions and also 

the remaining computing resource of the blockchain network. 

Clients
Blockchain 
Network

Accelerator
 

Figure 5. Conceptual architecture of Nexledger Accelerator [38] 

As an essential technology that realizes decentralized and extremely trust database management, 

Blockchain has recently attracted in-depth attention. However, the high latency and low 

throughput in significantly concurrent environments is considered as the main performance 

bottleneck of blockchain technology, and therefore delays its deployment. Though multiple 

studies are dedicated to addressing the problem of low throughput, these studies only pay attention 

to the use cases with giant transaction volume, whereas neglecting the problem of conflicting 

transactions. Conflicting transactions are those transactions initiated by the client with the constant 

primary key. The system performance of Hyperledger Fabric may be severely degraded if various 

conflicting transactions existed. The authors [39] propose a cache-enabled endorser to discover 

the existence of conflict transactions before executing the smart contract. The system integrates 

with cache takes fewer steps to discard the conflict transactions compared to the system without 

the use of the cache. The cache is enforced on the local endorser, as shown in Figure 6. For every 

arrived transaction, the account code is extracted from the received data as the key information 

and stored within the cache before it being recorded. If the account code exists within the cache, 
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the endorser can discard the processing of such transactions and at once send a notification to 

clients to shorten the turnaround. 

 

Figure 6. An example of transactions processing with cache [39] 

Hyperledger Fabric is built with flexibility and generality as key style issues, supporting a 

significant form of non-deterministic smart contracts and pluggable services. However, version 

1.0 comes without any BFT ordering service implementation, providing only a crash fault-tolerant 

ordering service. The authors [40] present the design, implementation, and evaluation of a new 

BFT ordering service, which is similar to the Practical Byzantine Fault Tolerance (PBFT) protocol. 

The evaluation, conducted both on a local cluster and in a geo-distributed setting, shows that BFT-

S MART ordering service is able to achieve up to 10k representative transactions per second and 

write a transaction irrevocably within the blockchain in half a second, even with ordering nodes 

unfold through totally different continents. As shown in Figure 7, the frontend consists of the 

Fabric codebase and a BFT shim. The Fabric codebase (implemented in Go) provides an associate 

interface for clients to submit envelopes. These envelopes are relayed to the BFT shim using UNIX 

sockets. This shim is enforced in Java and maintains (1) a client thread pool that receives envelopes 
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and relays them to the ordering cluster, and (2) a receiver thread that collects blocks from the 

cluster. Envelopes (resp.blocks) are sent to (resp. received from) the cluster through the BFT-

SMaRt proxy. 

 

Figure 7. BFT-smart ordering service architecture [40] 

Every peer node is linked to a distributed repository, so-called state database, to store the latest 

values of ledger data. Currently, Hyperledger Fabric supports two state databases: LevelDB and 

CouchDB. LevelDB is a database that resides in the peer that permits comparatively quick 

accesses. CouchDB is a client-server model, which is accessed by REST API over HTTP. The 

transaction validation is redesigned by authors in [41] to offer parallel operations on transaction 

validation, and a chaincode cache is proposed as well. Figure 8 describes each process in four 

steps.  In the first step, the transactions are validated by committer peers, which set the transaction 

flag to invalid if the transaction is ungrammatical. Afterward, in the second step, the verification 

system chaincode (VSCC) and the operation to read the state database state are called together. In 

the third step, the multi-version concurrency control (MVCC) is further applied to check the 

transactions validated by the VSCC to avoid double-spend issues. In the last step, the ledger write 

and history database write operations are performed in parallel. In the case of LevelDB, the history 

database write operation is executed after completing the state database write operation. In contrast 
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to LevelDB, the history database write operation and the ledger write operations are performed at 

the same time. 

 

Figure 8. Optimized validation phase for Hyperledger Fabric [41] 

As shown in Figure 9, two additional competent APIs between the chaincode and the peer are 

proposed [42]. The first API is called the Differential Update State (DUS), which can reduce the 

process of reading the state of the key before writing the updated value. As the name implies, the 

DUS API provides a specified set of operations to compute the updated values via different 

operations and writes the commutated value to the ledger. The second API is called the Compound 

Request (CR), which supports read, write, and their combined function. It executes all the requests 

in a specified order and further removes the number of requests compared to the DUS API. This 

feature makes it suitable in use cases that require frequent parameter read and initialization 

operations.  
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Figure 9. The behavior of two new efficient API functions [42] 

As mentioned above, most of the existing systems change the original architecture of 

Hyperledger Fabric, including endorser peer, validating peer, and ordering service. This may result 

in incompatibility issues, especially when a new version released since the development of Fabric 

is ongoing. The proposed approach in this paper does not make any changes to the original system 

as the fuzzy logic can be directly deployed into the smart contract or implemented as an external 

module that is flexible enough to be extended. The Accelerator is built on an independent and 

modular architecture; however, it is only specified to Fabric network. The configuration of 

Accelerator is also involved, which makes it difficult to be used, especially for people who know 

little about blockchain. The proposed approach can be integrated with any other blockchain 

platform, which supports the use of smart contracts. Developers can choose the proper language 

to depend on themselves to implement the smart contract without concern about the infrastructure 

of the blockchain. 
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2.3 Performance Evaluation Architecture in Blockchain Network 

Performance evaluation is the process of measuring the performance of a system under test. 

The goal of any performance evaluation is to understand and document the performance of the 

system or subsystem being tested. This often involves measuring what happens when dependent 

variables are altered; for example, measuring the throughput of the system as the number of 

concurrent requests is varied. Measure the performance of the blockchain network has been 

considered as one of the most concerning points from blockchain developers and researchers. A 

typical configuration of the performance evaluation in the blockchain network consists of test 

harness and system under test (SUT). The test harness is the system and program used to run the 

performance evaluation and to generate workload again the SUT. In general, the test harness can 

be multiple types of clients that can generate workload and observe the statistics of each peer node. 

The blockchain network is comprised of various peer nodes, which communicate with other nodes 

to work together corporately to execute transactions. 

In this study, Hyperledger Caliper [43] is used to evaluate the performance of the designed 

solutions. Caliper is a unified blockchain benchmark framework that provides a standard layer to 

integrate with existing blockchain platforms (Hyperledger Fabric, Ethereum, etc.). Caliper 

provides a performance test report containing several performance indicators, such as transaction 

throughput, transaction latency, resource utilization, etc. It offers a variety of blockchain 

configurations, network setup as well as specific use-cases to test user-customized purposes.  

Figure 10 presents the Caliper framework architecture that consists of four layers: benchmark 

layer, interface and core layer, adaptation layer, and the network layer. The benchmark layer 

provides various use cases to test the backend functions of the Fabric network. The interface and 

core layer offers a CLI-based interface for interacting with Fabric network, such as starting the 

network. It also provides additional functions, including resource monitoring, performance 

analysis, and report generation. The adaption layer is used to integrate Fabric network with 
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external client applications by using corresponding blockchain SDKs to map operations such as 

invoking and querying states from the ledger. It also supports the interaction with other blockchain 

solutions by using platform specified adaptors to translate blockchain backend operations into 

associated blockchain protocol. The network layer provides the blockchain infrastructure of the 

Fabric network. The blockchain infrastructure contains various peers that hold distributed ledgers 

and smart contracts. 

Nexledger Accelerator Adaptor

Benchmark Engine

Use Case Use Case Use Case

Resource 
Monitor

Performance 
Analyzer

Report 
Generator

CLI

Hyperledger Fabric Network

Benchmark 
Layer

Interface and 
Core Layer

Adaptation 
Layer

Network 
Layer

 

Figure 10. Performance evaluation framework architecture of blockchain using 

Hyperledger Caliper [43] 
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3. Performance Analysis of Configurable Parameters in 

Blockchain Network 

 

3.1 Blockchain Network Performance Metrics 

The throughput and latency are two standard performance metrics to evaluate the performance 

of the blockchain network. The throughput can be further divided into two subcategories 

concerning the operations to deal with. Read throughput is a specific measure to count the number 

of read operations completed in a defined time period, expressed as read per second (rps). Read 

throughput is not used as a central performance to measure the blockchain since most of the 

systems are typically deployed adjacent to the blockchain to achieve significant efficiency in 

reading and queries. Transaction throughput is the rate at which valid transactions are committed 

by the blockchain in a defined time period, expressed as tps. Transaction throughput is not the 

measure at a single node but across all nodes of the whole network. 

▪ 𝑅𝑒𝑎𝑑 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
                                                                 (1) 

▪ 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑖𝑑 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
                                                 (2) 

Latency can also be separated into two subcategories in terms of the type of operations. Read 

latency measures the total time to submit a read request and receive the reply. Transaction latency 

measures the time that the entire network takes to validate a transaction, covering the broadcasting 

time as well as the allocation time spent by the consensus algorithm. The definition of the network 

threshold is specified in [44], which represents the quantity of time spent for a proportion of the 

network to commit a transaction. In this paper, we set the network threshold to one hundred as the 

utilization of the non-probabilistic protocol like PBFT. 

▪ 𝑅𝑒𝑎𝑑 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑡𝑖𝑚𝑒 − 𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒                                (3) 
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▪ 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 ∗ 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑡ℎ𝑟𝑒𝑑ℎ𝑜𝑙𝑑 − 𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒   (4)  

                                                                                                                  

3.2 Configurable Parameters in Blockchain Network 

This section discusses various configurable parameters, which can affect the blockchain 

performance. As shown in Table 3, the configurable parameters can be mainly summarized into 

two categories: software and hardware. For the case of software, it contains various parameters, 

including block size, block frequency, ledger database, ordering service, the programming 

language of smart contract, use of TLS, number of clients, number endorser peers, number of 

organizations, and the endorsement policy. Block size consists of two parts: message count and 

byte size. Message count determines the maximum number of transactions to form a new block. 

Byte size specifies the maximum number of bytes allowed for serialized transactions in a block. 

Block frequency determines the amount of time to wait after the first transaction arrives for 

additional transactions before cutting a block. In general, decreasing this value will improve 

latency, but decreasing it too much may decrease throughput by not allowing the block to fill to 

its maximum capacity. Ledger database stores the latest values of all keys. It includes several 

options, such as LevelDB and CouchDB. LevelDB is an embedded database that resides on each 

peer and stores data in the form of key-value pairs.  

Ordering service is executed by a particular node called orderer that sorts the order of 

transactions. There exist server ordering service implementations: Solo, Raft, and Kafka. The Solo 

ordering service only features a single orderer node. It does not support fault-tolerant but is the 

right choice for testing blockchain applications and functionalities of smart contracts before 

putting into the production environment. Raft ordering service is implemented on the Raft protocol, 

which features the CFT. Kafka ordering service is a similar CFT-based implementation; however, 

it utilizes a ZooKeeper ensemble for managing a cluster of ordering nodes.  
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Currently, Fabric offers several SDKs to develop a smart contract in various programming 

languages such as Go, Java, and Node.js. Fabric supports the use of Transport Layer Security to 

secure data communication between nodes. TLS communication can be used in both one-way 

(server only) and two-way (server and client) authentication. A peer node can act as a TLS server 

and a TLS client at the same time. For example, it acts as a server receives messages from other 

nodes while acts as the client when initializing connections to other nodes. The client can connect 

to a specified peer according to the user-specific definition and thereby makes a connection to a 

peer to invoke transactions. A peer node is responsible for receiving the ledger state updates from 

the orderer and holds a copy of the ledger to maintain the consistency of the whole network. 

Endorser peer features a unique role concerning a specific smart consist and consists of endorsing 

the seal of approval to a transaction before committing the transaction. The organization is also 

known as a member that is invited to join the blockchain network by a blockchain network 

provider. The organization is known as a member of the network. An organization contains one 

or more peers, which is the transaction endpoint. The user can specify a set of organizations to 

form a consortium. Endorsement policy specifies the peers that must execute transactions and the 

required combination of endorsement responses.  

For the case of hardware, it contains the number of vCPUS, memory allocation, disk type and 

speed, network speed, and CPU speed. The descriptions for each hardware parameter are depicted, 

as shown in Table 3. 

Table 3: Configurable parameters that affect the blockchain performance 

Category Component Description 

 

 

 

 

 

Block size The maximum limit of a blockchain to be filled up with 

transactions. 

Block frequency The amount of time to generate a new block. 

Ledger database A decentralized database that records the newest values 

for all keys appeared in the transaction history. 
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Software 

  

Ordering service A specific kind of node called orderer node that performs 

transaction ordering, which, along with other nodes, forms 

an ordering service. 

Programming 

language of smart 

contract 

A set of universal programming languages to code the 

smart contract, including Go, Node.js, and Java.  

Use of TLS Represent whether to use Transport Layer Security  

Number of clients The client represents the entity that acts on behalf of an 

end-user. 

Number of endorser 

peers 

Endorser peers can endorse the seal of approval to a 

transaction when it is proposed. 

Number of 

organizations 

A member that is invited to join the blockchain network. 

Endorsement policy Define peers that ought to agree on the results of a 

transaction before appending it to the ledger. 

 

 

 

 

 

 

 

Hardware 

Number of vCPUs A vCPU stands for a virtual central processing unit. One 

or more vCPUs are assigned to every virtual machine.  

Memory allocation Memory allocation is a process by which computer 

programs and services are assigned with physical or 

virtual memory space. 

Disk type and speed There are two types of disk drives: HDD (hard disk drive) 

and SSD (solid-state drive). Disk speed refers to the speed 

of reading and writing data, expressed in megabit per 

second (Mbps). 

Network speed Network speed can be defined as the total no of packets 

being exchanged by the client and the server per second, 

which is usually calculated in megabit per second (Mbps).  

CPU speed A CPU's clock speed rate is a measure of how many clock 

cycles a CPU can perform per second, is generally 

measured in Hertz, or GHz. 

 

3.3 Experiment Environment in Blockchain Network 

This section discusses the experiment setup and workload for evaluating the impact of various 

configurable parameters mentioned above. The default network for this experiment contains one 

channel, which consists of two organizations, each with one endorser peer for a total of two peers. 

The default block size is set to 10 transactions per block, and a new block is formed every 250 ms. 

The default ordering service is in solo mode, which consists only of a single ordering node. We 

utilized the LevelDB as the default state database in this experiment. The rest experiment 

parameters are specified, as shown in Table 4. The evaluation tests presented in this section were 
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averaged over multiple rounds to reduce errors resulting from the network congestion. We utilized 

the Hyperledger Caliper to evaluate the blockchain network performance. In this experiment, the 

sample network and benchmark configurations provided by Hyperledger Caliper were utilized to 

evaluate all configurable parameters. The smart contract used for this experiment is called simple, 

which is specified for a banking scenario.  We tested the open function that creates a new account 

with the given amount of money. 

Table 4: Default configuration for the experiment unless otherwise stated 

Parameters Values 

Number of Orgs 2 

Number of Endorser Peers 2 

Endorsement Policy AND (a, b, c) 

Ordering Service Solo 

Block Size 10 transactions per block 

Block Frequency 250 ms 

Ledger database LevelDB 

Programming language of smart 

contract 

GO 

Use of TLS No 

Number of clients 1 

 

3.4 Performance Evaluation of Configurable Parameters in Blockchain 

Network 

The section describes the evaluation results of each configurable parameter, as discussed in 

section 3.2. We evaluated the impact of block size on the performance by varying the block size 

(30, 50, and 100) over different transaction send rate (range from 25 – 200 tps). Figure 11 plots 

the experimental results in terms of average transaction throughput. The transaction throughput 

increased linearly with the increase in send rate until it reached around 175 tps. However, the 

growth of transaction throughput decreased significantly and approached a flat when the send rate 
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was above this point. When the send rate was 200 tps, the throughput of each block size set was 

180.4 tps, 172.3 tps, and 167.5 tps, respectively. Figure 12 plots the experimental results in terms 

of average transaction latency. The transaction latency decreases with the increase in the send rate. 

For example, when the block size was 30, and the send rate increased from 25 to 100 tps, the 

latency decreased from 170 to 90 ms.  

This experiment results indicate that the settings of block size have a small effect on 

performance. Smaller block size shows better application performance in throughput and latency, 

but the difference is modest. 

 

Figure 11: Evaluation of the impact of block size on transaction throughput 
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Figure 12: Evaluation of the impact of block size on transaction latency 

We evaluated the impact of block frequency on performance by varying the block frequency 

(30, 50, 100) over different transaction send rate (range from 25 – 200 tps). Figure 13 plots the 

experimental results in terms of average transaction throughput. The transaction throughput 

increased linearly with the increase in send rate until it reached around 150 tps. However, the 

growth of transaction throughput decreased significantly and approached a flat when the send rate 

was above this point. 

When the send rate was 175 tps, the throughput of each block frequency set was 165.8 tps, 

170.6 tps, and 157.4 tps, respectively. Figure 14 plots the experimental results in terms of average 

transaction latency. The transaction latency decreases as the send rate increases. For example, 

when the block frequency was 250 ms, and the send rate increased from 25 to 100 tps, the latency 

decreased from 160 to 100 ms. This experiment results indicate that the settings of block frequency 

have a small effect on performance. Lower block frequency shows better application performance 

in throughput and latency, but the difference is modest. 
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Figure 13: Evaluation of the impact of block frequency on transaction throughput 

 

Figure 14: Evaluation of the impact of block frequency on transaction latency 

In this experiment, we evaluated the impact of TLS on performance over different transaction 

send rate (range from 25 – 200 tps). Figure 15 plots the experimental results in terms of average 
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transaction throughput. The transaction throughput increased linearly with the increase in send 

rate until it reached around 75 tps. However, the growth of transaction throughput with TLS 

decreased significantly and approached to a flat when the send rate was above this point. For the 

transaction throughput, network without TLS has a higher throughput than the network with TLS 

when the send rate greater than 75 tps; for example, when the send rate was 100 tps, the throughput 

without TLS was 99.7 tps while the throughout with TLS was 81.1 tps. Figure 16 plots the 

experimental results in terms of average transaction latency. The network with TLS generates 

more latency than the network without TLS, but the variation of latency is tiny. This experiment 

results indicate that the use of TLS has a significant effect on performance. The network without 

TLS shows better application performance than the network with TLS since the network traffic is 

low. 

 

Figure 15: Evaluation of the impact of the use of TLS on transaction throughput 
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Figure 16: Evaluation of the impact of the use of TLS on transaction latency 

In this experiment, we evaluated the LevelDB and CouchDB to analyze the impact of the 

ledger database over different transaction send rate (range from 25 – 200 tps). Figure 17 plots the 

experimental results in terms of average transaction throughput. The transaction throughput 

increased linearly with the increase in send rate until it reached around 75 tps. However, the growth 

of transaction throughput with CouchDB decreased significantly and approached to a flat when 

the send rate was above this point. For the transaction throughput, LevelDB has a higher 

throughput than the CouchDB when the send rate was greater than 75 tps, for example, when the 

send rate was 100 tps, the throughput using the LevelDB was 99.6 tps while the throughout using 

CouchDB was 65.8 tps. Figure 18 plots the experimental results in terms of average transaction 

latency.  The CouchDB results in more significant latency than the LevelDB when the send rate 

was above 50 tps. The LevelDB database performs better than CouchDB because the peer can 

directly manipulate it while using CouchDB requires HTTP communication that generates 

additional network latency. The LevelDB performs better than CouchDB, generally, but is not as 
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effective at supporting a rich schema for the world state. It is appropriate to choose the LevelDB 

if the ledger data is in simple key-pair and does not require rich queries. 

 

Figure 17: Evaluation of the impact of the ledger database on transaction throughput 

 

Figure 18: Evaluation of the impact of the ledger database on transaction latency 
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In this experiment, we evaluated three kinds of ordering services: Solo, Solo Raft (a single 

node Raft network), Raft to analyze the impact of ordering services over different transaction send 

rate (range from 25 – 200 tps). Figure 19 plots the experimental results in terms of average 

transaction throughput. The transaction throughput increased linearly with the increase in send 

rate until it reached around 75 tps, the throughput growth of Solo Raft and Raft decreased 

significantly and approached to a flat. For the throughout, Solo ordering service has a higher 

throughput than Solo Raft and Raft when the send rate greater than 75 tps; for example, when the 

send rate was 100 tps, the throughput of Solo was 99.8 tps. In comparison, the throughput of Solo 

Raft and Raft were 90.1 tps and 87.8 tps, respectively. Figure 20 plots the experimental results in 

terms of average transaction latency. Solo ordering service generates much less latency than Solo 

Raft and Raft ordering services. This experiment results indicate that the choice of ordering service 

does have a significant impact on performance. The Solo ordering shows better application 

performance than Solo Raft and Raft ordering services since it is a single node and does not require 

the process of TLS. 

 

Figure 19: Evaluation of the impact of the ordering service on transaction throughput 
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Figure 20: Evaluation of the impact of the ordering service on transaction latency 

In this experiment, Go and Node.js languages are used to analyze the impact of the 

programming language of smart language over different transaction send rate (range from 25 – 

200 tps). The transaction throughput increased linearly as expected with the increase in send rate 

until it reached around 150 tps. The growth of transaction throughput decreased significantly and 

approached to a flat when the send rate was above this point. For the throughout, Go based smart 

contract has a higher throughput than Node.js based smart contract when the send rate was greater 

than the saturation point, for example, when the send rate was 175 tps, the throughput using Go 

based smart contract was 158 tps. In contrast, the throughout using Node.js based smart contract 

was 146 tps. Figure 22 plots the experimental results in terms of average transaction latency. 

Node.js based smart contract generates more latency than Go based smart contract, but the 

variation of latency is tiny. This experiment results indicate that the choice of programming 

language does affect performance. The Go language shows better application performance than 

the Node.js as it is compiled and supports multiple threads of execution. 
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Figure 21: Evaluation of the impact of the programming language of smart contract on 

transaction throughput 

 

Figure 22: Evaluation of the impact of the programming language of smart contract on 

transaction latency 
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This experiment evaluated the impact of the number of clients on performance. Figure 23 plots 

the average transaction throughput for a various number of clients (1, 5, 10) over different 

transaction send rate (range from 25 – 200 tps). The transaction throughput increased linearly with 

the increase in send rate until it reached around 150 tps. The growth of transaction throughput 

decreased significantly and approached to a flat when the send rate was above this point. When 

the send rate was 175 tps, the transaction throughput of each client set was 157.4 tps, 173.4 tps, 

and 162 tps, respectively. Figure 24 plots the average transaction latency for a various number of 

clients (1, 5, 10) over different transaction send rate (range from 25 – 200 tps). The transaction 

latency increases as the number of clients increases. For example, when the number of clients was 

10, and the send rate increased from 125 to 200 tps, the latency increased from 130 to 550 ms. 

This experiment results indicate that the number of clients does have a significant effect on 

performance. Increasing the number of clients can improve the throughput, but increasing it too 

much can significantly increase the latency due to the increase in network traffic volume.   

 

Figure 23: Evaluation of the impact of the number of clients on transaction throughput 
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Figure 24: Evaluation of the impact of the number of clients on transaction latency 

This experiment evaluated the impact of the number of endorser peers on performance. Figure 

25 plots the average transaction throughput for a various number of endorser peers (2, 4, 6) over 

different transaction send rate (range from 25 – 200 tps). The transaction throughput increased 

linearly with the increase in send rate until it reached around 125 tps. The growth of transaction 

throughput decreased significantly and approached to a flat when the send rate was above this 

point. When the send rate was 150 tps, the transaction throughput of each endorser peer set was 

149.1 tps, 142.4 tps, and 123.7 tps, respectively. Figure 26 plots the average transaction latency 

for a various number of endorser peers (2, 4, 6) over different transaction send rate (range from 

25 – 200 tps). The network with more endorser peers generates more latency, but the variation of 

latency is not apparent. This experiment results indicate that the number of endorser peers does 

have a significant effect on performance. Increasing the number of endorser peers can decrease 

the throughput and increase the latency due to the increase in network traffic volume.   
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Figure 25: Evaluation of the impact of the number of endorser peers on transaction 

throughput 

 

Figure 26: Evaluation of the impact of the number of endorser peers on transaction latency 
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This experiment evaluated the impact of the number of organizations on performance. Figure 

27 plots the average transaction throughput for a various number of organizations peers (1, 2, 3) 

over different transaction send rate (range from 25 – 200 tps). The transaction throughput 

increased linearly with the increase in send rate until it reached around 125 tps. The growth of 

transaction throughput decreased significantly and approached to a flat when the send rate was 

above this point. When the send rate was 150 tps, the transaction throughput of each endorser peer 

set was 149.4 tps, 138.8 tps, and 119.5 tps, respectively. Figure 28 plots the average transaction 

latency for a various number of organizations peers (1, 2, 3) over different transaction send rate 

(range from 25 – 200 tps). The network with more organizations generates more latency, and the 

variation of latency is enormous. For example, when the number of organizations was 3, and the 

send rate increased from 125 to 200 tps, the latency increased from 200 to 430 ms. This experiment 

indicates that increasing the number of organizations can decrease the throughput and increase the 

latency because the network becomes complicated.   

 

Figure 27: Evaluation of the impact of the number of organizations on transaction 

throughput 
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Figure 28: Evaluation of the impact of the number of organizations on transaction latency 

For the experiment of endorsement policy, we configured a sample network with 3 

organizations, and each organization has 2 endorser peers. Besides, three endorsement policies 

were specified: (1) at least one of the organizations much endorse transactions (policy 1), (2) at 

least two of the organizations much endorse transactions (policy 2), (3) all of the organizations 

must endorse transactions (policy 3). Figure 29 plots the average transaction throughput for 

various endorsement policies over different transaction send rate (range from 25 – 200 tps). The 

transaction throughput increased linearly with the increase in send rate until it reached around 125 

tps. The growth of transaction throughput decreased significantly and approached to a flat when 

the send rate was above this point. When the send rate was 150 tps, the transaction throughput of 

each endorser peer set was 149.4 tps, 138.8 tps, and 119.5 tps, respectively. Figure 30 plots the 

average transaction latency for various endorsement policies over different transaction send rate 

(range from 25 – 200 tps). The network with more organizations generates more latency, and the 

variation of latency is enormous. For example, when the number of organizations was 3, and the 

send rate increased from 125 to 200 tps, the latency increased from 200 to 430 ms. 
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This experiment results indicate that the endorsement policy does have a significant effect on 

performance. Increasing the number of organizations that must endorse transactions in the 

endorsement policy can decrease the throughput and increase the latency since each endorser peer 

has to exchange a message for every endorser peer, and this could significantly add process efforts 

for the network communication. 

 

Figure 29: Evaluation of the impact of the endorsement policy on transaction throughput 
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Figure 30: Evaluation of the impact of the endorsement policy on transaction latency 

It is not the purpose of this paper to address all the impact of hardware on performance as 

these experiments were performed in a single-host virtual machine. Due to our hardware 

limitations, we could not validate the impact of hardware by varying the number of CPUs for 

validating peers or expanding the bandwidth of the network card. However, the spec of hardware 

does indeed scale performance according to some existing studies. The authors in [45] stated that 

critical dimensions for a distributed ledger system include peer hardware and software capabilities. 

The authors in [46] evaluated the impact of boosting the number of CPUs to the peers to improve 

the performance. The authors in [47] also indicated that if the hardware configuration has a higher 

spec, a higher number of transactions can be supported. Hence, there is, in fact, no limit on the 

number of transactions that can take part in the Hyperledger blockchain network. It depends on 

the selected hardware and the blockchain network configurations. Further studies on the impact 

of hardware should be conducted on different hardware components such as memory allocation, 

disk type and speed, network speed, and CPU speed. This will be pursued in future work by 

deploying the Fabric network on a cloud service like Amazon Web Services (AWS). 
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4. Transaction Traffic Control Mechanism based on 

Fuzzy Logic in Blockchain Network 

4.1 Proposed Transaction Traffic Control Mechanism based on Fuzzy 

Logic 

The conceptual architecture of the transaction traffic control mechanism based on fuzzy logic 

is described in Figure 31. The blockchain network is comprised of various nodes, which provide 

the host environment of smart contracts and hold a copy of the distributed ledger to maintain the 

consistency of the whole network. There exist multiple clients that can submit transactions by 

invoking the functions specified in the smart contract. The fuzzy controller is embedded in the 

smart contract to regulate the transaction traffic across the network automatically. The fuzzy 

controller consists of the fuzzy inference system and the transaction control modules. Benchmark 

results of the network are observed in real-time, and these values are transmitted to the smart 

contract. The fuzzy controller computes the control commands to make decisions on the received 

transactions. The consensus is achieved within the whole network, and the execution results are 

returned to the clients. 
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Figure 31: Conceptual architecture of the transaction traffic control mechanism based 

on fuzzy logic 

Figure 32 illustrates the implementation diagram of the proposed system, which is comprised 

of the admin, transaction traffic measurement analyzer, client, blockchain adaptor, benchmark DB, 

and the blockchain network. The blockchain network consists of various nodes that hold a copy 

of the distributed ledger and a smart contract. The admin can configure the benchmark and network 

files for the transaction performance evaluation. A network configuration file describes the system 

under test and provides connection requirements for the network. A benchmark configuration file 

describes the performance benchmark workload and user-specified test files. The blockchain 

adaptor not only generates the transactions and passes to the client where the workload happens 

but also sends commands to initialize the blockchain network. The client submits transactions to 
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the blockchain network and returns the transaction responses. The transaction traffic measurement 

analyzer reads predefined performance statistics (TPS, latency, number of successful transactions, 

etc.) and stores benchmark results into the benchmark DB. The fuzzy controller adjusts the 

transaction acceptance rate by comparing transaction throughput, transaction latency with the 

acceptance rate. Transaction throughput and transaction latency are input parameters of the 

fuzzifier. Rules are evaluated in the inference engine. The defuzzifier converts output data 

(acceptance rate) into non-fuzzy values. The output value is obtained by the transaction control 

module to adjust the transaction acceptance rate. The whole process is repeated, and the 

throughput of the blockchain network can be dynamically maintained at a suitable level. 

 

Figure 32: Development configuration of the transaction traffic control mechanism based 

on fuzzy logic 

Figure 33 details the block diagram of the network configuration. The admin creates crypto 

certificates for each network entity and updates the network configuration, which specifies the 

topology of the network. The blockchain adaptor consists of config validator, client factory, client 

worker, blockchain SDK, and network configuration modules. The config validator validates each 

network configuration object. The client factory spawns the client worker to generate workloads. 
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The client worker is the client instance generated by the client factory. The blockchain SDK 

provides the interface to connect with the network. The network configuration is used to access 

information in the connection profile configuration. The blockchain adaptor can initialize the 

network (channel, peer) and install the smart contract to the network. 

 

Figure 33: Block diagram of the network configuration 

A fuzzy controller is a fuzzy logic-based control system that has been broadly utilized in 

numerous fields, for example, cooling, refrigeration, and automated control frameworks. Some 

different methodologies, like neural networks and genetic algorithms, can achieve just as fuzzy 

logic. Fuzzy logic keeps a favorable position by utilizing the general knowledge or experience that 

humans can easily understand. 

The Mamdani fuzzy system is one of the most well-known theories in the field of fuzzy logic 

control (FLC) [48]. The linguistic control strategy is born-again into an automatic control strategy 

supported up-to-date data by FLC. Linguistic expression labeling information granular, like 

temperature for the weather or age for persons, is expressed as a linguistic variable. It is familiar 

and comfortable to convert linguistic values by using adverbs or adjectives since natural languages 

do not continuously contain enough worth terms to define a fuzzy variable scale. In this paper, we 
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utilize the Mamdani rule structure to set up linguistic modeling for regulating the transaction 

traffic control. 

We use both triangular or trapezoidal membership functions to outline the fuzzy variables 

within the fuzzy system. The trapezoidal fuzzy set A performs μA(x), which is assigned by four 

quantified variables (a, b, c, d). The mathematical illustration of the fuzzy membership function 

is interpreted, as shown in Equation (1):  

  (1) 

It is worth noting that the trapezoidal function is thought to be a triangular one when b equals 

c. Equation (2) describes the fuzzy intersection operation between two fuzzy sets A and B, where 

A, B∈U and x is any component within the U universe: 

                       𝜇_(𝐴∩𝐵) (𝑥)=𝑚𝑖𝑛{𝜇_𝐴 (𝑥), 𝜇_𝐵 (𝑥)},  ∀𝑥∈𝑈                           (2) 

Besides, Equation (3) defines the fuzzy union operation:  

                               𝜇_(𝐴∪𝐵) (𝑥)=𝑚𝑎𝑥{𝜇_𝐴 (𝑥), 𝜇_𝐵 (𝑥)},  ∀𝑥∈𝑈                             (3) 

Two input variables, transaction throughput, and transaction latency, are considered in the 

proposed fuzzy controller, and the output variable generated by the fuzzy controller is the 

acceptance rate of the transaction. The quantitative results of the given fuzzy sets and 

corresponding membership degrees are calculated by Equation (4): 

                                          𝑚𝐶𝑜𝐴 =  
∫𝑓(𝑥)∙𝑥𝑑𝑥

∫𝑓(𝑥)𝑑𝑥
                                                        (4) 

𝜇𝐴(𝑥)

 
  
 

  
 

0 , 𝑥 < 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
 , 𝑎 < 𝑥 < 𝑏

      1   ,               𝑏 < 𝑥 < 𝑐      
𝑑 − 𝑥

𝑑 − 𝑐
 , 𝑐 < 𝑥 < 𝑑

0 , 𝑥 > 𝑑

   (𝑎 < 𝑏 ≤ 𝑐 ≤ 𝑑) 1 
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The linguistic terms of the input and output variables and their corresponding fuzzy sets are 

defined in Table 5.  

Table 5: Fuzzy set definition in smart contract 

Fuzzy variables Linguistic terms Fuzzy sets (a, b, c, d) 

 

 

Transaction Throughput 

Very Low 0, 0, 20, 60 

Low 20, 60, 100 

Acceptable 60, 100, 140 

High 100, 140, 180 

Very High 140, 180, 200, 200 

 

 

Network Latency 

Very Low 0, 0, 0.15, 0.45 

Low 0.15, 0.45, 0.75 

Acceptable 0.45, 0.75, 1.05 

High 0.75, 1.05, 1.3 

Very High 1.05, 1.3, 1.5, 1.5 

 

Acceptance Rate 

Very Low 0, 0, 10, 30 

Low 10, 30, 50 

Medium 30, 50, 70 

High 50, 70, 90 

Very High 70, 90, 100, 100 
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The proposed fuzzy controller aims to hold the acceptance rate of the transaction at an 

optimum level. For example, the acceptance rate is medium if the transaction throughout is in an 

exceedingly high condition, and the transaction latency is incredibly low. In a word, the fuzzy 

controller serves as a regulator of transaction traffic in line with transaction throughput and latency. 

Table 6 gives a list of specified fuzzy rules, and in total, twenty-five rules are defined. 

Table 6: Fuzzy rules definition in smart contract 

Latency 

 

 

 

Throughput 

Very Low Low Acceptable High Very High 

Very Low Very High Very High High High Medium 

Low Very High Very High High Medium Medium 

Acceptable High High Medium Medium Medium 

High High High Medium Medium Low 

Very High Medium Medium Low Very Low Very Low 

 

Figure 34 describes the workflow of the proposed transaction traffic control mechanism based 

on fuzzy logic. At the beginning of each test, the admin should configure the network and 

benchmark profiles to fulfill the requirements of the test scenario. The benchmark file describes 

how the evaluation test should be executed, including the number of rounds, send rate of the 

transaction, and settings about monitoring the test network. The network configuration file 
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describes the topology of the test network, such as the configuration of nodes, number of clients, 

and smart contracts deployed to the test network.  

After configuring the network and benchmark profiles, the user can start the test. The system 

extracts the configuration details from the network configuration profile to set up the blockchain 

network. Meanwhile, it creates a required number of client workers to generate the workload to 

the network. Afterward, the clients start to submit transactions to the network, and the benchmark 

results are observed. These results are further analyzed to compute the transaction throughput and 

transaction latency, which are stored in an external data storage. These two parameters are used 

as the input parameters of the fuzzy controller. The fuzzy inference engine evaluates the input 

parameters according to defined fuzzy rules. The fuzzy controller produces the acceptance rate as 

the output value, which is used to control the transaction traffic flow. The transaction execution 

response is generated and returned to the client. This process is repeated across the entire 

benchmark experiment until the admin stops the test. Finally, all of the network entities and the 

smart contract will be removed.    
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Figure 34: Flow chart of the transaction traffic control mechanism based on fuzzy logic 

Figure 35 illustrates the execution process of the network configuration. The network admin 

uses the cryptogen tool to generate the required certificate for each network entity. These 

generated network certificates are stored in the local file system. Then the configtxgen tool is used 

to create configuration artifacts, including orderer genesis block, channel configuration transaction, 

and anchor peer transactions. After that, the admin modifies the docker compose files according 



 
 

57 
 

to his requirement and execute these files to start the blockchain network in docker containers. 

The channel configuration transaction is submitted to the blockchain network via the adaptor to 

create the channel in the blockchain network. As a response, a genesis block is returned, which 

will be used to join the channel. After the channel is created, each peer is joined the channel, and 

anchor peer transactions are executed by the orderer to specify anchor peer for each organization. 

The adaptor enrolls clients and obtains key pairs for each client. It also submits the smart contract 

install transaction to the network, and the network will initialize the smart contract accordingly. 

Figure 36 describes the execution process of the transaction control based on fuzzy logic. The 

admin can start the script to start the benchmark test. One or more clients generate transactions to 

the adaptor, in turn, the adaptor submits transactions to the Fabric network. Meanwhile, the 

benchmark results are observed and collected by the transaction traffic measurement analyzer. The 

analyzer calculates the benchmark statistics and stores the results in the benchmark DB. The 

fuzzifier retrieves the transaction throughput and network latency as the input parameters of the 

fuzzy inference system. The inference engine evaluates the input parameters according to the 

fuzzy rules. The defuzzifier produces the acceptance rate as the output value and sends this value 

to the transaction control module. The transaction module performs transaction traffic control 

operations with respect to the acceptance rate. The transaction execution response is generated 

and returned to the client. This process is repeated across the entire benchmark experiment until 

the user stops the test. Finally, all of the network entities and the smart contract will be removed.    
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Figure 35: Sequence diagram of the blockchain network configuration 
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Figure 36: Sequence diagram of the transaction traffic control mechanism based on fuzzy 

logic 

 

4.2 Development of the Transaction Traffic Control Mechanism based 

on Fuzzy Logic 

Table 7 presents the technology stack used to implement transaction traffic control based on 

fuzzy logic.  The Hyperledger Fabric (v1.4.1) is used as the blockchain infrastructure, which is 

deployed in the Ubuntu Linux (18.04 LTS) operating system. All the network elements of 

Hyperledger Fabric are encapsulated as Docker images in Docker containers, which are running 

in the virtual machine. The Node SDK enables interactions between external applications and the 

Fabric blockchain network via a group of APIs to submit transactions to the ledger or query content 

data from the ledger. Hyperledger Caliper (v2.0.0) is an open-source blockchain benchmark tool 

that allows users or developers to measure different performance indexes of blockchain 
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implementation. FuzzyIS is a JavaScript library for building a fuzzy inference system in smart 

contracts that utilize Node.js. MongoDB is a NoSQL database used to store the benchmark results 

in the JSON-like document with a schema. Express.js is a Node.js based web server framework to 

build web applications, which provides various REST APIs to manipulate the MongoDB. 

Table 7: Development environment of transaction traffic control based on fuzzy logic 

Component Description 

CPU Intel Core i5-8500 @ 3.00 GHz 

Memory 12 GB 

OS Ubuntu Linux 18.04 LTS 

Docker Engine v19.03.8 

Docker-Composer v1.24.0 

SDK Node.js v8.17.0 

Blockchain Infrastructure Hyperledger Fabric v1.4.1 

TPS traffic measurement tool Hyperledger Caliper V2.0.0 

FIS Library fuzzyIS 

DBMS MongoDB 

Web Server Express.js 

Programming Language JavaScript 

IDE VSCode 

 

As shown in Figure 37, the fuzzy controller in the smart contract contains 4 core objects. 

Linguistic Variable initializes and adds input and output linguistic variables into the system, such 

as acceptance rate, transaction throughput, and network latency. The term describes fuzzy terms 

for each variable like high/low, very high/very low, etc. The rule describes the connection between 

input and output linguistic variables. These are conditions like: "if transaction throughput is very 

low AND network latency is very low, then accept rate should be very high," which describes how 

the system works. FIS – fuzzy inference system is created with input and output linguistic 

variables along with described rules. It calculates precise values for output variables referring to 

the rules given. 



 
 

61 
 

 

Figure 37: Fuzzy set definition in the smart contract 

Figure 38 describes the structure of fuzzy rules in the smart contract. The rule preserves the 

same order in the term description. The first two values present the input variables, transaction 

throughput, and network latency, respectively. The third value presents the output variable accept 

rate. The fourth value represents the connection variable that can be and/or. 
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Figure 38: Fuzzy rule definition in the smart contract 

The invoke function is called by the smart contract throughout the lifetime to carry out the 

business transaction logic, as shown in Figure 39. When this function is called, it retrieves 

benchmark results (throughput, latency) from the benchmark DB. Afterward, the smart contract 

invokes the fuzzy inference system to compute the output variable (accept rate) by passing these 

two parameters. The smart contract performs operations on the transaction according to the 

predefined transaction control policy. For instance, Figure 40 gives an example of dropping the 

transaction if the accept rate ranges from 0 to 30. 
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Figure 39: Function to invoke fuzzy inference system in the smart contract 

 

Figure 40: Sample of transaction control policy in terms of the acceptance rate 

 

4.3 Performance Analysis of the Transaction Traffic Control Mechanism 

based on Fuzzy Logic 

This section illustrates the evaluation results of the transaction traffic control mechanism 

based on fuzzy logic compared to the baseline network. The default block size is set to 10 

transactions per block, and a new block is formed every 250 ms. The default ordering service is in 

solo mode, which consists only of a single ordering node. The LevelDB is used as the default state 
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database in this experiment. The evaluation tests presented in this section were averaged over 

multiple rounds to reduce errors resulting from the network congestion. Figure 41 plots the 

evaluation results of transaction throughput in a 1org2peer network with 1 client by comparing 

the network using proposed fuzzy logic-based mechanism with the baseline network over different 

transaction send rate (range from 25 – 200 tps). The throughput increased linearly with the increase 

in send rate until it reached around 150 tps. The growth of transaction throughput decreased 

significantly and approached to a flat when the send rate was above this point. When the send rate 

was 175 tps, the throughput of each block size set was 152.9 tps and 157.7 tps, with a 3.1% increase 

of transaction throughout. Figure 42 plots the evaluation results of transaction latency in a 

1org2peer network with 1 client by comparing the network using proposed fuzzy logic-based 

mechanism with the baseline network over different transaction send rate (range from 25 – 200 

tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism and the 

baseline was 80 ms and 100ms, with a 20% reduction of transaction latency. 

 

Figure 41: Evaluation of transaction throughput in 1org2peer network with 1 client 

(baseline and fuzzy logic) 



 
 

65 
 

 

Figure 42: Evaluation of transaction latency in 1org2peer network with 1 client (baseline 

and fuzzy logic) 

Figure 43 plots the evaluation results of transaction throughput in a 2org1peer network with 1 

client by comparing the network using proposed fuzzy logic-based mechanism with the baseline 

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput 

increased linearly with the increase in send rate until it flattened out at around 150 tps, as shown 

in Figure 43. The growth of transaction throughput decreased significantly and approached to a 

flat when the send rate was above this point. When the send rate was 175 tps, the transaction 

throughput of each block size set was 132.6 tps and 141.1 tps, respectively. The fuzzy-based 

mechanism can increase transaction throughput by 6.4% compared to the baseline. Figure 44 plots 

the evaluation results of transaction latency in a 2org1peer network with 1 client by comparing 

the network using proposed fuzzy logic-based mechanism with the baseline network over different 

transaction send rate (range from 25 – 200 tps).  When the send rate was 200 tps, the transaction 

latency of fuzzy-based mechanism and the baseline was 100 ms and 150 ms, with a 33.3% 

reduction of transaction latency. 
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Figure 43: Evaluation of transaction throughput in 2org1peer network with 1 client 

(baseline and fuzzy logic) 

 

Figure 44: Evaluation of transaction latency in 2org1peer network with 1 client (baseline 

and fuzzy logic) 
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Figure 45 plots the evaluation results of transaction throughput in a 2org2peer network with 1 

client by comparing the network using proposed fuzzy logic-based mechanism with the baseline 

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput 

increased linearly with the increase in send rate until it reached around 125 tps. The growth of 

transaction throughput decreased significantly and approached to a flat when the send rate was 

above this point. When the send rate was 150 tps, the transaction throughput of each block size set 

was 132.7 tps and 135.5 tps, respectively. The fuzzy-based mechanism can increase transaction 

throughput by 2.1% compared to the baseline. Figure 46 plots the evaluation results of transaction 

latency in a 2org2peer network with 1 client by comparing the network using proposed fuzzy 

logic-based mechanism with the baseline network over different transaction send rate (range from 

25 – 200 tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism 

and the baseline was 130 ms and 170 ms, with a 23.5% reduction of transaction latency. 

 

Figure 45: Evaluation of transaction throughput in 2org2peer network with 1 client 

(baseline and fuzzy logic) 
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Figure 46: Evaluation of transaction latency in 2org2peer network with 1 client (baseline 

and fuzzy logic) 

Figure 47 plots the evaluation results of transaction throughput of a 3org2peer network with 

1 client by comparing the network using proposed fuzzy logic-based mechanism with the baseline 

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput 

increased linearly with the increase in send rate until it reached around 125 tps. The growth of 

transaction throughput decreased significantly and approached to a flat when the send rate was 

above this point. When the send rate was 150 tps, the transaction throughput of each block size set 

was 112.2 tps and 122.3 tps, respectively. The fuzzy-based mechanism can increase transaction 

throughput by 9% compared to the baseline. Figure 48 plots the evaluation results of transaction 

latency of a 3org2peer network with 1 client by comparing the network using proposed fuzzy 

logic-based mechanism with the baseline network over different transaction send rate (range from 

25 – 200 tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism 

and the baseline was 230 ms and 320 ms, with a 34.4% reduction of transaction latency. 
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Figure 47: Evaluation of transaction throughput in 3org2peer network with 1 client 

(baseline and fuzzy logic) 

 

Figure 48: Evaluation of transaction latency in 3org2peer network with 1 client (baseline 

and fuzzy logic) 
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Figure 49 plots the evaluation results of transaction throughput in a 1org2peer network with 5 

clients by comparing the network using proposed fuzzy logic-based mechanism with the baseline 

network over different transaction send rate (range from 25 – 200 tps). For the case of the baseline 

network, the transaction throughput increased linearly with the increase in send rate until it reached 

around 150 tps. The growth of transaction throughput decreased significantly and approached to 

a flat when the send rate was above this point. When the send rate was 175 tps, the transaction 

throughput of the baseline network and the fuzzy-based mechanism was 163.6 tps and 174.6 tps. 

Respectively. The fuzzy-based mechanism can increase transaction throughput by 6.7% compared 

to the baseline. Figure 50 plots the evaluation results of transaction latency in a 1org2peer network 

with 5 clients by comparing the network using proposed fuzzy logic-based mechanism with the 

baseline network over different transaction send rate (range from 25 – 200 tps). When the send 

rate was 200 tps, the transaction latency of fuzzy-based mechanism and the baseline was 480 ms 

and 680 ms, with a 29.4% reduction of transaction latency. 

 

Figure 49: Evaluation of transaction throughput in 1org2peer network with 5 clients 

(baseline and fuzzy logic) 
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Figure 50: Evaluation of transaction latency in 1org2peer network with 5 clients (baseline 

and fuzzy logic) 

Figure 51 plots the evaluation results of transaction throughput in a 2org1peer network with 5 

clients by comparing the network using proposed fuzzy logic-based mechanism with the baseline 

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput 

increased linearly with the increase in send rate until it reached around 125 tps. The growth of 

transaction throughput decreased significantly and approached to a flat when the send rate was 

above this point. When the send rate was 150 tps, the transaction throughput of each block size set 

was 135.1 tps and 149.1 tps, respectively. The fuzzy-based mechanism can increase transaction 

throughput by 9.4% compared to the baseline. Figure 52 plots the evaluation results of transaction 

latency in a 2org1peer network with 5 clients by comparing the network using proposed fuzzy 

logic-based mechanism with the baseline network over different transaction send rate (range from 

25 – 200 tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism 

and the baseline was 820 ms and 950 ms, with a 13.7% reduction of transaction latency.  



 
 

72 
 

 

Figure 51: Evaluation of transaction throughput in 2org1peer network with 5 clients 

(baseline and fuzzy logic) 

 

Figure 52: Evaluation of transaction latency in 2org1peer network with 5 clients (baseline 

and fuzzy logic) 
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Figure 53 plots the evaluation results of transaction throughput in a 2org2peer network with 5 

clients by comparing the network using proposed fuzzy logic-based mechanism with the baseline 

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput 

increased linearly with the increase in send rate until it reached around 125 tps. The growth of 

transaction throughput decreased significantly and approached to a flat when the send rate was 

above this point. When the send rate was 150 tps, the transaction throughput of each block size set 

was 128.6 tps and 138.4 tps, respectively. The fuzzy-based mechanism can increase transaction 

throughput by 7.6% compared to the baseline. Figure 54 plots the evaluation results of transaction 

latency in a 2org2peer network with 5 clients by comparing the network using proposed fuzzy 

logic-based mechanism with the baseline network over different transaction send rate (range from 

25 – 200 tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism 

and the baseline was 1760 ms and 2260 ms, with a 22.1% reduction of transaction latency. 

 

Figure 53: Evaluation of transaction throughput in 2org2peer network with 5 clients 

(baseline and fuzzy logic) 



 
 

74 
 

 

Figure 54: Evaluation of transaction latency in 2org2peer network with 5 clients (baseline 

and fuzzy logic) 

Figure 55 plots the evaluation results of transaction throughput in a 3org2peer network with 5 

clients by comparing the network using proposed fuzzy logic-based mechanism with the baseline 

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput 

increased linearly with the increase in send rate until it reached around 100 tps. The growth of 

transaction throughput decreased significantly and approached to a flat when the send rate was 

above this point. When the send rate was 125 tps, the transaction throughput of each block size set 

was 98.6 tps and 108.4 tps, respectively. The fuzzy-based mechanism can increase transaction 

throughput by 9.9% compared to the baseline. Figure 56 plots the evaluation results of transaction 

latency in a 3org2peer network with 5 clients by comparing the network using proposed fuzzy 

logic-based mechanism with the baseline network over different transaction send rate (range from 

25 – 200 tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism 

and the baseline was 2320 ms and 3020 ms, with a 23.2% reduction of transaction latency. 
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The proposed transaction traffic control approach based on fuzzy logic was tested in different 

network configurations by varying the network scale and number of clients. The experiment 

results indicate that the proposed transaction traffic control mechanism based on fuzzy logic can 

improve the blockchain performance concerning transaction throughput and transaction latency. 

In all cases, the evaluation using the fuzzy logic-based transaction traffic control mechanism 

outperforms the baseline by increasing the transaction throughput while decreasing the transaction 

latency. 

 

Figure 55: Evaluation of transaction throughput in 3org2peer network with 5 clients 

(baseline and fuzzy logic) 
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Figure 56: Evaluation of transaction latency in 3org2peer network with 5 clients (baseline 

and fuzzy logic) 
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5. Transaction Traffic Control Mechanism based on 

Learning to Prediction in Blockchain Network 

5.1 Proposed Transaction Traffic Control Mechanism based on 

Learning to Prediction 

The conceptual architecture of the transaction traffic control mechanism based on learning to 

prediction is described in Figure 57. The concept of the learning to prediction is first proposed in 

[49] to improve the prediction accuracy of temperature readings due to the changeable humidity 

level in the case study of a greenhouse. This paper utilizes this idea to improve the prediction 

accuracy of network conditions from the noisy network measurement environment. As the 

learning to prediction module performs data training that is performance sensitive and time-

consuming, it is not a proper way to directly deploy this module into the smart contract. The 

blockchain network is comprised of various nodes, which provide the host environment of smart 

contracts and hold a copy of the distributed ledger to maintain the consistency of the whole 

network. The learning to prediction module is an external module that can make connections with 

the tps traffic measurement module and the blockchain network. The transaction traffic 

measurement module consists of the adaptor and the performance analyzer. The clients can submit 

transactions by invoking the functions specified in the smart contract. The learning module is used 

to tune the parameter of the prediction module to improve the prediction policy. The learning 

module takes the historical data such as network conditions observed in previous. Based on the 

history data, the learning module establishes the forecasting model to predict the tuning parameter 

dynamically. The predicted value of the prediction module is used as the input parameter of the 

fuzzy controller. Similar to the first mechanism, the fuzzy controller is also implemented in the 

smart contract to automate the process of transaction traffic flow across the network. The fuzzy 
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controller consists of the fuzzy inference system and the transaction control modules. Benchmark 

results of the network are observed in real-time, and these values are transmitted to the smart 

contract. The fuzzy controller computes the control commands to make decisions on the received 

transactions. The consensus is achieved within the whole network, and the execution results are 

returned to the clients.  

 

Figure 57: Conceptual architecture of the transaction traffic control mechanism based on 

learning to prediction 
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Figure 58 illustrates the detailed architecture of the proposed system, which is comprised of 

the admin, transaction traffic measurement analyzer, benchmark DB, predicted result DB, learning 

to prediction module, and the blockchain network. Based on the fuzzy-based approach, learning 

to prediction module is additionally implemented to improve the performance of the fuzzy 

controller. Kalman Filter-based prediction model is used to estimate the transaction throughput in 

the next stage. The ANN-based learning model is used to optimize the prediction algorithm by 

tuning the parameter of the Kalman Filter. The predicted throughput values are persisted in the 

predicted result DB. The proposed fuzzy controller adjusts the transaction acceptance rate of the 

smart contract by comparing transaction throughput, with the acceptance rate. The fuzzy controller 

only has one single input parameter, the predicted throughput. The inference engine evaluates the 

input against predefined fuzzy rules. The defuzzifier converts output data (acceptance rate) into 

non-fuzzy values. The output value is obtained by the transaction control module to adjust the 

transaction acceptance rate. The whole process is repeated, and the throughput of the Fabric 

network can be dynamically maintained at a suitable level. 

 

Figure 58: Development configuration of the transaction traffic control mechanism based 

on learning to prediction 
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The training module is used to adjust the prediction rule to enhance its performance 

concerning the prediction accuracy, as shown in Figure 59. We tend to use the Kalman Filter as 

the prediction module, and the artificial neural network (ANN) as the learning module. The 

Kalman Filter is employed to predict the transaction throughput of the network from a noisy 

environment. Noise in the environment is introduced in a situation wherever the transaction 

latency profoundly impacts transaction throughput. Transaction throughput, transaction latency, 

and the actual transaction throughput are used as input parameters for the ANN-based learning 

module. The Kalman Filter obtains the transaction throughput at time t, i.e., 𝑧_𝑡, and can predict 

the transaction throughput 𝑇𝑡  by eliminating noise. The performance of the Kalman Filter 

algorithm is mainly affected by a configurable parameter called Kalman gain (K), which is 

renewed on each new iteration in terms of the variance matrix (P) and the calculable error (R). 

The ANN-based learning module aims to estimate the calculable error (R) to update the Kalman 

gain (K) dynamically. 
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Figure 59: Overview architecture of the learning to prediction module 
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The Kalman Filter can predict the actual state of the system concerning only the previous state 

information. It updates the value of Kalman gain (K) in terms of the condition to regulate weights 

given to the system’s own estimated state or sensing values. The essential parts and workflow of 

the Kalman Filter are described in Figure 60. 

Every blockchain network has its noise factors, which may seriously affect throughput 

measurement. In this paper, we tend to contemplate a throughout measurement having noise and 

allow us to assume Tt is that the transaction throughput at time t. The Kalman Filter contains the 

model that can make a prediction of the system state, i.e., estimated transaction throughput, and 

then, this value is compared to the current measured transaction throughput value to predict the 

transaction throughput 𝑇𝑡+1 at time t+1. 

 

Figure 60: Flow chart of the transaction throughput prediction using Kalman Filter 
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In the commencement, the estimated transaction throughput is computed from the 

antecedently estimated value by equation (5):  

                                                  𝑇𝑘 = 𝐴 ∙  𝑇𝑘−1 + 𝐵 ∙  𝑢𝑘                                                            (5) 

𝑇𝑘  represents the estimated transaction throughput,  𝐴, and 𝐵 present the state transition and 

control matrixes, respectively. 𝑇𝑘−1 represents the transaction throughput at time k-1, and 𝑢𝑘 is 

the control vector. The estimated transaction throughput  𝑇𝑘 is determined by 𝑃𝑘, which represents 

the covariance factor.  

                                                 𝑃𝑘 = 𝐴 ∙  𝑃𝑘−1 ∙  𝐴𝑇 + 𝑄                                                           (6) 

𝐴 and 𝐴𝑇represent the state transition matrix as well as its transpose, and 𝑃𝑘−1 is the previous 

covariance value with a process error 𝑄. The estimated transaction throughput and the updated 

covariance value are used to compute the Kalman gain (K), expressed in equation (7): 

                                           𝐾𝑘 =  
𝑃𝑘 ∙ 𝐻𝑇

𝐻∙ 𝑃𝑘∙𝐻
𝑇+𝑅

                                                                          (7) 

𝐻  and 𝐻𝑇  are the observation matrix as well as its transpose, and the measurement error is 

represented by 𝑅. The current measured transaction throughput at time k is presented as 𝑧𝑘. The 

updated transaction throughput for the next stage is calculated, as expressed in equation (8): 

                                               𝑇𝑒 = 𝑇𝑘 +  𝐾𝑘 (𝑧𝑘 − 𝐻 ∙ 𝑇𝑘)                                                   (8) 

The covariance value is updated for the next iteration by equation (9): 

                                              𝑃𝑒 = (𝐼 −  𝐾𝑘 ∙ 𝐻) 𝑃𝑘                                                            (9) 

Figure 61 details the architecture of the learning to prediction module to control the transaction 

traffic flow. Three parameters, transaction latency, transaction throughout, and actual transaction 

throughput, are used as inputs for the ANN-based learning module. The ANN algorithm predicts 
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the transaction throughput measurement error; in turn, this value is divided by a constant factor 

(F) to calculate the estimated error R, which is passed to the Kalman Filter. The Kalman gain (K) 

is updated accordingly to adjust the accuracy of the prediction module.  
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Figure 61: Detailed diagram of the learning to prediction module [49] 

Table 8 describes the rule definitions for the learning to prediction module. The fuzzy 

controller for the learning to prediction just takes one input parameter, predicted transaction 

throughput. As a consequence, 5 rules are built for the fuzzy controller in total. 
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Table 8: Fuzzy rules definition for learning to prediction 

Predicted Transaction Throughput Acceptance Rate 

Very Low Very High 

Low High 

Acceptable Medium 

High Low 

Very High Very Low 

 

Figure 62 describes the workflow of the proposed transaction traffic control mechanism based 

on learning to prediction. At the beginning of each test, the user should configure the network and 

benchmark profiles to fulfill the requirements of the test scenario. The benchmark file describes 

how the evaluation test should be executed, including the number of rounds, send rate of the 

transaction, and settings about monitoring the test network. The network configuration file 

describes the topology of the test network, such as the configuration of nodes, number of clients, 

and smart contracts deployed to the test network.  

After configuring the network and benchmark profiles, the user can start the test. Afterward, 

the clients submit transactions to the network, and the benchmark results are observed. These 

results are further analyzed to compute the transaction throughput and latency, which are stored 

in an external data storage. These two parameters are used as the input parameters ANN-based 

learning module to predict the measurement error. The estimated error is used to tune the 

measurement error factor of the Kalman Filter algorithm. Actual transaction throughput is 

predicted and stored in the database. The smart contract retrieves the actual transaction throughput 

as the input parameter. The fuzzy inference engine evaluates the input parameters according to 

defined fuzzy rules. The fuzzy controller produces the acceptance rate as the output value, which 

is used to control the transaction traffic flow. The transaction execution response is generated and 

returned to the client. This process is repeated across the entire benchmark experiment until the 

user stops the test. Finally, all of the network entities and the smart contract will be removed. 



 
 

85 
 

Set the network and 
benchmark configurations

Initialize the blockchain 
network

Start tests

Submit transactions

Observe benchmark results

Store benchmark results

Retrieve transaction 
throughout and latency

Predict the measurement error and 
tune the Kalman Filter algorithm

Predict the actual transaction 
throughput

Stop tests

Remove the blockchain 
network

Retrieve the actual 
transaction throughput

Return response

Store the actual transaction 
throughput

Evaluate fuzzy rules

Perform transaction control 
operation

 

Figure 62: Flow chart of the transaction traffic control based on learning to prediction  

Figure 63 illustrates the execution process of the transaction traffic control mechanism based 

on learning to prediction. First of all, the admin needs to configure the network and benchmark 

files to set up the blockchain network. The blockchain network will be initialized, and the smart 

contract will be installed according to the network configuration. Afterward, the admin can start 

the script to start the benchmark test. One or more clients generate transactions to the adaptor, in 

turn, the adaptor submits transactions to the Fabric network. Meanwhile, the benchmark results 

are observed and collected by the performance analyzer. The analyzer calculates the benchmark 

statistics and stores the results in the benchmark DB. The learning module retrieves the transaction 

latency and transaction throughput values to predict the measurement error used for tuning the 

Kalman Filter algorithm. The actual transaction throughput is estimated and stored in the predicted 
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result database. The fuzzifier obtains the predicted transaction throughput as the input parameter 

of the fuzzy inference system. The inference engine evaluates the input parameter according to 

the fuzzy rules. The defuzzifier produces the acceptance rate as the output value and sends this 

value to the transaction control module. The transaction module performs transaction traffic 

control operations with respect to the acceptance rate. The transaction execution response is 

generated and returned to the client. This process is repeated across the entire benchmark 

experiment until the user stops the test. Finally, all of the network entities and the smart contract 

will be removed. 

 

Figure 63: Sequence diagram of the transaction traffic control mechanism based on 

learning to prediction 
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5.2 Development of the Transaction Traffic Control Mechanism based 

on Learning to Prediction 

Table 9 presents the technology stack used to implement the transaction traffic control based 

on learning to prediction. Similar to the fuzzy-based approach, the Hyperledger Fabric is used as 

the blockchain infrastructure. Hyperledger Caliper (v2.0.0) is used to measure different 

performance indexes of the blockchain implementation. The learning to prediction module is 

developed in Visual Studio Community with C#. For implementing the ANN-based learning 

module, Accord. Neuro is used. The Newtonsoft.Json is a JSON framework for .NET. 

Table 9: Development environment of transaction traffic control based on learning to 

prediction 

Component Description 

CPU Intel Core i5-8500 @ 3.00 GHz 

Memory 12 GB 

OS Ubuntu Linux 18.04 LTS 

Docker Engine v19.03.8 

Docker-Composer v1.24.0 

SDK Node.js v8.17.0 

Blockchain Infrastructure Hyperledger Fabric v1.4.1 

TPS traffic measurement tool Hyperledger Caliper V2.0.0 

Library fuzzyIS, Accord. Neuro, Newtonsoft.Json 

DBMS MongoDB 

Programming Language JavaScript, C# 

IDE VSCode, Visual Studio Community 

 

As shown in Table 10, the learning to prediction dataset consists of four features: network 

latency, send rate, transaction throughout, and the error. To make this dataset, we utilize the 

Hyperledger Caliper and modify the sample benchmark configuration file to meet our scenario. 

Each row describes the benchmark statistics in one minute, and in total, this dataset contains 10080 

rows, which represent the performance profile in a week. The transaction latency measures the 

time for the entire network to validate a transaction, including the propagation time and any 
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settling time due to the consensus in place. The send rate is the rate at which clients submit 

transactions. The transaction throughput is the rate at which the blockchain commits valid 

transactions in a defined time period.  The error presents the difference between the send rate and 

transaction throughput. 

Table 10: Dataset for the learning to prediction module  

No Network Latency 

(s) 

Send Rate 

(tps) 

Transaction Throughput 

(tps) 

Error 

(tps) 

1 0.22 146.5 145.8 0.7 

2 0.22 146.9 146.3 0.6 

3 0.19 151.3 150.7 0.6 

4 0.18 152.1 151.4 0.7 

5 0.19 151.1 150.3 0.8 

6 0.17 161.9 161.1 0.8 

7 0.15 158 157.3 0.7 

8 0.16 157.6 156.9 0.7 

9 0.19 161.4 160.5 0.9 

10 0.13 160.6 159.8 0.8 

… … … … … 

… … … … … 

10080 0.88 161.1 159.7 1.4 

 

To set up the best training module for the ANN, different configurations are tested by varying 

the quantity of neurons within the hidden layer, learning rates, and activation functions. For each 

network configuration, experiments were conducted in multiple rounds for training, and average 

results are recorded to analyze the random factor for initializing weights of the ANN network. 

Besides, to avoid bias within the training, a 4-fold cross-validation technique is applied for each 

configuration across all experiments. In this experiment, we divided the original dataset into four 
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equal-sized subsets (2520 instances in every subset). 75% of the data were utilized for training, 

and the remaining 25% was used for testing with the defined configuration in every experiment, 

as shown in Figure 64.  

 

Figure 64: 4-fold cross-validation model for training and testing data 

Table 11 provides elaborated info concerning the chosen configuration for ANN; therefore, 

the associated prediction accuracy concerning Root Mean Square Error (RMSE) evaluating the 

network configuration in every model. The training process was supported by the Levenberg–

Marquardt algorithm, considered as one of the most effective and quickest methodologies for 

moderately-sized neural networks [50]. We set the maximum number of epochs to 50 for training 

the ANN network. 

Table 11: RMSE for different configurations using the 4-fold cross-validation model  

Hidden 

Layer Size 

Activation 

Function 

Learning 

Rate 

Experime

nt ID 

Average (Test 

Cases) 

Experiment Average 

(Test Cases) 

5 Linear 0.1 1 4.69  

 

4.50 
5 Linear 0.1 2 4.48 

5 Linear 0.1 3 4.31 

5 Linear 0.1 4 4.52 

5 Linear 0.2 1 4.69  

 

4.51 
5 Linear 0.2 2 4.48 

5 Linear 0.2 3 4.31 

5 Linear 0.2 4 4.56 

5 Sigmoid 0.1 1 0.69  

 

0.50 
5 Sigmoid 0.1 2 0.48 

5 Sigmoid 0.1 3 0.31 

Model 1 Model 2 Model 3 Model 4

Record 1

Record 7560

Record 10080

Record 1 Record 1 Record 1

Record 10080 Record 10080 Record 10080

Record 2520Record 2520

Record 5040Record 5040

Record 7560

Testing Data Training Data
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5 Sigmoid 0.1 4 0.53 

5 Sigmoid 0.2 1 0.59  

 

0.64 
5 Sigmoid 0.2 2 0.57 

5 Sigmoid 0.2 3 0.66 

5 Sigmoid 0.2 4 0.75 

5 Linear 0.1 1 4.41  

 

4.61 
5 Linear 0.1 2 4.53 

5 Linear 0.1 3 4.74 

5 Linear 0.1 4 4.76 

5 Linear 0.2 1 4.57  

 

4.55 
5 Linear 0.2 2 4.60 

5 Linear 0.2 3 4.50 

5 Linear 0.2 4 4.53 

5 Sigmoid 0.1 1 0.51  

 

0.61 
5 Sigmoid 0.1 2 0.72 

5 Sigmoid 0.1 3 0.53 

5 Sigmoid 0.1 4 0.68 

5 Sigmoid 0.2 1 0.58  

 

0.64 

  

5 Sigmoid 0.2 2 0.47 

5 Sigmoid 0.2 3 0.77 

5 Sigmoid 0.2 4 0.75 

10 Linear 0.1 1 4.47  

 

4.47 
10 Linear 0.1 2 4.47 

10 Linear 0.1 3 4.47 

10 Linear 0.1 4 4.76 

10 Linear 0.2 1 4.47  

 

4.47 
10 Linear 0.2 2 4.47 

10 Linear 0.2 3 4.47 

10 Linear 0.2 3 4.47 

10 Sigmoid 0.1 1 0.38  

 

0.48 
10 Sigmoid 0.1 2 0.58 

10 Sigmoid 0.1 3 0.50 

10 Sigmoid 0.1 4 0.45 

10 Sigmoid 0.2 1 0.52  

 

0.64 
10 Sigmoid 0.2 2 0.73 

10 Sigmoid 0.2 3 0.46 

10 Sigmoid 0.2 4 0.86 

15 Linear 0.1 1 4.47  

 

4.47 
15 Linear 0.1 2 4.47 

15 Linear 0.1 3 4.47 

15 Linear 0.1 4 4.47 



 
 

91 
 

15 Linear 0.2 1 4.47  

 

4.47 
15 Linear 0.2 2 4.47 

15 Linear 0.2 3 4.47 

15 Linear 0.2 4 4.47 

15 Sigmoid 0.1 1 0.64  

 

0.67 
15 Sigmoid 0.1 2 0.64 

15 Sigmoid 0.1 3 0.74 

15 Sigmoid 0.1 4 0.64 

15 Sigmoid 0.2 1 0.44  

 

0.58 
15 Sigmoid 0.2 2 0.67 

15 Sigmoid 0.2 3 0.52 

15 Sigmoid 0.2 4 0.67 

 

Figure 65 presents the code of training function in the learning to prediction module. The 

network configuration for training is set up with 2 inputs, 10 neurons in the hidden layer, and one 

output. We use the Sigmoid activation function and the Levenberg–Marquardt algorithm for 

learning. The process of training is a loop in which we set the epochs at 20. Figure 66 presents the 

code of the Kalman Filter algorithm in the learning to prediction module. We initialize the value 

for each parameter in the first round. Afterward, the result in the first round is used as the input 

for the next iteration. In this way, the Kalman Filter estimates the actual transaction throughput 

based on transaction throughput measurements observed over time. 
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Figure 65: Function of ANN in the learning to prediction module 
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Figure 66: Function of Kalman Filter in the learning to prediction module 

Figure 67 shows the code of transaction traffic control based on learning to prediction. The 

whole process of transaction traffic control includes the following steps: obtain the input 

parameters (network latency, transaction throughput), predict the measurement error using the 

ANN learning model, and predict the actual transaction throughout using Kalman Filter. The 

application retrieves the benchmark results from the mongo db by calling the URL of the mongo 

db. These values are normalized and then passed to the ANN learning module to predict the error 
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factor. Afterward, the predicted error factor is divided by a constant value to compute the 

normalized error. After denormalization, the error is divided by a constant factor and passed to the 

Kalman Filter. Lastly, the Kalman Filter predicts the actual transaction throughput using the 

updated error factor and stores the predicted result in the mongo db. 

 

Figure 67: Function of transaction traffic control in the learning to prediction module 
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The learning to prediction module is implemented using window forms in C#, as shown in 

Figure 68. We implement various buttons to provide entries for performing operations provided 

by the learning to prediction module. The data load obtains the dataset in text format and stores it 

in the application. The Kalman Filter removes the measurement noise and predicts the transaction 

throughput. ANN learning module tunes the Kalman Filter algorithm to improve its prediction 

accuracy. Prediction with learning to Kalman Filter utilizes the optimized prediction parameter to 

predict the transaction throughput. TPS control utilizes the optimized Kalman Filter algorithm to 

predict the transaction throughput and stores the predicted value into the database. The results 

panel visualizes the prediction results and accuracy of the learning to prediction module. 

 

Figure 68: Learning to prediction module main interface 

Figure 69 illustrates the execution results of the learning to prediction module. The dataset is 

loaded from an external text file and stored inside the application for further processing. The 

RMSE is computed by comparing the measured transaction throughout with the actual send rate. 

The RMSE for the measurement error is very high, with a value of 20.25. The RMSE error is at 
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17.41, with a reduction of 14% by using the Kalman Filter with R=20. This error is further reduced 

by 20.3% at 13.88 by using the optimized Kalman Filter. 

 

Figure 69: Execution results of the learning to prediction module 

 

5.3 Performance Analysis of the Transaction Traffic Control Mechanism 

based on Learning to Prediction 

This section illustrates the evaluation results of the transaction traffic control mechanism 

based on learning to prediction compared to the baseline network. We used the sample smart 

contract called simple to test the backend functionalities of the blockchain network. The default 

block size is set to 10 transactions per block, and a new block is formed every 250 ms. The default 

ordering service is in solo mode, which consists only of a single ordering node. The LevelDB is 

used as the default state database in this experiment. The evaluation tests presented in this section 

were averaged over multiple rounds to reduce errors resulting from the network congestion.  
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Figure 70 plots the evaluation results of transaction throughput in a 1org2peer network with 

one client by comparing the network using the proposed transaction traffic control mechanism 

based on learning to prediction with the baseline network over different transaction send rate 

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send 

rate until it reached around 150 tps. The growth of transaction throughput decreased significantly 

and approached to a flat when the send rate was above this point. When the send rate was 175 tps, 

the transaction throughput of each block size set was 152.9 tps and 159.7 tps, with a 4.4% increase 

of the transaction throughput. Figure 71 plots the evaluation results of transaction latency in a 

1org2peer network with one client by comparing the network using the proposed transaction traffic 

control mechanism based on learning to prediction with the baseline network over different 

transaction send rate (range from 25 – 200 tps). When the send rate was 200 tps, the transaction 

latency of the learning to prediction mechanism and the baseline was 80 ms and 100 ms, with a 

20% reduction of transaction latency.  

 

Figure 70: Evaluation of transaction throughput in 1org2peer network with 1 client 

(baseline and learning to prediction) 
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Figure 71: Evaluation of transaction latency in 1org2peer network with 1 client (baseline 

and learning to prediction) 

Figure 72 plots the evaluation results of transaction throughput in a 2org1peer network with 

one client by comparing the network using the proposed transaction traffic control mechanism 

based on learning to prediction with the baseline network over different transaction send rate 

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send 

rate until it reached around 150 tps. The growth of transaction throughput decreased significantly 

and approached to a flat when the send rate was above this point. When the send rate was 175 tps, 

the transaction throughput of each block size set was 132.6 tps and 144.1 tps, with an 8.7% 

increase of the transaction throughput. Figure 73 plots the evaluation results of transaction latency 

in a 2org1peer network with one client by comparing the network using the proposed transaction 

traffic control mechanism based on learning to prediction with the baseline network over different 

transaction send rate (range from 25 – 200 tps). When the send rate was 200 tps, the transaction 

latency of the learning to prediction mechanism and the baseline was 95 ms and 150 ms, with a 

36.7% reduction of transaction latency.   
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Figure 72: Evaluation of transaction throughput in 2org1peer network with 1 client 

(baseline and learning to prediction) 

 

Figure 73: Evaluation of transaction latency in 2org1peer network with 1 client (baseline 

and learning to prediction) 
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Figure 74 plots the evaluation results of transaction throughput in a 2org2peer network with 

one client by comparing the network using the proposed transaction traffic control mechanism 

based on learning to prediction with the baseline network over different transaction send rate 

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send 

rate until it reached around 125 tps. The growth of transaction throughput decreased significantly 

and approached to a flat when the send rate was above this point. When the send rate was 150 tps, 

the transaction throughput of each block size set was 132.7 tps and 139.5 tps, with a 5.1% increase 

of the transaction throughput. Figure 75 plots the evaluation results of transaction latency in a 

2org2peer network with one client by comparing the network using the proposed transaction traffic 

control mechanism based on learning to prediction with the baseline network over different 

transaction send rate (range from 25 – 200 tps). When the send rate was 200 tps, the transaction 

latency of the learning to prediction mechanism and the baseline was 125 ms and 170 ms, with a 

26.5% reduction of transaction latency.  

 

Figure 74: Evaluation of transaction throughput in 2org2peer network with 1 client 

(baseline and learning to prediction) 
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Figure 75: Evaluation of transaction latency in 2org2peer network with 1 client (baseline 

and learning to prediction) 

Figure 76 plots the evaluation results of transaction throughput in a 3org2peer network with 

one client by comparing the network using the proposed transaction traffic control mechanism 

based on learning to prediction with the baseline network over different transaction send rate 

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send 

rate until it reached around 125 tps. The growth of transaction throughput decreased significantly 

and approached to a flat when the send rate was above this point. When the send rate was 150 tps, 

the transaction throughput of each block size set was 112.2 tps and 125.3 tps, with an 11.7% 

increase of the transaction throughput. Figure 77 plots the evaluation results of transaction latency 

in a 3org2peer network with one client by comparing the network using the proposed transaction 

traffic control mechanism based on learning to prediction with the baseline network over different 

transaction send rate (range from 25 – 200 tps). When the send rate was 200 tps, the transaction 

latency of the learning to prediction mechanism and the baseline was 225 ms and 320 ms, with a 

29.7% reduction of transaction latency.  



 
 

102 
 

 

Figure 76: Evaluation of transaction throughput in 3org2peer network with 1 client 

(baseline and learning to prediction) 

 

Figure 77: Evaluation of transaction latency in 3org2peer network with 1 client (baseline 

and learning to prediction) 
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Figure 78 plots the evaluation results of transaction throughput in a 1org2peer network with 

five clients by comparing the network using the proposed transaction traffic control mechanism 

based on learning to prediction with the baseline network over different transaction send rate 

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send 

rate until it reached around 175 tps. The growth of transaction throughput decreased significantly 

and approached to a flat when the send rate was above this point. When the send rate was 200 tps, 

the transaction throughput of the learning to prediction mechanism and the baseline was 183.1 tps 

and 173.1 tps with a 5.8% increase of the transaction throughput. Figure 79 plots the evaluation 

results of transaction latency in a 1org2peer network with five clients by comparing the network 

using the proposed transaction traffic control mechanism based on learning to prediction with the 

baseline network over different transaction send rate (range from 25 – 200 tps). When the send 

rate was 200 tps, the transaction latency of the learning to prediction mechanism and the baseline 

was 440 ms and 680 ms, with a 35.2% reduction of transaction latency.  

 

Figure 78: Evaluation of transaction throughput in 1org2peer network with 5 clients 

(baseline and learning to prediction) 
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Figure 79: Evaluation of transaction latency in 1org2peer network with 5 clients (baseline 

and learning to prediction) 

Figure 80 plots the evaluation results of transaction throughput in a 2org1peer network with 

five clients by comparing the network using the proposed transaction traffic control mechanism 

based on learning to prediction with the baseline network over different transaction send rate 

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send 

rate until it reached around 125 tps. The growth of transaction throughput decreased significantly 

and approached to a flat when the send rate was above this point. When the send rate was 150 tps, 

the transaction throughput of the learning to prediction mechanism and the baseline was 135.1 tps 

and 149.6 tps with a 10.7% increase of the transaction throughput. Figure 81 plots the evaluation 

results of transaction latency in a 2org1peer network with five clients by comparing the network 

using the proposed transaction traffic control mechanism based on learning to prediction with the 

baseline network over different transaction send rate (range from 25 – 200 tps). When the send 

rate was 200 tps, the transaction latency of the learning to prediction mechanism and the baseline 

was 800 ms and 950 ms, with a 15.8% reduction of transaction latency.  
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Figure 80: Evaluation of transaction throughput in 2org1peer network with 5 clients 

(baseline and learning to prediction) 

 

Figure 81: Evaluation of transaction latency in 2org1peer network with 5 clients (baseline 

and learning to prediction) 
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Figure 82 plots the evaluation results of transaction throughput in a 2org2peer network with 

five clients by comparing the network using the proposed transaction traffic control mechanism 

based on learning to prediction with the baseline network over different transaction send rate 

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send 

rate until it reached around 125 tps. The growth of transaction throughput decreased significantly 

and approached to a flat when the send rate was above this point. When the send rate was 150 tps, 

the throughput of the learning to prediction mechanism and the baseline was 128.6 tps and 142.4 

tps with a 10.7% increase of the transaction throughput. Figure 83 plots the evaluation results of 

transaction latency in a 2org2peer network with five clients by comparing the network using the 

proposed transaction traffic control mechanism based on learning to prediction with the baseline 

network over different transaction send rate (range from 25 – 200 tps). When the send rate was 

200 tps, the transaction latency of the learning to prediction mechanism and the baseline was 1620 

ms and 2260 ms, with a 28.3% reduction of transaction latency.  

 

Figure 82: Evaluation of transaction throughput in 2org2peer network with 5 clients 

(baseline and learning to prediction) 
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Figure 83: Evaluation of transaction latency in 2org2peer network with 5 clients (baseline 

and learning to prediction) 

Figure 84 plots the evaluation results of transaction throughput in a 3org2peer network with 

five clients by comparing the network using the proposed transaction traffic control mechanism 

based on learning to prediction with the baseline network over different transaction send rate 

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send 

rate until it reached around 100 tps. The growth of transaction throughput decreased significantly 

and approached to a flat when the send rate was above this point. When the send rate was 125 tps, 

the transaction throughput of the learning to prediction mechanism and the baseline was 98.6 tps 

and 111.4 tps with a 13% increase of the transaction throughput. Figure 85 plots the evaluation 

results of transaction latency in a 3org2peer network with five clients by comparing the network 

using the proposed transaction traffic control mechanism based on learning to prediction with the 

baseline network over different transaction send rate (range from 25 – 200 tps). When the send 

rate was 200 tps, the transaction latency of the learning to prediction mechanism and the baseline 

was 2210 ms and 3020 ms, with a 26.8% reduction of transaction latency.  
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The proposed transaction traffic control mechanism based on learning to prediction was tested 

in different network configurations by varying the network scale and number of clients. The 

experiment results indicate that the learning to prediction approach can improve the blockchain 

performance concerning transaction throughput and transaction latency. In all cases, the evaluation 

using the transaction traffic control mechanism based on learning to prediction outperforms the 

baseline by increasing the transaction throughput while decreasing the transaction latency. 

 

Figure 84: Evaluation of transaction throughput in 3org2peer network with 5 clients 

(baseline and learning to prediction) 
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Figure 85: Evaluation of transaction latency in 3org2peer network with 5 clients (baseline 

and learning to prediction) 
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6. Performance Evaluation of the Proposed Approach in 

Clinical Trial Testbed 

6.1 Clinical Trial Testbed Environment for Blockchain Performance 

Evaluation 

The system architecture of the clinical trial testbed consists of three layers: the physical layer, 

the service layer, and the application layer. As shown in Figure 86, the bottom layer is the physical 

layer, which is comprised of various smart devices for collecting the vital signals from subjects. 

These devices enable the collection of objective measures of intervention effects both in-clinical 

and in remote settings. The service layer adopts the modular design that makes the blockchain 

network more natural to maintain and extend. This layer encapsulates various characteristics of 

blockchain technologies into individual modules, including peer-to-peer (P2P) protocol, 

certificate authority, and consensus. The blockchain network consists of various entities, including 

distributed ledger, certificate authority, P2P protocol, consensus, smart contract, etc. The ledger 

is decentralized storage to maintain the replicated and shared data distributed across the entire 

network. The smart contract defines the business logic concerning all clinical trial-related 

operations, such as creating a patient record. The orderer is a particular node that is performing a 

consensus algorithm to guarantee the stable operation of the blockchain network and ensure that 

all peers maintain the data consistency. The event hub is responsible for emitting events whenever 

a new block is generated, or the condition defined in the smart contract is triggered. The functions 

specified in the smart contract are encapsulated into REST APIs. The external smart devices and 

applications can integrate with the network by calling these APIs. The application layer describes 

the way that services provided by the blockchain are visualized to the end-user. The blockchain 
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network can be accessed either using responsive web-based applications or native applications on 

smartphones. 
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Figure 86: Layer-based system architecture of the clinical trial service platform 

There are admins, principal investigators (PIs), clinical research coordinators (CRCs), clinical 

research associates (CRAs), subjects, and smart devices, all of which form the stakeholders in the 

clinical trial, as shown in Figure 87. The pharmaceutical company is the sponsor that takes 

responsibility for creating experiment plans, developing clinical protocols, preparing instruments 

and medicines of a clinical trial. The pharmaceutical company is not considered as the stakeholder 

since the contract research organization (CRO) provides clinical trial services for the 

pharmaceutical company on an outsource basis. In this paper, the admin of the blockchain 
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management company can set up the network to initiate a clinical trial but cannot perform 

transactions on the blockchain. Besides, admin is the network manager of blockchain, who is 

responsible for user registration and enrollment. CRC and PI are investigators who are responsible 

for the conduct of the clinical trial at a trial site. Generally, a clinical trial is conducted by a team 

of individuals at a clinical site. CRC interacts heavily with subjects, doing things like collecting 

and entering data. PI is the lead individual of the team that is ultimately responsible for all trial-

related activities at the site. Their job is to ensure the protocol is executed precisely as written and 

may delegate trial-related activities to members of the clinical team. CRA is the regulator who 

works in CRO, with authority to review submitted clinical data and those that conduct inspections. 

The subject is a direct participant of the clinical trial, either as a recipient of the investigational 

product or as a control. The process of subject enrollment is performed by CRC, who has to screen 

the recruited subjects to see whether they meet the inclusion and exclusion criteria. As the most 

fundamental part of the clinical trial system, subjects need to transmit the biomedical data 

collected from smart devices throughout clinical trials. The distributed data lake serves as an 

isolated storage that resides on the blockchain, also known as off-chain data storage. It is used to 

preserve all clinical data, covering user, device, eCRF, and audit data. 

Clinical Trial Service Platform Based on Blockchain

Admin CRA

CRC

PI

Smart Device

2. User Registration 
and Enrollment

1. Set Up Network
7. Audit 
Query
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Figure 87: Service scenario of clinical trial service based on blockchain 
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As shown in Figure 88, these participants can access the blockchain network through the client 

applications that can communicate with REST APIs. REST APIs serve as an intermediate between 

external applications and the blockchain network. The smart contract (SC) is a decentralized 

application that defines the business logic of the blockchain network according to the clinical 

protocol and automates the whole clinical trial process. The blockchain network appends an 

immutable record in the ledger to reflect changes resulting from transactions proposed by external 

applications, and a transaction response is returned as the response. The key-value database (K-V 

DB) holds the current states of the ledger. Each time a new transaction is agreed upon and added, 

the K-V DB will update to reflect the latest transaction. The blockchain network is comprised of 

multiple channels, which can have various organizations, different identities, and data visibility 

rules. This system is appropriate for multiple clinical trials as the channel is a private network that 

data is shared only between the participants within the same channel. Organization refers to a 

business entity (blockchain management company, hospital, contract research organization) that 

participates in the network. In this paper, each channel consists of four related organizations, and 

each of them holds a copy of the ledger to maintain consistency. 
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Figure 88: System configuration of the blockchain-based clinical trial service  

The detailed workflow of the proposed system is illustrated, as shown in Figure 89. Each 

participant must have credentials to get the authorized permission for submitting a transaction to 

the blockchain network. The PI, CRC, and CRA can only read and update their profiles. The PI 

and CRC can create profiles for new subjects who participate in the clinical trial. They can also 

set profiles for devices (pillbox, bgm), and these devices will update the settings accordingly. The 

devices collect biomedical data from subjects and generate eCRF pillbox/bgm data in the 

blockchain. The eCRF PI consult data and lab test data are created by the CRC when the subject 

visits the clinical site. After confirmation by the PI, these data cannot be modified. The CRA can 

review the data and generate audit queries if there exist errors in data. Afterward, the PI and CRC 

can access the audit and correct the data accordingly. 
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Figure 89: The workflow of the blockchain-based clinical trial service 

Figure 90 describes the execution processes of various service scenarios in the proposed 

system. Users such as PI, CRC, and CRA can read and update their profiles, but they cannot delete 

these profiles as this operation is allowed by the admin. Subject profiles created by either PI or 

CRC are accessible to the CRA. The PI and CRC can create the profile of a device that is visible 

to the CRA. To get medical data from a specified subject, the PI and CRC can bind the device to 

the subject by updating the device profile. The device periodically read the profile and configure 

the settings (time to alarm, report interval) accordingly. The medical data collected by the device 

is generated in the blockchain, and these data are visible to PI and CRC. In clinical trials, the 

subject needs to visit the clinical site regularly. Whenever the subject visits the clinical site, either 

PI or CRC can create the eCRF PI consult data and lab test data. The CRA reviews these data and 

informs a specified PI or CRC of the change by creating the audit query. The PI and CRC receive 

the message and update the eCRF data accordingly. 
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Subject profile management (read, create, update, delete) 

Read subject profile

Device pillbox/bgm management  profile 
(read, create, update, delete)

eCRF PI consult data management  (read, create, update)

eCRF PI consult data management  (read, create, update)

eCRF lab data management  (read, create, update)

eCRF lab data management  (read, create, update)

Create audit query

Read audit query and update the related eCRF data

Read audit query and update the related eCRF data

 

Figure 90: Execution process of the proposed blockchain-based clinical trial service 
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As shown in Figure 91, the Fabric network is set up and exploited by eight organizations that 

have corporately decided and signed agreements. An organization refers to a managed group of 

members, such as the blockchain management company, home, hospital, and CRO. In this 

experiment, the organizations manage their members under multiple MSPs, which represent 

different organizational groups in independent clinical trials. It is worth noting that the different 

MSPs can be used to present the same organization group. For example, the company organization 

consists of two MSPs, ORG1.MSP and ORG5.MSP, which represents the same blockchain 

management company that performs different clinical trials. Organizations R1 and R5, refer to the 

blockchain management companies, have been empowered to initialize the network.  

Each organization (e.g., Organization R1) in channel C1 is connected with a client application 

that can submit transactions, as do other organizations within the same channel. Similarly, client 

applications connected with organizations in channel C2 can perform transactions within channel 

C2. It is worth mentioning that one organization can also have multiple client applications such as 

organizations R2 and R6. Each peer in channel C1 keeps the same copy of the ledger L1 while 

peer nodes in channel C2 keep the same copy of the ledger L2. The network is under the control 

of policy rules specified in network configuration NC, which governed by organizations R1 and 

R5. Channel C1 is governed in terms of the rules defined by channel policy CP1. Similarly, 

channel C2 is governed in terms of the rules defined by channel policy CP2. The ordering service 

supports application in both channels, and orders transactions into blocks. Besides, each of the 

eight organizations has a preferred CA. 
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Figure 91: Blockchain network topology of the clinical trial service 

The smart contract for the clinical trial testbed contains seven participants, five assets, and 

nine transactions, as shown in Table 12. The participants are CRC, PI, CRA, subject, pillbox, bgm 

(Blood Glucose Meter), and last but not least, the admin of the network. Table 12 gives a list of 

transactions and describes the transaction structure, which is comprised of the participant, 

operation, and the resource. Participants are users who can submit the transaction to the business 

network. The operation specifies the action (e.g., Create, Read) that the transaction can perform 

on the resource. ALL represents that the transaction can support all kinds of actions. Resources 

represent either participant (e.g., CRC, CRA) or assets such as eCRF pillbox data and eCRF bgm 

data. Transactions submitted by a participant is to perform the specified operation against the 

resource.  
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Table 12: Defined transactions in the smart contract 

Transaction  Participant Operation Resource (Participant, 

Asset) 

User Profile Management Admin ALL CRC, CRA, PI 

Subject Management CRC, PI ALL Subject 

Device Pillbox Profile 

Management 

CRC, PI ALL Pillbox 

Device BGM Profile 

Management 

CRC, PI ALL BGM 

eCRF Pillbox Data 

Management 

CRC, PI, 

Pillbox 

READ, 

CREATE 

eCRF pillbox data 

eCRF BGM Data 

Management 

CRC, PI, BGM READ, 

CREATE 

eCRF BGM data 

eCRF PI Consult Data 

Management 

CRC, PI, CRA ALL eCRF PI consult data 

eCRF LAB Data 

Management 

CRC, PI, CRA ALL eCRF lab data 

eCRF CRA Audit  CRC, PI, CRA ALL eCRF audit  

 

Table 13 describes the defined assets in the smart contract. Assets are represented as key-value 

pairs to record state changes of the ledger. The assets are eCRF pillbox data, eCRF bgm data, 

eCRF PI consult data, eCRF lab data, and eCRF audit. The user of the business network can 

perform operations on these assets by submitting transactions. 

Table 13: Defined assets in the smart contract 

Component Type Role 

eCRF Pillbox Asset Record bio/non-bio data of subjects collected by pillbox 

eCRF BGM Asset Record bio/non-bio data of subjects collected by BGM 

eCRF PI Consult Asset Record consult data of the subject 

eCRF LAB Asset Record lab test data of the subject 

eCRF CRA Audit Asset Record audit data generated by CRA 
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We use the fabric-contract-api to implement the smart contract for the clinical trial testbed. It 

provides a JavaScript high-level API to write the business logic and supports communication with 

peers in the Fabric network. As shown in Figure 92, two transactions, createSubject and 

querySubject will be invoked by the smart contract whenever receive the request from clients. We 

use the stub interface to make the connection between the smart contract and the network peers. 

For instance, the putState function of the stub interface is used to write the state variable to the 

state database. In contrast, the getState function of the stub interface is used to retrieve the current 

value of the state variable.  

 

Figure 92. Sample code of the smart contract in clinical trial service 



 
 

121 
 

The client-side of the clinical trial testbed is implemented using Node.js SDK. We use the 

express framework to implement the web server, which makes it possible to use REST APIs to 

interact with the Fabric network. As shown in Figure 93, various modules such as fabric-ca-client, 

fabric-network should be imported to enable the connection with the Fabric network. The fabric-

ca-client module allows the client application to enroll and register users to establish trusted 

identities on the network. The fabric-network module is responsible for submitting transactions 

and performing queries against the ledger. FileSystemWallet is used to manage all the user 

identities stored in the wallet. X509WalletMixin creates the identity that has metadata comprised 

of a certificate and a private key. Gateway is responsible for connecting to the smart contract that 

resides on the peer node. 

 

Figure 93. Sample code of the clinical trial service server 
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Figure 94. Sample code of the REST API in clinical trial service 

The detailed implementation of the REST API is shown in Figure 94. The workflow of the 

API can be summarized into three stages: user authentication, connection, and transaction 

execution. First, the API will check whether the user who requests the API exists in the wallet. 

Afterward, it sets the connection with the peer node and gets the contract from the network channel. 

Lastly, it executes the transaction and returns the transaction execution results. 
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Table 14 presents the sample list of some REST API endpoints that are used to call 

transactions provided by the smart contract. Each API contains a URI and verbs such as GET, 

POST, PUT, and DELETE. The URI specifies the path of the endpoint, and the verb presents the 

specific operation to be performed on the resource. These APIs are provided in the clinical trial 

web server. CreateBgm API generates the BGM profile that contains BGM metadata, subject, and 

device configuration such as the alarm time and report interval. UpdateBgm API is responsible 

for updating the specified property of the BGM profile. DeleteBgm API deletes the BGM profile 

stored in the blockchain. CreatePillbox API generates the pillbox profile that contains pillbox 

metadata, subject, and device configuration like the alarm time and report interval. UpdatePillbox 

API is responsible for updating the specified property of the pillbox profile. DeletePillbox API 

deletes the pillbox profile stored in the blockchain. 

CreateSubject API generates the subject profile that contains subject metadata, device info, 

and clinical trial info such as clinical code and clinical name. UpdateSubject API is responsible 

for updating the specified property of the subject profile. DeleteSubject API deletes the subject 

profile stored in the blockchain. CreateECRFpillbox API collects various medical info like the 

dosage, taking time, and subject as well as store the record into the blockchain. CreateECRFbgm 

API collects various medical info like the blood glucose value, testing time, and subject as well as 

generate the record into the blockchain. CreateECRFpiConsult API generates various info like the 

consult metadata, clinical trial info such as clinical code and clinical name, acting note, and memo 

note as well as store the record into the blockchain. CreateECRFlab API generates various info 

like clinical trial info such as clinical code and clinical name, subject metadata, device, and 

biological signals such as blood pressure, heartbeat, and electrolytes. CreateCRAaudit generates 

various info like clinical trial info such as clinical code and clinical name, subject, test, and audit 

metadata like acting note. 
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Table 14. Sample REST API endpoints in clinical trial service 

URI Verb Description 

/api/CreateBgm POST Create device BGM profile 

/api/UpdateBgm POST Update device BGM profile 

/api/DeleteBgm POST Delete device BGM profile 

/api/CreatePillbox POST Create device pillbox profile 

/api/UpdatePillbox POST Update device pillbox profile 

/api/DeletePillbox POST Delete device pillbox profile 

/api/CreateSubject POST Create a subject profile 

/api/UpdateSubject POST Update subject profile 

/api/DeleteSubject POST Delete subject profile 

/api/CreateECRFpillbox POST Create eCRF pillbox data 

/api/CreateECRFbgm POST Create eCRF bgm data 

/api/CreateECRFpiConsult POST Create eCRF PI consult data 

/api/CreateECRFlab POST Create eCRF lab data 

/api/CreateCRAaudit POST Create eCRF audit data 

 

Figure 95 represents the implementation results of the clinical trial service, presenting the 

following features (a) eCRF pillbox data, (b) pillbox, (c) eCRF lab data, and (d) eCRF PI consult 

data. The eCRF pillbox data dashboard is used to manage the eCRF pillbox data, which includes 

various medical info. The pillbox dashboard is responsible for managing the pillbox metadata, 

subject, and device configuration, like the alarm time and report interval. The eCRF lab data 

dashboard is used to manage various info related to lab test data. The eCRF PI consult data 

dashboard is used to manage various info like the consult metadata, clinical trial info, acting note, 

and memo note. The web client provides an entry that not only allows the user of the business 

network to perform different operations on the blockchain but also visualizes different data on the 

blockchain. For example, the CRC and PI can create, read, update, and delete the profile of the 

pillbox. The web client handles the user requests by invoking the REST APIs provided by the web 

server. Afterward, the server calls the Fabric SDK to submit the specified transaction or query the 

ledger and returns the transaction execution results.  
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(a)

(b)

(c)

(d)
 

 Figure 95. Implementation results of clinical trial service 



 
 

126 
 

6.2 Experiment Environment of Clinical Trial Testbed 

This experiment was performed in a single channel of the clinical trial testbed network, which 

consists of 4 organizations with 6 endorser peer nodes in total. Two different network 

configurations were set, one is the baseline network, and another one is the network using 

optimized parameters according to the results of the evaluation in Chapter 3. All the configurable 

parameters of these two networks are described, as shown in Table 15. We modified the 

benchmark and network configuration files provided by the Hyperledger Caliper to test our 

solution. To accurately evaluate the transaction processing capability of the clinical trial testbed, 

scripts used for the experiment were specified to target one function, which is the 

CreateECRFpillbox transaction. This function generates biomedical data collected from the 

pillbox and stores the data into the state database. 

Table 15: Experiment parameter configurations 

Component Baseline Optimized Network 

Block Size 10 transactions per 

block 

30 transactions per 

block 

Block Frequency 250ms 250ms 

Ordering Service Solo Solo 

Number of Endorsers 6 6 

Ledger Database LevelDB LevelDB 

Programming Language of Smart 

Contract 

Node.js Node.js 

Use of TLS No No 

Number of Clients 1 5 

Endorsement Policy 4 of 4 1 of 4 

Send Rate 25-200 tps 25-200 tps 

Number of Transactions 1000 1000 

Target Function CreateECRFpillbox CreateECRFpillbox 

 

To configure and launch the clinical trial network, the following three configuration files are 

required: configtx.yaml, crypto-config.yaml, and docker-compose.yaml. Configtx yaml file is 

used to specify network entities to use within the clinical trial network, and these definitions are 
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passed to create genesis block and channel artifacts. As shown in Figure 96, the main component 

of configtx yaml is the organizations block. This block sets a directory of certificates of each 

organization and specifies the customized policy for the organization in the channel.  

 

Figure 96. Blockchain network configuration in clinical trial service (configtx.yaml) 

The crypto-config yaml file is used to specify all network entities and for generating all 

required credentials for each peer node. As shown in Figure 97, this file mainly consists of the 
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OrdererOrgs block and PeerOrgs block. It is worth noting that the name and domain of order and 

each peer must be consistent with the definitions in the configtx yaml file. 

 

Figure 97. Blockchain network credentials configuration in clinical trial service (crypto-

config yaml) 

As shown in Figure 98, the docker-compose yaml file defines the CA, peer container, and the 

orderer container. The CA is used for issuing and verifying the identities of participants in the 
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network. The peer container specifies the running environment for each peer node while the 

orderer container specifies the running environment for the orderer node.  

 

Figure 98. Blockchain network container configurations in clinical trial service (docker-

compose-cli yaml) 

Figure 99 represents part of the benchmark configuration file used for testing the clinical trial 

network. The rounds block describes the settings of a round; the txNumber specifies the number 

of transactions should be submitted in a single round, the rateControl defines the type of rate 

controller, and the opts defines the tps of send rate. For this experiment, the benchmark contains 

eight rounds with varied send rate, which ranged from 25 tps to 200 tps. The callback function 

used in this experiment will construct the eCRF pillbox data and submit the transaction to the 

blockchain. The details of the eCRF pillbox data are defined under the arguments block that will 

be passed to the Caliper as the benchmark configuration. 
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Figure 99. Blockchain network benchmark configuration in clinical trial service 
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The execution results of network initialization and performance testing in the console are 

represented in Figure 100 and Figure 101, respectively. The script creates the channel, joins peers 

to have communication in the network, installs the smart contract on each peer node, and 

instantiates the smart contract in the channel according to the defined network configuration. 

Afterward, client workers are initialized to generate workload to the blockchain network according 

to the defined benchmark configuration. Lastly, a result report is printed in the console, indicating 

that the evaluation test performed successfully. This report provides benchmark results such as the 

number of successful transactions, the number of failed transactions, send rate, transaction latency, 

and transaction throughput.  

 

Figure 100. Blockchain network initialization in clinical trial service 



 
 

132 
 

 

Figure 101. Performance testing results in clinical trial service 

 

6.3 Evaluation Results of the Proposed Approach in Clinical Trial 

Testbed 

6.3.1 Evaluation Results of the Optimized Network in Clinical Trial Testbed 

This experiment evaluated the performance of the optimized network configurations with the 

baseline. We evaluated the impact of block size on the performance by varying the number of 

clients over different transaction send rate (range from 25 – 200 tps). Figure 102 plots the 

experimental results in terms of average transaction throughput with 1 client. The transaction 

throughput increased linearly with the increase in send rate until it reached around 100 tps. The 

growth of transaction throughput decreased significantly and approached to a flat when the send 

rate was above this point. When the send rate was 200 tps, the transaction throughput of the 

optimized network and the baseline network was 118 tps, and 98.7 tps with a 19.6% increase of 

the transaction throughput. Figure 103 plots the experimental results in terms of average 

transaction latency with 1 client. It is observed that the baseline network generates more 

transaction latency than the optimized network, especially when the send rate was above the 



 
 

133 
 

saturation point. When the send rate was 200 tps, the transaction latency of the optimized network 

and the baseline was 520 ms and 650 ms, with a 20% reduction of transaction latency. Figure 104 

plots the experimental results in terms of average transaction throughput with 5 clients. The 

transaction throughput increased linearly with the increase in send rate until it reached around 125 

tps. The growth of transaction throughput decreased significantly and approached to a flat when 

the send rate was above this point. When the send rate was 200 tps, the throughput of the optimized 

network and the baseline network was 137.2 tps, and 125.5 tps with a 9.3% increase of the 

transaction throughput. Figure 105 plots the experimental results in terms of average transaction 

latency with 5 clients. It is observed that the baseline network generates more transaction latency 

than the optimized network, especially when the send rate was above the saturation point. When 

the send rate was 200 tps, the transaction latency of the optimized network and the baseline was 

1940 ms and 2350 ms, with a 21.1% reduction of transaction latency. 

 

Figure 102: Evaluation of transaction throughput with one client (baseline and optimized 

network) 
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Figure 103: Evaluation of transaction latency with one client (baseline and optimized 

network) 

 

Figure 104: Evaluation of transaction throughput with five clients (baseline and optimized 

network) 
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Figure 105: Evaluation of transaction latency with five clients (baseline and optimized 

network) 

 

6.3.2 Evaluation Results of the Fuzzy Logic in Clinical Trial Testbed 

This experiment evaluated the performance of the baseline, optimized network, and the fuzzy 

logic scheme. Four tests were performed by varying the number of clients over different 

transaction send rate (range from 25 – 200 tps). Figure 106 plots the experimental results of the 

baseline and the fuzzy logic scheme in terms of average transaction throughput with 1 client. The 

transaction throughput increased linearly with the increase in send rate until it reached around 100 

tps. The growth of transaction throughput decreased significantly and approached to a flat when 

the send rate was above this point. When the send rate was 200 tps, the transaction throughput of 

the fuzzy logic and the baseline network was 125.9 tps, and 98.7 tps with a 27.6% increase of the 

transaction throughput. Figure 107 plots the experimental results of the baseline and the fuzzy 

logic scheme in terms of average transaction latency with 1 client. When the send rate was 200 
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tps, the transaction latency of the fuzzy logic and the baseline was 380 ms and 650 ms, with a 

41.5% reduction of transaction latency. 

 

Figure 106: Evaluation of transaction throughput with 1 client (baseline and fuzzy logic) 

 

Figure 107: Evaluation of transaction latency with 1 client (baseline and fuzzy logic) 
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Figure 108 plots the experimental results of the baseline and the fuzzy logic scheme in terms 

of average transaction throughput with 5 clients. The transaction throughput increased linearly 

with the increase in send rate until it reached around 125 tps. The growth of transaction throughput 

decreased significantly and approached to a flat when the send rate was above this point. When 

the send rate was 150 tps, the transaction throughput of the fuzzy logic and the baseline was 152.9 

tps, and 135.5 tps with a 12.8% increase of the transaction throughput. Figure 109 plots the 

experimental results of the baseline and the fuzzy logic scheme in terms of average transaction 

latency with 5 clients. It is observed that the baseline network generated more transaction latency 

than the fuzzy logic scheme when the send rate was above the saturation point. When the send rate 

was 200 tps, the transaction latency of the fuzzy logic and the baseline was 1720 ms and 2350 ms, 

with a 36.6% reduction of transaction latency. This experiment results indicate that the fuzzy logic 

scheme shows better performance than the baseline concerning transaction latency and transaction 

throughput. 

 

Figure 108: Evaluation of transaction throughput with 5 clients (baseline and fuzzy logic) 
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Figure 109: Evaluation of transaction latency with 5 clients (baseline and fuzzy logic) 

Figure 110 plots the experimental results of the optimized network and the fuzzy logic scheme 

in terms of average transaction throughput with 1 client. The transaction throughput increased 

linearly with the increase in send rate until it flattened out at around 100 tps, as shown in Figure 

110. The growth of transaction throughput decreased significantly and approached to a flat when 

the send rate was above this point. When the send rate was 200 tps, the throughput of the fuzzy 

logic and the optimized network was 130.9 tps, and 118 tps with a 10.9% increase of the 

transaction throughput. Figure 111 plots the experimental results of the optimized network and the 

fuzzy logic scheme in terms of average transaction latency with 1 client. For the transaction latency, 

it is observed that the optimized network generated more latency than the fuzzy logic scheme 

when the send rate was above the saturation point. When the send rate was 200 tps, the transaction 

latency of the fuzzy logic and the optimized network was 310 ms and 520 ms, with a 40.4% 

reduction of transaction latency. 
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Figure 110: Evaluation of transaction throughput with one client (optimized network and 

fuzzy logic) 

 

Figure 111: Evaluation of transaction latency with one client (optimized network and fuzzy 

logic) 
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Figure 112 plots the experimental results of the optimized network and the fuzzy logic scheme 

in terms of average transaction throughput with 5 clients. The transaction throughput increased 

linearly with the increase in send rate until it reached around 150 tps. The growth of transaction 

throughput decreased significantly and approached to a flat when the send rate was above this 

point. When the send rate was 200 tps, the throughput of the fuzzy logic and the optimized network 

was 156 tps and 137.2 tps, with a 13.7% increase of the transaction throughput. Figure 113 plots 

the experimental results of the optimized network and the fuzzy logic scheme in terms of average 

transaction latency with 5 clients. It is observed that the optimized network generated more 

transaction latency than the fuzzy logic scheme when the send rate was above the saturation point. 

When the send rate was 200 tps, the transaction latency of the fuzzy logic and the optimized 

network was 1610 ms and 2240 ms, with a 28.1% reduction of transaction latency. This 

experiment results indicate that the fuzzy logic scheme can improve the performance concerning 

transaction latency and transaction throughput. 

 

Figure 112: Evaluation of transaction throughput with five clients (optimized network and 

fuzzy logic) 
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Figure 113: Evaluation of transaction latency with five clients (optimized network and 

fuzzy logic) 

 

6.3.3 Evaluation Results of the Learning to Prediction in Clinical Trial Testbed 

This experiment evaluated the performance of the baseline, optimized network, and the 

learning to prediction scheme. Four tests were performed by varying the number of clients over 

different transaction send rate (range from 25 – 200 tps). Figure 114 plots the experimental results 

of the baseline and the learning to prediction scheme in terms of average transaction throughput 

with 1 client. The transaction throughput increased linearly with the increase in send rate until it 

reached around 100 tps. The growth of transaction throughput decreased significantly and 

approached to a flat when the send rate was above this point. When the send rate was 200 tps, the 

transaction throughput of the learning to prediction and the baseline set was 128 tps, and 98.7 tps 

with a 29.7% increase of the transaction throughput. Figure 115 plots the experimental results of 

the baseline and the learning to prediction scheme in terms of average transaction latency with 1 
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client. It is observed that the baseline network generated more transaction latency than the learning 

to prediction scheme when the send rate was above the saturation point. When the send rate was 

200 tps, the transaction latency of the learning to prediction and the baseline was 340 ms and 650 

ms, with a 47.7% reduction of transaction latency. 

 

Figure 114: Evaluation of transaction throughput with one client (baseline and learning to 

prediction) 
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Figure 115: Evaluation of transaction latency with one client (baseline and learning to 

prediction) 

Figure 116 plots the experimental results of the optimized network and the learning to 

prediction scheme in terms of average transaction throughput with 5 clients. The transaction 

throughput increased linearly with the increase in send rate until it reached around 150 tps. The 

growth of transaction throughput decreased significantly and approached to a flat when the send 

rate was above this point. When the send rate was 200 tps, the transaction throughput of the 

learning to prediction and the baseline was 158.8 tps, and 135.5 tps with a 17.2% increase of the 

transaction throughput. Figure 117 plots the experimental results of the optimized network and the 

learning to prediction scheme in terms of average transaction latency with 5 clients. It is observed 

that the baseline network generated more latency than the learning to prediction scheme when the 

send rate was above the saturation point. When the send rate was 200 tps, the transaction latency 

of the learning to prediction and the baseline was 1410 ms and 2350 ms, with a 40% reduction of 

transaction latency. 
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Figure 116: Evaluation of transaction throughput with five clients (baseline and learning to 

prediction) 

 

Figure 117: Evaluation of transaction latency with five clients (baseline and learning to 

prediction) 
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Figure 118 plots the experimental results of the baseline and the learning to prediction scheme 

in terms of average transaction throughput with 1 client. The transaction throughput increased 

linearly with the increase in send rate until it reached around 125 tps. The growth of transaction 

throughput decreased significantly and approached to a flat when the send rate was above this 

point. When the send rate was 200 tps, the transaction throughput of the learning to prediction and 

the optimized network was 134.2 tps, and 118 tps with a 13.7% increase of the transaction 

throughput. Figure 119 plots the experimental results of the baseline and the learning to prediction 

scheme in terms of average transaction latency with 1 client. It is observed that the baseline 

network generated more latency than the learning to prediction scheme when the send rate was 

above the saturation point. When the send rate was 200 tps, the transaction latency of the learning 

to prediction and the baseline was 280 ms and 520 ms, with a 46.2% reduction of transaction 

latency. 

 

Figure 118: Evaluation of transaction throughput with 1 client (optimized network and 

learning to prediction) 
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Figure 119: Evaluation of transaction latency with 1 client (optimized network and 

learning to prediction) 

Figure 120 plots the experimental results of the optimized network and the learning to 

prediction scheme in terms of average transaction throughput with 5 clients. The transaction 

throughput increased linearly with the increase in send rate until it reached around 150 tps. The 

growth of transaction throughput decreased significantly and approached to a flat when the send 

rate was above this point. When the send rate was 200 tps, the transaction throughput of the 

learning to prediction and the optimized network was 162.5 tps, and 137.2 tps with an 18.4% 

increase of the transaction throughput. Figure 121 plots the experimental results of the optimized 

network and the learning to prediction scheme in terms of average transaction latency with 5 

clients. It is observed that the baseline network generated more latency than the learning to 

prediction scheme when the send rate was above the saturation point. When the send rate was 200 

tps, the transaction latency of the learning to prediction and the optimized network was 1230 ms 

and 2240 ms, with an 82.1% reduction of transaction latency.  
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Figure 120: Evaluation of transaction throughput with 5 clients (optimized network and 

learning to prediction) 

 

Figure 121: Evaluation of transaction latency with 5 clients (optimized network and 

learning to prediction) 
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Table 16 describes the analysis results by comparing the proposed two transaction traffic 

control mechanism according to the experiment results. For the case of the baseline network using 

one client, the network with optimized configurable parameters increases the transaction 

throughput by 19.6% and decrease the transaction latency by 20% compared to the baseline 

network. The transaction throughput is increased by 27.6%, and the transaction latency is 

decreased by 41.5% with the transaction traffic control mechanism based on fuzzy logic. The 

transaction throughput is increased by 29.7%, and the transaction latency is decreased by 47.7% 

with the transaction traffic control mechanism based on learning to prediction. For the case of the 

optimized network using one client, the transaction throughput is increased by 10.9%, and the 

transaction latency is decreased by 40.4% with the transaction traffic control mechanism based on 

fuzzy logic. The transaction throughput is increased by 13.7%, and the transaction latency is 

decreased by 46.2% with the transaction traffic control mechanism based on learning to prediction. 

For the case of the baseline network using five clients, the network with optimized 

configurable parameters increases the transaction throughput by 9.3% and decrease the transaction 

latency by 17.4% compared to the baseline network. The transaction throughput is increased by 

21.8%, and the transaction latency is decreased by 26.8% with the transaction traffic control 

mechanism based on fuzzy logic. The transaction throughput is increased by 26.5%, and the 

transaction latency is decreased by 40% with the transaction traffic control mechanism based on 

learning to prediction. For the case of the optimized network using five clients, the transaction 

throughput is increased by 13.7%, and the transaction latency is decreased by 17% with the 

transaction traffic control mechanism based on fuzzy logic. The transaction throughput is 

increased by 18.4%, and the transaction latency is decreased by 36.6% with the transaction traffic 

control mechanism based on learning to prediction. 
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Table 16: Comparison analysis of the performance evaluation 

Number 

of 

Clients  

Component Baseline  Baseline 

with 

Fuzzy 

Logic  

Baseline 

with 

Learning 

to 

Prediction 

Optimized 

Network 

Optimized 

Network 

with 

Fuzzy 

Logic 

Optimized 

Network 

with 

Learning 

to 

Prediction 

 

 

 

 

 

 

1 

Avg 

Transaction 

Throughput 

(tps) 

98.7 125.9 128 118 130.9 134.2 

Avg 

Transaction 

Latency 

(ms) 

650 380 340 520 310 280 

 

 

 

 

 

5 

Avg 

Transaction 

Throughput 

(tps) 

125.5 152.9 158.8 137.2 156 162.5 

Avg 

Transaction 

Latency 

(ms) 

2350 1720 1410 1940 1610 1230 

 

To prove the scalability of the designed approaches, we applied two proposed transaction 

traffic control mechanisms into the Accelerator [38], and the evaluation results are shown in Table 

17. For the case of the baseline network using one client, the network with Accelerator increases 

the transaction throughput by 67.2% and decrease the transaction latency by 35.4% compared to 

the baseline network. The transaction throughput is increased by 77.7%, and the transaction 

latency is decreased by 52.3% with the fuzzy logic-based approach. The transaction throughput is 
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increased by 80.7%, and the transaction latency is decreased by 56.9% with the learning to 

prediction-based approach.  

For the case of the baseline network using five clients, the network with Accelerator increases 

the transaction throughput by 82.1% and decrease the transaction latency by 20% compared to the 

baseline network. The transaction throughput is increased by 96.9%, and the transaction latency 

is decreased by 37.9% with the fuzzy logic-based approach. The transaction throughput is 

increased by 99.9%, and the transaction latency is decreased by 43.6% with the learning to 

prediction-based approach.  

The experiment results indicate that the proposed transaction traffic control approaches can 

significantly improve the transaction transmission environment by enhancing transaction 

throughput and reducing transaction latency. This approach can also be applied to the existing 

blockchain performance-enhancing tool without modifying the original architecture. In this paper, 

we only tested the proposed approach in Hyperledger Fabric blockchain. However, existing smart 

contract enabled blockchain platforms can significantly benefit from the significance of the 

proposed approach to improve the transaction processing capability. This approach has the 

potential to be applied to existing enterprise use cases, which have a high demand for transaction 

throughput and transaction latency.  
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Table 17: Comparison analysis of the performance evaluation with Accelerator 

Number of 

Clients 

Component Baseline  Baseline with 

Accelerator [38] 

Baseline with 

Accelerator 

Using Fuzzy 

Logic 

Baseline with 

Accelerator 

Using 

Learning to 

Prediction  

 

 

 

 

 

1 

Avg  

Transaction 

Throughput (tps) 

98.7 165  175.4  178.4 

Avg Transaction 

Latency (ms) 

650 420 310 280 

 

 

 

 

 

5 

Avg 

Transaction 

Throughput (tps) 

135.5 246.7 266.8 270.8 

Avg 

Transaction 

Latency (ms) 

2350 1880 1460 1325 
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7. Conclusion 

The performance and scalability of Information Technology (IT) systems have always been a 

primary non-functional requirement used to measure the production readiness of an 

implementation project. Blockchain networks are the same, providing a decentralized model that 

enables peers to collaborate and build trust through business networks. Each peer node must 

perform operations and communicate with other peers to confirm transactions, reach consensus, 

and update the status of the shared ledger. To make informed architectural decisions about 

blockchain-based solutions, it is essential to be aware of factors and areas of improvement that 

affect blockchain performance. Several factors affect the performance of the blockchain network, 

so benchmarking or testing the performance of the blockchain is not a simple exercise. Besides, 

when processing end-to-end business transactions, the use cases being implemented and the off-

chain component architecture, as well as the design of the blockchain-based solution, should also 

be considered. 

This paper examines various configurable factors that can affect the Hyperledger Fabric 

blockchain performance. These configurable parameters can be mainly summarized into two 

categories: software and hardware. Software-based parameters include block size, block frequency, 

ledger database, ordering service, the programming language of smart contract, use of TLS, 

number of clients, number endorser peers, number of organizations, and the endorsement policy. 

Hardware-based parameters include the number of vCPUS, memory allocation, disk type and 

speed, network speed, and CPU speed. A comprehensive experiment is carried out to analyze the 

impact on network performance for each parameter. 

As a consequence, an optimized network configuration is set up in terms of the experimental 

results. Besides, this paper proposes two transaction traffic control approaches using fuzzy logic 

to improve the blockchain performance. For the first approach, we implement the fuzzy controller 



 
 

153 
 

in the smart contract. Moreover, for the second approach, we implement additional learning to 

prediction module to enhance the performance of the fuzzy controller in the smart contract. Real-

time network feedback is used as input parameters, and the fuzzy controller adjusts the transaction 

traffic across the whole network accordingly. A clinical trial testbed is used as the experiment 

environment to evaluate the performance of the proposed transaction traffic control mechanisms. 

We evaluate the performance of the optimized network by comparing it with the original network. 

Besides, we evaluate the performance of the proposed transaction traffic control mechanisms by 

applying them in the original network and optimized network. The experiment results indicate that 

the designed solutions can improve the network throughput while reducing the latency. The 

evaluation results show that the proposed approaches can enhance network performance compared 

to the baseline and optimized schemes. For the case of baseline scheme using one client, the 

network with optimized configurable parameters increases the transaction throughput by 19.6% 

and decrease the transaction latency by 20% compared to the baseline. The transaction throughput 

is increased by 27.6% and 29.7%; the transaction latency is decreased by 41.5% and 47.7% with 

the fuzzy logic and learning to prediction approaches, respectively.  

For the case of the optimized scheme using one client, the transaction throughput is increased 

by 10.9% and 13.7%; the transaction latency is decreased by 40.4% and 46.2% with the fuzzy 

logic and learning to prediction approaches, respectively. For the case of baseline scheme using 

five clients, the network with optimized configurable parameters increases the transaction 

throughput by 9.3% and decrease the transaction latency by 17.4% compared to the baseline 

network. The transaction throughput is increased by 21.8% and 26.5%; the transaction latency is 

decreased by 26.8% and 40% with the fuzzy logic and learning to prediction approaches, 

respectively. For the case of the optimized network using five clients, the transaction throughput 

is increased by 13.7% and 18.4%; the transaction latency is decreased 17% and 36.6% with the 

fuzzy logic and learning to prediction approach. 
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Furthermore, the proposed approaches are deployed with one of the existing performance-

enhancing tools, and the results indicate that the proposed approaches integrate with the existing 

performance-enhancing approach and further improve the blockchain performance. For the case 

of using one client, the network with Accelerator increases the transaction throughput by 67.2% 

and decrease the transaction latency by 35.4% compared to the baseline. The transaction 

throughput is increased by 77.7% and 80.7%; the transaction latency is decreased by 52.3% and 

56.9% with the fuzzy logic and learning to prediction approaches, respectively. For the case of 

using five clients, the network with Accelerator increases the transaction throughput by 82.1%and 

decreases the transaction latency by 20% compared to the baseline. The transaction throughput is 

increased by 96.9% and 99.9%; the transaction latency is decreased by 37.9% and 43.6% with the 

fuzzy logic and learning to prediction approaches, respectively.  

One limitation of this study is that all the benchmark experiments are performed in a single-

host virtual machine, and we only consider software-based configurable parameters to simplify 

the implementation. Besides, the blockchain network is deployed in a Local Area Network (LAN) 

that is not suitable for the production environment. Future work will refine the prototype system, 

and we will replicate the results by using a cloud service such as AWS or IBM Blockchain to 

evaluate the impact of various hardware components such as memory allocation, disk type and 

speed, network speed, and CPU speed. Furthermore, we will deploy the proposed approaches into 

some existing smart contract enabled blockchain platforms such as Ethereum and Corda to test the 

applicability of the proposed approaches. 
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