

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

A Thesis

For the Degree of Doctor of Philosophy

Transaction Traffic Control Based on Fuzzy Logic for

Improving Performance in Blockchain Network

Lei Hang

Department of Computer Engineering

Graduate School

Jeju National University

August 2020

Dedicated to my families for being a constant source

of support and encouragement!

Acknowledgment

First of all, I would like to express my gratitude to all those who helped me during the writing

of this thesis. I gratefully acknowledge the help of my supervisor, Prof. Do-Hyeun Kim, who has

offered me valuable suggestions in the academic studies. In the preparation of this thesis, he has

spent much time reading through each draft and provided me with inspiring advice. Without his

patient instruction, insightful criticism, and expert guidance, the completion of this thesis would

not have been possible.

Second, I would like to thank my thesis evaluation committee for their insightful comments

and valuable suggestions during the thesis defense. Their input helped me in elevating the quality

of this thesis.

Last, I appreciate the support and encouragement given to my current lab mates Wenquan Jin,

Rongxu Xu, Azimbek Khudoyberdiev, Faisal Jamil, Shabir Ahmad, Imran Jamal, Naeem Iqbal,

DongHyun Oh and to former lab mates Dr. Israr Ullah, Dr. Muhammad Fayaz, Dr. Sehrish Malik,

Faisal Mehmood for their kind support and help during this endeavor.

To all of you, a heartfelt thanks for everything you did!

 August 2020

 Lei Hang

i

Table of Contents

Abstract .. 1

1. Introduction ... 5

2. Related Work.. 10

2.1 Blockchain Technology and Platform .. 10

2.2 Existing Studies of Performance Improvement in Blockchain Network 16

2.3 Performance Evaluation Architecture in Blockchain Network 25

3. Performance Analysis of Configurable Parameters in Blockchain Network 27

3.1 Blockchain Network Performance Metrics ... 27

3.2 Configurable Parameters in Blockchain Network .. 28

3.3 Experiment Environment in Blockchain Network ... 30

3.4 Performance Evaluation of Configurable Parameters in Blockchain Network 31

4. Transaction Traffic Control Mechanism based on Fuzzy Logic in Blockchain Network

.. 48

4.1 Proposed Transaction Traffic Control Mechanism based on Fuzzy Logic.............. 48

4.2 Development of the Transaction Traffic Control Mechanism based on Fuzzy Logic

 .. 59

4.3 Performance Analysis of the Transaction Traffic Control Mechanism based on

Fuzzy Logic .. 63

5. Transaction Traffic Control Mechanism based on Learning to Prediction in

Blockchain Network .. 77

ii

5.1 Proposed Transaction Traffic Control Mechanism based on Learning to Prediction

 .. 77

5.2 Development of the Transaction Traffic Control Mechanism based on Learning to

Prediction ... 88

5.3 Performance Analysis of the Transaction Traffic Control Mechanism based on

Learning to Prediction .. 96

6. Performance Evaluation of the Proposed Approach in Clinical Trial Testbed 110

6.1 Clinical Trial Testbed Environment for Blockchain Performance Evaluation 110

6.2 Experiment Environment of Clinical Trial Testbed .. 126

6.3 Evaluation Results of the Proposed Approach in Clinical Trial Testbed 132

6.3.1 Evaluation Results of the Optimized Network in Clinical Trial Testbed 132

6.3.2 Evaluation Results of the Fuzzy Logic in Clinical Trial Testbed 135

6.3.3 Evaluation Results of the Learning to Prediction in Clinical Trial Testbed 141

7. Conclusion... 152

References ... 155

iii

List of Figures

Figure 1: The basic structure of the blockchain .. 11

Figure 2: Blockchain platform transaction workflow (e.g., Hyperledger Fabric) 16

Figure 3: Endorsement channel function and generation process in endorser peer 18

Figure 4: Optimized ordering service process in blockchain network 19

Figure 5: Conceptual architecture of Nexledger Accelerator .. 20

Figure 6: An example of transactions processing with cache ... 21

Figure 7: BFT-smart ordering service architecture.. 22

Figure 8: Optimized validation phase for Hyperledger Fabric ... 23

Figure 9: The behavior of two new efficient API functions .. 24

Figure 10: Performance evaluation framework architecture of blockchain using

Hyperledger Caliper .. 26

Figure 11: Evaluation of the impact of block size on transaction throughput 32

Figure 12: Evaluation of the impact of block size on transaction latency............................. 33

Figure 13: Evaluation of the impact of block frequency on transaction throughput 34

Figure 14: Evaluation of the impact of block frequency on transaction latency 34

Figure 15: Evaluation of the impact of the use of TLS on transaction throughput 35

Figure 16: Evaluation of the impact of the use of TLS on transaction latency 36

Figure 17: Evaluation of the impact of the ledger database on transaction throughput 37

Figure 18: Evaluation of the impact of the ledger database on transaction latency 37

Figure 19: Evaluation of the impact of the ordering service on transaction throughput 38

Figure 20: Evaluation of the impact of the ordering service on transaction latency 39

Figure 21: Evaluation of the impact of the programming language of smart contract on

transaction throughput .. 40

iv

Figure 22: Evaluation of the impact of the programming language of smart contract on

transaction latency ... 40

Figure 23: Evaluation of the impact of the number of clients on transaction throughput .. 41

Figure 24: Evaluation of the impact of the number of clients on transaction latency 42

Figure 25: Evaluation of the impact of the number of endorser peers on transaction

throughput .. 43

Figure 26: Evaluation of the impact of the number of endorser peers on transaction

latency ... 43

Figure 27: Evaluation of the impact of the number of organizations on transaction

throughput .. 44

Figure 28: Evaluation of the impact of the number of organizations on transaction

latency ... 45

Figure 29: Evaluation of the impact of the endorsement policy on transaction

throughput .. 46

Figure 30: Evaluation of the impact of the endorsement policy on transaction latency 47

Figure 31: Conceptual architecture of the transaction traffic control mechanism based on

fuzzy logic ... 49

Figure 32: Development configuration of the transaction traffic control mechanism based

on fuzzy logic .. 50

Figure 33: Block diagram of the network configuration .. 51

Figure 34: Flow chart of the transaction traffic control mechanism based on fuzzy logic.. 56

Figure 35: Sequence diagram of the blockchain network configuration 58

Figure 36: Sequence diagram of the transaction traffic control mechanism based on fuzzy

logic .. 59

Figure 37: Fuzzy set definition in the smart contract ... 61

Figure 38: Fuzzy rule definition in the smart contract ... 62

v

Figure 39: Function to invoke fuzzy inference system in the smart contract 63

Figure 40: Sample of transaction control policy in terms of the acceptance rate 63

Figure 41: Evaluation of transaction throughput in 1org2peer network with 1 client

(baseline and fuzzy logic) ... 64

Figure 42: Evaluation of transaction latency in 1org2peer network with 1 client

(baseline and fuzzy logic) ... 65

Figure 43: Evaluation of transaction throughput in 2org1peer network with 1 client

(baseline and fuzzy logic) .. 66

Figure 44: Evaluation of transaction latency in 2org1peer network with 1 client

(baseline and fuzzy logic) ... 66

Figure 45: Evaluation of transaction throughput in 2org2peer network with 1 client

(baseline and fuzzy logic) ... 67

Figure 46: Evaluation of transaction latency in 2org2peer network with 1 client

(baseline and fuzzy logic) ... 68

Figure 47: Evaluation of transaction throughput in 3org2peer network with 1 client

(baseline and fuzzy logic) ... 69

Figure 48: Evaluation of transaction latency in 3org2peer network with 1 client

(baseline and fuzzy logic) ... 69

Figure 49: Evaluation of transaction throughput in 1org2peer network with 5 clients

(baseline and fuzzy logic) ... 70

Figure 50: Evaluation of transaction latency in 1org2peer network with 5 clients

(baseline and fuzzy logic) ... 71

Figure 51: Evaluation of transaction throughput in 2org1peer network with 5 clients

(baseline and fuzzy logic) ... 72

Figure 52: Evaluation of transaction latency in 2org1peer network with 5 clients

(baseline and fuzzy logic) ... 72

vi

Figure 53: Evaluation of transaction throughput in 2org2peer network with 5 clients

(baseline and fuzzy logic) ... 73

Figure 54: Evaluation of transaction latency in 2org2peer network with 5 clients

 (baseline and fuzzy logic) .. 74

Figure 55: Evaluation of transaction throughput in 3org2peer network with 5 clients

(baseline and fuzzy logic) ... 75

Figure 56: Evaluation of transaction latency in 3org2peer network with 5 clients

(baseline and fuzzy logic) ... 76

Figure 57: Conceptual architecture of the transaction traffic control mechanism based on

learning to prediction ... 78

Figure 58: Development configuration of the transaction traffic control mechanism based

on learning to prediction ... 79

Figure 59: Overview architecture of the learning to prediction module 80

Figure 60: Flow chart of the transaction throughput prediction using Kalman Filter 81

Figure 61: Detailed diagram of the learning to prediction module 83

Figure 62: Flow chart of the transaction traffic control based on learning to prediction ... 85

Figure 63: Sequence diagram of the transaction traffic control mechanism based on

learning to prediction ... 86

Figure 64: 4-fold cross-validation model for training and testing data 89

Figure 65: Function of ANN in the learning to prediction module 92

Figure 66: Function of Kalman Filter in the learning to prediction module 93

Figure 67: Function of transaction traffic control in the learning to prediction module 94

Figure 68: Learning to prediction module main interface ... 95

Figure 69: Execution results of the learning to prediction module 96

Figure 70: Evaluation of transaction throughput in 1org2peer network with 1 client

(baseline and learning to prediction) .. 97

vii

Figure 71: Evaluation of transaction latency in 1org2peer network with 1 client

(baseline and learning to prediction) .. 98

Figure 72: Evaluation of transaction throughput in 2org1peer network with 1 client

(baseline and learning to prediction) .. 99

Figure 73: Evaluation of transaction latency in 2org1peer network with 1 client

(baseline and learning to prediction) .. 99

Figure 74: Evaluation of transaction throughput in 2org2peer network with 1 client

(baseline and learning to prediction) .. 100

Figure 75: Evaluation of transaction latency in 2org2peer network with 1 client

(baseline and learning to prediction) .. 101

Figure 76: Evaluation of transaction throughput in 3org2peer network with 1 client

 (baseline and learning to prediction) ... 102

Figure 77: Evaluation of transaction latency in 3org2peer network with 1 client

(baseline and learning to prediction) .. 102

Figure 78: Evaluation of transaction throughput in 1org2peer network with 5 clients

(baseline and learning to prediction) .. 103

Figure 79: Evaluation of transaction latency in 1org2peer network with 5 clients

(baseline and learning to prediction) .. 104

Figure 80: Evaluation of transaction throughput in 2org1peer network with 5 clients

(baseline and learning to prediction) .. 105

Figure 81: Evaluation of transaction latency in 2org1peer network with 5 clients

(baseline and learning to prediction) .. 105

Figure 82: Evaluation of transaction throughput in 2org2peer network with 5 clients

(baseline and learning to prediction) .. 106

Figure 83: Evaluation of transaction latency in 2org2peer network with 5 clients

(baseline and learning to prediction) .. 107

viii

Figure 84: Evaluation of transaction throughput in 3org2peer network with 5 clients

(baseline and learning to prediction) .. 108

Figure 85: Evaluation of transaction latency in 3org2peer network with 5 clients

(baseline and learning to prediction) .. 109

Figure 86: Layer-based system architecture of the clinical trial service platform............. 111

Figure 87: Service scenario of clinical trial service based on blockchain 112

Figure 88: System configuration of the blockchain-based clinical trial service 114

Figure 89: The workflow of the blockchain-based clinical trial service 115

Figure 90: Execution process of the proposed blockchain-based clinical trial service 116

Figure 91: Blockchain network topology of the clinical trial service 118

Figure 92: Sample code of the smart contract in clinical trial service 120

Figure 93: Sample code of the clinical trial service server ... 121

Figure 94: Sample code of the REST API in clinical trial service 122

Figure 95: Implementation results of clinical trial service ... 125

Figure 96: Blockchain network configuration in clinical trial service (configtx.yaml) 127

Figure 97: Blockchain network credentials configuration in clinical trial service (crypto-

config yaml) .. 128

Figure 98: Blockchain network container configurations in clinical trial service (docker-

compose-cli yaml) ... 129

Figure 99: Blockchain network benchmark configuration in clinical trial service 130

Figure 100: Blockchain network initialization in clinical trial service 131

Figure 101: Performance testing results in clinical trial service .. 132

Figure 102: Evaluation of transaction throughput with one client (baseline and optimized

network) .. 133

Figure 103: Evaluation of transaction latency with one client (baseline and optimized

network) .. 134

ix

Figure 104: Evaluation of transaction throughput with five clients (baseline and optimized

network) .. 134

Figure 105: Evaluation of transaction latency with five clients (baseline and optimized

network) .. 135

Figure 106: Evaluation of transaction throughput with 1 client (baseline and fuzzy logic)

.. 136

Figure 107: Evaluation of transaction latency with 1 client (baseline and fuzzy logic) 136

Figure 108: Evaluation of transaction throughput with 5 clients (baseline and fuzzy logic)

.. 137

Figure 109: Evaluation of transaction latency with 5 clients (baseline and fuzzy logic).... 138

Figure 110: Evaluation of transaction throughput with one client (optimized network and

fuzzy logic) .. 139

Figure 111: Evaluation of transaction latency with one client (optimized network and fuzzy

logic) .. 139

Figure 112: Evaluation of transaction throughput with five clients (optimized network and

fuzzy logic) .. 140

Figure 113: Evaluation of transaction latency with five clients (optimized network and

fuzzy logic) .. 141

Figure 114: Evaluation of transaction throughput with one client (baseline and learning to

prediction) ... 142

Figure 115: Evaluation of transaction latency with one client (baseline and learning to

prediction) ... 143

Figure 116: Evaluation of transaction throughput with five clients (baseline and learning to

prediction) ... 144

Figure 117: Evaluation of transaction latency with five clients (baseline and learning to

prediction) ... 144

x

Figure 118: Evaluation of transaction throughput with 1 client (optimized network and

learning to prediction) ... 145

Figure 119: Evaluation of transaction latency with 1 client (optimized network and

learning to prediction) ... 146

Figure 120: Evaluation of transaction throughput with 5 clients (optimized network and

learning to prediction) ... 147

Figure 121: Evaluation of transaction latency with 5 clients (optimized network and

learning to prediction) ... 147

xi

List of Tables

Table 1: Comparison of some well-known blockchain platforms .. 12

Table 2: Comparison of different types of blockchain platforms .. 13

Table 3: Configurable parameters that affect the blockchain performance 29

Table 4: Default configuration for the experiment unless otherwise stated 31

Table 5: Fuzzy set definition in smart contract ... 53

Table 6: Fuzzy rules definition in smart contract ... 54

Table 7: Development environment of transaction traffic control based on fuzzy logic 60

Table 8: Fuzzy rules definition for learning to prediction ... 84

Table 9: Development environment of transaction traffic control based on learning to

prediction .. 87

Table 10: Dataset for the learning to prediction module .. 88

Table 11: RMSE for different configurations using the 4-fold cross-validation model 89

Table 12: Defined transactions in the smart contract ... 119

Table 13: Defined assets in the smart contract .. 119

Table 14: Sample REST API endpoints in clinical trial service .. 124

Table 15: Experiment parameter configurations .. 126

Table 16: Comparison analysis of the performance evaluation ... 149

Table 17: Comparison analysis of the performance evaluation with Accelerator 151

xii

Abbreviations

TPS Transaction Per Second

RPS Read Per Second

IoT Internet of Things

AI Artificial Intelligence

MVCC Multi-version Concurrency Control

VSCC Verification System Chaincode

MSP Membership Service Providers

CA Certificate Authority

SDK Software Development Kit

BFT Byzantine Fault Tolerant

PBFT Practical Byzantine Fault Tolerance

API Application Programmers Interface

P2P Peer to Peer

REST Representational State Transfer

CRA Clinical Research Associate

PI Principal Investigator

CRC Clinical Research Coordinator

CRO Contract Research Organization

xiii

BGM Blood Glucose Meter

FLC Fuzzy Logic Control

ANN Artificial Neural Networks

RMSE Root Mean Square Error

LAN Local Area Network

WAN Wide-Area-Network

IT Information Technology

AWS Amazon Web Services

JSON JavaScript Object Notation

PoW Proof of Work

LAN Local Area Network

SUT System Under Test

1

Abstract

The blockchain technology is known as an innovation that powers the cryptocurrency Bitcoin.

Blockchain is a potential technology for migrating the processing burden from the central server

into a decentralized, secure, and transparent manner. This technology is expected to make a

significant impact and lead to a revolution in various types of industries. However, one issue

holding them back is their limited transaction throughput, especially compared to established

solutions such as distributed database systems. Transaction per second (tps) is one of the

performance indexes widely used to evaluate the transaction processing capability of applications

in enterprise use cases. Many well-known blockchain platforms such as Bitcoin, Ethereum have

been widely adopted into different application domains such as the Internet of Things (IoT), supply

chain, healthcare, etc. So far, there has been much confusion about whether the blockchain

performs with scale, and admittedly, a lack of information about best practices that can improve

the performance and scale. Besides, more analysis and evaluation of the performance of these

platforms are urgent.

In this paper, we propose two transaction traffic control approaches using fuzzy logic to

improve the blockchain performance, such as increasing the transaction throughput while reducing

transaction latency. Besides, this paper conducts a comprehensive evaluation of various

configurable parameters that can affect network performance. For the first approach, we propose

the transaction traffic control based on a fuzzy controller in the smart contract. The proposed fuzzy

controller is implemented in the smart contract that makes to adjust the transaction traffic flow

according to the network conditions collected in real-time. For the second approach, we propose

additional learning to prediction module to enhance the performance of the fuzzy controller in the

smart contract. The learning to prediction is implemented in an external module, which is

2

extensible enough to adopt different algorithms. To demonstrate the significance of the proposed

transaction traffic control approaches, we apply these two approaches into a blockchain-based

clinical trial testbed from our previous work. Lastly, we deploy the proposed approaches with

existing performance-enhancing tools, and the results indicate that our approaches are flexible and

scalable to be used with any other projects.

To be more precise, configurable parameters can be mainly summarized into two categories:

software and hardware. For the case of software, it contains various parameters, including block

size, block frequency, ledger database, ordering service, the programming language of smart

contract, use of Transport Layer Security (TLS), number of clients, number endorser peers,

number of organizations, and the endorsement policy. For the case of hardware, it contains the

number of vCPUS, memory allocation, disk type and speed, network speed, and CPU speed. We

evaluated each configurable parameter to analyze the impact on network performance. For

example, the blockchain performance can be significantly affected by increasing the number of

peers and the use of TLS since more messages are generated within the entire network.

For the first transaction traffic control approach, we deploy the fuzzy controller into the smart

contract to regulate the transaction traffic across the network automatically. The fuzzy controller

is comprised of the fuzzy inference system and the transaction control module. We observe the

blockchain network benchmark results in real-time, and these values are passed to the smart

contract. These benchmark results are used as the input variables of the fuzzy controller, and the

control command is computed to perform different transaction control operations on the received

transactions accordingly.

For the second transaction traffic control approach, we extend the architecture of the fuzzy

controller by introducing additional learning to prediction module. We use the Kalman Filter as

the prediction module to estimate the actual transaction throughput. In contrast, the Artificial

Neural Network (ANN) is used as the learning module to tune the parameter of the Kalman Filter.

3

The dataset for the learning to prediction is the performance benchmark results collected in one

week. Besides, we perform a 4-fold cross-validation test on the training and testing data to select

the best model for the ANN algorithm.

We set up an optimized network in terms of the evaluation results of each configurable

parameter to achieve better performance. For example, we set the block size to 30 transactions per

block, block frequency to 250ms, the number of clients to 5, and use OR endorsement policy to

achieve higher transaction throughput and lower transaction latency. We evaluated the

performance of the proposed approaches by applying them into a clinical trial testbed from the

previous work using different performance metrics. The results of the proposed approaches are

compared with two other schemes: the baseline scheme and an optimized scheme. The evaluation

results show that the proposed approaches can enhance network performance compared to the

baseline and optimized schemes.

For the case of baseline scheme using one client, the network with optimized configurable

parameters increases the transaction throughput by 19.6% and decrease the transaction latency by

20% compared to the baseline. The transaction throughput is increased by 27.6% and 29.7%; the

transaction latency is decreased by 41.5% and 47.7% with the fuzzy logic and learning to

prediction approaches, respectively.

For the case of the network with optimized configurable parameters using one client, the

transaction throughput is increased by 10.9% and 13.7%; the transaction latency is decreased by

40.4% and 46.2% with the fuzzy logic and learning to prediction approaches, respectively. For the

case of baseline scheme using five clients, the network with optimized configurable parameters

increases the transaction throughput by 9.3% and decrease the transaction latency by 17.4%

compared to the baseline network. The transaction throughput is increased by 21.8% and 26.5%;

the transaction latency is decreased by 26.8% and 40% with the fuzzy logic and learning to

prediction approaches, respectively. For the case of the network with optimized configurable

4

parameters using five clients, the transaction throughput is increased by 13.7% and 18.4%; the

transaction latency is decreased 17% and 36.6% with the fuzzy logic and learning to prediction

approach.

Furthermore, the proposed approaches are deployed with one of the existing performance-

enhancing tools called Accelerator. For the case of using one client, the network with Accelerator

increases the transaction throughput by 67.2% and decrease the transaction latency by 35.4%

compared to the baseline. The transaction throughput is increased by 77.7% and 80.7%; the

transaction latency is decreased by 52.3% and 56.9% with the fuzzy logic and learning to

prediction approaches, respectively. For the case of using five clients, the network with

Accelerator increases the transaction throughput by 82.1%and decreases the transaction latency

by 20% compared to the baseline. The transaction throughput is increased by 96.9% and 99.9%;

the transaction latency is decreased by 37.9% and 43.6% with the fuzzy logic and learning to

prediction approaches, respectively. The results indicate that the proposed approaches are flexible

enough to integrate with other approaches.

5

1. Introduction

Distributed ledger technologies such as blockchain offer a way to conduct transactions in a

secure and verifiable manner without the need for a trusted third party [1]. Blockchain technology

is progressively turning into in style, with applications in varied domains like finance, supply

chains, real estate, etc. A blockchain is a distributed ledger of transactions, which is maintained

by all the taking part nodes of the blockchain network. The transactions represent the business

logic and are formed into a chain of blocks that are attached to the ledger. Every node within the

network updates its copy of the ledger with the new block when the agreement is reached amongst

the nodes.

As such, it is widely believed that blockchain will significantly impact industries ranging from

finance and real estate to public administration, energy, and transportation [2]. However, to be

viable in practice, blockchain must support transaction rates comparable to those supported by

existing database management systems, which can provide some of the same transactional

guarantees. Performance is considered as one of the main challenges in adopting blockchain

implementations as an alternative to current centralized servers [3]. The inefficient transaction

processing capability and lack of standardization can put an obstacle in the development of the

blockchain, such as limited scalability, throughput bottleneck, transaction latency, and storage

constraints [4]. For example, the block size of Bitcoin is limited to 1 MB, and a new block is

created every 10 minutes. Subsequently, the Bitcoin network is restricted to a rate of 7 transactions

per second, which is incapable of dealing with high-frequency trading. Besides, a transaction of

bitcoin needs six affirmations before it is confirmed that it can take around an hour on average.

The transaction confirmation time of Ethereum takes around 15 seconds; however, the average

time would increment exponentially as indicated by differed network situations. In a

permissionless blockchain like Bitcoin and Ethereum, anybody is permitted to take part, and each

6

member is mysterious. This implies neither can there be a privacy of the agreements themselves,

nor of the exchange information that they procedure.

All in all, these platforms issue their tokens to incent exorbitant mining or to fuel transaction

execution to relieve the absence of privacy. The transaction cost and speed can be altogether

influenced by a negative relationship with the use of native digital currencies. Furthermore, it

hinders the cooperation with other decentralized platforms, as the token utilized in both platforms

must be consistent.

Due to its relatively poor performance, many observers do not believe that blockchain

technology is suitable for large-scale applications. In contrast to permissionless blockchains,

which do not restrict network membership, we focus on permissioned blockchains, in which the

identities of all participating nodes are known. A permissioned blockchain provides a way to

secure the interactions among a group of entities that have a common goal but which may not fully

trust each other. By relying on the identities of the participants, a permissioned blockchain can use

more traditional crash fault tolerant (CFT) or byzantine fault tolerant (BFT) consensus protocols

that do not require costly mining.

Recent developments in blockchain technology are creating new opportunities for artificial

intelligence (AI) applications [5]. AI technologies could help solve many blockchain challenges.

For instance, there is always a supervisor who is responsible for determining whether the contract

condition is satisfied. In the case of self-driving, AI technologies can be applied in the smart

contract to make autonomous decisions in terms of the rules of the road and traffic laws to limit

misbehaviors made by driverless cars. The authors in [6] discussed how the integration of AI and

blockchain could help in developing a new decentralized ecosystem. Besides, multiple use cases

of AI applications and implementations utilizing blockchain are discussed, covering intelligent

transportation [7], intelligent precision farming [8], supply chain industry [9], swarm robotic

system [10], etc. However, most of the existing blockchain-enabled AI applications only utilize

7

the blockchain infrastructure to provide users with qualitatively new data models, shared control

of AI training data and models, and leads to improved trustworthiness on data. None of these

studies explore the use of AI to enhance the blockchain performance.

To the best knowledge of the author, this paper is the first attempt to discuss how the use of

AI techniques can help in improving the network performance of blockchain. This paper

introduces two transaction traffic control approaches based on fuzzy logic. For the first approach,

we implement the fuzzy controller in the smart contract. For the second approach, we implement

additional learning to prediction module to enhance the performance of the fuzzy controller in the

smart contract. The former mechanism implements a fuzzy controller specified to control the

transaction traffic flow according to network feedback collected in real-time. The fuzzy controller

is implemented in the smart contract to automate the process of transaction traffic control without

third-party intervention. The latter mechanism extends the structure of the first mechanism by

introducing additional learning to prediction module. We use the Kalman Filter as the prediction

model to estimate the transaction throughput and use the artificial neural network (ANN) as the

learning model to tune the parameter of the Kalman Filter. The learning to prediction module

estimates the transaction throughput according to the real-time network conditions. The predicted

transaction throughput is used as the fuzzy input for the fuzzy controller in the smart contract to

automate the process of transaction traffic control. In this paper, we implement the learning to

prediction module as an external module since it requires time-consuming and challenging training

that can tax the smart contract.

Additionally, we perform a comprehensive experiment for various configurable network

parameters, which have an impact on blockchain performance. These configurable parameters can

be mainly summarized into two categories: software and hardware. For the case of software, it

contains various parameters, including block size, block frequency, ledger database, ordering

service, the programming language of smart contract, use of TLS, number of clients, number

8

endorser peers, number of organizations, and the endorsement policy. For the case of hardware, it

contains the number of vCPUS, memory allocation, disk type and speed, network speed, and CPU

speed. According to the evaluation results, optimized values of each parameter are selected to

form an optimized network to achieve optimum performance.

We deploy the proposed transaction traffic control mechanisms in a clinical trial testbed from

our previous work. The clinical trial testbed is built on a permissioned network, where the

identities of all the network participants are known to each other. The results of the proposed

approaches are compared with two other schemes: the baseline scheme and an optimized scheme.

The evaluation results indicate that the proposed transaction traffic control mechanisms can

significantly improve transaction throughput while decreasing network latency compared to the

baseline and optimized schemes. We also apply the design approaches with one of the existing

performance-enhancing tools, and the results show that our approaches are flexible enough to be

with existing studies. The contributions of this paper are discussed as follows:

• Novelty: This paper introduces the use of machine learning techniques to enhance the

blockchain performance. The fuzzy controller is defined in the smart contract to automate

the transaction traffic control. The proposed system also supports the interaction with the

external machine learning module. Learning to prediction module is proposed in this paper

to improve the performance of the fuzzy controller further.

• Universality: This paper considers various configurable network parameters that can

affect the blockchain performance. A comprehensive experiment is performed to analyze

the impact of each configurable parameter on the blockchain performance. According to

the evaluation results, an optimized network is set up to achieve better network

performance. Although some of the parameters may be specified to particular blockchain

platforms, this experiment points out a clear indicator to evaluate the performance of the

blockchain network.

9

• Scalability: The proposed system is implemented in a modular and extensible architecture,

which supports an interface to interact with different external machine learning modules.

It can also interact with the existing performance-enhancing tool without much

modification of the original system.

• Usability: The proposed mechanisms have been tested in a case study of the clinical trial

using a permissioned network. Many other smart contracts enabled blockchain platforms

can also potentially profit by the significance of this work.

The remainder of this paper is organized as follows, Chapter 2 gives a brief of the blockchain

technology, and blockchain platforms analyze some of the related studies that focus on improving

the blockchain performance and introduces blockchain performance benchmark tool. Chapter 3

introduces the performance metrics, overviews configurable parameters that affect blockchain

performance, and illustrates the evaluation results of each configurable parameter. Chapter 4

presents the proposed transaction traffic control mechanism based on fuzzy logic, provides the

details of the implementation of the proposed mechanism, and evaluates the performance. Chapter

5 presents the proposed transaction traffic control mechanism based on learning to prediction,

provides the details of the implementation of the proposed mechanism, and evaluates the

performance. Chapter 6 describes the clinical trial testbed, which is used as the simulation

environment to evaluate the proposed approaches and illustrates the evaluation results. Finally,

Chapter 7 concludes the paper and discusses future research directions.

10

2. Related Work

2.1 Blockchain Technology and Platform

Figure 1 shows the structure of blockchain at an abstract level. Blockchain is an entirely secure,

decentralized info comprised of various peers, which provides storage to record data from an

outsized form of entities [11]. It is a series of linked blocks of transferred data between different

connected nodes that form the network of the blockchain. Transparency is recognized as one of

the most important characteristics of blockchain since it enables instant access to data since it is

replicated on all nodes without interventions of third parties. The blockchain technology has been

widely applied to hatch practical use cases in varied application fields [12], like intelligent

transport system [13], health sector [14, 15, 16], distributed applications [17, 18], and prediction

platforms [19, 20].

In the case of permissionless blockchain, there is no centralized authority, and no party has

more power than the remainder. Here every member seems to be hospitable, be a part of or leave

as they want. The blockchain is publicly open, and everybody has the proper to validate a group

action. In the case of Bitcoin [22], one of the best examples of a permissionless network, it is the

miners who can validate the transaction. They get bitcoins within the sort of transaction validation

fees, and therefore the new bitcoins are generated for the effort they place into solving the puzzle

problem. Ethereum [23] is incredibly almost like Bitcoin; however, it differs in many aspects. As

an example, it is a versatile programing language for smart contracts [24].

11

Version Merkle Root

Hash of Block N-1

nonce Difficulty

List of Transactions

State

Balance Code Storage

Version Merkle Root

Hash of Block N-1

nonce Difficulty

List of Transactions

State

Balance Code Storage

Version Merkle Root

Hash of Block N-1

nonce Difficulty

List of Transactions

State

Balance Code Storage

Block N Block N+1 Block N+2

Figure 1. The basic structure of the blockchain

The consortium blockchain [25] belongs to a permissioned network; not everybody has equal

rights to the validation of transactions. Only several selected individuals are permitted to perform

validation on transactions. A slightly different version between the consortium blockchain and the

permissioned blockchain is that the permissioned blockchain is based on a centralized structure

with one entity, and this entity conjointly controls the validation processing. The centralized head

can check that the consensus that's followed is that the one it projected. This is often additional,

like having a centralized body just like the government in several nations. Permissioned

blockchains are quicker, additional energy-efficient, and only implementable compared to

permissionless blockchains. Relying upon the requirement and implementation atmosphere, one

ought to prefer that algorithmic rule to deploy. Algorithms supported permissioned blockchain are

the foremost used, and additional applications supported it are being researched on.

Ripple [26] connects banks and payment suppliers via RippleNet to produce one resistance

expertise for causation and receiving cash globally. It is ascendible, secure, and interoperates with

totally different networks. Banks, payment suppliers, and digital asset exchanges method and

supply liquidity for payments on RippleNet, making new, competitive cross-border payments

services for customers. Stellar [27] is another platform that connects banks, payments systems,

12

and people. Integrate to maneuver cash quickly, reliably, and at virtually no cost. Corda [28] could

be a blockchain implementation that focuses on automating money documents besides as

maintains records of them. They embody legal documents sculpturesque as planned by law, which

is predicated on laptop codes and is mechanically generated. These legal documents contain info

on the rights of the individual mentioned. This technology may revolutionize the money and legal

sectors in several countries. Table 1 compares the various options of some well-known blockchain

platforms.

In contrast to the Bitcoin and Ethereum, which are permissionless-based networks,

Hyperledger Fabric [29] is a permissioned-based, where all of the participants are trusted to each

other. One of the most critical differences in support of multiple consensus algorithms that make

this platform additional effectively to be adaptable for specific use cases. Fabric leverages

consensus algorithms that do not need a native cryptocurrency to incent expensive mining or to

fuel transaction execution. The rejection of a cryptocurrency reduces some vital risk/attack vectors.

Therefore, the absence of cryptologic mining operations implies that the platform may be deployed

with roughly a similar operational cost as the other distributed system. It also supports the

employment of general programming languages like Java and Go instead of domain-specific

language to smart contracts.

Table 1. Comparison of some well-known blockchain platforms

Name Support of

Smart Contract

Consensus

Algorithm

Native

Cryptocurrency

Blockchain

Type

Bitcoin No Proof of Work BTC Permissionless

Ethereum Yes (Solidity) Proof of Work ETH Permissionless

Hyperledger

Fabric

Yes (Java, Go,

etc.)

Pluggable

Consensus

No Permissioned

13

Table 2 presents a comparative analysis by comparing different types of blockchains. The

results indicate that the permissioned network has high efficiency compared to the permissionless

network since the consensus is determined by one or a selected set of nodes. However, a

permissioned network can result in a fully centralized architecture against the idea of

decentralization. This paper focuses on the consortium blockchain, Hyperledger Fabric, as it is a

permissioned network with a decentralized characteristic. So far, Hyperledger Fabric is considered

as an ideal blockchain platform to implement distributed applications for enterprise use cases.

Table 2. Comparison of different types of blockchain platforms

Property Public Blockchain

(Permissionless)

Private Blockchain

(Permissioned)

Consortium

Blockchain

(Permissioned)

Consensus

Participant

All nodes Single node A selected number of

nodes

Permission Public Either public or

private

Either public or private

Efficiency Low High High

Centralized No Yes Partial

Consensus Permissionless based Permissioned based Permissioned based

Use Case Bitcoin, Ethereum MultiChain [30],

OpenChain [31]

Hyperledger Fabric

This paper focuses on the permissioned network, and this section provides a concise

description of one of the most well-known consortium blockchain platforms, Hyperledger Fabric.

The Fabric is comprised of miscellaneous components such as peers, membership service

providers (MSPs), clients, and ordering services. The basic transaction workflow goes through the

following stages: the endorsement stage, the ordering stage, and the validation stage. Each stage

runs independently and does not affect the other stages. Performance bottlenecks are slightly

different at each stage, depending on the network configuration environment. Many existing

14

studies on blockchain performance have emphasized the transaction validation as one of the main

bottlenecks except as the bottleneck in the ordering service. For the case of transaction validation,

current optimization approaches include parallel transaction validation, bulk reading of slow

CouchDB, and identity certificate caching. However, these studies modify the original architecture

of the Fabric network either by updating some stages of the transaction process or adding external

user-specific modules. As mentioned earlier, the development of the Hyperledger Fabric is still in

progress, and there are times when new versions outside of the user-specified release cycles that

may lead to instability and compatibility issues.

The business logic of Fabric is provided by the smart contracts that serve as a trustworthy

decentralized program, gaining its trust and security from the blockchain and conjointly the

fundamental agreement across the entire network. Fabric introduces a brand-new approach known

as an execute-order-validate to perform transactions in three different stages. In simple terms, a

submitted transaction will be executed, thus being endorsed, ordered in a block, and before

appending to the ledger, these endorsed transactions must be validated against the predefined

endorsement policy.

Figure 2 illustrates the workflow of the transaction execution taken place across the whole

network. The client application should have credentials issued by the Certificate Authority (CA)

to induce the approved permission for submitting dealings proposals. The CA issues credentials

to clients who want to submit transaction proposals and authenticates the identities of these clients

before they are allowed to participate in the network. Transactions are generated from client

applications, and the application software development kit (SDK) is used to form connections

between the client application and the peers within the network. These peers are the basic units to

form the network, and they can be separated into endorser peers or committer peers depending on

the type of task. Endorser peers simulate and sign proposals with their signatures, reply to grant,

or deny approvals. Committer peers validate each endorsed transaction against the endorsement

15

policy and append the block of transactions to the ledger. The orderer is an individual node that is

responsible for sorting the transaction that happened on a first-come-first-serve basis over the

whole network. Furthermore, it supports various ordering service implementations like Kafka and

Raft and contains the cryptographic credentials linked to each network entity.

Endorser peers execute the received transaction proposal by invoking the associated function

defined by the smart contract in a simulated environment. It is worth noting that these transaction

execution results will not be mirrored within the ledger in the current stage. Every endorser peer

simulates the received transaction, signs the Read and Write (RW) set using their endorsing

signatures, and returns proposal responses to the client application for inspection. The client

verifies the endorsing signatures to check if the required endorsement policy (e.g., the required

number of endorser peers that have to endorse the transaction execution results) has been

consummated. Besides, it extracts the results from the RW sets to compare whether the transaction

execution result simulated by each endorser peer is consistent or not. Afterward, these signed

transactions are packaged and submitted along with RW sets to the orderer by the client application.

The batched data is ordered into a block by the orderer and delivered to any or all committer peers.

Every committer peer validates the transaction by checking whether the RW sets match the current

state or not. Once the committer peer validates the transaction, it writes the transaction to the

ledger, and also update the state by using the Write data from the RW set. Finally, the committer

peers send events to the client application to inform whether the submitted transaction succeeded

or not. The client application can subscribe to events to be notified by every committer peer once

an event happens.

16

Figure 2. Blockchain platform transaction workflow (e.g., Hyperledger Fabric)

2.2 Existing Studies of Performance Improvement in Blockchain

Network

In recent years, blockchain technology has emerged as a powerful technology to provide

robust data integrity guarantees, especially in trust-less networks. The data integrity of blockchain

can be guaranteed by the use of consensus algorithms such as Proof of Work (PoW), a consensus

schema based on solving a CPU cost function that can deter denial-of-service attacks and any other

service abuses such as network spam. Despite the characteristic of data integrity, utilizing

blockchain to enhance distributed systems implies coping with mandatory performance penalties

such as high latency and low throughput [32].

This paper concentrate on the performance improvement of one of the permissioned based

blockchain networks called Hyperledger Fabric. The architecture of Hyperledger Fabric is still on

the way, undergoing multiple changes in development and bug fixing. Therefore, there are

Client CA
Endorser Peer

(EP1)
Endorser Peer

(EP2)
Committer Peer

(CP3)

Simulate/Execute tx
Sign Transaction in RW
sets

Collect transaction-
singed msgs

Broadcast

Validate (Read set,
endorsement, signature)
If OK, apply Write set to state

Notification to client

Identity request

Identity certificates

Generate identity cerificate
(ECert, TCert, TlsCert)

Submit proposal

Fabric Network

Orderer

Validate (Read set,
endorsement, signature)
If OK, apply Write set to state

Committer Peer
(CP4)

17

relatively few studies on fabric performance analysis or architecture optimization. The authors in

[33] analyzed the performance of different Hyperledger Fabric versions (v0.6 and v1.0). The

results indicate that Fabric v1.0 performs better than Fabric v0.6 in terms of throughput and latency.

The authors in [34] investigated the performance of the Fabric network by varying different block

sizes, resource allocation, state DB, and endorsement policies. In [35], the impact of peer CPU,

disk type is evaluated on blockchain latency and throughput. These studies go partway towards

explaining some parameters that can affect the blockchain performance and scale; however, not

comprehensive. This paper first conducts a full survey on configurable parameters that can affect

the Hyperledger Fabric network performance. Multiple rounds of experiments for each

configurable parameter are performed to obtain the optimized configurable parameter value,

which is used to set up the network for the experiment.

TPS is an essential factor for industrial application, and stable operation is possible. However,

due to the nature of the blockchain, it is difficult to improve performance due to the high

complexity of the consensus process, and the operation and maintenance costs are high because

the block data is redundantly stored in the nodes constituting the blockchain. Currently, most of

the researchers have tried to build the blockchain network based on high-performance hardware

to improve throughput. However, due to the high cost, it is challenging to use blockchain in small

and medium-sized enterprises with insufficient funds. To solve these difficulties, the authors

propose a configurable blockchain system with a new consensus algorithm that can adjust the

verification process [36]. They improve the tps performance according to the network scale-up/out,

space efficiency, and security level. As a constraint, the basic authentication procedure is

performed with a private blockchain, and general network security is in place. Besides, all P2P

data transmission utilizes the PKI encryption module.

In the existing blockchain, the nodes participating in the consensus process are fixed in both

ways, in which all nodes participate in consensus or select a specific leader. On the other side, in

18

the proposed blockchain, the consensus is achieved by selecting a random node based on a preset

value defined according to the CPU utilization rate and an arbitrary validate node to reduce the

computational overload of a specific node due to a fixed consensus node. Hyperledger Fabric is

built on a modular architecture composed of multiple components, such as peers, ordering node,

consensus, and secure storage. These components play an independent role in committing the

block to the hash chain through the steps of assurance, ordering, verification, and modification.

Each step is performed as a container and does not affect other steps. The bottleneck is slightly

different in terms of the network configuration, but the main latency stage can be considered as

the endorsement stage and the ordering stage.

As shown in Figure 3, when a client requests a transaction from a peer in the endorsement

stage, it always checks whether the requested client is a node in the blockchain network. When

the same client repeatedly makes a request, the node verification process may cause a decrease in

performance. To reduce this process, a client that has been authenticated once performs processing

for a transaction without verifying the node at the peer for a certain period [37].

Client

channel

Endorser Peer n

Verify Node
Execute

Chaincode

Response Endorsement

Transaction

Response

Generate after
verifying node

Client that verified by the endorser peer will
skip the node verification step via channel

Figure 3. Endorsement channel function and generation process in endorser peer [37]

Hyperledger Fabric uses Kafka as an external project plug-in for Crash Fault Tolerance (CFT)

during the sequencing phase to create blocks. Because it uses an external project that is heavier

19

than the local environment, a bottleneck may occur while performing the ordering step in the

ordering node. Therefore, the proposed optimization works directly in the ordering node and

proposes a protocol that can satisfy the CFT. As shown in Figure 4, when a transaction arrives

from the ordering node, it separates the channel ID from the transaction contents, executes the

thread corresponding to the channel, and manages and collects the transaction in a different file

for each channel. Transactions are stored in the ordering node's file system. Even if a fault occurs

in the ordering node, the fault can be repaired using another ordering node that has stored the

transaction as a file using the proposed protocol. Depending on the ordering node setting, this

thread also clears transactions when the maximum number of transactions is accumulated or when

the waiting time is reached. The ordered node creates a block by including its signature in the

organized transaction. The order service node then delivers the block to the leader peer, and the

leader peer delivers the block to the commit peer on the same channel. This optimization method

Figure 4. Optimized ordering service process in blockchain network [37]

Nexledger Accelerator [38] is a novel transaction processing engine, that has an independent

and modular structure, acts as an intermediate between application clients and the blockchain

network, as shown in Figure 5. Such a feature is appropriate for adopting IoT applications since

IoT devices might not have enough computing power to run a novel approach for improving

blockchain performance. The accelerator provides a straightforward, however robust transaction

processing algorithm by using the batch scheduling. Accelerator classifies the incoming

20

transactions into a batched transaction. To this end, Accelerator is fastidiously designed to settle

on the self-adaptive batch size, counting on the characteristic of requested transactions and also

the remaining computing resource of the blockchain network.

Clients
Blockchain
Network

Accelerator

Figure 5. Conceptual architecture of Nexledger Accelerator [38]

As an essential technology that realizes decentralized and extremely trust database management,

Blockchain has recently attracted in-depth attention. However, the high latency and low

throughput in significantly concurrent environments is considered as the main performance

bottleneck of blockchain technology, and therefore delays its deployment. Though multiple

studies are dedicated to addressing the problem of low throughput, these studies only pay attention

to the use cases with giant transaction volume, whereas neglecting the problem of conflicting

transactions. Conflicting transactions are those transactions initiated by the client with the constant

primary key. The system performance of Hyperledger Fabric may be severely degraded if various

conflicting transactions existed. The authors [39] propose a cache-enabled endorser to discover

the existence of conflict transactions before executing the smart contract. The system integrates

with cache takes fewer steps to discard the conflict transactions compared to the system without

the use of the cache. The cache is enforced on the local endorser, as shown in Figure 6. For every

arrived transaction, the account code is extracted from the received data as the key information

and stored within the cache before it being recorded. If the account code exists within the cache,

21

the endorser can discard the processing of such transactions and at once send a notification to

clients to shorten the turnaround.

Figure 6. An example of transactions processing with cache [39]

Hyperledger Fabric is built with flexibility and generality as key style issues, supporting a

significant form of non-deterministic smart contracts and pluggable services. However, version

1.0 comes without any BFT ordering service implementation, providing only a crash fault-tolerant

ordering service. The authors [40] present the design, implementation, and evaluation of a new

BFT ordering service, which is similar to the Practical Byzantine Fault Tolerance (PBFT) protocol.

The evaluation, conducted both on a local cluster and in a geo-distributed setting, shows that BFT-

S MART ordering service is able to achieve up to 10k representative transactions per second and

write a transaction irrevocably within the blockchain in half a second, even with ordering nodes

unfold through totally different continents. As shown in Figure 7, the frontend consists of the

Fabric codebase and a BFT shim. The Fabric codebase (implemented in Go) provides an associate

interface for clients to submit envelopes. These envelopes are relayed to the BFT shim using UNIX

sockets. This shim is enforced in Java and maintains (1) a client thread pool that receives envelopes

22

and relays them to the ordering cluster, and (2) a receiver thread that collects blocks from the

cluster. Envelopes (resp.blocks) are sent to (resp. received from) the cluster through the BFT-

SMaRt proxy.

Figure 7. BFT-smart ordering service architecture [40]

Every peer node is linked to a distributed repository, so-called state database, to store the latest

values of ledger data. Currently, Hyperledger Fabric supports two state databases: LevelDB and

CouchDB. LevelDB is a database that resides in the peer that permits comparatively quick

accesses. CouchDB is a client-server model, which is accessed by REST API over HTTP. The

transaction validation is redesigned by authors in [41] to offer parallel operations on transaction

validation, and a chaincode cache is proposed as well. Figure 8 describes each process in four

steps. In the first step, the transactions are validated by committer peers, which set the transaction

flag to invalid if the transaction is ungrammatical. Afterward, in the second step, the verification

system chaincode (VSCC) and the operation to read the state database state are called together. In

the third step, the multi-version concurrency control (MVCC) is further applied to check the

transactions validated by the VSCC to avoid double-spend issues. In the last step, the ledger write

and history database write operations are performed in parallel. In the case of LevelDB, the history

database write operation is executed after completing the state database write operation. In contrast

23

to LevelDB, the history database write operation and the ledger write operations are performed at

the same time.

Figure 8. Optimized validation phase for Hyperledger Fabric [41]

As shown in Figure 9, two additional competent APIs between the chaincode and the peer are

proposed [42]. The first API is called the Differential Update State (DUS), which can reduce the

process of reading the state of the key before writing the updated value. As the name implies, the

DUS API provides a specified set of operations to compute the updated values via different

operations and writes the commutated value to the ledger. The second API is called the Compound

Request (CR), which supports read, write, and their combined function. It executes all the requests

in a specified order and further removes the number of requests compared to the DUS API. This

feature makes it suitable in use cases that require frequent parameter read and initialization

operations.

24

Figure 9. The behavior of two new efficient API functions [42]

As mentioned above, most of the existing systems change the original architecture of

Hyperledger Fabric, including endorser peer, validating peer, and ordering service. This may result

in incompatibility issues, especially when a new version released since the development of Fabric

is ongoing. The proposed approach in this paper does not make any changes to the original system

as the fuzzy logic can be directly deployed into the smart contract or implemented as an external

module that is flexible enough to be extended. The Accelerator is built on an independent and

modular architecture; however, it is only specified to Fabric network. The configuration of

Accelerator is also involved, which makes it difficult to be used, especially for people who know

little about blockchain. The proposed approach can be integrated with any other blockchain

platform, which supports the use of smart contracts. Developers can choose the proper language

to depend on themselves to implement the smart contract without concern about the infrastructure

of the blockchain.

25

2.3 Performance Evaluation Architecture in Blockchain Network

Performance evaluation is the process of measuring the performance of a system under test.

The goal of any performance evaluation is to understand and document the performance of the

system or subsystem being tested. This often involves measuring what happens when dependent

variables are altered; for example, measuring the throughput of the system as the number of

concurrent requests is varied. Measure the performance of the blockchain network has been

considered as one of the most concerning points from blockchain developers and researchers. A

typical configuration of the performance evaluation in the blockchain network consists of test

harness and system under test (SUT). The test harness is the system and program used to run the

performance evaluation and to generate workload again the SUT. In general, the test harness can

be multiple types of clients that can generate workload and observe the statistics of each peer node.

The blockchain network is comprised of various peer nodes, which communicate with other nodes

to work together corporately to execute transactions.

In this study, Hyperledger Caliper [43] is used to evaluate the performance of the designed

solutions. Caliper is a unified blockchain benchmark framework that provides a standard layer to

integrate with existing blockchain platforms (Hyperledger Fabric, Ethereum, etc.). Caliper

provides a performance test report containing several performance indicators, such as transaction

throughput, transaction latency, resource utilization, etc. It offers a variety of blockchain

configurations, network setup as well as specific use-cases to test user-customized purposes.

Figure 10 presents the Caliper framework architecture that consists of four layers: benchmark

layer, interface and core layer, adaptation layer, and the network layer. The benchmark layer

provides various use cases to test the backend functions of the Fabric network. The interface and

core layer offers a CLI-based interface for interacting with Fabric network, such as starting the

network. It also provides additional functions, including resource monitoring, performance

analysis, and report generation. The adaption layer is used to integrate Fabric network with

26

external client applications by using corresponding blockchain SDKs to map operations such as

invoking and querying states from the ledger. It also supports the interaction with other blockchain

solutions by using platform specified adaptors to translate blockchain backend operations into

associated blockchain protocol. The network layer provides the blockchain infrastructure of the

Fabric network. The blockchain infrastructure contains various peers that hold distributed ledgers

and smart contracts.

Nexledger Accelerator Adaptor

Benchmark Engine

Use Case Use Case Use Case

Resource
Monitor

Performance
Analyzer

Report
Generator

CLI

Hyperledger Fabric Network

Benchmark
Layer

Interface and
Core Layer

Adaptation
Layer

Network
Layer

Figure 10. Performance evaluation framework architecture of blockchain using

Hyperledger Caliper [43]

27

3. Performance Analysis of Configurable Parameters in

Blockchain Network

3.1 Blockchain Network Performance Metrics

The throughput and latency are two standard performance metrics to evaluate the performance

of the blockchain network. The throughput can be further divided into two subcategories

concerning the operations to deal with. Read throughput is a specific measure to count the number

of read operations completed in a defined time period, expressed as read per second (rps). Read

throughput is not used as a central performance to measure the blockchain since most of the

systems are typically deployed adjacent to the blockchain to achieve significant efficiency in

reading and queries. Transaction throughput is the rate at which valid transactions are committed

by the blockchain in a defined time period, expressed as tps. Transaction throughput is not the

measure at a single node but across all nodes of the whole network.

▪ 𝑅𝑒𝑎𝑑 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
 (1)

▪ 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑖𝑑 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
 (2)

Latency can also be separated into two subcategories in terms of the type of operations. Read

latency measures the total time to submit a read request and receive the reply. Transaction latency

measures the time that the entire network takes to validate a transaction, covering the broadcasting

time as well as the allocation time spent by the consensus algorithm. The definition of the network

threshold is specified in [44], which represents the quantity of time spent for a proportion of the

network to commit a transaction. In this paper, we set the network threshold to one hundred as the

utilization of the non-probabilistic protocol like PBFT.

▪ 𝑅𝑒𝑎𝑑 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑡𝑖𝑚𝑒 − 𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (3)

28

▪ 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 ∗ 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑡ℎ𝑟𝑒𝑑ℎ𝑜𝑙𝑑 − 𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (4)

3.2 Configurable Parameters in Blockchain Network

This section discusses various configurable parameters, which can affect the blockchain

performance. As shown in Table 3, the configurable parameters can be mainly summarized into

two categories: software and hardware. For the case of software, it contains various parameters,

including block size, block frequency, ledger database, ordering service, the programming

language of smart contract, use of TLS, number of clients, number endorser peers, number of

organizations, and the endorsement policy. Block size consists of two parts: message count and

byte size. Message count determines the maximum number of transactions to form a new block.

Byte size specifies the maximum number of bytes allowed for serialized transactions in a block.

Block frequency determines the amount of time to wait after the first transaction arrives for

additional transactions before cutting a block. In general, decreasing this value will improve

latency, but decreasing it too much may decrease throughput by not allowing the block to fill to

its maximum capacity. Ledger database stores the latest values of all keys. It includes several

options, such as LevelDB and CouchDB. LevelDB is an embedded database that resides on each

peer and stores data in the form of key-value pairs.

Ordering service is executed by a particular node called orderer that sorts the order of

transactions. There exist server ordering service implementations: Solo, Raft, and Kafka. The Solo

ordering service only features a single orderer node. It does not support fault-tolerant but is the

right choice for testing blockchain applications and functionalities of smart contracts before

putting into the production environment. Raft ordering service is implemented on the Raft protocol,

which features the CFT. Kafka ordering service is a similar CFT-based implementation; however,

it utilizes a ZooKeeper ensemble for managing a cluster of ordering nodes.

29

Currently, Fabric offers several SDKs to develop a smart contract in various programming

languages such as Go, Java, and Node.js. Fabric supports the use of Transport Layer Security to

secure data communication between nodes. TLS communication can be used in both one-way

(server only) and two-way (server and client) authentication. A peer node can act as a TLS server

and a TLS client at the same time. For example, it acts as a server receives messages from other

nodes while acts as the client when initializing connections to other nodes. The client can connect

to a specified peer according to the user-specific definition and thereby makes a connection to a

peer to invoke transactions. A peer node is responsible for receiving the ledger state updates from

the orderer and holds a copy of the ledger to maintain the consistency of the whole network.

Endorser peer features a unique role concerning a specific smart consist and consists of endorsing

the seal of approval to a transaction before committing the transaction. The organization is also

known as a member that is invited to join the blockchain network by a blockchain network

provider. The organization is known as a member of the network. An organization contains one

or more peers, which is the transaction endpoint. The user can specify a set of organizations to

form a consortium. Endorsement policy specifies the peers that must execute transactions and the

required combination of endorsement responses.

For the case of hardware, it contains the number of vCPUS, memory allocation, disk type and

speed, network speed, and CPU speed. The descriptions for each hardware parameter are depicted,

as shown in Table 3.

Table 3: Configurable parameters that affect the blockchain performance

Category Component Description

Block size The maximum limit of a blockchain to be filled up with

transactions.

Block frequency The amount of time to generate a new block.

Ledger database A decentralized database that records the newest values

for all keys appeared in the transaction history.

30

Software

Ordering service A specific kind of node called orderer node that performs

transaction ordering, which, along with other nodes, forms

an ordering service.

Programming

language of smart

contract

A set of universal programming languages to code the

smart contract, including Go, Node.js, and Java.

Use of TLS Represent whether to use Transport Layer Security

Number of clients The client represents the entity that acts on behalf of an

end-user.

Number of endorser

peers

Endorser peers can endorse the seal of approval to a

transaction when it is proposed.

Number of

organizations

A member that is invited to join the blockchain network.

Endorsement policy Define peers that ought to agree on the results of a

transaction before appending it to the ledger.

Hardware

Number of vCPUs A vCPU stands for a virtual central processing unit. One

or more vCPUs are assigned to every virtual machine.

Memory allocation Memory allocation is a process by which computer

programs and services are assigned with physical or

virtual memory space.

Disk type and speed There are two types of disk drives: HDD (hard disk drive)

and SSD (solid-state drive). Disk speed refers to the speed

of reading and writing data, expressed in megabit per

second (Mbps).

Network speed Network speed can be defined as the total no of packets

being exchanged by the client and the server per second,

which is usually calculated in megabit per second (Mbps).

CPU speed A CPU's clock speed rate is a measure of how many clock

cycles a CPU can perform per second, is generally

measured in Hertz, or GHz.

3.3 Experiment Environment in Blockchain Network

This section discusses the experiment setup and workload for evaluating the impact of various

configurable parameters mentioned above. The default network for this experiment contains one

channel, which consists of two organizations, each with one endorser peer for a total of two peers.

The default block size is set to 10 transactions per block, and a new block is formed every 250 ms.

The default ordering service is in solo mode, which consists only of a single ordering node. We

utilized the LevelDB as the default state database in this experiment. The rest experiment

parameters are specified, as shown in Table 4. The evaluation tests presented in this section were

31

averaged over multiple rounds to reduce errors resulting from the network congestion. We utilized

the Hyperledger Caliper to evaluate the blockchain network performance. In this experiment, the

sample network and benchmark configurations provided by Hyperledger Caliper were utilized to

evaluate all configurable parameters. The smart contract used for this experiment is called simple,

which is specified for a banking scenario. We tested the open function that creates a new account

with the given amount of money.

Table 4: Default configuration for the experiment unless otherwise stated

Parameters Values

Number of Orgs 2

Number of Endorser Peers 2

Endorsement Policy AND (a, b, c)

Ordering Service Solo

Block Size 10 transactions per block

Block Frequency 250 ms

Ledger database LevelDB

Programming language of smart

contract

GO

Use of TLS No

Number of clients 1

3.4 Performance Evaluation of Configurable Parameters in Blockchain

Network

The section describes the evaluation results of each configurable parameter, as discussed in

section 3.2. We evaluated the impact of block size on the performance by varying the block size

(30, 50, and 100) over different transaction send rate (range from 25 – 200 tps). Figure 11 plots

the experimental results in terms of average transaction throughput. The transaction throughput

increased linearly with the increase in send rate until it reached around 175 tps. However, the

growth of transaction throughput decreased significantly and approached a flat when the send rate

32

was above this point. When the send rate was 200 tps, the throughput of each block size set was

180.4 tps, 172.3 tps, and 167.5 tps, respectively. Figure 12 plots the experimental results in terms

of average transaction latency. The transaction latency decreases with the increase in the send rate.

For example, when the block size was 30, and the send rate increased from 25 to 100 tps, the

latency decreased from 170 to 90 ms.

This experiment results indicate that the settings of block size have a small effect on

performance. Smaller block size shows better application performance in throughput and latency,

but the difference is modest.

Figure 11: Evaluation of the impact of block size on transaction throughput

33

Figure 12: Evaluation of the impact of block size on transaction latency

We evaluated the impact of block frequency on performance by varying the block frequency

(30, 50, 100) over different transaction send rate (range from 25 – 200 tps). Figure 13 plots the

experimental results in terms of average transaction throughput. The transaction throughput

increased linearly with the increase in send rate until it reached around 150 tps. However, the

growth of transaction throughput decreased significantly and approached a flat when the send rate

was above this point.

When the send rate was 175 tps, the throughput of each block frequency set was 165.8 tps,

170.6 tps, and 157.4 tps, respectively. Figure 14 plots the experimental results in terms of average

transaction latency. The transaction latency decreases as the send rate increases. For example,

when the block frequency was 250 ms, and the send rate increased from 25 to 100 tps, the latency

decreased from 160 to 100 ms. This experiment results indicate that the settings of block frequency

have a small effect on performance. Lower block frequency shows better application performance

in throughput and latency, but the difference is modest.

34

Figure 13: Evaluation of the impact of block frequency on transaction throughput

Figure 14: Evaluation of the impact of block frequency on transaction latency

In this experiment, we evaluated the impact of TLS on performance over different transaction

send rate (range from 25 – 200 tps). Figure 15 plots the experimental results in terms of average

35

transaction throughput. The transaction throughput increased linearly with the increase in send

rate until it reached around 75 tps. However, the growth of transaction throughput with TLS

decreased significantly and approached to a flat when the send rate was above this point. For the

transaction throughput, network without TLS has a higher throughput than the network with TLS

when the send rate greater than 75 tps; for example, when the send rate was 100 tps, the throughput

without TLS was 99.7 tps while the throughout with TLS was 81.1 tps. Figure 16 plots the

experimental results in terms of average transaction latency. The network with TLS generates

more latency than the network without TLS, but the variation of latency is tiny. This experiment

results indicate that the use of TLS has a significant effect on performance. The network without

TLS shows better application performance than the network with TLS since the network traffic is

low.

Figure 15: Evaluation of the impact of the use of TLS on transaction throughput

36

Figure 16: Evaluation of the impact of the use of TLS on transaction latency

In this experiment, we evaluated the LevelDB and CouchDB to analyze the impact of the

ledger database over different transaction send rate (range from 25 – 200 tps). Figure 17 plots the

experimental results in terms of average transaction throughput. The transaction throughput

increased linearly with the increase in send rate until it reached around 75 tps. However, the growth

of transaction throughput with CouchDB decreased significantly and approached to a flat when

the send rate was above this point. For the transaction throughput, LevelDB has a higher

throughput than the CouchDB when the send rate was greater than 75 tps, for example, when the

send rate was 100 tps, the throughput using the LevelDB was 99.6 tps while the throughout using

CouchDB was 65.8 tps. Figure 18 plots the experimental results in terms of average transaction

latency. The CouchDB results in more significant latency than the LevelDB when the send rate

was above 50 tps. The LevelDB database performs better than CouchDB because the peer can

directly manipulate it while using CouchDB requires HTTP communication that generates

additional network latency. The LevelDB performs better than CouchDB, generally, but is not as

37

effective at supporting a rich schema for the world state. It is appropriate to choose the LevelDB

if the ledger data is in simple key-pair and does not require rich queries.

Figure 17: Evaluation of the impact of the ledger database on transaction throughput

Figure 18: Evaluation of the impact of the ledger database on transaction latency

38

In this experiment, we evaluated three kinds of ordering services: Solo, Solo Raft (a single

node Raft network), Raft to analyze the impact of ordering services over different transaction send

rate (range from 25 – 200 tps). Figure 19 plots the experimental results in terms of average

transaction throughput. The transaction throughput increased linearly with the increase in send

rate until it reached around 75 tps, the throughput growth of Solo Raft and Raft decreased

significantly and approached to a flat. For the throughout, Solo ordering service has a higher

throughput than Solo Raft and Raft when the send rate greater than 75 tps; for example, when the

send rate was 100 tps, the throughput of Solo was 99.8 tps. In comparison, the throughput of Solo

Raft and Raft were 90.1 tps and 87.8 tps, respectively. Figure 20 plots the experimental results in

terms of average transaction latency. Solo ordering service generates much less latency than Solo

Raft and Raft ordering services. This experiment results indicate that the choice of ordering service

does have a significant impact on performance. The Solo ordering shows better application

performance than Solo Raft and Raft ordering services since it is a single node and does not require

the process of TLS.

Figure 19: Evaluation of the impact of the ordering service on transaction throughput

39

Figure 20: Evaluation of the impact of the ordering service on transaction latency

In this experiment, Go and Node.js languages are used to analyze the impact of the

programming language of smart language over different transaction send rate (range from 25 –

200 tps). The transaction throughput increased linearly as expected with the increase in send rate

until it reached around 150 tps. The growth of transaction throughput decreased significantly and

approached to a flat when the send rate was above this point. For the throughout, Go based smart

contract has a higher throughput than Node.js based smart contract when the send rate was greater

than the saturation point, for example, when the send rate was 175 tps, the throughput using Go

based smart contract was 158 tps. In contrast, the throughout using Node.js based smart contract

was 146 tps. Figure 22 plots the experimental results in terms of average transaction latency.

Node.js based smart contract generates more latency than Go based smart contract, but the

variation of latency is tiny. This experiment results indicate that the choice of programming

language does affect performance. The Go language shows better application performance than

the Node.js as it is compiled and supports multiple threads of execution.

40

Figure 21: Evaluation of the impact of the programming language of smart contract on

transaction throughput

Figure 22: Evaluation of the impact of the programming language of smart contract on

transaction latency

41

This experiment evaluated the impact of the number of clients on performance. Figure 23 plots

the average transaction throughput for a various number of clients (1, 5, 10) over different

transaction send rate (range from 25 – 200 tps). The transaction throughput increased linearly with

the increase in send rate until it reached around 150 tps. The growth of transaction throughput

decreased significantly and approached to a flat when the send rate was above this point. When

the send rate was 175 tps, the transaction throughput of each client set was 157.4 tps, 173.4 tps,

and 162 tps, respectively. Figure 24 plots the average transaction latency for a various number of

clients (1, 5, 10) over different transaction send rate (range from 25 – 200 tps). The transaction

latency increases as the number of clients increases. For example, when the number of clients was

10, and the send rate increased from 125 to 200 tps, the latency increased from 130 to 550 ms.

This experiment results indicate that the number of clients does have a significant effect on

performance. Increasing the number of clients can improve the throughput, but increasing it too

much can significantly increase the latency due to the increase in network traffic volume.

Figure 23: Evaluation of the impact of the number of clients on transaction throughput

42

Figure 24: Evaluation of the impact of the number of clients on transaction latency

This experiment evaluated the impact of the number of endorser peers on performance. Figure

25 plots the average transaction throughput for a various number of endorser peers (2, 4, 6) over

different transaction send rate (range from 25 – 200 tps). The transaction throughput increased

linearly with the increase in send rate until it reached around 125 tps. The growth of transaction

throughput decreased significantly and approached to a flat when the send rate was above this

point. When the send rate was 150 tps, the transaction throughput of each endorser peer set was

149.1 tps, 142.4 tps, and 123.7 tps, respectively. Figure 26 plots the average transaction latency

for a various number of endorser peers (2, 4, 6) over different transaction send rate (range from

25 – 200 tps). The network with more endorser peers generates more latency, but the variation of

latency is not apparent. This experiment results indicate that the number of endorser peers does

have a significant effect on performance. Increasing the number of endorser peers can decrease

the throughput and increase the latency due to the increase in network traffic volume.

43

Figure 25: Evaluation of the impact of the number of endorser peers on transaction

throughput

Figure 26: Evaluation of the impact of the number of endorser peers on transaction latency

44

This experiment evaluated the impact of the number of organizations on performance. Figure

27 plots the average transaction throughput for a various number of organizations peers (1, 2, 3)

over different transaction send rate (range from 25 – 200 tps). The transaction throughput

increased linearly with the increase in send rate until it reached around 125 tps. The growth of

transaction throughput decreased significantly and approached to a flat when the send rate was

above this point. When the send rate was 150 tps, the transaction throughput of each endorser peer

set was 149.4 tps, 138.8 tps, and 119.5 tps, respectively. Figure 28 plots the average transaction

latency for a various number of organizations peers (1, 2, 3) over different transaction send rate

(range from 25 – 200 tps). The network with more organizations generates more latency, and the

variation of latency is enormous. For example, when the number of organizations was 3, and the

send rate increased from 125 to 200 tps, the latency increased from 200 to 430 ms. This experiment

indicates that increasing the number of organizations can decrease the throughput and increase the

latency because the network becomes complicated.

Figure 27: Evaluation of the impact of the number of organizations on transaction

throughput

45

Figure 28: Evaluation of the impact of the number of organizations on transaction latency

For the experiment of endorsement policy, we configured a sample network with 3

organizations, and each organization has 2 endorser peers. Besides, three endorsement policies

were specified: (1) at least one of the organizations much endorse transactions (policy 1), (2) at

least two of the organizations much endorse transactions (policy 2), (3) all of the organizations

must endorse transactions (policy 3). Figure 29 plots the average transaction throughput for

various endorsement policies over different transaction send rate (range from 25 – 200 tps). The

transaction throughput increased linearly with the increase in send rate until it reached around 125

tps. The growth of transaction throughput decreased significantly and approached to a flat when

the send rate was above this point. When the send rate was 150 tps, the transaction throughput of

each endorser peer set was 149.4 tps, 138.8 tps, and 119.5 tps, respectively. Figure 30 plots the

average transaction latency for various endorsement policies over different transaction send rate

(range from 25 – 200 tps). The network with more organizations generates more latency, and the

variation of latency is enormous. For example, when the number of organizations was 3, and the

send rate increased from 125 to 200 tps, the latency increased from 200 to 430 ms.

46

This experiment results indicate that the endorsement policy does have a significant effect on

performance. Increasing the number of organizations that must endorse transactions in the

endorsement policy can decrease the throughput and increase the latency since each endorser peer

has to exchange a message for every endorser peer, and this could significantly add process efforts

for the network communication.

Figure 29: Evaluation of the impact of the endorsement policy on transaction throughput

47

Figure 30: Evaluation of the impact of the endorsement policy on transaction latency

It is not the purpose of this paper to address all the impact of hardware on performance as

these experiments were performed in a single-host virtual machine. Due to our hardware

limitations, we could not validate the impact of hardware by varying the number of CPUs for

validating peers or expanding the bandwidth of the network card. However, the spec of hardware

does indeed scale performance according to some existing studies. The authors in [45] stated that

critical dimensions for a distributed ledger system include peer hardware and software capabilities.

The authors in [46] evaluated the impact of boosting the number of CPUs to the peers to improve

the performance. The authors in [47] also indicated that if the hardware configuration has a higher

spec, a higher number of transactions can be supported. Hence, there is, in fact, no limit on the

number of transactions that can take part in the Hyperledger blockchain network. It depends on

the selected hardware and the blockchain network configurations. Further studies on the impact

of hardware should be conducted on different hardware components such as memory allocation,

disk type and speed, network speed, and CPU speed. This will be pursued in future work by

deploying the Fabric network on a cloud service like Amazon Web Services (AWS).

48

4. Transaction Traffic Control Mechanism based on

Fuzzy Logic in Blockchain Network

4.1 Proposed Transaction Traffic Control Mechanism based on Fuzzy

Logic

The conceptual architecture of the transaction traffic control mechanism based on fuzzy logic

is described in Figure 31. The blockchain network is comprised of various nodes, which provide

the host environment of smart contracts and hold a copy of the distributed ledger to maintain the

consistency of the whole network. There exist multiple clients that can submit transactions by

invoking the functions specified in the smart contract. The fuzzy controller is embedded in the

smart contract to regulate the transaction traffic across the network automatically. The fuzzy

controller consists of the fuzzy inference system and the transaction control modules. Benchmark

results of the network are observed in real-time, and these values are transmitted to the smart

contract. The fuzzy controller computes the control commands to make decisions on the received

transactions. The consensus is achieved within the whole network, and the execution results are

returned to the clients.

49

NodeNode

Node

Node

Node

Node

Node

Blockchain Network

Ledger Node Node SC
Smart

Contract

SC SC

SC

SC

SC SC

SC

Client 1

Client 2

Client 3

Client 4

Execute smart
contract

Transaction
Execution Result

Execute smart
contract

Transaction
Execution Result

Transaction
Execution Result

Transaction
Execution Result

Execute smart
contract

Execute smart
contract

consensus

consensusconsensus

consensus

consensus

consensusconsensus

consensus

Transaction Traffic Control based on
Fuzzy Logic

Fuzzy Inference
System

Transaction
Control

1

1

1

1

2 3

4

5

5

5

5

4

4

4

4

4 4

4

Benchmark
results

Control
Commands

Figure 31: Conceptual architecture of the transaction traffic control mechanism based

on fuzzy logic

Figure 32 illustrates the implementation diagram of the proposed system, which is comprised

of the admin, transaction traffic measurement analyzer, client, blockchain adaptor, benchmark DB,

and the blockchain network. The blockchain network consists of various nodes that hold a copy

of the distributed ledger and a smart contract. The admin can configure the benchmark and network

files for the transaction performance evaluation. A network configuration file describes the system

under test and provides connection requirements for the network. A benchmark configuration file

describes the performance benchmark workload and user-specified test files. The blockchain

adaptor not only generates the transactions and passes to the client where the workload happens

but also sends commands to initialize the blockchain network. The client submits transactions to

50

the blockchain network and returns the transaction responses. The transaction traffic measurement

analyzer reads predefined performance statistics (TPS, latency, number of successful transactions,

etc.) and stores benchmark results into the benchmark DB. The fuzzy controller adjusts the

transaction acceptance rate by comparing transaction throughput, transaction latency with the

acceptance rate. Transaction throughput and transaction latency are input parameters of the

fuzzifier. Rules are evaluated in the inference engine. The defuzzifier converts output data

(acceptance rate) into non-fuzzy values. The output value is obtained by the transaction control

module to adjust the transaction acceptance rate. The whole process is repeated, and the

throughput of the blockchain network can be dynamically maintained at a suitable level.

Figure 32: Development configuration of the transaction traffic control mechanism based

on fuzzy logic

Figure 33 details the block diagram of the network configuration. The admin creates crypto

certificates for each network entity and updates the network configuration, which specifies the

topology of the network. The blockchain adaptor consists of config validator, client factory, client

worker, blockchain SDK, and network configuration modules. The config validator validates each

network configuration object. The client factory spawns the client worker to generate workloads.

51

The client worker is the client instance generated by the client factory. The blockchain SDK

provides the interface to connect with the network. The network configuration is used to access

information in the connection profile configuration. The blockchain adaptor can initialize the

network (channel, peer) and install the smart contract to the network.

Figure 33: Block diagram of the network configuration

A fuzzy controller is a fuzzy logic-based control system that has been broadly utilized in

numerous fields, for example, cooling, refrigeration, and automated control frameworks. Some

different methodologies, like neural networks and genetic algorithms, can achieve just as fuzzy

logic. Fuzzy logic keeps a favorable position by utilizing the general knowledge or experience that

humans can easily understand.

The Mamdani fuzzy system is one of the most well-known theories in the field of fuzzy logic

control (FLC) [48]. The linguistic control strategy is born-again into an automatic control strategy

supported up-to-date data by FLC. Linguistic expression labeling information granular, like

temperature for the weather or age for persons, is expressed as a linguistic variable. It is familiar

and comfortable to convert linguistic values by using adverbs or adjectives since natural languages

do not continuously contain enough worth terms to define a fuzzy variable scale. In this paper, we

Admin

Blockchain Adaptor

Config Validator

Client Factory

Client Worker

Network
Configuration

Blockchain SDK

Blockchain Network

Channel

Peer

Smart Contract

Initialize the
network

(channel, peer)

Initialize the
smart contract

52

utilize the Mamdani rule structure to set up linguistic modeling for regulating the transaction

traffic control.

We use both triangular or trapezoidal membership functions to outline the fuzzy variables

within the fuzzy system. The trapezoidal fuzzy set A performs μA(x), which is assigned by four

quantified variables (a, b, c, d). The mathematical illustration of the fuzzy membership function

is interpreted, as shown in Equation (1):

 (1)

It is worth noting that the trapezoidal function is thought to be a triangular one when b equals

c. Equation (2) describes the fuzzy intersection operation between two fuzzy sets A and B, where

A, B∈U and x is any component within the U universe:

 𝜇_(𝐴∩𝐵) (𝑥)=𝑚𝑖𝑛{𝜇_𝐴 (𝑥), 𝜇_𝐵 (𝑥)}, ∀𝑥∈𝑈 (2)

Besides, Equation (3) defines the fuzzy union operation:

 𝜇_(𝐴∪𝐵) (𝑥)=𝑚𝑎𝑥{𝜇_𝐴 (𝑥), 𝜇_𝐵 (𝑥)}, ∀𝑥∈𝑈 (3)

Two input variables, transaction throughput, and transaction latency, are considered in the

proposed fuzzy controller, and the output variable generated by the fuzzy controller is the

acceptance rate of the transaction. The quantitative results of the given fuzzy sets and

corresponding membership degrees are calculated by Equation (4):

 𝑚𝐶𝑜𝐴 =
∫𝑓(𝑥)∙𝑥𝑑𝑥

∫𝑓(𝑥)𝑑𝑥
 (4)

𝜇𝐴(𝑥)

0 , 𝑥 < 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
 , 𝑎 < 𝑥 < 𝑏

 1 , 𝑏 < 𝑥 < 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
 , 𝑐 < 𝑥 < 𝑑

0 , 𝑥 > 𝑑

 (𝑎 < 𝑏 ≤ 𝑐 ≤ 𝑑) 1

53

The linguistic terms of the input and output variables and their corresponding fuzzy sets are

defined in Table 5.

Table 5: Fuzzy set definition in smart contract

Fuzzy variables Linguistic terms Fuzzy sets (a, b, c, d)

Transaction Throughput

Very Low 0, 0, 20, 60

Low 20, 60, 100

Acceptable 60, 100, 140

High 100, 140, 180

Very High 140, 180, 200, 200

Network Latency

Very Low 0, 0, 0.15, 0.45

Low 0.15, 0.45, 0.75

Acceptable 0.45, 0.75, 1.05

High 0.75, 1.05, 1.3

Very High 1.05, 1.3, 1.5, 1.5

Acceptance Rate

Very Low 0, 0, 10, 30

Low 10, 30, 50

Medium 30, 50, 70

High 50, 70, 90

Very High 70, 90, 100, 100

54

The proposed fuzzy controller aims to hold the acceptance rate of the transaction at an

optimum level. For example, the acceptance rate is medium if the transaction throughout is in an

exceedingly high condition, and the transaction latency is incredibly low. In a word, the fuzzy

controller serves as a regulator of transaction traffic in line with transaction throughput and latency.

Table 6 gives a list of specified fuzzy rules, and in total, twenty-five rules are defined.

Table 6: Fuzzy rules definition in smart contract

Latency

Throughput

Very Low Low Acceptable High Very High

Very Low Very High Very High High High Medium

Low Very High Very High High Medium Medium

Acceptable High High Medium Medium Medium

High High High Medium Medium Low

Very High Medium Medium Low Very Low Very Low

Figure 34 describes the workflow of the proposed transaction traffic control mechanism based

on fuzzy logic. At the beginning of each test, the admin should configure the network and

benchmark profiles to fulfill the requirements of the test scenario. The benchmark file describes

how the evaluation test should be executed, including the number of rounds, send rate of the

transaction, and settings about monitoring the test network. The network configuration file

55

describes the topology of the test network, such as the configuration of nodes, number of clients,

and smart contracts deployed to the test network.

After configuring the network and benchmark profiles, the user can start the test. The system

extracts the configuration details from the network configuration profile to set up the blockchain

network. Meanwhile, it creates a required number of client workers to generate the workload to

the network. Afterward, the clients start to submit transactions to the network, and the benchmark

results are observed. These results are further analyzed to compute the transaction throughput and

transaction latency, which are stored in an external data storage. These two parameters are used

as the input parameters of the fuzzy controller. The fuzzy inference engine evaluates the input

parameters according to defined fuzzy rules. The fuzzy controller produces the acceptance rate as

the output value, which is used to control the transaction traffic flow. The transaction execution

response is generated and returned to the client. This process is repeated across the entire

benchmark experiment until the admin stops the test. Finally, all of the network entities and the

smart contract will be removed.

56

Set the network and
benchmark configurations

Initialize the blockchain
network

Start tests

Submit transactions

Observe benchmark results

Store benchmark results

Retrieve transaction
throughout and latency

Evaluate fuzzy rules

Compute acceptance rate

Stop tests

Remove the blockchain
network

Perform transaction control
operation

Return response

Figure 34: Flow chart of the transaction traffic control mechanism based on fuzzy logic

Figure 35 illustrates the execution process of the network configuration. The network admin

uses the cryptogen tool to generate the required certificate for each network entity. These

generated network certificates are stored in the local file system. Then the configtxgen tool is used

to create configuration artifacts, including orderer genesis block, channel configuration transaction,

and anchor peer transactions. After that, the admin modifies the docker compose files according

57

to his requirement and execute these files to start the blockchain network in docker containers.

The channel configuration transaction is submitted to the blockchain network via the adaptor to

create the channel in the blockchain network. As a response, a genesis block is returned, which

will be used to join the channel. After the channel is created, each peer is joined the channel, and

anchor peer transactions are executed by the orderer to specify anchor peer for each organization.

The adaptor enrolls clients and obtains key pairs for each client. It also submits the smart contract

install transaction to the network, and the network will initialize the smart contract accordingly.

Figure 36 describes the execution process of the transaction control based on fuzzy logic. The

admin can start the script to start the benchmark test. One or more clients generate transactions to

the adaptor, in turn, the adaptor submits transactions to the Fabric network. Meanwhile, the

benchmark results are observed and collected by the transaction traffic measurement analyzer. The

analyzer calculates the benchmark statistics and stores the results in the benchmark DB. The

fuzzifier retrieves the transaction throughput and network latency as the input parameters of the

fuzzy inference system. The inference engine evaluates the input parameters according to the

fuzzy rules. The defuzzifier produces the acceptance rate as the output value and sends this value

to the transaction control module. The transaction module performs transaction traffic control

operations with respect to the acceptance rate. The transaction execution response is generated

and returned to the client. This process is repeated across the entire benchmark experiment until

the user stops the test. Finally, all of the network entities and the smart contract will be removed.

58

Adaptor
Blokchain
Network

Admin Cryptogen Configtxgen

Configure crypto
certificates

Generate
network certificates

Store Network
Certificates

Configure network
(Profile, Organization, Orderer, Application)

Generate
configuration transaction

Store configuration transaction
(channel.tx, genesis.block, anchorpeer.tx)

Create the channel
Submit the channel

creation tx

Return the genesis block

Create Docker
Container

Start Docker container

Join the channel
Submit the join

creation tx

Join channel

Updtae anchor peers

Update anchor peers

Submit the anchor peers
update tx

Enroll clients and obtain key pairs

Install the smart contract

Install the smart contract

Submit the smart contract
install tx

Figure 35: Sequence diagram of the blockchain network configuration

59

Figure 36: Sequence diagram of the transaction traffic control mechanism based on fuzzy

logic

4.2 Development of the Transaction Traffic Control Mechanism based

on Fuzzy Logic

Table 7 presents the technology stack used to implement transaction traffic control based on

fuzzy logic. The Hyperledger Fabric (v1.4.1) is used as the blockchain infrastructure, which is

deployed in the Ubuntu Linux (18.04 LTS) operating system. All the network elements of

Hyperledger Fabric are encapsulated as Docker images in Docker containers, which are running

in the virtual machine. The Node SDK enables interactions between external applications and the

Fabric blockchain network via a group of APIs to submit transactions to the ledger or query content

data from the ledger. Hyperledger Caliper (v2.0.0) is an open-source blockchain benchmark tool

that allows users or developers to measure different performance indexes of blockchain

60

implementation. FuzzyIS is a JavaScript library for building a fuzzy inference system in smart

contracts that utilize Node.js. MongoDB is a NoSQL database used to store the benchmark results

in the JSON-like document with a schema. Express.js is a Node.js based web server framework to

build web applications, which provides various REST APIs to manipulate the MongoDB.

Table 7: Development environment of transaction traffic control based on fuzzy logic

Component Description

CPU Intel Core i5-8500 @ 3.00 GHz

Memory 12 GB

OS Ubuntu Linux 18.04 LTS

Docker Engine v19.03.8

Docker-Composer v1.24.0

SDK Node.js v8.17.0

Blockchain Infrastructure Hyperledger Fabric v1.4.1

TPS traffic measurement tool Hyperledger Caliper V2.0.0

FIS Library fuzzyIS

DBMS MongoDB

Web Server Express.js

Programming Language JavaScript

IDE VSCode

As shown in Figure 37, the fuzzy controller in the smart contract contains 4 core objects.

Linguistic Variable initializes and adds input and output linguistic variables into the system, such

as acceptance rate, transaction throughput, and network latency. The term describes fuzzy terms

for each variable like high/low, very high/very low, etc. The rule describes the connection between

input and output linguistic variables. These are conditions like: "if transaction throughput is very

low AND network latency is very low, then accept rate should be very high," which describes how

the system works. FIS – fuzzy inference system is created with input and output linguistic

variables along with described rules. It calculates precise values for output variables referring to

the rules given.

61

Figure 37: Fuzzy set definition in the smart contract

Figure 38 describes the structure of fuzzy rules in the smart contract. The rule preserves the

same order in the term description. The first two values present the input variables, transaction

throughput, and network latency, respectively. The third value presents the output variable accept

rate. The fourth value represents the connection variable that can be and/or.

62

Figure 38: Fuzzy rule definition in the smart contract

The invoke function is called by the smart contract throughout the lifetime to carry out the

business transaction logic, as shown in Figure 39. When this function is called, it retrieves

benchmark results (throughput, latency) from the benchmark DB. Afterward, the smart contract

invokes the fuzzy inference system to compute the output variable (accept rate) by passing these

two parameters. The smart contract performs operations on the transaction according to the

predefined transaction control policy. For instance, Figure 40 gives an example of dropping the

transaction if the accept rate ranges from 0 to 30.

63

Figure 39: Function to invoke fuzzy inference system in the smart contract

Figure 40: Sample of transaction control policy in terms of the acceptance rate

4.3 Performance Analysis of the Transaction Traffic Control Mechanism

based on Fuzzy Logic

This section illustrates the evaluation results of the transaction traffic control mechanism

based on fuzzy logic compared to the baseline network. The default block size is set to 10

transactions per block, and a new block is formed every 250 ms. The default ordering service is in

solo mode, which consists only of a single ordering node. The LevelDB is used as the default state

64

database in this experiment. The evaluation tests presented in this section were averaged over

multiple rounds to reduce errors resulting from the network congestion. Figure 41 plots the

evaluation results of transaction throughput in a 1org2peer network with 1 client by comparing

the network using proposed fuzzy logic-based mechanism with the baseline network over different

transaction send rate (range from 25 – 200 tps). The throughput increased linearly with the increase

in send rate until it reached around 150 tps. The growth of transaction throughput decreased

significantly and approached to a flat when the send rate was above this point. When the send rate

was 175 tps, the throughput of each block size set was 152.9 tps and 157.7 tps, with a 3.1% increase

of transaction throughout. Figure 42 plots the evaluation results of transaction latency in a

1org2peer network with 1 client by comparing the network using proposed fuzzy logic-based

mechanism with the baseline network over different transaction send rate (range from 25 – 200

tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism and the

baseline was 80 ms and 100ms, with a 20% reduction of transaction latency.

Figure 41: Evaluation of transaction throughput in 1org2peer network with 1 client

(baseline and fuzzy logic)

65

Figure 42: Evaluation of transaction latency in 1org2peer network with 1 client (baseline

and fuzzy logic)

Figure 43 plots the evaluation results of transaction throughput in a 2org1peer network with 1

client by comparing the network using proposed fuzzy logic-based mechanism with the baseline

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput

increased linearly with the increase in send rate until it flattened out at around 150 tps, as shown

in Figure 43. The growth of transaction throughput decreased significantly and approached to a

flat when the send rate was above this point. When the send rate was 175 tps, the transaction

throughput of each block size set was 132.6 tps and 141.1 tps, respectively. The fuzzy-based

mechanism can increase transaction throughput by 6.4% compared to the baseline. Figure 44 plots

the evaluation results of transaction latency in a 2org1peer network with 1 client by comparing

the network using proposed fuzzy logic-based mechanism with the baseline network over different

transaction send rate (range from 25 – 200 tps). When the send rate was 200 tps, the transaction

latency of fuzzy-based mechanism and the baseline was 100 ms and 150 ms, with a 33.3%

reduction of transaction latency.

66

Figure 43: Evaluation of transaction throughput in 2org1peer network with 1 client

(baseline and fuzzy logic)

Figure 44: Evaluation of transaction latency in 2org1peer network with 1 client (baseline

and fuzzy logic)

67

Figure 45 plots the evaluation results of transaction throughput in a 2org2peer network with 1

client by comparing the network using proposed fuzzy logic-based mechanism with the baseline

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput

increased linearly with the increase in send rate until it reached around 125 tps. The growth of

transaction throughput decreased significantly and approached to a flat when the send rate was

above this point. When the send rate was 150 tps, the transaction throughput of each block size set

was 132.7 tps and 135.5 tps, respectively. The fuzzy-based mechanism can increase transaction

throughput by 2.1% compared to the baseline. Figure 46 plots the evaluation results of transaction

latency in a 2org2peer network with 1 client by comparing the network using proposed fuzzy

logic-based mechanism with the baseline network over different transaction send rate (range from

25 – 200 tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism

and the baseline was 130 ms and 170 ms, with a 23.5% reduction of transaction latency.

Figure 45: Evaluation of transaction throughput in 2org2peer network with 1 client

(baseline and fuzzy logic)

68

Figure 46: Evaluation of transaction latency in 2org2peer network with 1 client (baseline

and fuzzy logic)

Figure 47 plots the evaluation results of transaction throughput of a 3org2peer network with

1 client by comparing the network using proposed fuzzy logic-based mechanism with the baseline

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput

increased linearly with the increase in send rate until it reached around 125 tps. The growth of

transaction throughput decreased significantly and approached to a flat when the send rate was

above this point. When the send rate was 150 tps, the transaction throughput of each block size set

was 112.2 tps and 122.3 tps, respectively. The fuzzy-based mechanism can increase transaction

throughput by 9% compared to the baseline. Figure 48 plots the evaluation results of transaction

latency of a 3org2peer network with 1 client by comparing the network using proposed fuzzy

logic-based mechanism with the baseline network over different transaction send rate (range from

25 – 200 tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism

and the baseline was 230 ms and 320 ms, with a 34.4% reduction of transaction latency.

69

Figure 47: Evaluation of transaction throughput in 3org2peer network with 1 client

(baseline and fuzzy logic)

Figure 48: Evaluation of transaction latency in 3org2peer network with 1 client (baseline

and fuzzy logic)

70

Figure 49 plots the evaluation results of transaction throughput in a 1org2peer network with 5

clients by comparing the network using proposed fuzzy logic-based mechanism with the baseline

network over different transaction send rate (range from 25 – 200 tps). For the case of the baseline

network, the transaction throughput increased linearly with the increase in send rate until it reached

around 150 tps. The growth of transaction throughput decreased significantly and approached to

a flat when the send rate was above this point. When the send rate was 175 tps, the transaction

throughput of the baseline network and the fuzzy-based mechanism was 163.6 tps and 174.6 tps.

Respectively. The fuzzy-based mechanism can increase transaction throughput by 6.7% compared

to the baseline. Figure 50 plots the evaluation results of transaction latency in a 1org2peer network

with 5 clients by comparing the network using proposed fuzzy logic-based mechanism with the

baseline network over different transaction send rate (range from 25 – 200 tps). When the send

rate was 200 tps, the transaction latency of fuzzy-based mechanism and the baseline was 480 ms

and 680 ms, with a 29.4% reduction of transaction latency.

Figure 49: Evaluation of transaction throughput in 1org2peer network with 5 clients

(baseline and fuzzy logic)

71

Figure 50: Evaluation of transaction latency in 1org2peer network with 5 clients (baseline

and fuzzy logic)

Figure 51 plots the evaluation results of transaction throughput in a 2org1peer network with 5

clients by comparing the network using proposed fuzzy logic-based mechanism with the baseline

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput

increased linearly with the increase in send rate until it reached around 125 tps. The growth of

transaction throughput decreased significantly and approached to a flat when the send rate was

above this point. When the send rate was 150 tps, the transaction throughput of each block size set

was 135.1 tps and 149.1 tps, respectively. The fuzzy-based mechanism can increase transaction

throughput by 9.4% compared to the baseline. Figure 52 plots the evaluation results of transaction

latency in a 2org1peer network with 5 clients by comparing the network using proposed fuzzy

logic-based mechanism with the baseline network over different transaction send rate (range from

25 – 200 tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism

and the baseline was 820 ms and 950 ms, with a 13.7% reduction of transaction latency.

72

Figure 51: Evaluation of transaction throughput in 2org1peer network with 5 clients

(baseline and fuzzy logic)

Figure 52: Evaluation of transaction latency in 2org1peer network with 5 clients (baseline

and fuzzy logic)

73

Figure 53 plots the evaluation results of transaction throughput in a 2org2peer network with 5

clients by comparing the network using proposed fuzzy logic-based mechanism with the baseline

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput

increased linearly with the increase in send rate until it reached around 125 tps. The growth of

transaction throughput decreased significantly and approached to a flat when the send rate was

above this point. When the send rate was 150 tps, the transaction throughput of each block size set

was 128.6 tps and 138.4 tps, respectively. The fuzzy-based mechanism can increase transaction

throughput by 7.6% compared to the baseline. Figure 54 plots the evaluation results of transaction

latency in a 2org2peer network with 5 clients by comparing the network using proposed fuzzy

logic-based mechanism with the baseline network over different transaction send rate (range from

25 – 200 tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism

and the baseline was 1760 ms and 2260 ms, with a 22.1% reduction of transaction latency.

Figure 53: Evaluation of transaction throughput in 2org2peer network with 5 clients

(baseline and fuzzy logic)

74

Figure 54: Evaluation of transaction latency in 2org2peer network with 5 clients (baseline

and fuzzy logic)

Figure 55 plots the evaluation results of transaction throughput in a 3org2peer network with 5

clients by comparing the network using proposed fuzzy logic-based mechanism with the baseline

network over different transaction send rate (range from 25 – 200 tps). The transaction throughput

increased linearly with the increase in send rate until it reached around 100 tps. The growth of

transaction throughput decreased significantly and approached to a flat when the send rate was

above this point. When the send rate was 125 tps, the transaction throughput of each block size set

was 98.6 tps and 108.4 tps, respectively. The fuzzy-based mechanism can increase transaction

throughput by 9.9% compared to the baseline. Figure 56 plots the evaluation results of transaction

latency in a 3org2peer network with 5 clients by comparing the network using proposed fuzzy

logic-based mechanism with the baseline network over different transaction send rate (range from

25 – 200 tps). When the send rate was 200 tps, the transaction latency of fuzzy-based mechanism

and the baseline was 2320 ms and 3020 ms, with a 23.2% reduction of transaction latency.

75

The proposed transaction traffic control approach based on fuzzy logic was tested in different

network configurations by varying the network scale and number of clients. The experiment

results indicate that the proposed transaction traffic control mechanism based on fuzzy logic can

improve the blockchain performance concerning transaction throughput and transaction latency.

In all cases, the evaluation using the fuzzy logic-based transaction traffic control mechanism

outperforms the baseline by increasing the transaction throughput while decreasing the transaction

latency.

Figure 55: Evaluation of transaction throughput in 3org2peer network with 5 clients

(baseline and fuzzy logic)

76

Figure 56: Evaluation of transaction latency in 3org2peer network with 5 clients (baseline

and fuzzy logic)

77

5. Transaction Traffic Control Mechanism based on

Learning to Prediction in Blockchain Network

5.1 Proposed Transaction Traffic Control Mechanism based on

Learning to Prediction

The conceptual architecture of the transaction traffic control mechanism based on learning to

prediction is described in Figure 57. The concept of the learning to prediction is first proposed in

[49] to improve the prediction accuracy of temperature readings due to the changeable humidity

level in the case study of a greenhouse. This paper utilizes this idea to improve the prediction

accuracy of network conditions from the noisy network measurement environment. As the

learning to prediction module performs data training that is performance sensitive and time-

consuming, it is not a proper way to directly deploy this module into the smart contract. The

blockchain network is comprised of various nodes, which provide the host environment of smart

contracts and hold a copy of the distributed ledger to maintain the consistency of the whole

network. The learning to prediction module is an external module that can make connections with

the tps traffic measurement module and the blockchain network. The transaction traffic

measurement module consists of the adaptor and the performance analyzer. The clients can submit

transactions by invoking the functions specified in the smart contract. The learning module is used

to tune the parameter of the prediction module to improve the prediction policy. The learning

module takes the historical data such as network conditions observed in previous. Based on the

history data, the learning module establishes the forecasting model to predict the tuning parameter

dynamically. The predicted value of the prediction module is used as the input parameter of the

fuzzy controller. Similar to the first mechanism, the fuzzy controller is also implemented in the

smart contract to automate the process of transaction traffic flow across the network. The fuzzy

78

controller consists of the fuzzy inference system and the transaction control modules. Benchmark

results of the network are observed in real-time, and these values are transmitted to the smart

contract. The fuzzy controller computes the control commands to make decisions on the received

transactions. The consensus is achieved within the whole network, and the execution results are

returned to the clients.

Figure 57: Conceptual architecture of the transaction traffic control mechanism based on

learning to prediction

79

Figure 58 illustrates the detailed architecture of the proposed system, which is comprised of

the admin, transaction traffic measurement analyzer, benchmark DB, predicted result DB, learning

to prediction module, and the blockchain network. Based on the fuzzy-based approach, learning

to prediction module is additionally implemented to improve the performance of the fuzzy

controller. Kalman Filter-based prediction model is used to estimate the transaction throughput in

the next stage. The ANN-based learning model is used to optimize the prediction algorithm by

tuning the parameter of the Kalman Filter. The predicted throughput values are persisted in the

predicted result DB. The proposed fuzzy controller adjusts the transaction acceptance rate of the

smart contract by comparing transaction throughput, with the acceptance rate. The fuzzy controller

only has one single input parameter, the predicted throughput. The inference engine evaluates the

input against predefined fuzzy rules. The defuzzifier converts output data (acceptance rate) into

non-fuzzy values. The output value is obtained by the transaction control module to adjust the

transaction acceptance rate. The whole process is repeated, and the throughput of the Fabric

network can be dynamically maintained at a suitable level.

Figure 58: Development configuration of the transaction traffic control mechanism based

on learning to prediction

80

The training module is used to adjust the prediction rule to enhance its performance

concerning the prediction accuracy, as shown in Figure 59. We tend to use the Kalman Filter as

the prediction module, and the artificial neural network (ANN) as the learning module. The

Kalman Filter is employed to predict the transaction throughput of the network from a noisy

environment. Noise in the environment is introduced in a situation wherever the transaction

latency profoundly impacts transaction throughput. Transaction throughput, transaction latency,

and the actual transaction throughput are used as input parameters for the ANN-based learning

module. The Kalman Filter obtains the transaction throughput at time t, i.e., 𝑧_𝑡, and can predict

the transaction throughput 𝑇𝑡 by eliminating noise. The performance of the Kalman Filter

algorithm is mainly affected by a configurable parameter called Kalman gain (K), which is

renewed on each new iteration in terms of the variance matrix (P) and the calculable error (R).

The ANN-based learning module aims to estimate the calculable error (R) to update the Kalman

gain (K) dynamically.

Kalman Filter

Artificial Neural
Networks

Transaction
Throughput

Transaction
Latency

Zt

Zt

Lt

R

Tt
Predicted

Throughput

Actual
Transaction
Throughput Rt

Figure 59: Overview architecture of the learning to prediction module

81

The Kalman Filter can predict the actual state of the system concerning only the previous state

information. It updates the value of Kalman gain (K) in terms of the condition to regulate weights

given to the system’s own estimated state or sensing values. The essential parts and workflow of

the Kalman Filter are described in Figure 60.

Every blockchain network has its noise factors, which may seriously affect throughput

measurement. In this paper, we tend to contemplate a throughout measurement having noise and

allow us to assume Tt is that the transaction throughput at time t. The Kalman Filter contains the

model that can make a prediction of the system state, i.e., estimated transaction throughput, and

then, this value is compared to the current measured transaction throughput value to predict the

transaction throughput 𝑇𝑡+1 at time t+1.

Figure 60: Flow chart of the transaction throughput prediction using Kalman Filter

Project the state and error
covariance ahead X,P

Compute the Kalman Gain

Estimate the real state

Previous state

Update the error covariance

Output state

Measurement error

Project the approximated
measurement error

Measured state
Blockchain
Network

82

In the commencement, the estimated transaction throughput is computed from the

antecedently estimated value by equation (5):

 𝑇𝑘 = 𝐴 ∙ 𝑇𝑘−1 + 𝐵 ∙ 𝑢𝑘 (5)

𝑇𝑘 represents the estimated transaction throughput, 𝐴, and 𝐵 present the state transition and

control matrixes, respectively. 𝑇𝑘−1 represents the transaction throughput at time k-1, and 𝑢𝑘 is

the control vector. The estimated transaction throughput 𝑇𝑘 is determined by 𝑃𝑘, which represents

the covariance factor.

 𝑃𝑘 = 𝐴 ∙ 𝑃𝑘−1 ∙ 𝐴𝑇 + 𝑄 (6)

𝐴 and 𝐴𝑇represent the state transition matrix as well as its transpose, and 𝑃𝑘−1 is the previous

covariance value with a process error 𝑄. The estimated transaction throughput and the updated

covariance value are used to compute the Kalman gain (K), expressed in equation (7):

 𝐾𝑘 =
𝑃𝑘 ∙ 𝐻𝑇

𝐻∙ 𝑃𝑘∙𝐻
𝑇+𝑅

 (7)

𝐻 and 𝐻𝑇 are the observation matrix as well as its transpose, and the measurement error is

represented by 𝑅. The current measured transaction throughput at time k is presented as 𝑧𝑘. The

updated transaction throughput for the next stage is calculated, as expressed in equation (8):

 𝑇𝑒 = 𝑇𝑘 + 𝐾𝑘 (𝑧𝑘 − 𝐻 ∙ 𝑇𝑘) (8)

The covariance value is updated for the next iteration by equation (9):

 𝑃𝑒 = (𝐼 − 𝐾𝑘 ∙ 𝐻) 𝑃𝑘 (9)

Figure 61 details the architecture of the learning to prediction module to control the transaction

traffic flow. Three parameters, transaction latency, transaction throughout, and actual transaction

throughput, are used as inputs for the ANN-based learning module. The ANN algorithm predicts

83

the transaction throughput measurement error; in turn, this value is divided by a constant factor

(F) to calculate the estimated error R, which is passed to the Kalman Filter. The Kalman gain (K)

is updated accordingly to adjust the accuracy of the prediction module.

Input Layer

1

2

3

Hidden Layer

1

2

3

n

.

.

.

Output Layer

1 R=err/F
err

Artificial Neural Network

Computation of R

ANN based
Learning Module

Transaction
Throughput

Transaction
Latency

Lt

Zt

Measurement
error

Measured state

Compute the
Kalman Gain

Estimate the real
throughput

Update the error
covariance

Output Predicted
Throughput

Prior error
covariance

Prior estimated
throughput

Project the state and error
covariance ahead X,P

Project the approximated
measurement error

Initialize R

R

K

Zt

Zt

P Pt-1

Tt

K

Tp

Tt

R

Kalman Filter based
Prediction Module

Actual
Transaction
Throughput

Rt

Figure 61: Detailed diagram of the learning to prediction module [49]

Table 8 describes the rule definitions for the learning to prediction module. The fuzzy

controller for the learning to prediction just takes one input parameter, predicted transaction

throughput. As a consequence, 5 rules are built for the fuzzy controller in total.

84

Table 8: Fuzzy rules definition for learning to prediction

Predicted Transaction Throughput Acceptance Rate

Very Low Very High

Low High

Acceptable Medium

High Low

Very High Very Low

Figure 62 describes the workflow of the proposed transaction traffic control mechanism based

on learning to prediction. At the beginning of each test, the user should configure the network and

benchmark profiles to fulfill the requirements of the test scenario. The benchmark file describes

how the evaluation test should be executed, including the number of rounds, send rate of the

transaction, and settings about monitoring the test network. The network configuration file

describes the topology of the test network, such as the configuration of nodes, number of clients,

and smart contracts deployed to the test network.

After configuring the network and benchmark profiles, the user can start the test. Afterward,

the clients submit transactions to the network, and the benchmark results are observed. These

results are further analyzed to compute the transaction throughput and latency, which are stored

in an external data storage. These two parameters are used as the input parameters ANN-based

learning module to predict the measurement error. The estimated error is used to tune the

measurement error factor of the Kalman Filter algorithm. Actual transaction throughput is

predicted and stored in the database. The smart contract retrieves the actual transaction throughput

as the input parameter. The fuzzy inference engine evaluates the input parameters according to

defined fuzzy rules. The fuzzy controller produces the acceptance rate as the output value, which

is used to control the transaction traffic flow. The transaction execution response is generated and

returned to the client. This process is repeated across the entire benchmark experiment until the

user stops the test. Finally, all of the network entities and the smart contract will be removed.

85

Set the network and
benchmark configurations

Initialize the blockchain
network

Start tests

Submit transactions

Observe benchmark results

Store benchmark results

Retrieve transaction
throughout and latency

Predict the measurement error and
tune the Kalman Filter algorithm

Predict the actual transaction
throughput

Stop tests

Remove the blockchain
network

Retrieve the actual
transaction throughput

Return response

Store the actual transaction
throughput

Evaluate fuzzy rules

Perform transaction control
operation

Figure 62: Flow chart of the transaction traffic control based on learning to prediction

Figure 63 illustrates the execution process of the transaction traffic control mechanism based

on learning to prediction. First of all, the admin needs to configure the network and benchmark

files to set up the blockchain network. The blockchain network will be initialized, and the smart

contract will be installed according to the network configuration. Afterward, the admin can start

the script to start the benchmark test. One or more clients generate transactions to the adaptor, in

turn, the adaptor submits transactions to the Fabric network. Meanwhile, the benchmark results

are observed and collected by the performance analyzer. The analyzer calculates the benchmark

statistics and stores the results in the benchmark DB. The learning module retrieves the transaction

latency and transaction throughput values to predict the measurement error used for tuning the

Kalman Filter algorithm. The actual transaction throughput is estimated and stored in the predicted

86

result database. The fuzzifier obtains the predicted transaction throughput as the input parameter

of the fuzzy inference system. The inference engine evaluates the input parameter according to

the fuzzy rules. The defuzzifier produces the acceptance rate as the output value and sends this

value to the transaction control module. The transaction module performs transaction traffic

control operations with respect to the acceptance rate. The transaction execution response is

generated and returned to the client. This process is repeated across the entire benchmark

experiment until the user stops the test. Finally, all of the network entities and the smart contract

will be removed.

Figure 63: Sequence diagram of the transaction traffic control mechanism based on

learning to prediction

87

5.2 Development of the Transaction Traffic Control Mechanism based

on Learning to Prediction

Table 9 presents the technology stack used to implement the transaction traffic control based

on learning to prediction. Similar to the fuzzy-based approach, the Hyperledger Fabric is used as

the blockchain infrastructure. Hyperledger Caliper (v2.0.0) is used to measure different

performance indexes of the blockchain implementation. The learning to prediction module is

developed in Visual Studio Community with C#. For implementing the ANN-based learning

module, Accord. Neuro is used. The Newtonsoft.Json is a JSON framework for .NET.

Table 9: Development environment of transaction traffic control based on learning to

prediction

Component Description

CPU Intel Core i5-8500 @ 3.00 GHz

Memory 12 GB

OS Ubuntu Linux 18.04 LTS

Docker Engine v19.03.8

Docker-Composer v1.24.0

SDK Node.js v8.17.0

Blockchain Infrastructure Hyperledger Fabric v1.4.1

TPS traffic measurement tool Hyperledger Caliper V2.0.0

Library fuzzyIS, Accord. Neuro, Newtonsoft.Json

DBMS MongoDB

Programming Language JavaScript, C#

IDE VSCode, Visual Studio Community

As shown in Table 10, the learning to prediction dataset consists of four features: network

latency, send rate, transaction throughout, and the error. To make this dataset, we utilize the

Hyperledger Caliper and modify the sample benchmark configuration file to meet our scenario.

Each row describes the benchmark statistics in one minute, and in total, this dataset contains 10080

rows, which represent the performance profile in a week. The transaction latency measures the

time for the entire network to validate a transaction, including the propagation time and any

88

settling time due to the consensus in place. The send rate is the rate at which clients submit

transactions. The transaction throughput is the rate at which the blockchain commits valid

transactions in a defined time period. The error presents the difference between the send rate and

transaction throughput.

Table 10: Dataset for the learning to prediction module

No Network Latency

(s)

Send Rate

(tps)

Transaction Throughput

(tps)

Error

(tps)

1 0.22 146.5 145.8 0.7

2 0.22 146.9 146.3 0.6

3 0.19 151.3 150.7 0.6

4 0.18 152.1 151.4 0.7

5 0.19 151.1 150.3 0.8

6 0.17 161.9 161.1 0.8

7 0.15 158 157.3 0.7

8 0.16 157.6 156.9 0.7

9 0.19 161.4 160.5 0.9

10 0.13 160.6 159.8 0.8

… … … … …

… … … … …

10080 0.88 161.1 159.7 1.4

To set up the best training module for the ANN, different configurations are tested by varying

the quantity of neurons within the hidden layer, learning rates, and activation functions. For each

network configuration, experiments were conducted in multiple rounds for training, and average

results are recorded to analyze the random factor for initializing weights of the ANN network.

Besides, to avoid bias within the training, a 4-fold cross-validation technique is applied for each

configuration across all experiments. In this experiment, we divided the original dataset into four

89

equal-sized subsets (2520 instances in every subset). 75% of the data were utilized for training,

and the remaining 25% was used for testing with the defined configuration in every experiment,

as shown in Figure 64.

Figure 64: 4-fold cross-validation model for training and testing data

Table 11 provides elaborated info concerning the chosen configuration for ANN; therefore,

the associated prediction accuracy concerning Root Mean Square Error (RMSE) evaluating the

network configuration in every model. The training process was supported by the Levenberg–

Marquardt algorithm, considered as one of the most effective and quickest methodologies for

moderately-sized neural networks [50]. We set the maximum number of epochs to 50 for training

the ANN network.

Table 11: RMSE for different configurations using the 4-fold cross-validation model

Hidden

Layer Size

Activation

Function

Learning

Rate

Experime

nt ID

Average (Test

Cases)

Experiment Average

(Test Cases)

5 Linear 0.1 1 4.69

4.50
5 Linear 0.1 2 4.48

5 Linear 0.1 3 4.31

5 Linear 0.1 4 4.52

5 Linear 0.2 1 4.69

4.51
5 Linear 0.2 2 4.48

5 Linear 0.2 3 4.31

5 Linear 0.2 4 4.56

5 Sigmoid 0.1 1 0.69

0.50
5 Sigmoid 0.1 2 0.48

5 Sigmoid 0.1 3 0.31

Model 1 Model 2 Model 3 Model 4

Record 1

Record 7560

Record 10080

Record 1 Record 1 Record 1

Record 10080 Record 10080 Record 10080

Record 2520Record 2520

Record 5040Record 5040

Record 7560

Testing Data Training Data

90

5 Sigmoid 0.1 4 0.53

5 Sigmoid 0.2 1 0.59

0.64
5 Sigmoid 0.2 2 0.57

5 Sigmoid 0.2 3 0.66

5 Sigmoid 0.2 4 0.75

5 Linear 0.1 1 4.41

4.61
5 Linear 0.1 2 4.53

5 Linear 0.1 3 4.74

5 Linear 0.1 4 4.76

5 Linear 0.2 1 4.57

4.55
5 Linear 0.2 2 4.60

5 Linear 0.2 3 4.50

5 Linear 0.2 4 4.53

5 Sigmoid 0.1 1 0.51

0.61
5 Sigmoid 0.1 2 0.72

5 Sigmoid 0.1 3 0.53

5 Sigmoid 0.1 4 0.68

5 Sigmoid 0.2 1 0.58

0.64

5 Sigmoid 0.2 2 0.47

5 Sigmoid 0.2 3 0.77

5 Sigmoid 0.2 4 0.75

10 Linear 0.1 1 4.47

4.47
10 Linear 0.1 2 4.47

10 Linear 0.1 3 4.47

10 Linear 0.1 4 4.76

10 Linear 0.2 1 4.47

4.47
10 Linear 0.2 2 4.47

10 Linear 0.2 3 4.47

10 Linear 0.2 3 4.47

10 Sigmoid 0.1 1 0.38

0.48
10 Sigmoid 0.1 2 0.58

10 Sigmoid 0.1 3 0.50

10 Sigmoid 0.1 4 0.45

10 Sigmoid 0.2 1 0.52

0.64
10 Sigmoid 0.2 2 0.73

10 Sigmoid 0.2 3 0.46

10 Sigmoid 0.2 4 0.86

15 Linear 0.1 1 4.47

4.47
15 Linear 0.1 2 4.47

15 Linear 0.1 3 4.47

15 Linear 0.1 4 4.47

91

15 Linear 0.2 1 4.47

4.47
15 Linear 0.2 2 4.47

15 Linear 0.2 3 4.47

15 Linear 0.2 4 4.47

15 Sigmoid 0.1 1 0.64

0.67
15 Sigmoid 0.1 2 0.64

15 Sigmoid 0.1 3 0.74

15 Sigmoid 0.1 4 0.64

15 Sigmoid 0.2 1 0.44

0.58
15 Sigmoid 0.2 2 0.67

15 Sigmoid 0.2 3 0.52

15 Sigmoid 0.2 4 0.67

Figure 65 presents the code of training function in the learning to prediction module. The

network configuration for training is set up with 2 inputs, 10 neurons in the hidden layer, and one

output. We use the Sigmoid activation function and the Levenberg–Marquardt algorithm for

learning. The process of training is a loop in which we set the epochs at 20. Figure 66 presents the

code of the Kalman Filter algorithm in the learning to prediction module. We initialize the value

for each parameter in the first round. Afterward, the result in the first round is used as the input

for the next iteration. In this way, the Kalman Filter estimates the actual transaction throughput

based on transaction throughput measurements observed over time.

92

Figure 65: Function of ANN in the learning to prediction module

93

Figure 66: Function of Kalman Filter in the learning to prediction module

Figure 67 shows the code of transaction traffic control based on learning to prediction. The

whole process of transaction traffic control includes the following steps: obtain the input

parameters (network latency, transaction throughput), predict the measurement error using the

ANN learning model, and predict the actual transaction throughout using Kalman Filter. The

application retrieves the benchmark results from the mongo db by calling the URL of the mongo

db. These values are normalized and then passed to the ANN learning module to predict the error

94

factor. Afterward, the predicted error factor is divided by a constant value to compute the

normalized error. After denormalization, the error is divided by a constant factor and passed to the

Kalman Filter. Lastly, the Kalman Filter predicts the actual transaction throughput using the

updated error factor and stores the predicted result in the mongo db.

Figure 67: Function of transaction traffic control in the learning to prediction module

95

The learning to prediction module is implemented using window forms in C#, as shown in

Figure 68. We implement various buttons to provide entries for performing operations provided

by the learning to prediction module. The data load obtains the dataset in text format and stores it

in the application. The Kalman Filter removes the measurement noise and predicts the transaction

throughput. ANN learning module tunes the Kalman Filter algorithm to improve its prediction

accuracy. Prediction with learning to Kalman Filter utilizes the optimized prediction parameter to

predict the transaction throughput. TPS control utilizes the optimized Kalman Filter algorithm to

predict the transaction throughput and stores the predicted value into the database. The results

panel visualizes the prediction results and accuracy of the learning to prediction module.

Figure 68: Learning to prediction module main interface

Figure 69 illustrates the execution results of the learning to prediction module. The dataset is

loaded from an external text file and stored inside the application for further processing. The

RMSE is computed by comparing the measured transaction throughout with the actual send rate.

The RMSE for the measurement error is very high, with a value of 20.25. The RMSE error is at

96

17.41, with a reduction of 14% by using the Kalman Filter with R=20. This error is further reduced

by 20.3% at 13.88 by using the optimized Kalman Filter.

Figure 69: Execution results of the learning to prediction module

5.3 Performance Analysis of the Transaction Traffic Control Mechanism

based on Learning to Prediction

This section illustrates the evaluation results of the transaction traffic control mechanism

based on learning to prediction compared to the baseline network. We used the sample smart

contract called simple to test the backend functionalities of the blockchain network. The default

block size is set to 10 transactions per block, and a new block is formed every 250 ms. The default

ordering service is in solo mode, which consists only of a single ordering node. The LevelDB is

used as the default state database in this experiment. The evaluation tests presented in this section

were averaged over multiple rounds to reduce errors resulting from the network congestion.

97

Figure 70 plots the evaluation results of transaction throughput in a 1org2peer network with

one client by comparing the network using the proposed transaction traffic control mechanism

based on learning to prediction with the baseline network over different transaction send rate

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send

rate until it reached around 150 tps. The growth of transaction throughput decreased significantly

and approached to a flat when the send rate was above this point. When the send rate was 175 tps,

the transaction throughput of each block size set was 152.9 tps and 159.7 tps, with a 4.4% increase

of the transaction throughput. Figure 71 plots the evaluation results of transaction latency in a

1org2peer network with one client by comparing the network using the proposed transaction traffic

control mechanism based on learning to prediction with the baseline network over different

transaction send rate (range from 25 – 200 tps). When the send rate was 200 tps, the transaction

latency of the learning to prediction mechanism and the baseline was 80 ms and 100 ms, with a

20% reduction of transaction latency.

Figure 70: Evaluation of transaction throughput in 1org2peer network with 1 client

(baseline and learning to prediction)

98

Figure 71: Evaluation of transaction latency in 1org2peer network with 1 client (baseline

and learning to prediction)

Figure 72 plots the evaluation results of transaction throughput in a 2org1peer network with

one client by comparing the network using the proposed transaction traffic control mechanism

based on learning to prediction with the baseline network over different transaction send rate

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send

rate until it reached around 150 tps. The growth of transaction throughput decreased significantly

and approached to a flat when the send rate was above this point. When the send rate was 175 tps,

the transaction throughput of each block size set was 132.6 tps and 144.1 tps, with an 8.7%

increase of the transaction throughput. Figure 73 plots the evaluation results of transaction latency

in a 2org1peer network with one client by comparing the network using the proposed transaction

traffic control mechanism based on learning to prediction with the baseline network over different

transaction send rate (range from 25 – 200 tps). When the send rate was 200 tps, the transaction

latency of the learning to prediction mechanism and the baseline was 95 ms and 150 ms, with a

36.7% reduction of transaction latency.

99

Figure 72: Evaluation of transaction throughput in 2org1peer network with 1 client

(baseline and learning to prediction)

Figure 73: Evaluation of transaction latency in 2org1peer network with 1 client (baseline

and learning to prediction)

100

Figure 74 plots the evaluation results of transaction throughput in a 2org2peer network with

one client by comparing the network using the proposed transaction traffic control mechanism

based on learning to prediction with the baseline network over different transaction send rate

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send

rate until it reached around 125 tps. The growth of transaction throughput decreased significantly

and approached to a flat when the send rate was above this point. When the send rate was 150 tps,

the transaction throughput of each block size set was 132.7 tps and 139.5 tps, with a 5.1% increase

of the transaction throughput. Figure 75 plots the evaluation results of transaction latency in a

2org2peer network with one client by comparing the network using the proposed transaction traffic

control mechanism based on learning to prediction with the baseline network over different

transaction send rate (range from 25 – 200 tps). When the send rate was 200 tps, the transaction

latency of the learning to prediction mechanism and the baseline was 125 ms and 170 ms, with a

26.5% reduction of transaction latency.

Figure 74: Evaluation of transaction throughput in 2org2peer network with 1 client

(baseline and learning to prediction)

101

Figure 75: Evaluation of transaction latency in 2org2peer network with 1 client (baseline

and learning to prediction)

Figure 76 plots the evaluation results of transaction throughput in a 3org2peer network with

one client by comparing the network using the proposed transaction traffic control mechanism

based on learning to prediction with the baseline network over different transaction send rate

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send

rate until it reached around 125 tps. The growth of transaction throughput decreased significantly

and approached to a flat when the send rate was above this point. When the send rate was 150 tps,

the transaction throughput of each block size set was 112.2 tps and 125.3 tps, with an 11.7%

increase of the transaction throughput. Figure 77 plots the evaluation results of transaction latency

in a 3org2peer network with one client by comparing the network using the proposed transaction

traffic control mechanism based on learning to prediction with the baseline network over different

transaction send rate (range from 25 – 200 tps). When the send rate was 200 tps, the transaction

latency of the learning to prediction mechanism and the baseline was 225 ms and 320 ms, with a

29.7% reduction of transaction latency.

102

Figure 76: Evaluation of transaction throughput in 3org2peer network with 1 client

(baseline and learning to prediction)

Figure 77: Evaluation of transaction latency in 3org2peer network with 1 client (baseline

and learning to prediction)

103

Figure 78 plots the evaluation results of transaction throughput in a 1org2peer network with

five clients by comparing the network using the proposed transaction traffic control mechanism

based on learning to prediction with the baseline network over different transaction send rate

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send

rate until it reached around 175 tps. The growth of transaction throughput decreased significantly

and approached to a flat when the send rate was above this point. When the send rate was 200 tps,

the transaction throughput of the learning to prediction mechanism and the baseline was 183.1 tps

and 173.1 tps with a 5.8% increase of the transaction throughput. Figure 79 plots the evaluation

results of transaction latency in a 1org2peer network with five clients by comparing the network

using the proposed transaction traffic control mechanism based on learning to prediction with the

baseline network over different transaction send rate (range from 25 – 200 tps). When the send

rate was 200 tps, the transaction latency of the learning to prediction mechanism and the baseline

was 440 ms and 680 ms, with a 35.2% reduction of transaction latency.

Figure 78: Evaluation of transaction throughput in 1org2peer network with 5 clients

(baseline and learning to prediction)

104

Figure 79: Evaluation of transaction latency in 1org2peer network with 5 clients (baseline

and learning to prediction)

Figure 80 plots the evaluation results of transaction throughput in a 2org1peer network with

five clients by comparing the network using the proposed transaction traffic control mechanism

based on learning to prediction with the baseline network over different transaction send rate

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send

rate until it reached around 125 tps. The growth of transaction throughput decreased significantly

and approached to a flat when the send rate was above this point. When the send rate was 150 tps,

the transaction throughput of the learning to prediction mechanism and the baseline was 135.1 tps

and 149.6 tps with a 10.7% increase of the transaction throughput. Figure 81 plots the evaluation

results of transaction latency in a 2org1peer network with five clients by comparing the network

using the proposed transaction traffic control mechanism based on learning to prediction with the

baseline network over different transaction send rate (range from 25 – 200 tps). When the send

rate was 200 tps, the transaction latency of the learning to prediction mechanism and the baseline

was 800 ms and 950 ms, with a 15.8% reduction of transaction latency.

105

Figure 80: Evaluation of transaction throughput in 2org1peer network with 5 clients

(baseline and learning to prediction)

Figure 81: Evaluation of transaction latency in 2org1peer network with 5 clients (baseline

and learning to prediction)

106

Figure 82 plots the evaluation results of transaction throughput in a 2org2peer network with

five clients by comparing the network using the proposed transaction traffic control mechanism

based on learning to prediction with the baseline network over different transaction send rate

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send

rate until it reached around 125 tps. The growth of transaction throughput decreased significantly

and approached to a flat when the send rate was above this point. When the send rate was 150 tps,

the throughput of the learning to prediction mechanism and the baseline was 128.6 tps and 142.4

tps with a 10.7% increase of the transaction throughput. Figure 83 plots the evaluation results of

transaction latency in a 2org2peer network with five clients by comparing the network using the

proposed transaction traffic control mechanism based on learning to prediction with the baseline

network over different transaction send rate (range from 25 – 200 tps). When the send rate was

200 tps, the transaction latency of the learning to prediction mechanism and the baseline was 1620

ms and 2260 ms, with a 28.3% reduction of transaction latency.

Figure 82: Evaluation of transaction throughput in 2org2peer network with 5 clients

(baseline and learning to prediction)

107

Figure 83: Evaluation of transaction latency in 2org2peer network with 5 clients (baseline

and learning to prediction)

Figure 84 plots the evaluation results of transaction throughput in a 3org2peer network with

five clients by comparing the network using the proposed transaction traffic control mechanism

based on learning to prediction with the baseline network over different transaction send rate

(range from 25 – 200 tps). The transaction throughput increased linearly with the increase in send

rate until it reached around 100 tps. The growth of transaction throughput decreased significantly

and approached to a flat when the send rate was above this point. When the send rate was 125 tps,

the transaction throughput of the learning to prediction mechanism and the baseline was 98.6 tps

and 111.4 tps with a 13% increase of the transaction throughput. Figure 85 plots the evaluation

results of transaction latency in a 3org2peer network with five clients by comparing the network

using the proposed transaction traffic control mechanism based on learning to prediction with the

baseline network over different transaction send rate (range from 25 – 200 tps). When the send

rate was 200 tps, the transaction latency of the learning to prediction mechanism and the baseline

was 2210 ms and 3020 ms, with a 26.8% reduction of transaction latency.

108

The proposed transaction traffic control mechanism based on learning to prediction was tested

in different network configurations by varying the network scale and number of clients. The

experiment results indicate that the learning to prediction approach can improve the blockchain

performance concerning transaction throughput and transaction latency. In all cases, the evaluation

using the transaction traffic control mechanism based on learning to prediction outperforms the

baseline by increasing the transaction throughput while decreasing the transaction latency.

Figure 84: Evaluation of transaction throughput in 3org2peer network with 5 clients

(baseline and learning to prediction)

109

Figure 85: Evaluation of transaction latency in 3org2peer network with 5 clients (baseline

and learning to prediction)

110

6. Performance Evaluation of the Proposed Approach in

Clinical Trial Testbed

6.1 Clinical Trial Testbed Environment for Blockchain Performance

Evaluation

The system architecture of the clinical trial testbed consists of three layers: the physical layer,

the service layer, and the application layer. As shown in Figure 86, the bottom layer is the physical

layer, which is comprised of various smart devices for collecting the vital signals from subjects.

These devices enable the collection of objective measures of intervention effects both in-clinical

and in remote settings. The service layer adopts the modular design that makes the blockchain

network more natural to maintain and extend. This layer encapsulates various characteristics of

blockchain technologies into individual modules, including peer-to-peer (P2P) protocol,

certificate authority, and consensus. The blockchain network consists of various entities, including

distributed ledger, certificate authority, P2P protocol, consensus, smart contract, etc. The ledger

is decentralized storage to maintain the replicated and shared data distributed across the entire

network. The smart contract defines the business logic concerning all clinical trial-related

operations, such as creating a patient record. The orderer is a particular node that is performing a

consensus algorithm to guarantee the stable operation of the blockchain network and ensure that

all peers maintain the data consistency. The event hub is responsible for emitting events whenever

a new block is generated, or the condition defined in the smart contract is triggered. The functions

specified in the smart contract are encapsulated into REST APIs. The external smart devices and

applications can integrate with the network by calling these APIs. The application layer describes

the way that services provided by the blockchain are visualized to the end-user. The blockchain

111

network can be accessed either using responsive web-based applications or native applications on

smartphones.

Service Layer

Application Layer

Physical Layer

User
Management

Device
Management

eCRF
Management

Audit Query

Distributed
Ledger

P2P Protocol
Certificate
Authority

Consensus

Smart Contract Event Hub REST APIOrderer

Blockchain Network

PIllbox
Blood

Glucose
Meter

Blood
Pressure

Meter

Pulse
Oximeter

Airflow
Sensor

Figure 86: Layer-based system architecture of the clinical trial service platform

There are admins, principal investigators (PIs), clinical research coordinators (CRCs), clinical

research associates (CRAs), subjects, and smart devices, all of which form the stakeholders in the

clinical trial, as shown in Figure 87. The pharmaceutical company is the sponsor that takes

responsibility for creating experiment plans, developing clinical protocols, preparing instruments

and medicines of a clinical trial. The pharmaceutical company is not considered as the stakeholder

since the contract research organization (CRO) provides clinical trial services for the

pharmaceutical company on an outsource basis. In this paper, the admin of the blockchain

112

management company can set up the network to initiate a clinical trial but cannot perform

transactions on the blockchain. Besides, admin is the network manager of blockchain, who is

responsible for user registration and enrollment. CRC and PI are investigators who are responsible

for the conduct of the clinical trial at a trial site. Generally, a clinical trial is conducted by a team

of individuals at a clinical site. CRC interacts heavily with subjects, doing things like collecting

and entering data. PI is the lead individual of the team that is ultimately responsible for all trial-

related activities at the site. Their job is to ensure the protocol is executed precisely as written and

may delegate trial-related activities to members of the clinical team. CRA is the regulator who

works in CRO, with authority to review submitted clinical data and those that conduct inspections.

The subject is a direct participant of the clinical trial, either as a recipient of the investigational

product or as a control. The process of subject enrollment is performed by CRC, who has to screen

the recruited subjects to see whether they meet the inclusion and exclusion criteria. As the most

fundamental part of the clinical trial system, subjects need to transmit the biomedical data

collected from smart devices throughout clinical trials. The distributed data lake serves as an

isolated storage that resides on the blockchain, also known as off-chain data storage. It is used to

preserve all clinical data, covering user, device, eCRF, and audit data.

Clinical Trial Service Platform Based on Blockchain

Admin CRA

CRC

PI

Smart Device

2. User Registration
and Enrollment

1. Set Up Network
7. Audit
Query

4. Collect
Clinical Data

Subject

5. Generate
eCRF

6. Generate/
Confirm eCRF

Distributed Data Lake

eCRF, Audit

User, Device

3. Subject
Enrollment

8. Response
Audit Query

8. Response
Audit Query

Figure 87: Service scenario of clinical trial service based on blockchain

113

As shown in Figure 88, these participants can access the blockchain network through the client

applications that can communicate with REST APIs. REST APIs serve as an intermediate between

external applications and the blockchain network. The smart contract (SC) is a decentralized

application that defines the business logic of the blockchain network according to the clinical

protocol and automates the whole clinical trial process. The blockchain network appends an

immutable record in the ledger to reflect changes resulting from transactions proposed by external

applications, and a transaction response is returned as the response. The key-value database (K-V

DB) holds the current states of the ledger. Each time a new transaction is agreed upon and added,

the K-V DB will update to reflect the latest transaction. The blockchain network is comprised of

multiple channels, which can have various organizations, different identities, and data visibility

rules. This system is appropriate for multiple clinical trials as the channel is a private network that

data is shared only between the participants within the same channel. Organization refers to a

business entity (blockchain management company, hospital, contract research organization) that

participates in the network. In this paper, each channel consists of four related organizations, and

each of them holds a copy of the ledger to maintain consistency.

114

Figure 88: System configuration of the blockchain-based clinical trial service

The detailed workflow of the proposed system is illustrated, as shown in Figure 89. Each

participant must have credentials to get the authorized permission for submitting a transaction to

the blockchain network. The PI, CRC, and CRA can only read and update their profiles. The PI

and CRC can create profiles for new subjects who participate in the clinical trial. They can also

set profiles for devices (pillbox, bgm), and these devices will update the settings accordingly. The

devices collect biomedical data from subjects and generate eCRF pillbox/bgm data in the

blockchain. The eCRF PI consult data and lab test data are created by the CRC when the subject

visits the clinical site. After confirmation by the PI, these data cannot be modified. The CRA can

review the data and generate audit queries if there exist errors in data. Afterward, the PI and CRC

can access the audit and correct the data accordingly.

115

Figure 89: The workflow of the blockchain-based clinical trial service

Figure 90 describes the execution processes of various service scenarios in the proposed

system. Users such as PI, CRC, and CRA can read and update their profiles, but they cannot delete

these profiles as this operation is allowed by the admin. Subject profiles created by either PI or

CRC are accessible to the CRA. The PI and CRC can create the profile of a device that is visible

to the CRA. To get medical data from a specified subject, the PI and CRC can bind the device to

the subject by updating the device profile. The device periodically read the profile and configure

the settings (time to alarm, report interval) accordingly. The medical data collected by the device

is generated in the blockchain, and these data are visible to PI and CRC. In clinical trials, the

subject needs to visit the clinical site regularly. Whenever the subject visits the clinical site, either

PI or CRC can create the eCRF PI consult data and lab test data. The CRA reviews these data and

informs a specified PI or CRC of the change by creating the audit query. The PI and CRC receive

the message and update the eCRF data accordingly.

116

Device PI CRC CRA Blockchain

PI profile management (read, update)

 User profile management

Subject profile management (read, create, update, delete)

 Subject profile management

Device pillbox/bgm management

Device pillbox/bgm management profile (read, create, update, delete)

eCRF pillbox/bgm data management

Create eCRF pillbox/bgm data

Read eCRF pillbox/bgm data

Read eCRF pillbox/bgm data

eCRF PI consult data management

Read eCRF PI consult data

eCRF lab data management

Read eCRF lab data

eCRF audit query

Read pillbox/bgm profile to configure the device setting

CRC profile management (read, update)

CRA profile management
(read, update)

Subject profile management (read, create, update, delete)

Read subject profile

Device pillbox/bgm management profile
(read, create, update, delete)

eCRF PI consult data management (read, create, update)

eCRF PI consult data management (read, create, update)

eCRF lab data management (read, create, update)

eCRF lab data management (read, create, update)

Create audit query

Read audit query and update the related eCRF data

Read audit query and update the related eCRF data

Figure 90: Execution process of the proposed blockchain-based clinical trial service

117

As shown in Figure 91, the Fabric network is set up and exploited by eight organizations that

have corporately decided and signed agreements. An organization refers to a managed group of

members, such as the blockchain management company, home, hospital, and CRO. In this

experiment, the organizations manage their members under multiple MSPs, which represent

different organizational groups in independent clinical trials. It is worth noting that the different

MSPs can be used to present the same organization group. For example, the company organization

consists of two MSPs, ORG1.MSP and ORG5.MSP, which represents the same blockchain

management company that performs different clinical trials. Organizations R1 and R5, refer to the

blockchain management companies, have been empowered to initialize the network.

Each organization (e.g., Organization R1) in channel C1 is connected with a client application

that can submit transactions, as do other organizations within the same channel. Similarly, client

applications connected with organizations in channel C2 can perform transactions within channel

C2. It is worth mentioning that one organization can also have multiple client applications such as

organizations R2 and R6. Each peer in channel C1 keeps the same copy of the ledger L1 while

peer nodes in channel C2 keep the same copy of the ledger L2. The network is under the control

of policy rules specified in network configuration NC, which governed by organizations R1 and

R5. Channel C1 is governed in terms of the rules defined by channel policy CP1. Similarly,

channel C2 is governed in terms of the rules defined by channel policy CP2. The ordering service

supports application in both channels, and orders transactions into blocks. Besides, each of the

eight organizations has a preferred CA.

118

Figure 91: Blockchain network topology of the clinical trial service

The smart contract for the clinical trial testbed contains seven participants, five assets, and

nine transactions, as shown in Table 12. The participants are CRC, PI, CRA, subject, pillbox, bgm

(Blood Glucose Meter), and last but not least, the admin of the network. Table 12 gives a list of

transactions and describes the transaction structure, which is comprised of the participant,

operation, and the resource. Participants are users who can submit the transaction to the business

network. The operation specifies the action (e.g., Create, Read) that the transaction can perform

on the resource. ALL represents that the transaction can support all kinds of actions. Resources

represent either participant (e.g., CRC, CRA) or assets such as eCRF pillbox data and eCRF bgm

data. Transactions submitted by a participant is to perform the specified operation against the

resource.

119

Table 12: Defined transactions in the smart contract

Transaction Participant Operation Resource (Participant,

Asset)

User Profile Management Admin ALL CRC, CRA, PI

Subject Management CRC, PI ALL Subject

Device Pillbox Profile

Management

CRC, PI ALL Pillbox

Device BGM Profile

Management

CRC, PI ALL BGM

eCRF Pillbox Data

Management

CRC, PI,

Pillbox

READ,

CREATE

eCRF pillbox data

eCRF BGM Data

Management

CRC, PI, BGM READ,

CREATE

eCRF BGM data

eCRF PI Consult Data

Management

CRC, PI, CRA ALL eCRF PI consult data

eCRF LAB Data

Management

CRC, PI, CRA ALL eCRF lab data

eCRF CRA Audit CRC, PI, CRA ALL eCRF audit

Table 13 describes the defined assets in the smart contract. Assets are represented as key-value

pairs to record state changes of the ledger. The assets are eCRF pillbox data, eCRF bgm data,

eCRF PI consult data, eCRF lab data, and eCRF audit. The user of the business network can

perform operations on these assets by submitting transactions.

Table 13: Defined assets in the smart contract

Component Type Role

eCRF Pillbox Asset Record bio/non-bio data of subjects collected by pillbox

eCRF BGM Asset Record bio/non-bio data of subjects collected by BGM

eCRF PI Consult Asset Record consult data of the subject

eCRF LAB Asset Record lab test data of the subject

eCRF CRA Audit Asset Record audit data generated by CRA

120

We use the fabric-contract-api to implement the smart contract for the clinical trial testbed. It

provides a JavaScript high-level API to write the business logic and supports communication with

peers in the Fabric network. As shown in Figure 92, two transactions, createSubject and

querySubject will be invoked by the smart contract whenever receive the request from clients. We

use the stub interface to make the connection between the smart contract and the network peers.

For instance, the putState function of the stub interface is used to write the state variable to the

state database. In contrast, the getState function of the stub interface is used to retrieve the current

value of the state variable.

Figure 92. Sample code of the smart contract in clinical trial service

121

The client-side of the clinical trial testbed is implemented using Node.js SDK. We use the

express framework to implement the web server, which makes it possible to use REST APIs to

interact with the Fabric network. As shown in Figure 93, various modules such as fabric-ca-client,

fabric-network should be imported to enable the connection with the Fabric network. The fabric-

ca-client module allows the client application to enroll and register users to establish trusted

identities on the network. The fabric-network module is responsible for submitting transactions

and performing queries against the ledger. FileSystemWallet is used to manage all the user

identities stored in the wallet. X509WalletMixin creates the identity that has metadata comprised

of a certificate and a private key. Gateway is responsible for connecting to the smart contract that

resides on the peer node.

Figure 93. Sample code of the clinical trial service server

122

Figure 94. Sample code of the REST API in clinical trial service

The detailed implementation of the REST API is shown in Figure 94. The workflow of the

API can be summarized into three stages: user authentication, connection, and transaction

execution. First, the API will check whether the user who requests the API exists in the wallet.

Afterward, it sets the connection with the peer node and gets the contract from the network channel.

Lastly, it executes the transaction and returns the transaction execution results.

123

Table 14 presents the sample list of some REST API endpoints that are used to call

transactions provided by the smart contract. Each API contains a URI and verbs such as GET,

POST, PUT, and DELETE. The URI specifies the path of the endpoint, and the verb presents the

specific operation to be performed on the resource. These APIs are provided in the clinical trial

web server. CreateBgm API generates the BGM profile that contains BGM metadata, subject, and

device configuration such as the alarm time and report interval. UpdateBgm API is responsible

for updating the specified property of the BGM profile. DeleteBgm API deletes the BGM profile

stored in the blockchain. CreatePillbox API generates the pillbox profile that contains pillbox

metadata, subject, and device configuration like the alarm time and report interval. UpdatePillbox

API is responsible for updating the specified property of the pillbox profile. DeletePillbox API

deletes the pillbox profile stored in the blockchain.

CreateSubject API generates the subject profile that contains subject metadata, device info,

and clinical trial info such as clinical code and clinical name. UpdateSubject API is responsible

for updating the specified property of the subject profile. DeleteSubject API deletes the subject

profile stored in the blockchain. CreateECRFpillbox API collects various medical info like the

dosage, taking time, and subject as well as store the record into the blockchain. CreateECRFbgm

API collects various medical info like the blood glucose value, testing time, and subject as well as

generate the record into the blockchain. CreateECRFpiConsult API generates various info like the

consult metadata, clinical trial info such as clinical code and clinical name, acting note, and memo

note as well as store the record into the blockchain. CreateECRFlab API generates various info

like clinical trial info such as clinical code and clinical name, subject metadata, device, and

biological signals such as blood pressure, heartbeat, and electrolytes. CreateCRAaudit generates

various info like clinical trial info such as clinical code and clinical name, subject, test, and audit

metadata like acting note.

124

Table 14. Sample REST API endpoints in clinical trial service

URI Verb Description

/api/CreateBgm POST Create device BGM profile

/api/UpdateBgm POST Update device BGM profile

/api/DeleteBgm POST Delete device BGM profile

/api/CreatePillbox POST Create device pillbox profile

/api/UpdatePillbox POST Update device pillbox profile

/api/DeletePillbox POST Delete device pillbox profile

/api/CreateSubject POST Create a subject profile

/api/UpdateSubject POST Update subject profile

/api/DeleteSubject POST Delete subject profile

/api/CreateECRFpillbox POST Create eCRF pillbox data

/api/CreateECRFbgm POST Create eCRF bgm data

/api/CreateECRFpiConsult POST Create eCRF PI consult data

/api/CreateECRFlab POST Create eCRF lab data

/api/CreateCRAaudit POST Create eCRF audit data

Figure 95 represents the implementation results of the clinical trial service, presenting the

following features (a) eCRF pillbox data, (b) pillbox, (c) eCRF lab data, and (d) eCRF PI consult

data. The eCRF pillbox data dashboard is used to manage the eCRF pillbox data, which includes

various medical info. The pillbox dashboard is responsible for managing the pillbox metadata,

subject, and device configuration, like the alarm time and report interval. The eCRF lab data

dashboard is used to manage various info related to lab test data. The eCRF PI consult data

dashboard is used to manage various info like the consult metadata, clinical trial info, acting note,

and memo note. The web client provides an entry that not only allows the user of the business

network to perform different operations on the blockchain but also visualizes different data on the

blockchain. For example, the CRC and PI can create, read, update, and delete the profile of the

pillbox. The web client handles the user requests by invoking the REST APIs provided by the web

server. Afterward, the server calls the Fabric SDK to submit the specified transaction or query the

ledger and returns the transaction execution results.

125

(a)

(b)

(c)

(d)

 Figure 95. Implementation results of clinical trial service

126

6.2 Experiment Environment of Clinical Trial Testbed

This experiment was performed in a single channel of the clinical trial testbed network, which

consists of 4 organizations with 6 endorser peer nodes in total. Two different network

configurations were set, one is the baseline network, and another one is the network using

optimized parameters according to the results of the evaluation in Chapter 3. All the configurable

parameters of these two networks are described, as shown in Table 15. We modified the

benchmark and network configuration files provided by the Hyperledger Caliper to test our

solution. To accurately evaluate the transaction processing capability of the clinical trial testbed,

scripts used for the experiment were specified to target one function, which is the

CreateECRFpillbox transaction. This function generates biomedical data collected from the

pillbox and stores the data into the state database.

Table 15: Experiment parameter configurations

Component Baseline Optimized Network

Block Size 10 transactions per

block

30 transactions per

block

Block Frequency 250ms 250ms

Ordering Service Solo Solo

Number of Endorsers 6 6

Ledger Database LevelDB LevelDB

Programming Language of Smart

Contract

Node.js Node.js

Use of TLS No No

Number of Clients 1 5

Endorsement Policy 4 of 4 1 of 4

Send Rate 25-200 tps 25-200 tps

Number of Transactions 1000 1000

Target Function CreateECRFpillbox CreateECRFpillbox

To configure and launch the clinical trial network, the following three configuration files are

required: configtx.yaml, crypto-config.yaml, and docker-compose.yaml. Configtx yaml file is

used to specify network entities to use within the clinical trial network, and these definitions are

127

passed to create genesis block and channel artifacts. As shown in Figure 96, the main component

of configtx yaml is the organizations block. This block sets a directory of certificates of each

organization and specifies the customized policy for the organization in the channel.

Figure 96. Blockchain network configuration in clinical trial service (configtx.yaml)

The crypto-config yaml file is used to specify all network entities and for generating all

required credentials for each peer node. As shown in Figure 97, this file mainly consists of the

128

OrdererOrgs block and PeerOrgs block. It is worth noting that the name and domain of order and

each peer must be consistent with the definitions in the configtx yaml file.

Figure 97. Blockchain network credentials configuration in clinical trial service (crypto-

config yaml)

As shown in Figure 98, the docker-compose yaml file defines the CA, peer container, and the

orderer container. The CA is used for issuing and verifying the identities of participants in the

129

network. The peer container specifies the running environment for each peer node while the

orderer container specifies the running environment for the orderer node.

Figure 98. Blockchain network container configurations in clinical trial service (docker-

compose-cli yaml)

Figure 99 represents part of the benchmark configuration file used for testing the clinical trial

network. The rounds block describes the settings of a round; the txNumber specifies the number

of transactions should be submitted in a single round, the rateControl defines the type of rate

controller, and the opts defines the tps of send rate. For this experiment, the benchmark contains

eight rounds with varied send rate, which ranged from 25 tps to 200 tps. The callback function

used in this experiment will construct the eCRF pillbox data and submit the transaction to the

blockchain. The details of the eCRF pillbox data are defined under the arguments block that will

be passed to the Caliper as the benchmark configuration.

130

Figure 99. Blockchain network benchmark configuration in clinical trial service

131

The execution results of network initialization and performance testing in the console are

represented in Figure 100 and Figure 101, respectively. The script creates the channel, joins peers

to have communication in the network, installs the smart contract on each peer node, and

instantiates the smart contract in the channel according to the defined network configuration.

Afterward, client workers are initialized to generate workload to the blockchain network according

to the defined benchmark configuration. Lastly, a result report is printed in the console, indicating

that the evaluation test performed successfully. This report provides benchmark results such as the

number of successful transactions, the number of failed transactions, send rate, transaction latency,

and transaction throughput.

Figure 100. Blockchain network initialization in clinical trial service

132

Figure 101. Performance testing results in clinical trial service

6.3 Evaluation Results of the Proposed Approach in Clinical Trial

Testbed

6.3.1 Evaluation Results of the Optimized Network in Clinical Trial Testbed

This experiment evaluated the performance of the optimized network configurations with the

baseline. We evaluated the impact of block size on the performance by varying the number of

clients over different transaction send rate (range from 25 – 200 tps). Figure 102 plots the

experimental results in terms of average transaction throughput with 1 client. The transaction

throughput increased linearly with the increase in send rate until it reached around 100 tps. The

growth of transaction throughput decreased significantly and approached to a flat when the send

rate was above this point. When the send rate was 200 tps, the transaction throughput of the

optimized network and the baseline network was 118 tps, and 98.7 tps with a 19.6% increase of

the transaction throughput. Figure 103 plots the experimental results in terms of average

transaction latency with 1 client. It is observed that the baseline network generates more

transaction latency than the optimized network, especially when the send rate was above the

133

saturation point. When the send rate was 200 tps, the transaction latency of the optimized network

and the baseline was 520 ms and 650 ms, with a 20% reduction of transaction latency. Figure 104

plots the experimental results in terms of average transaction throughput with 5 clients. The

transaction throughput increased linearly with the increase in send rate until it reached around 125

tps. The growth of transaction throughput decreased significantly and approached to a flat when

the send rate was above this point. When the send rate was 200 tps, the throughput of the optimized

network and the baseline network was 137.2 tps, and 125.5 tps with a 9.3% increase of the

transaction throughput. Figure 105 plots the experimental results in terms of average transaction

latency with 5 clients. It is observed that the baseline network generates more transaction latency

than the optimized network, especially when the send rate was above the saturation point. When

the send rate was 200 tps, the transaction latency of the optimized network and the baseline was

1940 ms and 2350 ms, with a 21.1% reduction of transaction latency.

Figure 102: Evaluation of transaction throughput with one client (baseline and optimized

network)

134

Figure 103: Evaluation of transaction latency with one client (baseline and optimized

network)

Figure 104: Evaluation of transaction throughput with five clients (baseline and optimized

network)

135

Figure 105: Evaluation of transaction latency with five clients (baseline and optimized

network)

6.3.2 Evaluation Results of the Fuzzy Logic in Clinical Trial Testbed

This experiment evaluated the performance of the baseline, optimized network, and the fuzzy

logic scheme. Four tests were performed by varying the number of clients over different

transaction send rate (range from 25 – 200 tps). Figure 106 plots the experimental results of the

baseline and the fuzzy logic scheme in terms of average transaction throughput with 1 client. The

transaction throughput increased linearly with the increase in send rate until it reached around 100

tps. The growth of transaction throughput decreased significantly and approached to a flat when

the send rate was above this point. When the send rate was 200 tps, the transaction throughput of

the fuzzy logic and the baseline network was 125.9 tps, and 98.7 tps with a 27.6% increase of the

transaction throughput. Figure 107 plots the experimental results of the baseline and the fuzzy

logic scheme in terms of average transaction latency with 1 client. When the send rate was 200

136

tps, the transaction latency of the fuzzy logic and the baseline was 380 ms and 650 ms, with a

41.5% reduction of transaction latency.

Figure 106: Evaluation of transaction throughput with 1 client (baseline and fuzzy logic)

Figure 107: Evaluation of transaction latency with 1 client (baseline and fuzzy logic)

137

Figure 108 plots the experimental results of the baseline and the fuzzy logic scheme in terms

of average transaction throughput with 5 clients. The transaction throughput increased linearly

with the increase in send rate until it reached around 125 tps. The growth of transaction throughput

decreased significantly and approached to a flat when the send rate was above this point. When

the send rate was 150 tps, the transaction throughput of the fuzzy logic and the baseline was 152.9

tps, and 135.5 tps with a 12.8% increase of the transaction throughput. Figure 109 plots the

experimental results of the baseline and the fuzzy logic scheme in terms of average transaction

latency with 5 clients. It is observed that the baseline network generated more transaction latency

than the fuzzy logic scheme when the send rate was above the saturation point. When the send rate

was 200 tps, the transaction latency of the fuzzy logic and the baseline was 1720 ms and 2350 ms,

with a 36.6% reduction of transaction latency. This experiment results indicate that the fuzzy logic

scheme shows better performance than the baseline concerning transaction latency and transaction

throughput.

Figure 108: Evaluation of transaction throughput with 5 clients (baseline and fuzzy logic)

138

Figure 109: Evaluation of transaction latency with 5 clients (baseline and fuzzy logic)

Figure 110 plots the experimental results of the optimized network and the fuzzy logic scheme

in terms of average transaction throughput with 1 client. The transaction throughput increased

linearly with the increase in send rate until it flattened out at around 100 tps, as shown in Figure

110. The growth of transaction throughput decreased significantly and approached to a flat when

the send rate was above this point. When the send rate was 200 tps, the throughput of the fuzzy

logic and the optimized network was 130.9 tps, and 118 tps with a 10.9% increase of the

transaction throughput. Figure 111 plots the experimental results of the optimized network and the

fuzzy logic scheme in terms of average transaction latency with 1 client. For the transaction latency,

it is observed that the optimized network generated more latency than the fuzzy logic scheme

when the send rate was above the saturation point. When the send rate was 200 tps, the transaction

latency of the fuzzy logic and the optimized network was 310 ms and 520 ms, with a 40.4%

reduction of transaction latency.

139

Figure 110: Evaluation of transaction throughput with one client (optimized network and

fuzzy logic)

Figure 111: Evaluation of transaction latency with one client (optimized network and fuzzy

logic)

140

Figure 112 plots the experimental results of the optimized network and the fuzzy logic scheme

in terms of average transaction throughput with 5 clients. The transaction throughput increased

linearly with the increase in send rate until it reached around 150 tps. The growth of transaction

throughput decreased significantly and approached to a flat when the send rate was above this

point. When the send rate was 200 tps, the throughput of the fuzzy logic and the optimized network

was 156 tps and 137.2 tps, with a 13.7% increase of the transaction throughput. Figure 113 plots

the experimental results of the optimized network and the fuzzy logic scheme in terms of average

transaction latency with 5 clients. It is observed that the optimized network generated more

transaction latency than the fuzzy logic scheme when the send rate was above the saturation point.

When the send rate was 200 tps, the transaction latency of the fuzzy logic and the optimized

network was 1610 ms and 2240 ms, with a 28.1% reduction of transaction latency. This

experiment results indicate that the fuzzy logic scheme can improve the performance concerning

transaction latency and transaction throughput.

Figure 112: Evaluation of transaction throughput with five clients (optimized network and

fuzzy logic)

141

Figure 113: Evaluation of transaction latency with five clients (optimized network and

fuzzy logic)

6.3.3 Evaluation Results of the Learning to Prediction in Clinical Trial Testbed

This experiment evaluated the performance of the baseline, optimized network, and the

learning to prediction scheme. Four tests were performed by varying the number of clients over

different transaction send rate (range from 25 – 200 tps). Figure 114 plots the experimental results

of the baseline and the learning to prediction scheme in terms of average transaction throughput

with 1 client. The transaction throughput increased linearly with the increase in send rate until it

reached around 100 tps. The growth of transaction throughput decreased significantly and

approached to a flat when the send rate was above this point. When the send rate was 200 tps, the

transaction throughput of the learning to prediction and the baseline set was 128 tps, and 98.7 tps

with a 29.7% increase of the transaction throughput. Figure 115 plots the experimental results of

the baseline and the learning to prediction scheme in terms of average transaction latency with 1

142

client. It is observed that the baseline network generated more transaction latency than the learning

to prediction scheme when the send rate was above the saturation point. When the send rate was

200 tps, the transaction latency of the learning to prediction and the baseline was 340 ms and 650

ms, with a 47.7% reduction of transaction latency.

Figure 114: Evaluation of transaction throughput with one client (baseline and learning to

prediction)

143

Figure 115: Evaluation of transaction latency with one client (baseline and learning to

prediction)

Figure 116 plots the experimental results of the optimized network and the learning to

prediction scheme in terms of average transaction throughput with 5 clients. The transaction

throughput increased linearly with the increase in send rate until it reached around 150 tps. The

growth of transaction throughput decreased significantly and approached to a flat when the send

rate was above this point. When the send rate was 200 tps, the transaction throughput of the

learning to prediction and the baseline was 158.8 tps, and 135.5 tps with a 17.2% increase of the

transaction throughput. Figure 117 plots the experimental results of the optimized network and the

learning to prediction scheme in terms of average transaction latency with 5 clients. It is observed

that the baseline network generated more latency than the learning to prediction scheme when the

send rate was above the saturation point. When the send rate was 200 tps, the transaction latency

of the learning to prediction and the baseline was 1410 ms and 2350 ms, with a 40% reduction of

transaction latency.

144

Figure 116: Evaluation of transaction throughput with five clients (baseline and learning to

prediction)

Figure 117: Evaluation of transaction latency with five clients (baseline and learning to

prediction)

145

Figure 118 plots the experimental results of the baseline and the learning to prediction scheme

in terms of average transaction throughput with 1 client. The transaction throughput increased

linearly with the increase in send rate until it reached around 125 tps. The growth of transaction

throughput decreased significantly and approached to a flat when the send rate was above this

point. When the send rate was 200 tps, the transaction throughput of the learning to prediction and

the optimized network was 134.2 tps, and 118 tps with a 13.7% increase of the transaction

throughput. Figure 119 plots the experimental results of the baseline and the learning to prediction

scheme in terms of average transaction latency with 1 client. It is observed that the baseline

network generated more latency than the learning to prediction scheme when the send rate was

above the saturation point. When the send rate was 200 tps, the transaction latency of the learning

to prediction and the baseline was 280 ms and 520 ms, with a 46.2% reduction of transaction

latency.

Figure 118: Evaluation of transaction throughput with 1 client (optimized network and

learning to prediction)

146

Figure 119: Evaluation of transaction latency with 1 client (optimized network and

learning to prediction)

Figure 120 plots the experimental results of the optimized network and the learning to

prediction scheme in terms of average transaction throughput with 5 clients. The transaction

throughput increased linearly with the increase in send rate until it reached around 150 tps. The

growth of transaction throughput decreased significantly and approached to a flat when the send

rate was above this point. When the send rate was 200 tps, the transaction throughput of the

learning to prediction and the optimized network was 162.5 tps, and 137.2 tps with an 18.4%

increase of the transaction throughput. Figure 121 plots the experimental results of the optimized

network and the learning to prediction scheme in terms of average transaction latency with 5

clients. It is observed that the baseline network generated more latency than the learning to

prediction scheme when the send rate was above the saturation point. When the send rate was 200

tps, the transaction latency of the learning to prediction and the optimized network was 1230 ms

and 2240 ms, with an 82.1% reduction of transaction latency.

147

Figure 120: Evaluation of transaction throughput with 5 clients (optimized network and

learning to prediction)

Figure 121: Evaluation of transaction latency with 5 clients (optimized network and

learning to prediction)

148

Table 16 describes the analysis results by comparing the proposed two transaction traffic

control mechanism according to the experiment results. For the case of the baseline network using

one client, the network with optimized configurable parameters increases the transaction

throughput by 19.6% and decrease the transaction latency by 20% compared to the baseline

network. The transaction throughput is increased by 27.6%, and the transaction latency is

decreased by 41.5% with the transaction traffic control mechanism based on fuzzy logic. The

transaction throughput is increased by 29.7%, and the transaction latency is decreased by 47.7%

with the transaction traffic control mechanism based on learning to prediction. For the case of the

optimized network using one client, the transaction throughput is increased by 10.9%, and the

transaction latency is decreased by 40.4% with the transaction traffic control mechanism based on

fuzzy logic. The transaction throughput is increased by 13.7%, and the transaction latency is

decreased by 46.2% with the transaction traffic control mechanism based on learning to prediction.

For the case of the baseline network using five clients, the network with optimized

configurable parameters increases the transaction throughput by 9.3% and decrease the transaction

latency by 17.4% compared to the baseline network. The transaction throughput is increased by

21.8%, and the transaction latency is decreased by 26.8% with the transaction traffic control

mechanism based on fuzzy logic. The transaction throughput is increased by 26.5%, and the

transaction latency is decreased by 40% with the transaction traffic control mechanism based on

learning to prediction. For the case of the optimized network using five clients, the transaction

throughput is increased by 13.7%, and the transaction latency is decreased by 17% with the

transaction traffic control mechanism based on fuzzy logic. The transaction throughput is

increased by 18.4%, and the transaction latency is decreased by 36.6% with the transaction traffic

control mechanism based on learning to prediction.

149

Table 16: Comparison analysis of the performance evaluation

Number

of

Clients

Component Baseline Baseline

with

Fuzzy

Logic

Baseline

with

Learning

to

Prediction

Optimized

Network

Optimized

Network

with

Fuzzy

Logic

Optimized

Network

with

Learning

to

Prediction

1

Avg

Transaction

Throughput

(tps)

98.7 125.9 128 118 130.9 134.2

Avg

Transaction

Latency

(ms)

650 380 340 520 310 280

5

Avg

Transaction

Throughput

(tps)

125.5 152.9 158.8 137.2 156 162.5

Avg

Transaction

Latency

(ms)

2350 1720 1410 1940 1610 1230

To prove the scalability of the designed approaches, we applied two proposed transaction

traffic control mechanisms into the Accelerator [38], and the evaluation results are shown in Table

17. For the case of the baseline network using one client, the network with Accelerator increases

the transaction throughput by 67.2% and decrease the transaction latency by 35.4% compared to

the baseline network. The transaction throughput is increased by 77.7%, and the transaction

latency is decreased by 52.3% with the fuzzy logic-based approach. The transaction throughput is

150

increased by 80.7%, and the transaction latency is decreased by 56.9% with the learning to

prediction-based approach.

For the case of the baseline network using five clients, the network with Accelerator increases

the transaction throughput by 82.1% and decrease the transaction latency by 20% compared to the

baseline network. The transaction throughput is increased by 96.9%, and the transaction latency

is decreased by 37.9% with the fuzzy logic-based approach. The transaction throughput is

increased by 99.9%, and the transaction latency is decreased by 43.6% with the learning to

prediction-based approach.

The experiment results indicate that the proposed transaction traffic control approaches can

significantly improve the transaction transmission environment by enhancing transaction

throughput and reducing transaction latency. This approach can also be applied to the existing

blockchain performance-enhancing tool without modifying the original architecture. In this paper,

we only tested the proposed approach in Hyperledger Fabric blockchain. However, existing smart

contract enabled blockchain platforms can significantly benefit from the significance of the

proposed approach to improve the transaction processing capability. This approach has the

potential to be applied to existing enterprise use cases, which have a high demand for transaction

throughput and transaction latency.

151

Table 17: Comparison analysis of the performance evaluation with Accelerator

Number of

Clients

Component Baseline Baseline with

Accelerator [38]

Baseline with

Accelerator

Using Fuzzy

Logic

Baseline with

Accelerator

Using

Learning to

Prediction

1

Avg

Transaction

Throughput (tps)

98.7 165 175.4 178.4

Avg Transaction

Latency (ms)

650 420 310 280

5

Avg

Transaction

Throughput (tps)

135.5 246.7 266.8 270.8

Avg

Transaction

Latency (ms)

2350 1880 1460 1325

152

7. Conclusion

The performance and scalability of Information Technology (IT) systems have always been a

primary non-functional requirement used to measure the production readiness of an

implementation project. Blockchain networks are the same, providing a decentralized model that

enables peers to collaborate and build trust through business networks. Each peer node must

perform operations and communicate with other peers to confirm transactions, reach consensus,

and update the status of the shared ledger. To make informed architectural decisions about

blockchain-based solutions, it is essential to be aware of factors and areas of improvement that

affect blockchain performance. Several factors affect the performance of the blockchain network,

so benchmarking or testing the performance of the blockchain is not a simple exercise. Besides,

when processing end-to-end business transactions, the use cases being implemented and the off-

chain component architecture, as well as the design of the blockchain-based solution, should also

be considered.

This paper examines various configurable factors that can affect the Hyperledger Fabric

blockchain performance. These configurable parameters can be mainly summarized into two

categories: software and hardware. Software-based parameters include block size, block frequency,

ledger database, ordering service, the programming language of smart contract, use of TLS,

number of clients, number endorser peers, number of organizations, and the endorsement policy.

Hardware-based parameters include the number of vCPUS, memory allocation, disk type and

speed, network speed, and CPU speed. A comprehensive experiment is carried out to analyze the

impact on network performance for each parameter.

As a consequence, an optimized network configuration is set up in terms of the experimental

results. Besides, this paper proposes two transaction traffic control approaches using fuzzy logic

to improve the blockchain performance. For the first approach, we implement the fuzzy controller

153

in the smart contract. Moreover, for the second approach, we implement additional learning to

prediction module to enhance the performance of the fuzzy controller in the smart contract. Real-

time network feedback is used as input parameters, and the fuzzy controller adjusts the transaction

traffic across the whole network accordingly. A clinical trial testbed is used as the experiment

environment to evaluate the performance of the proposed transaction traffic control mechanisms.

We evaluate the performance of the optimized network by comparing it with the original network.

Besides, we evaluate the performance of the proposed transaction traffic control mechanisms by

applying them in the original network and optimized network. The experiment results indicate that

the designed solutions can improve the network throughput while reducing the latency. The

evaluation results show that the proposed approaches can enhance network performance compared

to the baseline and optimized schemes. For the case of baseline scheme using one client, the

network with optimized configurable parameters increases the transaction throughput by 19.6%

and decrease the transaction latency by 20% compared to the baseline. The transaction throughput

is increased by 27.6% and 29.7%; the transaction latency is decreased by 41.5% and 47.7% with

the fuzzy logic and learning to prediction approaches, respectively.

For the case of the optimized scheme using one client, the transaction throughput is increased

by 10.9% and 13.7%; the transaction latency is decreased by 40.4% and 46.2% with the fuzzy

logic and learning to prediction approaches, respectively. For the case of baseline scheme using

five clients, the network with optimized configurable parameters increases the transaction

throughput by 9.3% and decrease the transaction latency by 17.4% compared to the baseline

network. The transaction throughput is increased by 21.8% and 26.5%; the transaction latency is

decreased by 26.8% and 40% with the fuzzy logic and learning to prediction approaches,

respectively. For the case of the optimized network using five clients, the transaction throughput

is increased by 13.7% and 18.4%; the transaction latency is decreased 17% and 36.6% with the

fuzzy logic and learning to prediction approach.

154

Furthermore, the proposed approaches are deployed with one of the existing performance-

enhancing tools, and the results indicate that the proposed approaches integrate with the existing

performance-enhancing approach and further improve the blockchain performance. For the case

of using one client, the network with Accelerator increases the transaction throughput by 67.2%

and decrease the transaction latency by 35.4% compared to the baseline. The transaction

throughput is increased by 77.7% and 80.7%; the transaction latency is decreased by 52.3% and

56.9% with the fuzzy logic and learning to prediction approaches, respectively. For the case of

using five clients, the network with Accelerator increases the transaction throughput by 82.1%and

decreases the transaction latency by 20% compared to the baseline. The transaction throughput is

increased by 96.9% and 99.9%; the transaction latency is decreased by 37.9% and 43.6% with the

fuzzy logic and learning to prediction approaches, respectively.

One limitation of this study is that all the benchmark experiments are performed in a single-

host virtual machine, and we only consider software-based configurable parameters to simplify

the implementation. Besides, the blockchain network is deployed in a Local Area Network (LAN)

that is not suitable for the production environment. Future work will refine the prototype system,

and we will replicate the results by using a cloud service such as AWS or IBM Blockchain to

evaluate the impact of various hardware components such as memory allocation, disk type and

speed, network speed, and CPU speed. Furthermore, we will deploy the proposed approaches into

some existing smart contract enabled blockchain platforms such as Ethereum and Corda to test the

applicability of the proposed approaches.

155

References

1. Maull, Roger, et al. "Distributed ledger technology: Applications and implications."

Strategic Change 26.5 (2017): 481-489.

2. V. Espinel, D. O’Halloran, E. Brynjolfsson, and D. O’Sullivan, “Deep shift, technology

tipping points and societal impact,” in New York: World Economic Forum–Global

Agenda Council on the Future of Software & Society (REF 310815), 2015.

3. Zheng, Zibin, et al. "Blockchain challenges and opportunities: A survey." International

Journal of Web and Grid Services 14.4 (2018): 352-375.

4. S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han and F. Wang, "Blockchain-Enabled Smart

Contracts: Architecture, Applications, and Future Trends," in IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 49, no. 11, pp. 2266-2277, Nov. 2019.

5. Omohundro, S. (2014) ‘Cryptocurrencies, smart contracts, and artificial intelligence,’ AI

Matters, Vol. 1, No. 2, pp.19–21.

6. K. Salah, M. H. U. Rehman, N. Nizamuddin and A. Al-Fuqaha, "Blockchain for AI:

Review and Open Research Challenges," in IEEE Access, vol. 7, pp. 10127-10149, 2019,

doi: 10.1109/ACCESS.2018.2890507.

7. E. Osaba, E. Onieva, A. Moreno, P. Lopez-Garcia, A. Perallos and P. G. Bringas,

"Decentralised intelligent transport system with distributed intelligence based on

classification techniques", IET Intell. Transp. Syst., vol. 10, no. 10, pp. 674-682, Dec.

2016.

8. Ai and Blockchain are Taking Root in the Global Agriculture Industry, 2018, [online]

Available: https://www.entefy.com/blog/post/570/ai-and-blockchain-are-taking-root-in-

the-global-agriculture-industry/.

156

9. Autonomous Supply Chain Will Soon be Empowered by IoT AI and Blockchain-Here’s

How, 2018, [online] Available: https://iot.eetimes.com/autonomous-supply-chain-will-

soon-be-empowered-by-iot-ai-and-blockchain-heres-how.

10. E. C. Ferrer, The blockchain: A new framework for robotic swarm systems, 2016, [online]

Available: https://arxiv.org/abs/1608.00695.

11. Hang, L.; Kim, D.-H. Reliable Task Management Based on a Smart Contract for Runtime

Verification of Sensing and Actuating Tasks in IoT Environments. Sensors 2020, 20, 1207.

12. Hang, L.; Kim, D.-H. SLA-Based Sharing Economy Service with Smart Contract for

Resource Integrity in the Internet of Things. Appl. Sci. 2019, 9, 3602.

13. Yuan, Y.; Wang, F.Y. Towards blockchain-based intelligent transportation systems. In

Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation

Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 2663–2668.

14. Gordon, W.J.; Catalini, C. Blockchain Technology for Healthcare: Facilitating the

Transition to Patient-Driven Interoperability. Comput. Struct. Biotechnol. J. 2018, 16,

224–230.

15. Dubovitskaya, A.; Xu, Z.; Ryu, S.; Schumacher, M.; Wang, F. Secure and trustable

electronic medical records sharing using blockchain. In Proceedings of the AMIA 2017,

American Medical Informatics Association Annual Symposium, Washington, DC, USA,

4–8 November 2017.

16. Hang, L.; Choi, E.; Kim, D.-H. A Novel EMR Integrity Management Based on a Medical

Blockchain Platform in Hospital. Electronics 2019, 8, 467.

17. Paralkar, K.; Yadav, S.; Kumari, S.; Kulkarni, A.; Pingat, S.P. Photogroup: Decentralized

Web Application Using Ethereum Blockchain. Int. Res. J. Eng. Technol. 2018, 5, 489–

492.

18. Raval, S. Decentralized Applications: Harnessing Bitcoin’s Blockchain Technology;

O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016.

157

19. Brito, J.; Shadab, H.B.; Castillo O’Sullivan, A. Bitcoin financial regulation: Securities,

derivatives, prediction markets, and gambling. Columbia Sci. Technol. Law Rev. 2014.

20. MacDonald, T.J.; Allen, D.W.E.; Potts, J. Blockchains and the Boundaries of Self-

Organized Economies: Predictions for the Future of Banking. In Banking Beyond Banks

and Money; Tasca, P., Aste, T., Pelizzon, L., Perony, N., Eds.; Springer: Cham,

Switzerland, 2016; pp. 279–296.

21. Z. Zheng, S. Xie, H. Dai, X. Chen and H. Wang, "An Overview of Blockchain Technology:

Architecture, Consensus, and Future Trends," 2017 IEEE International Congress on Big

Data (BigData Congress), Honolulu, HI, 2017, pp. 557-564, doi:

10.1109/BigDataCongress.2017.85.

22. Nakamoto, Satoshi. "Bitcoin: A peer-to-peer electronic cash system.(2008)." (2008).

23. Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger."

Ethereum project yellow paper 151.2014 (2014): 1-32.

24. Buterin, Vitalik. "A next-generation smart contract and decentralized application

platform." white paper 3.37 (2014).

25. Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng and Y. Zhang, "Consortium Blockchain for Secure

Energy Trading in Industrial Internet of Things," in IEEE Transactions on Industrial

Informatics, vol. 14, no. 8, pp. 3690-3700, Aug. 2018, doi: 10.1109/TII.2017.2786307.

26. “Ripple”, https://ripple.com/.

27. “Stellar”, https://www.stellar.org/.

28. “Corda”, https://www.corda.net/.

29. Cachin, Christian. "Architecture of the hyperledger blockchain fabric." Workshop on

distributed cryptocurrencies and consensus ledgers. Vol. 310. 2016.

30. “MultiChain”, https://www.multichain.com/.

31. “OpenChain”, https://www.openchain.org/.

158

32. J. A. Garay, A. Kiayias and N. Leonardos, "The bitcoin backbone protocol: Analysis and

applications" in EUROCRYPT volume 9057 of LNCS, Springer, pp. 281-310, 2015.

33. Q. Nasir, I. A. Qasse, M. A. Talib, and A. B. Nassif, “Performance Analysis of

Hyperledger Fabric Platforms,” Security and Communication Networks, vol. 2018,

Article ID 3976093, 14 pages, 2018. https://doi.org/10.1155/2018/3976093.

34. Zheng, Z.; Xie, S.; Dai, H.N.; Wang, H. Blockchain Challenges and Opportunities: A

Survey. Available online: http: //inpluslab.sysu.edu.cn/files/blockchain/blockchain.pdf.

35. L. Aniello, R. Baldoni, E. Gaetani, F. Lombardi, A. Margheri and V. Sassone, "A

Prototype Evaluation of a Tamper-Resistant High Performance Blockchain-Based

Transaction Log for a Distributed Database," 2017 13th European Dependable Computing

Conference (EDCC), Geneva, 2017, pp. 151-154, doi: 10.1109/EDCC.2017.31.

36. Park Jin Hee, Choong Seon Hong. (2019). Blockchain Architecture Using Consensus

Algorithm with Adjustable Validation and its Performance Improvement. The Korean

Institute of Information Scientists and Engineers, (), 1218-1220.

37. Kwon, Minsu, and Heonchang Yu. "Performance Improvement of Ordering and

Endorsement Phase in Hyperledger Fabric." 2019 Sixth International Conference on

Internet of Things: Systems, Management and Security (IOTSMS). IEEE, 2019.

38. Lee, Hyojung, et al. "Multi-batch Scheduling for Improving Performance of Hyperledger

Fabric based IoT Applications." 2019 IEEE Global Communications Conference

(GLOBECOM). IEEE, 2019.

39. F. Lu, L. Gan, Z. Dong, W. Li, H. Jin and A. Y. Zomaya, "A Cache Enhanced Endorser

Design for Mitigating Performance Degradation in Hyperledger Fabric," 2018 IEEE

International Conference on Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 2018, pp. 1001-1006.

159

40. Sousa, Joao, Alysson Bessani, and Marko Vukolic. "A byzantine fault-tolerant ordering

service for the hyperledger fabric blockchain platform." 2018 48th annual IEEE/IFIP

international conference on dependable systems and networks (DSN). IEEE, 2018.

41. Dinh, Tien Tuan Anh, et al. "Blockbench: A framework for analyzing private

blockchains." Proceedings of the 2017 ACM International Conference on Management of

Data. 2017.

42. Miyamae, Takeshi, et al. "Performance improvement of the consortium blockchain for

financial business applications." Journal of Digital Banking 2.4 (2018): 369-378.

43. Hyperledger Caliper—A Blockchain Benmark Tool. Available online:

https://www.hyperledger.org/projects/caliper (accessed on 25 May 2020).

44. Eyal, Ittay, et al. "Bitcoin-ng: A scalable blockchain protocol." 13th {USENIX}

symposium on networked systems design and implementation ({NSDI} 16). 2016.

45. Sukhwani, Harish. "Performance Modeling & Analysis of Hyperledger Fabric

(Permissioned Blockchain Network)." Duke University: Duke, UK (2018).

46. P. Thakkar, S. Nathan and B. Viswanathan, "Performance Benchmarking and Optimizing

Hyperledger Fabric Blockchain Platform," 2018 IEEE 26th International Symposium on

Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS), Milwaukee, WI, 2018, pp. 264-276, doi: 10.1109/MASCOTS.2018.00034.

47. M. Kuzlu, M. Pipattanasomporn, L. Gurses and S. Rahman, "Performance Analysis of a

Hyperledger Fabric Blockchain Framework: Throughput, Latency and Scalability," 2019

IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 2019, pp.

536-540, doi: 10.1109/Blockchain.2019.00003.

48. Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic

controller. Int. J. Man-Mach. Stud. 1975, 7, 1–13.

49. Ullah, I.; Fayaz, M.; Kim, D. Improving Accuracy of the Kalman Filter Algorithm in

Dynamic Conditions Using ANN-Based Learning Module. Symmetry 2019, 11, 94.

160

50. Ranganathan, A. The levenberg-marquardt algorithm. Tutor. LM Algorithm 2004, 11,

101–110.

	Abstract
	1. Introduction .
	2. Related Work
	2.1 Blockchain Technology and Platform
	2.2 Existing Studies of Performance Improvement in Blockchain Network
	2.3 Performance Evaluation Architecture in Blockchain Network .

	3. Performance Analysis of Configurable Parameters in Blockchain Network
	3.1 Blockchain Network Performance Metrics .
	3.2 Configurable Parameters in Blockchain Network
	3.3 Experiment Environment in Blockchain Network .
	3.4 Performance Evaluation of Configurable Parameters in Blockchain Network .

	4. Transaction Traffic Control Mechanism based on Fuzzy Logic in Blockchain
	48
	4.1 Proposed Transaction Traffic Control Mechanism based on Fuzzy Logic
	4.2 Development of the Transaction Traffic Control Mechanism based on Fuzzy
	59
	4.3 Performance Analysis of the Transaction Traffic Control Mechanism based

	Fuzzy Logic
	5. Transaction Traffic Control Mechanism based on Learning to Prediction
	Blockchain Network
	5.1 Proposed Transaction Traffic Control Mechanism based on Learning to
	77
	5.2 Development of the Transaction Traffic Control Mechanism based on Learning

	Prediction .
	5.3 Performance Analysis of the Transaction Traffic Control Mechanism based

	Learning to Prediction
	6. Performance Evaluation of the Proposed Approach in Clinical Trial Testbed .
	6.1 Clinical Trial Testbed Environment for Blockchain Performance Evaluation .
	6.2 Experiment Environment of Clinical Trial Testbed
	6.3 Evaluation Results of the Proposed Approach in Clinical Trial Testbed .
	6.3.1 Evaluation Results of the Optimized Network in Clinical Trial Testbed .
	6.3.2 Evaluation Results of the Fuzzy Logic in Clinical Trial Testbed
	6.3.3 Evaluation Results of the Learning to Prediction in Clinical Trial Testbed

	7. Conclusion.
	References .

<startpage>19
Abstract 1
1. Introduction . 5
2. Related Work 10
 2.1 Blockchain Technology and Platform 10
 2.2 Existing Studies of Performance Improvement in Blockchain Network 16
 2.3 Performance Evaluation Architecture in Blockchain Network . 25
3. Performance Analysis of Configurable Parameters in Blockchain Network 27
 3.1 Blockchain Network Performance Metrics . 27
 3.2 Configurable Parameters in Blockchain Network 28
 3.3 Experiment Environment in Blockchain Network . 30
 3.4 Performance Evaluation of Configurable Parameters in Blockchain Network . 31
4. Transaction Traffic Control Mechanism based on Fuzzy Logic in Blockchain Network
 48
 4.1 Proposed Transaction Traffic Control Mechanism based on Fuzzy Logic 48
 4.2 Development of the Transaction Traffic Control Mechanism based on Fuzzy Logic
 59
 4.3 Performance Analysis of the Transaction Traffic Control Mechanism based on
Fuzzy Logic 63
5. Transaction Traffic Control Mechanism based on Learning to Prediction in
Blockchain Network 77
 5.1 Proposed Transaction Traffic Control Mechanism based on Learning to Prediction
 77
 5.2 Development of the Transaction Traffic Control Mechanism based on Learning to
Prediction . 88
 5.3 Performance Analysis of the Transaction Traffic Control Mechanism based on
Learning to Prediction 96
6. Performance Evaluation of the Proposed Approach in Clinical Trial Testbed . 110
 6.1 Clinical Trial Testbed Environment for Blockchain Performance Evaluation . 110
 6.2 Experiment Environment of Clinical Trial Testbed 126
 6.3 Evaluation Results of the Proposed Approach in Clinical Trial Testbed . 132
 6.3.1 Evaluation Results of the Optimized Network in Clinical Trial Testbed . 132
 6.3.2 Evaluation Results of the Fuzzy Logic in Clinical Trial Testbed 135
 6.3.3 Evaluation Results of the Learning to Prediction in Clinical Trial Testbed 141
7. Conclusion. 152
References . 155
</body>

