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Abstract

Lattices of Formations of Algebraic Structures

In the dissertation, various lattices of formations of algebraic structures are investi-
gated. The languages corresponding to multiply local formations are described. Let
o be a partition of the set of all primes. It is proved that every law of the lattice of
all formations is fulfilled in the lattice of all multiply o-local formations. It is shown
that the lattice of all functor-closed totally composition formations is algebraic, and
that the law system of the lattice of all functor-closed formations coincides with the
law system of the lattice of all functor-closed multiply partially composition forma-
tions. It is proved that the lattice of all X-local formations is algebraic and modular.
Let 901 be the class of all multioperator T-groups satisfying the minimality and max-
imality conditions for T-subgroups. It is proved that every law of the lattice of all
functor-closed 9M-formations is fulfilled in the lattice of all functor-closed multiply

partially foliated 91-formations.
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Chapter 1

Introduction

” After completion of the dlassification of simple groups, the main problem in the theory
of finite groups remains the problem of mastering mechanisms of their interaction in
arbitrary groups. The most important bandicap bere is p-groups. These small bricks
are encountered almost everywhere and, in addition, the possibilities of their interaction
are displayed infinitely, like a horde of insects.

The theory of formations is an attempt to be engaged in the theory of groups, that
is to say, modulo p-groups. For all that, separate groups are considered through these
dasses as if in a diminishing glass, and structured operations on groups can be treated,
in a definite respect, as construction of normalizers, extensions, joins, etc.”

January 28, 1994 (Kiel, Germany [96])

WOLFGANG GASCHUTZ
A formation of finite groups is a class of finite groups closed under taking

quotients and subdirect products (Gaschiitz, 1962 [42]).
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1.1 The initial idea

All considered groups are finite. A class X is a set of groups with the property that
if G € X, then every group isomorphic to G belongs to X. A variety of groups
may be defined as a nonempty class of groups closed under taking homomorphic
images and subcartesian products [75], formations extend this notion.

The theory of saturated formations introduced by Gaschiitz [42] became an
integrated part of group theory by now. Recall that the Frattini subgroup ®(G) of
a group G is the intersection of all maximal subgroups of G. A formation § is said
to be saturated if G/®(G) € § always implies G € §.

Gaschiitz-Lubeseder-Schmid theorem states that any formation is saturated iff
it is local. That makes saturated formations one of the most suitable classes for a
better understanding of a group structure. Further it was found various generaliza-
tions of saturated formations, such as Baer-local, X-local, o-local, foliated formations,
etc.

Let M and N be normal subgroups of a finite group G such that N C M.
Then M /N is said to be a chief factor of G if M /N is a minimal normal subgroup
of G/N. This chief factor is complemented if there exists a maximal subgroup K
of G such that G = KM and KN M = N. If M C ®(G), then the chief factor
M/N is not complemented. The centralizer of a chief factor M/N in G is denoted
by Cq(M/N), ie., it is the set of all elements of G that commute with all elements

gN of M/N.
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The symbol P denotes the set of all primes. Consider a function f with do-
main [P whose images are formations of groups. The class § = LF'(f) of all groups
G, such that either G =1 or G # 1 and G/Cq(M/N) € f(p) for every comple-
mented chief factor M/N of G and any prime p dividing the order of M/N, is a
formation. The notation § = LF(f) originally has the implicit meaning that § is
a local formation with a formation function f.

If § = LF(f) for some formation function f, then f is called a local satellite
of §. When values of local satellite of a formation are themselves local formations,
then that leads to the following definition. Every formation is O-multiply local. For
a positive integer n, a formation § is called n-multiply local if § = LF(f), and all
nonempty values of f are (n — 1)-multiply local formations. If n = 1, then § is
just a local formations. A formation is called zotally local if it is n-multiply local for
all positive integers n.

Consider some standard examples of local formations [37, IV, (3.4)]. The class
of all nilpotent groups is a local formation with f(p) = 1 for all p € P. Indeed,
a chief factor M /N of a nilpotent group is always central, ic., Cq(M/N) = G.
The class of all supersolvable groups is also a local formation. A chief factor of a
supersolvable group has always prime order. Then the formation of all supersolvable
groups has a local satellite whose value is with the class of all abelian groups of
exponent dividing p—1 for all primes p. However, a nonsaturated formation cannot

be defined locally. For instance, the class of all abelian groups is a nonsaturated
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formation, and it is impossible to find a local definition for it.

It is well-known that the lattice of all varieties of groups is modular but is not
distributive [75]. The lattice of all locally finite varieties is a sublattice of the lattice
of all hereditary formations [107]. Although many results of the theory of forma-
tions are some counterparts to the corresponding results of the theory of varieties,
at the same time, the methods of their proof are very different from the correspond-
ing proofs of the theory of varicties. Moreover, unlike the lattice of all varieties of
groups, it turned out that many lattices of formations are algebraic.

In 1986 Skiba [107] proved that the lattice of all saturated formations is modu-
lar. Later it was found fruitful applications of this fact, in particular law systems of
the lattices of formations have been studied; see Chapters 4 and 5 in [107], Chap-
ter 4 in [44], and [135]. In [107] it is shown that the law system of the lattice of all
T-closed m-multiply saturated formations coincides with the law system of the lat-
tice of all 7-closed n-multiply saturated formations for nonnegative integers m and
n, and in [47] it is proved that for any infinite set of primes w the law system of
the lattice of all m-multiply w-saturated formations coincides with the law system of
the lattice of all n-multiply w-saturated formations. The mentioned result was gen-
eralized for the lattices of functor-closed n-multiply w-saturated formations [100]. In
[137] the analogous fact established for multiply w-composition formations.

Finally we note that in the papers [13, 14] it was proposed a new approach of

formation theory application in the theory of formal languages.
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1.2 Research contribution

The present work contains some contributions to the theory of formations of al-
gebraic structures, which originated in 1962 after the introduction by Gaschiitz the
concept of local formation of finite solvable groups, and has been enriched by the
contributions of Baer, Ballester-Bolinches, Dixon, Forster, Guo, Shemetkov, Skiba,
Vedernikov, Vorob’ev, et al. Further studies revealed that formations are of a general
algebraic nature and can be applied to the study of not necessarily solvable finite and
infinite groups, Lie algebras, monoids, rings, and even of general algebraic systems

such as multirings and multioperator T'-groups.

Structure of the dissertation

The work is organized as follows.

Chapter 2

This chapter contains the relevant literature review details. The basic concepts of
formation theory are introduced. It is shown that the lattice of all formations of

finite rings is algebraic and modular. Some applications for fuzzy rings are discussed.

Chapter 3

Ballester-Bolinches, Pin, and Soler-Escriva developed a general method to describe

the languages corresponding to saturated formations of finite groups. In the present
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chapter it is shown that the mentioned result is applicable to the languages corre-
sponding to multiply local formations of finite groups. Moreover for a subgroup
functor 7 (in Skiba’s sense), the languages corresponding to 7-closed saturated for-
mations of finite groups are described.

Let n be a positive integer, and let o = {o; | i € I} be a partition of the set
of all primes. It is shown that every law of the lattice of all formations is fulfilled
in the lattice of all n-multiply o-local formations of finite groups. This immediately
implies the modularity of the lattice of all n-multiply o-local formations of finite

groups, i.e., it is obtained as a corollary the recent result of Chi, Safonov and Skiba.

Chapter 4

Let 7 be a subgroup functor such that all subgroups of a finite group G' containing
in 7(G) are subnormal in G. It is shown that the lattice of all 7-closed totally com-
position formations of finite groups is inductive and algebraic. Thus it was found
the solution of Skiba—Shemetkov problem on algebraic lattices of composition for-
mations of finite groups.

Let n be a positive integer and w be a nonempty set of primes. It is established
that the lattice of all 7-closed n-multiply w-composition formations is &-separated,
where & is the class of all finite groups. It is proved that every law of the lat-
tice of all 7-closed formations is fulfilled in the lattice of all 7-closed n-multiply

w-composition formations. As an application, it is shown that the lattice of 7-closed
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n-multiply w-composition formations is modular but not distributive.

It is established that the law system of the lattice of all 7-closed formations of
finite groups coincides with the law system of the lattice of all 7-closed n-multiply
w-composition formations of finite groups. Thus it was found the solution of Skiba—

Shemetkov problem on laws in the case of infinite set of primes w.

Chapter s

Let X be a class of simple groups with a completeness property m(¥X) = char X.
Forster introduced the concept of X-local formation in order to obtain a common
extension of well-known theorems of Gaschiitz—Lubeseder—Schmid and Baer. It is
proved that the lattice of all X-local formations of finite groups is algebraic and

modular.

Chapter 6

Let 901 be the class of all multioperator T-groups satisfying the minimality and max-
imality conditions for T-subgroups, and let n be a positive integer. It is proved that
every law of the lattice of all 7-closed 9-formations is fulfilled in the lattice of all
T-closed n-multiply €2;-foliated 9-formations with direction ¢, such that ¢ < ¢.

The Frattini theory of 7-closed n-multiply €2;-foliated 9-formations is developed.
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Chapter 7

The chapter devoted to further applications. We give a brief discussion of further
possible applications of our results and future directions for research involving the

methods and results of this work.

To the best author’s knowledge the main results presented here, and not attributed
to others or described as well-known, are new. They have a theoretical significance

and may be used in the study on the theory of algebraic structures and their classes.

Derived works

The contributions appearing in the present dissertation have been published as re-
search papers. The corresponding bibliographical references are papers without co-
authors [117, 118, 119, 120, 121, 122, 123, 124, 125]. The authors contributed equally to
the papers [126, 127, 128, 129, 130, 137, 138]. The author also thanks the authors of

the literature for the provision of the initial ideas for this work.
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Chapter 2

Formations of Algebraic Structures

2.1 Literature review & background

In the universe of all finite groups, the definition of a variety leads to the concept of
a formation, — a class closed under taking homomorphic images and finite subdirect
products is called a _formation. This concept of the 1960s appeared first in the scope
of finite solvable groups. Later, several authors investigated formations of algebraic
structures. Jakubik [62] proved that the collection of all formations of lattice ordered
groups is a complete Brouwerian lattice, also the collection of all formations of finite
monounary algebras forms a complete lattice; see [63].

In the papers [13, 14, 19], it was proposed an approach of formation theory
application in the theory of formal languages. The Eilenberg theorem [38] implies

that there exists a bijection between the set of all varieties of regular languages and

I0
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the set of all varieties of finite groups. The Formation Theorem (Ballester-Bolinches,
Pin, Soler-Escriva [13]) states that there is a one-to-one correspondence between for-
mations of finite groups and formations of languages. This result makes formations
useful for the study of abstract machines and automata, which commonly appear in
theory of computation, compiler construction, artificial intelligence, parsing, formal
verification and another aspects of theoretical computer science. Moreover, forma-
tions are a useful tool to study finite rings (see [32, 125]) which find interesting
applications in coding theory (see [20, 102]).

In the group theory, formations are some of the most important classes. In the
books [12, 44, 45, 99, 107, 135], it was demonstrated that constructions and results of
lattice theory are useful for studying groups and formations of groups. In the scope
of groups, formations generalize some notions such as o-solvability and o-nilpotency,
and help to understand better the structure of groups. The motivation to study o-
local formations rises from the result of Chi, Safonov and Skiba [29, Theorem 1.3],
which deals with so-called >J;-closed formations. Recently these interesting classes of
groups, introduced first by Kramer [68] and studied by Shemetkov [9s], have found
new powerful applications set out in [29, 30, 1m].

Thus methods of the general formations theory find various applications for
investigation of groups, rings, and modules. There is some duality in the research of
formations of finite groups and formations of other algebraic structures. This rea-

soning gives us the motivation to consider their properties from a unified viewpoint.
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Such a unified approach can be realized considering formations of so-called (multi-
operator) T-groups. Some particular cases of 7T-groups are groups, modules, rings,
and multirings (i.e., T-groups with the condition every t € T" on G is distributive
with respect to addition). Lattices of formations of 7T-groups have been studied in

the theory of partially foliated formations introduced by Vedernikov [131, 34].

The references contain about 140 entries. However, it is not a comprehensive
bibliography of this field of study. With numerous exceptions, it may contain only
items referred to in the text. To find the references for a topic, please use online

databases, such as MathSciNet or Zentralblatt.

2.2 Formations of monoids and formal languages

2.2.1 Classes of monoids

Recall that a monoid is an algebraic structure with a single associative binary op-
eration and an identity element. A group is a monoid where each element has an
inverse element. The simplest example of a monoid that is not a group is the set
{0,1} with the usual multiplication.

Monoids are commonly used theoretical foundations of computer science. Var-
ious abstract data types in computer programming may be described using monoids:
because the operation takes two values of a given type and returns a new value of

the same type, it can be chained indefinitely, and associativity abstracts away the de-
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tails of construction. We note that a /ist (array) is a fine example of a monoid (the

identity of a list is an empty list, and the associative operation is appending).

Example 2.1 (R [54]). Following Hammill [s4], we use R to show that numeric
vectors with concatenation and an empty vector form a monoid. Given a set of
values is all the numeric vectors. We take R’s ¢ function as the monoidal operation.

To check that this is indeed a monoid, first we shall make an infix version of c.
55%(:%5’ <_ C

Does applying the monoidal operation to two elements of our set give another ele-

ment of that set?

A <— 1:3
B <— 4:7
C <— 8:10

class (A); class(B); class(C)

## [1] Tinteger”

## [1] Tinteger”

## [1] Tinteger”

class (A %c% B %c% C)
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## [1] Tinteger”
Thus, the operation appears to preserve the type. Let us check now if it is associative.

vi <— (A %c% B) %c% C
va <— A %c% (B %c% C)

all .equal (vi, v2)

## [1] TRUE
It is. Let us check if we have an identity element.

O <— integer (o)
vi <— A %c% O
ve <— O %c% A

all .equal(vi, A)

## [1] TRUE

all .equal (v2, A)

## [1] TRUE

Thus, we deal with a monoid.

Example 2.2 (C# [124]). We describe a monoid using C# code as follows.
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* public interface IMonoid<T>{
T Zero { get; }

T Append(T a, Tb); }

We implement a monoid a singleton.

* public static class Singleton<T> where T : new() {
private static readonly T _instance = new TQ);

public static T Instance { get { return _instance; } }

}

For instance we may implement monoid ged(a, b).

* public class GCDMonoid : IMonoid<int> {
public GCDMonoid() {}
private int gcd(int a, int b) {
return b==0 7 a : gcd(b, a % b); }
public int Zero {
get { return 0; } }
public int Append(int a, int b) {

return gcd(a, b);}}

Example 2.3 (Scala [74]). Following Noll [74], we use Scala to implement a monoid

using a trait as a type class.
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* trait Monoid[T] {
def e: T

def op(a: T, b: T): T }

In Algebird [1], an additive monoid for the standard type Seq is defined as

follows:

* Seq is a concatenation monoidSeq is a concatenation monoid;

* op (plus) is the concatenation operation;

* e (zero), the identity element, is the empty Seq.

The implementation is listed below.

* class SeqMonoid[T] extends Monoid[Seq[T]] {
override def zero = Seq[T] ()
override def plus(left : Seql[T], right : SeqlT])

= left ++ right }

Implicits need to be used because this is how the notion of type classes is imple-

mented in Scala.

* implicit def seqMonoid[T] : Monoid[Seq[T]]

= new SegMonoid[T]

In Chapter 10 of the book [31], we may find some interesting samples of monoids

implemented in Scala.
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More samples of monoids in computer programming are discussed here:

* marmelab.com/blog/2018/04/18/functional-programming-2-monoid.html
* blog.axosoft.com/monoids-practical-category-theory

* fsharpforfunandprofit.com/posts/monoids-without-tears

* medium.com/@sjsyrek/five-minutes-to-monoid-fe6f364d0bba

* doc.sagemath.org/pdf/en/reference/monoids/monoids.pdf

Definition 2.4. ([13]) A formation of monoids is a class of monoids § satisfying the

following two conditions:

1. any quotient of a monoid of § also belongs to §;

2. the subdirect product of any finite family of monoids of § is also in §.

Example 2.5 (Example s [10]). Following Ballester-Bolinches et al. [r0], we consider

some nontrivial examples of monoid formations.

* A monoid M has a zero if there exists an element 0 € M such that the
equation m0 = 0 = Om holds for each element m € M. Note that this 0
is unique. Finite monoids with zero constitute a formation, which is not a
variety of finite monoids. Moreover, monoids with zero of a given formation

of monoids constitute a formation.

* A monoid is called periodic if all its cyclic submonoids are finite. The set of

all periodic monoids is a formation of monoids.


marmelab.com/blog/2018/04/18/functional-programming-2-monoid.html
blog.axosoft.com/monoids-practical-category-theory
fsharpforfunandprofit.com/posts/monoids-without-tears
medium.com/@sjsyrek/five-minutes-to-monoid-fe6f364d0bba
doc.sagemath.org/pdf/en/reference/monoids/monoids.pdf
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* A monoid M is called aperiodic if there exists a positive integer £ such that
m* = m**+1 for all m € M. The class of all aperiodic monoids is a formation

of monoids.

* A monoid is called relatively regular if it contains a fnite ideal. The class of

all relatively regular monoids is a formation of monoids.

2.2.2  Formations of languages

Recall that languages are subsets of a certain type of monoid, the free monoid over
an alphabet, and regular languages are precisely the behaviours of finite automata
[10]. A language is called regular [10] if its syntactic monoid is a finite monoid (note
that a regular language is a group language if its syntactic monoid is a finite group).
Following the standard notation, we denote by A* a free monoid on a set A, ie.,
the set of all words with letters from A. In the sequel, a dlass of regular languages
C will associate with any finite alphabet A a set C(A*) of regular languages of A*;

see [14, Section 4].

Definition 2.6 ([13]). A formation of languages is a class of regular languages F

satisfying the following two conditions:
1. for each alphabet A, F(A*) is closed under Boolean operations and quotients;

2. if L is a language of F(B*) and 1 : B* — M denotes its syntactic morphism,

then for each monoid morphism o : A* — B* such that o « is surjective,
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the language a~1(L) belongs to F(A*).

Following [13], we associate with any formation of monoids 91 the class of languages
F (1) as follows: for any alphabet A, we denote by F(91)(A*) the set of languages
of A* fully recognised by some monoid of 91 (note that this is equivalent that the
syntactic monoid is in 9). For a formation of languages F, we denote by J(F)
the formation of monoids generated by the syntactic monoids of the languages of

F; see [13].
Theorem 2.7 (Formation Theorem [13]). The correspondences
M — F(M) and F — M(F)

are two mutually inverse, order preserving, bijections between formations of monoids
and formations of languages. In particular, there is a one-to-one corrvespondence between

formations of finite groups and formations of languages.

2.3 Formations of finite groups

We consider only finite groups. Closure operations on classes of groups were intro-
duced in [95, p. 12], [37, pp. 374-375] and [12, p. 89]. Let ) be a class of finite
groups. Following [37], we define the closure operations as follows.

QY = (G : 3H € Q) and an epimorphism from H onto G);
ReY) = (G : IN; 9 G(i = 1,...,7) with G/N; € 9, Ny N ---AN, = 1).

Formations are classes of groups introduced in the 1960s (see [42]).
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2.3.0  Semigroup of all formations

Definition 2.8 ([37]). A formation is a class of groups § which is both Q-closed

and Ro-closed, i.e., satisfying the following two conditions:

. if G €F, then G/N € §;

2. if G/Nl, G/N2 € §, then G/N1 NNy €35,

for any normal subgroups N, Ni, Na of G. Note that, a class § is a formation iff
§ = QRS- If X is a class of groups, we write form X instead of QryX to denote

the formation generated by X. Let G' be a group. Then the formation

form G = Qry(G)

is called one-generated.

Example 2.9 (p. 1t [135]). The following classes of groups are formations.

* () is the empty formation.

* (1) is the class of all identity groups.

* & is the class of all finite groups.

¢ A is the class of all abelian groups.

* M is the class of all nilpotent groups.

* & is the class of all solvable groups.
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* &, or M, is the class of all p-groups, where p is a prime.
However, the class of all finite cyclic groups is not a formation.

Definition 2.10 ([37]). For any group G and a class of finite groups § 2 (1), we
denote by Gy the §-radical of G, ie., the product of all normal §-subgroups of

the group G.

Definition 2.1x ([37]). For any group G' and a nonempty formation §, we denote
by GS the F-residual of G, ie., the intersection of all normal subgroups N of G

such that G/N € §.
Definition 2.12 ([37]). The formation

M3 = {G | G € M}
is the product of formations M and §.

For any formations §1, §2, and §3, we have

(§182)83 = F1(52353);

see [37, p. 338]. Thus, the set of all formations with the formation product defined
above is a semigroup. We denote it by G&.

By Corollaries 7.14 and 7.15 in [99], the sets of all local formations, all n-
multiply local formations and all totally local formations are subsemigroups of G®.

We will study these types of formations in the next subsections.
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2.3.2 T7-Closed formations

The concept of subgroup functor turned out to be useful in group theory; see, e.g.,

[107, 64, 1] .

Definition 2.13 ([107]). In each group G we select a system of subgroups 7(G) and

say that 7 is a subgroup funcror if
1. G € 7(QG) for every group G

2. for every epimorphism ¢ : A — B and any H € 7(A) and T € 7(B), we

have H? € 7(B) and T¥ ' € 7(A).
If 7(G) = {G} then the functor 7 is called #ivial.

For any set of groups 2), the symbol s; denotes the set of groups H such
that H € 7(G) for some group G € 9).

A class of groups § is called 7-closed if s;(§) = §. For instance § is called
s-closed [37] (or hereditary) if it contains all the subgroups of G € § (ie., 7(§) =

(%)), and sp-closed [37] (or normally hereditary) if it contains all the normal sub-

groups of G € § (ie., 7(§) = sn(F)). A formation § is T-dosed if 7(G) C § for
every group G of §.
Let © be a set of formations. By ©form ), we denote the intersection of all

formations of © containing a set of groups 2), i.c., the classes

* tform9),
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e [7form9),

e [7 form%

are the the intersections, respectively, of all T-closed formations, all 7-closed n-multiply
local formations and all 7-closed totally local formations containing a given set of
groups 2). For trivial subgroup functor, we have form ), I,form %), and l.form ).

We say that 7 is a closed subgroup functor if for any groups G' and H € 7(G)
we have 7(H) C 7(G).

Following [107], we define a partial order < on the set of all subgroup functors
as follows: 71 < 7o if and only if 74(G) C 72(G) for any group G € X. By 7, we
denote the intersection of all closed subgroup functors 7; such that 7 < 7;. The
functor T is called the dosure of T; see [107].

Recall that a group class closed under taking homomorphic images is called a
semiformation [9s].

Let ) be a class of groups. By [107], the intersection of all 7-closed semifor-

mations containing Q) is called the 7-closed semiformation generated by ).

Lemma 2.14 (Lemma 1.2.21 [107]). Let § be a T-closed semiformation generated by

Q). Then § = 05-(2).

Lemma 2.5 (Lemma 1.2.22 [107]). Let Q) be a set of groups. Then

rform Q) = orys+(2).
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Let Q) be a class of groups. The symbol 7form %) denotes the T-closed forma-
tion generated by %), ie., the intersection of all 7-closed formations containing 2);

see [107].

Lemma 2.16 (Corollary 1.2.24 [107]). Ler {9N; | i € I} be a set of T-closed formations.

Then

rform (U sm) = form (U sm)

el el
The symbol fin(9M) denotes the class of all finite groups such that G € M

where 9 is a variety of groups; see [107].

Lemma 2.r7 (Lemma 3.4.3 [107]). For every variety of groups I the map fin of the

form

M — An M

is an embedding of the lattice and semigroup of locally finite varieties into the algebra

of all formations.

2.3.3 Lattices of formations

By ©, we denote a set of classes of finite groups. Any formation of finite groups
in © will be called a ©-formation. In the present work, we study complete lattices

of formations.

Definition 2.18 (p. 151 [107]). When the intersection of each set of ©-formations

is in ©, and we can find a O-formation § such that 9t C § for any O-formation
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M, then O is called a complete lattice of formations. Note that any complete lattice
of formations is a complete lattice in the ordinary sense. Let 901 and $) belong to
©. Then M\/ g 9 is the least upper bound for {9, H} in ©, and M N §H is the

greatest lower bound for {9, H} in O.

Let © be a complete lattice of formations of finite groups, and let formations
M and H belong to ©. Denote by M/ g $H the formation forme(M U H). In
particular, for the lattice of all formation of finite groups the following equation
holds:

93?\/.6 = form(M U H).

Definition 2.19. A lattice of formations © is called modular if for any ©-formations

X, 9, and § such that X C ), we have H N (X /g 3F) =X Ve(HNJT).
Definition 2.20. A lattice of formations © is called distributive if for any ©-formations
§1, §2 and F3 we have 1N (F2 Ve S§3) = (F1 N F2) Vo (F1 NT3).
2.3.4 Saturated formations

The Frattini subgroup ®(G) of a group G is the intersection of all maximal sub-

groups of Gj see [37].
Definition 2.21 ([37]). A formation § is said to be saturated

if G/®(G) € § implies G € §.
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It is well-known that a formation is saturated iff it is local, this circumstance makes
saturated formations one of the most suitable classes for studying the structure of

finite groups.

Definition 2.22 ([37, 44, 12]). The set of all primes is denoted by PP. For any for-
mation function

f : P — {formations of groups}, (2.1)

the symbol LF(f) denotes the set of all groups G such that either G = 1 or
G # 1 and G/Cq(H/K) € f(p) for every chief factor H/K of G and each
p € m(H/K). The class LF(f) is a saturated formation for any function f of the
form 2.1 If § = LF(f) for some formation function f, then f is called a local

satellite of the formation §; see [44, p. 2] for more details.

Remark 2.23 ([37, u8]). The notation § = LF'(f) originally has the implicit mean-
ing that § is a Jocal formation with a formation function f; see Section 3 in [37,
IV]. By the Gaschiitz—Lubeseder—-Schmid theorem, a formation of finite groups is

saturated iff it is local; see Section 4 in [37, IV].

Let p be a prime. Following [107], we put for every set of groups 2):

tform(G/Fp(G) | G € Q) if p € ©(Q);
@T(Fp) =

0 it p & (D).
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For trivial subgroup functor, we use the notion

form(G/F,(G) |G € Q) if pen(D);
@(Fp) =

0 if p & m().
Recall that m(9)) = Ugey (G), and F)(G) = Oy ,(G); for more details see [37].
We use the notion of canonical satellite of a formation § to study the con-

struction of § from a simpler formation.

Definition 2.24 ([u3]). Let § = LF(F), where F(p) = M,F(F)p) for all p € P.
Then F' is called the canonical local satellite of the formation §. Note that any local

(saturated) formation has the unique canonical local satellite.

2.3.5 Multiply local formations

When values of local satellite of a formation are themselves local formations, then

that leads to the following definition.

Definition 2.25 (p. 275 [44]). Every formation is O-multiply local. For n > 0, a
formation § is called n-multiply local if § = LF(f), and all nonempty values of f

are (n — 1)-multiply local formations. If n = 1, then we have just local formations.

Example 2.26 ([107]). Let 91 = N"H and §F = IN,M, where the formation § # ()

is not local. By Example 1.3.3 in [107], formations 91 and § are n-multiply local.

Remark 2.27 ([13]). Let n be a positive integer, and § = LF'(F') be an n-multiply

local formation. Then by Lemma 1 in [u3] F(p) is an (n — 1)-multiply local for-
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mation for all primes p. Moreover, by Theorem 2 in [113] § is an n-multiply local
iff

Nylpform §(F),) C §
for all primes p. If § = [,form X, then Theorem 13.13 in [107] implies m(F) =

m(X). By Remarks 1 and 2 in [1u3] we have
N, S (Fp) = Nply—1form F(F,).
The following lemma efficiently describes n-multiply local formations.

Lemma 2.28 (Theorem 3 [113]). Let n be a positive integer, and § = l,form X for

any nonempty set of groups X. Then

§ = form U Npln—1form X (F)).
peP

Definition 2.29 ([44, 107]). A formation is called fotally local if it is n-multiply

local for all positive integers n.

Note that some well-studied formations are totally local; see [99, 107]. For in-
stance the classes of all 7-nilpotent and m-solvable groups are totally local formations
for all sets 7 of primes.

The following lemma efficiently describes totally local formations.

Lemma 2.30 (Theorem 1.3.16 [107]). Let § = lcform X for any nonempty set of
groups X. Then

§ = form U MNplooform X(F),).
peP
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Remark 231 (see [107]). If there exits such integer ¢ that § is a ¢-multiply local
formation but it is not a (t+1)-local formation, then we write ind;(§) = t. We have
ind;(§) = oo if § is a totally local formation, and ind;(§) = 0 if § is not local.
Let § = LF(F'). Then by Lemma 1.3.1 in [107], ind;(§) = n iff there exists a prime

p such that ind;(F(p)) =n — 1 and ind;(F(q)) > n—1 for all ¢ € 7(F) \ {p}.

Example 2.32 (Example 1.3.2 [107]). Let § be a formation of all supersolvable groups.
Then § = LF(F), where F'(p) = Ab(p — 1) for all primes p; see Example 6.3
in [14]. In particular, F'(3) is formation of all elementary abelian 2-groups. Then

F(3) =93F(3) is not a local formation. Thus ind;(§) = 1.

2.3.6 o-Local formations

Let 0 = {0; | i € I} be a partition [29] of the set of all primes P, ie.,

o={0; |t €I}, where P = Ujcro; and 0; No; = for all i # j.

Definition 2.33. A finite group G is said to be

e o-primary [108] if it is a o;-subgroup for some i;

* o-solvable [108] if every its chief factor is o-primary;

* o-nilpotent [49] if it is a the direct product of some its o-primary subgroups;

* meta-o-nilpotent [109] if it is an extension of some o-nilpotent finite group

be the o-nilpotent group.
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When o = {{2},{3},...}, a finite group is o-solvable (respectively, o-nilpotent) iff

it is solvable (respectively, nilpotent).

The o-nilpotent groups and classes of meta-o-nilpotent groups are of a very
special interest in the resent years (refer for instance to [109], [111, Introduction] and
[27, 49, 48, 50, 51, 52, 67, 71, 110, 140] for an account of recent headway).

In the scope of groups, formations generalize some notions such as o-solvability
and o-nilpotency, and help to understand better the structure of groups. The moti-
vation to study o-local formations rises from the result of Chi, Safonov and Skiba
[29, Theorem 1.3], which deals with so-called X;-closed formations. Recently these in-
teresting classes of groups, introduced first by Kramer [68] and studied by Shemetkov

[95], have found new powerful applications set out in [29, 30, 111].

Definition 2.34 ([29]). Given a partition o of the set of all primes [P and a function
f with domain ¢ whose images are formations of groups, ie., f is a function of
the form f : 0 — {formations of groups}. The class § = LF,(f) of all o-groups
G such that either G =1 or G # 1 and G/O,: ,.(G) € f(0;) for all 0; € 0(G)
is a formation. Such a formation is called the o-local formation [29] defined by the

formation o-function f (a o-local definition of §) with support

Supp(f) = {oi | f(o:) # 0}.

The o-function f is called integrated it f(o;) C LF,(f) for all oy, and full if

f(o:) = &, f(0y) for all o;. Here &,,f(0;) = {G | GT7) € &,.}, and B,, is
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the class of all o;-groups.

If the values of o-local definitions of some formation are themselves o-local

formations, then this leads to the definition of multiply o-local formation.

Definition 2.35 ([29]). Every formation is 0-multiply o-local, by definition. For n >
0, we say that the formation § is n-multiply o-local provided either § = (1) is the
class of all identity groups or § = LF,(f), where f(o;) is (n—1)-multiply o-local

for all o; € o(F).

2.3.7 Solvably saturated formations

Baer-local (or composition) formations build a broader than saturated formations
family of classes of finite groups. Baer’s theorem states that Baer-local formations of

finite groups are precisely solvably saturated formations of finite groups; see p. 373

in [37].

Definition 2.36 ([44]). A formation § is said to be solvably saturated if it contains

each group G with G/®(N) € § for some solvable normal subgroup N of G.

Remark 2.37 ([44]). Each local (saturated) formation is composition (solvably satu-

rated) formation.

Let p be a prime, and G be a finite group. The subgroup CP(G) of G is the
intersection of the centralizers of all the abelian p-chief factors of G. It is assumed

that CP(G) = G if G has no abelian p-chief factors.
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Let X be a set of finite groups. Following [114], we will write Com(X) to
denote the class of all groups L such that L is isomorphic to some abelian compo-
sition factors of some group in X. When X = {G} we just use Com(G) instead
of Com(X). Later on, the symbol R(G) means the product of all solvable normal
subgroups of G, and 7(X) denotes the set of all primes dividing the order of all

groups G € X.
Definition 2.38 ([44]). Consider a function f of the form
f:PU{0} — {formations of groups}, (2.2)
and the class of finite groups
CLE(f) = (G| G/R(G) € f(0); G/CP(G) € f(p) for allp € m(Com(G))).

If § is a formation such that § = CLF(f) for a function f of the form 2.2, then

S is said to be composition formation with composition satellite f.

When values of composition satellites of some formation are themselves com-

position formations, we have the following definition.

Definition 2.39 ([114]). Every formation is 0-multiply composition, by definition.
For n > 0, a formation § is said to be n-multiply composition if § = CLF(f), and
all nonempty values of f are (n — 1)-multiply composition formations. If n = 1,
then we have composition formations. A formation is totally composition when it is
n-multiply composition for any n > 0. Note that, many formations of finite groups

are totally composition. For instance, () and (1) are totally composition formations.
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2.3.8 Multiply w-composition formations
The symbol R,,(G) is the G-radical of a finite group G.
Definition 2.40 ([114]). Let f be a function of the form
[ wU{w'} — {formations of groups}. (2.3)
Given the class of finite groups CF,(f) =
(G| G/Ry(G) € f(w') and G/CP(G) € f(p) for all p € wN7(Com(G))).

If § is a formation such that § = C'F,(f) for a function f of the form (2.3), then

§ is said to be w-composition formation with an w-composition satellite f.

Definition 2.41 ([114] ). Any formation is 0-multiply w-composition. For n > 0, a
formation § is said to be n-multiply w-composition if § = C'F,(f) and all nonempty

values of f are (n — 1)-multiply w-composition formations.

Note that n-multiply w-composition formations of finite groups have many

interesting applications in the theory of formations of finite groups; see [114, 44].

2.3.9 X-local formations

In 1985, Forster [39] introduced X-local formations of finite groups to obtain a com-
mon extension of Gaschiitz-Lubeseder-Schmid and Baer’s theorems. We note that
these classes of groups have been studied later on in [7, 8, 9, 26, 12, 98]. Let X = 7,

ie., the class of all simple groups. Then X-local formations saturated (local). Let
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X = P, ie, the class of all abelian simple groups. Then X-local formations are
solvably saturated (Baer-local); see [12, p. 125].

Let X be a class of finite groups. In the sequel, char X is the set of orders of
all simple abelian groups in X. By 7(X), we denote the set of all primes dividing
the orders of all groups G € X. We fix X as a nonempty class of simple groups

satisfying the condition 7(X) = char X, and denote X’ = J \ X.

Definition 2.42 ([12]). Let f be a function of the form

f : (char X) U X" — {formations of groups}, (2.4)

where a formation f(X) could be possibly empty. Then we say that f is an X-
formation function. The X-local formation LFx(f) defined by f is the class of all

groups G satisfying the following two conditions:
. if H/K is an Xp-chief factor of G, then G/Cq(H/K) € f(p);

2. G/L € f(FE), whenever G/L is a monolithic quotient of G such that the

composition factor of Soc(G/L) is isomorphic to E, if E € X'.

(Here the symbol Soc(G) denotes the socle of a group G # 1, i, it is the product
of all minimal normal subgroups of finite group G.) A formation § of finite groups
is called an X-local formation if § = LFx(f) for some X-formation function f,

and we say that f is an X-local definition of § or f defines §; for more details see

pp- 126-127 in [12], and pp. 374-375 in [37].
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Remark 2.43 (Example 3.1.61 [12]). Note that any formation § of finite groups is

X-local when X = () because § = LFx(f), where f(S) =73 for all S € 3.

Remark 2.44 (Lemma 2.1 [9]). We note that without loss of generality in the defini-

tion of X-local formation, can be assumed that X-formation function has the same

value on all X € ¥'.

By Remark 2.44, we can modify the second condition in Definition 2.42 for
X' # 0 as follows: if G/L is a monolithic quotient of G such that Soc(G/L) is
an X'-chief factor of G, then G/L € f(X'); see e.g., p. 29 in [26], and Definition

2.1 in [9].

Remark 2.45 (Theorem 5.1 [98]). Every nonempty X-local formation has an X-compo-
sition satellite. Thus, we can apply the properties of partially composition formations

of finite groups for studying X-local formations of finite groups.

Remark 2.46 (Definition 3.2.12, Remarks 3.2.13 [12]). We note that Frattini-like sub-
group associated with a class X of simple groups have been introduced in [7]. The-
orem 3.2.14 in [12] states that the corresponding X-saturated formations of finite

groups are exactly X-local formations of finite groups.

2.4 Formations of rings and some generalizations

By Theorem 4.6 in the book [37], every formation of finite groups is saturated iff

it is local. In contrast to the group case, not every saturated formation of Lie and
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Leibniz algebras, rings, etc. can be locally defined. However, these formations have

found various applications. Consider some examples.

Example 2.47 (Formations of monounary algebras). The lattice all formations of
finite monounary algebras is isomorphic to the lattice of all hereditary subsets of a
certain poset [63]. The lattice of all formations of finite monounary algebras is dis-
tributive, but for the lattice of formations of at most countable monounary algebras

this is not true; see [80].

Example 2.48 (Formations of lattice ordered groups). Jakubik [62] showed that the
set of all formations of lattice ordered groups forms a complete Brouwerian lattice,
and the set of all formations of G MV -algebras is isomorphic to a principal ideal of

the lattice all formations of lattice ordered groups.

Example 2.49 (Formations of solvable Lie and Leibniz algebras). The theory of sat-
urated formations of solvable Lie algebras is set out in Barnes and Gastineau-Hills
[18], and Barnes [16]. Over a field of nonzero characteristic, a saturated formation
of solvable Lie algebras has at most one local definition, but a locally defined sat-
urated formation of solvable Leibniz algebras other than that of nilpotent algebras

has more than one local definition [17].

Example 2.50 (Formations of multirings). Christensen [32] showed that there exist
Frattini closed formations of finite rings that are not local. Shemetkov [99] intro-

duced the concept of formations of multirings, which a special case is formations of
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finite rings. In the book [99], we can find not only various examples of applications

of this formations, but also related problems are discussed.

Question 2.1 (Problem 3.51 [99]). Is it true that any one-generated n-multiply local

formation of rings has only a finite set of n-multiply local subformations?

Question 2.2 (Problem 22.8 [99]). How to describe finite non-one-generated forma-

tions of rings for which all proper subformations are one-generated?

This short overview gives the motivation to study formations of finite rings.

2.4 Classes of finite rings

A dass of rings ) is a set of rings with the following property: if R € 9), then any

ring isomorphic to R belongs to 2).

Definition 2.51 ([32]). We refer to a class of rings as a homomorph whenever it
contains all homomorphic images of its members and as a formation if in addition
it is subdirect product closed; i.e., a formation is a class of finite rings § which is

both Q-closed and Rrg-closed in the sense of [99, 37, 12, 32].

The smallest formation of finite rings containing a class of finite rings Q) is
QR0 Y), composed of all rings that can be expressed as quotients of subdirect prod-
ucts of a finite number of rings in Q). When ) = (R) consists only of the rings

isomorphic to R, we obtain that the smallest formation containing R is QRo(R);
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such a formation is called one-generated. Let § be a class of finite rings, then § is
a formation iff § = Qrp §.

In the scope of groups, formations generalize some notions as solvability, su-
persolvability and nilpotency of groups. Let us consider an example for formations

of rings.

Example 2.52 (Locally defined formations of finite rings [32]). For any ring R, the
intersection ®(R) of its maximal ideals, when such exist, is called the Frattini sub-
ring of R. For finite rings ®(R) is contained in the Jacobson radical J(R) of R.
We are concerned with classes of rings that contain a ring R whenever they contain
it Frattini factor ring R/®(R). Such classes are said to be Frattini closed.

A nontrivial examples of a Frattini closed formation of finite rings is the class
M of all finite nilpotent rings. This class can be described locally in the sense that
R € 9 iff the minimal ideals of its factor rings R/K are trivial left R-modules.

Following [32] we refer to the minimal ideals of the factor rings of a finite
ring R as chief factors of R. Since each chief factor has prime characteristic it can
be classified, according to which prime p is involved, as a p-chief factor. Denote for
each chief factor H/K of R its left annihilator {r | » € R and rH C K} in R
by Ar(H/K). Given a set of primes 7 and a function f with domain 7 whose
images are formations of finite rings. The class § of m-rings whose p-chief factors

H/K have the property

R/AR(H/K) € f(p) for eachpe
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is a formation. Such a formation is called the local formation defined by the forma-
tion function f with support .

In view of the primary decomposition of finite rings, we see that for any p € T,
the class §), of p-rings in § is a formation and is defined locally by the formation
function f,, with support {p} and image {f(p)}. The most elementary nontrivial
local formations are the formations 91, of finite nilpotent p-rings in the sense that

they contain no proper local formations.

2.4.2 Lattices of formations of finite rings

All rings considered are finite. Complete lattices of formations of finite rings are
defined analogously to the case of formations of finite groups. We note that () and
(0) are formations and the set of all formations of finite rings is the complete lattice
of formations. Let © be a complete lattice of formations of finite rings, and let I
and $ belong to ©. Then Qry(M U $) is the least upper bound for {M, H} in

©, and M N H is the greatest lower bound for {M, H} in O.

Definition 2.53 ([21]). An element a of a lattice © is compact if a < V(x; | j € 5)
holds for a < V(x; | j € J) and some finite subset S C J. Compact elements are
important in domain theory [2] which has major applications for functional pro-
gramming languages. A complete lattice is called algebraic if each element of it is

the union (i.e. the least upper bound) of some set of compact elements.
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The notation J < R means that J is an ideal of a ring R, and we use the

notation R/I for a quotient ring of R modulo I if I < R.

Remark 2.54. We observe that a class of rings § is a formation iff it satisfies the

following two conditions:
. if R€ § and J<R, then R/J € §; and
2. if R/Il, R/IQ € F, then R/Il NIy € § for any I, Iy <R.

Theorem 2.s5 ([125]). The lattice of all formations of finite rings is algebraic and

modular.

Proof.  STEP 1 (ALGEBRAICITY). We show first that each one-generated formation
§ = Qry(R) is a compact element in the lattice of all formations of rings.

Let § C Qro(U;erSi)s where {§; | @ € I} is a set of formations. Then
R € Qro(U;er 8i)- Hence R ~ T'/J, where J 9T € Ro(UiesS;). Then there are
some Jp <T (k=1,...,7) such that T/Jy € Ujer§; and J1 N---NJ,. = {0}
Consequently, T'/J1 € §iy, ..., T/J, € Fi, for some i1, ..., i, € 1.

Thus for any k € {1,...,7}, we have T/J, € §;, U--- U F;,. Therefore
T € Ro(Fi,U- - -UF;,). From R ~ T/.J and J<T, we have R € Qry(Fi,U- - -UTi,),
then

T = Qro(R) C Qry(Fiy U+ UFi, ).
We show next that any nonempty formation of rings 9 is the union (in the

lattice of all formations of rings) of its one-generated subformations 9 = QRr((R;),
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where | € L. Let Y = Qry(UierM;). We show now that M = . Let R € M.

Then

R € Qry(R) C U m; © QRO(U M) =9.

i€EL i€L
Consequently, M C 2). The inverse inclusion is obvious; Mt; C M implies U;er,IN; C
9N, and, consequently, ) C M.

STEP 2 (MODULARITY). We wish to show that the following equality holds,

for any formations of rings X C Q) and §:

Y NQRrH(XUF) = Qrp(X U (PN T)).

The inclusion ”D” s trivial. Let A € 2 N QRy(X U F). Then A is a homo-
morphic image of some ring R € Ro(X U F), and we can find some ideals J; and
Jo of the ring R such that R/J; € X and R/Jy € § with J; N Jy = {0},

Let A= R/I, where I <R. It is well known that the set of all ideals of a ring
forms a complete modular lattice with respect to set inclusion. Thus, by modular

law, we have J1 N ((J1iNI)+ J2) = (JiNI)+ (JiNJz) = JiNI. We note that
(R/(NI)/(J1/(JinI)) = R/J; € X, and

(R/(JNIN/ (AN + Jo/(JiN D)= R/ NT)+Jy €3
Hence, R/(J; N 1) € Rg(X UF). From R/I € ) and X C 9), we conclude that
R/(JiNI) €.
Consequently, R/(J; NI) € Rg(XU(YNF)) implies A € Qry(XU(DN7F)).

This proves the theorem. O
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Let § and $) be formations such that $ C §. We denote by §/$ the lattice
of all formations M such that $ C 9 C §. As an immediate corollary from the

modularity of the lattice of all formations of rings, we obtain the following result.

Corollary 2.56. For any two formations I and § the lattices Qry(IM U F) /M and

5/ (F M) are isomorphic.

Fuzzy sets, which have been introduced by Zadeh [141] and Klaua [65], have
found many applications in fields such as data mining, machine learning, and pattern
recognition; see [60, 22]. Focusing on the structure of ring, Liu [70] introduced and
studied the notions of fuzzy subrings and fuzzy ideals, and showed that the images
and preimages under onto homomorphisms of fuzzy ideals are fuzzy ideals. Many
authors have developed the fuzzy ring theory. However, as we may see that not each
result on rings can be fuzzified. For instance, Dixit, Kumar, and Ajmal [35] discussed
the conditions under which a given fuzzy ideal can or cannot be expressed as a union

of two proper fuzzy ideals.

Definition 2.57 ([141]). A fuzzy subset of a set X is a function from X into the
closed interval [0,1]. Let X and X’ be any two sets, and f : X — X' be any
function. A fuzzy subset p1 of X is called f-invariant if f(z) = f(y) implies

wu(z) = p(y), where z,y € X.

Definition 2.58 ([35]). Let <’ be a binary composition in a set X, and p and g/
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be any two fuzzy subsets of X. The product yp’ is defined by

sup(min{u(z), ¢'(y)}), for z,y € X, and z =z - y;
pu (z) =

0, if z is not expressible as z =z -y for all z,y € X.

Clearly, up’ is a fuzzy subset of X.

Definition 2.59 ([35]). A fuzzy subset ;1 of a ring R is called a fuzzy ideal of R if

it has the following two properties:

L. pu(z —y) > min{p(x), u(y)} for any z,y € R; and

2. p(zy) > max{p(z), pu(y)} for any z,y € R.

In the sequel, by a ring we shall always mean a finite commutative ring with
identity. A fuzzy ideal p of a ring R is called fuzzy prime if for any fuzzy ideals p
and 1/ of R, the condition ppu’ C p implies that either p C p/ or ¢/ C p.

We shall write form R instead of Qry(R) for the formation generated by R.

Lemma 2.60 ([125]). Let R be a ring, and § = form R. Then the following two

conditions hold.

1. Any invariant fuzzy prime ideal of R corresponds in a natural way to a fuzzy

prime ideal of each member of §.

2. Any fuzzy prime ideal of each member of § corresponds in a natural way to a

fuzzy prime ideal of R.
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Proof. We note that the formation § consists of all quotients of subdirect products
of copies of R. Let f be any homomorphism from the ring R onto a ring A €
form R. Then f(R) = A.

(1) Let i be an f-invariant fuzzy prime ideal of R. Then by [35, Theorem 4.4],
f(p) (see [35, Lemma 4.]) is a fuzzy prime ideal of A.

(2) Let v be a fuzzy prime ideal of A. Then f~!(v) (see [35, Lemma 4.1]) is

a fuzzy prime ideal of R by [35, Theorem 4.5]. O
The proved lemma implies the following result.

Proposition 2.61 ([125]). Let R be a ring, and § = form R. Then there is a one-to-
one correspondence between the set of all invariant fuzzy prime ideals of R and the

set of all fuzzy prime ideals of each ring of §.

We note that by Theorem 2.s5 every formation of finite rings is the join of some

one-generated formations.

2.4.3 Classes of T-groups

Methods and results of formation theory have found fruitful applications in studies
of finite and infinite groups, rings, and modules. There is the kind of duality in the
research of formations of finite groups and formations of other algebraic systems.
That rises up the motivation to study formations of different algebraic structures

from a unified viewpoint, and to introduce formations of multioperator T-groups.
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Definition 2.62 ([34]). Let G be an additive (not necessarily commutative) group
with zero 0. We say that G is a multioperator T'-group whenever we have a system T’
of k-ary algebraic operations on G for k > 0, while £(0,...,0) =0 for all t € T,
where O appears on the left k times if ¢ is an k-ary operation; see Chapter III of

the book [69], [s8] and Chapter VI of the book [116].

Remark 2.63. We note that groups, modules, rings and multirings are particular cases
of multioperator T-groups. Multiring is a multioperator T-group with the condition
every t € T' on G is distributive with respect to addition; see [99]. Special types of

multioperator T-group are discussed in Chapter 4 in [116] and Section 4 in [s8].

Definition 2.64 ([116]). Let G be a multioperator T-group. A normal subgroup
N of G is called an ideal of G if for any positive integer n, any ¢t € T}, any

i€{l,...,n}, for arbitrary elements g1,...,9, € G and € N, we have

t(g1,---s9n) —t(g1,-- -, 9i-1,9i + T, Git1,---,9n) € N.

We write K <G to denote that K is an ideal of a multioperator T-group G.

Definition 2.65 ([34]). A formation of multioperator T-groups is a class § of mul-

tioperator T-groups satisfying the following two conditions:

. if G €F and N <G, then G/N € §; and

2. if N1, Ny <G and G/Nl, G/N2 € §, then G/N1 NNy € 5.
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By €, we denote the class of all multioperator T-groups with finite composition

series.

Remark 2.66 ([34]). A variety of multioperator T-groups is a class of multioperator
T-groups closed under taking multioperator T-subgroups, quotients and finite direct
products. Thus, formations of multioperator T'-groups of extend the notion of a
variety of multioperator T-groups. The class € is a formation but it is not a variety,

but any variety of multioperator T-groups is a formation of multioperator T-groups.

Let 901 be the class of all multioperator T-groups satisfying the minimality and
maximality conditions for multioperator T-subgroups. Following [34], we write J; to
denote the class of all simple 9%-groups, i.c., those nonzero multioperator T-groups
P whose only ideals are {0} and P itself. In the sequel, all considered multioperator

T-groups are in the class €.

Definition 2.67 ([34]). A class § of multioperator T-groups is called a Fitting class

whenever

L. if GE€Fand N<G, then N € §; and

2. if N1, Ny <G and N1, Ny € §, then N1 + Ny € §.

Let § be a Fitting class of multioperator T-groups. The symbol G denotes

the §-radical of G, ie., the sum of all F-ideals of a multioperator T-group Gj see

[34].
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A Fitting formation is a Fitting class of multioperator T-groups which is at

the same time a formation of multioperator 7T-groups.

2.4.4 ();-Foliated formations

Vedernikov [131] introduced an elegant concept of partially foliated formation. The
idea have led to the necessity of considering the (2-satellites of various directions
to construct new types of formations. The direction of an ()-satellites f has been
defined as a mapping of the class J of all finite simple groups into the set of all
nonempty Fitting formations. Obviously, we may find infinitely many such direc-
tions. For a fixed nonempty class ), we can form infinitely many new types of
classes, which are called 2-foliated formations of finite groups.

We use notations and terminologies from [34, 131]. Let {21 be a nonempty
subclass of J1, Q) = J1 \ ©1. The symbol K(G) denotes the class of all simple
IM-groups isomorphic to the composition factors of an IM-group G. The group G
is called an Qy-group if K(G) C Q. The symbol Mg, means the class of all Q-

groups belonging to M {0} € Mq,. We set
Oq, (G) = G, and Ogqy o, (G) = Ggmﬂ,lgmgl.
Definition 2.68 ([131]). A function f of the form

Q1 U{Q)} — {formations of T-groups}
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is called an €y F-function, and a function ¢ of the form
¢ : J1 — {nonepty Fitting formations of T-groups}

is called an F'R-function. We introduce a partial order < on the set of all QF-
functions and all F'R-functions. For every two functions j1 and po, put gy < fi2
if u1(A) C po(A) for all A € Q3 U{Q)} (A € TJ1). The set of all functions ¢
with 11 < ¢ < po is called a segment and is denoted by [u1, p2]. If 1 < po and

p1 # po then write gy < po. The class Q1 F(f, ) =
(GeM|G/Oq,(G) € f(), G/Gyua € F(A)VA € Y NK(G))

is called an Qy-foliated formation of multioperator T-groups with €2;-satellite f and
a direction ¢ (or an ; F-formation). A formation 0 F(f, ) is called Q-free if

p(A) =My for any A € Ty (we denote the direction of this formation by o).

Definition 2.69 ([34]). For any multioperator T-group G, we select a system of
multioperator T-subgroups 7(G), and say that 7 is a T-subgroup functor if the fol-

lowing two conditions hold:
1. G € 7(G) for each multioperator T-group G and

2. for every epimorphism ¢ : A — B and any H € 7(A) and K € 7(B), the

following holds: H¢ € 7(B) and K¢ ' € 7(A).

We say that 7 is trivial if 7(G) = {G}.
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Let Q) be a set of multioperator T-groups. Then the symbol s-(2)) denotes
the set of multioperator T-groups H such that H € 7(G) for some multioperator
T-group G in 9.

A class of multioperator T-groups § is called T-closed if s;(F) = §. In par-
ticular, a formation § is said to be 7-dosed if T7(G) C § for every multioperator

T-group G of §.

Remark 2.70 ([34]). It is easy to see that the class € of all multioperator T-groups
with finite composition series is not a 7-closed formation, in the general case. For
instance, consider a €-group G such that 7(G) € € for every subgroup €-functor
with 7(G) Z {G,{0}}. By Theorem 28.3 in [76], G is a simple group of Olshanskii

with infinite cyclic proper subgroups.

In the forthcoming chapters, we assume that 91 is a subclass of the class €,

and 9 is a class of multioperator T-groups of one of the following two types:

1. the class of all finite multioperator T-groups, or

2. the class of all multioperator T-groups satisfying the conditions of minimality

and maximality for T-subgroups.

We note that for any subgroup 9M-functor 7, the class M is a 7-closed €-
formation of multioperator T-groups. The 21 F-function is said to be 7-closed (or
78 F-function), if all its values are 7-closed 9-formations of multioperator 7T'-

groups. We suppose later on that any 2;-foliated 7-closed 9i-formation of multiop-
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erator T'-groups is 7€);-foliated 9M-formation of multioperator T-groups. We study

these formations in Chapter 6.

Conclusion

The basic concepts of formation theory are introduced. It is shown that the lattice
of all formations of finite rings is algebraic and modular. Let R be a finite com-
mutative ring with an identity element. It is established that there is a one-to-one
correspondence between the set of all invariant fuzzy prime ideals of R and the set

of all fuzzy prime ideals of each ring of the formation generated by R.



Chapter 3

Lattices of Saturated Formations

and Group Languages

3.1 Languages associated with multiply local formations of
finite groups

We borrow notations and terminology from the papers of Ballester-Bolinches, Pin,
and Soler-Escriva [13, 14]. All considered monoids are finite in this section. The For-

mation Theorem, and Lemmas 2.28 and 2.30 imply the following two results.

Proposition 3.0. Let § be an n-multiply local formation of groups with canonical
local satellite F', and let F be a formation of languages associated with §. Then F

is the join of the formations of languages F, associated with (n — 1)-multiply local

SI
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formations F(p) for all primes p.

Proposition 3.2. Let § be a totally local formation of groups with canonical local
satellite F, and let F be a formation of languages associated with §. Then F is the
Jjoin of the formations of langnages JF, associated with totally local formations F(p)

for all primes p.

These results show that computing the formation of languages F reduces to
computing F,, for all primes p. Value of the canonical definition F' of n-multiply

(totally) local formation § = LF(f) can be compute by the following formula

F(p) =M(f(p)NT)

for all primes p.

Definition 3.3 (Section s [14]). Given a prime p. Let Lo, ..., L; be languages of
A% ay, ..., ap be letters of A and let r < p be a nonnegative integer. Define
(Loa1L ...axLy)rp, — the modular product [14] of the languages Lo, ..., L
with respect to v and p, as the set of all words u in A* such that the number of
factorizations of w in the form u = ugajuy ...apu, with u; € L; for 0 < i <k,
is congruent to r modulo p. A language is a p-modular product of the languages

Ly, ..., Ly if it is of the form (LoaiL1 ...axLg)y, for some r.

Following [14], we use next the modular product to describe the formation of

languages corresponding to L9, e 0.
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Remark 3.4 (Proposition 3.16 [14] ). For any formation 9 of finite groups, the
formation product 91,90 coincides with the Mal'cev product 191, M, where LN,

is the class of semigroups which are locally a p-group.

Let Cp, be the formation of languages associated with (n — 1)-multiply (totally)
local formation of groups M = f(p) N F. Then by Theorem 6.2 in [14] and the

propositions above we obtain the following proposition.

Proposition 3.5. Let § be an n-multiply (totally) local formation, and F be the
formation of languages associated with §. Then for each alphaber A, F(A*) is the

Boolean algebra generated by the languages of the form

(LOGILI cee akLk)T',pv

where Lj € Cp(A*), 0<i <k, 0<r <p, and p runs over all primes.

Analogously we obtain a dual result for 7-closed local formations.

Proposition 3.6 ([118]). Given § = ["form%). Let F be the formation of languages
assoctated with §, and let C, be the formation of languages associated with ) (p).
Then for each alphaber A, F(A*) is the Boolean algebra generated by the languages
of the form

(L0a1L1 e akLk)r,pa

where L; € Cp(A*), 0<i<k 07 <p and p runs over all primes.
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Corollary 3.7. Given § = lformQ) and 7(2)) = Ugeyn(|G|). Let F be the forma-
tion of languages associated with §, and let Cp, be the formation of languages associated
with

form(G/Oy ,(G) | G €9) if p e n(D);
V(p) =

0 if p & n().

Then for each alphaber A, F(A*) is the Boolean algebra generated by the languages
oftloc‘form (L0a1L1 .. .akLk)ﬁp, where L; € Cp(A*), 0<i<k, 0<r<p, and

p runs over all primes.

Corollary 3.8. Given § = l,,1form Q). Let F be the formation of languages associ-

ated with §, and let Cp, be the formation of languages associated with

luformQ(p) if p € T(Y);
Dn(p) =

0 if p € (D).
Then for each alphaber A, F(A*) is the Boolean algebra generated by the languages
oftloc‘form (L0a1L1 .. .akLk)ﬁp, where L; € Cp(A*), 0<i<k, 0<r<p, and

p runs over all primes.

Corollary 3.9. Given § = looformQ). Let F be the formation of languages associated

with §, and let C,, be the formation of languages associated with

loform(p) if p € ©(D);
Voo(p) =

0 if p & mn().
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Then for each alphaber A, F(A*) is the Boolean algebra generated by the languages
of the form (Loa1Ly...akLg)rp, where Li € Cp(A*),0<1<k,0<r <p, and

p runs over all primes.

3.2 Lattices of o-local formations

Notations and terminology are borrowed from [29], where o-local formations have
been introduced. We refer to the mentioned paper for more details and definitions
on the scope of the topic. The symbol [Jform%) denotes the intersection of all

n-multiply o-local formations containing the set of groups 2).

Remark 310 (Theorem 115 [29]). The set IS of all n-multiply o-local formations is
partially ordered by the set inclusion and forms a complete lattice in which (¢ ; §;
is the greates lower bound and \/7 (3 | j € J) = {7 form (U;c; ;) is the smallest

upper bound.

Definition 3.1x ([29]). A formation o-function f is said to be 7_,-valued if f(o;)

is an (n — 1)-multiply o-local formation for every o; € Supp(f).

The smallest 1S _-valued definition of a formation § have been introduced in

Lemma 2.6 in [29].
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3.2.1  Laws of the lattices of multiply o-local formations

Let & be a term of the signature {(0),\/7}. By &, it is denoted the term of the

signature {(),\/; _;}, which we obtain from & by replacing of each symbol \/; by

the symbol /7 ;.

Lemma 3.12 ([124]). Let &(2iy, . .., 4,,) be a term of signature {(,\/}}, and let f;
be an integrated IS, _|-valued definition of an n-multiply o-local formation §;, where

i=1,....mand n > 1. Then

EF1y- o 8m) = LE,(E(f1y- -y fm)).

Proof. Following [120], we proceed by induction on the number 7 of occurrences

of the symbols of {(),\/;} into & The case 7 =1 follows by Lemmas 2.2 and 3.1
in [29].

Let & have 7 > 1 occurrences of the symbols {(,\/;}. We set

5(5517 cee axm) = él(ajil’ cee 7'Iia)A£2($jl’ R 7mjb)7

where A € {,V.} and {z;,,..., @i, } U{zj, ...,z } = {z1,...,2m}. We

suppose that the assertion is true for the terms &; and &». Then

gl(gilﬂ s 7gia) = LFU(E(fiU .- "fia))

and

fl(gju s 73]73) = LFG(E(fjl? sy fjb))'
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For every i we have E(firy -y fi)(0)) € E1(Siyy -+, Ti,) and

Efjus- s fi)(00) S &S 85)-
Hence
£@1,---,8m) =
E1(Sirs - Bi) D Fjis -2 85) = LE(E(firs -+ fi) DE s -+ fi)
= LF,((f1,-- - fm)),
where A = (if A =(),and A =\/?_, if A =\/7. The result is now immediate.

O]

Theorem 3.13 ([124]). Ler n > 0. Then every law of the lattice of all formations I

is fulfilled in the lattice of all n-multiply o-local formations ).
Proof. Fix a law
§1<mi17"'axia>:§2($j17"'7ij) (31)

of signature {[, /. }. Let

Sl(xi1""’$ia)ZSZ(le""vij) (32)

be the same law of signature {(), /5 _,}.
Suppose that law (3.2) fulfilled in the lattice I7_;. Given arbitrary n-multiply

o-local formations §i,,...,8i,iSj1s-- 135, We show that

£1<gi17 cee 73'2}1) = 52($j17 cee 7Sjb)‘
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Let f;. be the smallest [ _-valued definition of §;,, where ¢ = 1,...,a, and let f;,
be the smallest [ _;-valued definition of §;,, where d = 1,...,b. Then applying

Lemma 6.4, we obtain

{1(3@'17 e 7gia) = LFG(El(fila .. '7fia))a

52(3]'17 s >3jb) = LFU(E2(fj17 ceey fjb))'

By Lemma 2.6 in [29], fi,, ..., fia; fjis-- -5 fj are 7 _;-valued. Then by induction
for any index 7 we obtain the following equality:

§1(firy s fio)(oi) =

& (fir(0i), - fial0w) = Ea(fi(04), - - o, f3,(00)) =

fQ(fjla ce vfjb)(ai)'

Hence &1 (Fiys-- -5 8ia) = &2(8j1,- -5 8j,)- So, law (3.1) is fulfilled in the lattice 17,

as required. O

By Theorem 1.15 in [29] the lattice I} is modular. We obtain the same result

as an immediate corollary of Theorem 3.13.

Corollary 3.14 ([124]). The lattice of all n-multiply o-local formations 1S, is modular

but not distributive for any nonnegative integer m.

Proof. Corollary 4.2.8 in [107] states that the lattice of all formations [§ is modular,
and then applying Theorem 3.13, we conclude that the lattice [, is modular for any

nonnegative integer 7.
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Let us show now that the lattice I is not distributive. Given the class 91 of
locally finite groups whose exponents divide a given prime p # 2, which is a variety
by [66]. Let L(9) be the lattice of the subvarieties of 9. By Higman [s9], L(9)
is not distributive, and Lemma 2.17 implies that the map fin : 9T — fin 9N is an
embedding of the lattice and the semigroup of locally finite varieties into the algebra
of all formations of finite groups [§. Then again applying Theorem 3.13, we see that

the lattice I3 is not distributive for any nonnegative integer n. O

When o = {{2},{3},...}, a formation o-function and a o-local formation
are a formation function and a local formation, respectively; see Example 1.2 in [29].

Then Theorem 3.13 implies the following two results.

Corollary 3.15 (Chapter 4 [107]). Let n be a positive integer. Then every law of the
lattice of all formations of finite groups is fulfilled in the lattice of all n-multiply local

formations of finite groups.

Corollary 3.16 (Corollary 4.2.8 [107]). The lattice of all n-multiply local formations

of finite groups is modular but not distributive for any nonnegative integer n.

A formation of groups is said to be totally o-local if it is n-multiply o-local for
every positive integer 1 [29]. Theorem 3.13 rises up the motivation for the following

question.

Question 3.1 ([124]). Is it true that every law of the lattice of all formations is fulfilled

in the lattice of all totally o-local formations?
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Safonov [89] showed that the lattice of all totally saturated formations of finite

groups is distributive.

Question 3.2 ([124]). Is it true that the lattice of all totally o-local formations is

distributive (or modular at least)?

Remark 3.17. We note that Guo, Zhang and N.T. Vorob®ev [53] have described the

properties of o-local Fitting classes of finite grops.

3.2.2 Frattini subformations

Given n-multiply o-local formations § and $) such that § C §. We write §/39 to
denote the lattice of all n-multiply o-local formations of finite groups 91 such that

$H C M C§. Corollary 3.14 implies the following result.

Corollary 3.18 ([124]). The lattices (M7 §)/5IM and F/5(F (M) are isomorphic

for any n-multiply o-local formations M and §

Definition 3.a9. If 9t C § and the lattice §/39 consists of only two elements

then I is called a maximal n-multiply o-local subformation of §.

Lemma 3.20. Let G be a group and ) be a nonempty set of groups. Then the
formation § = 13form(Y U {G}) contains a maximal 13-subformation containing

[7formQ) # § for every n > 0.

Proof. The assertion follows by the Kuratowski-Zorn lemma (for instance see the

proof of [122, Lemma 3.3] or [119, Lemma 3.1]). O
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The study of maximal subformations of saturated formations and their intersec-

tions was originated by Skiba [104, 105, 107], Forster [40], and Herzfeld [ss, 56, 57].

Definition 3.2x. We denote the intersection of all maximal n-multiply o-local sub-
formations of § by the symbol ®9(F), and call it the n-multiply o-local Frattini

subformation of § (we set ®F(F) = § if there are no such subformations).

Let Q) be a nonempty set of groups. If § = [Jform (P U{G}) always implies

that § = [Jform %) then we say that G is an [} -nongenerator of §.

Proposition 3.22 ([124]). Given n-multiply o-local formations ) # Fo C §F # (1).

Then

L ®%(o) C 99(F), and
2. ®U(F) consists of all 1S -nongenerators of §.

Proof. (1) Suppose that ®7(Fo) € P5(F). Let M be a maximal [J-subformation
of § with ®7(Fo) € M. Thus Fo Z M. By Corollary 6.2 we have F/7M =
MV Fo)/2M =~ Fo /% (Fo (M) We see that the lattice from the left side consists
of only two elements. Thus, §o ()9 is the maximal [J-subformation of §o. Hence
D7 (Fo) C M. A contradiction is obtained. Thus, ®7(Fo) C PI(F), as asserted.
(2) Let G be a [7-nongenerator, and £ be a maximal [J-subformation of §.
Suppose G ¢ £. Consequently, (Zform(LU{G}) = § = (Zform £ = £. We have a

contradiction. Then G' € £. Denote by ) be a nonempty set of groups contained in
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§ and G € ®I(F). Assume that [Jform (Y U {G}) = §F # [gform Q). Lemma 6.17
implies that § has a maximal [{-subformation 9 with the property I7form ) C .
Because G € PF(F), we obtain MM = §. Again we have a contradiction. Finally,

§ = 12form Q). O

3.2.3 Languages associated with o-local formations

We write £, to denote the lattice of the formations of languages corresponding to

the lattice [7,, where m > 0. Then by Theorem 3.13, we have the following corollary.

Corollary 3.23. Let n be a positive integer. Then every law of the lattice L is fulfilled

in the lattice L.

Question 3.3. How to describe the languages corresponding to o-local (n-multiply o-

local, totally o-local) formations?

By Corollary 2.6(1) in [11], for every formation o-function f the class LF,(f)
is a nonempty saturated formation. Thus using Theorem 6.2 in [14] and Proposi-
tion s.1 in [18], the problem above can be solved in some fashion for o-local for-

mations as follows.

Proposition 3.24 ([124]). Given § = 17form Q) where Y # O and 7() = Ugeyn(G).

Let F be the formation of languages associated with §, and let C, be the formation
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of languages associated with

form(G /Oy ,(G) | G €D) if p € 7(D);
Y(p) =

0 if p & (D).
Then for each alphaber A, F(A*) is the Boolean algebra generated by the languages
ofﬂoc‘form (L0a1L1 .. .akLk)ﬁp, where L; € Cp(A*), 0<i<k, 0<r<p, and

p runs over all primes.

However, it will be interesting to find a description of the group languages
corresponding to multiply o-local formation § = LF,(F') using properties of the

canonical o-local definition F' of § which is unique by Corollary 2.6(2) in [m1].

Conclusion

The languages corresponding to to 7-closed local, multiply local and totally local
formations are described. Let o be a partition of the set of all primes. It is shown
that every law of the lattice of all formations is fulfilled in the lattice of all multi-
ply o-local formations of finite groups. Some properties of Frattini subformations of
multiply o-local formations are discussed. The main contributions have been pub-

lished in the papers [118, 124].



Chapter 4

Lattices of Partially Composition

Formations of Finite Groups

In the present chapter, we use only subgroup functors 7 such that for every finite

group G all subgroups of 7(G) are subnormal in G.

4.1 Inductive lattices

Inductive lattices of formations of finite groups have been introduced in the book
[107]. The property of the lattice to being inductive is a very important one in the
study of formation lattices. In 2001 at the Gomel Algebraic Seminar (Belarus), Skiba
has proposed the following problem related to the lattices of Baer-local formations

of finite groups.

64
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Question 4.1 (Skiba). Is it true that the lattice of all T-closed n-multiply w-composition

formations inductive?

Assuming that © is a complete lattice of formations, denote by the symbol ©“¢
the set of all formations having an w-composition ©-valued satellite; see [114, 113].

In [114, p. 9o1] it is shown that ©“¢ is a complete lattice of formations.

Definition 4.1 ([107]). A lattice ©“¢ is called nductive if for any set of partially
composition formations of finite groups {§; = CF,(f;) | i € I}, where f; is an

integrated satellite of §; € ©“, the following equality holds: \/gu. (i |7 € 1) =

CE,(Ve(fili€l)).

Remark 4.2. The inductance of a lattice ©“¢ implies that instead of the study of
the operation \/gw. on the set ©“¢, we can reduce it to a study of the operation

Ve on the set ©. So, the inductance is a very important property of ©“.

In the present section, we establish the inductance of the lattices ¢/, and c..

4.1  Minimal satellites

Definition 4.3 ([114]). Let © be a complete lattice of formations. A satellite f is
called ©-valued if all its values belong to ©. If § = CF,(f) and f(a) C § for all

a € wU{w'}, then f is called an integrated satellite of §.

The set of all 7-closed n-multiply w-composition formations ¢, is a com-

plete lattice by an inclusion C; see [138]. By [, and ¢} we denote the lattice of
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all 7-closed formations and the lattice of all n-multiply w-composition formations,
respectively.

Let {fi | i € I} be a set of w-composition satellites. Following [114]), we write
() fi to denote the w-composition satellite f such that f(a) = ) fi(a) for every

iel el
a€c€wU{w}.

Lemma 4.4 (Lemma 2[u4]). Let § = (& where §; = CEL(fi). Then § =
iel

CF,(f) where f= ) fi
el
Let {f; | i € I} be the set of all w-composition ¢,  -valued satellites of

a formation §. Because ¢/, is a complete complete lattice of formation of finite

groups, applying Lemma 4.7, we see that f = [ f; is an w-composition cf,
icl

_1°

valued satellite of §. The satellite f is called minimal.

Lemma 4.5 (Corollary 4.2.8[107]). The lattice of all T-closed n-multiply saturated

formations is modular but not distributive for all n > 0.

Let © be a complete lattice of formations, and let {F; | i € I} be a set

of ©-formations. Then we use the notion \/g(§; | ¢ € I) = Oform <U &)
el
In particular, if © = ¢, we write \/, (§; | i € I) = ¢, form <U SZ> Let
' i€l

{fi | i € I} be a set of ©-valued functions of the form (2.3). Then we write

Ve(fi| i € I) to denote a function f such that f(a) = @form(U f,(a)) for

i€l

all a € wU {w'}. Applying Lemmas 2.1 and 3.1 in [138], we obtain the following

lemma.
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Lemma 4.6. Let 0 be a natural number. Then (c[, ) =c[, .

Lemma 4.7 (Lemma 2 [u4]). Let § = (;c; Si where i = CF,(fi). Then § =

CE.(f), where f = (s Ji

Let G be a finite group. Then following [37, p. 66], we write Z,,!G to denote

the regular wreath product of groups Z, and G. Here p be a prime.

Lemma 4.8 (Lemma 2 [112]). Let Z), be a group of a prime order p, G be a group
with Op(G) =1, and let T = Z, G = [K|G is the regular wreath product, where

K is the base group of T. Then K = CP(T) = O,(T).

Lemma 4.9 (Lemma 4 [114]). Let § = CF,(f). If G/O,(G) € f(p) NF for some

prime p € w, then G € §.
The lemma below describes the minimal ¢, _ -valued satellite of a formation.

Lemma 4.10 (Lemma 8 [128]). Let Q) be a nonempty set of groups, § = c, form2),
where n > 1, let 1 = w N w(Com(X)), and let f the minimal c, . -valued w-

composition satellite of §. Then:
L f(W) =¢,  form(G/R,(G)|Ge);

2 f(p) = ¢, _,form(G/CP(G) | G €9) for all p € T;

3. f(p) =@ for all p e w\ m;
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4. if § = CF,(h), where h is a Coyy 1—wzlued w-composition satellite, then
f(p) =c,_form(G | G € h(p) NF and O,(G) =1)
for all p € ™ and

fW) =¢, form(G |G e h(W)NF and R,(G) =1).

The lemma below is obtained by direct calculation.

Lemma 4.x ([128]). Let n > 1, f; be the minimal c, _ -valued w-composition satel-
lite of a formation Fs, @ € 1. Then \I,  (fi | i € I) is the minimal c, _ -valued

Wn—1

w-composition satellite of §F = \/;, (§i|ie€I).

Definition 4.12. Let § = CF,(f), and f(a) C F for all a € w U {w'}. Then the

composition satellite f is called an zntegrated satellite of formation §F.

Following the paper [114], we put for any set of groups 9):

form (G/CP(G) |G €9) if p € m(Com(D));
D(CP) =

%) it pe P\ 7m(Com(Q)).
Definition 4.13 ([114]). Let § = CLF(F'), where F'(0) = § and F'(p) = M, §(CP)
for all p € P. Then the satellite F' is called a canonical composition satellite of the
formation §. By [114, Remark 1], every composition formation possesses a canonical

composition satellite.
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Lemma 4.4 (Lemma 8 [114]). Let © be a complete lattice of formations such that
O° C ©; and let the formation N8 belongs to © for each formation $ € O, and

every p € w. If § = CLF(F) € ©F, then the satellite F is ©-valued.

Corollary 4.as. The following equality holds (cI,)¢ = L,

[e.9] [o.ohy

Proof. The inclusion (c,)¢ C 7,

. , r .
T is obvious. Let § € ¢, and F' be a canonical

composition satellite of §. Then by Lemmas 4.14 and 6.19 for all a € P U {0}
and each positive integer n, we see that F'(a) is 7-closed n-multiply composition
formation of finite groups. So, the composition satellite F' is ¢ -valued. Thus, we

have § € (¢, )¢, and, finally, cJ, C (cI,)°. O

o0

Lemma 4.16 (Lemma 2.1 [138]). Ler § = CLF(F) be a T-closed n-multiply compo-

sition _formation, where n is a positive integer. Then the satellite I is c]-valued.
Lemma 4.16 implies the following corollary.

Corollary 4.x7. Let § = CLF(F') be a T-closed totally composition formation. Then

the satellite F' is cl_-valued.

Definition 4.18. Let {f; | i € I} be the set of all composition ¢ -valued satellites
of a formation §. Because ¢l is a complete lattice of formations of finite groups,
then Lemma 4.7 implies that f = (7),c; fi is a composition ¢ -valued satellite of

formation §. This composition satellite f is called minimal.
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For a complete lattice of formations ©, we write ©form %) to denote the in-
tersection of all ©-formations containing a set of groups 2). So, ¢  form%) is the
intersection of all 7-closed totally composition formations containing a set of groups
). The lemma below, which immediately follows by Lemma s in [114] and Corol-

lary 4.15, describes the minimal ¢l -valued satellite of a formation ¢ form%).

Lemma 4.19 (Lemma 2.2 [121]). Let Q) be a nonempty set of finite groups, and let
§ = clformQ). Denote m(Com(Q))) by m, and let f be the minimal cl -valued

composition satellite of §. Then the following statements hold:

. f(0) = form (G/R(G) | G €9);

2. f(p) = form (G/CP(G) | G € Q) for all p € ;

flp) =@ for all p e P\ m;

@

if § = CLF(h) and the satellite h is ¢l -valued, then for all p € ™ we have

X

f(p) = ciform (G | G € h(p) N§ and O,(G) =1); and

f(0) = cl form (G | G € h(0) N§ and R(G) =1).

Lemma 4.19 implies the following assertion.

Corollary 4.20. Let fi and fo be the minimal composition cl-valued satellites of

formations §1 and §o respectively. Then §1 C Fa2 if and only if fi1 < fo.
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412 Inductance of the lattice [,

We say that a group G is monolithic if it possesses the unique minimal normal

subgroup (monolith), which is contained in each nontrivial normal subgroup of G.

Lemma 4.21 (Corollary 1.2.26 [107]). Let ) be a T-closed semiformation, a fininite
group A belongs to § = TiormQ). Let A be a monolithic group, and A ¢ Q). Then
there exists a group H in § and normal subgroups N, Ny, ..., Ny; M, My, ..., M;

(t > 2) of H such that the following statements hold:
. H/IN= A, M/N = Soc(H/N);
2. NlﬂﬂNtzl,

3. H/Nj is a monolithic )-group and M;/Nj is the soce of H/N; which is H-

isomorhpic to M /N’;
4 Min...0M, C M,

Lemma 4.22 (Lemma 4.1.3 [107]). Let N1 X ... x Ny = Soc(G), where N; is a
minimal normal subgroup of G (i =1,...,t), t > 1, and Oy(G) = 1. Ler M; be
the largest normal subgroup in G containing N1 X ... X Nj_1 X Niy1 X ... X Ny,

but not containing N;, i =1,...,t. Then

L for every i € {1,...,t}, Op(G/M;) = 1, G/M; is monolithic and its socle

N;M;/M; is G-isomorphic to Nj;

2 Min...NM,=1
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Lemma 4.23 (Lemma 9 [128]). Ler A be a monolithic group with a nonabelian socle
R, and let M be a T-closed semiformation and A € cz,nformﬂﬁ, n = 0. Then

AeM.

Lemma 4.24 (Lemma 10 [128]). Let MM be a semiformation. Suppose than a finite

group A belongs to the formation c, form9M, n = 0. Then:

L if Op(A) =1 and p € w, then A € c[, formMy, where

M = (G/0,(G) | G € M);

2. if R,(A) =1, then A € c, formMMy, where My = (G/R,(G) | G € M).

Theorem 4.25 (Theorem [128]). Let n be a positive integer, and let w # & be a set
of primes. Then the lattice of all T-closed n-multiply w-composition formations c, is

inductive.

Proof. Let {F; | i € I} be a set of T-closed n-multiply w-composition formations
of finite groups, and let f; be an integrated ¢,  -valued w-composition satellite of
formation §;.

Denote M = CF,(V, (fi|i€I)),and F =V, (T |i € I) Let

hi be the minimal ¢, _ -valued w-composition satellite of formation §;. Applying

T

Lemma 4.1, we see that h = \/wn_

((hi | i € I) is the minimal ¢, | -valued
w-composition satellite of formation §. Because h; < f; for all ¢+ € I, it holds

h<f=V, (filiel). Hence, § <M.
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Assume 9 Z §. Consider a group of minimal order in M\ F, say G. Thus, G
is a monolithic group, and R = G% is the socle of this group. If w N m(Com(R)) =
@, then R,(G) = 1.

Thus, G = G/l = G/R.(G) € fW) = (VI (i | i € D)) =

cl,, _ form(J;c; fi(w')) = ¢, _ form(UJ;c; §i). But Lemma 4.23 implies that

Wn—1

GelJsicd, fom( J5i) =3,

iel iel
i, we have a contradiction. So, w N 7(Com(R)) # @.
Let R be a nonabelian group. Then m(Com(R)) = @. But wN7(Com(R)) =
&, and again we have a contradiction. Thus, R is a p-group, where prime p belongs
to w N 7(Com(R)). Because G € M = CF,(f), we have G/R € M. Then by

induction because |G/R| < |G|, we see that G/R € § = CF,(h). So,
(G/R)/Ru(G/R) = (G/R)/(Ru(G)/R) = G/Ry(G) € h(w'),

(G/R)/CUG/R) = (G/R)/(C1(G)/R) = G/CI(G) = h(g)

for any ¢ € w N m(Com(G/R)) \ {p}. However, G € M = CF,(f). Thus,
G/CP(G) € f(p) =, form(| ] fi(p)).
il
Because Op(G/CP(G)) =1, then applying Lemmas 4.10 and 4.24, we obtain
G/CP(G) € c,,  form(A/Oy(A) | A€ | ] filp)) =
i€l

¢t form((_J(4/0,(A) | A€ fi(p))) =

il
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c., _ form( Uc form(A/O,(A) | A € fi(p)) = CTnilfOTHl(U hi(p))

w
el el

however, e, form(Usey hi(p)) = (V,_, (s | € 1))(p) = h(p). So,
G/R,(G) € h(w) and G/C"(G) € h(r)

for any r € w N w(Com(G)). Thus, G € §, and we otbtain a contradiction. Finally,

§ = M. The theorem is proved. ]

For the trivial subgroup functor, we obtain the following corollary.

Corollary 4.26. Let 1 > 0 and w be nonempty set of primes. Then the lattice of all

n-multiply w-composition formations is inductive.
Let w = P, then we obtain the following result.
Corollary 4.27. Let n > 0. Then the lattice of all n-multiply composition formations
is inductive.
4.1.3 Inductance of the lattice ¢
We obtain the following lemma by direct calculation.

Lemma 4.28. Let f; be the minimal cl -valued composition satellite of a formation
Si» where i € 1. Then f =\ (fi | i € I) is the minimal coc-valued composition

satellite of formation § =\ (T | i € I).

Theorem 4.29 (Theorem vr.1. [117]). The lattice of all T-closed totally composition for-

mations ¢ is inductive.
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Proof. Let {F; | i € I} be a set of T-closed totally composition formations, and
fi be an integrated ¢l -valued composition satellite of ;. Let § = CLF(f) =
Vi @iliel), and M=CLF(\/(fi|ieI)). We shall show that § = I
proceeding by induction on i.

Step 1. Let i = 2, p € P, and h; be the minimal ¢ -valued composition
satellite of the formation §; = CLF(f;), where j = 1,2. Then by Corollary 4.17,
we have

hi(p) C fi(p) € Nyhj(p) = Fj(p) € ¢,

where F} is the canonical ¢ -valued composition satellite of the formation §;. Let
§ = CLF(F'), where F is the canonical ¢ -valued composition satellite of the

formation §. Then by Lemma 4.19, we have

h(p) = cioform ((F1 U §2)(CP)) = cicform (§1(CF) UF2(CP)) =

cform (k1 (p) U ha(p)) € f(p) C
Nyclform (ha(p) U ha(p)) = Myph(p) = F(p).
Thus, we have h(p) C f(p) C F(p) for all p € P; moreover, it holds h(0) C
f£(0) € F(0). Hence, h(a) C f(a) C F(a) for all @ € PU{0} implies h < f < F.

Consequently, we have §1 \/J §2 = CLF(f1 V3, fo).

Step 2. Let ¢ > 2, and the assertion is true for 7 = 7 — 1 by induction. Then

51V - Vi §r—1 = CLF(fi V5 - V& fr-1)-
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By Step 1, we have § = ¢ _form ((§1 VL, .- VL §r—1)USr) = CLF(f), and
fla) = cSform ((f1(a) VL, - Vi fr—1(a)) U fr(a)) = fi(a) V-V fr(a) =
(fiVi VL fr)(a) for each a € PU{0}. Therefore, f = f1 /L, ... V1 fr. This

proves the theorem. O

Each complete sublattice of the inductive lattice is an inductive lattice. Thus,

we obtain the following result.
Corollary 4.30. Let 0 be a complete sublattice of the lattice cT,. Then 0 is inductive.
If 7 is trivial, we have the corollary.

Corollary 4.31. The lattice of all totally composition formations is inductive.

4.2 Algebraic lattices of formations

Skiba posed the following question:

Question 4.2 (Question 4.4.6 [107]). Let T be a subgroup functor. Is it true that the

lattice of all T-closed totally local formations algebraic?

In [87], it is given the solution of the mentioned problem. We known that the

following lattices of formations of finite groups are alebraic:
¢ the lattice of all 7-closed n-multiply w-composition formations [138];

¢ the lattice of all solvable totally local formations [136];
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¢ the lattice of all 7-closed totally w-saturated formations [93];
* the lattice of all n-multiply o-local formations [29];
¢ the lattice of all n-multiply £-composition formations [114].

Recently, the author [121] solved the following related problem:

Question 4.3 (Problem 1 [114]). Is the lattice of all totally composition formations of

finite groups algebraic?

The main goal of this section is to generalize this solution for 7-closed forma-

tions.

Lemma 4.32 (Lemma 7 [127]). Let § be a nonempty T-closed formation of finite
groups. Then S:§ is a T-closed totally composition formation of finite groups, where

m(§) S CP.

Lemma 4.33 (Lemma 8 [127]). Let §= V. (Fi|i€I), § € ¢ for any i € L.
Suppose that A is a monolithic §-group with a nonabelian socde R. Then we have

A € Uier Si

Proof. Denote m = m(§). By Lemma 4.32 the following holds:

SCM= Gchform(U Si)-
el

So, we have A € M. We note that A € cfform(|J;c; §i), because the socle R =

Soc(A) is nonabelian, and A belongs to | J;c; i by Lemma 4.23. O
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Proposition 4.34 (Proposition 1 [127]). Let G be a finite group. Then one-generated

totally composition formation § = cl form G is a compact element of the lattice cT .

Proof. We shall proof the proposition using induction on |G|. Let A be a counter-
example of the minimal order, and let § = ¢ form A C M = ¢l form(|J;c; i) =
Vi (§i|iel), where §; € ¢, for any ¢ € I. We shall show that the group A is
monolithic. Let us consider the cases below:

(i) Let M; and M; be two distinct minimal normal subgroups of the group
A. Assume first that M; = ¢ form(A/M;) for j = 1,2. So, |A/M;| < |A|. Then,

using induction, we have 9T; C 9. But then

ml g cgoform(&l U . U&-t), 9)?2 Q CgofOI“In(Sit_H U e U{?{ZS)

for some i1, ...,is5. Consequently, § = My \/go M5 is a subformation of formation

cgoform(&-l U . U%V“ U&-Hl U . ngs)

The contradiction obtained.

(#7) Assume that R = Soc(A). If R is nonabelian, then by Lemma 4.33 we
see that A € | J;c; Ti- So, A € M, and we obtain a contradiction again.

(74i) Let R be an abelian p-group for some prime p € m(Com(A)). In this
case, we have A/®(A) € form A. So, ¢I_form(A/P(A)) = I form A. But |A| >
|A/®(A)|; using induction, we see that R Z ®(A).

Suppose B is a subgroup of A, such that RN B =1, and O,(B) = 1. Then,

A = Z,! B = [R]|B, and applying Lemma 4.8 we obtain R = CP(A) = O,(A).
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Let m, f;, and f be the minimal ¢7_-valued composition satellites of formations 9,
S, and §;, respectively.

Then Lemma 4.28 ensures that m = \/J (fi | i € I). So, applying the prop-
erties of regular wreath products, we see that B = A/O,(A) = A/R = A/CP(A)
is in m(p). Because of |B| < |A|, for some j1,j2,...,5k € J C I, it follows that
B=AJCP(A) € f1(p) Vi Vi Fir (0)-

Now Lemma 4.28 ensures that mg = \/__(f; | j € J) is the minimal ¢Z_-
valued composition satellite of formation M3 = /. (F; | j € J). Therefore,
A/Op(A) = B € m3z(p). Applying Lemma 4.9 we see that A belongs to formation

Ms. So, § = cl form A C M, and it is a contradiction. O

Theorem 4.35 (Theorem [127]). The lattice ¢, of all T-closed totally composition

formations of finite groups is algebraic.

Proof. Let § be a T-closed totally composition formation of finite groups. It is easy
to see that § = ¢ form(|J;c; 8i) = V. (8i | i € I), where §; = ¢l form G; for
some group G; (i € I). We shall show that every one-generated formation of finite
groups §; is a compact element of the lattice of all 7-closed totally composition
formations of finite groups. However, it immediately follows by Proposition 4.34.

O

For trivial subgroup functor 7 we have

Corollary 4.36 ([121]). The lattice of all totally composition formations is algebraic.
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4.3 Separated lattices of formations

Definition 4.37 ([107]). Fix a nonempty class ) of finite groups. Let © be a lat-
tice of formations of finite groups. Then © is called Q)-separated it for any term
§(x1,...,@y) of signature {N,\/g}, any formations of finite groups §1,...,8m
of ©, and any finite group A € Y N E(T1,...,Fm), there exist Y-groups A; €

S1y- -5 Am € Fm such that A € {(Oform Ay, ..., Oform A,,).

Lemma 4.38 (Lemma 17 [137]). Let © be an Q)-separated lattice of formations of
finite groups and let m be a sublattice of © such that 1 contains all one-generated
O-subformations of the form Oform A, where A € ), of every formation of finite
groups § € n. Let a law & = & of signature {N,\/ g} is true for all one-generated
O-formations belonging to 1. Then the law & = & is true for all O-subformations

belonging to 1.
Lemma 2.14 imply the following result.

Lemma 4.39. Let R; be a T-closed semiformation generated by some finite groups
G1 and Ga. Then R URy is a T-dosed semiformation, and Ry = (B, ..., By),
Ry = (C1,...,Cs) for some finite groups By, ..., By € 9s=(G1) and C1,...,Cs €

05=(Ga).

Lemma 4.40 (Lemma 3.4. [129]). Let n be a nonnegative integer, and let §1 and

§2 be T-closed n-multiply w-composition formations of finite groups, and A be a finite
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group such that A € c[, form (§1UB2), Then there exist finite groups Ay € §1 and

Ay € Fo such thar A € (c, form Aq) \/[, (c, form Ay).

Proof. We shall use the induction on n. Let n = 0. We note that the formations

§1 and §2 are T-closed. Then by Lemmas 2.16 and 2.15

Ae CLOform (31 U 32) = form (31 U 32) = QRO(gl U 32)

Consequently A = H/N where H € Ro(F1 UF2). Using Lemma 15 in [137] we see
that A € form (H/HS')\/ form (H/H%?) C §1 /[, o

Let n >0, {p1,...,pt} = wNm(Com(A)) and A € F1V/, 2. Then by [128,
Lemma 8] and Lemma 4.1, A/CPi(A) € fi(pi) V., , fo(pi) and A/R,(A) €

[1(W)V,, | fa(w') where f; is the minimal ¢, | -valued w-composition satellite

of §; (j = 1, 2). By induction, we may find finite groups

Aiy € fi(pi), Aiy € fa(pi), Th € f1(W'), Tz € fo(w)

such that A/CPi(A) € (¢, form Ay )\ (¢  formA;) and A/R,(A) €

w Wp—1\"W

(cl, formTy) /[ — (cf,  formTy).

W W

We claim that ¢,  form (A;), A;,) = (¢, form A; )/, ~ (c],  form A;),

and ¢,  form (T1,Ty) = (¢, formT1)\/[ _ (c[,  formTy). Thus A/CPi(A) €
cl,,_,form (A;;, Ai,) and A/R,(A) € ¢, form (11, T3).
Let PRy, be a 7-closed semiformation generated by the group A;, and )j; be a

7-closed semiformation generated by the group 7} where £ = 1,2. By Lemma 4.39

the semiformations 381 UR9 and Q)1 Uy are T-closed, and Ry = (By, ..., B) and
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Ry = (C1,...,Cs) for some By,...,B; € Qs=(A;;) and C1,...,Cs € Qs=(Ai,);
D1 =(Ui,...,Up) and Yo = (V1,..., V) for some Uy,...,U, € Qs=(11) and
Vi,...,Vqg € @s(Th). Since A;, € Ry (k = 1,2), then ¢,  form (4;,4;,) C
c,,_, form (M U Ry).

We prove the inverse inclusion. Since s7(A;,) C Ros7(A;,) (K = 1,2), then
by Lemma 2.5, R = Qs-(Ai,) € Qrys7(A;,) = 7form (A4;,) where £ = 1, 2.
Thus, we have the inclusion 7form (R; UR2) C Tform (4;,, Ai,).

Hence ¢,  form (R UNRy) C ¢, form (A;,, Aj,). Thus,

co,,_, form (A;;, Ai,) = ¢, form (R URy).

Analogously ¢, form (T1, Tz) = ¢, _ form (21 UQ)2). Thus

A/CPi(A) € ¢, form (A, Ayy) =c, form(By,...,B;Cy,. .., Cy),

A/R,(A) € ¢, form (T1,T3) = c,

W w

L Jform (U, ..., U Vi, ..., V).
Since O, (A/CPi(A)) =1 and R,(A/R,(A)) =1, then by Lemma 4.24
A/CPH(A) € ¢, form (G/Op,(G) | G € R UNR,) =
Coy form (B1/Op,(Bu), - - . Bt/ Op,(B1); C1/Op, (C1), - . ., Cs/ Op, (C5)),
A/Ry(A) € ¢, form (G/R,(G) |G eYD1UYs2) =
c,_, form (U1/Ry(Ur),...,Un/Ry(Un); Vi/Ru(Vh), ..., V4/Ry(Vy)).
Thus we have the inclusions ¢, _ form (By,..., B Cy,...,Cs) C

Cor,,_, form (B1/Op,(B1), . .., Bt/Op,(Bt); C1/0p,(C1), . .., Cs/Op, (Cs)),
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o, form (Ur, ..., Un;Vi,..., V) C

w

o, form (U1 /Ry, (Ur), ..., Un/Ry(Un); Vi/Ro(V1), ..., Vy/Ru(Vy)).

w

On the other hand, since R1 USRs and 1 UQ)2 are semiformations, then for
any finite group G it holds:

if G € M1 UNRy, then G/0,, (G) € Ry UNRy;

if G €91U9a, then G/R,(G) € D1 UYa.

Consequently
co,,_,form (B1/Op,(B1), ..., Bi/Op,(Bt); C1/0p,(C1), ..., Cs/Op,(Cs)) =

o, form (G/Op, (G) | G € R URy) C

w.

o, form (R URe) = ¢, form (By,...,By;Cy, ..., Cs),

w

o, form (U1 /Ry, (Ur), ..., Un/Ryu(Un); Vi/Ro(V1), ..., Vy/Ru(Vy)) =

w

o, form (G/R,(G) | G € P1UY2) C

w

o, form (Y1 UY2) = ¢, form (Uy,...,Unp; V1,..., V).

W

Thus

w

A/sz(A) € cTn—1f0rm (B17 e 7Bt;Cl7 ° '705) =

Tn—1f0rm (Bl/Opi(Bl)7 oo 7Bt/OPi<Bt>; Cl/Opi(Cl)a R CS/OM(CS))7

Cw

A/R,(A) € ¢, form (Uy,...,Un;V1,..., V) =

W

o, form (U1 /Ry, (Ur), ..., Un/Ry(Un); Vi/Ro(V1), ..., Vg / Ru(Vy)).
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Hence we may suppose that Op,(Bg) =1 = 0,,(C}) and R,(Uz) =1 = R, (V)
forall k=1,...,tand (=1,...,5z=1,...,mand z2=1,...,w.
Let D;y, =By x...xByand D;, =C1 x...xCs; U=U; x...x Uy and
V=V x...xV, Then O,(D;;) =1=0,,(D;,) and R,(U) =1= R,(V).
It is clear that D;; € DRy C po(c, ,form A; ). Since Do < Ro (see II,

p. 267 in [37]), then D;; € wro(c],  formA4;) = ¢

Wn—

form A;,. Analogously
D, € ¢, _ form A;,. Consequently ¢, _ form (D;,, D;,) C ¢, _ form (A;, Ay,).
Since By, < Dj, forall k =1,...,t, then Ry C ¢, form (D;,, D;,). Analogously
Ro C ¢, form (D;,, D;,). Consequently R1UNRy C ¢, form (D;,, Dy, ). Thus
A/CPi(A) € ¢, form (R URg) C ¢, form (A;, Ajy).

Let Z,, be a group of order p;, Wi, = Zp, 1 D;; and Wy, = Z,,, 1 D;,. We
show that W;, € §1. Let B = Zﬁi be the base group of the wreath product Wj,.

Applying the properties of wreath product, we see
Wil/opi(ml) = Wil/B = (Zpi 2Di1)/B = Dil-

Since Azj S fl(pi) and QS?(Ail) = (Bl, R ,Bt> where Bq,...,B; € QS?(Ail),

then Qs=(Ai;) € @s=(fi(pi)) = fi(pi) and By, ..., B; € fi(p;). Consequently
D, = By x ... x By € po fi1(pi) = f1(ps)-

Since f1 is the minimal anil—Valued w-composition satellite of §1, then D;, €
filpi)NG1. Thus W;, /O, (Wi,) = D;, € fi(pi)N§1 for all p; € wNm(Com(A)).

By Lemma 4 in [14] W;, € §1. Analogously W;, € §s. Since T7 € fi(w') and f;
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is an integrated w-composition satellite of §1, then T1 € §1. Hence U, € § for
all x=1,...,m. Analogously V. € §2 forall z=1,...,¢q.

Let Ay = Wi, x Wy, x...x Wy xU and Ay = Wi, x Wy, x ... x Wy, x V.
Then A; € §1 and Az € Fo. Using Lemma 15 in [137], we see that A € § =

(el form Ay) V[, (c[, form Ag). The proof completed. O

Theorem 4.41 (Theorem 3.2. [129]). Let n be a nonnegative integer. Then the lattice

of all T-closed n-multiply w-composition formations of finite groups is &-separated.

Proof. Let £(21,...,2m) be a term of signature {N, \/Ln}, F1,...,8m be 7-closed
n-multiply w-composition formations and A € &(F1,...,8m). We proceed by in-
duction on the number 7 of occurences of the symbols in {N,\/], } into the term
£ We shall show that there exist groups A; € §; (i = 1,...,m) such that A €
§(cl, form Ay, ..., ], form Ap,). Let » = 0. It is clear that A € ¢], form A.

We shall establish the assertion for r = 1. There are only two cases: either
AeFiNFaor AeEF \/;0 T2 = ¢, form (F1UF2) = riorm (F1UF2). In the first
case we have A € Tform AN7form A. In the second case by Lemma 4.40 there are

finite groups A; € §; (i = 1,2) such that A € (c], form A1) /],

oo (oo form Ag) =

(tform A1) \/[, (rform Ag). The assertion of the theorem for 7 =1 is true.
Let a term § have 7 > 1 occurences of the symbols in {N,\/], }. We sup-
pose proving by induction that the theorem holds for term with less number of

occurences. Let & be of the form & (zs,,...,x;,) A& (xj,, ..., xj5) where A €

{ﬂ,\/;n} and {z;,,...,z;, } U{z;,....z;} ={z1,...,2n}. By $H1 we denote
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the formation & (i, ..., 8, ), and by 2 the formation &(Fj,,...,5;,). There
exist groups A1 € $1, A2 € $H2 such that A € ¢, form A;Ac], form As. On

the other hand, by induction, there exist groups B1, ..., Bg; C1,...,C} such that

Ay € & (¢, form By, ..., ¢, form B,),

Az € &(c), form Oy, ... ¢}, form Cy).

Suppose that x;,,...,x;, are not contained in &2, but x;,,,...,x;, are con-
tained in . Let D;, = By if K < t+ 1, D;;, = B x Cy where ¢ satisfies
z;, = xj, forall B > t + 1. Let D, = Cy if x5, & {2y, 2,1 We
denote by R, the formation ¢/, form D;, and by ). we denote the formation
¢, formDj, p=1,...,a; ¢ = 1,...,b. It follows that A; € & (R1,...,Ra),
Ay € &D1,...,Dp). There exist the formations H1,..., 9, such that A €
E1(Diy, - 9i) DN(H), -, 95) = ED1,...,Dm) where H; = cg,, form K,

K; € §;. Thus the lattice ¢, is &-separated. The theorem is proved. O

Corollary 4.42. Let n be a nonnegative integer. Then the lattice of all n-multiply

L-composition formations of finite groups is G-separated.

Corollary 4.43 (Proposition [137]). Let n be a nonnegative integer. Then the lattice

of all n-multiply w-composition formations of finite groups is G-separated.
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4.4 Laws of the lattices of partially composition

formations

In [114], Skiba and Shemetkov proposed the question on the laws of the lattices
of multiply £-composition formations. We study in this section the following more

general question:

Question 4.4. Let m and n be nonnegative integers. Does it true that for any sugroup
Sfunctor T and any nonempty set of primes w the lattices [, and c[, have the same

system of laws?

We shall solve the mentioned problem for an infinite set of primes w. An
important step towards this task is the theorem on the &-separability of the lattice
of all 7-closed n-multiply w-composition formations of finite groups established in
the previous section; see Theorem 4.41.

For every term & of signature {N,\/], } we write € to denote the term of
signature {N,\/],  } obtained from & by replacing of every symbol \/[, by the

symbol \/Z;n, »

Lemma 4.44 (Lemma 16 [137]). Let {(xiy, - - -, 4,,) be a term of signature {0, \/], }
and let f; be an inner c, _ -valued w-composition satellite of a formation §; where

i=1,....mand n =1 Then £(F1,...,Fm) = CEL(E(f1,.. ., fm))-

The following result is a special case of Theorem 6.s.
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Theorem 4.45 (Theorem 3.1. [129]). Let n be a positive integer. Then every law of the
lattice of all T-closed formations cfy is fulfilled in the lattice of all T-closed n-multiply

w-composition formations c[, .

Corollary 4.46 (Corollary 2.5 [138]). The lattice of all T-closed n-multiply w-composition
Sformations of finite groups c, is modular, but not distributive for any nonnegative

integer M.
Proof. We apply Theorem 4.45 and proceed as in the proof of Corollary 3.14.  []

Theorem 4.47 (Theorem 3.3. [129]). Let n be a positive integer. If w is an infinite
set, then the law system of the lattice of all T-closed formations of finite groups c
coinsides with the law system of the lattice of all T-closed n-multiply w-composition

Jformations of finite groups c, .

Proof. Fix a law
§1<mi17"'axia):§2(mj17"'7ij) (41)

of signature {N,\/], }. Let

51(1'1'1,-“,1‘1'(1):£Q(Z’j1,..-,$]’b) (4-2)

be the same law of signature {N,\/] }.

Wn—1

Assume that law (4.1) is true in the lattice ¢, . We shall show that law (4.2) is

true in the lattice ¢/, . By Lemma 4.38 and Theorem 4.41, it suffices to prove that
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if Fiys-ooySias Sjrs---» 8y, are arbitrary one-generated 7-closed (n—1)-multiply w-

composition formations, then & (Fiy, -, Tin) = Eo(jrs---+Tj,)- Let
Siy = ¢, form Aj ... F, =c,  form A;,,

i = ¢, _,form Aj, ..., =c, form Aj.
We choose prime p € w such that p & w(A4;,,..., Ai; A5, ..., Aj).

Let By, = Z,0 Aiy, ..., Bi, = Zp 0 Ay By, = Zp A4, ..., By, = Zp L Aj,
where Z,, is a group of order p. Since formations MM;; = ¢/, form B;,...,M;, =
ey, form B; s My = ¢, form Bj,...,M;, = ¢}, form Bj, belong to the lat-
tice ¢, , then § = $ where § = &(M;y,...,M;,) and H = (M, ..., My,).
Let f;, be the minimal ¢, | -valued w-composition satellite of IM;, (where ¢ =

L,...,a); fj, be the minimal ¢, | -valued w-composition satellite of 9M;, (where

d=1,...,b). By Lemma 6.4,

gl(gﬁiu s 79ﬁia) = CFw(El(f’h?' . -afia));

fQ(m?jU s 79ﬁjb> = CFw(EQ(fju R fjb))'

Let f and h be the minimal ¢/,  -valued w-composition satellites of § and

9, respectively. Then by Lemmas 4.10 and 4.11,

f(p) :gl(fil’ s vfia)(p) = gl(fh(p)’ ce 7fia(p))’

h(p) = EQ(fjl’ K fjb)(p) = EQ(fjl (P)y- s fjb(p))'
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Hence gl(f’il(p)w"?fia(p)) = E2(fj1(p)¢"'7fjb(p))' Since OP(A’Lc) =1,

then by Lemma 4.10 f; (p) = §i. where ¢ = 1,...,a. Analogously f;,(p) = §j,
where d = 1,...,b. It follows that & (Fiy,---»Fin) = Eo(Fjrs---5554,), e the
law (4.2) is true in the lattice ¢, . Thus every law of the lattice ¢/, is true in
the lattice of all 7-closed formations cj. Applying Theorem 4.45, we complete the

proof. O

Corollary 4.48. Let w be an infinite set. Let m and n be nonnegative integers. Then

the law systems of lattices [, —and c[, coincide.

Proof. Assume that a law is true in the lattice ¢], . Applying Theorem 4.47, we see
that the law is true in ¢j. Thus, using Theorem 4.45, we conclude that the law is

true in ¢, . O
m

Remark 4.49. Let m and n be nonnegative integers. We note that Vedernikov [103]
showed that the law system of the lattice of all m-multiply canonical formations
coinsides with the law system of the lattice of the lattice of all n-multiply canonical

formations.

4.5 Comments & further research

Let us take attention to some open questions related to lattices of composition for-
mations. Note that some of them are analogues of the corresponding problems in

[107, 113, 114, 101, 100].
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Question 4.5. Does it true that for all nonnegative integers m, the lattice of all n-
multiply composition formations and the lattice of all T-closed n-multiply composition

formations have the same system of laws?

Question 4.6. Does it true that the lattices coo and cl, have the same system of

laws?

Theorem 4.45 gives a motivation to the following two questions.

Question 4.7. Does it true that every law of the lattice of all T-closed formations ci)

is fulfilled in the lattice of all T-closed totally w-composition formations c[, 7

Question 4.8. Ler m and n be nonnegative integers with m > n. Does it true that
the lattice of all T-closed m-multiply w-composition formations is not a sublattice of

the lattice of all T-closed n-multiply w-composition formations?

Note that the answer to an analogue of the question above is positive for the
lattices of all 7-closed multiply w-saturated formations (see [101]). However in [115] it
was shown that the lattice of all saturated formations is a complete sublattice of the
lattice of all composition formations. Safonov proved that the lattice of all 7-closed
totally saturated formations is a complete sublattice of the lattice of totally saturated
formations (see [92]).

In [136] it was established that the lattice of all soluble totally saturated for-
mations is algebraic and distributive. Independently Reifferscheid solved the prob-

lem of distributivity of the lattice of all soluble totally saturated formations (see
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[82]). Safonov proved that the lattice of all 7-closed totally saturated formations is
&-separated [90], algebraic [87] and modular [84, 85] (moreover this lattice is dis-

tributive [86]). However the following questions are still open now.

Question 4.9. Is it true that the lattice of all T-closed totally w-composition formations

is B-separated?

Question 4.x0. Is it true that the lattice of all T-closed totally w-composition forma-

tions is distributive (or modular at least)?

Conclusion

New series of inductive, separated, algebraic and modular lattices of multiply com-
position formations are described. Laws of lattices of functor-closed multiply w-
composition formations of finite groups are studied. The contributions have been

published in the papers [117, 121, 127, 128, 129)].



Chapter s

Lattices of X-Local Formations of

Finite Groups

By an inclusion C, the set of all X-local formations of finite groups forms a complete
lattice. Let X’ # (). Then we write f(X’) to denote the common value of f at the
X'-groups. In the present chapter, the notation § = LFx(f) always means that f

is an X-local satellite of the formation of finnite groups 3§.

s Algebraic lattices of X-local formations

Theorem s.x (Theorem [123]). The lattice of all X-local formations is algebraic.

Lemma s.2 (Lemma 4.1 [9], Remark 3.1.7 [12]). Ler f and f; be X-local satellires

Jor all i € 1. Then (Ve LEx(fi) = LFx(g), where g(x) = Nierfi(x) for all

93
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x € (char X) U X'

We write formy ) to denote the intersection of all X-local formations of finite
groups containing a set of finite groups ). When ) = {G'}, we have a one-gencrated
X-local formation: formy G. Following [12], we write O(G) to denote the class all
of simple groups isomorphic to composition factors of a group G; and by EX it is
denoted the class of all finite groups G such that K(G) C X. Let ) be a class of

finite groups. Then we put:

L P(p) =form(G/Gep | G €9 and Z, € K(G)) if p € n(X);

2. D(X') = form(G/Gyx | G € and G # Gyx) if S € X # 0.

Remark 5.3 (p. 128 [12]). By Lemma 5.2 every X-local formation § possesses the
unique X-local satellite £, called minimal X-local satellite of formation §, such that

f < f for every X-formation satellite f with § = LFx(f).

Lemma 5.4 (Lemma 4.14 [9], Theorem 3.1 [12]). Let Q) be a dlass of finite groups.
Then we have § = formy () = LFx(f), where

Ap) =D(p), if p € 7(X); and

AX) =", if X' #0.

Definition s.5 ([12]). Let § be an X-local formation of finite groups with an X-local

satellite f. Then f is said to be integrated if f(x) C § for any x € m(X)UX/, and

full if M, f(p) = f(p) for any p € m(X).
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Lemma 5.6 (Lemma 2.2 [9]). Let X be a nonempty class of simple groups. If a for-

mation § has an X-local satellite, then it has an integrated X-local satellite.

For a nonempty class of simple groups £, we write &.¢ to denote the class of
finite groups whose chief EL-factors are central. Note that the class &€.¢ is a Fitting
formation. Let G be a finite group. By G.g¢ is denoted the€ .g-radical of G, and
the symbol G ¢ denotes the € g-radical of G. Let £ = (Zp). In this case we have
Cep = €, Geg = Gop = CP(Q); see p. 371 in [37] for more details.

Let § be an X-local formation of finite groups. The following lemma describes
a particular full and integrated X-local satellite of §. It is called canonical X-local

satellite of formation §.

Lemma s.7 (Lemmas 4.7, 4.10 and 4.13 [9]). Let X # () be class of simple groups. Let
S be a _formation with an X-local satellite. Then § also possesses the unique integrated
X-local satellite F such that F(X') = § if X' # 0 and F(p) = N,F(p) for any
p € ©(X). In addition, for each integrated X-local satellite f of § we have f < F,
and

N f(p) = F(p) = Mpform(G/CP(G) | G € §, Z, € K(G))

for any p € ©(X).

Let f1 and fo be some X-local satellites. We write f1 < fo if fi(z) C fa(z)

for all x € (char X) U X'. In this case, we have LFx(f1) C LFx(f2).
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Lemma 5.8 (Corollary 3.1.20 [12]). Let § = LFx(f) = LFx(F) and $ = LFx(b) =
LFx(H) be X-local formations of finite groups. Then every two of the following state-

ments are eqm'mlent:

L §CH;

Lemma 5.9 (Lemma 2.1 [123]). Let §; = LFx(f;), where f; is an integrated X-local

satellite of formation §j, such that fj(X') =3§; if X' #0; j=1,2. If
§ = formz (§1 U F2),

then § = LFx(g), where g(p) = form(fi(p) U fa(p)) for each p € w(X), and

9(X') = form(f1(X') U fo(X')) if X #0.

Proof. Let M = LFx(g) and § = LFx(f). We shall show that the following equal-
ity holds: § = 9.
Let f; be the minimal X-local satellite of the formation §; for j = 1,2. Ap-

plying Lemmas 5.8 and 5.7 for every p € 7(X), we obtain

L) € fi(p) €Nt ;(p) = Fi(p),

£(X) € f;(X) € Fi(X) =55,

where F; is the canonical X-local satellite of §;.
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Let § = LFx(F'), where F' is the canonical X-local satellite of the formation

§. Applying Lemma 5.4, we have for p € m(X) the following inclusion:

f(p) = form((F1 UT2)(p)) =

form(§1(p) U §2(p)) = form(£; (p) U f2(p)) €
9(p) € Mpform(£; (p) U £5(p)) = Mpf(p) = F(p)-
Consequently, £(p) C g(p) C F(p) if p € n(X), and f;(X') =F; if X' #0, j =
1,2, implies the following inclusion: £(X’) C ¢g(X’) C F(X'). Thus, £ < g < F.
Finally, § = 9.

O]

Lemma s.00 (Lemma 2.2 [123]). Ler {§i = LFx(f;) | i € I} be a set of X-local
formations of finite groups, where f; is an integrated X-local satellite of §;. Let § =
Vx(@Si | @ € I). Then § = LFx(g), where g(x) = V(fi(x) | i € I) for all

x € (charX) U X'.

Proof: Let M = LFx(V(fi | © € I)) and § = LFx(f). We shall proceed by
induction on ¢ to show that the following equality holds: § = 9

Step 1. Let ¢ = 2. Then applying Lemma 5.9, we immediately obtain the
required equality: §1 \Vy §2 = LFx(f1V f2).

Step 2. Let ¢ > 2, and the assertion is true for 7 = r — 1 by induction,

ie., it holds §1 Vy ... Vx&r—1 = LFx(f1 V...V fr_1). Using Step 1, we see that
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§ = formx ((F1 Vx --- Vx 8r—1) USr) = LFx(g), where
9(x) = form((f1(z) V... V fra(2)) U fr(z)) =

file) V..V (@)= (fiV..Vf)(z)

for all z € (char X) U X'. Thus, g = f1 V... V f,. This proves the lemma. O

Lemma s.x (Lemma 3.1 [123]). Each one-generated formation § = form G is a com-

pact element in the lattice of all formations of finite groups.

Proof of Theorem s.1. Step 1. It will be shown first that in the lattice of all X-
local formations of finite groups any nonempty X-local formation § is the join of
its one-generated X-local subformations §; = formyx G;, where @ € I. Let 9 =
formy (Ujer§i). Let us show that the following equality holds: § = 2). Assume
G € §. Then we see that
G € formy G C USZ - formx(U 5i) =9.
el el

So, § € 9. It is easy to see that the inverse inclusion is trivial: §; C § implies
Uier$i € §,. Thus, P C §, and we obtain the required equality § = 9).

Step 2. We are showing now that every one-generated X-local formation §) is
a compact element in the lattice of all X-local formations of finite groups.

Let

H=formy G CM= formx(U i),
i€l
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where $); is an X-local formation, ¢ € I. Let b; be the minimal X-local satellite
of $;, b be the minimal X-local satellite of $) and let 2 be the minimal X-local

satellite of formation 9. Applying Lemma 5.4, we see that
bip) = form(G/CP(G) | Z, € K(G)), if p € m(X);
bh(X') = form(G/Gex | G # Gix), if X' #0.

Lemmas 5.8 and s.1o imply b < m < V(b; | i € I).

By Remark 4.4.4 in [107] the lattice of all formations of finite groups is alge-

braic. Then using Lemma s.i1 we have i1, ..., i, j1, ..., J1 € I such that
G/CP(G) € form(b;, (p) U~ Uk, (p)), if p € m(X);
G/Gex € form(bj1 xHu--- U b, (X)), if X' #0.

Put {Tl,...,Tt}:{il,...,ik}U{jl,...,jl}.

Thus, 7, ViV 9, = LEFx(b,, V-V h,,). So, we obtain
G/Cp(G) € &(p) c form(bm (p) U---u b’rt (p)>7

G/Gyx € b(S) C form(h, (X)U---Uh, (X))

Consequently, G € formy (), U- - -U$Hy, ). Thus, § = formx G C H,, V- Vi Hre

O]

Corollary s.x2 (Theorem 4 [114]). The lattice of all composition formations of finite

groups is algebraic.
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5.2 Modular lattices of X-local formations

Lemma s.13 ([107]). The lattice of all formations of finite groups is modular but not

distributive.

Theorem s.a4 (Theorem 3.1. [126]). The lattice of all X-local formations of finite

groups is modular.

Proof. Let §; = LFx(f:), where i = 1,2, 3 and §» C 1. We shall show that
F=81N(F2Ve3S3) =52V (E1NF3) =M.

Lemmas 5.6 and 5.7 imply § = LFx(F}) for i = 1, 2, 3, where Fy(¥) = §;
and

Fi(p) = form(G/Gep | G € §i, Z, € K(G))

for all p € 7(%).
Denote g = F5 V F3. Then by Lemma 5.0 we have F2\/y §3 = LFx(g).
Denote h = Fy N g. Applying Lemma 5.2 we obtain § = LFx(h).

Note that F < F} by Lemma s5.8. Then Lemma 5.13 implies for all p € 7(X)
Fy(p) v (Fi(p) N F3(p)) = Fi(p) N (Fa(p) V F5(p)),
B(X) v (FR(X)NF(X) = F(X) N (FR(X) v F3(X)).
Consequently for all z € 7(X) U X’ we have the equality
h(z) = Fa(z) V (Fi(z) N F3(x)).

Note that F; N F3 is integrated. Thus Lemma s.10 implies 9t = LFx(h). O
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Let § and § be X-local formations of finite groups such that the inclusion
$ C F holds. We write §/x$ to denote the lattice of all X-local formations of

finite groups M such that § C M C 3.

Corollary s.xs. For any X-local formations I and § of finite groups, the following

lattice isomorphism holds: (M) F)/xIM ~ §F/x(FNM).

Corollary 5.16 (Corollary 4.2.8 [107]). The lattice of all local formations of finite

groups is modular.

Corollary s.x7 (Theorem 4 [114]). The lattice of all composition formations of finite

groups is modular.

Lemma s.a8 (Proposition 3.1.39 [12]). Ler § = LFx(f) be an X-local formation
and let ¢ be one of the cdosure operations s, or No. If f(x) =cf(x) for all © €

(char X) U X', then § =c3.

Lemma 5.18 immediately implies the following corollary.

Corollary s.x9. Let ¢ be one of the cosure operations s, or No. Then the lattice of

all c-closed X-local formations of finite groups is modular.

Corollary s.20. The lattice of all X-local Fitting formations of finite groups is mod-

ular.

Lemma s.2x (Corollary s [137]). The lattice of all w-composition formations of finite

groups is not distributive.
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Lemma s.22 ([97]). Let X # 0 be a dass of simple groups such that w = w(X) =

char X. Then any X-local formation of finite groups is an w-composition formation

of finite groups.
Applying Lemmas s.21 and s5.22 we obtain the following theorem.

Theorem s.23 (Theorem 4.1. [126]). The lattice of all X-local formations of finite

groups is not distributive.

Conclusion

Let X be a class of simple groups with a completeness property m(X) = char X.
Forster introduced the concept of X-local formation in order to obtain a common
extension of well-known theorems of Baer and Gaschiitz-Lubeseder-Schmid. In the
present chapter, it is proved that the lattice of all X-local formations of finite groups

is algebraic and modular. The results have been published in the papers [123, 126].



Chapter 6

Lattices of Formations of

Multioperator T'-groups

6.1 Laws of the lattices of foliated formations of 7'-groups

Definition 6.1 ([34]). Any 7-closed 9-formation is O-multiply 72;-foliated with an
arbitrary direction ¢, by definition. Let TQlFap be the lattice of all 72 -formations.

Given a sequence of the lattices of 7-closed €2;-foliated 9-formations
©
TQlFl 7...,7'QlF;LP,...,

where TQlFfO is the set of all 7-closed 2;-foliated 9-formations possessing a di-
rection ¢ and a 7Qj-satellite. Let n > 0. Then 7Q 1 F; is the set of all 7-closed n-
multiply Qy-foliated IM-formations, ie., for each § in T FY there exists a TQlF,f,l'
satellite of §.

103
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Remark 6.2 (Theorem 1 [34]). The set 7Qq F)Y is a complete lattice in 90U for any

nonnegative integer n and any direction .

Let Q) # ) be a set of M-groups. We write 7form Q) to denote the intersection
of all 7-closed 9M-formations containing 2). The notion 78 F,(2),¢) means the
intersection of all 7€ Fyy-formations containing 9). If 9) = {G}, then we write

T F, (G, @) to denote a one-generated T Fy, (), @)-formation.

Remark 6.3 ([34]). Let £, € Q1 F;Y. Then QV?le,f H=TNF(LU9N) is the
least upper bound for {£,H} in T EY, and £N $H is the greatest lower bound

for {£,9} in 7O FY.

. T . -~
For every term ¢ of the signature {N, V(, Ff} we write  to denote the term

T

of signature {N, VO, r¢
n—1

} obtained from & by replacing of each symbol Vo, ke by

the symbol \/6le

n—1
Lemma 6.4 (Lemma 3.1 [120]). Lez £(21, ..., @) be a term of signature {N, \/?hF,f}
and let f; be the minimal 7O FY | -satellite of a M-formation §; (i =1,...,m).

n

Then for any positive integer n it holds

5(81,. .. ,&m) = QIF(E(JCI; e ,fm),(p>.

Proof. Let r be a number of occurrences of the symbols of {N, Vo, F,f} in £ We
proceed the proof by induction on 7.

If » = 1, then the assertion follows by Lemma s in [34], and Lemma 8 in
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[131]. Let & has 7 > 1 occurrences of the symbols {N, Vo, F?f}’ We put

g(xlv s 7‘rm) = gl(xﬁ’ cee 7xia)A§2(x]'17 cee 7ij)7

where A € {m’v?hFif} and {x;,,..., 2, }U{zj,..., 25} ={z1,...,2m}. Sup-

pose that the assertion holds for &; and &. Thus,

&1 Bin) = UF(E(firys -5 fia), )
and
fl(gju ce 73]};) = QlF(E(fjlv <. 7fjb)7 90)‘

For every A € Q3 U {Q]}, we have

g(f'Ll?’fZa)(A) - 51(%“,-.. 7Sia)

and
Efjrs - i) (A) S &0 85)-
Hence,
E@1,- - 8m) =&y i) DG (g5 -5 B5) =
UFE(firs- s [i) DEfirs s fi)s0) = UF(E(fro- s fm)s 0),s
where A =N if A =0, and A = V7], if A=VT O

WF? O FLe

Theorem 6.5 (Theorem 1.1 [120]). Let M be the class of all T-groups satisfying the

minimality and maximality conditions for multioperator T-subgroups, and let n > 0.

Then every law of the lattice of all T-closed IM-formations (denoted by TWFY) is
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Sfulfilled in the lattic TONF} (of all T-closed n-multiply Q-foliated IM-formations

with direction @, such that pg < @).

Proof: We fix a law

51(1‘1'1,...,.%','(1):§2($j1,...,$jb) (61)

of signature {N, \/?21F,f’}' Let

51(1‘1’1""’1:1}1):SQ(le""7ij) (62)

T

be the same law of signature {ﬂ,\/Ql Fe

}. Suppose that law (6.2) is true in the
1
lattice TQlF;f_l. Let §iy,.-.,8i, and §j;,..., T, be arbitrary n-multply 7€2;-

foliated 9M-formations with direction ¢, such that g < ¢. We shall show that

gl(gil? v 782@) = &2(3j17 cee 7gjb)'

Let f;, be the minimal 70 F)Y_;-satellite of the formation §;, (where c=1,...,a)
and let f;, be the minimal 7Q;F?  -satellite of §;, (where d = 1,...,b). By
Lemma 6.4, &1(Fiy, .-+, 8i.) = QUF(h1,9) and &(Fj,,---,8j,) = U F(ha, @),
where hy =&, (fi;,- -, fi,) and ha = & (fj,,- ., fj,)- By Lemma 4 from [34] for
every A € Q1 U{Q]}, the formations fi,(A),..., fi,(A) and f;,(A),..., f;,(A)

belong to the lattice TQlF;f_l. Then by induction, we conclude that

hi(A) = & (fu(A), .- fi,(A) = Ea(fin (A), - -, £5,(A)) = ha(A).

Hence, &1(Siy,- -5 8i) = £&2(8j1,---,8j,). Thus, law (6.1) is true in the lattice

T FY. O
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Corollary 6.6. Every law of the lattice of all T-closed IM-formations is fulfilled in

the lattice of all T-closed n-multiply Q0i-free IM-formations T EX°.

Definition 6.7 ([34]). A formation § = QU F(f, ) is called Q-bicanonical (and
Qi -composition, respectively) if ¢(A) = €4 for any nonabelian T-group A € J;
and p(A) = €4 €4 (p(A) = S.a) for any abelian A € J;. We write @2 and 3,

respectively, to denote the directions of the mentioned formations.

Corollary 6.8. Every law of the lattice of all T-closed M-formations is fulfilled in

the lattice of all T-closed n-multiply 0i-bicanonical IN-formations T EP2.
For the trivial subgroup €-functor 7, we obtain the following corollary.

Corollary 6.9. Every law of the lattice of all formations is fulfilled in the lattice

QFY of all n-multiply Q-foliated formations with direction o, such that oo < .

Corollary 6.10. Every law of the lattice of all formations of finite multirings is ful-

filled in the lattice of all n-multiply local formations of finite multirings.

Corollary 6.x (Theorem 2 [34]). Let M be the dass of all multioperator T-groups
satisfying the minimality and maximality conditions for multioperator T-subgroups.
Then the lattice TOQ FyY (of all T-closed n-multiply Q-foliated IM-formations) is mod-

ular for any nonnegative integer n and any direction p, such that g < .



6.2. FRATTINI SUBFORMATIONS OF FOLIATED FORMATIONS 108

Proof. By [131, Theorem 4.5) for n = 0], the lattice 4 F{ is modular. By Lemma 7

from [34] for any §, $ € TQFY, we have
S Vo, pe H=TUFF(FUNH) = NFFEFUN).

Thus, the lattice TQlFSO is modular. Then applying Theorem 6.5, we conclude that

the lattice 7O F)Y is modular for any direction ¢, o < . O

Let § and § be a 70 F)Y-formations such that $ C §. We write S/?th.Sﬁ
to denote the lattice of all 7 FY-formations ) such that $§ C Q) C F. As an im-

mediate corollary from the lattice property of being modular, we have the corollary.

Corollary 6.02 (Lemma 3.4 [122]). For any two T-closed n-multiply 0i-foliated IN-

ormations ) and § (with direction o, such that pg < the lattices
2 2 ¥

(9 VG, pe B)/ 0, pe$ and F/3, pe(F N H)

are isomorphic.

6.2 Frattini subformations of foliated formations of
T'-groups

Let § and $) be 7-closed n-multiply €2;-foliated 9-formations with direction ¢ such
that g < ¢, and $H C §. We write §/ 61 pef) to denote the lattice of all 7-closed
n-multiply (};-foliated 9M-formations of multioperator T-groups (with direction ¢

such that g < @) such that $ C Y C F.
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Definition 6.13. If ) C § and the lattice §/ o F;fQJ consists of only two elements
then 9) is called a maximal T-closed n-multiply €2;-foliated 9-formation (with di-
rection ¢ such that g < ¢) of §. Denote the intersection of all such subforma-
tions of § by @61 Fe (§), and call it the Frattini subformation of § (we assume that

@T

QL F¢ (§) = § if there are no such subformations).

We write f < h, if f(A) C h(A) whenever for all A € Q; U{Q}}.

Lemma 6.14 (Lemma 3.1 [122]). Let {F; | i € I} be a chain of TOQ4 Ey, -formations of
multioperator T-groups, where n > 1, and let {f; | i € I} be a chain of TOWF -
satellites such that §; = W F(fi, ) and fi < f; iff §i C & for all i,j € I

Then

SZUgZ:QlF(fﬂD)a

iel

where f(A) = U,c; fi(A) for any A € Q1 U{Q}}.

Lemma 6.15 (Kuratowski-Zorn). Let a partially ordered set A has the property that
ecach chain in N has an upper bound in N. Then the set A contains at least one

maximal element.

Definition 6.16 ([122]). An M-group G is said to be a 7Q F}y -nongenerator of the

formation §
if §=7MNF,(QU{G},¢) always implies that § = 7Q1 F,(2), ¢),

where Q) # () is a set of M-groups.
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Lemma 6.17 (Lemma 3.3 [122]). Let G be an M-group and Y # O be a set of

M-groups. Then the formation

§ = TQan(Q‘j U {G}a 90)

contains a maximal T-closed n-multiply 0i-foliated IM-subformation (with direction

@ such that po < ) containing T F, (D, @) # T for any nonnegative integer n.

Proof. Let A be a partially ordered set of all 7-closed n-multiply €2;-foliated 9-

subformations (with direction ¢ such that ¢g < ¢) of § that contains

TQan(Qja QD)

but does not contain G, and let {F; | i € I} be a chain from A.

Put $ = [U;c; - Lemma 6.14 implies that §) is a 7-closed n-multiply -
foliated 9M-formation with direction ¢ such that g < .

We see that 701 F,(9), ) C $ and G ¢ . Applying Lemma 6.15, we observe
that every ) in A is contained in some maximal element from A. We shall show that
any such formation ) is a maximal 7-closed n-multiply €2;-foliated 9%-subformation
(with direction ¢ such that ¢p < ¢) of §.

Suppose that £ is a 7-closed n-multiply €;-foliated 9M-formation (with direc-

tion ¢ such that ¢g < @) with 9 C £ C §. We obtain G ¢ £ since

YCTnF(D,p) Y CL

Thus, £ € A. We have a contradiction. O
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Theorem 6.8 (Theorem 4.1 [122]). Let § be a nonempty T Fyf -formation such
that § # (1), where n is a positive integer. Then 7, Fy (§) consists of all 7Oy -

nongenerators of §.

Proof. Let G be a T EY -nongenerator, and £ be a maximal 70 FY -subformation

of §. Assume that G ¢ £. Then we have
TQan<£ U {G}v (P) =35 = TQan(£7 90) =L,

which is a contradiction. Thus G € £.

Let ) be a nonempty set of M-groups contained in § and P, ;¢ (§). Assume

that
TQan(E‘D U {G}7 (10) =3 7é TQan(E‘Da SD)
By Lemma 6.17, § contains a maximal 701 FY-subformation 9) such that
TQIF’IL(QJ7 SO) g SD

Thus, since G € @61 e (F), we have 9 = §. This contradicts the choices of 2).

Consequently, § = 7Q1F,(2), ¢). O

Theorem 6.19 (Theorem 4.2 [122]). Let F1, T2 be nonempty T EY ~formations for

a nonnegative integer n. If §1 C §o # (1) then

6, kg (81) € P, e (S2)-

Proof. Suppose that @61F¢ ($1) £ (D?th (T2). Let Y be a maximal 78 F}7-subfor-

mation of Fo such that <I>ST21F¢ ($1) £9. Thus §1 € 9.
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By Lemma 6.12, SQ/EIF;LPQJ = (9 vgle,f 311)/61;7;52) = Sl/‘gr)lp;f(gl nyY).
The lattice Fo /61 F,fﬁ‘j consists of only two elements. Then §1 N'Q is the
maximal 7 F;’-subformation of §;. Hence @;th ($1) € 2. We obtain a contra-

diction. Consequently, ®F, ;.. (F1) C ®F) v (F2), as asserted. O

Corollary 6.20 ([122]). Ler § # (1) be a nonempty T-closed n-multiply Qy-free M-

formation, and n be a positive integer. Then the following holds:

(1) @7

Q, FP0 (B) consists of all T Fy°-nongenerators of 3.

(2) Let Q be a T-dosed n-multiply Qy-free IM-formation such that Y C 3.

Corollary 6.21 ([122]). Ler § # (1) be a nonempty T-closed n-multiply Q-bicanoni-
cal M-formation, and n be a positive integer. Then the following holds:

(1) @

L B2 (8) consists of all TN Fy? -nongenerators of .

(2) Let ) be a T-closed n-multiply Qn-bicanonical M-formation such that Y C

Corollary 6.22 (Theorems 3.1 and 3.2 [19]). Let § # (1) be a nonempty T-closed n-
multiply w-composition formation of finite groups, where n is a positive integer. Then
the following holds:

(1) @7, (J) consists of all c[, -nongenerators of §.

(2) Let Q) be a T-closed n-multiply w-composition formation of finite groups such

that ) C 3. Then ¥, (V) C @7, (3).
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Corollary 6.23 ([114]). Let § # (1) be a nonempty n-multiply L-composition forma-
tion of finite groups, where n is a positive integer. Then the following holds:

(1) @5 (F) consists of all c-nongenerators of §.

(2) Let Y be a T-closed n-multiply w-composition formation of finite groups such

that Q) C F. Then ®5(Y) C O5(3).

Conclusion

Let 91 be the class of all multioperator T-groups satisfying the minimality and max-
imality conditions for T-subgroups, and let n be a positive integer. In the present
chapter, it is proved that every law of the lattice of all 7-closed 9t-formations is ful-
filled in the lattice of all T-closed n-multiply €2;-foliated 91-formations with direction
©, such that ¢g < . Let § and § be 7-closed n-multiply €2;-foliated 91-formations
with direction ¢ such that pg < ¢, and $ C §. If X C § and the lattice F/ 61 F,f%
consists of only two elements then X is called a maximal T-closed n-multiply €2-
foliated 9M-formation of §. Some properties of the intersection of these formations

are studied. The results have been published in the papers [120, 122].



Chapter 7

Possible Future Directions

A monoid is an algebraic structure with a single associative binary operation and an
identity element. A group can be defined as a monoid such that each element of
this monoid possesses an inverse element.

Languages are subsets of a certain type of monoid, the free monoid over an
alphabet. Regular languages are precisely the behaviors of finite automata. A language
is regular if its syntactic monoid is a finite monoid, and a regular language is a group
language if its syntactic monoid is a finite group.

A variety of finite monoids is a class of finite monoids closed under taking
submonoids, quotients and finite direct products. Formations of finite monoids ex-
tend the notion of a variety of finite monoids, and the weaker closure conditions
for formations lead to more possibilities than for varieties, and more general classes

can be studied; see [13].

4
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The Eilenberg theorem establishes that there exists a bijection between the set
of all varieties of regular languages and the set of all varieties of finite monoids
[38]. An analogous result holds for formations [13], i.e, there is a one-to-one corre-
spondence between formations of finite monoids and formations of languages. This
fact rises up the motivation to study formations in tasks of abstract machines and
automata, which commonly appear in the theory of computation, compiler construc-
tion, artificial intelligence, parsing, formal verification and other aspects of theoretical

computer science.

7.1 Formations of formal languages

A formation § of groups is local (or saturated) if G/®(G) € § always implies G €
S. A local satellite of § is a function with domain PP whose images are formations
of finite groups. If the values of this function are themselves local formations, then
this circumstance leads to the definition of multiply local formation.

Ballester-Bolinches, Pin, and Soler-Escriva [14] developed a general method to
describe the languages corresponding to local formations. In present work, it is show
that the mentioned result is applicable to the languages corresponding to n-multiply
local and totally local formations, which find deep applications in the study of finite
groups.

Thus we are equipped now with a powerful tool to translate efficiently any result

of the theory of multiply local formations of finite groups to formal languages!
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A formation of groups § is said to be solvably saturated it it contains each
group G with G/®(N) € § for some solvable normal subgroup N of G. Any
saturated formation is solvably saturated, but not all the properties of saturated for-

mations can be translated directly for solvably saturated formations.

Problem 7.1. Describe the languages corresponding to solvably saturated formations of

finite groups.

The motivation to study o-local formations rises from the result of Chi, Sa-
fonov and Skiba [29] which deals with so-called YJ;-closed formations. In the present
work it is shown that every law of the lattice of all formations is fulfilled in the lat-
tice of all n-multiply o-local formations of finite groups. This implies immediately
that the lattice of all n-multiply o-local formations of finite groups is modular but

not distributive for any nonnegative integer n.

Problem 7.2. Describe the languages corresponding to n-multiply o-local and totally

o-local formations.

Baer-local formations form a broader than local formations family of classes.
By Baer’s theorem, those formations are precisely solvably saturated formations; see
p- 373 in [37]. Baer-o-local formations, introduced recently in [91], generalize o-local
and Baer-local formations at the same time.

Let G be a group, and § be a formation of groups. The symbol Ry (G) de-

notes the product of all normal o-solvable subgroups of G, and Figs,1(G) de-
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notes the product of all normal generalized {o;}-nilpotent subgroups of G. Set

0+ (3) = Ugeso™ (G), where
0" (G) = {0 | G has a chief factor H/K such that o(H/K) = 0},
Definition 7.1 ([91]). Following Skiba, we call any function f of the form
f:oU{@} — {formations of groups},
where f(@) # 0, a generalized formation o-function, and put
BLF,(f) = (G| G/Rs(G) € f(2) and Fiyy,1(G) € f(oy) for all oy € 07 (G)).

If § = BLF,(f) for some generalized formation o-function f, then § is called
Baer-o-local, and f is a generalized o-local definition of §. The symbol Supp(f)

denotes the support of f, ie., the set of all o; such that f(o;) # 0.

Problem 7.3. Describe the languages corresponding to Baer-o-local formations of finite

g}"OMpJ'.

7.2 Classes of fuzzy languages

In 1934, at the eight Congress of Scandinavian Mathematics, Marty [72] introduces
a concept of algebraic hyperstructure, which naturally generalizes classical algebraic
structures such as groups and rings. As mentioned in [33], the first example of hy-

pergroups, which motivates the introduction of this structure, is the quotioent of a
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finite group by arbitrary (not necessarily normal) subgroup, i.., if the subgroup is
not normal, then the quotient is not a group, but it is always a hypergroup with
respect to a certain hyperoperation. Keeping in mind this idea, we can introduce a
concept of hyperformation, assuming that subgroups in Definition 2.8 are not nec-

essarily normal.

Definition 7.2. A hyperformation is a class of hypergroups § satistying the following
two conditions:

(1) if H € §, then H/N € §, and

(2) if H/Ny, H/N3 € §, then H/N; N N3 € §,

for any subhypergroups N, N1, Ny of H.

It will be interesting to study the relation between classical formations and hy-
performations. Fuzzy sets, introduced by Zadeh [141] and Klaua [65], became applied
in fields such as pattern recognition, machine learning and data mining [22, 60].
Examples of hypergroups associated with models of biological inheritance were con-
sidered recently in [3], and connections between hypergroups and fuzzy sets were
discussed in Chapter 5 of the book [33].

In [83, 73], the concept of a fuzzy set was applied to generalize the basic con-
cepts of group theory. The most fundamental result in the theory of classes of finite

groups states that any formation is saturated iff it is local [37, Gaschiitz—Lubeseder—

Schmid].
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Problem 7.4. To obtain a generalization of Gaschiitz—Lubeseder-Schmid theorem in

terms of fuzzy group theory.

Wee [139] introduced the fuzzy automaton as a model of learning systems. This
model is the natural fuzzification of the classical finite automaton: a fuzzy automaton
is a tuple A = (A, X, u), where A is a finite set of states, X is a finite set of input
symbols and f is a fuzzy subset of A X X x A representing the transition mapping,
which can be represented as a collection of matrices with entries from [0, 1]. Let
X™ be a free monoid, then a fuzzy language over an alphabet X is a fuzzy subset
of X*. A fuzzy language is regular if it is recognizable by a fuzzy automaton. Some
applications of fuzzy languages are discussed in [23, 24, 61, 79].

Petkovi¢ [77] proved a counterpart of Eilenberg’s theorem for varieties of fuzzy
languages. That motivates us to study formations of fuzzy languages. For instance,

the following two problems are of great interest.

Problem 7.5. Prove a counterpart of Eilenberg’s theorem for formations of fuzzy lan-

guages.

Problem 7.6. Describe the fuzzy languages corresponding to o-local (n-multiply o-

local, totally o-local) formations.
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7.3 Applications in computer programming and data

science

In computer programming, various abstract data types can be considered as monoids.
Some applications for functional programming are discussed in the book [31]. Be-
cause the operation takes two values of a given type and returns a new value of
the same type, it can be chained indefinitely. The associativity of monoid operations
ensures that the operation can be parallelized.

Out of the sixteen possible binary Boolean operators, each of the four that
has a two sided identity is also commutative and associative, that makes the set
{False,True} a commutative monoid.

Every group is a monoid. Every abelian group is a commutative monoid.

The elements of any unital ring, with addition or multiplication as the oper-
ation, form a monoid. Any complete lattice can be endowed with a meet-and-join
monoid structure. The same holds for complete lattices of formations. Boolean al-
gebras have these monoid structures as well.

Formations are a useful tool to study finite rings [32], which find applications
in coding theory [20, 102]. In the present work it is shown that the lattice of all

formations of finite rings is algebraic and modular.

Problem 7.7. Describe algebraic and modular lattices of local formations of rings.
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In 2013, Twitter open-sourced Algebird [1], a library which provides abstractions
for abstract algebra in the Scala programming language to work with semigroups,
monoids, groups and rings. Algebird was designed on Twitter with a target to simplify
building aggregation systems like Apache Spark, Scalding, Apache Storm, etc. Many
of the data structures included in Algebird have a monoid implementations, making
them ideal to use as values in Summingbird aggregations. (Summingbird is a library
that lets us write MapReduce programs that look like native Scala or Java collection
transformations.) Algebird is extremely helpful in the problems of Large-Scale Data
Analytics, some real world examples of Algebird at Twitter-scale are discussed in [74].
Thus formations of monoids, groups and rings can be applicable as a tool for Data

Mining, social media research and knowledge discovery.

Task 7.0, To develop an Algebird based Scala library applying advances of formation

theory for Big Data Analytics.

Finally, we note that Pin and Soler-Escriva [78] described the two classes of
languages recognized by the groups D4 and (Jg, and they proved that the forma-
tions of languages generated by these two classes are the same, and in the most
recent paper [25], the authors describe two sublattices of the lattice of all forma-
tions of monoids, and give, for each of them, an isomorphism with a known lattice

of varieties of monoids, and study formations containing Clifford monoids.

_%’_
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