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Abstract
We study the algebraic structures of quaternions and geometric properties of quater-

nionic hyperbolic spaces.
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Chapter 1. Introduction

From the fact that the complex numbers are presented as points on a 2-dimensional
plane, Hamilton tried to find a way to interpret points on a 3-dimensional space in a
similar way as complex numbers. First, he thought a number system that consists of
triples of numbers but he failed to solve the problem of multiplication and division. In
the end, he realized that there is a number system consisting of quadruples of numbers
with a notion of division.

After Hamilton’s death, Peter Guthrie Tait who is Hamilton’s student continued
studying quaternions [4]. But from the mid-1880’s, people were not interested in quater-
nions. But quaternions were again in the spotlight in the late 20th century because of
their utility in describing spatial rotations. Describing spatial rotations by quaternions
is more efficient and quicker to compute than describing spatial rotations by matri-
ces. For this reason, quaternions are used in computer graphics [5], control theory,
signal processing, attitude control, physics, bioinformatics [6, 7], molecular dynamics,
computer simulations and orbital mechanics.

We will start with the definition of quaternions first and then study their basic
properties concerning quaternion linear algebra. The main difference of quaternions
from complex numbers is non-commutativity, which makes all difficult. For example,
some quadratic equation has infinitely many solution in quaternions. It turns out that
the number system of quaternions is not a field but fortunately a division ring. From
this, it follows that modules over quaternions are similar to vector spaces over a field.

We will give self-contained proofs for well-known results in quaternion linear algebra.



Chapter 2. Quaternions

In this chapter. we will study quaternion’s definition and basic theorems. We start

with the definition of quaternions.

Definition 2.1 (Quaternions). A quaternion is an expression of the form
a+ bi+ cj + dk,

where a,b,c,d are real numbers, and 1i,j,k are just symbols. If one of a,b,c,d is 0,
the corresponding term is omitted if a,b,c,d are all zero, the quaternion is the zero
quaternion, denoted 0; if one of b, ¢, d equals 1, the corresponding term is written simply
i,j, or k. The quaternion bi + ¢j + dk is called the imaginary part of a + bi + cj + dk,
and a is the real part of a + bi + ¢j + dk. Let H be the set of quaternions. Define two
binary operations + and - on H as follows. First, the addition + on H is defined by

(a1+bii+eij+dik) +(az+bai+caj+dok) = (a1+az)+ (b1 +b2)j+(c1+c2)j+ (d1 +da)k.
The multiplication -, called the Hamilton product, is defined by
(a1 + b1i+ c1j + dik) - (a2 + boi + c2j + d2k)

= (ajaz — b1by — c1ca — didz) + (a1by + brag + c1dy — dyic2)i
+ (alcQ —bidy + cras + dlbg)j + (a1d2 + bico — c1by + dlag)k.

From the definition of quaternions with the addition and multiplication, it imme-
diately follows that
i2=j2=K’=i-j k=-1
and
i-j=—j-i=k, j-k=-k-j=1i, k-i=—-i-k=]j.

Lemma 2.2. Let x be a quaternion. Then x-y =y -x for ally € H if and only if x is

a real number.

Proof. Suppose that xy = yx for all y € H. Let z = x¢ + x1i + x9j + x3k and
y = yo + y1i + y2j + ysk. Then

z-y = (o + 211+ x2j + x3K) - (yo + vai+ y2j + ysk)
= (woyo — T1y1 — T2y2 — 3Y3) + (Toy1 + T1yo + T2y3 — T3Y2)i
+ (woy2 — 21y3 + ayo + x3y1)j + (Toys + T1y2 — T2y1 + w330)k

—92_



and

y-x = (yo+ i+ yoj + ysk) - (xo + 21 + z2j + 23k)
= (Yowo — Y171 — Y222 — Y373) + (Yor1 + Y120 + Y273 — Y3T2)i
+ (Yoz2 — Y123 + Yoo + y321)j + (Yor3 + y122 — Y211 + Y3z0)k.

To be zy = yx, we have that for all y1,72,y3 € R,

T2y3 — x3y2 = 0,
r1y3 — x3y1 = 0,

z1y2 — x2y1 = 0.
Taking y1 = yo = 1 and y3 = 0, the equations above reduce to
—x3=0, T1 = z2. (2.1)
Furthermore, taking y; = y3 = 1 and ys = 0, the equations reduce to
9 =0, 1 — 23 =0. (2.2)

From (2.1) and (2.2), it follows that 1 = x2 = x3 = 0, which implies that z is a real

number. The converse is obvious. O

Lemma 2.2 means that the center of H for the multiplication on H is the set of

real numbers.

Proposition 2.3. The addition + and multiplication - turn H into a real vector space

of dimension 4.

Proof. Let x = xg+x1i+xoj+ a3k, y = yo+y1i+yoj+ysk and z = zg+ 211+ 20 + 23k
and a,b € R. Then,

(x +

o+ yo) + (X1 + y1)i+ (2 + y2)j + (23 + y3)k) + (20 + 211 + 22] + 23k)

)+
(w0 + 211 + w2j + w3k) + (yo + y1i + yaj + y3k)) + (20 + 211 + 22 + 23k)
(
(

Yy
(
(
((zo+yo) + 20) + (@1 + y1) + 20)i+ ((x2 + y2) + 22)j + (w3 + y3) + 23)k
= (zo+ (Yo + 20)) + (z1 + (Y1 + 21))i + (x2 + (Y2 + 22))j + (w3 + (y3 + 23) )k
= (wo + z1i + @2j + w3k) + ((yo + y1i + y2j + ys3k) + (20 + 211 + 22 + 23k))

=x+ (y+2)



This implies the associativity of the quaternion addition. The fourth equality follows
from the associativity of real number under addition. The commutativity of real num-

bers under addition gives the commutativity of quaternion addition as follows.

x4y = (xo+ x1i + x2j + x3k) + (vo + v1i + y2j + ysk)
= (xo+yo)+ (x1 +y1)i+ (z2 +y2)j + (x3+ y3)k
= (yo +z0) + (y1 +21)i + (y2 +22)j + (y3 + 3)k

=yt
One can easily check that 0 is the identity for quaternion addition. For all z € H,

x40 = (o + z11 4 22j + 23k) + (0 + 0i + 0j + 0k)
= (20 +0)+ (z1+0)i+ (z2+0)j + (z3 +0)k
=(0+z9)+ (0+z1)i+ (0+22)j+ (0+ 23)k
=xo + 211+ x2j + x3k
=0+

=XT.

This implies that  + 0 = 0 + & = z. For each x € H, the additive inverse of z is —x,
that is,

T+ (=) = (ro + x1i + 22j + 23k) + (=20 — 211 — 22j — 23k)
= (zo — x0) + (v1 — x1)i+ (22 — 22)j + (z3 — z3)k
—xo + o) + (=21 + 21)i + (—22 + 22)j + (—23 + 23)k

—xo — 211 — T2j — x3k) + (20 + 21i + 22j + 23k)

The associativity of scalar multiplication immediately follows from the associativity of

real numbers under multiplication:

a-(b-x)=a(brg+ br1i+ bxaj + bxsk)
= a(bxo) + a(bx1)i+ a(br2)j + a(brs)k
= (ab)xo + (ab)z1i + (ab)x2j + (ab)xzsk
= (ab) - x.

The distributivities of scalar sums and quaternion sums follow from the distributivity



of real numbers as follows.

(@+b) -z=(a+b)xo+ (a+b)z1i+ (a+b)xaj+ (a+b)xsk
= (axg + bxo) + (ax1 + bx1)i+ (axe + bxa)j + (axs + brs)k
= (axo + az1i + axsj + axsk) + (bxg + bx1i + bxaj + brsk)

=a-x+b-
and

a-(x+y) =alzo+yo) + al@r +y1)i+ a(ze + y2)j + alzs + y3)k
= (axo + ayp) + (azx1 + ay1)i+ (ax2 + ay2)j + (azxs + ays)k
=a-r+a-y.

Finally, it easily follows that the number 1 is the scalar multiplication identity:

1oz =1 (xo+ z1i+ x2j + 23k)
=x0+ 211+ x2j + 23k

= XT.

Therefore (H, +, -) satisfies all conditions in the definition of real vector space. Hence

(H, +,-) is a real vector space. O

Definition 2.4 (Ring and Division Ring). A ring is a set R equipped with two binary

operations + and - satisfying the following three sets of axioms, called the ring axioms
1. R is an abelian group under addition, meaning that:
(a+b)+c=a+(b+c)
for all a,b,c € R (that is, + is associative).
at+b=b+a
for all a,b € R (that is, + is commutative). There is an element 0 in R such that
a+0=a

for all @ in R (that is, 0 is the additive identity). For each a in R there exists —a
in R such that
a+(—a)=0

(that is, —a is the additive inverse of a).



2. R is a monoid under multiplication, meaning that:
(a-b)-c=a-(b-c)

for all a,b,c € R (that is, - is associative). There is an element 1 in R such that

and

for all @ in R (that is, 1 is the multiplicative identity).
3. Multiplication is distributive with respect to addition, meaning that:
a-(b+c)=(a-b)+(a-c)
for all a,b,c € R (left distributivity).
(b+c¢)-a=(b-a)+ (c-a)
for all a,b,c € R (right distributivity).

A ring R is called a division ring if every nonzero element of R has a multiplicative

inverse.
Example 2.5. The set M2(C) of 2 x 2 complex matrices is a ring.

Proof. Let + and - be the addition and multiplication on M3(C). Let X,Y and Z be

211 212
221  222-

Then from the associativity of the addition of complex numbers, we have that

2 x 2 complex matrices. Write

11 T12
X =
T21 X22

Y11 Y12
Y21 Y22

Y = L Z=

(x11 +y11) + 211 (z12 + Y12) + 212
(21 +y21) + 221 (222 + Y22) + 222

(X+Y)+Z=

r11 +y11 + 211 12 +yi2 + 212

| T21 + Y21 + 221 T22 + Y22 + 222

z11 + (ynn +211) 12+ (yi2 + 212)

— X+ (Y +2).
o1 + (Y21 + 221) T2 + (Y22 + 222)




Thus the addition + on M5(C) is associative. Moreover, from the commutativity of

the addition of complex numbers,

11 T12

X+Y = +

21 X22

Y21 Y22

Y11 y12]

r11 Y11 Ti2 + Y12

[ T21 + Y21 T22 + Y22

Y11 + 11 Y12 + x12

[Y21 +T21 Y22 + Z22

Y11 Y12 r11 12

| Y21 Y22

=Y + X.
T21 T22

Thus the addition 4+ on M>(C) is commutative. Let O denote the zero 2 x 2 matrix.
For any 2 x 2 complex matrix X,

0 0
X+0 _ r11 T12 + _ _ r11 T12 - X.
21 X922 0 0 21 T22

This implies that the zero matrix 0 is the additive identity in Ma(C). To complete

11 +0 x124+0
o1 +0 x99+ 0

the proof that My(C) is an abelian group under addition, we only need to show the

existence of the additive inverse. For each X € M(C), we set

—T11 —T12
X =
—T21 —T22

Then it follows that

X X —Z —X
X + (—X) _ 11 12 + 11 12
[ T21 T22 —T21 —X22

|z —an ziz—zi2| |0 0O 0
|T21 — T21 T2 — X2 0 0

Hence (—X) is the additive inverse of X. All results above imply that M>(C) is an
abelian group under addition.

Next we will prove that Ms(C) is a monoid under multiplication. First, it can
be easily checked that the multiplication on My(C) is associative as follows. A simple

computation gives that the (i,j)-entry of (X -Y)-Z is

(Tity11 + xi2y21) 215 + (Tinyi2 + Ti2y22)22;
and (i, j)-entry of X - (Y - Z) is

(wi1(y11215 + y12225) + T2 (Y2121 + y22225),
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which deduces that they equal to each other. Thus it follows that (X Y)-Z = X-(Y-Z).
Let I denote the identity matrix in My(C) that is the 2 x 2 matrix with ones on

the main diagonal and zeros elsewhere. For each X € M(C),

and

_x T 1 ()_ _a: x |

Y. - 1 Tiz| _ [T Tiz) X,
|[z21 22| |0 1]  [m21 w22]
-1 0 T x ] -:c T |

I X — R R el I R
_0 1 To1 X22| | T21  X22]

This implies that the identity matrix I is the multiplicative identity in M2(C). From

the results above, we conclude that M»(C) is a monoid under multiplication.

Lastly, it remains to verifty that the multiplication on M (C) is distributive with
respect to the addition on My(C). For any X,Y, Z € M»(C),

X

(Y +2) =

Y11 + 211 Y12 + 212

T21 X22 Y21 + 221 Y22 + 222

T11 le]

w11(y11 + 211) + 212(y21 + 221)  T11(yi2 + 212) + 212(y22 + 222)
| Z21 (Y11 + 211) + @22(y21 + 221)  w21(y12 + 212) + T22(y22 + 222)

(x11y11 + T12Y21)

( (
(r11211 + T12221)  (T11y12 + T12Y22) + (11212 + T12222)
(x21y11 + @22y21) + ( )

_|_
+ (T21211 + 22221 (9621y12 + z22y22) + (1‘21212 + 9622Z22)

T11Y11 + T12Y21  T11Y12 + T12Y22 n T11211 + 12221 T11212 + T12222
[ T21y11 + T22Y21  T21Y12 + T22Y22 T21211 + T22221  T21212 + T22222

XY+ X -Z

Thus X - (Y +Z2) =X -Y + X - Z. Furthermore,

(X+Y) 7= T+ Y1 Ti2 + Y12

211 212
221 222

@i yi)zan 4 (22 Fyi2)za (20 +yin)zie + (212 + yi2) 222
(221 + y21)211 + (w22 + y22)2z21 (221 + Yo1)212 + (P22 + Y22) 222

T21 + Y21 T2 + Y22

_|T11211 w2201 + Y11211 + Y12221 11212 + T12222 + Y11212 + 3/122’22]

| T21211 + 22221 + Y21211 + Y22221 21212 + T22222 + Y21212 + Y22222

T11211 + ®12221 T11212 + £12222 I Y11211 + Y12221  Y11212 + Y12222
Y21211 + Y22221  Y21212 + Y22222

| T21211 + T22221  T21212 + T22222

%11 %12 211 212 i Y11 Y12 211 212
| T21  T22 Z21 222 Y21 Y22 221 222
=X-Z+Y-Z



We complete a proof for the left and right distributivity. Therefore M2(C) equipped
with the addition + and multiplication - satisfies all the ring axioms. In other words
(M2(C),+,-) is a ring. O

Proposition 2.6. The set H of quaternions is a non-commutative division ring.

Proof. First note that we have shown that H is an abelian group under addition. Hence
it remains to prove that H is a monoid under multiplication and the multiplication on
H is distributive with respect to addition. For a,b and ¢ in H,
(a-b)-c=[(ao+ aii+ azj+ ask) - (bo + b1i + baj + bsk)] - (co + c1i + c2j + csk)
= [apboco — a1bicy — agbacy — asbscy — apbicr — arbocr — agbser + asbacy
— apbaca + arbzca — agbgca — agbicay — apbscs — arbacs + asbicz — asbocs]
+ [apboct — arbicr — agbacy — asbzer + agbico + arboco + agbsco — azbacy
+ apbacs — arbscs + azbocs + azbicz — agbsca — a1baca + azbica — asbocali
+ [aoboca — arbica — agbaca — agbsca — apbics — a1bocs — azbses + azbacs
+ agbaco — arbscy + agboco + asbico + apbser + arbacy — agbicy + agbpe]j
+ [apbocs — a1bics — asbacs — asbses + apbica + arboca + agbszca — asbacy
— apbacy + a1bscr — agbocr — agbicr + agbscy + arbacy — asbicy + agbocolk
= ag[(boco — bic1 — baca — bscz) + (boct + bico + bacg — baco)i
+ (boca — bicg + baco + bzer)j + (bocs + bica — bacibaco)K]
+ a1[(—bico — bocr + bgea — bacg) + (—bic1 + boco — bzez — baca)i
+ (—=bica — bocg — bgep + bacy)j + (—bies + boea + bser + baco)K|
+ az[(—baco — bzcy — boca + bies) + (—bacy + bgco + bocs + baca)i
+ (—=bacg — bges + boco — bier)j + (—bacs + bgea — boer — bico)k
+ az[(—bsco + bact — bica + bacy) + (—bscr — baco + bics — bacp)i
+ (—bzca + bacs + bico + bocr)j + (—bgez — baca — bicr + boco)K]
= (ag + a1i+ agj + ask) - [(boco — brc1 — baca — bses) + (boer + bico + bacs — byeo)i
+ (boca — bicg 4 bacy + bger)j + (bocs + bica — bacy + bzco)K|
= (ap + a1i + azj + azk) - [(bo + b1i + baj + bsk) - (co + c1i + caj + c3k)]
=a-(b-c).
Thus (a-b)-c=a- (b-c). This implies the associativity of the multiplication on H.
For each a € H,
a-1=(ap+ai+agj+ask) - 1=ay+ai+aj+task=a=1-a.

This implies that the identity 1 is the multiplicative identity in H. From the results

above, we conclude that H is a monoid under multiplication.

-9 —



Next we will verify that the multiplication on H is distributive with respect to the

addition on H. For any a,b,c € H,

a-(b+c)=(ap+ ari+ asj + agk) - [(bo + b1i + boj + bsk) + (co + c1i + c2j + c3k)]
= (ap + a1i + a2j + ask) - [(bo + co) + (b1 + c1)i+ (b2 + ¢2)j + (b3 + c3)K]
= [ag(by + o) — a1(by + 1) — aa(be + c2) — as(bs + c3)]
+ ao(b1 + c1) + a1(bo + co) + az(bz + c3) — az(ba + c2)]i
+ [ag(ba + c2) — a1(bs + ¢3) + az(bg + co) + az(by + c1)]j
+ [ao(bs + c3) + a1(be + c2) — az(b1 + c1) + as(bo + co)]k
= (apbp — a1by — asba — azbz) + (apb1 + a1bp + azbs — azba)i
+ (apba — a1bs + azby + azb1)j + (apbs + a1by — azby + asbo)k
+ (apco — arc1 — age — ages) + (aper + arco + ages — asez)i
+ (apce — aics + agcp + ager)j + (apes + arca — azer + ascp)k
= (ao + a1i + azj + agk) - (bo + b1i + boj + b3k)
+ (ao + a1i+ az2j + ask) - (co + c1i + coj + c3k)
=a-b+a-c

In addition, we have

(a+10)-c

[(ao + a1i 4 agj + ask) + (bo + b1i + baj + bsk)] - (co + c1i + coj + c3k)
[(ao + bo) + (a1 +b1)i+ (az + b2)j + (a3 + b3)K] - (co + c1i + c2j + c3k)

= [(ao + bo)co — (a1 + b1)er — (az + b2)ca — (a3 + bs)cs]
+ [(ao +bo)er + (a1 + b1)co + (az + b2)cs — (a3 + b3)ea)i
+ [(ap 4+ bo)ca — (a1 + b1)cs + (ag + b2)co + (as + bs)cij
+ [(ao + bo)es + (a1 + b1)e2 — (a2 + ba)er + (as + bs)colk
= (apco — a1c1 — azcg — azey) + (aper + arco + ages — asca)i
+ (apcz — arcs + azco + azer)j + (aocs + arc2 — azer + azco)k
+ (boco — bici — baca — bzez) + (bocr + bico + bacsz — bsca)i
+ (boca — bicg + baco + bscr)j + (bocg + bica — bacy + baco)k
= (ao + a1i + azj + agk) - (co + c1i + c2j + c3k)
+ (bo + b1i+ boj + bsk) - (co + c11 + c2j + c3k)
=a-c+b-c

Two identities above imply the left and right distributivity. Finally, we conclude that H
equipped with the addition 4+ and multiplication - satisfies all the ring axioms. In other

words, (H, +,-) is a ring. To verify that H is a division ring, let a = ag+a1i+ asj+ask

~10 -



be an arbitrary non-zero quaternion. Then we can give an inverse of a explicitly as

follows. Define the inverse a~! of a by

1
-1 . .
a = ag — a1l — asj — ask).
ag—f—a%ﬂ—a%—l—a%(o ! 2 3 )

Then a trivial verification shows that a - a~' = a~! - @ = 1, which means that a~! is

the multiplicative inverse of a. Lastly, one can easily see that H is non-commutative by

k=1i-j#j-i= —k. Thus it is derived that H is a non-commutative division ring. [J

Definition 2.7 (Norm on a division ring). Let (R, +,-) be a division ring whose zero

is denoted by 0. A norm on R is a mapping from R to the non-negative reals R>q:
|-|: R—Rxo
satisfying the norm axioms: For all x and y in R,
1. (Positive definiteness) If |x| = 0, then z = 0.
2. (Multiplicativity) |z - y| = |z||y|.

3. (Triangle inequality) |z + y| < |z| + |y|.

Define a norm | - | on H by |ag + a1i + a2j + ask| = /a2 + a3 + a2 + a3.
Proposition 2.8. The norm |- | on H is a norm on the division ring H.
Proof. Let x = xg+ x1i+ x2j+ xzsk and y = yo + y1i + y2j + ysk. Suppose that |z| = 0.

Then |z|? = 22 + 2% + 23 + 22 = 0, which implies that x9 = 21 = 22 = 73 = 0 and

hence x = 0. The norm | - | is positive definite. An easy computation gives that

|z y|* = [(woyo — 2191 — T2y2 — w3y3) + (Toy1 + T1Yo + T2ys — T3y2)i
+ (zoy2 — T1y3 + Tayo + T391)j + (zoys + T1y2 — Tayn + w3yo)K|?
= (oyo — 2151 — Ty — x3y3)° + (Toy1 + T1y0 + Tays — T3y2)’
+ (zoy2 — x1ys + mayo + x3y1)” + (Toys + T1y2 — Tay1 + w30)°
= (2§ + ot + 25+ a3)(yg +yi +v3 +u3) = |=[*]yl*.
From this, the multiplicativity of the norm immediately follows. It only remains to

check the triangle inequality. By a direct computation,

(Jz| + [y))? = |z + yI> = (@oy1 — 21%0)* + (Toy2 — T290)> + (Toys — T3Y0)*
+ (2192 — 2291)? + (2192 — 2331)% + (2293 — T3Y2)2.

This gives rise to the triangle inequality |z +y| < |z|+ |y| and the equality holds if and

only if y = r - & for some real number r. Therefore we complete the proof. O

- 11 —



Define the conjugate T of a quaternion r = g+ z1i+ zoj + sk by £ = 29 — x1i —

xgj — x3k.
Theorem 2.9. Let x and y be quaternions. Then the following holds.

(1) 2z = 72 = |2|2.

(2) If x # 0, the inverse of = is T/|z|*.

(3) zy = yz.
Proof. Let x = xg + x1i+ x2j + x3k be a quaternion. Then it can be easily seen that

2% =fr = |z|? = 22 + 22 + 2 + 22
Furthermore, if x # 0, it immediately follows that
x T

= =1,
TR T et

Thus the inverse of z is Z/|z|?. For a quaternion y = yo + y1i + y2j + 33k,
Ty = (z0 — 11 — 2j — w3k) (yo — y1i — y2j — y3k)
= (9503/0 — T1Y1 — T2Y2 — xsys) - (fU0y1 + T1Yo + T2y3 — 333y2)i

— (zoy2 — 1y3 + T2y0 + 23Y1)j — (Toys + z1y2 — Tay1 + T3y0)k

and
9% = (yo — y1i — yoj — ysk)(wo — 211 — w2j — 23k)
= (zoyo — T1y1 — T2y2 — T3Y3) — (Toy1 + 1Yo + T2y3 — T3y2)i
— (zoy2 — T1y3 + T2y0 + 23Y1)j — (Toys + x1y2 — T2y1 + 2390 k.
Thus Ty = yz. We finish the proof. O

Definition 2.10 (Ring homomorphism). Let (R, +g, -r) and (S, +g, -s) be rings. Then
a function f : R — S is said to be a ring homomorphism if for any two elements a,b € R

the following conditions are satisfied:

fla+grbd) = f(a) +s f(b) addition preserving,
fla-grb) = f(a)-s f(b) multiplication preserving,
f(lg) =1g unit preserving,

where 1 and 1g are the identities of R and S respectively.
Define a map ¢ : H — M»(C) by

. . To+ 21l T+ x3i
¢(xo + 211+ 22j + w3k) =
—xo + x31 9 — T1i
Jacobson [1] suggested to define quaternions as the subset of the ring M(C) of 2 x 2

matrices with complex number entries as follows.
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Proposition 2.11. The map ¢ : H — My(C) is an injective ring homomorphism.

Furthermore,

(1) |z = det ¢().
(2) the eigenvalues of ¢p(x) are Re(x) £+ [Im(x)|i.

Proof. First, we will show the map ¢ is a ring homomorphism. For x = zg+x1i+x2j+
z3k and y = yo + y1i + y2j + ysk in H,
flx+y) = f((wo + z1i+ z2j + 23k) + (Yo + v1i + y2j + ysk))
= f((zo +yo) + (w1 +y1)i+ (22 + y2)j + (23 + y3)k)

[ (zo+10)+ (@1 +y)i (w2 +y2) + (23 + y3)i
—(22 +y2) + (w3 +y3)i (20 +y0) — (w1 +y1)i

[ xo+ a1l w9+ x3i yo+yil Y2 +ysi

—y2 +y3i yo— i

|—T2+x31 0 — 11
= f(z) + f(y).

Hence the map ¢ is an addition preserving map. Furthermore,

f@-y) = f((xo + 211+ z2j + 23K) 'k (yo + y1i + y2j + y3k))
= f((woyo — x1y1 — T2y2 — 3y3) + (woy1 + 1Yo + T2y3 — x3Y2)i
+ (zoy2 — 21y3 + Tayo + x3y1)j + (Toy3 + T1y2 — x2y1 + w3Y0)k),

A straightforward computation gives that the (1,1)-entry of f(x -y) is
(Toyo — T1y1 — T2y2 — ®3Y3) + (Toy1 + T1yo + T2y3 — T3y2)i
and the (1, 1)-entry of f(z)- f(y) is
(zo + x1i)(yo + y1i) + (22 + 231) (—y2 + y3i)

and they equal to each other. Similarly, it can be easily seen that (1,2)-entry of f(x-y)
equals to the (1,2)-entry of f(x)- f(y). Therefore, it is derived that f(x-y) = f(z)- f(y).
In other words, ¢ is a multiplication preserving map.

For 1 € Hi, it is easy to check that

10
-t 9

1 is the identity in H and I is the identity matrix in M>(C). Thus the map ¢ is a unit
preserving map.
Second, we will show that the map ¢ is injective. Showing that ¢ is injective is

equivalent to show that if ¢(x) = ¢(y), then = y. Suppose that ¢(x) = ¢(y). Then

To+ w1l 29 + w3i Yo+l yo +ysi

—xo +x3i o — 21 —y2 +y3i yo— i
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This immediately implies that g = yg, £1 = y1, T2 = y2 and z3 = y3 and hence z = y.
Thus ¢ is an injective map.
Given a quaternion x = xg + x11 + x2j + z3k, let z1 = x¢ + z1i and 29 = z9 + x3i.

Then ¢(x) is written by

A direct computation gives
det p(z) = |21* + |22 = 2% + 27 + 23 + 23 = |z|%.

Next to find the eigenvalues of ¢(x), we compute the characteristic polynomial of

¢(x) as follows.

= A2 = 2)Re(21) + |21]? + | 2|2
= A2 — 2)\Re(z) + |z|%.

Here note that Re(z1) = Re(z) = 2. By a well-known quadratic formula,
Re(z) + /Re(w)? — [o]f = Re(z) + [Im(z)]i
are eigenvalues of ¢(x). We complete the proof. O
Lemma 2.12. For any quaternions x,y € H,
Re(zy) = Re(yx).
Proof. Let x = xg + x1i+ x2j + x3k and y = yo + y1i + y2j + ysk. Then

x -y = (o + x1i+ x2j + x3k) - (yo + y1i+ y2j + y3k)
= (zoyo — T1y1 — T2y2 — 23Y3) + (Toy1 + T1Yo + T2y3 — r3Y2)i
+ (woy2 — z1y3 + ayo + w3y1)j + (Toy3 + T1y2 — x2y1 + w3y0)k

and
Y-z = (Yo +y1i+yoj +ysk) - (wo + 21i + z2j + 23k)
= (Yoo — Y171 — Y22 — Y373) + (Yor1 + Y120 + Y223 — Y3T2)i
+ (Yox2 — y123 + yowo + y321)j + (Yor3 + y122 — y2r1 + Y370)k.
Therefore Re(zy) = Re(yx) = zoyo — 11 — T2y2 — T3Y3. O

Definition 2.13 (Similarity). Two quaternions = and y are said to be similar if there

exists a nonzero quaternion u such that u~'zu = y. This is written as x ~ y.
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Obviously,  and y are similar if and only if there is a unit quaternion v such that

v~ lzv = y, and two similar quaternions have the same norm. It is routine to check

that ~ is an equivalence relation on the quaternions. We denote by [z]| the equivalence

class containing z.

Proposition 2.14 ([8, 9]). Let x and y be quaternions. Then x is similar to y if and
only if Re(z) = Re(y) and [Im(x)| = [Im(y)|.

Proof. Suppose that x and y are similar quaternions. Then there is a non-zero quater-

nion ¢ such that z = gyg~!. Then by Lemma 2.12,
Re(z) = Re(qyq ') = Re(q ™ 'qy) = Re(y).
Furthermore, from the following equation
Re(2)? + [Im(2)[* = |z[* = |qyg™"|* = [y[* = Re(y)” + [Im(y)[?,

it is derived that |Im(x)| = [Im(y)|.
For the converse, suppose that Re(x) = Re(y) and |Im(x)| = [Im(y)|. Let

p=/a} +ad+ a3 +x1 —asj+ack and ¢ = \/yl +y3 +y3 +y1 — ysi + yek

Then it is not difficult to see that
prp~' = Re(z) + [Im(z)[i = Re(y) + [Im(y)|i = qyq "
which implies that x and y are similar. O

By the proof of Proposition 2.14, we immediately get the following corollary.

Corollary 2.15. Fvery quaternionic number is similar to a complexr number.
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Chapter 3. Algebra of Quaternions

To study the algebra of quaternions, we start with a simple linear equation over
quaternions. Let a,b and ¢ be quaternions. Consider the equation xza — bz = ¢ over H.

We will consider two cases:

Case 1 (a is similar to b). There is a quaternion v such that b = u~'au and thus

the equation za — bx = c is written by za — v 'auz = c. Left-multiplying both sides
by u, we get uxa — aur = wuc. Replacing uxr and uc by z and c respectively, the
equation xa — br = c is converted into an equation of the form xa — ax = c¢. Let
a = ag + a1l + aoj + ask, ¢ = 2¢o + 2¢1i + 2¢0j + 2¢3k and x = xg + x1i + x2j + z3k.

Then by a direct computation,

x-a—a-x=|[(roag — r1a1 — 202 — x303) + (XA + T1G0 + T203 — T3a2)1
+ (zoaz — x1a3 + x2a0 + w301)j + (X003 + T102 — T201 + T300)K]
— [(apzo — ar1x1 — agwa — asxs) + (apz1 + a1x0 + agxs — azwa)i
+ (apr2 — a1x3 + agxy + azx1)j + (aprs + ar1xe — asx1 + aszzo)K]
= 2(zpa1 + x1a0)i+ 2(xoa2 + x2a0)j + 2(xoasz + x3ap)k
= 2¢o + 2c1i 4 2¢0j + 2c3k = c.

Hence the equation xa — axz = ¢ is equivalent to the following system of equations.

0 =2¢
2(a1xo + apr1) =2
2(agxo + apre) = 2c

)

2(&3:60 + apr3) = 2c3

which is written by

[ 0 0 0 O ] -ZUO- -co-
air a9 0 O r|  |a
a2 0 a9 O ' T a C2
a3 0 0 ag T3 c3

The determinant of the matrix above is 0. If ¢y # 0, this equation has no solution. If

co = 0 and ag # 0, the equation has infinite solutions. If ¢g = 0 and ag = 0, then
airo = €1, Qa2xg9 = C2, A3 = C3.
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If cg =0,a90=0and aj : as : ag = ¢1 : ¢ : c3, the equation has infinite solutions. If

co=0,a0=0and ay : as : ag # c1 : ¢c2 : c3, there is no solution to the equation.

Case 2 (a is not similar to b). Let a = ag + a1i + a2j + ask, b = by + bii + boj + b3k,
c=2co+2c1i+2coj+2csk and x = xg+x1i+22j+xsk. Then za—bx = cis equivalent

to the following system of linear equations.

ap —by —ai+b1 —az+by —az+b3 To 2¢
a1 —by ag—0b az+b —az — b T 2c
1 1 0 0 3 3 2 2 . 1 _ 1 (31)
as — by —az—bs ag— by a1 + by ) 2c9
ag —bg as+by —ay1—b1 agp— by &3 2c3

Denote by B the 4 x 4 matrix in (3.1). Then by a straightforward computation,
det B = (|Im(a)|* — [Im(b)[*)? + (ao — bo)*[(a0 — bo)* + (a1 — b1)* + (a1 + by)?
+ (az — 52)2 + (ag + 52)2 + (a3 — bg)2 + (a3 + b3)2].

If @ is not similar to b, either Re(a) # Re(b) or |Im(a)| # [Im(b)|, which implies that
ag — by # 0 or |Im(a)|? # [Im(b)|2. Then det B # 0 and thus there is a unique solution

to the equation xa — bx = c.

We recover the following classical theorem for quaternion linear equation.

Theorem 3.1 (Johnson [3]). Ifa,b,c € H, and a and b are not similar, then ra—bx = ¢

has a unique solution.

We now study quaternion quadratic equations. As well known, any complex
quadratic equation has at most two solutions. However this does not work for quater-

nion quadratic equations as follows.
Lemma 3.2. There are infinitely many solutions in H to x> +1 = 0.

Proof. Let © = xg + x1i + 22j + 23k be a solution of the equation 22 + 1 = 0. Then

a? =a? — ¥ — 2% — 2% 4 2wo(2i + 20j + 23k) = —1
which is equivalent to

(Rez)? — [Imz|? = —1 and Rez - Imz = 0.

If Rex = 0, then |Imz|? = 1 and thus |Imz| = 1. If Imx = 0, then (Rex)? = —1. There
are no solutions in this case. Therefore, all quaternions = with [Imz| = 1 are solutions

of £2 + 1 = 0. Hence there are infinitely many solutions to 22 + 1 = 0. O
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More generally, Eilenberg and Niven proved a result for quaternion polynomial

equations as follows.
Theorem 3.3 (Eilenberg and Niven [2]). Let
f(z) = aprarx - - - xa, + ¢(x),

where ag,ay, - - ,an are nonzero quaternions (a; # 0 fori=0,...,n), x is a quaternion
indeterminant, and ¢(x) is a sum of a finite number of similar monomials boxbix - - - xby,

k <n. Then f(x) =0 has at least one quaternion solution.
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Chapter 4. Quaternionic vector space

We recall definitions concerning modules and some theories on the set of quaternion

matrices.

Definition 4.1 (Right or left modules over a ring). Suppose that (R, +rg,-r) is a ring
and 1g is its multiplicative identity. A left R-module M consists of an abelian group
(M, +ys) and an operation - : R x M — M such that for all 7,s in R and z,y in M,

we have:

r-(c+pmy)=r-x+pmr-vy,
(r+rs)-z=r-x+)s-x,
(r-rs)-z=r-(s-x),

lR-J}:JJ.

The operation of the ring on M is called scalar multiplication, and is usually written
by juxtaposition, i.e. as rx for r in R and x in M, though here it is denoted as r - x to
distinguish it from the ring multiplication operation, denoted here by juxtaposition. A
right R-module M consists of an abelian group (M, +,) and an operation - : M X R —
M such that for all r,s in R and =,y in M, we have:

(T+my) r=z-r+pmy-T
x-(r+gs)=x-r+yzx-s,
x-(rgps)=(x-r)-s,

r-lp =x.

Let H"™ be the set of n-tuples of quaternions. Define + on H" and an operation

- H x H* — H" by
(@15 2n) + (W15 ) = (@1 + Y1, Tn + Yn)-

(X1, .. xp) - r= (17, .. xpr) or e (T, xn) = (T, .. TEy).

Lemma 4.2. The addition + on H" and the operation - : H x H" — H"™ turn H™ into
a right or left H-module.
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Proof. For r;,s € Hand x = (x1,...,2n), y= (Y1,-..,Yn) € H",

r-(z+y)=r-[(x1,...,2n) + (Y1,---,Yn)]
=r-(x1+y1,.., Tn+ Yn)

=(r-az,...,mZp)+(r-y1,...,7 Yn)

(r-s)-x=(r-s) (x1,...,zp)
=7 (s-(z1,..., 7))
=r-(s-z),

loz=1-(x1,...,2,) = x.

This leads to a conclusion that H™ is a left H-module.

(x4y) -r=[(z1,...,zn)+ (Y1, -, yn)] - T
=(x1+Y1,.. s Tn+Yn) T
=(xy-r..,xn-r)+ (YT Yn - T)
=z-r+y-nm,

x-(r+s)=(x1,...,2n)  (r+s)

=(x1,...,2n) T+ (T1,...,Tpn) - S
=x-r+x-s,
x-(r-s)=(x1,...,2y) - (r-s)
=((x1y...ymp) 1) S
—(e-1)-s,
x-l=(x1,...,2p) - 1 = 2.
This implies that H" is a right H-module. O

Definition 4.3 (Basis of right(left) H-modules). A subset X of an R-module A is said
to be linearly independent provided that for distinct x1,...,z, € X and r; € R.

rixy +rexg + -+ rpx, =0=1r; =0 for every .

A set that is not linearly independent is said to be linearly dependent. If A is generated
as an R-module by a set Y, then we say that Y spans A. If R has an identity and

A is unitary, then Y spans A if and only if every element of A may be written as a
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linear combination of elements of Y. A linearly independent subset of A that spans A
is called a basis of A. Observe that the empty set is (vacuously) linearly independent

and is a basis of the zero module.

Lemma 4.4. Let V be a right or left H-module. All bases of V' have the same number

of elements.

Proof. Let V be a right H-module and, {uj,...,un} and {vi,...,vx} be bases of V.
Let u; = via;+voag;+. .. +vpay; fori =1,...,m. Suppose that uiz1+...+upT, = 0.
Then

m k k m
UIT] + .o+ U Ty, = E E ViG5| Tj = E Vi E aijrj | = 0.
j=1 \i=1 =1 j=1

Since {v1, ..., vx} is linearly independent, > ajjz; = Oforany i =1,..., k. If k <m,
the number of variables is greater than the number of equations and hence there are

infinite solutions. However, it contradicts the fact that If uiz1 + ... 4+ upx,m = 0, then

x1 = -+ = &y, = 0, which follows from the linearly independence of {u1, ..., uy}. Thus
k > m. Switching {u1,...,un} and {vi,..., v}, it follows that m > k. Therefore we
get m = k. This proof works for left H-modules in the same way. O

Due to Lemma 4.4, we can define the dimension of a right or left H-module V,

denoted by dimyg V, by the number of elements of a basis of V.

Definition 4.5 (Right or left H-module homomorphism). Let (M, 4z, -ar) and (N, +n, -N)
be left R-modules with the scalar multiplication - on them. A map f: M — N is said

to be a homomorphism of left R-modules if for any m,n in M and r,s in R,

fr-m+as-n)=r-f(m)+ns- f(n).

In other words, f preserves the structure of left R-modules. Another name for a
homomorphism of left R-modules is a left R-linear map.
If (M,+n,-0) and (N, +p, -n) are right R-modules, a map f: M — N is said to

be a homomorphism of right R-modules if for any m,n in M and r, s in R,
fm-r+pmn-s)=f(m)-r+n f(n)-s.

If a homomorphism f : M — N of R-modules is bijective, then f is called an
isomorphism. We say that M is isomorphic to N if there is an isomorphism between
M and N. The kernel of a module homomorphism f : M — N is the submodule of
M consisting of all elements that are sent to zero by f and the image of f is also the
submodule of N.
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Right or left H-module homomorphisms between finite-dimensional right or left
H-modules can be described by quaternion matrices as follows. Let f : H* — H™ be a

map such that for each i =1,...,n,
f(eﬂ) = (aljaa2j)~ . '7amj) € Hm

Let A be an m x n quaternion matrix whose (i, j)-entry is a;; and x = (z1,...,2,)T €

H". If f is a right H-module homomorphism, then

On the other hand, if f is a left H-module homomorphism,

f(x)=flz1,...,2n) = f (Z%‘%)
=1

=1

n m

i=1 k=1

m n

= Z (Z :ciam> €L = XT AT

k=1 \i=1
Lemma 4.6. Let (a1,...,a,) € H" be a non-zero quaternion vector. Then the set of
all solutions (x1,...,zy) € H" of a1z1 + -+ - + apxy, =0 (resp. x1a1 + -+ + xpay, =0)

is a right (resp. left) H-module of dimension n — 1.

Proof. Let M = {(x1,...,2,) € H" | a121 + -+ + apx, = 0}. To verify that M is a
right H-module of dimension n — 1, we first prove that the right multiplication of H on

M is well defined. For any ¢ € H and any = = (x1,...,2,) € M,
a1(z1q) + - + an(zng) = (@1z1 + -+ ap2yn)g =0-¢ =0

which implies xq € M. In other words, the right multiplication of H on M is well
defined. Thus M is a right H-module.
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Let ajxy + - -+ + apxy, = 0. We may assume that a,, # 0. Then
_ -1 —1
Tpn = —Qp A1T1 — - — Qp QGp—-1Tn—1-
Any x € V is written by

-1 -1
T = (%1,552,...711377,_]_,—0/” 1Ty — 0 — Ay an—lxn—l)
-1 -1
=(e1 —a, a1€,)T1 + -+ (€n—1 — @y, Ap—1€5)Tn—1
which implies that {e; — a; 'aien,...,en_1 — a; 'a,_1e,} is a basis of M. Thus the

dimension of a right H-module M is n — 1. O

Let My, xn(H) denote the set of m X n quaternion matrices. For A € M, x,(H),
define A* = AT,

Theorem 4.7. Let A € My, (H) and B € My, (H). Then

(1) A" = AT,

(2) (AB)" =B*A".

(3) (A")~1 = (A7YY* if A is invertible.
(4) AB # AB in general.

(5) ( ) # BT AT in general.

(6) A=' # A-1 in general.

(7) (AT)=L £ (A~HT in general.

Proof. By a straightforward computation, (1), (2) and (3) can be easily seen. For
(4)-(7), we give counterexamples. For (4) and (5), let a =141 and b =2 —j. Then

ab=(1+1i)-2—-j)=2+2i-j-k=2-2i+j+k

and
ab=(1+1)2-)=01-1) -2+j)=2-2+j-k
Furthermore,
(@) =((1+1)-2-j)'=2+2-j-k'=2+21-j-k
and

Thus ab # @b and (ab)? # bTal.

For (6) and (7), let A =




and

(AT)fl _ [_1

i —-i 0
S

Thus A=! # A-T and (AT)~' # (A~HT.
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Chapter 5. Jordan canonical form

In this chapter, we reprove the well-known Jordan canonical forms of 2 x 2 quater-
nion matrices. Brenner [8] proved the following theorem. We here give a self-contained
proof.

Theorem 5.1. Let A be a 2 X 2 quaternion matriz. Then there exists an invertible

quaternion matriz Q such that Q~1AQ is of the form

bl

Proof. We first prove that there is a right eigenvector of A. In other words, there is a

non-zero vector v € H2 such that Av = v\ for some A € H. Write

a b T
and v = .
¢ d] H

If v is a right eigenvector of A, then for some A\ € H, the following equations hold.

A=

ar + by = T, (5.1)
cr +dy = yA. (5.2)

If ¢ = 0, then (x,y,\) = (1,0,a) is a solution to (5.1) and (5.2). Otherwise we have
= —c tdy + ¢ ty) from (5.2). Then (5.1) is written by

(b—act'd)y + (ac™' 4+ c Ty — ¢ yA? = 0. (5.3)

Let y = 1. Then by Theorem 3.3, there is a solution A\g to (5.3). Hence (zo, y0, \o)
is a solution to (5.1) and (5.2) where 29 = —c~'d 4+ ¢ '\g. In other words, there is a
non-zero vector vg = (g, yo) € H? such that vg is a right eigenvector of A.

If vg is a right eigenvector with eigenvalue \g, then it can be easily seen that vgq

is also right eigenvector with eigenvalue ¢~ \oq since

A(vog) = (Avo)g = (voA)q = (v0q) (¢ Aog).

Hence we can assume that |[vg|| = 1. Choose a non-zero vector v; € H? such that

To X1

(vo,v1) =0 and ||v1|| = 1. Let vy = (z1,y1). Set Q = [ ], e1 = (1,0). Then

Yo WY1

(Q7TAQ)er = Q1 Avg = QM (voXo) = (Q o) Ao = e1 Mo,
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b
which implies that Q' AQ is of the form [g d] . If b= 0, then Q1 AQ is of the form

a 0
[ d] . From now on we suppose that b # 0. For any « € H, we have

0
1
1 =z ablx_aax—i—b—xd
0 1 o dllo 1] o d '

If there is a solution g to ax + b — xd = 0, then

-1

1 i) a b 1 iy . a 0

0 1 0 d|l|o 1 0 d|
Otherwise,

-1
b 0| |a b|[b O] [b7lab 1
01 0 d| (0 1 0 d
a 1

which is of the form [0 d]' We complete the proof. O
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Chapter 6. Quaternionic Lorentzian space

Quaternionic Lorentzian (n + 1)-space is the inner product space consisting of the
right H-module H"*! together with the (n + 1)-dimensional Lorentzian inner product.
g g p

The Lorentzian inner product is defined by

(T, Y) = T1Yn+1 + Tng1Y1 + Toy2 + - -+ + TnYn.

where 2 = (z1,...,7p41) and y = (y1,...,Yns1). We denote by H™! the quaternionic

Lorentzian (n + 1)-space.

Definition 6.1. A vector x is said to be spacelike (resp. timelike and lightlike) if
(x,x) >0 (resp. (z,z) <0 and (z,x) =0).

Example 6.2 (Spacelike, timelike and lightlike vectors). We give examples of spacelike,
timelike and lightlike vectors. First, (0,1,0) is a spacelike vector with positive norm.
An example of timelike vector is (iv/2/2,0, —iv/2/2) whose norm is —1 < 0. Lastly,

(1,0,0) is lightlike vector whose norm is 0.

Let 0 denote the origin vector (0,0,...,0) in H**!,

Lemma 6.3. Let x and y be vectors in H™'. Then (x,y) = 0 for all y € H™! if and
only if £ = 0.

Proof. Let © = (x1,...,Zn41). Suppose that (z,y) = 0 for any y € H™!. Let
{e1,...,en+1} be the canonical basis of H*"™!. If y = ey, then (z,e1) = Tyt = 0
and thus x,11 = 0. If y = eq, then (x,e2) = o = 0 and thus x5 = 0. In this way, we
show that ; = 0 for all 4 = 1,...,n + 1. This implies that x = 0. The converse is

obvious. Thus we complete the proof. O

Lemma 6.4. For z,y € H™!, (z,y) = (y, z).

Proof. Let x = (x1,...,2p+1) and y = (y1,...,Yn+1). By definition,

n n
(,y) = T1yn+1 + Tpayr + Zfz‘yi and (Y, ) = Y1Tnt1 + Yn121 + Zﬂzl’z
i—2 i=2

Thus

n n
(y,2) = NTns1 + Yn1 @1 + Z?Jﬂz’ = Tpy1y1 + T1Ynt1 + Zfzyz = (z,y),
i=2 =2

which implies the Lemma. ]

— 97 —



If (x,y) € R, then (x,y) = (x,y) and thus (y,x) = (z,y) by Lemma 6.4. We have

the following corollary.

Corollary 6.5. If (z,y) € R, then (y,x) = (z,y).

Let v be a nonzero vector in H™!'. Denote by v’ the set of all vectors x € H™!

with (v,z) =0 i.e.,
vt = {(z1,. . mp) € "M | G124 + Vpp121 + Voxo + - - Uy, = 0}

By Lemma 4.6, v* is a right H-submodule of H"*! of dimension n. From now on, we

will focus on the case of n = 2.

Lemma 6.6. Let = be a nonzero timelike vector in H>'. Then x ¢ x' and every

nonzero vector of x is spacelike.

Proof. First of all, since x is timelike, it follows that (z,z) < 0. Thus obviously
x ¢ xt. Suppose that y = (y1,y2,v3) € z+. Then yq € z* for all quaternions ¢ € H.
This follows from (z,yq) = (x,y)q = 0. Furthermore by observing

(ya,ya) = @y, y)a = la* (v, y)

in order to prove that y is spacelike, it is sufficient to prove that yq is spacelike for some
non-zero quaternion gq.

Let © = (x1, 22, x3). From the assumption that x is timelike, it follows that x; # 0.
By scaling x, we may assume that x; = 1. The conditions of (z,z) < 0 and (z,y) =0

give

2Re(x3) + |z2]? <0, (6.1)
Y3 + Zay2 + T3y1 = 0. (6.2)

If y3 = 0, then (y,y) = |y2|>. If y1 = 0 and yo = 0, (6.2) forces y3 = 0, contrary to
y # (0,0,0). Hence if y; = 0, then yo # 0, which implies that (y,y) = |y2|? is positive.
In other words, y is spacelike.

From now on, we suppose that y; # 0. Then by scaling y, we can assume that

y; = 1. Then (6.2) is written by y3 + Zoys + 3 = 0 and

(y.y) = 2Re(ys) + [y2|”
= —2Rei‘2y2 — 2Re:f3 + |Z/2’2

> —2ReZays + |22|? + y2|* = |22 — 32> > 0.

1

This leads to a conclusion that every non-zero vector in z— is spacelike. O
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Lemma 6.7. Let x be a nonzero spacelike vector in H>'. Then x ¢ x* and x* contains
timelike, spacelike and lightlike vectors. Furthermore, there are linearly independent two

lightlike vectors in xr.

Proof. First of all, since (z,z) > 0, it immediately follows that x ¢ z*. We claim
that there is a timelike vector in . Suppose, contrary to our claim, there is no
timelike vector in 2. Then every vector in z is either spacelike or lightlike. If there
is a spacelike vector y € z*, then we can find an orthogonal basis {z,y,2} where
z € x+ Ny*. By hypothesis, (z,z) > 0. Then every vector v € H*! is written by

v = za + yb + zc for some a,b,c € H and
(v,0) = lal*(z, z) + [b]*(y, 1) + [ (2,2) > 0

which contradicts the existence of a lightlike vector in H>'.
Now we can assume that every vector in x' is lightlike. Then there are linear
independent vectors y and z in 2. Since dimyz+ = 2, it follows that spany{y, z} =

z1. From the assumption that every vector in == is lightlike, for all a,b € H,
0= (ya + 2b,ya + zb) = |a*(y, y) + [b* (2, 2) + 2Re(aly, 2)b) = 2Re(a(y, 2)b)

which leads to a conclusion that (y,z) = 0. Then {z,y,z} is an orthogonal basis of
H?!. Since x is spacelike and, y and z are lightlike, it is derived that every vector has
non-negative norm. This also contradicts the existence of a timelike vector in H?!.
Therefore, the claim holds. In other words, there is a timelike vector y € .
Choosing a vector z € zNy*, we have an orthogonal basis {y, z} of z*. By scaling
y and z, we may assume that (y,y) = —1 and (z,2) = 1. Since z+ = spany{y, 2}, it
can be easily seen that y + z and y — z are linearly independent lightlike vectors in a.
Summarizing, there are a timelike vector y, a spacelike vector z and a lightlike vector
y 4 z in x*. Furthermore, there are linearly independent two lightlike vectors y + z

and y — z in ot O

Lemma 6.8. Let x be a nonzero lightlike vector in H>'. Then x € x* and every vector
of o is either spacelike or lightlike. Furthermore, y is a lightlike vector in z+ if and

only if y = xq for some nonzero q € H.

Proof. Tt follows from the assumption of (z,z) = 0 that 2 € . First observe that
there are no timelike vectors in . If there is a timelike vector perpendicular to z,
then x must be spacelike, contrary to the hypothesis that x is lightlike. Thus every
vector of z ' is either spacelike or lightlike. It remains to prove the second statement

of the Lemma.
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Suppose that there is a lightlike vector y such that {z,y} is linearly independent.
Then zt = spang{z,y}. For any a,b € H,

(wa +yb, za + yb) = |a|*(z, ) + [b]*(y, y) + 2Re(a(z,y)b) = 2Re(a(z,y)b).

If (x,y) = 0, then

2Re(Z123) + |za|* = 0, (6.3)
2Re(j1y3) + |y2|* = 0, (6.4)
ZT1ys + Tay2 + T3y1 =0, (6.5)

where x = (x1,x2,23) and y = (y1,y2,y3). If 1 = 0, then 29 = 0 by (6.3) and hence
x3 # 0. Then y; = 0 by (6.5) and y2 = 0 by (6.4). This implies that =,y € spany{es}
and hence, x and y are linearly dependent, contrary to the hypothesis. Thus x; # 0
and y; # 0. By scaling x and y, we may assume that 1 = y; = 1. Then

2Re(x3) + |22|* = 0, (6.6)
2Re(ys) + |y2|* = 0, (6.7)
Y3 + T2y2 + T3 = 0. (6.8)

If we take the real part on both sides of (6.8), we have
0 = 2Re(y3) + 2Re(Zoys2) + 2Re(Z3) = —|ya|* + 2Re(Zays) — |z2|> = —|z2 — 12|

Therefore x9 = yo. By (6.6) and (6.7), we have Re(z3) = Re(ys). Taking the imaginary
part on both sides of (6.8),

0 = Im(y3) + Im(Zays) + Im(Z3) = Im(y3) + Im(|z2|?) — Im(z3) = Im(y3) — Im(x3).

Since Re(z3) = Re(ys) and Im(z3) = Im(y3), we conclude that z3 = y3. Therefore
x = y, contrary to the assumption that x and y are linearly independent. Finally, there

are no lightlike vectors in 2 which are linearly independent with x. O

Lemma 6.9. Let V be a 2-dimensional right H-submodule of H?. Then there is a

nonzero vector x € H3 such that V = x+.

Proof. Since V is a 2 dimensional right H submodule of H?, there exists a basis {u,v}.
V={ug +ve | q1,q € H} = spang{u,v}.

Find an element z € H*! such that 2+ € V.
Since (u,z) = (v,z) = 0, we have (uqi + vg2,x) = @ (u,z) + @2(v,x) = 0 for any

q1,q2 € H. Let u = (u1, ug, us),v = (v1, v, v3), then
uzxy + usxs + ujxy = 0.
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v3x1 + Uax9 + vixy = 0.

We can find a soluton of these equations. Because the number of x; is larger than the

number of equations. ]

Corollary 6.10. Let V be a 2-dimensional right H-submodule of H*. Then

(1) if V has linearly independent two lightlike vectors, then V = x where x is space-
like,

(2) if V' has only one lightlike vectors up to scaling by a nonzero quaternion, then
V =zt where x is lightlike.

) as no lightlike vectors, then V = x— where x is timelike.
(3) if V h lightlik hen V L wh lik

Definition 6.11. A basis {v1,vo,v3} of H?! is said to be orthonormal if |(v;,v;)| = 1

for i =1,2,3 and (v;,v;) = 0 for all distinct ¢, j.

Example 6.12. An example of an orthonormal basis of H*! is {%, e, ‘31\;53 }

Theorem 6.13. Let {v1,va,v3} be an orthonormal basis of H>'. Then it exactly con-

sists of two spacelike vectors and one timelike vector.

Proof. If everty vector v; is spacelike, for any v = via; + veas + v3as,
(v,v) = |a1[*(v1, v1) + |as|*(v2, va) + |az|*(vs, v3) > 0

which means that every vector in H?*! is spacelike, contrary to the fact that there is a
timelike vector in H?!. If every vector v; is timelike, every vector in H?! is timelike in a
similar way, contrary to the fact that there is a spacelike vector. Thus any orthonormal
basis of H?>! has at least one spacelike and one timelike vector.

An example of orthonormal basis of H?! is {95 e, €¢1=€1  Here 91 and

el
V2 V2 V2
ez are spacelike vectors and % is a timelike vector. Let v; be a spacelike vector

and vy, v3 timelike vectors. Then spanH{elj/rgf“,eg} N spang{vy,v3} = {0} and hence

{61\‘/%83 , €2, V2, v3} is linearly independent. Thus the dimension of spang{ 61\‘/363 ,€9,09,V3}

is at least 4. But this contradicts dim H?! = 3. Thus any orthonormal basis {v1,vo, v3}

of H?! has two spacelike vectors and one timelike vector. O

Let f: H>! — H?! be a right H-module homomorphism preserving the Lorentzian

inner product i.e.
(f(@), f(y)) = (z,9).

Then the quaternion 3 x 3 matrix A associated to f satisfies A*JA = J where

0 0 1
J=10 1 0
1 00
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Let Sp(2,1) denote the set of all quaternion 3 x 3 matrices A with A*JA = J.
Lemma 6.14. Every element of Sp(2,1) is invertible.

Proof. For any A € Sp(2,1), A*JA = J and hence J - A*JA = J-J = I. Then it
follows that A~! = JA*J. In other words every element of Sp(2, 1) is invertible. O

Proposition 6.15. The set Sp(2,1) is a group.

Proof. Let A, B and C be matrices in Sp(2,1). The associativity of quaternions gives
A-(B-C) = (A-B)-C. This implies that Sp(2,1) satisfies the associative law.
Obviously, the identity matrix I is in Sp(2,1) and thus it is the identity of Sp(2,1).
By Lemma 6.14, each matrix A in Sp(2,1) has an inverse A~! = JA*.J. Moreover,

(JA*D)* - J- (JA*J) = JA(JA*J) = JAA™ = J.
Thus A~! € Sp(2,1). Therefore Sp(2,1) is a group. O

Let Vg be the set of lightlike vectors of H*!. Let V, (resp. V_) be the space of
spacelike (resp. timelike) vectors whose norms are 1 (resp. —1).

There is a natural Sp(2,1)-action the space of bases of H*! as follows: Let
A € Sp(2,1) and {v1,v2,v3} be an orthonormal basis of H*!. Since A preserves
the Lorentzian inner product, it immediately follows that {Av;, Ave, Avs} is also an

orthonormal basis of H?1.

Definition 6.16 (transitivity). A group action G' x X — X is transitive if it possesses
only a single group orbit, i.e., for every pair of elements x and y, there is a group
element g such that gr = y. In this case, X is isomorphic to the left cosets of the
isotropy group, X ~ G/G,. The space X, which has a transitive group action, is called
a homogeneous space when the group is a Lie group.

If, for every two pairs of points x1,z9 and y1,y2, there is a group element g such
that gx; = y;, then the group action is called doubly transitive. Similarly, a group
action can be triply transitive and, in general, a group action is k-transitive if every set

{z1,...,yr} of 2k distinct elements has a group element g such that gz; = y;.

Theorem 6.17. The Sp(2,1)-action on the set of orthonormal bases of H*! is tran-

sitive.

Proof. Let u; = (e1 + e3)/v/2, us = ez and u3z = (e; — e3)/v/2. Then we have shown
that {u1,ug,u3} is an orthonormal basis of H?!. To prove the theorem, it suffices

to show that for a given orthonormal basis {v1,ve,v3} € Fj, there exists an element
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A € Sp(2,1) such that A - {uy,us,us} = {v1,ve,v3}. Let |v1| = |ve| =1 and |vg| = —1.

Define A = [%, V9, ”1\75“3} . Then by a direct computation,

e; t+es 1 [fvi+wvs v —ws
Au; = A = — + = V1.
1 ( V2 ) ﬂ( V2o V2 ) 1

Au2 = A€2 = V2.

e — A L3 1l foutwvs vi—us .
’ V2 NAWRE V2 >

To prove that A € Sp(2,1), we verify that

<v1\;r§v37 Ulj%73> <Ulj§l)377)2> <U1\J/F§U3’ vl\;%}3> 00 1
A*JA = <’U2,%> <U2,U2> <’U2,%> =10 1 0| =J
<U1\7§113’ Ulj%73> <01\;§vs’v2> <v1\7§vs’ Ul\;%)3> 1 0 0
Therefore, the Lemma follows. O

Lemma 6.18. The Sp(2, 1)-actions on Vy, Vi and V_ are all transitive.

Proof. Let x € V. It is sufficient to prove that there exists A € Sp(2,1) such that
Aey = z. Choose y € V such that {z,y} C Vj are linearly independent. Then (x,y) #
0. By scaling y, we may assume that (z,y) = 1. According to corollary 6.10, there is a

spacelike vector z such that (z,z) = 1 and z+ = spang{z,y}. Define A = (z, 2, 7).

(r,z) (x,2) (x,y) 0 01
A" JA = |(z,2) (z,2) (zy)| =0 1 0| =
(y,z) (v,2) (Y9 100

Thus A € Sp(2,1) and Ae; = z.

Let € V.. By corollary 6.10, there is a vector z € V_ such that z € 2. Choose
y € Vi such that y € 2t N zt. Then {z,y, 2} is an orthonormal basis of H>!. By
Theorem 6.17, there exists an element A € Sp(2,1) such that Aes = y. Hence the
Sp(2, 1)-action on Vi is transitive. Similarly, one can prove that the Sp(2,1)-action

on V_ is transitive. O]

Proposition 6.19. The Sp(2, 1)-action on VyxVp\A is transitive where A = {(z,x) | z €
Vol

Proof. In the proof of Lemma 6.18, we have shown that for any linearly independent
vectors x and y in Vj, there exists an element A € Sp(2,1) such that Ae; = = and
Aes = y, which implies the transitivity of the Sp(2, 1)-action on Vj x V5 \ A. O
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