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초 록

이 논문에서는 사원수의 대수적인 구조들 및 사원수 쌍곡 공간들의 기하적인 특성들에

대해 연구하였다.

핵 심 낱 말 사원수, 나눗셈환, 가군, 사원수 선형대수, 사원수 쌍곡 공간.

Abstract

We study the algebraic structures of quaternions and geometric properties of quater-

nionic hyperbolic spaces.

Keywords Quaternion, division ring, module, quaternionic linear algebra and quater-

nionic hyperbolic space.
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Chapter 1. Introduction

From the fact that the complex numbers are presented as points on a 2-dimensional

plane, Hamilton tried to find a way to interpret points on a 3-dimensional space in a

similar way as complex numbers. First, he thought a number system that consists of

triples of numbers but he failed to solve the problem of multiplication and division. In

the end, he realized that there is a number system consisting of quadruples of numbers

with a notion of division.

After Hamilton’s death, Peter Guthrie Tait who is Hamilton’s student continued

studying quaternions [4]. But from the mid-1880’s, people were not interested in quater-

nions. But quaternions were again in the spotlight in the late 20th century because of

their utility in describing spatial rotations. Describing spatial rotations by quaternions

is more efficient and quicker to compute than describing spatial rotations by matri-

ces. For this reason, quaternions are used in computer graphics [5], control theory,

signal processing, attitude control, physics, bioinformatics [6, 7], molecular dynamics,

computer simulations and orbital mechanics.

We will start with the definition of quaternions first and then study their basic

properties concerning quaternion linear algebra. The main difference of quaternions

from complex numbers is non-commutativity, which makes all difficult. For example,

some quadratic equation has infinitely many solution in quaternions. It turns out that

the number system of quaternions is not a field but fortunately a division ring. From

this, it follows that modules over quaternions are similar to vector spaces over a field.

We will give self-contained proofs for well-known results in quaternion linear algebra.
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Chapter 2. Quaternions

In this chapter. we will study quaternion’s definition and basic theorems. We start

with the definition of quaternions.

Definition 2.1 (Quaternions). A quaternion is an expression of the form

a+ bi + cj + dk,

where a, b, c, d are real numbers, and i, j,k are just symbols. If one of a, b, c, d is 0,

the corresponding term is omitted if a, b, c, d are all zero, the quaternion is the zero

quaternion, denoted 0; if one of b, c, d equals 1, the corresponding term is written simply

i, j, or k. The quaternion bi + cj + dk is called the imaginary part of a+ bi + cj + dk,

and a is the real part of a+ bi + cj + dk. Let H be the set of quaternions. Define two

binary operations + and · on H as follows. First, the addition + on H is defined by

(a1+b1i+c1j+d1k)+(a2+b2i+c2j+d2k) = (a1+a2)+(b1+b2)j+(c1+c2)j+(d1+d2)k.

The multiplication ·, called the Hamilton product, is defined by

(a1 + b1i + c1j + d1k) · (a2 + b2i + c2j + d2k)

= (a1a2 − b1b2 − c1c2 − d1d2) + (a1b2 + b1a2 + c1d2 − d1c2)i

+ (a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k.

From the definition of quaternions with the addition and multiplication, it imme-

diately follows that

i2 = j2 = k2 = i · j · k = −1

and

i · j = −j · i = k, j · k = −k · j = i, k · i = −i · k = j.

Lemma 2.2. Let x be a quaternion. Then x · y = y · x for all y ∈ H if and only if x is

a real number.

Proof. Suppose that xy = yx for all y ∈ H. Let x = x0 + x1i + x2j + x3k and

y = y0 + y1i + y2j + y3k. Then

x · y = (x0 + x1i + x2j + x3k) · (y0 + y1i + y2j + y3k)

= (x0y0 − x1y1 − x2y2 − x3y3) + (x0y1 + x1y0 + x2y3 − x3y2)i

+ (x0y2 − x1y3 + x2y0 + x3y1)j + (x0y3 + x1y2 − x2y1 + x3y0)k
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and

y · x = (y0 + y1i + y2j + y3k) · (x0 + x1i + x2j + x3k)

= (y0x0 − y1x1 − y2x2 − y3x3) + (y0x1 + y1x0 + y2x3 − y3x2)i

+ (y0x2 − y1x3 + y2x0 + y3x1)j + (y0x3 + y1x2 − y2x1 + y3x0)k.

To be xy = yx, we have that for all y1, y2, y3 ∈ R,

x2y3 − x3y2 = 0,

x1y3 − x3y1 = 0,

x1y2 − x2y1 = 0.

Taking y1 = y2 = 1 and y3 = 0, the equations above reduce to

−x3 = 0, x1 = x2. (2.1)

Furthermore, taking y1 = y3 = 1 and y2 = 0, the equations reduce to

x2 = 0, x1 − x3 = 0. (2.2)

From (2.1) and (2.2), it follows that x1 = x2 = x3 = 0, which implies that x is a real

number. The converse is obvious.

Lemma 2.2 means that the center of H for the multiplication on H is the set of

real numbers.

Proposition 2.3. The addition + and multiplication · turn H into a real vector space

of dimension 4.

Proof. Let x = x0 +x1i+x2j+x3k, y = y0 +y1i+y2j+y3k and z = z0 +z1i+z2j+z3k

and a, b ∈ R. Then,

(x+ y) + z

= ((x0 + x1i + x2j + x3k) + (y0 + y1i + y2j + y3k)) + (z0 + z1i + z2j + z3k)

= ((x0 + y0) + (x1 + y1)i + (x2 + y2)j + (x3 + y3)k) + (z0 + z1i + z2j + z3k)

= ((x0 + y0) + z0) + ((x1 + y1) + z1)i + ((x2 + y2) + z2)j + ((x3 + y3) + z3)k

= (x0 + (y0 + z0)) + (x1 + (y1 + z1))i + (x2 + (y2 + z2))j + (x3 + (y3 + z3))k

= (x0 + x1i + x2j + x3k) + ((y0 + y1i + y2j + y3k) + (z0 + z1i + z2j + z3k))

= x+ (y + z)
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This implies the associativity of the quaternion addition. The fourth equality follows

from the associativity of real number under addition. The commutativity of real num-

bers under addition gives the commutativity of quaternion addition as follows.

x+ y = (x0 + x1i + x2j + x3k) + (y0 + y1i + y2j + y3k)

= (x0 + y0) + (x1 + y1)i + (x2 + y2)j + (x3 + y3)k

= (y0 + x0) + (y1 + x1)i + (y2 + x2)j + (y3 + x3)k

= y + x.

One can easily check that 0 is the identity for quaternion addition. For all x ∈ H,

x+ 0 = (x0 + x1i + x2j + x3k) + (0 + 0i + 0j + 0k)

= (x0 + 0) + (x1 + 0)i + (x2 + 0)j + (x3 + 0)k

= (0 + x0) + (0 + x1)i + (0 + x2)j + (0 + x3)k

= x0 + x1i + x2j + x3k

= 0 + x

= x.

This implies that x + 0 = 0 + x = x. For each x ∈ H, the additive inverse of x is −x,

that is,

x+ (−x) = (x0 + x1i + x2j + x3k) + (−x0 − x1i− x2j− x3k)

= (x0 − x0) + (x1 − x1)i + (x2 − x2)j + (x3 − x3)k

= (−x0 + x0) + (−x1 + x1)i + (−x2 + x2)j + (−x3 + x3)k

= (−x0 − x1i− x2j− x3k) + (x0 + x1i + x2j + x3k)

= (−x) + x

= 0.

The associativity of scalar multiplication immediately follows from the associativity of

real numbers under multiplication:

a · (b · x) = a(bx0 + bx1i + bx2j + bx3k)

= a(bx0) + a(bx1)i + a(bx2)j + a(bx3)k

= (ab)x0 + (ab)x1i + (ab)x2j + (ab)x3k

= (ab) · x.

The distributivities of scalar sums and quaternion sums follow from the distributivity
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of real numbers as follows.

(a+ b) · x = (a+ b)x0 + (a+ b)x1i + (a+ b)x2j + (a+ b)x3k

= (ax0 + bx0) + (ax1 + bx1)i + (ax2 + bx2)j + (ax3 + bx3)k

= (ax0 + ax1i + ax2j + ax3k) + (bx0 + bx1i + bx2j + bx3k)

= a · x+ b · x,

and

a · (x+ y) = a(x0 + y0) + a(x1 + y1)i + a(x2 + y2)j + a(x3 + y3)k

= (ax0 + ay0) + (ax1 + ay1)i + (ax2 + ay2)j + (ax3 + ay3)k

= a · x+ a · y.

Finally, it easily follows that the number 1 is the scalar multiplication identity:

1 · x = 1 · (x0 + x1i + x2j + x3k)

= x0 + x1i + x2j + x3k

= x.

Therefore (H,+, ·) satisfies all conditions in the definition of real vector space. Hence

(H,+, ·) is a real vector space.

Definition 2.4 (Ring and Division Ring). A ring is a set R equipped with two binary

operations + and · satisfying the following three sets of axioms, called the ring axioms

1. R is an abelian group under addition, meaning that:

(a+ b) + c = a+ (b+ c)

for all a, b, c ∈ R (that is, + is associative).

a+ b = b+ a

for all a, b ∈ R (that is, + is commutative). There is an element 0 in R such that

a+ 0 = a

for all a in R (that is, 0 is the additive identity). For each a in R there exists −a
in R such that

a+ (−a) = 0

(that is, −a is the additive inverse of a).
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2. R is a monoid under multiplication, meaning that:

(a · b) · c = a · (b · c)

for all a, b, c ∈ R (that is, · is associative). There is an element 1 in R such that

a · 1 = a

and

1 · a = a

for all a in R (that is, 1 is the multiplicative identity).

3. Multiplication is distributive with respect to addition, meaning that:

a · (b+ c) = (a · b) + (a · c)

for all a, b, c ∈ R (left distributivity).

(b+ c) · a = (b · a) + (c · a)

for all a, b, c ∈ R (right distributivity).

A ring R is called a division ring if every nonzero element of R has a multiplicative

inverse.

Example 2.5. The set M2(C) of 2× 2 complex matrices is a ring.

Proof. Let + and · be the addition and multiplication on M2(C). Let X,Y and Z be

2× 2 complex matrices. Write

X =

[
x11 x12

x21 x22

]
, Y =

[
y11 y12

y21 y22

]
, Z =

[
z11 z12

z21 z22.

]
.

Then from the associativity of the addition of complex numbers, we have that

(X + Y ) + Z =

[
(x11 + y11) + z11 (x12 + y12) + z12

(x21 + y21) + z21 (x22 + y22) + z22

]

=

[
x11 + y11 + z11 x12 + y12 + z12

x21 + y21 + z21 x22 + y22 + z22

]

=

[
x11 + (y11 + z11) x12 + (y12 + z12)

x21 + (y21 + z21) x22 + (y22 + z22)

]
= X + (Y + Z).
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Thus the addition + on M2(C) is associative. Moreover, from the commutativity of

the addition of complex numbers,

X + Y =

[
x11 x12

x21 x22

]
+

[
y11 y12

y21 y22

]

=

[
x11 + y11 x12 + y12

x21 + y21 x22 + y22

]

=

[
y11 + x11 y12 + x12

y21 + x21 y22 + x22

]

=

[
y11 y12

y21 y22

]
+

[
x11 x12

x21 x22

]
= Y +X.

Thus the addition + on M2(C) is commutative. Let 0 denote the zero 2 × 2 matrix.

For any 2× 2 complex matrix X,

X + 0 =

[
x11 x12

x21 x22

]
+

[
0 0

0 0

]
=

[
x11 + 0 x12 + 0

x21 + 0 x22 + 0

]
=

[
x11 x12

x21 x22

]
= X.

This implies that the zero matrix 0 is the additive identity in M2(C). To complete

the proof that M2(C) is an abelian group under addition, we only need to show the

existence of the additive inverse. For each X ∈M2(C), we set

−X =

[
−x11 −x12
−x21 −x22

]
.

Then it follows that

X + (−X) =

[
x11 x12

x21 x22

]
+

[
−x11 −x12
−x21 −x22

]

=

[
x11 − x11 x12 − x12
x21 − x21 x22 − x22

]
=

[
0 0

0 0

]
= 0.

Hence (−X) is the additive inverse of X. All results above imply that M2(C) is an

abelian group under addition.

Next we will prove that M2(C) is a monoid under multiplication. First, it can

be easily checked that the multiplication on M2(C) is associative as follows. A simple

computation gives that the (i, j)-entry of (X · Y ) · Z is

(xi1y11 + xi2y21)z1j + (xi1y12 + xi2y22)z2j

and (i, j)-entry of X · (Y · Z) is

(xi1(y11z1j + y12z2j) + xi2(y21z1j + y22z2j),
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which deduces that they equal to each other. Thus it follows that (X ·Y )·Z = X ·(Y ·Z).

Let I denote the identity matrix in M2(C) that is the 2 × 2 matrix with ones on

the main diagonal and zeros elsewhere. For each X ∈M2(C),

X · I =

[
x11 x12

x21 x22

]
·

[
1 0

0 1

]
=

[
x11 x12

x21 x22

]
= X,

and

I ·X =

[
1 0

0 1

]
·

[
x11 x12

x21 x22

]
=

[
x11 x12

x21 x22

]
= X.

This implies that the identity matrix I is the multiplicative identity in M2(C). From

the results above, we conclude that M2(C) is a monoid under multiplication.

Lastly, it remains to verifty that the multiplication on M2(C) is distributive with

respect to the addition on M2(C). For any X,Y, Z ∈M2(C),

X · (Y + Z) =

[
x11 x12

x21 x22

]
·

[
y11 + z11 y12 + z12

y21 + z21 y22 + z22

]

=

[
x11(y11 + z11) + x12(y21 + z21) x11(y12 + z12) + x12(y22 + z22)

x21(y11 + z11) + x22(y21 + z21) x21(y12 + z12) + x22(y22 + z22)

]

=

[
(x11y11 + x12y21) + (x11z11 + x12z21) (x11y12 + x12y22) + (x11z12 + x12z22)

(x21y11 + x22y21) + (x21z11 + x22z21) (x21y12 + x22y22) + (x21z12 + x22z22)

]

=

[
x11y11 + x12y21 x11y12 + x12y22

x21y11 + x22y21 x21y12 + x22y22

]
+

[
x11z11 + x12z21 x11z12 + x12z22

x21z11 + x22z21 x21z12 + x22z22

]
= X · Y +X · Z.

Thus X · (Y + Z) = X · Y +X · Z. Furthermore,

(X + Y ) · Z =

[
x11 + y11 x12 + y12

x21 + y21 x22 + y22

]
·

[
z11 z12

z21 z22

]

=

[
(x11 + y11)z11 + (x12 + y12)z21 (x11 + y11)z12 + (x12 + y12)z22

(x21 + y21)z11 + (x22 + y22)z21 (x21 + y21)z12 + (x22 + y22)z22

]

=

[
x11z11 + x12z21 + y11z11 + y12z21 x11z12 + x12z22 + y11z12 + y12z22

x21z11 + x22z21 + y21z11 + y22z21 x21z12 + x22z22 + y21z12 + y22z22

]

=

[
x11z11 + x12z21 x11z12 + x12z22

x21z11 + x22z21 x21z12 + x22z22

]
+

[
y11z11 + y12z21 y11z12 + y12z22

y21z11 + y22z21 y21z12 + y22z22

]

=

[
x11 x12

x21 x22

]
·

[
z11 z12

z21 z22

]
+

[
y11 y12

y21 y22

]
·

[
z11 z12

z21 z22

]
= X · Z + Y · Z.
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We complete a proof for the left and right distributivity. Therefore M2(C) equipped

with the addition + and multiplication · satisfies all the ring axioms. In other words

(M2(C),+, ·) is a ring.

Proposition 2.6. The set H of quaternions is a non-commutative division ring.

Proof. First note that we have shown that H is an abelian group under addition. Hence

it remains to prove that H is a monoid under multiplication and the multiplication on

H is distributive with respect to addition. For a, b and c in H,

(a · b) · c = [(a0 + a1i + a2j + a3k) · (b0 + b1i + b2j + b3k)] · (c0 + c1i + c2j + c3k)

= [a0b0c0 − a1b1c0 − a2b2c0 − a3b3c0 − a0b1c1 − a1b0c1 − a2b3c1 + a3b2c1

− a0b2c2 + a1b3c2 − a2b0c2 − a3b1c2 − a0b3c3 − a1b2c3 + a2b1c3 − a3b0c3]

+ [a0b0c1 − a1b1c1 − a2b2c1 − a3b3c1 + a0b1c0 + a1b0c0 + a2b3c0 − a3b2c0

+ a0b2c3 − a1b3c3 + a2b0c3 + a3b1c3 − a0b3c2 − a1b2c2 + a2b1c2 − a3b0c2]i

+ [a0b0c2 − a1b1c2 − a2b2c2 − a3b3c2 − a0b1c3 − a1b0c3 − a2b3c3 + a3b2c3

+ a0b2c0 − a1b3c0 + a2b0c0 + a3b1c0 + a0b3c1 + a1b2c1 − a2b1c1 + a3b0c1]j

+ [a0b0c3 − a1b1c3 − a2b2c3 − a3b3c3 + a0b1c2 + a1b0c2 + a2b3c2 − a3b2c2

− a0b2c1 + a1b3c1 − a2b0c1 − a3b1c1 + a0b3c0 + a1b2c0 − a2b1c0 + a3b0c0]k

= a0[(b0c0 − b1c1 − b2c2 − b3c3) + (b0c1 + b1c0 + b2c3 − b3c2)i

+ (b0c2 − b1c3 + b2c0 + b3c1)j + (b0c3 + b1c2 − b2c1b3c0)k]

+ a1[(−b1c0 − b0c1 + b3c2 − b2c3) + (−b1c1 + b0c0 − b3c3 − b2c2)i

+ (−b1c2 − b0c3 − b3c0 + b2c1)j + (−b1c3 + b0c2 + b3c1 + b2c0)k]

+ a2[(−b2c0 − b3c1 − b0c2 + b1c3) + (−b2c1 + b3c0 + b0c3 + b2c2)i

+ (−b2c2 − b3c3 + b0c0 − b1c1)j + (−b2c3 + b3c2 − b0c1 − b1c0)k

+ a3[(−b3c0 + b2c1 − b1c2 + b2c1) + (−b3c1 − b2c0 + b1c3 − b2c0)i

+ (−b3c2 + b2c3 + b1c0 + b0c1)j + (−b3c3 − b2c2 − b1c1 + b0c0)k]

= (a0 + a1i + a2j + a3k) · [(b0c0 − b1c1 − b2c2 − b3c3) + (b0c1 + b1c0 + b2c3 − b3c2)i

+ (b0c2 − b1c3 + b2c0 + b3c1)j + (b0c3 + b1c2 − b2c1 + b3c0)k]

= (a0 + a1i + a2j + a3k) · [(b0 + b1i + b2j + b3k) · (c0 + c1i + c2j + c3k)]

= a · (b · c).

Thus (a · b) · c = a · (b · c). This implies the associativity of the multiplication on H.

For each a ∈ H,

a · 1 = (a0 + a1i + a2j + a3k) · 1 = a0 + a1i + a2j + a3k = a = 1 · a.

This implies that the identity 1 is the multiplicative identity in H. From the results

above, we conclude that H is a monoid under multiplication.
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Next we will verify that the multiplication on H is distributive with respect to the

addition on H. For any a, b, c ∈ H,

a · (b+ c) = (a0 + a1i + a2j + a3k) · [(b0 + b1i + b2j + b3k) + (c0 + c1i + c2j + c3k)]

= (a0 + a1i + a2j + a3k) · [(b0 + c0) + (b1 + c1)i + (b2 + c2)j + (b3 + c3)k]

= [a0(b0 + c0)− a1(b1 + c1)− a2(b2 + c2)− a3(b3 + c3)]

+ [a0(b1 + c1) + a1(b0 + c0) + a2(b3 + c3)− a3(b2 + c2)]i

+ [a0(b2 + c2)− a1(b3 + c3) + a2(b0 + c0) + a3(b1 + c1)]j

+ [a0(b3 + c3) + a1(b2 + c2)− a2(b1 + c1) + a3(b0 + c0)]k

= (a0b0 − a1b1 − a2b2 − a3b3) + (a0b1 + a1b0 + a2b3 − a3b2)i

+ (a0b2 − a1b3 + a2b0 + a3b1)j + (a0b3 + a1b2 − a2b1 + a3b0)k

+ (a0c0 − a1c1 − a2c2 − a3c3) + (a0c1 + a1c0 + a2c3 − a3c2)i

+ (a0c2 − a1c3 + a2c0 + a3c1)j + (a0c3 + a1c2 − a2c1 + a3c0)k

= (a0 + a1i + a2j + a3k) · (b0 + b1i + b2j + b3k)

+ (a0 + a1i + a2j + a3k) · (c0 + c1i + c2j + c3k)

= a · b+ a · c.

In addition, we have

(a+ b) · c = [(a0 + a1i + a2j + a3k) + (b0 + b1i + b2j + b3k)] · (c0 + c1i + c2j + c3k)

= [(a0 + b0) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k] · (c0 + c1i + c2j + c3k)

= [(a0 + b0)c0 − (a1 + b1)c1 − (a2 + b2)c2 − (a3 + b3)c3]

+ [(a0 + b0)c1 + (a1 + b1)c0 + (a2 + b2)c3 − (a3 + b3)c2]i

+ [(a0 + b0)c2 − (a1 + b1)c3 + (a2 + b2)c0 + (a3 + b3)c1]j

+ [(a0 + b0)c3 + (a1 + b1)c2 − (a2 + b2)c1 + (a3 + b3)c0]k

= (a0c0 − a1c1 − a2c2 − a3c3) + (a0c1 + a1c0 + a2c3 − a3c2)i

+ (a0c2 − a1c3 + a2c0 + a3c1)j + (a0c3 + a1c2 − a2c1 + a3c0)k

+ (b0c0 − b1c1 − b2c2 − b3c3) + (b0c1 + b1c0 + b2c3 − b3c2)i

+ (b0c2 − b1c3 + b2c0 + b3c1)j + (b0c3 + b1c2 − b2c1 + b3c0)k

= (a0 + a1i + a2j + a3k) · (c0 + c1i + c2j + c3k)

+ (b0 + b1i + b2j + b3k) · (c0 + c1i + c2j + c3k)

= a · c+ b · c.

Two identities above imply the left and right distributivity. Finally, we conclude that H
equipped with the addition + and multiplication · satisfies all the ring axioms. In other

words, (H,+, ·) is a ring. To verify that H is a division ring, let a = a0 +a1i+a2j+a3k
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be an arbitrary non-zero quaternion. Then we can give an inverse of a explicitly as

follows. Define the inverse a−1 of a by

a−1 =
1

a20 + a21 + a22 + a23
(a0 − a1i− a2j− a3k).

Then a trivial verification shows that a · a−1 = a−1 · a = 1, which means that a−1 is

the multiplicative inverse of a. Lastly, one can easily see that H is non-commutative by

k = i · j 6= j · i = −k. Thus it is derived that H is a non-commutative division ring.

Definition 2.7 (Norm on a division ring). Let (R,+, ·) be a division ring whose zero

is denoted by 0. A norm on R is a mapping from R to the non-negative reals R≥0:

| · | : R→ R≥0

satisfying the norm axioms: For all x and y in R,

1. (Positive definiteness) If |x| = 0, then x = 0.

2. (Multiplicativity) |x · y| = |x||y|.

3. (Triangle inequality) |x+ y| ≤ |x|+ |y|.

Define a norm | · | on H by |a0 + a1i + a2j + a3k| =
√
a20 + a21 + a22 + a23.

Proposition 2.8. The norm | · | on H is a norm on the division ring H.

Proof. Let x = x0 +x1i +x2j +x3k and y = y0 + y1i + y2j + y3k. Suppose that |x| = 0.

Then |x|2 = x20 + x21 + x22 + x23 = 0, which implies that x0 = x1 = x2 = x3 = 0 and

hence x = 0. The norm | · | is positive definite. An easy computation gives that

|x · y|2 = |(x0y0 − x1y1 − x2y2 − x3y3) + (x0y1 + x1y0 + x2y3 − x3y2)i

+ (x0y2 − x1y3 + x2y0 + x3y1)j + (x0y3 + x1y2 − x2y1 + x3y0)k|2

= (x0y0 − x1y1 − x2y2 − x3y3)2 + (x0y1 + x1y0 + x2y3 − x3y2)2

+ (x0y2 − x1y3 + x2y0 + x3y1)
2 + (x0y3 + x1y2 − x2y1 + x3y0)

2

= (x20 + x21 + x22 + x23)(y
2
0 + y21 + y22 + y23) = |x|2|y|2.

From this, the multiplicativity of the norm immediately follows. It only remains to

check the triangle inequality. By a direct computation,

(|x|+ |y|)2 − |x+ y|2 = (x0y1 − x1y0)2 + (x0y2 − x2y0)2 + (x0y3 − x3y0)2

+ (x1y2 − x2y1)2 + (x1y2 − x3y1)2 + (x2y3 − x3y2)2.

This gives rise to the triangle inequality |x+ y| ≤ |x|+ |y| and the equality holds if and

only if y = r · x for some real number r. Therefore we complete the proof.
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Define the conjugate x̄ of a quaternion x = x0 + x1i + x2j + x3k by x̄ = x0− x1i−

x2j− x3k.

Theorem 2.9. Let x and y be quaternions. Then the following holds.

(1) xx̄ = x̄x = |x|2.
(2) If x 6= 0, the inverse of x is x̄/|x|2.

(3) xy = ȳx̄.

Proof. Let x = x0 + x1i + x2j + x3k be a quaternion. Then it can be easily seen that

xx̄ = x̄x = |x|2 = x20 + x21 + x22 + x23.

Furthermore, if x 6= 0, it immediately follows that

x · x̄

|x|2
=

x̄

|x|2
· x = 1.

Thus the inverse of x is x̄/|x|2. For a quaternion y = y0 + y1i + y2j + y3k,

xy = (x0 − x1i− x2j− x3k)(y0 − y1i− y2j− y3k)

= (x0y0 − x1y1 − x2y2 − x3y3)− (x0y1 + x1y0 + x2y3 − x3y2)i

− (x0y2 − x1y3 + x2y0 + x3y1)j− (x0y3 + x1y2 − x2y1 + x3y0)k

and

ȳx̄ = (y0 − y1i− y2j− y3k)(x0 − x1i− x2j− x3k)

= (x0y0 − x1y1 − x2y2 − x3y3)− (x0y1 + x1y0 + x2y3 − x3y2)i

− (x0y2 − x1y3 + x2y0 + x3y1)j− (x0y3 + x1y2 − x2y1 + x3y0)k.

Thus xy = ȳx̄. We finish the proof.

Definition 2.10 (Ring homomorphism). Let (R,+R, ·R) and (S,+S , ·S) be rings. Then

a function f : R→ S is said to be a ring homomorphism if for any two elements a, b ∈ R
the following conditions are satisfied:

f(a+R b) = f(a) +S f(b) addition preserving,

f(a ·R b) = f(a) ·S f(b) multiplication preserving,

f(1R) = 1S unit preserving,

where 1R and 1S are the identities of R and S respectively.

Define a map φ : H→M2(C) by

φ(x0 + x1i + x2j + x3k) =

 x0 + x1i x2 + x3i

−x2 + x3i x0 − x1i

 .
Jacobson [1] suggested to define quaternions as the subset of the ring M2(C) of 2 × 2

matrices with complex number entries as follows.
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Proposition 2.11. The map φ : H → M2(C) is an injective ring homomorphism.

Furthermore,

(1) |x|2 = detφ(x).

(2) the eigenvalues of φ(x) are Re(x)± |Im(x)|i.

Proof. First, we will show the map φ is a ring homomorphism. For x = x0 +x1i+x2j+

x3k and y = y0 + y1i + y2j + y3k in H,

f(x+ y) = f((x0 + x1i + x2j + x3k) + (y0 + y1i + y2j + y3k))

= f((x0 + y0) + (x1 + y1)i + (x2 + y2)j + (x3 + y3)k)

=

[
(x0 + y0) + (x1 + y1)i (x2 + y2) + (x3 + y3)i

−(x2 + y2) + (x3 + y3)i (x0 + y0)− (x1 + y1)i

]

=

[
x0 + x1i x2 + x3i

−x2 + x3i x0 − x1i

]
+

[
y0 + y1i y2 + y3i

−y2 + y3i y0 − y1i

]
= f(x) + f(y).

Hence the map φ is an addition preserving map. Furthermore,

f(x · y) = f((x0 + x1i + x2j + x3k) ·R (y0 + y1i + y2j + y3k))

= f((x0y0 − x1y1 − x2y2 − x3y3) + (x0y1 + x1y0 + x2y3 − x3y2)i

+ (x0y2 − x1y3 + x2y0 + x3y1)j + (x0y3 + x1y2 − x2y1 + x3y0)k),

A straightforward computation gives that the (1, 1)-entry of f(x · y) is

(x0y0 − x1y1 − x2y2 − x3y3) + (x0y1 + x1y0 + x2y3 − x3y2)i

and the (1, 1)-entry of f(x) · f(y) is

(x0 + x1i)(y0 + y1i) + (x2 + x3i)(−y2 + y3i)

and they equal to each other. Similarly, it can be easily seen that (1, 2)-entry of f(x ·y)

equals to the (1, 2)-entry of f(x)·f(y). Therefore, it is derived that f(x·y) = f(x)·f(y).

In other words, φ is a multiplication preserving map.

For 1 ∈ H, it is easy to check that

f(1) =

[
1 0

0 1

]
= I.

1 is the identity in H and I is the identity matrix in M2(C). Thus the map φ is a unit

preserving map.

Second, we will show that the map φ is injective. Showing that φ is injective is

equivalent to show that if φ(x) = φ(y), then x = y. Suppose that φ(x) = φ(y). Then[
x0 + x1i x2 + x3i

−x2 + x3i x0 − x1i

]
=

[
y0 + y1i y2 + y3i

−y2 + y3i y0 − y1i

]
.
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This immediately implies that x0 = y0, x1 = y1, x2 = y2 and x3 = y3 and hence x = y.

Thus φ is an injective map.

Given a quaternion x = x0 + x1i + x2j + x3k, let z1 = x0 + x1i and z2 = x2 + x3i.

Then φ(x) is written by

φ(x) =

[
z1 z2

−z̄2 z̄1

]
.

A direct computation gives

detφ(x) = |z1|2 + |z2|2 = x20 + x21 + x22 + x23 = |x|2.

Next to find the eigenvalues of φ(x), we compute the characteristic polynomial of

φ(x) as follows.

det(λI − φ(x)) =

[
λ− z1 −z2
z̄2 λ− z̄1

]
= λ2 − 2λRe(z1) + |z1|2 + |z2|2

= λ2 − 2λRe(x) + |x|2.

Here note that Re(z1) = Re(x) = x0. By a well-known quadratic formula,

Re(x)±
√

Re(x)2 − |x|2 = Re(x)± |Im(x)|i

are eigenvalues of φ(x). We complete the proof.

Lemma 2.12. For any quaternions x, y ∈ H,

Re(xy) = Re(yx).

Proof. Let x = x0 + x1i + x2j + x3k and y = y0 + y1i + y2j + y3k. Then

x · y = (x0 + x1i + x2j + x3k) · (y0 + y1i + y2j + y3k)

= (x0y0 − x1y1 − x2y2 − x3y3) + (x0y1 + x1y0 + x2y3 − x3y2)i

+ (x0y2 − x1y3 + x2y0 + x3y1)j + (x0y3 + x1y2 − x2y1 + x3y0)k

and

y · x = (y0 + y1i + y2j + y3k) · (x0 + x1i + x2j + x3k)

= (y0x0 − y1x1 − y2x2 − y3x3) + (y0x1 + y1x0 + y2x3 − y3x2)i

+ (y0x2 − y1x3 + y2x0 + y3x1)j + (y0x3 + y1x2 − y2x1 + y3x0)k.

Therefore Re(xy) = Re(yx) = x0y0 − x1y1 − x2y2 − x3y3.

Definition 2.13 (Similarity). Two quaternions x and y are said to be similar if there

exists a nonzero quaternion u such that u−1xu = y. This is written as x ∼ y.
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Obviously, x and y are similar if and only if there is a unit quaternion v such that

v−1xv = y, and two similar quaternions have the same norm. It is routine to check

that ∼ is an equivalence relation on the quaternions. We denote by [x] the equivalence

class containing x.

Proposition 2.14 ([8, 9]). Let x and y be quaternions. Then x is similar to y if and

only if Re(x) = Re(y) and |Im(x)| = |Im(y)|.

Proof. Suppose that x and y are similar quaternions. Then there is a non-zero quater-

nion q such that x = qyq−1. Then by Lemma 2.12,

Re(x) = Re(qyq−1) = Re(q−1qy) = Re(y).

Furthermore, from the following equation

Re(x)2 + |Im(x)|2 = |x|2 = |qyq−1|2 = |y|2 = Re(y)2 + |Im(y)|2,

it is derived that |Im(x)| = |Im(y)|.
For the converse, suppose that Re(x) = Re(y) and |Im(x)| = |Im(y)|. Let

p =
√
x21 + x22 + x23 + x1 − x3j + x2k and q =

√
y21 + y22 + y23 + y1 − y3j + y2k.

Then it is not difficult to see that

pxp−1 = Re(x) + |Im(x)|i = Re(y) + |Im(y)|i = qyq−1

which implies that x and y are similar.

By the proof of Proposition 2.14, we immediately get the following corollary.

Corollary 2.15. Every quaternionic number is similar to a complex number.
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Chapter 3. Algebra of Quaternions

To study the algebra of quaternions, we start with a simple linear equation over

quaternions. Let a, b and c be quaternions. Consider the equation xa− bx = c over H.

We will consider two cases:

Case 1 (a is similar to b). There is a quaternion u such that b = u−1au and thus

the equation xa − bx = c is written by xa − u−1aux = c. Left-multiplying both sides

by u, we get uxa − aux = uc. Replacing ux and uc by x and c respectively, the

equation xa − bx = c is converted into an equation of the form xa − ax = c. Let

a = a0 + a1i + a2j + a3k, c = 2c0 + 2c1i + 2c2j + 2c3k and x = x0 + x1i + x2j + x3k.

Then by a direct computation,

x · a− a · x = [(x0a0 − x1a1 − x2a2 − x3a3) + (x0a1 + x1a0 + x2a3 − x3a2)i

+ (x0a2 − x1a3 + x2a0 + x3a1)j + (x0a3 + x1a2 − x2a1 + x3a0)k]

− [(a0x0 − a1x1 − a2x2 − a3x3) + (a0x1 + a1x0 + a2x3 − a3x2)i

+ (a0x2 − a1x3 + a2x0 + a3x1)j + (a0x3 + a1x2 − a2x1 + a3x0)k]

= 2(x0a1 + x1a0)i + 2(x0a2 + x2a0)j + 2(x0a3 + x3a0)k

= 2c0 + 2c1i + 2c2j + 2c3k = c.

Hence the equation xa− ax = c is equivalent to the following system of equations.

0 = 2c0

2(a1x0 + a0x1) = 2c1

2(a2x0 + a0x2) = 2c2

2(a3x0 + a0x3) = 2c3

which is written by 
0 0 0 0

a1 a0 0 0

a2 0 a0 0

a3 0 0 a0

 ·

x0

x1

x2

x3

 =


c0

c1

c2

c3

 .

The determinant of the matrix above is 0. If c0 6= 0, this equation has no solution. If

c0 = 0 and a0 6= 0, the equation has infinite solutions. If c0 = 0 and a0 = 0, then

a1x0 = c1, a2x0 = c2, a3x0 = c3.
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If c0 = 0, a0 = 0 and a1 : a2 : a3 = c1 : c2 : c3, the equation has infinite solutions. If

c0 = 0, a0 = 0 and a1 : a2 : a3 6= c1 : c2 : c3, there is no solution to the equation.

Case 2 (a is not similar to b). Let a = a0 + a1i + a2j + a3k, b = b0 + b1i + b2j + b3k,

c = 2c0+2c1i+2c2j+2c3k and x = x0+x1i+x2j+x3k. Then xa−bx = c is equivalent

to the following system of linear equations.
a0 − b0 −a1 + b1 −a2 + b2 −a3 + b3

a1 − b1 a0 − b0 a3 + b3 −a2 − b2
a2 − b2 −a3 − b3 a0 − b0 a1 + b1

a3 − b3 a2 + b2 −a1 − b1 a0 − b0

 ·

x0

x1

x2

x3

 =


2c0

2c1

2c2

2c3

 . (3.1)

Denote by B the 4× 4 matrix in (3.1). Then by a straightforward computation,

detB = (|Im(a)|2 − |Im(b)|2)2 + (a0 − b0)2[(a0 − b0)2 + (a1 − b1)2 + (a1 + b1)
2

+ (a2 − b2)2 + (a2 + b2)
2 + (a3 − b3)2 + (a3 + b3)

2].

If a is not similar to b, either Re(a) 6= Re(b) or |Im(a)| 6= |Im(b)|, which implies that

a0 − b0 6= 0 or |Im(a)|2 6= |Im(b)|2. Then detB 6= 0 and thus there is a unique solution

to the equation xa− bx = c.

We recover the following classical theorem for quaternion linear equation.

Theorem 3.1 (Johnson [3]). If a, b, c ∈ H, and a and b are not similar, then xa−bx = c

has a unique solution.

We now study quaternion quadratic equations. As well known, any complex

quadratic equation has at most two solutions. However this does not work for quater-

nion quadratic equations as follows.

Lemma 3.2. There are infinitely many solutions in H to x2 + 1 = 0.

Proof. Let x = x0 + x1i + x2j + x3k be a solution of the equation x2 + 1 = 0. Then

x2 = x20 − x21 − x22 − x23 + 2x0(x1i + x2j + x3k) = −1

which is equivalent to

(Rex)2 − |Imx|2 = −1 and Rex · Imx = 0.

If Rex = 0, then |Imx|2 = 1 and thus |Imx| = 1. If Imx = 0, then (Rex)2 = −1. There

are no solutions in this case. Therefore, all quaternions x with |Imx| = 1 are solutions

of x2 + 1 = 0. Hence there are infinitely many solutions to x2 + 1 = 0.
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More generally, Eilenberg and Niven proved a result for quaternion polynomial

equations as follows.

Theorem 3.3 (Eilenberg and Niven [2]). Let

f(x) = a0xa1x · · ·xan + φ(x),

where a0, a1, · · · , an are nonzero quaternions (ai 6= 0 for i = 0, . . . , n), x is a quaternion

indeterminant, and φ(x) is a sum of a finite number of similar monomials b0xb1x · · ·xbk,

k < n. Then f(x) = 0 has at least one quaternion solution.
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Chapter 4. Quaternionic vector space

We recall definitions concerning modules and some theories on the set of quaternion

matrices.

Definition 4.1 (Right or left modules over a ring). Suppose that (R,+R, ·R) is a ring

and 1R is its multiplicative identity. A left R-module M consists of an abelian group

(M,+M ) and an operation · : R ×M → M such that for all r, s in R and x, y in M ,

we have:

r · (x+M y) = r · x+M r · y,

(r +R s) · x = r · x+M s · x,

(r ·R s) · x = r · (s · x),

1R · x = x.

The operation of the ring on M is called scalar multiplication, and is usually written

by juxtaposition, i.e. as rx for r in R and x in M , though here it is denoted as r · x to

distinguish it from the ring multiplication operation, denoted here by juxtaposition. A

right R-module M consists of an abelian group (M,+M ) and an operation · : M ×R→
M such that for all r, s in R and x, y in M , we have:

(x+M y) · r = x · r +M y · r,

x · (r +R s) = x · r +M x · s,

x · (r ·R s) = (x · r) · s,

x · 1R = x.

Let Hn be the set of n-tuples of quaternions. Define + on Hn and an operation

· : H×Hn → Hn by

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

(x1, . . . , xn) · r = (x1r, . . . , xnr) or r · (x1, . . . , xn) = (rx1, . . . , rxn).

Lemma 4.2. The addition + on Hn and the operation · : H×Hn → Hn turn Hn into

a right or left H-module.
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Proof. For r, s ∈ H and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Hn,

r · (x+ y) = r · [(x1, . . . , xn) + (y1, . . . , yn)]

= r · (x1 + y1, . . . , xn + yn)

= (r · x1, . . . , r · xn) + (r · y1, . . . , r · yn)

= r · x+ r · y,

(r + s) · x = (r + s) · (x1, . . . , xn)

= r · (x1, . . . , xn) + s · (x1, . . . , xn)

= r · x+ s · x,

(r · s) · x = (r · s) · (x1, . . . , xn)

= r · (s · (x1, . . . , xn))

= r · (s · x),

1 · x = 1 · (x1, . . . , xn) = x.

This leads to a conclusion that Hn is a left H-module.

(x+ y) · r = [(x1, . . . , xn) + (y1, . . . , yn)] · r

= (x1 + y1, . . . , xn + yn) · r

= (x1 · r, . . . , xn · r) + (y1 · r, . . . , yn · r)

= x · r + y · r,

x · (r + s) = (x1, . . . , xn) · (r + s)

= (x1, . . . , xn) · r + (x1, . . . , xn) · s

= x · r + x · s,

x · (r · s) = (x1, . . . , xn) · (r · s)

= ((x1, . . . , xn) · r) · s

= (x · r) · s,

x · 1 = (x1, . . . , xn) · 1 = x.

This implies that Hn is a right H-module.

Definition 4.3 (Basis of right(left) H-modules). A subset X of an R-module A is said

to be linearly independent provided that for distinct x1, . . . , xn ∈ X and ri ∈ R.

r1x1 + r2x2 + · · ·+ rnxn = 0⇒ ri = 0 for every i.

A set that is not linearly independent is said to be linearly dependent. If A is generated

as an R-module by a set Y , then we say that Y spans A. If R has an identity and

A is unitary, then Y spans A if and only if every element of A may be written as a
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linear combination of elements of Y . A linearly independent subset of A that spans A

is called a basis of A. Observe that the empty set is (vacuously) linearly independent

and is a basis of the zero module.

Lemma 4.4. Let V be a right or left H-module. All bases of V have the same number

of elements.

Proof. Let V be a right H-module and, {u1, . . . , um} and {v1, . . . , vk} be bases of V .

Let ui = v1a1i+v2a2i+. . .+vkaki for i = 1, . . . ,m. Suppose that u1x1+. . .+umxm = 0.

Then

u1x1 + . . .+ umxm =

m∑
j=1

(
k∑

i=1

viaij

)
xj =

k∑
i=1

vi

(
m∑
j=1

aijxj

)
= 0.

Since {v1, . . . , vk} is linearly independent,
∑m

j=1 aijxj = 0 for any i = 1, . . . , k. If k < m,

the number of variables is greater than the number of equations and hence there are

infinite solutions. However, it contradicts the fact that If u1x1 + . . .+ umxm = 0, then

x1 = · · · = xm = 0, which follows from the linearly independence of {u1, . . . , um}. Thus

k ≥ m. Switching {u1, . . . , um} and {v1, . . . , vk}, it follows that m ≥ k. Therefore we

get m = k. This proof works for left H-modules in the same way.

Due to Lemma 4.4, we can define the dimension of a right or left H-module V ,

denoted by dimH V , by the number of elements of a basis of V .

Definition 4.5 (Right or left H-module homomorphism). Let (M,+M , ·M ) and (N,+N , ·N )

be left R-modules with the scalar multiplication · on them. A map f : M → N is said

to be a homomorphism of left R-modules if for any m,n in M and r, s in R,

f(r ·m+M s · n) = r · f(m) +N s · f(n).

In other words, f preserves the structure of left R-modules. Another name for a

homomorphism of left R-modules is a left R-linear map.

If (M,+M , ·M ) and (N,+N , ·N ) are right R-modules, a map f : M → N is said to

be a homomorphism of right R-modules if for any m,n in M and r, s in R,

f(m · r +M n · s) = f(m) · r +N f(n) · s.

If a homomorphism f : M → N of R-modules is bijective, then f is called an

isomorphism. We say that M is isomorphic to N if there is an isomorphism between

M and N . The kernel of a module homomorphism f : M → N is the submodule of

M consisting of all elements that are sent to zero by f and the image of f is also the

submodule of N.
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Right or left H-module homomorphisms between finite-dimensional right or left

H-modules can be described by quaternion matrices as follows. Let f : Hn → Hm be a

map such that for each i = 1, . . . , n,

f(ej) = (a1j , a2j , . . . , amj) ∈ Hm.

Let A be an m× n quaternion matrix whose (i, j)-entry is aij and x = (x1, . . . , xn)T ∈

Hn. If f is a right H-module homomorphism, then

f(x) = f (x1, . . . , xn) = f

(
n∑

i=1

eixi

)

=
n∑

i=1

f(ei)xi

=
n∑

i=1

(
m∑
k=1

ekaki

)
xi

=

m∑
k=1

ek

(
n∑

i=1

akixi

)
= A · x.

On the other hand, if f is a left H-module homomorphism,

f(x) = f(x1, . . . , xn) = f

(
n∑

i=1

xiei

)

=
n∑

i=1

xif(ei)

=

n∑
i=1

xi

(
m∑
k=1

akiek

)

=

m∑
k=1

(
n∑

i=1

xiaki

)
ek = xT ·AT .

Lemma 4.6. Let (a1, . . . , an) ∈ Hn be a non-zero quaternion vector. Then the set of

all solutions (x1, . . . , xn) ∈ Hn of a1x1 + · · ·+ anxn = 0 (resp. x1a1 + · · ·+ xnan = 0)

is a right (resp. left) H-module of dimension n− 1.

Proof. Let M = {(x1, . . . , xn) ∈ Hn | a1x1 + · · · + anxn = 0}. To verify that M is a

right H-module of dimension n− 1, we first prove that the right multiplication of H on

M is well defined. For any q ∈ H and any x = (x1, . . . , xn) ∈M ,

a1(x1q) + · · ·+ an(xnq) = (a1x1 + · · ·+ anxn)q = 0 · q = 0

which implies xq ∈ M . In other words, the right multiplication of H on M is well

defined. Thus M is a right H-module.
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Let a1x1 + · · ·+ anxn = 0. We may assume that an 6= 0. Then

xn = −a−1n a1x1 − · · · − a−1n an−1xn−1.

Any x ∈ V is written by

x = (x1, x2, . . . , xn−1,−a−1n a1x1 − · · · − a−1n an−1xn−1)

= (e1 − a−1n a1en)x1 + · · ·+ (en−1 − a−1n an−1en)xn−1

which implies that {e1 − a−1n a1en, . . . , en−1 − a−1n an−1en} is a basis of M . Thus the

dimension of a right H-module M is n− 1.

Let Mm×n(H) denote the set of m × n quaternion matrices. For A ∈ Mm×n(H),

define A∗ = ĀT .

Theorem 4.7. Let A ∈Mm×n(H) and B ∈Mn×l(H). Then

(1) A
T

= AT .

(2) (AB)∗ = B∗A∗.

(3) (A∗)−1 = (A−1)∗ if A is invertible.

(4) AB 6= ĀB̄ in general.

(5) (AB)T 6= BTAT in general.

(6) Ā−1 6= A−1 in general.

(7) (AT )−1 6= (A−1)T in general.

Proof. By a straightforward computation, (1), (2) and (3) can be easily seen. For

(4)-(7), we give counterexamples. For (4) and (5), let a = 1 + i and b = 2− j. Then

ab = (1 + i) · (2− j) = 2 + 2i− j− k = 2− 2i + j + k.

and

āb̄ = (1 + i)(2− j) = (1− i) · (2 + j) = 2− 2i + j− k.

Furthermore,

(ab)T = ((1 + i) · (2− j))T = (2 + 2i− j− k)T = 2 + 2i− j− k

and

bTaT = ((2− j) · (1 + i)) = 2 + 2i− j + k.

Thus ab 6= ab and (ab)T 6= bTaT .

For (6) and (7), let A =

[
i −j

0 k

]
. Then

A
−1

=

[
i 1

0 k

]
6=

[
i −1

0 k

]
= A−1.
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and

(AT )−1 =

[
−i 0

1 −k

]
6=

[
−i 0

−1 −k

]
= (A−1)T .

Thus Ā−1 6= A−1 and (AT )−1 6= (A−1)T .
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Chapter 5. Jordan canonical form

In this chapter, we reprove the well-known Jordan canonical forms of 2×2 quater-

nion matrices. Brenner [8] proved the following theorem. We here give a self-contained

proof.

Theorem 5.1. Let A be a 2 × 2 quaternion matrix. Then there exists an invertible

quaternion matrix Q such that Q−1AQ is of the form[
a 0

0 d

]
or

[
a 1

0 d

]
.

Proof. We first prove that there is a right eigenvector of A. In other words, there is a

non-zero vector v ∈ H2 such that Av = vλ for some λ ∈ H. Write

A =

[
a b

c d

]
and v =

[
x

y

]
.

If v is a right eigenvector of A, then for some λ ∈ H, the following equations hold.

ax+ by = xλ, (5.1)

cx+ dy = yλ. (5.2)

If c = 0, then (x, y, λ) = (1, 0, a) is a solution to (5.1) and (5.2). Otherwise we have

x = −c−1dy + c−1yλ from (5.2). Then (5.1) is written by

(b− ac−1d)y + (ac−1 + c−1d)yλ− c−1yλ2 = 0. (5.3)

Let y = 1. Then by Theorem 3.3, there is a solution λ0 to (5.3). Hence (x0, y0, λ0)

is a solution to (5.1) and (5.2) where x0 = −c−1d + c−1λ0. In other words, there is a

non-zero vector v0 = (x0, y0) ∈ H2 such that v0 is a right eigenvector of A.

If v0 is a right eigenvector with eigenvalue λ0, then it can be easily seen that v0q

is also right eigenvector with eigenvalue q−1λ0q since

A(v0q) = (Av0)q = (v0λ)q = (v0q)(q
−1λ0q).

Hence we can assume that ‖v0‖ = 1. Choose a non-zero vector v1 ∈ H2 such that

〈v0, v1〉 = 0 and ‖v1‖ = 1. Let v1 = (x1, y1). Set Q =

[
x0 x1

y0 y1

]
, e1 = (1, 0). Then

(Q−1AQ)e1 = Q−1Av0 = Q−1(v0λ0) = (Q−1v0)λ0 = e1λ0,
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which implies that Q−1AQ is of the form

[
a b

0 d

]
. If b = 0, then Q−1AQ is of the form[

a 0

0 d

]
. From now on we suppose that b 6= 0. For any x ∈ H, we have

[
1 x

0 1

]−1 [
a b

0 d

][
1 x

0 1

]
=

[
a ax+ b− xd
0 d

]
.

If there is a solution x0 to ax+ b− xd = 0, then[
1 x0

0 1

]−1 [
a b

0 d

][
1 x0

0 1

]
=

[
a 0

0 d

]
.

Otherwise, [
b 0

0 1

]−1 [
a b

0 d

][
b 0

0 1

]
=

[
b−1ab 1

0 d

]

which is of the form

[
a 1

0 d

]
. We complete the proof.
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Chapter 6. Quaternionic Lorentzian space

Quaternionic Lorentzian (n+ 1)-space is the inner product space consisting of the

right H-module Hn+1 together with the (n+ 1)-dimensional Lorentzian inner product.

The Lorentzian inner product is defined by

〈x, y〉 = x̄1yn+1 + x̄n+1y1 + x̄2y2 + · · ·+ x̄nyn.

where x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1). We denote by Hn,1 the quaternionic

Lorentzian (n+ 1)-space.

Definition 6.1. A vector x is said to be spacelike (resp. timelike and lightlike) if

〈x, x〉 > 0 (resp. 〈x, x〉 < 0 and 〈x, x〉 = 0).

Example 6.2 (Spacelike, timelike and lightlike vectors). We give examples of spacelike,

timelike and lightlike vectors. First, (0, 1, 0) is a spacelike vector with positive norm.

An example of timelike vector is (i
√

2/2, 0,−i
√

2/2) whose norm is −1 < 0. Lastly,

(1, 0, 0) is lightlike vector whose norm is 0.

Let 0 denote the origin vector (0, 0, . . . , 0) in Hn+1.

Lemma 6.3. Let x and y be vectors in Hn,1. Then 〈x, y〉 = 0 for all y ∈ Hn,1 if and

only if x = 0.

Proof. Let x = (x1, . . . , xn+1). Suppose that 〈x, y〉 = 0 for any y ∈ Hn,1. Let

{e1, . . . , en+1} be the canonical basis of Hn+1. If y = e1, then 〈x, e1〉 = x̄n+1 = 0

and thus xn+1 = 0. If y = e2, then 〈x, e2〉 = x̄2 = 0 and thus x2 = 0. In this way, we

show that xi = 0 for all i = 1, . . . , n + 1. This implies that x = 0. The converse is

obvious. Thus we complete the proof.

Lemma 6.4. For x, y ∈ Hn,1, 〈x, y〉 = 〈y, x〉.

Proof. Let x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1). By definition,

〈x, y〉 = x̄1yn+1 + x̄n+1y1 +

n∑
i=2

x̄iyi and 〈y, x〉 = ȳ1xn+1 + ȳn+1x1 +
n∑

i=2

ȳixi.

Thus

〈y, x〉 = ȳ1xn+1 + ȳn+1x1 +
n∑

i=2

ȳixi = x̄n+1y1 + x̄1yn+1 +
n∑

i=2

x̄iyi = 〈x, y〉,

which implies the Lemma.
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If 〈x, y〉 ∈ R, then 〈x, y〉 = 〈x, y〉 and thus 〈y, x〉 = 〈x, y〉 by Lemma 6.4. We have

the following corollary.

Corollary 6.5. If 〈x, y〉 ∈ R, then 〈y, x〉 = 〈x, y〉.

Let v be a nonzero vector in Hn,1. Denote by v⊥ the set of all vectors x ∈ Hn,1

with 〈v, x〉 = 0 i.e.,

v⊥ = {(x1, . . . , xn) ∈ Hn+1 | v̄1xn+1 + v̄n+1x1 + v̄2x2 + · · · v̄nxn = 0}.

By Lemma 4.6, v⊥ is a right H-submodule of Hn+1 of dimension n. From now on, we

will focus on the case of n = 2.

Lemma 6.6. Let x be a nonzero timelike vector in H2,1. Then x /∈ x⊥ and every

nonzero vector of x⊥ is spacelike.

Proof. First of all, since x is timelike, it follows that 〈x, x〉 < 0. Thus obviously

x /∈ x⊥. Suppose that y = (y1, y2, y3) ∈ x⊥. Then yq ∈ x⊥ for all quaternions q ∈ H.

This follows from 〈x, yq〉 = 〈x, y〉q = 0. Furthermore by observing

〈yq, yq〉 = q̄〈y, y〉q = |q|2〈y, y〉

in order to prove that y is spacelike, it is sufficient to prove that yq is spacelike for some

non-zero quaternion q.

Let x = (x1, x2, x3). From the assumption that x is timelike, it follows that x1 6= 0.

By scaling x, we may assume that x1 = 1. The conditions of 〈x, x〉 < 0 and 〈x, y〉 = 0

give

2Re(x3) + |x2|2 < 0, (6.1)

y3 + x̄2y2 + x̄3y1 = 0. (6.2)

If y1 = 0, then 〈y, y〉 = |y2|2. If y1 = 0 and y2 = 0, (6.2) forces y3 = 0, contrary to

y 6= (0, 0, 0). Hence if y1 = 0, then y2 6= 0, which implies that 〈y, y〉 = |y2|2 is positive.

In other words, y is spacelike.

From now on, we suppose that y1 6= 0. Then by scaling y, we can assume that

y1 = 1. Then (6.2) is written by y3 + x̄2y2 + x̄3 = 0 and

〈y, y〉 = 2Re(y3) + |y2|2

= −2Rex̄2y2 − 2Rex̄3 + |y2|2

> −2Rex̄2y2 + |x2|2 + |y2|2 = |x2 − y2|2 ≥ 0.

This leads to a conclusion that every non-zero vector in x⊥ is spacelike.
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Lemma 6.7. Let x be a nonzero spacelike vector in H2,1. Then x /∈ x⊥ and x⊥ contains

timelike, spacelike and lightlike vectors. Furthermore, there are linearly independent two

lightlike vectors in x⊥.

Proof. First of all, since 〈x, x〉 > 0, it immediately follows that x /∈ x⊥. We claim

that there is a timelike vector in x⊥. Suppose, contrary to our claim, there is no

timelike vector in x⊥. Then every vector in x⊥ is either spacelike or lightlike. If there

is a spacelike vector y ∈ x⊥, then we can find an orthogonal basis {x, y, z} where

z ∈ x⊥ ∩ y⊥. By hypothesis, 〈z, z〉 ≥ 0. Then every vector v ∈ H2,1 is written by

v = xa+ yb+ zc for some a, b, c ∈ H and

〈v, v〉 = |a|2〈x, x〉+ |b|2〈y, y〉+ |c|2〈z, z〉 > 0

which contradicts the existence of a lightlike vector in H2,1.

Now we can assume that every vector in x⊥ is lightlike. Then there are linear

independent vectors y and z in x⊥. Since dimH x
⊥ = 2, it follows that spanH{y, z} =

x⊥. From the assumption that every vector in x⊥ is lightlike, for all a, b ∈ H,

0 = 〈ya+ zb, ya+ zb〉 = |a|2〈y, y〉+ |b|2〈z, z〉+ 2Re(ā〈y, z〉b) = 2Re(ā〈y, z〉b)

which leads to a conclusion that 〈y, z〉 = 0. Then {x, y, z} is an orthogonal basis of

H2,1. Since x is spacelike and, y and z are lightlike, it is derived that every vector has

non-negative norm. This also contradicts the existence of a timelike vector in H2,1.

Therefore, the claim holds. In other words, there is a timelike vector y ∈ x⊥.

Choosing a vector z ∈ x⊥∩y⊥, we have an orthogonal basis {y, z} of x⊥. By scaling

y and z, we may assume that 〈y, y〉 = −1 and 〈z, z〉 = 1. Since x⊥ = spanH{y, z}, it

can be easily seen that y+ z and y− z are linearly independent lightlike vectors in x⊥.

Summarizing, there are a timelike vector y, a spacelike vector z and a lightlike vector

y + z in x⊥. Furthermore, there are linearly independent two lightlike vectors y + z

and y − z in x⊥.

Lemma 6.8. Let x be a nonzero lightlike vector in H2,1. Then x ∈ x⊥ and every vector

of x⊥ is either spacelike or lightlike. Furthermore, y is a lightlike vector in x⊥ if and

only if y = xq for some nonzero q ∈ H.

Proof. It follows from the assumption of 〈x, x〉 = 0 that x ∈ x⊥. First observe that

there are no timelike vectors in x⊥. If there is a timelike vector perpendicular to x,

then x must be spacelike, contrary to the hypothesis that x is lightlike. Thus every

vector of x⊥ is either spacelike or lightlike. It remains to prove the second statement

of the Lemma.
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Suppose that there is a lightlike vector y such that {x, y} is linearly independent.

Then x⊥ = spanH{x, y}. For any a, b ∈ H,

〈xa+ yb, xa+ yb〉 = |a|2〈x, x〉+ |b|2〈y, y〉+ 2Re(ā〈x, y〉b) = 2Re(ā〈x, y〉b).

If 〈x, y〉 = 0, then

2Re(x̄1x3) + |x2|2 = 0, (6.3)

2Re(ȳ1y3) + |y2|2 = 0, (6.4)

x̄1y3 + x̄2y2 + x̄3y1 = 0, (6.5)

where x = (x1, x2, x3) and y = (y1, y2, y3). If x1 = 0, then x2 = 0 by (6.3) and hence

x3 6= 0. Then y1 = 0 by (6.5) and y2 = 0 by (6.4). This implies that x, y ∈ spanH{e3}
and hence, x and y are linearly dependent, contrary to the hypothesis. Thus x1 6= 0

and y1 6= 0. By scaling x and y, we may assume that x1 = y1 = 1. Then

2Re(x3) + |x2|2 = 0, (6.6)

2Re(y3) + |y2|2 = 0, (6.7)

y3 + x̄2y2 + x̄3 = 0. (6.8)

If we take the real part on both sides of (6.8), we have

0 = 2Re(y3) + 2Re(x̄2y2) + 2Re(x̄3) = −|y2|2 + 2Re(x̄2y2)− |x2|2 = −|x2 − y2|2.

Therefore x2 = y2. By (6.6) and (6.7), we have Re(x3) = Re(y3). Taking the imaginary

part on both sides of (6.8),

0 = Im(y3) + Im(x̄2y2) + Im(x̄3) = Im(y3) + Im(|x2|2)− Im(x3) = Im(y3)− Im(x3).

Since Re(x3) = Re(y3) and Im(x3) = Im(y3), we conclude that x3 = y3. Therefore

x = y, contrary to the assumption that x and y are linearly independent. Finally, there

are no lightlike vectors in x⊥ which are linearly independent with x.

Lemma 6.9. Let V be a 2-dimensional right H-submodule of H3. Then there is a

nonzero vector x ∈ H3 such that V = x⊥.

Proof. Since V is a 2 dimensional right H submodule of H3, there exists a basis {u, v}.

V = {uq1 + vq2 | q1, q2 ∈ H} = spanH{u, v}.

Find an element x ∈ H2,1 such that x⊥ ∈ V.
Since 〈u, x〉 = 〈v, x〉 = 0, we have 〈uq1 + vq2, x〉 = q1〈u, x〉 + q2〈v, x〉 = 0 for any

q1, q2 ∈ H. Let u = (u1, u2, u3), v = (v1, v2, v3), then

u3x1 + u2x2 + u1x3 = 0.
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v3x1 + v2x2 + v1x3 = 0.

We can find a soluton of these equations. Because the number of xi is larger than the

number of equations.

Corollary 6.10. Let V be a 2-dimensional right H-submodule of H3. Then

(1) if V has linearly independent two lightlike vectors, then V = x⊥ where x is space-

like,

(2) if V has only one lightlike vectors up to scaling by a nonzero quaternion, then

V = x⊥ where x is lightlike.

(3) if V has no lightlike vectors, then V = x⊥ where x is timelike.

Definition 6.11. A basis {v1, v2, v3} of H2,1 is said to be orthonormal if |〈vi, vi〉| = 1

for i = 1, 2, 3 and 〈vi, vj〉 = 0 for all distinct i, j.

Example 6.12. An example of an orthonormal basis of H2,1 is
{

e1+e3√
2
, e2,

e1−e3√
2

}
.

Theorem 6.13. Let {v1, v2, v3} be an orthonormal basis of H2,1. Then it exactly con-

sists of two spacelike vectors and one timelike vector.

Proof. If everty vector vi is spacelike, for any v = v1a1 + v2a2 + v3a3,

〈v, v〉 = |a1|2〈v1, v1〉+ |a2|2〈v2, v2〉+ |a3|2〈v3, v3〉 ≥ 0

which means that every vector in H2,1 is spacelike, contrary to the fact that there is a

timelike vector in H2,1. If every vector vi is timelike, every vector in H2,1 is timelike in a

similar way, contrary to the fact that there is a spacelike vector. Thus any orthonormal

basis of H2,1 has at least one spacelike and one timelike vector.

An example of orthonormal basis of H2,1 is { e1+e3√
2
, e2,

e1−e3√
2
}. Here e1+e3√

2
and

e2 are spacelike vectors and e1−e3√
2

is a timelike vector. Let v1 be a spacelike vector

and v2, v3 timelike vectors. Then spanH{ e1+e3√
2
, e2} ∩ spanH{v2, v3} = {0} and hence

{ e1+e3√
2
, e2, v2, v3} is linearly independent. Thus the dimension of spanH{ e1+e3√

2
, e2, v2, v3}

is at least 4. But this contradicts dimH2,1 = 3. Thus any orthonormal basis {v1, v2, v3}
of H2,1 has two spacelike vectors and one timelike vector.

Let f : H2,1 → H2,1 be a right H-module homomorphism preserving the Lorentzian

inner product i.e.

〈f(x), f(y)〉 = 〈x, y〉.

Then the quaternion 3× 3 matrix A associated to f satisfies A∗JA = J where

J =


0 0 1

0 1 0

1 0 0

 .
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Let Sp(2, 1) denote the set of all quaternion 3× 3 matrices A with A∗JA = J .

Lemma 6.14. Every element of Sp(2, 1) is invertible.

Proof. For any A ∈ Sp(2, 1), A∗JA = J and hence J · A∗JA = J · J = I. Then it

follows that A−1 = JA∗J . In other words every element of Sp(2, 1) is invertible.

Proposition 6.15. The set Sp(2, 1) is a group.

Proof. Let A, B and C be matrices in Sp(2, 1). The associativity of quaternions gives

A · (B · C) = (A · B) · C. This implies that Sp(2, 1) satisfies the associative law.

Obviously, the identity matrix I is in Sp(2, 1) and thus it is the identity of Sp(2, 1).

By Lemma 6.14, each matrix A in Sp(2, 1) has an inverse A−1 = JA∗J . Moreover,

(JA∗J)∗ · J · (JA∗J) = JA(JA∗J) = JAA−1 = J.

Thus A−1 ∈ Sp(2, 1). Therefore Sp(2, 1) is a group.

Let V0 be the set of lightlike vectors of H2,1. Let V+ (resp. V−) be the space of

spacelike (resp. timelike) vectors whose norms are 1 (resp. −1).

There is a natural Sp(2, 1)-action the space of bases of H2,1 as follows: Let

A ∈ Sp(2, 1) and {v1, v2, v3} be an orthonormal basis of H2,1. Since A preserves

the Lorentzian inner product, it immediately follows that {Av1, Av2, Av3} is also an

orthonormal basis of H2,1.

Definition 6.16 (transitivity). A group action G×X → X is transitive if it possesses

only a single group orbit, i.e., for every pair of elements x and y, there is a group

element g such that gx = y. In this case, X is isomorphic to the left cosets of the

isotropy group, X ∼ G/Gx. The space X, which has a transitive group action, is called

a homogeneous space when the group is a Lie group.

If, for every two pairs of points x1, x2 and y1, y2, there is a group element g such

that gxi = yi, then the group action is called doubly transitive. Similarly, a group

action can be triply transitive and, in general, a group action is k-transitive if every set

{x1, ..., yk} of 2k distinct elements has a group element g such that gxi = yi.

Theorem 6.17. The Sp(2, 1)-action on the set of orthonormal bases of H2,1 is tran-

sitive.

Proof. Let u1 = (e1 + e3)/
√

2, u2 = e2 and u3 = (e1 − e3)/
√

2. Then we have shown

that {u1, u2, u3} is an orthonormal basis of H2,1. To prove the theorem, it suffices

to show that for a given orthonormal basis {v1, v2, v3} ∈ F1, there exists an element
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A ∈ Sp(2, 1) such that A · {u1, u2, u3} = {v1, v2, v3}. Let |v1| = |v2| = 1 and |v3| = −1.

Define A =
[
v1+v3√

2
, v2,

v1−v3√
2

]
. Then by a direct computation,

Au1 = A

(
e1 + e3√

2

)
=

1√
2

(
v1 + v3√

2
+
v1 − v3√

2

)
= v1.

Au2 = Ae2 = v2.

Au3 = A

(
e1 − e3√

2

)
=

1√
2

(
v1 + v3√

2
− v1 − v3√

2

)
= v3.

To prove that A ∈ Sp(2, 1), we verify that

A∗JA =


〈v1+v3√

2
, v1+v3√

2
〉 〈v1+v3√

2
, v2〉 〈v1+v3√

2
, v1−v3√

2
〉

〈v2, v1+v3√
2
〉 〈v2, v2〉 〈v2, v1−v3√

2
〉

〈v1−v3√
2
, v1+v3√

2
〉 〈v1−v3√

2
, v2〉 〈v1−v3√

2
, v1−v3√

2
〉

 =


0 0 1

0 1 0

1 0 0

 = J.

Therefore, the Lemma follows.

Lemma 6.18. The Sp(2, 1)-actions on V0, V+ and V− are all transitive.

Proof. Let x ∈ V0. It is sufficient to prove that there exists A ∈ Sp(2, 1) such that

Ae1 = x. Choose y ∈ V0 such that {x, y} ⊂ V0 are linearly independent. Then 〈x, y〉 6=
0. By scaling y, we may assume that 〈x, y〉 = 1. According to corollary 6.10, there is a

spacelike vector z such that 〈z, z〉 = 1 and z⊥ = spanH{x, y}. Define A = (x, z, y).

A∗JA =


〈x, x〉 〈x, z〉 〈x, y〉
〈z, x〉 〈z, z〉 〈z, y〉
〈y, x〉 〈y, z〉 〈y, y〉

 =


0 0 1

0 1 0

1 0 0

 = J.

Thus A ∈ Sp(2, 1) and Ae1 = x.

Let x ∈ V+. By corollary 6.10, there is a vector z ∈ V− such that z ∈ x⊥. Choose

y ∈ V+ such that y ∈ x⊥ ∩ z⊥. Then {x, y, z} is an orthonormal basis of H2,1. By

Theorem 6.17, there exists an element A ∈ Sp(2, 1) such that Ae2 = y. Hence the

Sp(2, 1)-action on V+ is transitive. Similarly, one can prove that the Sp(2, 1)-action

on V− is transitive.

Proposition 6.19. The Sp(2, 1)-action on V0×V0\∆ is transitive where ∆ = {(x, x) | x ∈
V0}.

Proof. In the proof of Lemma 6.18, we have shown that for any linearly independent

vectors x and y in V0, there exists an element A ∈ Sp(2, 1) such that Ae1 = x and

Ae3 = y, which implies the transitivity of the Sp(2, 1)-action on V0 × V0 \∆.
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