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Abstract 

Smart factory also known as smart manufacturing is an emerging field with the revolution of 

industry 4.0. The smart factory concept is an integration of internet of things technologies, 

computing platforms, cyber-physical systems, control mechanisms, data modeling and 

simulations, optimization techniques and predictive engineering. With the help of all these 

concepts, the smart factory integrates the manufacturing assets and represents industrial 

networks. The aim of smart factory industrial networks is mass customization, on-demand 

supply chain management, optimal and flexible processing solutions, and parallel processing. 

Smart factory faces many limitations in the current age and is need of research solutions for 

issues such as environmental hazards, energy consumption, productivity, efficient planning, task 

management, job scheduling, machine utilization, reliable infrastructure and integrated solutions.  

In this thesis, we put our efforts to find integrated solutions for smart factory concerns by 

proposing an efficient task management mechanism based on learning to scheduling in smart 

factory. The scope of the proposal is to efficiently plan tasks execution, maximize machines’ 

resource utilization, maximize productivity, minimize production delays, efficiently handle 

exceptions and efficiently control smart factory actuators. The proposed learning to scheduling 

mechanism focuses on both machine structure and tasks modeling for efficient scheduling. We 

design and develop an integrated solution of learning to scheduling based on sub-modules of 

prediction and learning for prediction mechanism, optimization and learning for optimization 

mechanism and inference engine based control mechanism in this thesis work. 

The scheduling algorithm used for the efficient task management is hybrid of the two 

scheduling approaches as agent cooperation mechanism (ACM) and fair emergency first (FEF) 

scheduling scheme. ACM is a decentralized scheduling approach which focuses on the 
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production maximization goals per machine and also centers the production goals of all the 

machine networks involved in the smart factory. FEF scheduling scheme focuses on minimizing 

the tasks starvation rate and maximizing the machine utilization by efficiently using the machine 

slots. In FEF scheduling scheme, two predictive learning based factors are used to improve the 

scheduling performance; UM (Urgency Measure) and FM (Failure Measure). Both UM and FM 

use ANN prediction algorithm to learn from scheduler’s history decisions and put the learnings 

in context to wisely use the free machine slots; aiming to increase machine utilization without 

risking timely execution of any high priority task.  

The learning to prediction mechanism takes scheduler history data as input and predicts the 

future tasks completion status and machine utilization rate under varying tasks’ loads. The 

prediction algorithm used is artificial neural network (ANN) and learning algorithm used is 

particle swarm optimization (PSO). The learning algorithm of PSO tunes the ANN’s weights 

during training iterations to optimize the ANN weights and maximize the prediction accuracy. 

The learning to optimization mechanism aims to maximize the machine utilization for 

machines involved in the smart factory, in order to efficiently use the machine resources. The 

optimization algorithm used is PSO and the learning algorithm used is ANN. First, PSO history 

is built to train the ANN algorithm and then based on ANN training the PSO particle’s velocities 

are tuned in order to enhance the optimization results. 

The control mechanism for smart factory actuators is based on the inference engine. The 

inference engine is fed with rule base which contains list of rules for existing actuators based on 

incoming sensing and system values. The inference engine matches the rules and generates the 

control tasks. The control tasks are sent to the scheduler to be executed; and on execution of 

control tasks, the control commands are sent to the actuators via control unit. 

The proposed task management mechanism is evaluated based on multiple scenario 

simulations and performance analysis. The comparisons analysis shows that proposed task 
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management system, referred as learned predictive and optimized hybrid scheduling scheme, 

significantly improves the machine utilization rate and drastically drops the tasks instances 

missing rate and tasks starvation rate. Overall, we observe that the learned predictive FEF 

scheduling in comparison to basic FEF scheduling scheme shows an average of 72.23% 

reduction in tasks starvation rate and an average of 54.17% reduction in tasks instances missing 

rate reduction. Also, the learned predictive and optimized hybrid scheduling scheme 

demonstrates an average of 27.28% increase in machine utilization, and an average of 36.38% 

improvement in response times. 
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Chapter 1:  Introduction  

Technology has vastly changed with the changes witnessed by the industrial revolutions. Till 

today, the world has observed four industry revolutions where first industrial revolution started 

in 1784 with the introduction of mechanization based on steam and water power. The second 

industrial revolution came in 1923 with the introduction of mass production and electricity. The 

third industrial revolution came in 1969 with the introduction of electronics and IT systems 

along with introduction of automation. The fourth industrial revolution came in 2014 with the 

introduction of cyber physical system based on smart machines, sensors, automated control of 

actuators, and inter-connectivity between the physical world the virtual world [1]. The 4th 

industrial revolution resulted in the introduction of smart manufacturing and smart factory. The 

Industry 4.0 can be defined as smart factories with connected machine and intelligent robots 

based on the cyber physical systems.  

The underlying technology of smart factory is internet of things (IoT) which has smart 

sensing technologies, smart machines connected to network, intelligent and automated control 

with self-awareness, self-prediction, self-optimization, self-configuration and self-diagnosis. 

Such systems are enabled with the help of cyber physical system (CPS) concept. The integration 

of IoT and CPS into factory creates a virtual twin of the physical world with each physical object 

having its virtual representation. In a smart factory all the objects are connected using the IoT 

networks and the operations are operated by CPS. The basic goal of IoT is to connect the real-

world objects while the aim of CPS is to connect the physical world with the virtual world [3] as 

shown in Figure 1. 
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Figure 1: Integration of IoT and CPS 

The virtual objects are contained in a virtual network which replicates the physical 

representation, dependencies and context of the physical world objects. The IoT enabled smart 

factory solutions help achieving the real-time production visualization with the identification of 

manufacturing objects. The technologies such as radio frequency identification (RFID) are used 

to interpret the real-world object into smart factory’s virtual objects along with their behaviors 

and interactions. The development of such system facilitates in the smart factory production 

process, intelligent decision making and automated control process, and other operations [4].  

The smart machines participate in generating huge volumes of data known as big data. Big 

data can be used and analyzed to aid the smart factory production. Artificial intelligence (AI) 
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and machine learning mechanisms are used to interpret the big data into useful information to be 

applicable. The right use of big data can help smart factory to optimize the production by 

maximizing the production output, maximizing the machine utilization, minimizing the energy 

consumption, minimizing the production cost, and minimizing the production time. The 

application of AI and machine learning into big data can result into application scenarios such as 

predictive maintenance, fault detection, product’s quality detection, production cost predictions 

etc. The big data analytics are deployed for performance monitoring, performance management 

and optimization of the operations.  

The smart factory has inter-connected supply chains and autonomous control of vehicles, 

machines and robots resulting in efficient production tasks management such as getting 

shipments ready based on tracking of ships’ arrivals and departures and avoiding delays with the 

help of self-driving vehicles and self-delivering robots. The goal of smart factory is to deliver 

smart solutions to the customers of smart factory.  

Customers play a vital role in the smart factory. In order to assure the customers’ satisfaction 

and growth, it very crucial for the smart factory to perform the production process efficiently and 

effectively in real-time by meeting all constraints [5]. This task can be performed with the help 

of following two factors set at the right place. The first is the automated feedback of the 

production processes and second is the implementation of analytics tools to accurately predict 

the production and consumers patterns [6]. Hence, the predictive and optimized scheduling is 

very crucial for the smart factory’s timely task management.  

In this thesis, we propose learning to scheduling mechanism based on learning to prediction 

and learning to optimization in smart factory.  

The proposal aims to aid the smart factory’s manufacturing processes with efficient tasks 

allocation, efficient tasks dispatching and efficient tasks scheduling; in order to improve the 

overall productivity of the manufacturing process. The proposed mechanism involves the 
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scheduling of tasks with the aid of learning modules of prediction and optimization. The learning 

modules provide the history based predictions and tuned parameters for improved task 

management. In the Figure 2 show, we present the conceptual diagram of the proposed system. 

 

Figure 2: Conceptual diagram of the proposed task management mechanism 

The proposed solution is based on three main modules as prediction module, optimization 

module and scheduling module. The prediction and optimization module facilitate the 

scheduling module by improving the task management process with their learned inputs. The 

scheduling scheme for efficient task management is based on the hybrid decentralized 

scheduling named as agent cooperation mechanism (ACM) and a fair emergency first (FEF) 

scheduling scheme. Two learning based sub-modules are added in scheduling to improve the 

scheduling outcome: UM (Urgency Measure) and FM (Failure Measure). We propose an 
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optimized prediction scheme for predicting the tasks execution status and machine utilization 

rate under given load of the tasks based on the history decisions. We also proposed improved 

variations of PSO for optimized predictions using ANN as VB-PSO-NN and R-PSO-NN. An 

objective function is proposed for enhancing machine utilization and to seek the optimal results 

based on PSO algorithm. Also, we use the proposed improved variations of PSO (VB-PSO and 

R-PSO) as optimization algorithm. We further implement the ANN learning based VB-PSO and 

R-PSO; where ANN is used to tune the particle weights. 

 

Figure 3: Smart factory development phases 

The development phases of the thesis study are shown in Figure 3. There are three main 

development phases as related study for smart factory system requirements, development of 

smart factory system prototype and evaluation of the smart factory based on task management. 
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The rest of the thesis is structured as follows. In chapter 2, we present the literature review 

divided into subsections as internet of things and cyber-physical system in smart factory (section 

2.1), scheduling mechanisms (section 2.2), prediction mechanisms (section 2.3) and optimization 

mechanisms (section 2.4). In section 2.5 we present the limitations of existing works in smart 

factory and we also provide comparisons of existing works with proposed work. In section 2.6 

we present the basics of two main algorithms used in the proposed work. In chapter 3, we 

present the proposed learning to scheduling mechanism for efficient task management. The 

section is divided into five sub-sections as conceptual learning to scheduling mechanism in 

section 3.1, learning to scheduling modules presented in section 3.2, learning to prediction 

modules presented in section 3.3, learning to optimization modules presented in section 3.4 and 

control mechanism presented is section 3.5. In chapter 4, we present the simulation 

developments environment. Chapter 4 is divided into four sub-section as environment modeling 

presented in section 4.1, input tasks notations presented in section 4.2, simulation 

implementation environment presented in section 4.3 and scheduling simulation application in 

presented in section 4.4. In Chapter 5, we present the simulation and performance analysis of the 

proposed learning to scheduling mechanism. We use task modeling scenarios as candy box 

factory tasks dataset, user input based simulated tasks dataset and machine cluster tasks dataset. 

We analyses the results based on the (a) analysis of the prediction module (b) analysis of the 

optimization module and (c) analysis of the hybrid scheduling scheme. The performance 

analysis metrics considered are prediction accuracy, tasks instances missing rate, tasks starvation 

rate, machine utilization rate and machine response time. In chapter 6, we conclude the thesis.    
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Chapter 2:   Related Work  

In this section, we present the related literature of smart factory. Smart factory is based on 

many key components such as IoT, cyber-physical system, process scheduling, prediction 

mechanisms for improving the outcomes based on learnings from history actions and responses, 

optimization mechanism for improving the outcomes based on finding the optimal parameters 

for certain scenarios and optimal solutions to scenario based problems.  

Many changes in factory happened after emergence of industry 4.0, in form of production, 

supply of products and timeline [2]. The differences in industry before fourth industrial 

revolution and after fourth industrial revolution can be marked as changes in concepts of mass 

production to mass customization, scheduled supply to on-demand supply, static attributes to 

optimal and flexible attributes, and focus from product to usage. 

The rest of the sections are divided as following. First, in section 2.1 we explain the 

evolution of IoT and revolution in industry with introduction of IoT, resulting in Industry 4.0 

which is also be referred as smart factory. Also, in this section, we present the cyber-physical 

systems as these are one of the key components of smart factory. In section 2.2, we present the 

literature review of scheduling mechanisms in smart factory. In section 2.3, we present the 

prediction mechanisms used in the smart factory domain and the most commonly used 

prediction algorithms. In section 2.4, we present the related works to optimization mechanisms 

used in the smart factory domain and the most commonly used optimization algorithms. In 

section 2.5, we present the limitations of existing solutions and in section 2.6 we highlight the 

existing and related algorithms which we will be using in our proposed mechanism. 
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2.1 Internet of Things and Cyber Physical Systems in Smart 

Factory 

Internet of Things (IoT) is one of the key essences of smart factory. IoT can be simply 

defined as integration of internet into things or objects. The IoT networks consist of embedded 

devices such as sensors and actuators which are connected to form sensor networks and actuator 

networks. The integration of IoT into factory enables the smart manufacturing process. Smart 

manufacturing has real-time data sharing and interaction among the smart devices, machine and 

objects. [11,12]. IoT elements which are widely used in smart factory include radio frequency 

identification technology, smart tags, sensing technologies, location tracking, real-time 

actuators’ control etc. [13]. 

Smart factory uses the combination of IoT technologies and industry technologies consisting 

of sensors, actuators, network connectivity, smart computing, predictive analytics and optimized 

control [14]. 

The digital revolution for smart factories started after 1970s and continues till today, with 

rapid increase in automation and smart control of industry manufacturing by integrating first IT 

(Information Technology) and now IoT based technologies, models, frameworks and solutions. 

The complete integration of IoT technologies in factory environment is termed as the fourth 

industry revolution [15-18]. 

The inclusion of IoT technologies in factory results in boosting the factory production and 

efficiency. In 2014, a survey conducted by American society for quality presents that the 

inclusion of smart manufacturing significantly affects the factory efficiency. The results have 

shown the customers to be 45% more satisfied with the products and a decrease in product 

defects up to 49% [19]. Another survey conducted in 2013 was based on basic question of 

addition of IoT in businesses and expectation of businesses growth with this addition. The 
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results present that about 96% of the people believed that IoT will become an addition to a part 

of their businesses at some point, 38% believed that IoT will have a vital influence on their 

businesses, 45% responded that adopting IoT will have a positive influence on their company 

environment, and 63% responded that businesses which show a lack of interest in integration of 

IoT will be left behind [20].  

 

Figure 4: IoT enabled interaction between smart factory and consumers [21] 

In Figure 4, an IoT technology enabled interaction among smart factory and smart factory 

consumers is shown. The interaction is two way, first from the smart consumers to smart factory 

where the users’ data such as potential consumers’ needs, their online behaviors and expected 

product behavior are passed onto the smart factory; second is from smart factory to smart 
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factory’s consumers where the smart products and services matching to the consumers’ needs 

are delivered to them. 

The Figure 5 presents an IoT based architecture for smart factory which consists of five 

main units as smart customer’ behavior, cloud computing and big data, smart factory, smart grid 

and smart suppliers. The smart factory unit consists of seven main components as smart 

machine, smart devices, smart engineering, smart manufacturing process, data analytics, 

manufacturing IT and smart suppliers [16]. 

 

Figure 5: An architecture for IoT-based smart factory [16] 
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The Table 1 below explains the units and components involved in the IoT based smart 

factory architecture. 

Table 1: Units and components involved in the IoT based smart factory architecture 

Unit/Component Description 

Smart machine 
– Machine-to-Machine communication 

– Machine-to-Human communication 

Smart device 

– Field devices 

– Mobile devices 

– Operating devices 

– Sensing devices 

– Actuating Devices 

Smart manufacturing processes 

– Dynamic process communication 

– Efficient process communication 

– Automated process communication 

– Real-time process communication 

Smart engineering 

– Product design 

– Product development 

– Product engineering 

– Product production 

– Product’s after sales service 

Manufacturing IT 

– Software application 

– Smart monitoring 

– Data Sensing 

– Automated control 

– Smart meters 

– Smart mobile devices 

– Intelligent production management 

Smart logistics – Logistics tools 

– Logistics processes 

Smart suppliers – Maximize real-time information sharing 

– Maximize flexibility 

Smart grid – Smart infrastructures for energy in smart 

factory 

Big data and cloud computing – Algorithms 

– Analysis of applications 
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Cyber-Physical Systems (CPS) can be referred as the systems with integrated computational 

and physical capabilities [22]. CPS plays a vital role in the development of smart factory 

systems, as CPS aids the managing of big data being continuously generated by the sensors, IoT 

networks and smart machines. Such steps will influence the machines to become intelligent and 

self-adaptable, hence improving the machine-to-machine and machine-to-human communication 

dramatically [23-24]. The integration of CPS with the factory units of production, logistics and 

services will transform them into Industry 4.0 factory (smart factory), with increased economic 

prospective [25-26]. 

In Figure 6, a five level CPS architecture is presented [27]. The purpose of the architecture is 

to list down the steps of building a CPS, in order to bring ease in CPS development, 

implementation and integration into smart factory. The architecture has five layers as smart 

connection level, data-to-information conversion level, cyber level, cognition level and 

configuration level. The connection level contains local data server, data-to-information 

conversion level contains sensing data and machine data, cyber level contains adaptive health 

assessments and time machine records, cognition level contains machine components along with 

quality check and products along with quality reasoning and configuration level contains self-

optimized machine tools and self-adjustable prognostics. 

The Table 2 below shows the five CPS levels along with each level’s attributes description. 

The main attributes of a CPS system include self-aware, self-configure, self-adjust, self-

optimize, self-maintain, self-compare and self-organize. 
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Table 2: CPS architecture levels and attributes 

CPS Level Attributes Description 

1. Smart connection level 

– Self-configure 

– Self- adjustable 

– Self-optimizable 

2. Data-to-information conversion level 

– Integrated simulation 

– Remote visualization 

– Collaborative diagnostics 

– Decision making 

3. Cyber level 

– Twin model for smart factory 

components and machines 

– Time machine for variation 

identification and memory 

– Clustering for similarity in data 

mining 

4. Cognition level 

– Smart analytics for machine health 

– Smart analytics for multi-dimensional 

data association 

– Performance prediction 

5. Configuration level 
– Sensor network 

– Actuator network 

 

Connection level establishes the connection to the local data server. Conversion level 

converts the sensing data and machine data to system understanding. Cyber level replicates the 

physical smart factories’ objects, machines and involved elements and it provide the adaptive 

health assessments of the machine and time machine records. Cognition level performs quality 

check, quality reasoning for the machine and product. Configuration level performs the self-

optimization to machine tools to meet the quality requirements and efficiency requirements; and 

it performs the self-adjustable prognostics to improve the assets life-time and to improve the 

product quality. 
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Figure 6: CPS architecture for smart factory [27] 
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2.2 Scheduling Mechanisms 

The scheduling in smart factory involves the scheduling of tasks, processes and jobs in smart 

manufacturing. Also, the scheduling of smart manufacturing resources such as the sensing tasks 

from installed sensors, the control tasks for the smart machines and robots. The aim of 

scheduling in a smart factory is to optimize the production in every possible way. Scheduling 

mechanism is vital for the effective and optimal production of customized products in smart 

factory. Effective and optimal production is one which balances all involved parameters such as 

quality, cost, productivity, time and other system resources [28].  

The smart factory solution requires a real-time scheduling approach for ordering the tasks 

and jobs arriving at the machines. The real-time scheduling aims to increase the factory 

productivity and machine utilization [29-30]. Real-time smart factory task management is 

achieved with the flexible event-driven reactions to the periodic/non-periodic happenings at the 

smart factory.  

A mechanism for dynamic scheduling of services for smart factory is presented in [31].  The 

solution of scheduling the services of CPS is based on structure dynamics control. The adaptive 

scheduling and automated control are considered very crucial to the smart manufacturing based 

on the CPS production [32-33]. The real-time systems involve two main scheduling mechanisms 

as multi-pass simulation mechanism [34], and machine learning scheduling mechanism [35-36]. 

A multi-pass simulation is based on real-time simulation and fast mode preview of the 

simulation. The fast mode simulations are used to select the best scheduling policies for the shop 

floor control simulations on real-time [37]. Multi-pass scheduling approach can be unsuitable for 

real-time systems scenarios due to consuming high computational resources. 

The machine learning scheduling mechanism is more suitable for real-time systems. The 

machine learning based mechanism requires building a knowledge based first, by running 
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simulations based on training examples. The building phase of enough knowledge base is a time 

taking task. Once the knowledge base is built, it helps the simulations to acquire the results in a 

more robust and efficient manner. The knowledge base aids in making real-time decisions based 

on smart manufacturing operational constraints and parameters [38]. 

Main algorithms used for building knowledge base in machine learning scheduling 

mechanism are ANNs [39], support vector machines [40] and decision tree learning [41]. 

An agent cooperation mechanism for decentralized scheduling is proposed in [42]. The 

proposed mechanism focuses on decentralized scheduling based on agents such as order agent, 

product agent and resource agent. The order agent generates process execution knowledge, 

product agent generates production knowledge, and resource agent generates process knowledge. 

The agent has three main functions as time budget utility function (TBU), pair compatibility 

utility function (PCU) and network utility function (NCU). TBU aims to maximize the chance of 

executing a task before its deadline. PCU aims to enhance the utilization of a machine pair 

ordered together for jobs execution. NCU aims to maximize the network utilization based on 

pairs ordering and jobs allocations. The resource agent executes the instances using genetic 

algorithm for optimization process to ensure the maximization of system goals. 

Some of the traditional scheduling approaches for real-time and non-real-time systems are 

first in first out (FIFO), shortest job first (SJF), highest priority first policy, least laxity first 

(LLF), modified least laxity first (MLLF), round robin (RR), earliest deadline first (EDF) and 

deadline monotonic (DM) [43-50]. Some of the customized scheduling approaches for real-time 

system scheduling are maximum urgency first (MUF), time-stepped load balancing (TLS), 

smoothed least laxity first (sLLF), procrastination scheduling and hybrid scheduling approaches 

[51-66]. 
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2.3 Prediction Mechanisms  

Prediction mechanism are very crucial in smart factory as they widely help in improving the 

product quality and customers experience based on learnings from past trends. The 

implementation of analytics tools to predict the production and consumer patterns plays a vital 

rule. Figure 7 shows the framework for the predictive manufacturing system [6]. 

 

Figure 7: Predictive Analytics in Smart Factory [6] 

Algorithms which focus on finding efficient and quick solutions (approximate solutions) to a 

problem by forfeiting the accuracy and optimality are known as Heuristic algorithms. 
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Algorithms which create a statistical or probability based model for the input data are known as 

statistical algorithms. Table 3 shows the list of heuristic and statistical algorithms. 

Table 3: Heuristic and Statistical Algorithms 

Heuristic Algorithms Statistical Algorithms 

Artificial Neural Networks Linear/Logistic Regression 

Support Vector Machines Naïve Bayes Classifier 

Genetic Algorithms K Means Clustering 

Swarm Intelligence Support Vector Machine 

Simulated Annealing Markov chains 

- ARIMA 

 

Prediction mechanism is used at multiple levels in the smart manufacturing. It is used for 

performance predictions of the system [67]. Prediction approaches are also used to predict the 

health conditions of smart factory tools such as a study in [68] uses ANNs based predictions, 

support vector machine based predictions and random forests based predictions for the tool wear 

predictions in the smart manufacturing. One of the major roles of prediction approaches in the 

smart manufacturing is of predictive maintenance [69]. Predictive maintenance refers to the 

timely predictions for the smart factory’s equipment downtime and failure in order to improve 

the productivity and minimize the production cost. The study in [70], presents a baseline 

predictive maintenance solution which consists of components such as a target device (TD), 

device health index (DHI), and remaining-useful-life (RUL) predictive model. The system gets 

related process data and target device data as input and outputs the device health index and 

device’s remaining useful life indicating whether device is in safe state or risk state. 
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Figure 8: Baseline Predictive Maintenance [70] 

The work presented in [71] combines the baseline predictive scheme with a cyber-physical 

agent and adds an advanced manufacturing based on cloud of things to implement a system that 

provides factory-wide equipment maintenance with hundreds of machines active in the smart 

factory. The goal is to provide a factory-wide predictive maintenance system. The study 

presented in [72] also proposes a cloud based predictive maintenance solution to aid the smart 

factory production. Many prediction mechanisms focused on task completion, time management, 

self-adaptive task scheduling, task replication, low-power task scheduling etc. presented in other 

related studies [73 - 83]. 

2.4 Optimization Mechanisms  

In the Figure 9, the classification of optimization algorithms into two main classes as 

systematic optimization and heuristic algorithms is given [84]. The systematic optimization is 

further classified into two sub-classes as mathematical optimization and combinational 

optimization. The heuristic algorithms are further divided into three main sub-classes as bio-

inspired optimization algorithms, hybrid optimization algorithms, and stochastic optimization. 

Each sub-class has a number of algorithms residing in it as given in the Figure 9. 
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Figure 9: Typical classification of primitive optimization algorithms [84] 

The task scheduling simulations when guided by simulation optimization approaches result 

in improved productions. The optimization model is used to generate the possible solutions 

which maximize the productivity and minimize the cost [85]. The work presented in [86] 

highlights the challenges and limitations of the process manufacturing in the current 

petrochemical industry. The study stresses on the adaptive smart optimization for manufacturing 

process and supportive control and optimization for factory-wide process production. 

Industrial RFID performance evaluation is performed in the study presented in [87], for 

optimal design of smart factory processing. The study presented in [88], presents a review of the 

3D printing by highlighting the concerns to be addressed for optimized 3D printing application. 

Optimization is used both at individual unit level and also with integration of all units to 

optimize entire systems bigger goal. The work presented in [89] suggests the integration of all 

existing process control and related components can result in an optimized system with 

minimized cost and improved energy productivity. A workshop conducted in 2014, ASCPM, 

highlighted the need for contrasting smart manufacturing with digital manufacturing with design 
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modeling as its core. Design models aim to optimize the product, optimize the chain supply, and 

optimize the decision-making process, optimize scheduling and optimize control. 

In the past many factories have been only concerned about forward logistics. The term 

forward logistics refers to the delivery of product from suppliers to consumers. The bulk return 

of products shifted the focus to reverse logistics which refers to the delivery from consumer to 

the factory. The work proposed by Fang et al. focuses on the reverse logistics techniques [90]. 

The proposed solution is an integrated IoT based three staged model. The proposed model aims 

to optimize the factors such as procurement, production and product recovery, pricing and 

strategy of return acquisition. They model considers three ways of handling products’ return as 

refurbish the existing product, reuse the individual components of product into something or 

dispose the existing product. The model of optimization is built using PSO algorithm based on 

two heuristic methods and the proposed solution is verified and evaluated via use case scenario. 

The study in [91] presents a multi-stage synchronized production system based on 

collaborative environment under IoT environment. With the industrial revolution, mass 

customization has been on rise with every passing day. The product details and specifications 

keep changing from one order to the next. With these changes, many other involved factors also 

change in the production mechanism and all these count as changing production dynamics. The 

proposed model aims to build a control infrastructure for the production system, which can 

handle the production dynamics well; keeping the components of system synchronized and 

optimizing the production process.  

Internet of Manufacturing Things (IoMT) is the field developed by integrating the IoT and 

manufacturing. Another term used for IoMT is smart manufacturing. The goal of IoMT is to 

enhance the manufacturing experience by supporting real-time interoperability, real-time product 

tracking, optimized production control and execution. A detailed insight on optimization of 

manufacturing system is given in the book written by Zhang at al. [92]. 
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Ghashghaee at al. conducted a study in [93] which is primarily focused role of IoT in 

process optimization. The study highlights the issues faced by the manufacturers and proceeds to 

suggest the solutions for the highlighted issues. The study focuses on IoT technologies and how 

the IoT technologies are used for process optimization. The challenges faced by the 

manufacturing systems are studied in [94]. It focuses on the manufacturing system based on IoT 

technologies, process management and optimization. The work presented in [95], aims to solve 

business optimization problems with the use of optimization algorithms such as accelerated PSO 

and support vector machine (SVM). The proposed mechanism APSO-SVM is used for 

production optimization and then also used for predicting income and project scheduling. Many 

other related studies have focused on optimization problems in manufacturing processes [96-

107]. 

The study in [108] carries a survey on application of genetic algorithm broadly used for 

optimization. In [109], a survey for another broadly used optimization algorithm ant colony 

optimization (ACO) is presented. In [110], a survey for simulated annealing is presented which 

is also widely used for optimization. A review and analysis on the optimization algorithm 

particle swarm optimization (PSO) is given in [111].  

2.5 Limitations of Existing Solutions 

With the detailed literature review of the smart factory, now we highlight the main 

challenges and limitations of the proposed solutions. Table 4 below explains the existing 

challenges of the smart factory domain. Existing challenges of the smart factory include as 

environmental hazards, energy consumption, improve productivity, reliable infrastructure, and 

ease of integration. 
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Table 4: Smart factory challenges and description 

Challenges Description 

Environmental Hazards 

Environmental hazards include the states and events 

involved the smart factory which has the potential of 

adverse effects on the natural environment, people and 

surrounding. Solutions which neglect the green world 

obligations might be hazardous to environment. 

Energy Consumption 

Minimizing the energy consumption is very vital to smart 

manufacturing.  

– High energy consumption can lead to high 

manufacturing costs. 

Improve Productivity 

Productivity improvement t smart factory refers to  

– Improving production efficiency  

– Improving production effectiveness.  

– Improving product quality 

Reliable Infrastructure 

Reliable infrastructure is achieved through right 

implementation of 

– Predictive analysis techniques  

–  Optimization techniques  

Integration 

Individual components should be independent and easy to 

incorporate and amalgamate. 

 
In Table 5, we present the possible solutions to the challenges based on the literature review.  
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Table 5: Smart factory challenges and solutions 

Challenges Solutions 

Environmental Hazards 

Predictive analysis of historical data and optimize future 

processes to minimize environmental hazards 

Energy Consumption 

Predictive analysis of historical data and optimize future 

processes to minimize energy consumption 

Improve Productivity Efficient task scheduling mechanism 

Reliable Infrastructure 

Predictive analysis and optimization techniques based to 

minimize machines’ downtime; minimize errors; and 

efficient scheduling to increase response time 

Integration 

Layered framework solution based on multiple independent 

modules. 

 
In Table 6, we present a detailed comparisons analysis of the proposed solution to some of 

existing related works based on sub-categories of task management and scheduling. The 

literature review for the task management and scheduling can be divided into five main sub-

categories as  

 Task/Process scheduling 

 Task load allocation 

 Predictive analysis 

 Process optimization  

 Decision support and coordinated control 
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Table 6: Comparisons among related works and proposed solution 

Related 

Works 

Task/Process 

Scheduling 

Task 

Load 

Allocation 

Predictive 

Analysis 

Process 

Optimization 

Decision 

Support and 

Coordinated 

Control 

[112] ✓    ✓ 

[113] ✓ ✓    

[114] ✓ ✓    

[115] ✓  ✓   

[116] ✓  ✓   

[117] ✓  ✓   

[118] ✓  ✓   

[119] ✓  ✓   

[120] ✓   ✓  

[121] ✓   ✓  

[122] ✓   ✓  

[123] ✓   ✓  

[124] ✓   ✓  

[125] ✓    ✓ 

[126] ✓    ✓ 

[127] ✓    ✓ 

[128] ✓    ✓ 

Proposed 

Work 

✓ ✓ ✓ ✓ ✓ 

 
In the literature review, we have observed that most of the proposed solution focuses on 

either one or two of the above mentioned sub-categories. Whereas, in order to provide a 

wholesome solution for tasks management it very essential to focus on all the aspects involved. 
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In the table, the related works are shown with respect to focused aspects in comparison to the 

proposed solution. In our proposal, we integrate all the essential aspects for tasks management as 

task scheduling, efficient task allocation, use of predictive analysis, optimization and, decision 

support and coordinated control. We propose learning to scheduling mechanism for task 

management which provides an integrated solution resulting in efficient task management based 

on the concepts of task scheduling, task allocation, prediction, optimization and control.  

2.6 Algorithms for Learning to Scheduling 

2.6.1 Neural Networks (NNs) 
The computational model (named as threshold logic) proposed in 1943 by McCulloch and 

Pitts led to the research of artificial intelligence-based neural networks [129]. Artificial neural 

networks started to flourish once the processing power of computers increased dramatically, as 

computation power was one of the key issues faced in the progress of ANNs at the initial stages 

[130]. 

Biologically inspired ANNs are known to produce most accurate prediction results [131]. 

ANN learning has two operational modes of training and testing, the system has a set of inputs, 

weights associated with the inputs, hidden layers and a number of outputs. In training, the 

neuron learns to decide whether to fire an output for a specific pattern or not, while in testing 

mode the accuracy of the learned model is determined. 

The structure of a three-layer neural network is shown in the Figure 10, where we have five 

inputs, six hidden layers and three outputs. The working of a simple neuron can be explained by 

Equation 1 [132], whereby a typical neuron computes the output in the following manner: 

ak = f(∑ wki
xi)

n

i=0

 (1) 
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where, ak  is the output of kth neuron. x1 ,  x2, . . . ,  xn are the inputs to the neuron. 

x0 input is bias (bk)assigning it + 1 value, with wk0  =  bk = 1.  wk1, wk2, …, wkn are the 

weights associated to each input. f is the activation function, which incorporates flexibility in the 

neural networks. 

 

Figure 10: Neural network (NN) layers 

2.6.2 Particle Swarm Optimization (PSO) 
In 1995, Kennedy and Eberhart proposed PSO, which is a population-based optimization 

technique inspired by bird flocking and fish schooling theory and also has strong ties to genetic 

algorithms and artificial life [133]. In the example of the search for food by flocking birds, the 

bird closest to the food leads and others follow. As soon as some other bird thinks it has a food 

source close to it, it makes a sound and all birds start following it, changing the direction. Each 

particle in PSO represents a bird in the flocking example, moving at a certain velocity looking 

for the optimal solution in the search space. 

In PSO, first a population of particles is initialized defining the number of particles that will 

carry the search for the optimal solution. Each particle has velocity with which it moves through 

the search space and fitness values. The particles move in the search space by following the 

particles with the best solution so far. Each particle maintains the track of two values as 
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particle’s best (pbest) and global best (gbest); pbest is the best solution achieved by the particle 

itself, while gbest is the best solution found by any particle in the entire population. After finding 

the pbest and gbest, the particle updates its velocity and position using the following equations 

[134]. 

𝑣 = 𝑣 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑝𝑏𝑒𝑠𝑡 − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) (2) 

𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 𝑣 (3) 

where, v is the particle’s velocity, present is the current particle position (solution), pbest is 

particle’s personal best solution found so far in the search process, gbest is the global best 

solution found by any particle so far in the search, rand is a random number generated between 

0 and 1, and c1, c2 are the learning factors; usually both c1 and c2 are kept 2. 
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Chapter 3:  Proposed Learning to Scheduling 

in Smart Factory 

In this chapter, we present our proposed task management scheme based on learning to 

scheduling. The proposal aims to aid the smart factory’s manufacturing processes with efficient 

task allocation, task dispatching and task scheduling; in order to improve the overall productivity 

of the manufacturing process. The proposed mechanism involves the scheduling of tasks with 

the aid of learning modules of prediction and optimization. The learning modules provide the 

history based predictions and tuned parameters for improved task management. 

In section 3.1 we present the conceptual design. Section 3.2 presents the hybrid ACM-FEF 

approach for scheduling. Section 3.3 presents the prediction mechanism, section 3.4 presents the 

optimization mechanism and section 3.5 presents the control mechanism. 

3.1 Conceptual Learning to Scheduling Mechanism Based on 

Prediction and Optimization 

The proposed task management mechanism is a unified solution based on machine learning 

and IoT technologies for smart manufacturing in smart factory. The smart factory environment is 

an IoT based environment with sensor and actuator networks. The sensor and actuator networks 

provide the contextual information of the environment to the system’s machine learning 

modules. The machine learning based modules predict the system’s states and optimize the 

parameters for optimal control of the smart factory’s manufacturing machines and environment 

actuators.  
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Figure 11: Layered view for proposed task management mechanism in smart factory. 

We have divided our proposed task management system into four main modules i.e. (a) 

learning to scheduling mechanism using hybrid ACM-FEF (b) learning to prediction module (c) 

learning to optimization module and (d) control module. The conceptual design of the proposed 

system is given in the Figure 11. The smart factory has sensors and actuators installed. The 

sensors sense the environment and manufacturing sensing data, and pass them onto the system. 

The actuators are either the manufacturing machines or the environment control actuators. The 

actuators are controlled for executing the manufacturing processes or the environment 

conditions. The smart factory tasks scheduling parameters are continuously tuned using their 

respective learning modules of prediction and optimization.  

We have developed our proposed system into five phases. In first phase, we develop our 

core scheduling algorithm for efficient task management, which is hybrid of agent cooperation 
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mechanism [42] (ACM) scheduling and a fair emergency first [136] (FEF) scheduling. The 

hybrid scheduling scheme is referred as ACM-FEF.  

In phase two, input tasks are modeled and scheduled using ACM-FEF scheduling scheme 

alone and tasks history data is built via multiple iterations of tasks scheduling phase. Once the 

history data based on ACM-FEF scheduling is collected for training purposes. Next, in the phase 

three, we develop our prediction module using ANN prediction algorithm. In learning to 

prediction, we use PSO algorithm in order to optimize the ANN weights [137]. The learned 

optimized prediction mechanism predicts the tasks execution status and machine utilization 

under the given load of the tasks based on history decisions.  

In phase four, we first propose an objective function for enhancing machine utilization and 

then seek the optimal results based on PSO algorithm. In learning to optimization, ANN 

algorithm is used to tune the PSO particles positions and velocity. The optimization module aims 

for the maximum machine utilization in the smart manufacturing process. 

In phase five, we develop the control module based on inference rule engine [138]. The 

control module gets optimal parameters input from optimization module and generates the 

actuators; control commands based on the optimal parameter settings.  

At last, the scheduling modules fully implements the learning to scheduling procedure by 

integrating the overall modules and using the outputs of prediction module, optimization module 

and control module altogether. The learning to scheduling module aims for optimal machine 

pairing based tasks allocation; it also uses predictions based on history decisions consequences 

to make informed scheduling decisions.  

We have proposed two improved variations of PSO algorithm named as VB-PSO and R-

PSO [136]. The improved variations are used in both prediction and optimization modules to 

enhance the modules’ performance. In prediction phase, we propose PSO algorithm based ANN 
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implementation referred as PSO-NN, in optimization phase, we propose ANN algorithm based 

PSO implementation referred as NN-PSO. 

 
Figure 12: Conceptual design of the proposed task management mechanism based on learning to scheduling in 

smart factory 
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In Figure 12, we present the conceptual design of or proposed task management mechanism 

based on learning to scheduling in smart factory. The smart factory will have two types of data 

collected as sensing data collected from installed sensors in the environment and the actuators’ 

data collected from installed actuators. System constraints, user requirements and external 

conditions can be added inputs to the system based on the scenarios. In input data modeling, the 

sensing tasks are modeled to be sent to the scheduler. The scheduling outputs are maintained for 

building the scheduling history data. The scheduler sends the sensing tasks’ data to the 

optimization module for optimal parameter tuning. Sensing tasks’ data is then sent to the control 

module, the inference engine in the control module generates the optimized control commands 

based on the inputs from optimization module. Next, control module models the control tasks to 

execute the control commands which are sent back to the scheduler. At scheduler, when a 

control task is executed, it triggers the control module to perform the control command. 

3.2 Proposed Learning to Scheduling Mechanism using 

Hybrid ACM-FEF  

In this section, we present the hybrid scheduling mechanism of ACM-FEF. The scheduling 

mechanism is a hybrid of two scheduling schemes as agent cooperation mechanism (ACM) and 

fair emergency first (FEF).  

The smart factory is considered to have N machine networks, where machine networks have 

local and global agents following ACM mechanism. The purpose of ACM mechanism is to 

allocate the tasks to machine networks with an aim to maintain the maximum machine utilization 

among the machine networks. Next, the tasks allocated to machine networks are further 

allocated to the existing machines, where each machine has varying task load with varying 

priorities. The task load scheduling at each machine level is done following the FEF scheduling. 
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3.2.1 Agent Cooperation Mechanism for Scheduling 
The agent cooperation mechanism (ACM) sub-module is inspired by the scheduling 

mechanism presented in a related study [42]. In smart factory environment, we consider multiple 

manufacturing machine networks. Each machine network is assigned an agent to manage the 

task allocation process. The goal of the agent is to allocate tasks to machines in such a way that 

overall productivity of the manufacturing process is increased. The system has one global agent; 

the task of the global agent is to maximize the machine utility among all machine networks.  

 

Figure 13: Conceptual diagram of agent cooperation mechanism 
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The Figure 13 presents the main concept of agent cooperation mechanism with N machine 

networks; each network having a local agent to maximize the machine utilization at its own 

network and a global agent to maximize the overall system’s productivity. The global agent has 

two main functions as machine pairing and computing utilization. The global agent has complete 

knowledge of the system such as number machine networks, number of machines per network, 

and each machine’s current load and capacity.  

3.2.2 Fair Emergency First Task Scheduler 
In this sub-section, we present the basics of FEF scheduling algorithm [136]. The FEF 

scheduling algorithm is designed to maximize the machine resources and minimize the tasks 

starvation rate.  

The FEF scheduling algorithm considers the input tasks first divided into two main types as 

event driven tasks and periodic tasks. The event driven tasks are further divided into two 

subtypes as urgent event driven tasks (UET), normal event driven tasks (NET). The periodic 

tasks are further divided into two main types as priority periodic tasks (PPT) and normal 

periodic tasks (NPT). The event driven tasks are given high priority, as they might be emergency 

triggered and one-time tasks. The UET are considered to be of high priority, followed by NET, 

next priority is given to PPT followed by NPT. These priorities are not static, and the proposed 

algorithm allows flexible options to define and alter task priorities based on the scheduling 

scenarios. 

The primary focus of FEF algorithm is to meet the tasks deadlines based on their priorities; 

in parallel, saving the starving tasks by rightly utilizing any free resources. The starving tasks 

can be defined as any tasks which are in waiting state for a long period, due to system priorities, 

load or unexpected events. The flowchart for FEF algorithm is shown in the Figure 14. First the 

scheduler extracts the tasks arriving at the system based on arrival times. If the current task is 

urgent event driven task, it is executed right away. If the task is normal event driven task, then 
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urgency measure (UM) is checked to see whether the machine slot can be used for any low 

priority starving tasks or not. If not, then current task is executed else starving task is given the 

slot. Next, priority periodic task is checked, where failure measure (FM) is checked to see if the 

priority periodic tasks can wait and slot can be allocated to the starving low priority task or not.  

 

Figure 14: Flow chart for FEF Scheduling Algorithm 
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Urgency measure and failure measure are two learning modules in the intelligent FEF 

scheduler. Urgency measure is computed to decide whether at the current state the system can 

allocate the machine resources to a starving task, given that the current event driven task can 

wait to execute without damage. Failure measure is computed to decide whether at the current 

state the system can allocate the machine resources to the starving task, if current periodic task 

can wait to execute without damage. The FM and UM are the two learning factors to make 

respected decision using the ANN learning algorithm based on history decisions. 

In order to calculate the UM, the system computes the slack between the event driven tasks 

and periodic tasks. Slack can be defined as the difference between the deadline of the tasks and 

the execution time left to finish the task. The decision of whether starving task should be given 

machine resources or not is made based on Equation 4.  

𝑆𝑙𝑎𝑐𝑘 (𝐸𝑇) >= 𝑥 × (𝑆𝑙𝑎𝑐𝑘(𝑃𝑇)) (4) 

Where, Slack (ET) is the slack or event driven tasks, Slack (PT) is the slack computed of 

periodic task and the distance between both slacks should x times; x  is initially set as 2. 

Gradually the value of x is learned using ANN as the system runs the tasks and history data is 

built (Figure 15). 

 
Figure 15: Learning of X in Urgency Measure (UM). ET: event-driven task; PT: Preemption Threshold 
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The learning factor FM is calculated among the periodic tasks of different priorities. It is 

calculated to make decision whether current periodic task can wait without any damage, and the 

machine resources can be allocated to the starving tasks or not. The history data is first built and 

used to make the informed decisions. The module predicts the possibility of safe execution of 

starving tasks and without delaying any other high priority periodic task based on learning using 

ANNs (Figure 16).  

 
Figure 16: Prediction for high priority tasks’ safe execution 

Additionally, two bits as reserved bit and priority bit are added to ensure the flexibility of 

scheduler setting in multiple scenarios. The reserved bit indicates if any numbers of machine 

chunks are to be reserved during online scheduling for handling the possibility of any urgent 

unexpected events. The preemption bit when added to any tasks gives it the authority to halt any 

high priority running task and to be executed first. These two bits are to make alterations based 

on the scenarios.  

3.3 Learning to Prediction for Scheduling in Smart Factory 

In this section, we present the learning to prediction mechanism using PSO based ANN 

prediction algorithm. The used mechanism is published in [137], where it is used for energy 
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predictions in smart building. In this work, we use our proposed prediction-learning mechanism 

in order to aid the smart factory scheduling process by predicting the tasks execution status and 

machine utilization. 

3.3.1 Prediction using ANNs 
In this sub-section, we present the ANN based prediction model. The model has nine inputs, 

six hidden layers and two output layers. 

 
Figure 17: Prediction Model using ANNs 

The system takes tasks data of time stamp, execution time, deadline time, start time, finish 

time, time budget, machine ID, machine load and machine capacity as input. The data is first 

pre-processed and then passed onto the training module where training is done based on ANN 

with six hidden layers. The output is prediction accuracy computed for the task status prediction 

and machine utilization prediction.  
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3.3.2 Learning to Prediction using PSO and ANNs 
In this section, we describe the learning to prediction mechanism for smart factory tasks 

scheduling and management.  

 

Figure 18: Learning to prediction model based on ANN 

In learning to prediction, the ANN prediction algorithm’s weights are learned using PSO 

algorithm which is an optimization algorithm. Figure 18 shows the learning to prediction 

configurations. Initially the input is given to the ANN learning module based on six hidden 

layers. The PSO algorithm is applied at ANN learning iterations for learning ANN weights. PSO 

algorithm takes the neural networks in ANN iterations and struggles to optimize the neural 

weights to achieve the high accuracy.  
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Figure 19: Flow chart for PSO variations of R-PSO and VB-PSO 

The learning algorithm used to learn ANN weights is an optimization algorithm named as 

particle swarm optimization (PSO). In PSO, a number of particles populations (typically 

between 12-20 numbers of particles) are generated. Each particle in the PSO population contains 

two parameters as particle position and particle velocity. Initially the particle velocity and 
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positions are initialized. In PSO iteration, the particle velocity and position are updated. Each 

particle maintains two values local best as Pbest, and global best as Gbest. The Pbest is the 

particles own best position achieved, and the Gbest is the global best values achieved by any 

particle in the population. Each particle position represents the ANN weights and the Gbest is 

the best weights found by PSO. 

We use the two variations of PSO named as re-generation based PSO (R-PSO) and velocity 

boost PSO (VB-PSO) [137]. The R-PSO involves a regeneration threshold (RT). In R-PSO if no 

improvement in the Gbest is seen after a number of iterations, define by RT, then particles found 

in close clusters are regenerated to new random locations; in order to fasten the solution search 

process. The particles’ distance to locate close clusters is calculated using Equation 5.  

𝐼𝑛𝑡𝑒𝑟 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐼𝑃𝐷) = 𝑐 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠                            (5) 

Where, IPD is the minimum distance threshold between two particles, c is a constant value 

for limiting IPD set as 0.15. 

In VB-PSO, a velocity boost threshold is maintained as VBT, and if no progress in the value 

of particle’s Pbest is observed till reaching VBT then particle’s velocity is boosted using the 

velocity change equation with new inertia weight proposed for VB-PSO. The new inertia weight 

is derived from the combination of constant inertia weight shown in Equation 6 and random 

inertia weight shown in Equation 7. The new inertia weight is shown in Equation 8. 

𝐶𝑜𝑛𝑡𝑎𝑛𝑡 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑐1 = 0.7 (6) 

𝑅𝑎𝑛𝑑𝑜𝑚 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑊𝑒𝑖𝑔ℎ𝑡 = 0.5 +  
𝑅𝑎𝑛𝑑()

2
 (7) 

𝑁𝑒𝑤 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑊𝑖) = 𝑐1 +
𝑅𝑎𝑛𝑑() 

3
 (8) 

Where; c1 = 0.801. The detailed mechanism of proposed R-PSO and VB-PSO algorithms 

can be referred in our published work in [137]. 
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3.4 Learning to Optimization for Scheduling in Smart Factory 

In this section, we present the learning to optimization mechanism for scheduling in smart 

factory. First, we make the smart factory environment assumptions. Table 7 provides the list of 

parameter assumptions for the smart factory environment. There are N numbers of machines, X 

number of machine pairs and K number of tasks coming at each machine.  

Table 7: Sensing tasks parameters for candy box factory 

Task Parameters Parameter Description 

M1, M2…, MN N number of manufacturing machines 

P1, P2…, PX X number of machine Pairs 

T1, T2…, TK K number of tasks at each machine 

TID Task Instance ID 

TJ No of Jobs required by a Task 

TID(TJ,b) Operation of task TID at position b 

TBJ Time Budget: deadline of an operation in a task 

FTJ Proposed finish time for operation 

LFTJ Latest possible finish time 

STJ Proposed Start time 

EJ Execution time of operation 

ITP Idle time for a pair 
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The finish time is computed by adding the execution time to the start time. Time budget is the 

difference between least finish time and finish time. 

𝐹𝑇 =ST + E                                                              (9) 

𝑇𝐵 =LFT – FT                                                          (10) 

3.4.1 Optimization Objective Function for Machine Utilization 
In this sub-section, we present the objective function to be optimized for scheduling. 

The optimization module aims to increase the machines utilization with the help of three 

functions as time budget utility (TBU), pair compatibility utility (PCU), and network 

compatibility utility (NCU) [42]. The TBU functions aims to maximize the tasks possibility of 

execution before its deadline. The PCU function makes sure that jobs involved in a task are 

assigned to machine pairs with maximum utilization. The NCU function looks for the overall 

networks utilization, making sure that tasks are being assigned to all the machines in a network, 

in such an order to increase network utilization. 

These three functions of TBU, PCU and NCU are used to make an objective function 

(OF) for the scheduling in smart factory as  

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑂𝐹 =  (α)(𝑇𝐵𝑈) + (β)(𝑃𝐶𝑈) + (γ)(𝑁𝐶𝑈)                               (11) 

Where, α β, and γ are the weights of the functions TBU, PCU, and NCU. The objective 

function aims to maximize the α, β, and γ values to maximize the machine utilization.  

The optimization module aims to pair machine combinations for task execution with 

maximum machine utilization. Extract all possible pairs. Calculate Utilization factor for each 

extracted pair. Allocate tasks to pair with maximum utilization. The optimization algorithm used 

is PSO. The Figure 20 shows the optimized scheduling mechanism based on PSO algorithm.  
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Figure 20: Optimized scheduling mechanism for maximizing machine utilization 

At first the PSO population is defined and initialized. The aim of PSO particles is to find 

positions where machine utilization weights are at maximum for each machine and overall 

network. The fitness function is defined as the machine utilization function based on number of 

machines in a smart factory scenario at a given time. Once the global best values are found, the 

module returns the maximum machine utilization weights to tune the machine utilizations 

settings accordingly. 

3.4.2 Learning to Optimization using ANNs  
In this scenario we present the learning to optimization mechanism. We add ANN based 

learning to optimization module. It takes history PSO data as input for preparing the learning 

model. The history PSO data includes the particles values of positions and velocities along with 
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errors, and Pbest and Gbest. Initially the tasks’ scheduling is done based on optimization module 

without learning to build the history data logs. 

 

Figure 21: Learning to optimization based on PSO for scheduling 
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Once the history data is built then it is preprocessed and passed onto the learning module of 

ANN to prepare the learned model which is further used to make the predictions for PSO 

velocities and positions.  

While the PSO algorithm runs and particles strive to find the optimal solution; in PSO 

iterations the next velocity of the particle is tuned based on the learning from the history logs. 

The ANN model has four input parameters such as particle, velocity, error rate global, and error 

rate local. It has six hidden layers and two output layers (Figure 21). 

3.5 Control Mechanism for Scheduling in Smart Factory 

In this sub-section, we present the control mechanism for the control tasks generation and 

autonomous machine control in smart factory.  The control tasks are generated based on scenario 

thresholds and conditions. In this section, we use one of our published works’ inference engine 

modules [138] and alter it to fit the smart factory scenario. 

 
Figure 22: Defining of a rule in inference engine for control task generation 
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The inference engine is where all the smart factory rules are listed along with the thresholds 

and if-else conditionings. The inference engine rules comprise of arriving task type, condition 

associated with the task and the contextual scenario of the task (Figure 22). The conditions in 

rules contain the threshold values, which if met then the rules are fired. 

 
Figure 23: Workflow of firing a rule in inference engine for control task execution 

Figure 23 shows the detailed flow chart for firing a rule in an inference engine. First all the 

rules are extracted and when a new sensing or system task value is arrived at the inference 

engine, the value is checked for all existing rules. The value can meet one or multiple rule 
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conditionings; each rule conditioning when met, the rule is fired. By firing rule, it means to 

generate its response.  

 
Figure 24: Control module interactions and working 
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The Figure 24 shows in detail the interaction between scheduler, control modules and 

system actuators. The scheduler sends the sensing tasks and system tasks data to the control 

module via an agent referred as hybrid agent in [138]. The agent parses the received data and 

sends the meaningful content to the inference module. At inference module, the received tasks 

data is mapped onto the rules and once the conditioning is met the rules are fired. Once the rule 

is fired the control tasks are modeled and sent to the scheduler to be executed at scheduler. When 

the control tasks are executed at the scheduler, the control command is sent to the control unit 

which executes the control commands at the actuators. 
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Chapter 4: Simulation Developments for 

Learning to Scheduling Experiments 

4.1 Environment Modeling 

In this sub-section, we present our smart factory environment modeling for the simulations 

and experimentation. The smart factory has sensors and actuators installed onto the site to 

execute the production tasks and services.  

The sensors installed are of two types as ambient sensors and on-machine sensors. The 

ambient sensors are installed into the surrounding of the smart machine to get the surrounding 

environment sensing values. The on-machine sensors are installed onto the machine to get the 

machine related sensing values.  

The sensors are installed with a motive of sensing the environmental conditions, sensing the 

manufacturing process conditions, sensing the factory emission conditions, monitoring the 

machine health, and sensing safety conditions. The roles of the sensors vary based on their 

installment scenarios and locations. The types of ambient sensors and on-machine sensors 

installed can be as shown in Table 8 depending on the selected smart factory scenarios. The 

main sensor categories are environment sensors as temperature sensor, light sensor, humidity 

sensor, sound sensor and vibration sensor. Monitoring sensor to read scenario based values as 

flow sensor, gas sensor and acceleration sensor. Detection sensors include motion sensor and 

occupancy sensor. Security sensors include leak sensor, fire/smoke sensor and surveillance 

cameras. 
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Table 8: Types of sensors for smart factory 

Sensor Category Sensor Types 

Environment Sensors 

Temperature sensor 

Light sensor 

Humidity sensor 

Sound sensor 

Vibration sensor 

Monitoring sensor 

Flow sensor 

Chemical/gas sensor 

Acceleration sensor 

Detection sensor 

Motion sensor 

Occupancy sensor 

Security sensor 

Leak sensor 

Fire/smoke sensor 

Tracking sensor Equipment/tags sensor 
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Figure 25: Smart factory environment modeling 
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The actuators in a smart factory are either the smart factory machines involved in the 

manufacturing process or the actuators to control the smart manufacturing conditions. The 

manufacturing machines also vary based on the scenarios. For example, machines in a cake 

manufacturing might include batter mixing machines, baking oven machine, cake frosting 

machine, conveyor belt etc. The actuators to maintain the smart manufacturing optimal 

conditions might include humidifiers, dehumidifier, heater, air conditioning, fans etc.  

The Figure 25, presents the smart factory environment modeling where sensors and actuators 

are installed onto the smart factory. The sensors’ readings are transmitted and sensor tasks are 

modeled and send to scheduling module. The response back to the smart factory is the control of 

actuators. 

The smart factory modeling also has environment constraints and machines constraints 

which vary from scenario to scenario. 

4.2 Input Task Notations 

In this section, we design and implement the input tasks model. First, we assume the smart 

factory model based on number of machines. Let us assume a smart factory with N number of 

manufacturing machines as shown in equation 12. 

𝑆𝑚𝑎𝑟𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑦 𝑀𝑜𝑑𝑒𝑙 = { 𝑀1, 𝑀2, . . , 𝑀𝑁}                        (12) 

                                                  𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 { 𝑁 > 0} 

Each machine will have K number of tasks as shown in equation 13. 

𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑀𝑜𝑑𝑒𝑙 =  { 𝑇1, 𝑇2, . . , 𝑇𝐾}                                 (13) 

                                                  𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 { 𝐾 > 0} 

The task parameters in the input task model are TID described as task ID, TA described as 

task arrival time, TP is described as task priority, JN described as number of jobs required by a 

task, JID described as jobs ID. The equation 14 explains the task model. 
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𝑇𝑎𝑠𝑘 𝑀𝑜𝑑𝑒𝑙 =    {TID, 𝑇𝐴, 𝑇𝑃, 𝐽𝑁, 𝐽𝐼𝐷1,…,𝐽𝑁}                                 (14) 

                                                        𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 { 𝐽𝑁 > 0} 

Each task can consist of N number of jobs. The jobs parameters are JID described as ID of a 

job, ST described as start time of a job, ET described as execution time of a job, TB described as 

time deadline of a job, FT described as proposed finish time of a job, LFT described as latest 

finish time possible for a job. The equation 15 explains the parameters model for job in a task. 

𝐽𝑜𝑏 𝑀𝑜𝑑𝑒𝑙 =    {JID, 𝑆𝑇, 𝐸𝑇, 𝑇𝐵, 𝐹𝑇, 𝐿𝐹𝑇}                                 (15) 

                                               𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 { 𝐸𝑇 > 0} 

Job’s ID is automatically generated with the generation of a job. The job’s ST is time when 

the job is started at the machine. The execution time of the job is assigned at the time of task and 

job generation depending on the job type. The job’s least finish time is also assigned to the job at 

time of task and job generation depending on the job type. The job’s finish time is computed 

using the equation 16 and the job’s deadline is computed using the equation 17. 

𝐹𝑇 = 𝑆𝑇 + 𝐸𝑇                                                                     (16) 

𝑇𝐵 = 𝐿𝐹𝑇 − 𝐹𝑇                                                              (17) 

4.2.1. Periodic Tasks Set Notation 
In the case of periodic tasks, the instances of a periodic task regularly arrive after a set 

period. Periodic tasks are real-time tasks with a constraint of having the period greater than zero, 

which means that after a certain amount of time the tasks instance must repeat. Usually, periodic 

tasks have two states; inactive and runnable. Inactive is the state when the task has not yet 

arrived at the processor and runnable is the state when the task has arrived again after a certain 

period and is waiting to run. Equation 18 presents the periodic task model. 

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑇𝑎𝑠𝑘 𝑀𝑜𝑑𝑒𝑙 = {TID, 𝑇𝐴, 𝑇𝑃, 𝑃, 𝐽𝑁, 𝐽𝐼𝐷1,…,𝐽𝑁}                             (18) 

                                                        𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 {𝑃 > 0, 𝐽𝑁 > 0} 



 

 

59 

 

Where, TID is the identifier of a periodic task, TA is the arrival time of a periodic task, TP is 

the priority of the periodic task, P is the period of the periodic task, PB is the preemption bit 

associated to a periodic task, PB = 1 indicates periodic task can preempt the high priority tasks 

in case of starvation for a set PT (Preemption Threshold), and PB = 0 indicates periodic task 

cannot preempt any high priority task. 

4.2.2. Event-Driven Tasks Set Notation 
An event-driven task is programmed to activate when an event occurs, it can handle any 

input at any moment. Event-driven tasks have two sub-categories of urgent event-driven tasks 

and flexible event-driven tasks, these sub-categories help in making the system more flexible. In 

case of urgent event-driven tasks, tasks should be executed as soon as they arrive at the 

processor, they cannot wait in the queue. On the other hand, flexible event-driven tasks can 

afford to wait in the queue but they must also be executed before the deadline. Event-driven 

tasks have three basic states; inactive, runnable and suspended. Inactive state is when the event 

to generate the task has not occurred yet, runnable state is when the event is generated and the 

task is waiting to run, and suspended state is when the event source is triggered off. 

An event-driven task with its i
th 

execution is denoted as following.  

𝐸𝑣𝑒𝑛𝑡𝐷𝑟𝑖𝑣𝑒𝑛 𝑇𝑎𝑠𝑘 𝑀𝑜𝑑𝑒𝑙 =  {TID, 𝑇𝐴, 𝑇𝑃, 𝑈𝐵, 𝐽𝑁, 𝐽𝐼𝐷1,…,𝐽𝑁}                     (19) 

                                                        𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 { 𝐽𝑁 > 0} 

Where, TID is the identifier of a periodic task, TA is the arrival time of a periodic task, TP is 

the priority of the periodic task, UB is the urgency bit of an event-driven task, UB = 1 indicates 

task is urgent and should be executed ASAP and UB = 0 indicates non-urgent event-driven 

tasks. 
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4.3 Simulation Implementation Environment 

We have used python for implementing the core programming logic of the proposed task 

management mechanism. Python is a very popular general-purpose programming language; 

widely used for developing desktop based and web-based applications. We have designed a web-

based task simulation visualization tool using PyQt4-based framework. The simulation 

implementation environment is shown in Table 9.  

Table 9: Simulation implementation environment 

System Component Value 

Operating System  Windows 

CPU 
Intel ® Core ™ i5-4570 CPU at 3.20 

GHz 

Primary Memory 8 GB 

Programming Language Python 3.6 

User Interface Framework PyQt4 

Machine Core Visualization HTML 

 

4.4 Scheduling Simulation Application and Visualization 

Figure 26 shows main simulation interface window of our implemented smart factory 

scheduling application. Certain requirements are to be met before starting the scheduling for a 

given simulation scenario. The inputs of the application are first to be inserted, as highlighted in 

section A, section B and section C. The section A takes the simulation period as input, section B 
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takes the number of tasks to be generated per simulation unit time that will translate into the 

arrival rate of the tasks. Section C takes the input of number of total machines at the system. One 

these inputs are given; the simulation tasks can be generated from the generate simulation tasks 

button.  

 

Figure 26: Scheduling simulation applications Interface 

In section E, the simulation options are available as scheduling which is the baseline 

scheduling scheme, predictive scheduling (ANN), learning based predictive scheduling (PSO-

ANN), optimized scheduling (PSO), learning based optimized scheduling (ANN-PSO), 

predictive and optimized scheduling, and the last option as learning based predictive and 

optimized scheduling. The input tasks can be scheduled using any of the scheduling models and 

output can be visualized.  
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In section F, the scheduling analysis is provided such as the context switches, number 

preemptions, tasks set is schedulable or not, machines utilization rate, and number of tasks 

missed, and number of times tasks are completed during the hyper-period. In section G, the tasks 

processing order at the machine is listed along with task ID and machine ID. In section H, 

further analysis comparisons based on predictive scheduling, optimized scheduling and learning 

based scheduling are to be viewed. 
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Chapter 5: Simulation and Performance 

Analysis 

In this we present the simulation and performance analysis. In section 5.1, we present the 

various simulation environments setting for comparison analysis. In section 5.2, we present the 

simulations and performance analysis for candy box factory tasks dataset. In section 5.3, we 

present the simulations and performance analysis for simulated tasks dataset. In section 5.4, we 

present the simulations analysis for machine cluster tasks dataset. 

5.1 Simulation Environment for Task Management 

In this section, we present the schemes for comparative analysis of the smart factory task 

management and simulation. 

First, we present the basic FEF scheduling scheme for the comparative analysis. In our 

published work in [136], we have presented a fair emergency first (FEF) scheduling scheme. In 

the paper we have two versions of proposed FEF scheduling algorithm, non-intelligent and 

intelligent FEF. The intelligent FEF has the addition of learning modules for improving the 

results. We consider the non-intelligent FEF scheduling algorithm as to be our basic FEF scheme 

for the comparative analysis.  

Next, we compare our proposal with predictive FEF scheduling scheme. The FEF 

scheduling scheme with learning presented in [136] has two learning modules as failure measure 

(FM) and urgency measure (UM). The learning modules aid the scheduling scheme to improve 

the tasks completions rate with increase in machine utilization and decreasing the starvation rate. 

The scheme is only based on the history data predictions and does not involve any optimization 

mechanism.  
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Next, we add the PSO based learning to prediction with hybrid ACM-FEF scheduling 

algorithm and refer to it as learned predictive hybrid scheduling scheme. 

At final stage is our proposal, when we add the learning to optimization module to the 

learning to prediction based hybrid ACM-FEF scheduling scheme and refer to it as learned 

predictive and optimized hybrid scheduling scheme. 

 

Figure 27: Scheduling schemes for simulations of tasks management in smart factory 
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5.2 Simulations and Performance Analysis of Candy Box 

Factory 

In this section we build a scenario for smart factory modeling. We have assumed a use case 

scenario of candy box assembling and packaging in a smart factory. We have built the candy box 

use case scenario based on the candy packaging application case study presented in [139]. To 

our assumption, the candy smart factory manufactures N types of candies, and makes custom 

candy combination boxes based on the user orders.  

In this use case, we do not consider the manufacturing process of candies. We consider a 

scenario where the N types of candies have been manufactured and the task now is to get the 

customized orders from the users, assemble customized candy boxes based on the user orders 

and forward them to pack the boxes to be ready to be delivered. 

In our built scenario we have three sensors, four actuators and eight smart manufacturing 

machines. The sensors are of two types as ambient sensors and on-machine sensors (Figure 28). 

The ambient sensors are temperature sensor and humidity sensor. The on-machine sensor is 

occupancy sensor. Table 10 shows the involved sensors in the candy production scenario. The 

actuators involved are heater, chiller, humidifier, and dehumidifier. Table 11 shows the 

operation levels of actuators involved in the candy production.  

Table 10: Sensors list for candy box factory 

Sensors Type Sensor Name Value Range 

Ambient sensors Temperature sensor 21- 24 °C [140] 

Humidity sensor 40% - 35% [140] 
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On-machine sensors Occupancy sensor 0/1 

 

Table 11: Actuators list for candy box factory 

Actuator Type Actuator Name Controls 

Heater Assembly Machines Busy/Idle 

Packaging Machines Busy/Idle 

Chiller 

Humidifier 

Chiller On/Off/Adjust Level 

Heater On/Off/Adjust Level 

Humidifier On/Off/Adjust Level 

Dehumidifier On/Off/Adjust Level 
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Figure 28: Scenario modeling for candy box factory 
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Figure 29 presents the overall simulation flow for the tasks generation, sensing data based 

control tasks generation and system data based control tasks generation. 

 

 

Figure 29: Overall scheduling simulation flow for candy box factory 

The sensing tasks from sensor reading are modeled and passed onto the scheduling module 

and the system tasks from customers’ orders of candy box are modeled and passed onto the 

scheduling module. The scheduling policies refer to the optimization and prediction based 
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scheduling mechanism and combinations. The tasks are scheduled and upon execution the 

sensing values or system values are passed onto the inference engine where all the rules for the 

system conditions are listed. The inference engine matches the values and generates the control 

tasks in response which are sent back onto the scheduler and upon execution the control 

commands are sent to the actuators. 

We have eight machines in total which represent the two phases of candy assembly and 

packaging scenario. First phase is to assemble the customized candy box based on the user order. 

Second phase is to pack the customized candy box to get ready to be delivered. In first phase we 

have assembly machines and in second phase we have packaging machines. Table 12 shows the 

machines details. 

Table 12: Machines’ attributes for candy box factory 

Machine 

Type 

No. of Installed 

Machines 

Input Output 

Assembly 

Machines 

[AM] 

4 

{AM1, AM2, 

AM3, AM4} 

[{Order Number}, {AM-

ID}, {(Candy Type 1 –

Quantity), … (Candy Type 

N –Quantity)}] 

[{Order Number}, {PM-

ID}, {Package Style}]] 

Packaging 

Machines 

[PM] 

4 

{PM1, PM2, 

PM3, PM4} 

[{Order Number}, {PM-

ID}, {Package Style}]] 

[{Order Number}, 

{Delivery ID}] 

5.2.1 Input Tasks Modeling of Candy Box Factory 
In this sub-section we define the task generation phase for the candy box use case based on 

our task design and modeling presented in the section 4.2.  
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We have three types of tasks as sensing tasks, system tasks and the control tasks. The 

sensing tasks are generated based on the sensor value readings and are periodic in nature. The 

period of sensing tasks depends on the time interval after which the sensing values from the 

sensors are gathered. The sensing tasks when executed will trigger the control tasks based on the 

conditions. The system tasks include the operational movements of the manufacturing machines 

which are based on the customer orders. The system tasks when executed will trigger the control 

tasks. The control tasks are modeled from the responses triggered from sensing tasks and system 

tasks. The execution of control tasks sends the control commands to the actuators, installed onto 

the smart factory, in order to assemble the candy box and pack the candy box. 

The sensing tasks will include the parameters as task ID, task arrival time, task priority, 

period and pre-emption bit. 

Table 13: Sensing tasks parameters for candy box factory 

Sensing Task Task Type Task Parameters 

Temperature Sensing Tasks Periodic {TID, TA, TP, P, PB} 

Humidity Sensing Tasks Periodic {TID, TA, TP, P, PB} 

Occupancy Sensing Tasks Periodic {TID, TA, TP, P, PB} 

 

A customer will visit the factory site; select the desired candy combinations to place a 

customized candy box order. The order is then forwarded to the smart factory’s production unit 

where the order is processed for assembling and packing the candy box to be delivered.  

The system tasks are generated based on the customers’ orders of customized candy box. 

The system tasks parameters will include the parameters as task ID, task arrival time, task 
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execution time, task deadline, task proposed finish time, task least finish time, task priority, and 

urgency bit. Table 14 shows the system tasks’ details. 

Table 14: System tasks parameters for candy box factory 

System Task Task Type Task Modeling Order Details 

Candy Box Order 

Placement 

Event 

Driven 

{TID, TA, ET, TB, 

FT, LFT, TP, UB} 

{(Candy Type 1 –Quantity), 

… (Candy Type N –

Quantity)} 

 

The sensing tasks and system tasks trigger events which result into the modeling of control 

tasks. The control tasks are used to control the actuators onto the smart factory environment. In 

this scenario, we have a total of twelve actuators including eight manufacturing machines, one 

chiller, one heater, one humidifier and one dehumidifier system. 

The control tasks for chiller, heater, humidifier and dehumidifier are generated in response 

to the sensing tasks of temperature and humidity. If sensed temperature values are greater than 

maximum temperature then temperature is tuned by increasing chiller system levels. If sensed 

temperature values are less than minimum values then temperature is tuned by increasing heater 

system levels. Similarly, if sensed humidity values are greater than maximum humidity then 

humidity is tuned by increasing dehumidifier system levels; and if sensed humidity values are 

less than minimum values then humidity is tuned by increasing humidifier system levels (Table 

15). 
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Table 15: Control task triggered from sensing task for candy box factory 

Sensing Value Control 

Action 

Controls Output 

Status 

Temp > 24 °C Chiller On Increase Chilling Level 1 

Heater Off Decrease Heating Level 0 

Temp < 21 °C Chiller Off Decrease Chilling Level 0 

Heater On Increase Heating Level 1 

Humidity < 35% Humidifier 

On 

Increase Humidifier Level 1 

Dehumidifier 

Off 

Decrease Dehumidifier Level 0 

Humidity > 40% Humidifier 

Off 

Decrease Humidifier Level 0 

Dehumidifier 

On 

Increase Dehumidifier Level 1 

 

The control tasks for eight manufacturing machines are generated in response to the system 

task of candy box order placement. The response event driven task is candy box order response 

task with two jobs as shown in Table 16. 
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Table 16: Control task triggered from system task for candy box factory 

System 

Task 

Task Type Number of 

Jobs 

Job 1 Job 2 

Candy Box 

Order 

Response 

Event 

Driven 

2 Assembly Candy Box Pack Candy Box 

 

The candy box order response task has two jobs; job one is to assembly the candy box and 

job 2 is to pack the candy box. The input job modeling based on section 4.2 is given in the Table 

17 below.  

Table 17: Control task’s jobs list for candy box factory 

List of Jobs Input Job Modeling 

Job 1: Assembly Candy Box Job Model = {J-1, ST, ET, TB, FT, LFT} 

Job 2: Pack Candy Box Job Model = {J-2, ST, ET, TB, FT, LFT} 

 

Table 18 shows the job execution details. The job 1 can be executed on any of the four 

manufacturing machines AM1, AM2, AM3, and AM4. The job 2 can be executed on any of the 

manufacturing machines from PM1, PM2, PM3, and PM4. The machine selection will be done 

using the scheduling algorithm, based on each machine’s status and load. 
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Table 18: Control task’s jobs description for candy box factory 

List of Jobs Available 

Machines 

Job Input + Order Input Output Status 

J-1 : 

Assembly 

Candy Box 

{AM1, 

AM2, 

AM3, 

AM4} 

[{J-1}, {ST}, {ET}, {TB}, {FT}, 

{LFT},{Order Number}, {AM-ID}, 

{(Candy Type 1 –Quantity), … 

(Candy Type N –Quantity)}] 

[{Order Number}, 

{PM-ID}, {Package 

Style}]] 

J-2 : Pack 

Candy Box 

{PM1, 

PM2, PM3, 

PM4} 

[{J-1}, {ST}, {ET}, {TB}, {FT}, 

{LFT}, {Order Number}, {PM-ID}, 

{Package Style}]] 

[{Order Number}, 

{Delivery ID}] 

 

5.2.2 Tasks Simulation and Performance Analysis for Candy Box 

Factory 
In this sub-section we present the tasks simulation and performance analysis for candy box 

factory use case scenario.  

5.1.2.1 Event Driven Tasks Simulation Flow 

In this sub-section, we present the simulation flow for the event-driven tasks generation in 

the given scenario of candy box factory.  

The tasks flow is initiated with an event driven task of candy order placement (Figure 30; Point 

1). The order placement task is a system task generated when users’ place candy box order. Once 

the order placement task is triggered, next the system generates candy box order response task 

(Figure 30; Point 2). Candy box order response task is also system task which has two jobs as 

assembly candy box (Job 1) and pack candy box (Job 2). The input job modeling is based on the 

task modeling introduced in section 4.2. (Figure 30, Point 3). Figure 30 (Point 4), shows the job 
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execution details. Where, J-1 can be executed on any of the four manufacturing machines AM1, 

AM2, AM3, and AM4; and J-2 can be executed on any of the manufacturing machines from PM1, 

PM2, PM3, and PM4. The machine selection, for executing J-1 in the assembly machine network 

and executing J-2 in the packaging machine network, will be done based on each machines’ current 

status and load. 

 

Figure 30: Event driven tasks simulation flow for candy box factory 
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5.1.2.2 Periodic Tasks Simulation Flow 

In this sub-section, we present the simulation flow for the periodic tasks’ generation in the 

given scenario of candy box factory.  

 

Figure 31: Periodic tasks simulation flow for candy box factory 

  The periodic tasks flow initiates three sensing tasks as temperature sensing task, humidity 

sensing task and occupancy sensing task (Figure 31; Point 1). The sensing task’s period defines the 

set interval, after which sensing data is to be collected from sensors installed in the candy box 
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factory. Next, in response to sensing data values of humidity, temperature and occupancy inference 

rule execution task is generated. Inference rule execution task generates when given data values 

map to set thresholds and controls or alerts are to be triggered in response. In response to machine 

occupancy inference rule execution task, next task generated is machine idle alert (Figure 31, Point 

2). The control tasks executed in response to temperature values inference rule execution task are 

chiller control and heater control. The control tasks executed in response to humidity values 

inference rule execution task are humidifier control and dehumidifier control (Figure 31, Point 3). 

5.1.2.3 Simulations for Candy Box Factory 

The execution time for sensing tasks is set to be 20 milliseconds (ms) and the priority is set to 

be normal periodic tasks. The execution time for system tasks is set to be 300 milliseconds (ms) and 

the priority for order placement task is set to be urgent event driven task and the priority for the 

inference rule execution task is set to be priority periodic task. The execution times for all the 

control tasks are set to be 520 milliseconds (ms) and the priorities for environmental conditions 

control actuator (heater, chiller, humidifier, and dehumidifier) are set to be urgent event driven. The 

priorities for control tasks of manufacturing machines (AM1, AM2, AM3, AM4, PM1, PM2, PM3, 

and PM4) are set based on the priority set at customers’ order time and deadline. It can be either 

normal event driven or urgent event driven task. 

Table 19: List of tasks execution times and priority type for candy box factory 

Task CPU Time 

Required 

Task Priority 

Sensing Tasks 

Temperature Sensing Task 20ms Normal Periodic Task 
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Humidity Sensing Task 20ms Normal Periodic Task 

Occupancy Sensing Task 20ms Normal Periodic Task 

System Tasks 

Order Placement System Task 300ms Urgent Event Driven Task 

Inference Rule Execution Task 300ms Normal Periodic Task 

Control Tasks 

Heater Control Task 520ms Urgent Event Driven Task 

Chiller Control Task 520ms Urgent Event Driven Task 

Humidifier Control Task 520ms Urgent Event Driven Task 

Dehumidifier Control Task 520ms Urgent Event Driven Task 

Control AM1 520ms Normal/ Urgent Event 

Driven Task 

Control AM2 520ms Normal/ Urgent Event 

Driven Task 

Control AM3 520ms Normal/ Urgent Event 

Driven Task 

Control AM4 520ms Normal/ Urgent Event 
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Driven Task 

Control PM1 520ms Normal/ Urgent Event 

Driven Task 

Control PM2 520ms Normal/ Urgent Event 

Driven Task 

Control PM3 520ms Normal/ Urgent Event 

Driven Task 

Control PM4 520ms Normal/ Urgent Event 

Driven Task 

 

Our first step is data collection and data generation. Our required data includes the collection 

of history data for training in learning processes. The history data include tasks’ data as task 

arrival time, execution time, deadline, finish time, time budget, allocated machine, allocated 

machines’ load, and capacity requirements of the machine. The tasks completion status and 

machine utilization history data are also collected in order to train the prediction module for 

future predictions. The history data is collected by simulation iterations of tasks generations and 

simulation iterations. In Figure 32, we present 30 instances of the history tasks’ data. The history 

tasks’ data is collected by simulation iterations of the tasks. In Figure 33, we present the history 

data collection sample for tasks completion status and in Figure 34, we show the history data 

collection sample for machine utilization rate. 
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Figure 32: Tasks simulation training data for candy box factory 

 

Figure 33: Tasks completion status training data for candy box factory 
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Figure 34: Machine utilization training data for candy box factory 

Next, we simulated the temperature and humidity data for the training purposes. The 

simulated temperature data varies mostly between the valid temperature ranges with randomly 

inserted out of range fluctuations so that rule engine can detect and control the anomaly sensing 

values for the temperature. Similarly, for the humidity we have followed the same mechanism of 

simulating the data between the valid ranges with some randomly inserted out of range 

fluctuations so that rule engine can detect and control the anomaly sensing values for the 

humidity. 

In Figure 35, we present the simulated data sample instances for temperature sensing data 

and the simulated data sample instances for humidity sensing data. 
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Figure 35: Simulated sensing data for temperature and humidity for candy box factory 

 

 

Figure 36: Tasks generation and simulation for candy box factory 
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Figure 36 shows the candy box use case task generation and simulation output. We have 

added a scenario simulation based task generation function highlighted in red color as section A. 

The tasks are generated based on the scenario details as mentioned above and then scheduled 

based on the selected scheduling mechanism. Figure 37 shows the tasks instances visualization 

while executing at machines.  

 

Figure 37: Tasks Simulation flow on machine for candy box factory 

Figure 38 presents the prediction accuracy comparisons using ANN prediction algorithm and 

PSO based ANN (PSO-ANN) prediction algorithm. The results show a significant improve in 

terms of minimized number of epochs and increased prediction accuracy. The maximum 

prediction accuracy achieved using ANN is 99.02% in 600 iterations and the maximum 

prediction accuracy achieved using PSO-NN is 99.39% in 700 iterations. At 600 iterations, the 

PSO-NN gets to the prediction accuracy of 99.27% which is still greater than ANN at 600 

iterations. 
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Figure 38: Prediction accuracy comparisons for ANN and PSO-NN for candy box factory 

 

Figure 39: Prediction accuracy comparisons for R-PSO-NN and VB-PSO-NN for candy box factory 
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In Figure 39, we present the comparisons of prediction accuracy based on PSO based ANN 

along with the variations of PSO based ANN as R-PSO-NN and VB-PSO-NN. The results show 

the prediction accuracy of R-PSO-NN and VB-PSO-NN is further improved from PSO-NN. In 

candy box factory predictions, VB-PSO-NN gives maximum prediction accuracy with least 

number of iterations. The VB-PSO-NN performance is followed by R-PSO-NN, which gives 

slightly less prediction accuracy. The maximum prediction accuracy achieved using PSO-NN is 

99.39% in 700 iterations while the maximum prediction accuracy achieved using R-PSO-NN is 

99.53% in 700 iterations and the maximum prediction accuracy achieved using VB-PSO-NN is 

99.53% in 500 iterations. 

  

(a) (b) 

Figure 40: Proposed scheduling comparisons with prediction and without prediction for candy box factory (a) 

average instances missing rate in percentage; (b) average task starvation rate in percentage 

In Figure 40, we present the comparisons of basic FEF with the learned prediction FEF with 

an aim to demonstrate the effect of learning to prediction in the scheduling algorithm. The 

comparisons are performed on the candy box factory data. The results show the percentage of 

task starvation rate and average instances missing rate in the simulations. It can be clearly 
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observed that learned predictive FEF has a smaller number of starved tasks rate and a smaller 

number of tasks instances missing rate. The FEF scheduling algorithm has around 22.12 % of 

tasks starved and 29.75 % of tasks instances missed whereas the learned predictive FEF 

scheduling has around 8 % of tasks starved and 16 % of tasks instances missed. The learning of 

prediction module in learning to scheduling mechanism increases the overall performance of the 

scheduler as it enables the scheduler to make informed and learned decisions. 

In the Figure 41, we present the comparisons among predictive FEF scheduling and learned 

predictive FEF scheduling.  The graph shows the tasks average response times at y-axis and test 

iterations at x-axis. A significant decrease in the tasks’ response time is observed with the 

addition of learning of module. The average response time for tasks set using predictive FEF 

scheduling is 2191.39 milliseconds and the average response time for tasks set using learned 

predictive FEF scheduling is 1954.13 milliseconds. 

 
 

 
Figure 41: Response time comparisons with and without learned prediction for candy box factory 
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In the Figure 42, we present the comparisons among learned predictive FEF scheduling and 

learned predictive hybrid scheduling.  The graph shows the tasks average response times at y-

axis and test iterations at x-axis. The hybrid scheduling mechanism is the combination of ACM 

and FEF scheduling approach. The hybrid mechanism improves the overall task allocation to 

machine pairs and hence also improves the response time as seen in the results. The average 

response time for tasks set using learned predictive FEF scheduling is 1954.13 milliseconds and 

the average response time for tasks set using learned predictive hybrid scheduling is 1769.69 

milliseconds. 

 
 

Figure 42: Response time comparisons with learned predictive FEF and learned predictive hybrid scheduling 

for candy box factory 

 
In the Figure 43, we present the comparisons among learned predictive hybrid scheduling 

and learned predictive and optimized hybrid scheduling.  The graph shows the tasks average 

execution times at y-axis and test iterations at x-axis. The goal of optimization module is to 

maximize the utilization of machine network and machine pairs to which tasks are allocated. 
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Hence the learned predictive and optimized hybrid scheduling results in better performance by 

improving the machine utilization and improving the response time. The average response time 

for tasks set using learned predictive hybrid scheduling is 1769.69 milliseconds and the average 

response time for tasks set using learned predictive and optimized hybrid scheduling is 1555.4 

milliseconds. 

 

 
Figure 43: Response time comparisons with and without optimized scheduling for candy box factory 

The Figure 44 shows the assembly machines network utilization rate for tasks scheduling 

simulations.  There are four assembly machines as AM1, AM2, AM3, and AM4. The graph 

below shows average machine utilization for each machine in the assembly machine network. 

The comparisons are drawn between proposed hybrid scheduling approach based on learning to 

prediction and optimization with predictive FEF scheduling scheme. The learned scheduling 

approach increases the machine utilization as it takes aid from the learning modules of prediction 

and optimization to make intelligent scheduling decisions and increases the overall system 

performance. 
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Figure 44: Machine utilization rate comparisons for proposed scheduling schemes in assembly machine in 

candy box factory 

 

  

(a) (b) 

Figure 45: Average machine utilization for proposed scheduling schemes in candy box factory (a) for assembly 

machine; (b) for packaging machine 
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Similarly, the machine utilization for the machines in the packaging machines networks is 

observed to be higher in learned predictive and optimized hybrid scheduling in comparison to 

the predictive FFF scheduling. The Figure 45 shows the overall average machine utilization rate 

for each assembly network and packaging network; based on the comparisons among the 

predictive FEF scheduling with learned predictive and optimized hybrid scheduling. The average 

machine utilization for predictive FEF scheduling is 70% and the average machine utilization for 

predictive and optimized hybrid scheduling is 89% for assembly machines. The average machine 

utilization for predictive FEF scheduling is 69.90% and the average machine utilization for 

predictive and optimized hybrid scheduling is 90% for packaging machines. The results prove 

that learned predictive and optimized hybrid scheduling shows far better performance in 

comparison to the predictive FEF scheduling.  

5.3 Simulation and Performance Analysis of Simulated 

Tasks Dataset 

5.3.1 Input Tasks Modeling for Data Simulations 
In this sub-section, we present the input tasks modeling for simulated tasks dataset. The 

input tasks for simulated tasks dataset are randomly generated based on user inputs and system 

thresholds to generate tasks set to be simulated. The tasks generated have initial parameters as 

tasks ID, execution time, and deadline and machine ID. Next the system computes the tasks 

parameters as start time, finish time, and time budget time based on initially generated 

parameters. Table 20 below shows the list of tasks parameters generated for the tasks.  
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Table 20: Generated Task Parameters List 

Task Parameter Description 

Task ID Tasks’ unique identifier 

Arrival Time Task arrival time at system 

Execution Time Time required to complete task 

Deadline Time before which task should complete 

Machine ID Machine at which task is to be executed 

Start Times Tasks’ start time at machine 

Finish Time Tasks’ finish time at machine 

 

At first, the number of tasks to be generated is taken as input from the user. Next the tasks 

generation interval is taken as input from the user. The generated tasks are sensing tasks with 

different sensing intervals as 5 seconds, 10 seconds, 15 seconds, 20 seconds, 30 seconds, 40 

seconds and 60 seconds. For each task, task id are generated, arrival time is time at which task 

arrived to at system, next the execution times are randomly generated between a given range, 

task deadline are generated between given threshold of being greater than zero and less than the 

tasks deadline, machine id is initialized as zero and later set to the scheduled machine, start times 

are set to the scheduled start times at machine, finish time is set to the scheduled finish time at 

machine. 
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In the first step for tasks generation, the sensing tasks are generated based on the initial 

parameters for task id, execution time, and deadline and machine id. In the next step the tasks 

parameter values generation function for start times assignment, finish time assignment and time 

budget assignment are called where these parameters are initialized. Using these parameters, the 

tasks are ready to be run at the scheduler at their scheduled time following scheduling 

mechanism. In parallel to tasks scheduling at the scheduler, the scheduler keeps maintaining the 

history logs with tasks detailed parameters and additional parameters of task completion status, 

total number tasks at each machine with machine id, processing capacity of each machine with 

machine id, total processing capacity required by each machine based on current load (Figure 

46).  

 

Figure 46: Tasks parameters generation and building history data parameters 

5.3.2 Performance Analysis and Comparisons 
In this part, we have used the ANN based prediction algorithm. The prediction algorithm is 

then learned by optimizing the ANN weights using PSO algorithm. The addition of PSO in ANN 
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improves the performance of prediction algorithm greatly and gives better prediction accuracies 

with fewer numbers of iterations. 

In Figure 47, we present the performance results comparison for prediction accuracies based 

on the ANN algorithm and PSO learning based ANN algorithm (PSO-NN). The maximum 

prediction accuracy achieved using ANN is 99.32% in 600 iterations while the PSO-NN 

achieves the prediction accuracy of 99.36% in 600 iterations and the maximum prediction 

accuracy achieved using PSO-NN is 99.42% in 800 iterations. The results clearly show that 

PSO-NN outperforms the ANN prediction accuracy results. It achieves higher accuracy with less 

number of iterations.   

 

Figure 47: Prediction accuracy comparisons for ANN and PSO-NN in simulated tasks dataset 

Next, we compare the prediction accuracy results with prediction learning based on the 

proposed variations of the PSO algorithm as R-PSO and VB-PSO. The Figure 48 shows the 
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variations ad R-PSO and VB-PSO. The results show that R-PSO and VB-PSO, both achieve 

higher accuracy within less iterations in comparison to the PSO so both variations are considered 

fruitful improvements in PSO. In comparing R-PSO and VB-PSO, we can observe that initially 

R-PSO-NN achieved higher prediction accuracy than VB-PSO but within next 100 iterations the 

VB-PSO-NN’s prediction accuracy shoots higher and stays to 99.54% from 200 iterations 

onwards. Whereas, though R-PSO-NN takes 600 iterations to achieve prediction accuracy of 

99.51% and reaches to 99.69% of prediction accuracy 700 iterations and gives higher prediction 

accuracy eventually.  

 

Figure 48: Prediction accuracy comparisons based on PSO-NN, R-PSO-NN and VB-PSO-NN in simulated 

tasks dataset 
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instances missing rate. The average instances missing rate for predictive FEF scheduling 33.49% 

and that for learned predictive and optimized hybrid scheduling is 19%. The tasks starvation rate 

for predictive FEF scheduling 25% and that for learned predictive and optimized hybrid 

scheduling is 9.19%. The learned predictive FEF decreases the tasks starvation rate with wisely 

allocating the free machine slots. Hence, the learning to prediction module increases the overall 

performance of the scheduler. 

  

(a) (b) 

Figure 49: Comparisons for learned predictive FEF and basic FEF scheduling for simulated tasks dataset (a) 

average instances missing rate in percentage; (b) average tasks starvation rate in percentage 

Now, we evaluate the effect of learning to optimization module. The optimization module 

works with an objective of maximizing the machine utilization. It takes the current tasks 

instances as input and finds the best orders and pairs for tasks to be processed at machines. The 

objective function will struggle to find orders with maximum machine utilization and pass the 

orders back to the scheduling module. We compare the learned predictive hybrid scheduling 

with learned prediction and optimized hybrid scheduling in Figure 50. The average machine 

utilization rate for learned predictive hybrid scheduling is 72.59% and the average machine 
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utilization rate for learned predictive and optimized scheduling is 90.59%. In the results, we can 

observe that optimization based task scheduling increases the machine utilization in comparison 

the one without optimization. 

 

Figure 50: Machine utilization comparisons with optimization vs. without optimization for simulated tasks 

dataset 

The Figure 51 shows the comparisons analysis for average response time taken for 

predictive FEF scheduling, learned FEF scheduling, learned predictive hybrid scheduling, and 

learned predictive and optimized hybrid scheduling scheme. We can observe from the 

comparisons that as the learning module of prediction is added, a significant decrease in the 

response times is noticed. Next, with the change in scheduling algorithm from FEF to hybrid 

approach, the performance gets slightly better and further decrease is observed in the response 
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time. Finally, with the addition of learning to optimization module, as the machine utilization 

increases, hence the task waiting time decreases and response time taken also decreases.  

 

Figure 51: Response time comparisons of proposed scheduling schemes for simulated tasks dataset 
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The average response time for tasks set using predictive FEF scheduling is 915.64 

milliseconds, using learned predictive FEF scheduling is 820.34 milliseconds, using learned 

predictive hybrid scheduling is 797.59 milliseconds and using learned predictive and optimized 

hybrid scheduling is 750.66 milliseconds. 

The Figure 52 shows the average instances missed rate for the predictive FEF scheduling, 

learned predictive FEF scheduling, learned predictive hybrid scheduling and learned predictive 

and optimized hybrid scheduling. The average instances missing rate for tasks set using 

predictive FEF scheduling is 36%, using learned predictive FEF scheduling is 19%, using 

learned predictive hybrid scheduling is 10% and using learned predictive and optimized hybrid 

scheduling is 8%. In the results shown, we can observe that the least number of tasks missing 

rate is at learned predictive and optimized hybrid scheduling, as it includes the learning modules 

and has the maximum machine utilization rate. 

 

Figure 52: Average instances missing rate comparisons of proposed scheduling schemes for simulated tasks 

dataset 
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Figure 53: Average tasks starvation rate comparisons of proposed scheduling schemes for simulated tasks 

dataset 

The Figure 53 shows the average tasks starvation rate for the predictive FEF scheduling, 

learned predictive FEF scheduling, learned predictive hybrid scheduling and learned predictive 

and optimized hybrid scheduling. The average instances starvation rate for tasks set using 

predictive FEF scheduling is 23%, using learned predictive FEF scheduling is 11%, using 

learned predictive hybrid scheduling is 6% and using learned predictive and optimized hybrid 

scheduling is 5%. In the results shown, we can observe that the least number of tasks starvation 

rate is at learned predictive and optimized hybrid scheduling, as it includes the learning modules 

and has the maximum machine utilization rate. 
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5.4 Simulation and Performance Analysis of Machine 

Cluster Data 

5.4.1 Input Dataset 
In this section, we have used google cloud task scheduling dataset [55] for the simulations 

and performance evaluations of our system. The dataset compromises of 500 sets of tasks 

instances executed at multiple machines. Table 21 shows the data size. 

Table 21: Machine cluster dataset size 

Dataset Table Size 

Machine Attributes 1048576 

Machine Events 37780 

Total Task Sets 500 

Single Task Set Instances 1048576 

 

The dataset has two main data as machine data and tasks data. Each task comprises of 

multiple jobs and includes jobs data. The machine data has two main tables as machine events 

table and machine attributes table. The machine events table contains timestamp, machine ID, 

event type, platform ID, machine processing capacity and machine memory capacity. Machine 

attributes table contains timestamp, machine ID, and attribute name, value and deletion status. 

The tasks data has tasks events table, tasks constraints table and jobs events table. The jobs 

events table contains time stamp, missing information, job ID, event type, user name, scheduling 

class and job name. The tasks event table contains timestamp, missing information, job ID, task 
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index for job, machine ID, event type, scheduling class, priority, resources for CPU, RAM and 

memory, and machine constraints. The tasks constraints table contains timestamp job ID, task 

index, attribute name and value. 

 

Figure 54: Detailed hierarchy view for in machine cluster dataset 

5.4.2 Performance Analysis and Comparisons 
In this sub-section, we present the experiments and performance analysis for the machine 

cluster data as input.  

First of all, the machine cluster data is used to train the prediction model. The predictions are 

made using ANNs where ANNs’ weights are tuned using PSO variations. In the Figure 55 

below, we show the prediction accuracy achieved and comparisons of the accuracy among 

implementations of PSO based ANN predictions, R-PSO based ANN predictions and VB-PSO 

based ANN predictions. In the graph, we observe that VB-PSO achieves the highest prediction 

accuracy within least number of epochs, whereas though R-PSO-NN also achieves the same 
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accuracy as VB-PSO-NN but with higher number of epochs. The prediction accuracy of 98.42% 

is achieved by R-PSO-NN in 800 iterations while VB-PSO-NN achieves the same within 300 

iterations. 

 
Figure 55: Prediction accuracy comparisons based on PSO-NN, R-PSO-NN and VB-PSO-NN in machine 

cluster dataset 

In Figure 56, we present the comparison of basic FEF scheduling and learned prediction FEF 

scheduling. The learned predictive FEF scheduling has an addition prediction module based on 

ANN which is learned using PSO. The learned prediction enhances the scheduling performance 

using history data learning and optimization of prediction results using PSO to tune ANN’s 

weights. Hence, we can observe in the graph that learned predictive FEF has less number of 

tasks starved and less number of instances missed in comparison to basic FEF scheduling. The 

average instances missing rate for basic FEF scheduling is 24% and for learned predictive FEF 

scheduling is 11%. The average tasks starvation rate for basic FEF scheduling is 18.28% and for 

learned predictive FEF scheduling is 5.35%. 
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(a) (b) 

Figure 56: Comparisons for learned predictive FEF and basic FEF scheduling in machine cluster dataset (a) 

average instances missing rate in percentage; (b) average tasks starvation rate in percentage 

In the Figure 57, we compare the predictive FEF scheduling with learned predictive and 

optimized hybrid scheduling. The graph shows the machine utilization rate based on varying 

tasks load. The tasks generated vary from 100 to 1000 during the simulation period. As the tasks 

grow more than the total machine capacity, some of the tasks instances are must to drop out. In 

basic FEF scheduling, the tasks instance missing rate is observed higher even when the machine 

is not being fully utilized, while in the learned predictive and optimized hybrid scheduling the 

tasks instances are only missed when the machine are in use to the fullest of their capacity. Also, 

in learned predictive and optimized hybrid scheduling the tasks being processed are high priority 

tasks and scheduler will make sure to allocate resources based on priorities, in order to not miss 

any high priority task when it can be traded off with a less priority task. 
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Figure 57: Tasks instances missing rate comparisons for proposed schemes with varying number of tasks in 

machine cluster dataset 

In the Figure 58, the average machine utilization for predictive FEF scheduling is compared 

with learned predictive and optimized hybrid scheduling. The machine utilization is measured 

with respect to varying number of available machines. In the results, we can observe that 

machine utilization increases with the increase in the tasks; however, the learned scheduling has 

high machine utilization in comparison to the predictive FEF scheduling. This indicates that 

learned predictive and optimized hybrid scheduling executes a higher number of tasks 

successfully while predictive FEF scheduling might be missing some tasks instances with high 

starvation rate with machine slots not being utilized to their full potential. 
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Figure 58: Average machine utilization rate comparisons for proposed schemes with varying number of tasks 

in machine cluster dataset 

In the Figure 59, we present the comparisons among predictive FEF scheduling, learned 

predictive FEF scheduling, learned predictive hybrid scheduling and, learned predictive and 

optimized hybrid scheduling. The x-axis shows the average response time of machine for tasks 

and y-axis shows the test iterations.  First, we analyze the predictive FEF scheduling and learned 

predictive FEF scheduling. The addition of learning in the prediction module substantially 

improves the performance and machine response time is reduced. Next, we evaluate the learned 

predictive FEF scheduling and learned predictive hybrid scheduling. It majorly reflects the 

difference in mechanism based on replacing the FEF scheduling algorithm to the hybrid ACM-

FEF scheduling algorithm.  
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Figure 59: Average machine utilization rate comparisons for proposed schemes with varying number of 

machines in machine cluster dataset 

We can observe that hybrid approach brings an improvement in the performance by further 

reducing the response time. At last we evaluate the learned predictive hybrid scheduling and 

learned predictive and optimized hybrid scheduling. It highlights the performance of 

optimization module which is based on the objective of maximizing the machine utilization as a 

single object as well as maximizing the machine network utilization overall. The addition of 

optimization module also improves the performance to some extent as observed in the results. 

The average response time for tasks set using predictive FEF scheduling is 1505.45 
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milliseconds, using learned predictive FEF scheduling is 1416.99 milliseconds, using learned 

predictive hybrid scheduling is 1310.85 milliseconds and using learned predictive and optimized 

hybrid scheduling is 957.8 milliseconds. 
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Chapter 6: Conclusions  

Efficient real-time tasks scheduling based on predictive analytics and optimized techniques 

is vital for smart factory systems. In this thesis, we have proposed an integrated solution for 

smart factory’s efficient task management based on learning to scheduling. The proposed 

proposal provides integrated task management solution based on learning to prediction and 

learning to optimization techniques. The proposed system has four main modules as task 

scheduler using ACM-FEF hybrid scheduling algorithm, learning to prediction using ANN for 

predictions and PSO for learning, learning to optimization using PSO for optimization and ANN 

for learning, and control mechanism based on inference engine. We proposed two improved 

variations of PSO named as VB-PSO and R-PSO to be used in prediction and optimization 

modules in place of PSO. The prediction and optimization module aid the scheduling module in 

efficient task management by enabling scheduler to make learned decisions. 

The learning to prediction mechanism predicts the tasks execution status and machine 

utilization under given load of the machines/tasks based on history decisions. The variations of 

PSO are used in learning to prediction mechanism as VB-PSO-NN and R-PSO-NN. In learning 

to optimization mechanism, an objective function is proposed for enhancing machine utilization 

and to seek the optimal results based on PSO algorithm. Also, we use the proposed improved 

variations of PSO (VB-PSO and R-PSO) in the optimization module. We further implement the 

ANN learning based VB-PSO and R-PSO; where ANN is used to tune the PSO particles’ 

positions for efficiently finding optimal solution. 

Our main contributions in this thesis can be listed as  

– Scheduling components 

• Learned FEF Scheduling Scheme 
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• Hybrid ACM-FEF scheduling scheme 

– Proposal of improved variations of PSO algorithm 

• VB-PSO 

• R-PSO 

– Prediction components 

• PSO learning based ANN weights tuning for enhancing prediction accuracy 

– Optimization components 

• Objective function for maximizing machine utilization 

• ANN learning based PSO parameter tuning for enhancing optimization results 

We have developed an emulator of smart factory tasks for simulating real-time task 

generation and we have evaluated the proposed system based on the simulations using three 

tasks datasets. The scheduling schemes used for results and comparisons analysis are basic FEF 

scheduling scheme (FEF without learning factors), predictive FEF scheduling scheme (FEF with 

ANN learning), learned predictive FEF scheduling scheme (FEF with PSO-NN learning), 

learned predictive hybrid (ACM-FEF) scheduling scheme, and learned predictive and optimized 

hybrid scheduling scheme (ACM-FEF with PSO-NN predictive learning and ANN-PSO 

optimized learning). 

The proposed task management mechanism is evaluated based on multiple scenario 

simulations and performance analysis. We use three task modeling scenarios as candy box 

factory tasks dataset; user input based simulated tasks dataset and machine cluster tasks dataset. 

We analyses the results analysis based on the (a) analysis of the prediction module (b) analysis 

of the optimization module and (c) analysis of the hybrid scheduling scheme. The performances 

analysis metrics considered are prediction accuracy, tasks instances missing rate, tasks starvation 

rate, machine utilization rate and machine response time.  
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The simulations are performed under overloaded tasks load at the machines to examine 

worst case scenarios. In the simulations, as the tasks grow more than the total machine capacity, 

some of the tasks’ instances are must to drop out. 

The results analysis and comparisons clearly show that prediction and optimization modules 

enhance the machine utilization and scheduler performance. The addition of learning modules 

further increases the performance by reducing the response times. The PSO based ANN 

predictions gives higher accuracy and the modification proposed for PSO improve the 

performance of PSO both in prediction module and optimization module. In performance 

analysis for candy box factory tasks dataset, we observe that prediction accuracy achieved by 

PSO-NN is 99.39% in 700 iterations while the prediction accuracy achieved by R-PSO-NN is 

99.53 in 700 iterations and the prediction accuracy achieved by VB-PSO-NN is 99.53% in 500 

iterations. In performance analysis for simulated tasks dataset, we observe that prediction 

accuracy achieved by PSO-NN is 99.42% in 800 iterations while the prediction accuracy 

achieved by R-PSO-NN is 99.69 in 700 iterations and the prediction accuracy achieved by VB-

PSO-NN is 99.54% in 200 iterations. In performance analysis for machine cluster tasks dataset, 

we observe that prediction accuracy achieved by PSO-NN is 98.21% in 800 iterations while the 

prediction accuracy achieved by R-PSO-NN is 98.42% in 800 iterations and the prediction 

accuracy achieved by VB-PSO-NN is 98.42% in 300 iterations.  

In the comparisons’ analysis for candy box factory, we have observed the following 

improvements. The learned predictive FEF scheduling in comparison to basic FEF scheduling 

scheme shows an average of 50% reduction in tasks starvation rate and an average of 63.64% 

reduction in tasks instances missing rate. The learned predictive and optimized hybrid 

scheduling scheme (proposed task management mechanism) shows an average of 22% increase 

in machine utilization, and an average of 30% improvement in response times. In the 

comparisons’ analysis for simulated tasks dataset, we have observed the following 
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improvements. The learned predictive FEF scheduling in comparison to basic FEF scheduling 

scheme shows an average of 77.78% reduction in tasks starvation rate and an average of 78.26% 

reduction in tasks instances missing rate. The learned predictive and optimized hybrid 

scheduling scheme (proposed task management mechanism) shows an average of 19.19% 

increase in machine utilization, and an average of 26.98% improvement in response times. In the 

comparisons’ analysis for machine cluster tasks dataset, we have observed the following 

improvements. The learned predictive FEF scheduling in comparison to basic FEF scheduling 

scheme shows an average of 72.23% reduction in tasks starvation rate and an average of 54.17% 

reduction in tasks instances missing rate. The learned predictive and optimized hybrid 

scheduling scheme (proposed task management mechanism) shows an average of 27.28% 

increase in machine utilization, and an average of 36.38% improvement in response times. 

Overall, we observe that the learned predictive FEF scheduling in comparison to basic FEF 

scheduling scheme shows an average of 72.23% reduction in tasks starvation rate and an average 

of 54.17% reduction in tasks instances missing rate. The learned predictive and optimized hybrid 

scheduling scheme (proposed task management mechanism) shows an average of 27.28% 

increase in machine utilization, and an average of 36.38% improvement in response times.  

The comparisons analysis shows that proposed task management system, referred as learned 

predictive and optimized hybrid scheduling scheme in the results analysis, significantly 

improves the machine utilization rate and drastically drops the tasks instances missing rate and 

tasks starvation rate. Hence, we can conclude that proposed modules, enhance prediction 

accuracy, enhance the optimization results and also increase the machine utilization and 

scheduling results. 
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