

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

A Thesis

For the Degree of Doctor of Philosophy

Efficient Task Management Mechanism Based on

Learning to Scheduling in Smart Factory

Sehrish Malik

Department of Computer Engineering

Graduate School

Jeju National University

December 2019

December 18
th

, 2019

Acknowledgement

This study is wholeheartedly dedicated to my beloved father Malik Abid Hussain

and my mother Farda Abid; they both have always been a true source of inspiration for

me. I would like to mention the role of my close friend Wafa Shafqat, for becoming my

family abroad and being with me through thick and thin. I wish to thank my siblings

Malik Faisal Sohail, Malik Nouman Abid, Aneeqa Malik and Saira Hussain, for always

supporting me in my decisions.

I wish to express my sincere appreciation to my supervisor, Professor Do-Hyeun

Kim, who convincingly encouraged me to be professional in achieving my goals and

directed me to do the right thing even during my low times. Without his persistent help,

the goal of completing this thesis wouldn’t have been possible. I would like to

acknowledge that he played a vital role in shaping my views towards maintaining a

healthy balance between professional and personal life goals.

I wish to appreciate the support of my colleagues, during my study at Jeju

National University. I am grateful to my seniors Dr. Israr Ullah, Dr. Muhammad Fayyaz

and Dr. Wenquan Jin for their guidance at early stages of my research. I would like to

extend my gratitude to my lab mates Shabir Ahmad, Faisal Mehmood, Hang-Lei, Faisal

Jamil, Imran Jamal, Azimbek, Young-Uk and Naeem Iqbal for providing a very

professional and friendly working environment.

I greatly appreciate the assistance and exposure provided by Jeju National

University and its Computer Engineering Department in fulfilling my dreams.

Dedicated to

 My Father, Malik Abid Hussain

 (16/04/1962 – 01/02/2019)

i

Table of Contents

Acknowledgement iii

List of Figures iv

List of Tables viii

Abstract 1

Chapter 1: Introduction 4

Chapter 2: Related Work 10

2.1 Internet of Things and Cyber Physical Systems in Smart Factory........................ 11

2.2 Scheduling Mechanisms ... 18

2.3 Prediction Mechanisms ... 20

2.4 Optimization Mechanisms .. 22

2.5 Limitations of Existing Solutions ... 25

2.6 Algorithms for Learning to Scheduling .. 29

2.6.1 Neural Networks (NNs) 29

2.6.2 Particle Swarm Optimization (PSO) 30

Chapter 3: Proposed Learning to Scheduling in Smart Factory 32

3.1 Conceptual Learning to Scheduling Mechanism Based on Prediction and

Optimization .. 32

3.2 Proposed Learning to Scheduling Mechanism using Hybrid ACM-FEF 36

ii

3.2.1 Agent Cooperation Mechanism for Scheduling 37

3.2.2 Fair Emergency First Task Scheduler 38

3.3 Learning to Prediction for Scheduling in Smart Factory 41

3.3.1 Prediction using ANNs 42

3.3.2 Learning to Prediction using PSO and ANNs 43

3.4 Learning to Optimization for Scheduling in Smart Factory 46

3.4.1 Optimization Objective Function for Machine Utilization 47

3.4.2 Learning to Optimization using ANNs 48

3.5 Control Mechanism for Scheduling in Smart Factory .. 50

Chapter 4: Simulation Developments for Learning to Scheduling Experiments 54

4.1 Environment Modeling ... 54

4.2 Input Task Notations ... 57

4.2.1. Periodic Tasks Set Notation 58

4.2.2. Event-Driven Tasks Set Notation 59

4.3 Simulation Implementation Environment ... 60

4.4 Scheduling Simulation Application and Visualization ... 60

Chapter 5: Simulation and Performance Analysis 63

5.1 Simulation Environment for Task Management .. 63

5.2 Simulations and Performance Analysis of Candy Box Factory 65

iii

5.2.1 Input Tasks Modeling of Candy Box Factory 69

5.2.2 Tasks Simulation and Performance Analysis for Candy Box Factory 74

5.3 Simulation and Performance Analysis of Simulated Tasks Dataset 90

5.3.1 Input Tasks Modeling for Data Simulations 90

5.3.2 Performance Analysis and Comparisons 92

5.4 Simulation and Performance Analysis of Machine Cluster Data................... 100

5.4.1 Input Dataset 100

5.4.2 Performance Analysis and Comparisons 101

Chapter 6: Conclusions 108

References 112

iv

List of Figures

Figure 1: Integration of IoT and CPS .. 5

Figure 2: Conceptual diagram of the proposed task management mechanism 7

Figure 3: Smart factory development phases ... 8

Figure 4: IoT enabled interaction between smart factory and consumers 12

Figure 5: An architecture for IoT-based smart factory ... 13

Figure 6: CPS architecture for smart factory .. 17

Figure 7: Predictive Analytics in Smart Factory .. 20

Figure 8: Baseline Predictive Maintenance .. 22

Figure 9: Typical classification of primitive optimization algorithms 23

Figure 10: Neural network (NN) layers ... 30

Figure 11: Layered view for proposed task management mechanism in smart factory. . 33

Figure 12: Conceptual design of the proposed task management mechanism based on

learning to scheduling in smart factory.. 35

Figure 13: Conceptual diagram of agent cooperation mechanism 37

Figure 14: Flow chart for FEF Scheduling Algorithm .. 39

Figure 15: Learning of X in Urgency Measure (UM). ET: event-driven task; PT:

Preemption Threshold .. 40

Figure 16: Prediction for high priority tasks’ safe execution .. 41

Figure 17: Prediction Model using ANNs ... 42

Figure 18: Learning to prediction model based on ANN .. 43

Figure 19: Flow chart for PSO variations of R-PSO and VB-PSO 44

v

Figure 20: Optimized scheduling mechanism for maximizing machine utilization 48

Figure 21: Learning to optimization based on PSO for scheduling 49

Figure 22: Defining of a rule in inference engine for control task generation 50

Figure 23: Workflow of firing a rule in inference engine for control task execution...... 51

Figure 24: Control module interactions and working .. 52

Figure 25: Smart factory environment modeling ... 56

Figure 26: Scheduling simulation applications Interface .. 61

Figure 27: Scheduling schemes for simulations of tasks management in smart factory . 64

Figure 28: Scenario modeling for candy box factory .. 67

Figure 29: Overall scheduling simulation flow for candy box factory 68

Figure 30: Event driven tasks simulation flow for candy box factory 75

Figure 31: Periodic tasks simulation flow for candy box factory 76

Figure 32: Tasks simulation training data for candy box factory 80

Figure 33: Tasks completion status training data for candy box factory 80

Figure 34: Machine utilization training data for candy box factory 81

Figure 35: Simulated sensing data for temperature and humidity for candy box factory 82

Figure 36: Tasks generation and simulation for candy box factory 82

Figure 37: Tasks Simulation flow on machine for candy box factory 83

Figure 38: Prediction accuracy comparisons for ANN and PSO-NN for candy box

factory .. 84

Figure 39: Prediction accuracy comparisons for R-PSO-NN and VB-PSO-NN for candy

box factory ... 84

vi

Figure 40: Proposed scheduling comparisons with prediction and without prediction for

candy box factory (a) average instances missing rate in percentage; (b) average task

starvation rate in percentage .. 85

Figure 41: Response time comparisons with and without learned prediction for candy

box factory ... 86

Figure 42: Response time comparisons with learned predictive FEF and learned

predictive hybrid scheduling for candy box factory .. 87

Figure 43: Response time comparisons with and without optimized scheduling for candy

box factory ... 88

Figure 44: Machine utilization rate comparisons for proposed scheduling schemes in

assembly machine in candy box factory .. 89

Figure 45: Average machine utilization for proposed scheduling schemes in candy box

factory (a) for assembly machine; (b) for packaging machine .. 89

Figure 46: Tasks parameters generation and building history data parameters 92

Figure 47: Prediction accuracy comparisons for ANN and PSO-NN in simulated tasks

dataset .. 93

Figure 48: Prediction accuracy comparisons based on PSO-NN, R-PSO-NN and VB-

PSO-NN in simulated tasks dataset ... 94

Figure 49: Comparisons for learned predictive FEF and basic FEF scheduling for

simulated tasks dataset (a) average instances missing rate in percentage; (b) average

tasks starvation rate in percentage ... 95

vii

Figure 50: Machine utilization comparisons with optimization vs. without optimization

for simulated tasks dataset ... 96

Figure 51: Response time comparisons of proposed scheduling schemes for simulated

tasks dataset ... 97

Figure 52: Average instances missing rate comparisons of proposed scheduling schemes

for simulated tasks dataset ... 98

Figure 53: Average tasks starvation rate comparisons of proposed scheduling schemes

for simulated tasks dataset ... 99

Figure 54: Detailed hierarchy view for in machine cluster dataset 101

Figure 55: Prediction accuracy comparisons based on PSO-NN, R-PSO-NN and VB-

PSO-NN in machine cluster dataset... 102

Figure 56: Comparisons for learned predictive FEF and basic FEF scheduling in

machine cluster dataset (a) average instances missing rate in percentage; (b) average

tasks starvation rate in percentage ... 103

Figure 57: Tasks instances missing rate comparisons for proposed schemes with varying

number of tasks in machine cluster dataset ... 104

Figure 58: Average machine utilization rate comparisons for proposed schemes with

varying number of tasks in machine cluster dataset .. 105

Figure 59: Average machine utilization rate comparisons for proposed schemes with

varying number of machines in machine cluster dataset ... 106

viii

List of Tables

Table 1: Units and components involved in the IoT based smart factory architecture ... 14

Table 2: CPS architecture levels and attributes ... 16

Table 3: Heuristic and Statistical Algorithms .. 21

Table 4: Smart factory challenges and description .. 26

Table 5: Smart factory challenges and solutions ... 27

Table 6: Comparisons among related works and proposed solution 28

Table 7: Sensing tasks parameters for candy box factory ... 46

Table 8: Types of sensors for smart factory .. 55

Table 9: Simulation implementation environment .. 60

Table 10: Sensors list for candy box factory ... 65

Table 11: Actuators list for candy box factory .. 66

Table 12: Machines’ attributes for candy box factory ... 69

Table 13: Sensing tasks parameters for candy box factory ... 70

Table 14: System tasks parameters for candy box factory .. 71

Table 15: Control task triggered from sensing task for candy box factory 72

Table 16: Control task triggered from system task for candy box factory 73

Table 17: Control task’s jobs list for candy box factory.. 73

Table 18: Control task’s jobs description for candy box factory 74

Table 19: List of tasks execution times and priority type for candy box factory 77

Table 20: Generated Task Parameters List .. 91

Table 21: Machine cluster dataset size .. 100

ix

1

Abstract

Smart factory also known as smart manufacturing is an emerging field with the revolution of

industry 4.0. The smart factory concept is an integration of internet of things technologies,

computing platforms, cyber-physical systems, control mechanisms, data modeling and

simulations, optimization techniques and predictive engineering. With the help of all these

concepts, the smart factory integrates the manufacturing assets and represents industrial

networks. The aim of smart factory industrial networks is mass customization, on-demand

supply chain management, optimal and flexible processing solutions, and parallel processing.

Smart factory faces many limitations in the current age and is need of research solutions for

issues such as environmental hazards, energy consumption, productivity, efficient planning, task

management, job scheduling, machine utilization, reliable infrastructure and integrated solutions.

In this thesis, we put our efforts to find integrated solutions for smart factory concerns by

proposing an efficient task management mechanism based on learning to scheduling in smart

factory. The scope of the proposal is to efficiently plan tasks execution, maximize machines’

resource utilization, maximize productivity, minimize production delays, efficiently handle

exceptions and efficiently control smart factory actuators. The proposed learning to scheduling

mechanism focuses on both machine structure and tasks modeling for efficient scheduling. We

design and develop an integrated solution of learning to scheduling based on sub-modules of

prediction and learning for prediction mechanism, optimization and learning for optimization

mechanism and inference engine based control mechanism in this thesis work.

The scheduling algorithm used for the efficient task management is hybrid of the two

scheduling approaches as agent cooperation mechanism (ACM) and fair emergency first (FEF)

scheduling scheme. ACM is a decentralized scheduling approach which focuses on the

2

production maximization goals per machine and also centers the production goals of all the

machine networks involved in the smart factory. FEF scheduling scheme focuses on minimizing

the tasks starvation rate and maximizing the machine utilization by efficiently using the machine

slots. In FEF scheduling scheme, two predictive learning based factors are used to improve the

scheduling performance; UM (Urgency Measure) and FM (Failure Measure). Both UM and FM

use ANN prediction algorithm to learn from scheduler’s history decisions and put the learnings

in context to wisely use the free machine slots; aiming to increase machine utilization without

risking timely execution of any high priority task.

The learning to prediction mechanism takes scheduler history data as input and predicts the

future tasks completion status and machine utilization rate under varying tasks’ loads. The

prediction algorithm used is artificial neural network (ANN) and learning algorithm used is

particle swarm optimization (PSO). The learning algorithm of PSO tunes the ANN’s weights

during training iterations to optimize the ANN weights and maximize the prediction accuracy.

The learning to optimization mechanism aims to maximize the machine utilization for

machines involved in the smart factory, in order to efficiently use the machine resources. The

optimization algorithm used is PSO and the learning algorithm used is ANN. First, PSO history

is built to train the ANN algorithm and then based on ANN training the PSO particle’s velocities

are tuned in order to enhance the optimization results.

The control mechanism for smart factory actuators is based on the inference engine. The

inference engine is fed with rule base which contains list of rules for existing actuators based on

incoming sensing and system values. The inference engine matches the rules and generates the

control tasks. The control tasks are sent to the scheduler to be executed; and on execution of

control tasks, the control commands are sent to the actuators via control unit.

The proposed task management mechanism is evaluated based on multiple scenario

simulations and performance analysis. The comparisons analysis shows that proposed task

3

management system, referred as learned predictive and optimized hybrid scheduling scheme,

significantly improves the machine utilization rate and drastically drops the tasks instances

missing rate and tasks starvation rate. Overall, we observe that the learned predictive FEF

scheduling in comparison to basic FEF scheduling scheme shows an average of 72.23%

reduction in tasks starvation rate and an average of 54.17% reduction in tasks instances missing

rate reduction. Also, the learned predictive and optimized hybrid scheduling scheme

demonstrates an average of 27.28% increase in machine utilization, and an average of 36.38%

improvement in response times.

4

Chapter 1: Introduction

Technology has vastly changed with the changes witnessed by the industrial revolutions. Till

today, the world has observed four industry revolutions where first industrial revolution started

in 1784 with the introduction of mechanization based on steam and water power. The second

industrial revolution came in 1923 with the introduction of mass production and electricity. The

third industrial revolution came in 1969 with the introduction of electronics and IT systems

along with introduction of automation. The fourth industrial revolution came in 2014 with the

introduction of cyber physical system based on smart machines, sensors, automated control of

actuators, and inter-connectivity between the physical world the virtual world [1]. The 4th

industrial revolution resulted in the introduction of smart manufacturing and smart factory. The

Industry 4.0 can be defined as smart factories with connected machine and intelligent robots

based on the cyber physical systems.

The underlying technology of smart factory is internet of things (IoT) which has smart

sensing technologies, smart machines connected to network, intelligent and automated control

with self-awareness, self-prediction, self-optimization, self-configuration and self-diagnosis.

Such systems are enabled with the help of cyber physical system (CPS) concept. The integration

of IoT and CPS into factory creates a virtual twin of the physical world with each physical object

having its virtual representation. In a smart factory all the objects are connected using the IoT

networks and the operations are operated by CPS. The basic goal of IoT is to connect the real-

world objects while the aim of CPS is to connect the physical world with the virtual world [3] as

shown in Figure 1.

5

Figure 1: Integration of IoT and CPS

The virtual objects are contained in a virtual network which replicates the physical

representation, dependencies and context of the physical world objects. The IoT enabled smart

factory solutions help achieving the real-time production visualization with the identification of

manufacturing objects. The technologies such as radio frequency identification (RFID) are used

to interpret the real-world object into smart factory’s virtual objects along with their behaviors

and interactions. The development of such system facilitates in the smart factory production

process, intelligent decision making and automated control process, and other operations [4].

The smart machines participate in generating huge volumes of data known as big data. Big

data can be used and analyzed to aid the smart factory production. Artificial intelligence (AI)

6

and machine learning mechanisms are used to interpret the big data into useful information to be

applicable. The right use of big data can help smart factory to optimize the production by

maximizing the production output, maximizing the machine utilization, minimizing the energy

consumption, minimizing the production cost, and minimizing the production time. The

application of AI and machine learning into big data can result into application scenarios such as

predictive maintenance, fault detection, product’s quality detection, production cost predictions

etc. The big data analytics are deployed for performance monitoring, performance management

and optimization of the operations.

The smart factory has inter-connected supply chains and autonomous control of vehicles,

machines and robots resulting in efficient production tasks management such as getting

shipments ready based on tracking of ships’ arrivals and departures and avoiding delays with the

help of self-driving vehicles and self-delivering robots. The goal of smart factory is to deliver

smart solutions to the customers of smart factory.

Customers play a vital role in the smart factory. In order to assure the customers’ satisfaction

and growth, it very crucial for the smart factory to perform the production process efficiently and

effectively in real-time by meeting all constraints [5]. This task can be performed with the help

of following two factors set at the right place. The first is the automated feedback of the

production processes and second is the implementation of analytics tools to accurately predict

the production and consumers patterns [6]. Hence, the predictive and optimized scheduling is

very crucial for the smart factory’s timely task management.

In this thesis, we propose learning to scheduling mechanism based on learning to prediction

and learning to optimization in smart factory.

The proposal aims to aid the smart factory’s manufacturing processes with efficient tasks

allocation, efficient tasks dispatching and efficient tasks scheduling; in order to improve the

overall productivity of the manufacturing process. The proposed mechanism involves the

7

scheduling of tasks with the aid of learning modules of prediction and optimization. The learning

modules provide the history based predictions and tuned parameters for improved task

management. In the Figure 2 show, we present the conceptual diagram of the proposed system.

Figure 2: Conceptual diagram of the proposed task management mechanism

The proposed solution is based on three main modules as prediction module, optimization

module and scheduling module. The prediction and optimization module facilitate the

scheduling module by improving the task management process with their learned inputs. The

scheduling scheme for efficient task management is based on the hybrid decentralized

scheduling named as agent cooperation mechanism (ACM) and a fair emergency first (FEF)

scheduling scheme. Two learning based sub-modules are added in scheduling to improve the

scheduling outcome: UM (Urgency Measure) and FM (Failure Measure). We propose an

8

optimized prediction scheme for predicting the tasks execution status and machine utilization

rate under given load of the tasks based on the history decisions. We also proposed improved

variations of PSO for optimized predictions using ANN as VB-PSO-NN and R-PSO-NN. An

objective function is proposed for enhancing machine utilization and to seek the optimal results

based on PSO algorithm. Also, we use the proposed improved variations of PSO (VB-PSO and

R-PSO) as optimization algorithm. We further implement the ANN learning based VB-PSO and

R-PSO; where ANN is used to tune the particle weights.

Figure 3: Smart factory development phases

The development phases of the thesis study are shown in Figure 3. There are three main

development phases as related study for smart factory system requirements, development of

smart factory system prototype and evaluation of the smart factory based on task management.

9

The rest of the thesis is structured as follows. In chapter 2, we present the literature review

divided into subsections as internet of things and cyber-physical system in smart factory (section

2.1), scheduling mechanisms (section 2.2), prediction mechanisms (section 2.3) and optimization

mechanisms (section 2.4). In section 2.5 we present the limitations of existing works in smart

factory and we also provide comparisons of existing works with proposed work. In section 2.6

we present the basics of two main algorithms used in the proposed work. In chapter 3, we

present the proposed learning to scheduling mechanism for efficient task management. The

section is divided into five sub-sections as conceptual learning to scheduling mechanism in

section 3.1, learning to scheduling modules presented in section 3.2, learning to prediction

modules presented in section 3.3, learning to optimization modules presented in section 3.4 and

control mechanism presented is section 3.5. In chapter 4, we present the simulation

developments environment. Chapter 4 is divided into four sub-section as environment modeling

presented in section 4.1, input tasks notations presented in section 4.2, simulation

implementation environment presented in section 4.3 and scheduling simulation application in

presented in section 4.4. In Chapter 5, we present the simulation and performance analysis of the

proposed learning to scheduling mechanism. We use task modeling scenarios as candy box

factory tasks dataset, user input based simulated tasks dataset and machine cluster tasks dataset.

We analyses the results based on the (a) analysis of the prediction module (b) analysis of the

optimization module and (c) analysis of the hybrid scheduling scheme. The performance

analysis metrics considered are prediction accuracy, tasks instances missing rate, tasks starvation

rate, machine utilization rate and machine response time. In chapter 6, we conclude the thesis.

10

Chapter 2: Related Work

In this section, we present the related literature of smart factory. Smart factory is based on

many key components such as IoT, cyber-physical system, process scheduling, prediction

mechanisms for improving the outcomes based on learnings from history actions and responses,

optimization mechanism for improving the outcomes based on finding the optimal parameters

for certain scenarios and optimal solutions to scenario based problems.

Many changes in factory happened after emergence of industry 4.0, in form of production,

supply of products and timeline [2]. The differences in industry before fourth industrial

revolution and after fourth industrial revolution can be marked as changes in concepts of mass

production to mass customization, scheduled supply to on-demand supply, static attributes to

optimal and flexible attributes, and focus from product to usage.

The rest of the sections are divided as following. First, in section 2.1 we explain the

evolution of IoT and revolution in industry with introduction of IoT, resulting in Industry 4.0

which is also be referred as smart factory. Also, in this section, we present the cyber-physical

systems as these are one of the key components of smart factory. In section 2.2, we present the

literature review of scheduling mechanisms in smart factory. In section 2.3, we present the

prediction mechanisms used in the smart factory domain and the most commonly used

prediction algorithms. In section 2.4, we present the related works to optimization mechanisms

used in the smart factory domain and the most commonly used optimization algorithms. In

section 2.5, we present the limitations of existing solutions and in section 2.6 we highlight the

existing and related algorithms which we will be using in our proposed mechanism.

11

2.1 Internet of Things and Cyber Physical Systems in Smart

Factory

Internet of Things (IoT) is one of the key essences of smart factory. IoT can be simply

defined as integration of internet into things or objects. The IoT networks consist of embedded

devices such as sensors and actuators which are connected to form sensor networks and actuator

networks. The integration of IoT into factory enables the smart manufacturing process. Smart

manufacturing has real-time data sharing and interaction among the smart devices, machine and

objects. [11,12]. IoT elements which are widely used in smart factory include radio frequency

identification technology, smart tags, sensing technologies, location tracking, real-time

actuators’ control etc. [13].

Smart factory uses the combination of IoT technologies and industry technologies consisting

of sensors, actuators, network connectivity, smart computing, predictive analytics and optimized

control [14].

The digital revolution for smart factories started after 1970s and continues till today, with

rapid increase in automation and smart control of industry manufacturing by integrating first IT

(Information Technology) and now IoT based technologies, models, frameworks and solutions.

The complete integration of IoT technologies in factory environment is termed as the fourth

industry revolution [15-18].

The inclusion of IoT technologies in factory results in boosting the factory production and

efficiency. In 2014, a survey conducted by American society for quality presents that the

inclusion of smart manufacturing significantly affects the factory efficiency. The results have

shown the customers to be 45% more satisfied with the products and a decrease in product

defects up to 49% [19]. Another survey conducted in 2013 was based on basic question of

addition of IoT in businesses and expectation of businesses growth with this addition. The

12

results present that about 96% of the people believed that IoT will become an addition to a part

of their businesses at some point, 38% believed that IoT will have a vital influence on their

businesses, 45% responded that adopting IoT will have a positive influence on their company

environment, and 63% responded that businesses which show a lack of interest in integration of

IoT will be left behind [20].

Figure 4: IoT enabled interaction between smart factory and consumers [21]

In Figure 4, an IoT technology enabled interaction among smart factory and smart factory

consumers is shown. The interaction is two way, first from the smart consumers to smart factory

where the users’ data such as potential consumers’ needs, their online behaviors and expected

product behavior are passed onto the smart factory; second is from smart factory to smart

13

factory’s consumers where the smart products and services matching to the consumers’ needs

are delivered to them.

The Figure 5 presents an IoT based architecture for smart factory which consists of five

main units as smart customer’ behavior, cloud computing and big data, smart factory, smart grid

and smart suppliers. The smart factory unit consists of seven main components as smart

machine, smart devices, smart engineering, smart manufacturing process, data analytics,

manufacturing IT and smart suppliers [16].

Figure 5: An architecture for IoT-based smart factory [16]

14

The Table 1 below explains the units and components involved in the IoT based smart

factory architecture.

Table 1: Units and components involved in the IoT based smart factory architecture

Unit/Component Description

Smart machine
– Machine-to-Machine communication

– Machine-to-Human communication

Smart device

– Field devices

– Mobile devices

– Operating devices

– Sensing devices

– Actuating Devices

Smart manufacturing processes

– Dynamic process communication

– Efficient process communication

– Automated process communication

– Real-time process communication

Smart engineering

– Product design

– Product development

– Product engineering

– Product production

– Product’s after sales service

Manufacturing IT

– Software application

– Smart monitoring

– Data Sensing

– Automated control

– Smart meters

– Smart mobile devices

– Intelligent production management

Smart logistics – Logistics tools

– Logistics processes

Smart suppliers – Maximize real-time information sharing

– Maximize flexibility

Smart grid – Smart infrastructures for energy in smart

factory

Big data and cloud computing – Algorithms

– Analysis of applications

15

Cyber-Physical Systems (CPS) can be referred as the systems with integrated computational

and physical capabilities [22]. CPS plays a vital role in the development of smart factory

systems, as CPS aids the managing of big data being continuously generated by the sensors, IoT

networks and smart machines. Such steps will influence the machines to become intelligent and

self-adaptable, hence improving the machine-to-machine and machine-to-human communication

dramatically [23-24]. The integration of CPS with the factory units of production, logistics and

services will transform them into Industry 4.0 factory (smart factory), with increased economic

prospective [25-26].

In Figure 6, a five level CPS architecture is presented [27]. The purpose of the architecture is

to list down the steps of building a CPS, in order to bring ease in CPS development,

implementation and integration into smart factory. The architecture has five layers as smart

connection level, data-to-information conversion level, cyber level, cognition level and

configuration level. The connection level contains local data server, data-to-information

conversion level contains sensing data and machine data, cyber level contains adaptive health

assessments and time machine records, cognition level contains machine components along with

quality check and products along with quality reasoning and configuration level contains self-

optimized machine tools and self-adjustable prognostics.

The Table 2 below shows the five CPS levels along with each level’s attributes description.

The main attributes of a CPS system include self-aware, self-configure, self-adjust, self-

optimize, self-maintain, self-compare and self-organize.

16

Table 2: CPS architecture levels and attributes

CPS Level Attributes Description

1. Smart connection level

– Self-configure

– Self- adjustable

– Self-optimizable

2. Data-to-information conversion level

– Integrated simulation

– Remote visualization

– Collaborative diagnostics

– Decision making

3. Cyber level

– Twin model for smart factory

components and machines

– Time machine for variation

identification and memory

– Clustering for similarity in data

mining

4. Cognition level

– Smart analytics for machine health

– Smart analytics for multi-dimensional

data association

– Performance prediction

5. Configuration level
– Sensor network

– Actuator network

Connection level establishes the connection to the local data server. Conversion level

converts the sensing data and machine data to system understanding. Cyber level replicates the

physical smart factories’ objects, machines and involved elements and it provide the adaptive

health assessments of the machine and time machine records. Cognition level performs quality

check, quality reasoning for the machine and product. Configuration level performs the self-

optimization to machine tools to meet the quality requirements and efficiency requirements; and

it performs the self-adjustable prognostics to improve the assets life-time and to improve the

product quality.

17

Figure 6: CPS architecture for smart factory [27]

18

2.2 Scheduling Mechanisms

The scheduling in smart factory involves the scheduling of tasks, processes and jobs in smart

manufacturing. Also, the scheduling of smart manufacturing resources such as the sensing tasks

from installed sensors, the control tasks for the smart machines and robots. The aim of

scheduling in a smart factory is to optimize the production in every possible way. Scheduling

mechanism is vital for the effective and optimal production of customized products in smart

factory. Effective and optimal production is one which balances all involved parameters such as

quality, cost, productivity, time and other system resources [28].

The smart factory solution requires a real-time scheduling approach for ordering the tasks

and jobs arriving at the machines. The real-time scheduling aims to increase the factory

productivity and machine utilization [29-30]. Real-time smart factory task management is

achieved with the flexible event-driven reactions to the periodic/non-periodic happenings at the

smart factory.

A mechanism for dynamic scheduling of services for smart factory is presented in [31]. The

solution of scheduling the services of CPS is based on structure dynamics control. The adaptive

scheduling and automated control are considered very crucial to the smart manufacturing based

on the CPS production [32-33]. The real-time systems involve two main scheduling mechanisms

as multi-pass simulation mechanism [34], and machine learning scheduling mechanism [35-36].

A multi-pass simulation is based on real-time simulation and fast mode preview of the

simulation. The fast mode simulations are used to select the best scheduling policies for the shop

floor control simulations on real-time [37]. Multi-pass scheduling approach can be unsuitable for

real-time systems scenarios due to consuming high computational resources.

The machine learning scheduling mechanism is more suitable for real-time systems. The

machine learning based mechanism requires building a knowledge based first, by running

19

simulations based on training examples. The building phase of enough knowledge base is a time

taking task. Once the knowledge base is built, it helps the simulations to acquire the results in a

more robust and efficient manner. The knowledge base aids in making real-time decisions based

on smart manufacturing operational constraints and parameters [38].

Main algorithms used for building knowledge base in machine learning scheduling

mechanism are ANNs [39], support vector machines [40] and decision tree learning [41].

An agent cooperation mechanism for decentralized scheduling is proposed in [42]. The

proposed mechanism focuses on decentralized scheduling based on agents such as order agent,

product agent and resource agent. The order agent generates process execution knowledge,

product agent generates production knowledge, and resource agent generates process knowledge.

The agent has three main functions as time budget utility function (TBU), pair compatibility

utility function (PCU) and network utility function (NCU). TBU aims to maximize the chance of

executing a task before its deadline. PCU aims to enhance the utilization of a machine pair

ordered together for jobs execution. NCU aims to maximize the network utilization based on

pairs ordering and jobs allocations. The resource agent executes the instances using genetic

algorithm for optimization process to ensure the maximization of system goals.

Some of the traditional scheduling approaches for real-time and non-real-time systems are

first in first out (FIFO), shortest job first (SJF), highest priority first policy, least laxity first

(LLF), modified least laxity first (MLLF), round robin (RR), earliest deadline first (EDF) and

deadline monotonic (DM) [43-50]. Some of the customized scheduling approaches for real-time

system scheduling are maximum urgency first (MUF), time-stepped load balancing (TLS),

smoothed least laxity first (sLLF), procrastination scheduling and hybrid scheduling approaches

[51-66].

20

2.3 Prediction Mechanisms

Prediction mechanism are very crucial in smart factory as they widely help in improving the

product quality and customers experience based on learnings from past trends. The

implementation of analytics tools to predict the production and consumer patterns plays a vital

rule. Figure 7 shows the framework for the predictive manufacturing system [6].

Figure 7: Predictive Analytics in Smart Factory [6]

Algorithms which focus on finding efficient and quick solutions (approximate solutions) to a

problem by forfeiting the accuracy and optimality are known as Heuristic algorithms.

21

Algorithms which create a statistical or probability based model for the input data are known as

statistical algorithms. Table 3 shows the list of heuristic and statistical algorithms.

Table 3: Heuristic and Statistical Algorithms

Heuristic Algorithms Statistical Algorithms

Artificial Neural Networks Linear/Logistic Regression

Support Vector Machines Naïve Bayes Classifier

Genetic Algorithms K Means Clustering

Swarm Intelligence Support Vector Machine

Simulated Annealing Markov chains

- ARIMA

Prediction mechanism is used at multiple levels in the smart manufacturing. It is used for

performance predictions of the system [67]. Prediction approaches are also used to predict the

health conditions of smart factory tools such as a study in [68] uses ANNs based predictions,

support vector machine based predictions and random forests based predictions for the tool wear

predictions in the smart manufacturing. One of the major roles of prediction approaches in the

smart manufacturing is of predictive maintenance [69]. Predictive maintenance refers to the

timely predictions for the smart factory’s equipment downtime and failure in order to improve

the productivity and minimize the production cost. The study in [70], presents a baseline

predictive maintenance solution which consists of components such as a target device (TD),

device health index (DHI), and remaining-useful-life (RUL) predictive model. The system gets

related process data and target device data as input and outputs the device health index and

device’s remaining useful life indicating whether device is in safe state or risk state.

22

Figure 8: Baseline Predictive Maintenance [70]

The work presented in [71] combines the baseline predictive scheme with a cyber-physical

agent and adds an advanced manufacturing based on cloud of things to implement a system that

provides factory-wide equipment maintenance with hundreds of machines active in the smart

factory. The goal is to provide a factory-wide predictive maintenance system. The study

presented in [72] also proposes a cloud based predictive maintenance solution to aid the smart

factory production. Many prediction mechanisms focused on task completion, time management,

self-adaptive task scheduling, task replication, low-power task scheduling etc. presented in other

related studies [73 - 83].

2.4 Optimization Mechanisms

In the Figure 9, the classification of optimization algorithms into two main classes as

systematic optimization and heuristic algorithms is given [84]. The systematic optimization is

further classified into two sub-classes as mathematical optimization and combinational

optimization. The heuristic algorithms are further divided into three main sub-classes as bio-

inspired optimization algorithms, hybrid optimization algorithms, and stochastic optimization.

Each sub-class has a number of algorithms residing in it as given in the Figure 9.

23

Multi-Island
Genetic Algorithm

Bio-inspired
Optimization Algorithms

Genetic Algorithm

Incremental
Genetic Algorithm

Particle Swarm
Optimization

Genetic
Programming

Neural Network

Multi-Objective Particle
Swarm Optimization

Genetic Algorithm & Particle
Swarm Optimization

Multi-Island Genetic Algorithm
& Particle Swarm Optimization

Genetic Algorithm & Multi-
Island Genetic Algorithm

Genetic Algorithm & Genetic
Programming

Hybrid Optimization
Algorithms

Ant Colony Optimization &
Genetic Algorithm

Ant Colony Optimization &
Particle Swarm Optimization

Optimization Algorithms

Stochastic Optimization

Heuristic Algorithms

Linear
Programming

Combinatorial
Optimization

Hill Climbing

Random Search
Artificial Immune

System

Tabu Search

Stochastic Tunneling

Stochastic
Programming

Stochastic
Approximation

Simulated Anealing

Ant Colony
Optimization

Bee Colony
Optimization

Systematic
Optimization

Non-linear
Programming

Integer
Programming

Quadratic
Programming

Dynamic
Programming

Mathematical
Optimization

Greedy Algorithm

Duality

Simplex
Algorithm

Robust
Optimization

MiniMax/MaxMin

Alpha-Beta Pruning

Branch and Bound

Newton’s Method

Prim's algorithm

Kruskal's algorithm

Figure 9: Typical classification of primitive optimization algorithms [84]

The task scheduling simulations when guided by simulation optimization approaches result

in improved productions. The optimization model is used to generate the possible solutions

which maximize the productivity and minimize the cost [85]. The work presented in [86]

highlights the challenges and limitations of the process manufacturing in the current

petrochemical industry. The study stresses on the adaptive smart optimization for manufacturing

process and supportive control and optimization for factory-wide process production.

Industrial RFID performance evaluation is performed in the study presented in [87], for

optimal design of smart factory processing. The study presented in [88], presents a review of the

3D printing by highlighting the concerns to be addressed for optimized 3D printing application.

Optimization is used both at individual unit level and also with integration of all units to

optimize entire systems bigger goal. The work presented in [89] suggests the integration of all

existing process control and related components can result in an optimized system with

minimized cost and improved energy productivity. A workshop conducted in 2014, ASCPM,

highlighted the need for contrasting smart manufacturing with digital manufacturing with design

24

modeling as its core. Design models aim to optimize the product, optimize the chain supply, and

optimize the decision-making process, optimize scheduling and optimize control.

In the past many factories have been only concerned about forward logistics. The term

forward logistics refers to the delivery of product from suppliers to consumers. The bulk return

of products shifted the focus to reverse logistics which refers to the delivery from consumer to

the factory. The work proposed by Fang et al. focuses on the reverse logistics techniques [90].

The proposed solution is an integrated IoT based three staged model. The proposed model aims

to optimize the factors such as procurement, production and product recovery, pricing and

strategy of return acquisition. They model considers three ways of handling products’ return as

refurbish the existing product, reuse the individual components of product into something or

dispose the existing product. The model of optimization is built using PSO algorithm based on

two heuristic methods and the proposed solution is verified and evaluated via use case scenario.

The study in [91] presents a multi-stage synchronized production system based on

collaborative environment under IoT environment. With the industrial revolution, mass

customization has been on rise with every passing day. The product details and specifications

keep changing from one order to the next. With these changes, many other involved factors also

change in the production mechanism and all these count as changing production dynamics. The

proposed model aims to build a control infrastructure for the production system, which can

handle the production dynamics well; keeping the components of system synchronized and

optimizing the production process.

Internet of Manufacturing Things (IoMT) is the field developed by integrating the IoT and

manufacturing. Another term used for IoMT is smart manufacturing. The goal of IoMT is to

enhance the manufacturing experience by supporting real-time interoperability, real-time product

tracking, optimized production control and execution. A detailed insight on optimization of

manufacturing system is given in the book written by Zhang at al. [92].

25

Ghashghaee at al. conducted a study in [93] which is primarily focused role of IoT in

process optimization. The study highlights the issues faced by the manufacturers and proceeds to

suggest the solutions for the highlighted issues. The study focuses on IoT technologies and how

the IoT technologies are used for process optimization. The challenges faced by the

manufacturing systems are studied in [94]. It focuses on the manufacturing system based on IoT

technologies, process management and optimization. The work presented in [95], aims to solve

business optimization problems with the use of optimization algorithms such as accelerated PSO

and support vector machine (SVM). The proposed mechanism APSO-SVM is used for

production optimization and then also used for predicting income and project scheduling. Many

other related studies have focused on optimization problems in manufacturing processes [96-

107].

The study in [108] carries a survey on application of genetic algorithm broadly used for

optimization. In [109], a survey for another broadly used optimization algorithm ant colony

optimization (ACO) is presented. In [110], a survey for simulated annealing is presented which

is also widely used for optimization. A review and analysis on the optimization algorithm

particle swarm optimization (PSO) is given in [111].

2.5 Limitations of Existing Solutions

With the detailed literature review of the smart factory, now we highlight the main

challenges and limitations of the proposed solutions. Table 4 below explains the existing

challenges of the smart factory domain. Existing challenges of the smart factory include as

environmental hazards, energy consumption, improve productivity, reliable infrastructure, and

ease of integration.

26

Table 4: Smart factory challenges and description

Challenges Description

Environmental Hazards

Environmental hazards include the states and events

involved the smart factory which has the potential of

adverse effects on the natural environment, people and

surrounding. Solutions which neglect the green world

obligations might be hazardous to environment.

Energy Consumption

Minimizing the energy consumption is very vital to smart

manufacturing.

– High energy consumption can lead to high

manufacturing costs.

Improve Productivity

Productivity improvement t smart factory refers to

– Improving production efficiency

– Improving production effectiveness.

– Improving product quality

Reliable Infrastructure

Reliable infrastructure is achieved through right

implementation of

– Predictive analysis techniques

– Optimization techniques

Integration

Individual components should be independent and easy to

incorporate and amalgamate.

In Table 5, we present the possible solutions to the challenges based on the literature review.

27

Table 5: Smart factory challenges and solutions

Challenges Solutions

Environmental Hazards

Predictive analysis of historical data and optimize future

processes to minimize environmental hazards

Energy Consumption

Predictive analysis of historical data and optimize future

processes to minimize energy consumption

Improve Productivity Efficient task scheduling mechanism

Reliable Infrastructure

Predictive analysis and optimization techniques based to

minimize machines’ downtime; minimize errors; and

efficient scheduling to increase response time

Integration

Layered framework solution based on multiple independent

modules.

In Table 6, we present a detailed comparisons analysis of the proposed solution to some of

existing related works based on sub-categories of task management and scheduling. The

literature review for the task management and scheduling can be divided into five main sub-

categories as

 Task/Process scheduling

 Task load allocation

 Predictive analysis

 Process optimization

 Decision support and coordinated control

28

Table 6: Comparisons among related works and proposed solution

Related

Works

Task/Process

Scheduling

Task

Load

Allocation

Predictive

Analysis

Process

Optimization

Decision

Support and

Coordinated

Control

[112] ✓ ✓

[113] ✓ ✓

[114] ✓ ✓

[115] ✓ ✓

[116] ✓ ✓

[117] ✓ ✓

[118] ✓ ✓

[119] ✓ ✓

[120] ✓ ✓

[121] ✓ ✓

[122] ✓ ✓

[123] ✓ ✓

[124] ✓ ✓

[125] ✓ ✓

[126] ✓ ✓

[127] ✓ ✓

[128] ✓ ✓

Proposed

Work

✓ ✓ ✓ ✓ ✓

In the literature review, we have observed that most of the proposed solution focuses on

either one or two of the above mentioned sub-categories. Whereas, in order to provide a

wholesome solution for tasks management it very essential to focus on all the aspects involved.

29

In the table, the related works are shown with respect to focused aspects in comparison to the

proposed solution. In our proposal, we integrate all the essential aspects for tasks management as

task scheduling, efficient task allocation, use of predictive analysis, optimization and, decision

support and coordinated control. We propose learning to scheduling mechanism for task

management which provides an integrated solution resulting in efficient task management based

on the concepts of task scheduling, task allocation, prediction, optimization and control.

2.6 Algorithms for Learning to Scheduling

2.6.1 Neural Networks (NNs)
The computational model (named as threshold logic) proposed in 1943 by McCulloch and

Pitts led to the research of artificial intelligence-based neural networks [129]. Artificial neural

networks started to flourish once the processing power of computers increased dramatically, as

computation power was one of the key issues faced in the progress of ANNs at the initial stages

[130].

Biologically inspired ANNs are known to produce most accurate prediction results [131].

ANN learning has two operational modes of training and testing, the system has a set of inputs,

weights associated with the inputs, hidden layers and a number of outputs. In training, the

neuron learns to decide whether to fire an output for a specific pattern or not, while in testing

mode the accuracy of the learned model is determined.

The structure of a three-layer neural network is shown in the Figure 10, where we have five

inputs, six hidden layers and three outputs. The working of a simple neuron can be explained by

Equation 1 [132], whereby a typical neuron computes the output in the following manner:

ak = f(∑ wki
xi)

n

i=0

 (1)

30

where, ak is the output of kth neuron. x1 , x2, . . . , xn are the inputs to the neuron.

x0 input is bias (bk)assigning it + 1 value, with wk0 = bk = 1. wk1, wk2, …, wkn are the

weights associated to each input. f is the activation function, which incorporates flexibility in the

neural networks.

Figure 10: Neural network (NN) layers

2.6.2 Particle Swarm Optimization (PSO)
In 1995, Kennedy and Eberhart proposed PSO, which is a population-based optimization

technique inspired by bird flocking and fish schooling theory and also has strong ties to genetic

algorithms and artificial life [133]. In the example of the search for food by flocking birds, the

bird closest to the food leads and others follow. As soon as some other bird thinks it has a food

source close to it, it makes a sound and all birds start following it, changing the direction. Each

particle in PSO represents a bird in the flocking example, moving at a certain velocity looking

for the optimal solution in the search space.

In PSO, first a population of particles is initialized defining the number of particles that will

carry the search for the optimal solution. Each particle has velocity with which it moves through

the search space and fitness values. The particles move in the search space by following the

particles with the best solution so far. Each particle maintains the track of two values as

31

particle’s best (pbest) and global best (gbest); pbest is the best solution achieved by the particle

itself, while gbest is the best solution found by any particle in the entire population. After finding

the pbest and gbest, the particle updates its velocity and position using the following equations

[134].

𝑣 = 𝑣 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑝𝑏𝑒𝑠𝑡 − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) (2)

𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 𝑣 (3)

where, v is the particle’s velocity, present is the current particle position (solution), pbest is

particle’s personal best solution found so far in the search process, gbest is the global best

solution found by any particle so far in the search, rand is a random number generated between

0 and 1, and c1, c2 are the learning factors; usually both c1 and c2 are kept 2.

32

Chapter 3: Proposed Learning to Scheduling

in Smart Factory

In this chapter, we present our proposed task management scheme based on learning to

scheduling. The proposal aims to aid the smart factory’s manufacturing processes with efficient

task allocation, task dispatching and task scheduling; in order to improve the overall productivity

of the manufacturing process. The proposed mechanism involves the scheduling of tasks with

the aid of learning modules of prediction and optimization. The learning modules provide the

history based predictions and tuned parameters for improved task management.

In section 3.1 we present the conceptual design. Section 3.2 presents the hybrid ACM-FEF

approach for scheduling. Section 3.3 presents the prediction mechanism, section 3.4 presents the

optimization mechanism and section 3.5 presents the control mechanism.

3.1 Conceptual Learning to Scheduling Mechanism Based on

Prediction and Optimization

The proposed task management mechanism is a unified solution based on machine learning

and IoT technologies for smart manufacturing in smart factory. The smart factory environment is

an IoT based environment with sensor and actuator networks. The sensor and actuator networks

provide the contextual information of the environment to the system’s machine learning

modules. The machine learning based modules predict the system’s states and optimize the

parameters for optimal control of the smart factory’s manufacturing machines and environment

actuators.

33

Figure 11: Layered view for proposed task management mechanism in smart factory.

We have divided our proposed task management system into four main modules i.e. (a)

learning to scheduling mechanism using hybrid ACM-FEF (b) learning to prediction module (c)

learning to optimization module and (d) control module. The conceptual design of the proposed

system is given in the Figure 11. The smart factory has sensors and actuators installed. The

sensors sense the environment and manufacturing sensing data, and pass them onto the system.

The actuators are either the manufacturing machines or the environment control actuators. The

actuators are controlled for executing the manufacturing processes or the environment

conditions. The smart factory tasks scheduling parameters are continuously tuned using their

respective learning modules of prediction and optimization.

We have developed our proposed system into five phases. In first phase, we develop our

core scheduling algorithm for efficient task management, which is hybrid of agent cooperation

34

mechanism [42] (ACM) scheduling and a fair emergency first [136] (FEF) scheduling. The

hybrid scheduling scheme is referred as ACM-FEF.

In phase two, input tasks are modeled and scheduled using ACM-FEF scheduling scheme

alone and tasks history data is built via multiple iterations of tasks scheduling phase. Once the

history data based on ACM-FEF scheduling is collected for training purposes. Next, in the phase

three, we develop our prediction module using ANN prediction algorithm. In learning to

prediction, we use PSO algorithm in order to optimize the ANN weights [137]. The learned

optimized prediction mechanism predicts the tasks execution status and machine utilization

under the given load of the tasks based on history decisions.

In phase four, we first propose an objective function for enhancing machine utilization and

then seek the optimal results based on PSO algorithm. In learning to optimization, ANN

algorithm is used to tune the PSO particles positions and velocity. The optimization module aims

for the maximum machine utilization in the smart manufacturing process.

In phase five, we develop the control module based on inference rule engine [138]. The

control module gets optimal parameters input from optimization module and generates the

actuators; control commands based on the optimal parameter settings.

At last, the scheduling modules fully implements the learning to scheduling procedure by

integrating the overall modules and using the outputs of prediction module, optimization module

and control module altogether. The learning to scheduling module aims for optimal machine

pairing based tasks allocation; it also uses predictions based on history decisions consequences

to make informed scheduling decisions.

We have proposed two improved variations of PSO algorithm named as VB-PSO and R-

PSO [136]. The improved variations are used in both prediction and optimization modules to

enhance the modules’ performance. In prediction phase, we propose PSO algorithm based ANN

35

implementation referred as PSO-NN, in optimization phase, we propose ANN algorithm based

PSO implementation referred as NN-PSO.

Figure 12: Conceptual design of the proposed task management mechanism based on learning to scheduling in

smart factory

36

In Figure 12, we present the conceptual design of or proposed task management mechanism

based on learning to scheduling in smart factory. The smart factory will have two types of data

collected as sensing data collected from installed sensors in the environment and the actuators’

data collected from installed actuators. System constraints, user requirements and external

conditions can be added inputs to the system based on the scenarios. In input data modeling, the

sensing tasks are modeled to be sent to the scheduler. The scheduling outputs are maintained for

building the scheduling history data. The scheduler sends the sensing tasks’ data to the

optimization module for optimal parameter tuning. Sensing tasks’ data is then sent to the control

module, the inference engine in the control module generates the optimized control commands

based on the inputs from optimization module. Next, control module models the control tasks to

execute the control commands which are sent back to the scheduler. At scheduler, when a

control task is executed, it triggers the control module to perform the control command.

3.2 Proposed Learning to Scheduling Mechanism using

Hybrid ACM-FEF

In this section, we present the hybrid scheduling mechanism of ACM-FEF. The scheduling

mechanism is a hybrid of two scheduling schemes as agent cooperation mechanism (ACM) and

fair emergency first (FEF).

The smart factory is considered to have N machine networks, where machine networks have

local and global agents following ACM mechanism. The purpose of ACM mechanism is to

allocate the tasks to machine networks with an aim to maintain the maximum machine utilization

among the machine networks. Next, the tasks allocated to machine networks are further

allocated to the existing machines, where each machine has varying task load with varying

priorities. The task load scheduling at each machine level is done following the FEF scheduling.

37

3.2.1 Agent Cooperation Mechanism for Scheduling
The agent cooperation mechanism (ACM) sub-module is inspired by the scheduling

mechanism presented in a related study [42]. In smart factory environment, we consider multiple

manufacturing machine networks. Each machine network is assigned an agent to manage the

task allocation process. The goal of the agent is to allocate tasks to machines in such a way that

overall productivity of the manufacturing process is increased. The system has one global agent;

the task of the global agent is to maximize the machine utility among all machine networks.

Figure 13: Conceptual diagram of agent cooperation mechanism

38

The Figure 13 presents the main concept of agent cooperation mechanism with N machine

networks; each network having a local agent to maximize the machine utilization at its own

network and a global agent to maximize the overall system’s productivity. The global agent has

two main functions as machine pairing and computing utilization. The global agent has complete

knowledge of the system such as number machine networks, number of machines per network,

and each machine’s current load and capacity.

3.2.2 Fair Emergency First Task Scheduler
In this sub-section, we present the basics of FEF scheduling algorithm [136]. The FEF

scheduling algorithm is designed to maximize the machine resources and minimize the tasks

starvation rate.

The FEF scheduling algorithm considers the input tasks first divided into two main types as

event driven tasks and periodic tasks. The event driven tasks are further divided into two

subtypes as urgent event driven tasks (UET), normal event driven tasks (NET). The periodic

tasks are further divided into two main types as priority periodic tasks (PPT) and normal

periodic tasks (NPT). The event driven tasks are given high priority, as they might be emergency

triggered and one-time tasks. The UET are considered to be of high priority, followed by NET,

next priority is given to PPT followed by NPT. These priorities are not static, and the proposed

algorithm allows flexible options to define and alter task priorities based on the scheduling

scenarios.

The primary focus of FEF algorithm is to meet the tasks deadlines based on their priorities;

in parallel, saving the starving tasks by rightly utilizing any free resources. The starving tasks

can be defined as any tasks which are in waiting state for a long period, due to system priorities,

load or unexpected events. The flowchart for FEF algorithm is shown in the Figure 14. First the

scheduler extracts the tasks arriving at the system based on arrival times. If the current task is

urgent event driven task, it is executed right away. If the task is normal event driven task, then

39

urgency measure (UM) is checked to see whether the machine slot can be used for any low

priority starving tasks or not. If not, then current task is executed else starving task is given the

slot. Next, priority periodic task is checked, where failure measure (FM) is checked to see if the

priority periodic tasks can wait and slot can be allocated to the starving low priority task or not.

Figure 14: Flow chart for FEF Scheduling Algorithm

40

Urgency measure and failure measure are two learning modules in the intelligent FEF

scheduler. Urgency measure is computed to decide whether at the current state the system can

allocate the machine resources to a starving task, given that the current event driven task can

wait to execute without damage. Failure measure is computed to decide whether at the current

state the system can allocate the machine resources to the starving task, if current periodic task

can wait to execute without damage. The FM and UM are the two learning factors to make

respected decision using the ANN learning algorithm based on history decisions.

In order to calculate the UM, the system computes the slack between the event driven tasks

and periodic tasks. Slack can be defined as the difference between the deadline of the tasks and

the execution time left to finish the task. The decision of whether starving task should be given

machine resources or not is made based on Equation 4.

𝑆𝑙𝑎𝑐𝑘 (𝐸𝑇) >= 𝑥 × (𝑆𝑙𝑎𝑐𝑘(𝑃𝑇)) (4)

Where, Slack (ET) is the slack or event driven tasks, Slack (PT) is the slack computed of

periodic task and the distance between both slacks should x times; x is initially set as 2.

Gradually the value of x is learned using ANN as the system runs the tasks and history data is

built (Figure 15).

Figure 15: Learning of X in Urgency Measure (UM). ET: event-driven task; PT: Preemption Threshold

41

The learning factor FM is calculated among the periodic tasks of different priorities. It is

calculated to make decision whether current periodic task can wait without any damage, and the

machine resources can be allocated to the starving tasks or not. The history data is first built and

used to make the informed decisions. The module predicts the possibility of safe execution of

starving tasks and without delaying any other high priority periodic task based on learning using

ANNs (Figure 16).

Figure 16: Prediction for high priority tasks’ safe execution

Additionally, two bits as reserved bit and priority bit are added to ensure the flexibility of

scheduler setting in multiple scenarios. The reserved bit indicates if any numbers of machine

chunks are to be reserved during online scheduling for handling the possibility of any urgent

unexpected events. The preemption bit when added to any tasks gives it the authority to halt any

high priority running task and to be executed first. These two bits are to make alterations based

on the scenarios.

3.3 Learning to Prediction for Scheduling in Smart Factory

In this section, we present the learning to prediction mechanism using PSO based ANN

prediction algorithm. The used mechanism is published in [137], where it is used for energy

42

predictions in smart building. In this work, we use our proposed prediction-learning mechanism

in order to aid the smart factory scheduling process by predicting the tasks execution status and

machine utilization.

3.3.1 Prediction using ANNs
In this sub-section, we present the ANN based prediction model. The model has nine inputs,

six hidden layers and two output layers.

Figure 17: Prediction Model using ANNs

The system takes tasks data of time stamp, execution time, deadline time, start time, finish

time, time budget, machine ID, machine load and machine capacity as input. The data is first

pre-processed and then passed onto the training module where training is done based on ANN

with six hidden layers. The output is prediction accuracy computed for the task status prediction

and machine utilization prediction.

43

3.3.2 Learning to Prediction using PSO and ANNs
In this section, we describe the learning to prediction mechanism for smart factory tasks

scheduling and management.

Figure 18: Learning to prediction model based on ANN

In learning to prediction, the ANN prediction algorithm’s weights are learned using PSO

algorithm which is an optimization algorithm. Figure 18 shows the learning to prediction

configurations. Initially the input is given to the ANN learning module based on six hidden

layers. The PSO algorithm is applied at ANN learning iterations for learning ANN weights. PSO

algorithm takes the neural networks in ANN iterations and struggles to optimize the neural

weights to achieve the high accuracy.

44

Figure 19: Flow chart for PSO variations of R-PSO and VB-PSO

The learning algorithm used to learn ANN weights is an optimization algorithm named as

particle swarm optimization (PSO). In PSO, a number of particles populations (typically

between 12-20 numbers of particles) are generated. Each particle in the PSO population contains

two parameters as particle position and particle velocity. Initially the particle velocity and

45

positions are initialized. In PSO iteration, the particle velocity and position are updated. Each

particle maintains two values local best as Pbest, and global best as Gbest. The Pbest is the

particles own best position achieved, and the Gbest is the global best values achieved by any

particle in the population. Each particle position represents the ANN weights and the Gbest is

the best weights found by PSO.

We use the two variations of PSO named as re-generation based PSO (R-PSO) and velocity

boost PSO (VB-PSO) [137]. The R-PSO involves a regeneration threshold (RT). In R-PSO if no

improvement in the Gbest is seen after a number of iterations, define by RT, then particles found

in close clusters are regenerated to new random locations; in order to fasten the solution search

process. The particles’ distance to locate close clusters is calculated using Equation 5.

𝐼𝑛𝑡𝑒𝑟 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐼𝑃𝐷) = 𝑐 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (5)

Where, IPD is the minimum distance threshold between two particles, c is a constant value

for limiting IPD set as 0.15.

In VB-PSO, a velocity boost threshold is maintained as VBT, and if no progress in the value

of particle’s Pbest is observed till reaching VBT then particle’s velocity is boosted using the

velocity change equation with new inertia weight proposed for VB-PSO. The new inertia weight

is derived from the combination of constant inertia weight shown in Equation 6 and random

inertia weight shown in Equation 7. The new inertia weight is shown in Equation 8.

𝐶𝑜𝑛𝑡𝑎𝑛𝑡 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑐1 = 0.7 (6)

𝑅𝑎𝑛𝑑𝑜𝑚 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑊𝑒𝑖𝑔ℎ𝑡 = 0.5 +
𝑅𝑎𝑛𝑑()

2
 (7)

𝑁𝑒𝑤 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑊𝑖) = 𝑐1 +
𝑅𝑎𝑛𝑑()

3
 (8)

Where; c1 = 0.801. The detailed mechanism of proposed R-PSO and VB-PSO algorithms

can be referred in our published work in [137].

46

3.4 Learning to Optimization for Scheduling in Smart Factory

In this section, we present the learning to optimization mechanism for scheduling in smart

factory. First, we make the smart factory environment assumptions. Table 7 provides the list of

parameter assumptions for the smart factory environment. There are N numbers of machines, X

number of machine pairs and K number of tasks coming at each machine.

Table 7: Sensing tasks parameters for candy box factory

Task Parameters Parameter Description

M1, M2…, MN N number of manufacturing machines

P1, P2…, PX X number of machine Pairs

T1, T2…, TK K number of tasks at each machine

TID Task Instance ID

TJ No of Jobs required by a Task

TID(TJ,b) Operation of task TID at position b

TBJ Time Budget: deadline of an operation in a task

FTJ Proposed finish time for operation

LFTJ Latest possible finish time

STJ Proposed Start time

EJ Execution time of operation

ITP Idle time for a pair

47

The finish time is computed by adding the execution time to the start time. Time budget is the

difference between least finish time and finish time.

𝐹𝑇 =ST + E (9)

𝑇𝐵 =LFT – FT (10)

3.4.1 Optimization Objective Function for Machine Utilization
In this sub-section, we present the objective function to be optimized for scheduling.

The optimization module aims to increase the machines utilization with the help of three

functions as time budget utility (TBU), pair compatibility utility (PCU), and network

compatibility utility (NCU) [42]. The TBU functions aims to maximize the tasks possibility of

execution before its deadline. The PCU function makes sure that jobs involved in a task are

assigned to machine pairs with maximum utilization. The NCU function looks for the overall

networks utilization, making sure that tasks are being assigned to all the machines in a network,

in such an order to increase network utilization.

These three functions of TBU, PCU and NCU are used to make an objective function

(OF) for the scheduling in smart factory as

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑂𝐹 = (α)(𝑇𝐵𝑈) + (β)(𝑃𝐶𝑈) + (γ)(𝑁𝐶𝑈) (11)

Where, α β, and γ are the weights of the functions TBU, PCU, and NCU. The objective

function aims to maximize the α, β, and γ values to maximize the machine utilization.

The optimization module aims to pair machine combinations for task execution with

maximum machine utilization. Extract all possible pairs. Calculate Utilization factor for each

extracted pair. Allocate tasks to pair with maximum utilization. The optimization algorithm used

is PSO. The Figure 20 shows the optimized scheduling mechanism based on PSO algorithm.

48

Figure 20: Optimized scheduling mechanism for maximizing machine utilization

At first the PSO population is defined and initialized. The aim of PSO particles is to find

positions where machine utilization weights are at maximum for each machine and overall

network. The fitness function is defined as the machine utilization function based on number of

machines in a smart factory scenario at a given time. Once the global best values are found, the

module returns the maximum machine utilization weights to tune the machine utilizations

settings accordingly.

3.4.2 Learning to Optimization using ANNs
In this scenario we present the learning to optimization mechanism. We add ANN based

learning to optimization module. It takes history PSO data as input for preparing the learning

model. The history PSO data includes the particles values of positions and velocities along with

49

errors, and Pbest and Gbest. Initially the tasks’ scheduling is done based on optimization module

without learning to build the history data logs.

Figure 21: Learning to optimization based on PSO for scheduling

50

Once the history data is built then it is preprocessed and passed onto the learning module of

ANN to prepare the learned model which is further used to make the predictions for PSO

velocities and positions.

While the PSO algorithm runs and particles strive to find the optimal solution; in PSO

iterations the next velocity of the particle is tuned based on the learning from the history logs.

The ANN model has four input parameters such as particle, velocity, error rate global, and error

rate local. It has six hidden layers and two output layers (Figure 21).

3.5 Control Mechanism for Scheduling in Smart Factory

In this sub-section, we present the control mechanism for the control tasks generation and

autonomous machine control in smart factory. The control tasks are generated based on scenario

thresholds and conditions. In this section, we use one of our published works’ inference engine

modules [138] and alter it to fit the smart factory scenario.

Figure 22: Defining of a rule in inference engine for control task generation

51

The inference engine is where all the smart factory rules are listed along with the thresholds

and if-else conditionings. The inference engine rules comprise of arriving task type, condition

associated with the task and the contextual scenario of the task (Figure 22). The conditions in

rules contain the threshold values, which if met then the rules are fired.

Figure 23: Workflow of firing a rule in inference engine for control task execution

Figure 23 shows the detailed flow chart for firing a rule in an inference engine. First all the

rules are extracted and when a new sensing or system task value is arrived at the inference

engine, the value is checked for all existing rules. The value can meet one or multiple rule

52

conditionings; each rule conditioning when met, the rule is fired. By firing rule, it means to

generate its response.

Figure 24: Control module interactions and working

53

The Figure 24 shows in detail the interaction between scheduler, control modules and

system actuators. The scheduler sends the sensing tasks and system tasks data to the control

module via an agent referred as hybrid agent in [138]. The agent parses the received data and

sends the meaningful content to the inference module. At inference module, the received tasks

data is mapped onto the rules and once the conditioning is met the rules are fired. Once the rule

is fired the control tasks are modeled and sent to the scheduler to be executed at scheduler. When

the control tasks are executed at the scheduler, the control command is sent to the control unit

which executes the control commands at the actuators.

54

Chapter 4: Simulation Developments for

Learning to Scheduling Experiments

4.1 Environment Modeling

In this sub-section, we present our smart factory environment modeling for the simulations

and experimentation. The smart factory has sensors and actuators installed onto the site to

execute the production tasks and services.

The sensors installed are of two types as ambient sensors and on-machine sensors. The

ambient sensors are installed into the surrounding of the smart machine to get the surrounding

environment sensing values. The on-machine sensors are installed onto the machine to get the

machine related sensing values.

The sensors are installed with a motive of sensing the environmental conditions, sensing the

manufacturing process conditions, sensing the factory emission conditions, monitoring the

machine health, and sensing safety conditions. The roles of the sensors vary based on their

installment scenarios and locations. The types of ambient sensors and on-machine sensors

installed can be as shown in Table 8 depending on the selected smart factory scenarios. The

main sensor categories are environment sensors as temperature sensor, light sensor, humidity

sensor, sound sensor and vibration sensor. Monitoring sensor to read scenario based values as

flow sensor, gas sensor and acceleration sensor. Detection sensors include motion sensor and

occupancy sensor. Security sensors include leak sensor, fire/smoke sensor and surveillance

cameras.

55

Table 8: Types of sensors for smart factory

Sensor Category Sensor Types

Environment Sensors

Temperature sensor

Light sensor

Humidity sensor

Sound sensor

Vibration sensor

Monitoring sensor

Flow sensor

Chemical/gas sensor

Acceleration sensor

Detection sensor

Motion sensor

Occupancy sensor

Security sensor

Leak sensor

Fire/smoke sensor

Tracking sensor Equipment/tags sensor

56

Figure 25: Smart factory environment modeling

57

The actuators in a smart factory are either the smart factory machines involved in the

manufacturing process or the actuators to control the smart manufacturing conditions. The

manufacturing machines also vary based on the scenarios. For example, machines in a cake

manufacturing might include batter mixing machines, baking oven machine, cake frosting

machine, conveyor belt etc. The actuators to maintain the smart manufacturing optimal

conditions might include humidifiers, dehumidifier, heater, air conditioning, fans etc.

The Figure 25, presents the smart factory environment modeling where sensors and actuators

are installed onto the smart factory. The sensors’ readings are transmitted and sensor tasks are

modeled and send to scheduling module. The response back to the smart factory is the control of

actuators.

The smart factory modeling also has environment constraints and machines constraints

which vary from scenario to scenario.

4.2 Input Task Notations

In this section, we design and implement the input tasks model. First, we assume the smart

factory model based on number of machines. Let us assume a smart factory with N number of

manufacturing machines as shown in equation 12.

𝑆𝑚𝑎𝑟𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑦 𝑀𝑜𝑑𝑒𝑙 = { 𝑀1, 𝑀2, . . , 𝑀𝑁} (12)

 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 { 𝑁 > 0}

Each machine will have K number of tasks as shown in equation 13.

𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑀𝑜𝑑𝑒𝑙 = { 𝑇1, 𝑇2, . . , 𝑇𝐾} (13)

 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 { 𝐾 > 0}

The task parameters in the input task model are TID described as task ID, TA described as

task arrival time, TP is described as task priority, JN described as number of jobs required by a

task, JID described as jobs ID. The equation 14 explains the task model.

58

𝑇𝑎𝑠𝑘 𝑀𝑜𝑑𝑒𝑙 = {TID, 𝑇𝐴, 𝑇𝑃, 𝐽𝑁, 𝐽𝐼𝐷1,…,𝐽𝑁} (14)

 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 { 𝐽𝑁 > 0}

Each task can consist of N number of jobs. The jobs parameters are JID described as ID of a

job, ST described as start time of a job, ET described as execution time of a job, TB described as

time deadline of a job, FT described as proposed finish time of a job, LFT described as latest

finish time possible for a job. The equation 15 explains the parameters model for job in a task.

𝐽𝑜𝑏 𝑀𝑜𝑑𝑒𝑙 = {JID, 𝑆𝑇, 𝐸𝑇, 𝑇𝐵, 𝐹𝑇, 𝐿𝐹𝑇} (15)

 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 { 𝐸𝑇 > 0}

Job’s ID is automatically generated with the generation of a job. The job’s ST is time when

the job is started at the machine. The execution time of the job is assigned at the time of task and

job generation depending on the job type. The job’s least finish time is also assigned to the job at

time of task and job generation depending on the job type. The job’s finish time is computed

using the equation 16 and the job’s deadline is computed using the equation 17.

𝐹𝑇 = 𝑆𝑇 + 𝐸𝑇 (16)

𝑇𝐵 = 𝐿𝐹𝑇 − 𝐹𝑇 (17)

4.2.1. Periodic Tasks Set Notation
In the case of periodic tasks, the instances of a periodic task regularly arrive after a set

period. Periodic tasks are real-time tasks with a constraint of having the period greater than zero,

which means that after a certain amount of time the tasks instance must repeat. Usually, periodic

tasks have two states; inactive and runnable. Inactive is the state when the task has not yet

arrived at the processor and runnable is the state when the task has arrived again after a certain

period and is waiting to run. Equation 18 presents the periodic task model.

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑇𝑎𝑠𝑘 𝑀𝑜𝑑𝑒𝑙 = {TID, 𝑇𝐴, 𝑇𝑃, 𝑃, 𝐽𝑁, 𝐽𝐼𝐷1,…,𝐽𝑁} (18)

 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 {𝑃 > 0, 𝐽𝑁 > 0}

59

Where, TID is the identifier of a periodic task, TA is the arrival time of a periodic task, TP is

the priority of the periodic task, P is the period of the periodic task, PB is the preemption bit

associated to a periodic task, PB = 1 indicates periodic task can preempt the high priority tasks

in case of starvation for a set PT (Preemption Threshold), and PB = 0 indicates periodic task

cannot preempt any high priority task.

4.2.2. Event-Driven Tasks Set Notation
An event-driven task is programmed to activate when an event occurs, it can handle any

input at any moment. Event-driven tasks have two sub-categories of urgent event-driven tasks

and flexible event-driven tasks, these sub-categories help in making the system more flexible. In

case of urgent event-driven tasks, tasks should be executed as soon as they arrive at the

processor, they cannot wait in the queue. On the other hand, flexible event-driven tasks can

afford to wait in the queue but they must also be executed before the deadline. Event-driven

tasks have three basic states; inactive, runnable and suspended. Inactive state is when the event

to generate the task has not occurred yet, runnable state is when the event is generated and the

task is waiting to run, and suspended state is when the event source is triggered off.

An event-driven task with its i
th

execution is denoted as following.

𝐸𝑣𝑒𝑛𝑡𝐷𝑟𝑖𝑣𝑒𝑛 𝑇𝑎𝑠𝑘 𝑀𝑜𝑑𝑒𝑙 = {TID, 𝑇𝐴, 𝑇𝑃, 𝑈𝐵, 𝐽𝑁, 𝐽𝐼𝐷1,…,𝐽𝑁} (19)

 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 { 𝐽𝑁 > 0}

Where, TID is the identifier of a periodic task, TA is the arrival time of a periodic task, TP is

the priority of the periodic task, UB is the urgency bit of an event-driven task, UB = 1 indicates

task is urgent and should be executed ASAP and UB = 0 indicates non-urgent event-driven

tasks.

60

4.3 Simulation Implementation Environment

We have used python for implementing the core programming logic of the proposed task

management mechanism. Python is a very popular general-purpose programming language;

widely used for developing desktop based and web-based applications. We have designed a web-

based task simulation visualization tool using PyQt4-based framework. The simulation

implementation environment is shown in Table 9.

Table 9: Simulation implementation environment

System Component Value

Operating System Windows

CPU
Intel ® Core ™ i5-4570 CPU at 3.20

GHz

Primary Memory 8 GB

Programming Language Python 3.6

User Interface Framework PyQt4

Machine Core Visualization HTML

4.4 Scheduling Simulation Application and Visualization

Figure 26 shows main simulation interface window of our implemented smart factory

scheduling application. Certain requirements are to be met before starting the scheduling for a

given simulation scenario. The inputs of the application are first to be inserted, as highlighted in

section A, section B and section C. The section A takes the simulation period as input, section B

61

takes the number of tasks to be generated per simulation unit time that will translate into the

arrival rate of the tasks. Section C takes the input of number of total machines at the system. One

these inputs are given; the simulation tasks can be generated from the generate simulation tasks

button.

Figure 26: Scheduling simulation applications Interface

In section E, the simulation options are available as scheduling which is the baseline

scheduling scheme, predictive scheduling (ANN), learning based predictive scheduling (PSO-

ANN), optimized scheduling (PSO), learning based optimized scheduling (ANN-PSO),

predictive and optimized scheduling, and the last option as learning based predictive and

optimized scheduling. The input tasks can be scheduled using any of the scheduling models and

output can be visualized.

62

In section F, the scheduling analysis is provided such as the context switches, number

preemptions, tasks set is schedulable or not, machines utilization rate, and number of tasks

missed, and number of times tasks are completed during the hyper-period. In section G, the tasks

processing order at the machine is listed along with task ID and machine ID. In section H,

further analysis comparisons based on predictive scheduling, optimized scheduling and learning

based scheduling are to be viewed.

63

Chapter 5: Simulation and Performance

Analysis

In this we present the simulation and performance analysis. In section 5.1, we present the

various simulation environments setting for comparison analysis. In section 5.2, we present the

simulations and performance analysis for candy box factory tasks dataset. In section 5.3, we

present the simulations and performance analysis for simulated tasks dataset. In section 5.4, we

present the simulations analysis for machine cluster tasks dataset.

5.1 Simulation Environment for Task Management

In this section, we present the schemes for comparative analysis of the smart factory task

management and simulation.

First, we present the basic FEF scheduling scheme for the comparative analysis. In our

published work in [136], we have presented a fair emergency first (FEF) scheduling scheme. In

the paper we have two versions of proposed FEF scheduling algorithm, non-intelligent and

intelligent FEF. The intelligent FEF has the addition of learning modules for improving the

results. We consider the non-intelligent FEF scheduling algorithm as to be our basic FEF scheme

for the comparative analysis.

Next, we compare our proposal with predictive FEF scheduling scheme. The FEF

scheduling scheme with learning presented in [136] has two learning modules as failure measure

(FM) and urgency measure (UM). The learning modules aid the scheduling scheme to improve

the tasks completions rate with increase in machine utilization and decreasing the starvation rate.

The scheme is only based on the history data predictions and does not involve any optimization

mechanism.

64

Next, we add the PSO based learning to prediction with hybrid ACM-FEF scheduling

algorithm and refer to it as learned predictive hybrid scheduling scheme.

At final stage is our proposal, when we add the learning to optimization module to the

learning to prediction based hybrid ACM-FEF scheduling scheme and refer to it as learned

predictive and optimized hybrid scheduling scheme.

Figure 27: Scheduling schemes for simulations of tasks management in smart factory

65

5.2 Simulations and Performance Analysis of Candy Box

Factory

In this section we build a scenario for smart factory modeling. We have assumed a use case

scenario of candy box assembling and packaging in a smart factory. We have built the candy box

use case scenario based on the candy packaging application case study presented in [139]. To

our assumption, the candy smart factory manufactures N types of candies, and makes custom

candy combination boxes based on the user orders.

In this use case, we do not consider the manufacturing process of candies. We consider a

scenario where the N types of candies have been manufactured and the task now is to get the

customized orders from the users, assemble customized candy boxes based on the user orders

and forward them to pack the boxes to be ready to be delivered.

In our built scenario we have three sensors, four actuators and eight smart manufacturing

machines. The sensors are of two types as ambient sensors and on-machine sensors (Figure 28).

The ambient sensors are temperature sensor and humidity sensor. The on-machine sensor is

occupancy sensor. Table 10 shows the involved sensors in the candy production scenario. The

actuators involved are heater, chiller, humidifier, and dehumidifier. Table 11 shows the

operation levels of actuators involved in the candy production.

Table 10: Sensors list for candy box factory

Sensors Type Sensor Name Value Range

Ambient sensors Temperature sensor 21- 24 °C [140]

Humidity sensor 40% - 35% [140]

66

On-machine sensors Occupancy sensor 0/1

Table 11: Actuators list for candy box factory

Actuator Type Actuator Name Controls

Heater Assembly Machines Busy/Idle

Packaging Machines Busy/Idle

Chiller

Humidifier

Chiller On/Off/Adjust Level

Heater On/Off/Adjust Level

Humidifier On/Off/Adjust Level

Dehumidifier On/Off/Adjust Level

67

Figure 28: Scenario modeling for candy box factory

68

Figure 29 presents the overall simulation flow for the tasks generation, sensing data based

control tasks generation and system data based control tasks generation.

Figure 29: Overall scheduling simulation flow for candy box factory

The sensing tasks from sensor reading are modeled and passed onto the scheduling module

and the system tasks from customers’ orders of candy box are modeled and passed onto the

scheduling module. The scheduling policies refer to the optimization and prediction based

69

scheduling mechanism and combinations. The tasks are scheduled and upon execution the

sensing values or system values are passed onto the inference engine where all the rules for the

system conditions are listed. The inference engine matches the values and generates the control

tasks in response which are sent back onto the scheduler and upon execution the control

commands are sent to the actuators.

We have eight machines in total which represent the two phases of candy assembly and

packaging scenario. First phase is to assemble the customized candy box based on the user order.

Second phase is to pack the customized candy box to get ready to be delivered. In first phase we

have assembly machines and in second phase we have packaging machines. Table 12 shows the

machines details.

Table 12: Machines’ attributes for candy box factory

Machine

Type

No. of Installed

Machines

Input Output

Assembly

Machines

[AM]

4

{AM1, AM2,

AM3, AM4}

[{Order Number}, {AM-

ID}, {(Candy Type 1 –

Quantity), … (Candy Type

N –Quantity)}]

[{Order Number}, {PM-

ID}, {Package Style}]]

Packaging

Machines

[PM]

4

{PM1, PM2,

PM3, PM4}

[{Order Number}, {PM-

ID}, {Package Style}]]

[{Order Number},

{Delivery ID}]

5.2.1 Input Tasks Modeling of Candy Box Factory
In this sub-section we define the task generation phase for the candy box use case based on

our task design and modeling presented in the section 4.2.

70

We have three types of tasks as sensing tasks, system tasks and the control tasks. The

sensing tasks are generated based on the sensor value readings and are periodic in nature. The

period of sensing tasks depends on the time interval after which the sensing values from the

sensors are gathered. The sensing tasks when executed will trigger the control tasks based on the

conditions. The system tasks include the operational movements of the manufacturing machines

which are based on the customer orders. The system tasks when executed will trigger the control

tasks. The control tasks are modeled from the responses triggered from sensing tasks and system

tasks. The execution of control tasks sends the control commands to the actuators, installed onto

the smart factory, in order to assemble the candy box and pack the candy box.

The sensing tasks will include the parameters as task ID, task arrival time, task priority,

period and pre-emption bit.

Table 13: Sensing tasks parameters for candy box factory

Sensing Task Task Type Task Parameters

Temperature Sensing Tasks Periodic {TID, TA, TP, P, PB}

Humidity Sensing Tasks Periodic {TID, TA, TP, P, PB}

Occupancy Sensing Tasks Periodic {TID, TA, TP, P, PB}

A customer will visit the factory site; select the desired candy combinations to place a

customized candy box order. The order is then forwarded to the smart factory’s production unit

where the order is processed for assembling and packing the candy box to be delivered.

The system tasks are generated based on the customers’ orders of customized candy box.

The system tasks parameters will include the parameters as task ID, task arrival time, task

71

execution time, task deadline, task proposed finish time, task least finish time, task priority, and

urgency bit. Table 14 shows the system tasks’ details.

Table 14: System tasks parameters for candy box factory

System Task Task Type Task Modeling Order Details

Candy Box Order

Placement

Event

Driven

{TID, TA, ET, TB,

FT, LFT, TP, UB}

{(Candy Type 1 –Quantity),

… (Candy Type N –

Quantity)}

The sensing tasks and system tasks trigger events which result into the modeling of control

tasks. The control tasks are used to control the actuators onto the smart factory environment. In

this scenario, we have a total of twelve actuators including eight manufacturing machines, one

chiller, one heater, one humidifier and one dehumidifier system.

The control tasks for chiller, heater, humidifier and dehumidifier are generated in response

to the sensing tasks of temperature and humidity. If sensed temperature values are greater than

maximum temperature then temperature is tuned by increasing chiller system levels. If sensed

temperature values are less than minimum values then temperature is tuned by increasing heater

system levels. Similarly, if sensed humidity values are greater than maximum humidity then

humidity is tuned by increasing dehumidifier system levels; and if sensed humidity values are

less than minimum values then humidity is tuned by increasing humidifier system levels (Table

15).

72

Table 15: Control task triggered from sensing task for candy box factory

Sensing Value Control

Action

Controls Output

Status

Temp > 24 °C Chiller On Increase Chilling Level 1

Heater Off Decrease Heating Level 0

Temp < 21 °C Chiller Off Decrease Chilling Level 0

Heater On Increase Heating Level 1

Humidity < 35% Humidifier

On

Increase Humidifier Level 1

Dehumidifier

Off

Decrease Dehumidifier Level 0

Humidity > 40% Humidifier

Off

Decrease Humidifier Level 0

Dehumidifier

On

Increase Dehumidifier Level 1

The control tasks for eight manufacturing machines are generated in response to the system

task of candy box order placement. The response event driven task is candy box order response

task with two jobs as shown in Table 16.

73

Table 16: Control task triggered from system task for candy box factory

System

Task

Task Type Number of

Jobs

Job 1 Job 2

Candy Box

Order

Response

Event

Driven

2 Assembly Candy Box Pack Candy Box

The candy box order response task has two jobs; job one is to assembly the candy box and

job 2 is to pack the candy box. The input job modeling based on section 4.2 is given in the Table

17 below.

Table 17: Control task’s jobs list for candy box factory

List of Jobs Input Job Modeling

Job 1: Assembly Candy Box Job Model = {J-1, ST, ET, TB, FT, LFT}

Job 2: Pack Candy Box Job Model = {J-2, ST, ET, TB, FT, LFT}

Table 18 shows the job execution details. The job 1 can be executed on any of the four

manufacturing machines AM1, AM2, AM3, and AM4. The job 2 can be executed on any of the

manufacturing machines from PM1, PM2, PM3, and PM4. The machine selection will be done

using the scheduling algorithm, based on each machine’s status and load.

74

Table 18: Control task’s jobs description for candy box factory

List of Jobs Available

Machines

Job Input + Order Input Output Status

J-1 :

Assembly

Candy Box

{AM1,

AM2,

AM3,

AM4}

[{J-1}, {ST}, {ET}, {TB}, {FT},

{LFT},{Order Number}, {AM-ID},

{(Candy Type 1 –Quantity), …

(Candy Type N –Quantity)}]

[{Order Number},

{PM-ID}, {Package

Style}]]

J-2 : Pack

Candy Box

{PM1,

PM2, PM3,

PM4}

[{J-1}, {ST}, {ET}, {TB}, {FT},

{LFT}, {Order Number}, {PM-ID},

{Package Style}]]

[{Order Number},

{Delivery ID}]

5.2.2 Tasks Simulation and Performance Analysis for Candy Box

Factory
In this sub-section we present the tasks simulation and performance analysis for candy box

factory use case scenario.

5.1.2.1 Event Driven Tasks Simulation Flow

In this sub-section, we present the simulation flow for the event-driven tasks generation in

the given scenario of candy box factory.

The tasks flow is initiated with an event driven task of candy order placement (Figure 30; Point

1). The order placement task is a system task generated when users’ place candy box order. Once

the order placement task is triggered, next the system generates candy box order response task

(Figure 30; Point 2). Candy box order response task is also system task which has two jobs as

assembly candy box (Job 1) and pack candy box (Job 2). The input job modeling is based on the

task modeling introduced in section 4.2. (Figure 30, Point 3). Figure 30 (Point 4), shows the job

75

execution details. Where, J-1 can be executed on any of the four manufacturing machines AM1,

AM2, AM3, and AM4; and J-2 can be executed on any of the manufacturing machines from PM1,

PM2, PM3, and PM4. The machine selection, for executing J-1 in the assembly machine network

and executing J-2 in the packaging machine network, will be done based on each machines’ current

status and load.

Figure 30: Event driven tasks simulation flow for candy box factory

76

5.1.2.2 Periodic Tasks Simulation Flow

In this sub-section, we present the simulation flow for the periodic tasks’ generation in the

given scenario of candy box factory.

Figure 31: Periodic tasks simulation flow for candy box factory

 The periodic tasks flow initiates three sensing tasks as temperature sensing task, humidity

sensing task and occupancy sensing task (Figure 31; Point 1). The sensing task’s period defines the

set interval, after which sensing data is to be collected from sensors installed in the candy box

77

factory. Next, in response to sensing data values of humidity, temperature and occupancy inference

rule execution task is generated. Inference rule execution task generates when given data values

map to set thresholds and controls or alerts are to be triggered in response. In response to machine

occupancy inference rule execution task, next task generated is machine idle alert (Figure 31, Point

2). The control tasks executed in response to temperature values inference rule execution task are

chiller control and heater control. The control tasks executed in response to humidity values

inference rule execution task are humidifier control and dehumidifier control (Figure 31, Point 3).

5.1.2.3 Simulations for Candy Box Factory

The execution time for sensing tasks is set to be 20 milliseconds (ms) and the priority is set to

be normal periodic tasks. The execution time for system tasks is set to be 300 milliseconds (ms) and

the priority for order placement task is set to be urgent event driven task and the priority for the

inference rule execution task is set to be priority periodic task. The execution times for all the

control tasks are set to be 520 milliseconds (ms) and the priorities for environmental conditions

control actuator (heater, chiller, humidifier, and dehumidifier) are set to be urgent event driven. The

priorities for control tasks of manufacturing machines (AM1, AM2, AM3, AM4, PM1, PM2, PM3,

and PM4) are set based on the priority set at customers’ order time and deadline. It can be either

normal event driven or urgent event driven task.

Table 19: List of tasks execution times and priority type for candy box factory

Task CPU Time

Required

Task Priority

Sensing Tasks

Temperature Sensing Task 20ms Normal Periodic Task

78

Humidity Sensing Task 20ms Normal Periodic Task

Occupancy Sensing Task 20ms Normal Periodic Task

System Tasks

Order Placement System Task 300ms Urgent Event Driven Task

Inference Rule Execution Task 300ms Normal Periodic Task

Control Tasks

Heater Control Task 520ms Urgent Event Driven Task

Chiller Control Task 520ms Urgent Event Driven Task

Humidifier Control Task 520ms Urgent Event Driven Task

Dehumidifier Control Task 520ms Urgent Event Driven Task

Control AM1 520ms Normal/ Urgent Event

Driven Task

Control AM2 520ms Normal/ Urgent Event

Driven Task

Control AM3 520ms Normal/ Urgent Event

Driven Task

Control AM4 520ms Normal/ Urgent Event

79

Driven Task

Control PM1 520ms Normal/ Urgent Event

Driven Task

Control PM2 520ms Normal/ Urgent Event

Driven Task

Control PM3 520ms Normal/ Urgent Event

Driven Task

Control PM4 520ms Normal/ Urgent Event

Driven Task

Our first step is data collection and data generation. Our required data includes the collection

of history data for training in learning processes. The history data include tasks’ data as task

arrival time, execution time, deadline, finish time, time budget, allocated machine, allocated

machines’ load, and capacity requirements of the machine. The tasks completion status and

machine utilization history data are also collected in order to train the prediction module for

future predictions. The history data is collected by simulation iterations of tasks generations and

simulation iterations. In Figure 32, we present 30 instances of the history tasks’ data. The history

tasks’ data is collected by simulation iterations of the tasks. In Figure 33, we present the history

data collection sample for tasks completion status and in Figure 34, we show the history data

collection sample for machine utilization rate.

80

Figure 32: Tasks simulation training data for candy box factory

Figure 33: Tasks completion status training data for candy box factory

81

Figure 34: Machine utilization training data for candy box factory

Next, we simulated the temperature and humidity data for the training purposes. The

simulated temperature data varies mostly between the valid temperature ranges with randomly

inserted out of range fluctuations so that rule engine can detect and control the anomaly sensing

values for the temperature. Similarly, for the humidity we have followed the same mechanism of

simulating the data between the valid ranges with some randomly inserted out of range

fluctuations so that rule engine can detect and control the anomaly sensing values for the

humidity.

In Figure 35, we present the simulated data sample instances for temperature sensing data

and the simulated data sample instances for humidity sensing data.

82

Figure 35: Simulated sensing data for temperature and humidity for candy box factory

Figure 36: Tasks generation and simulation for candy box factory

83

Figure 36 shows the candy box use case task generation and simulation output. We have

added a scenario simulation based task generation function highlighted in red color as section A.

The tasks are generated based on the scenario details as mentioned above and then scheduled

based on the selected scheduling mechanism. Figure 37 shows the tasks instances visualization

while executing at machines.

Figure 37: Tasks Simulation flow on machine for candy box factory

Figure 38 presents the prediction accuracy comparisons using ANN prediction algorithm and

PSO based ANN (PSO-ANN) prediction algorithm. The results show a significant improve in

terms of minimized number of epochs and increased prediction accuracy. The maximum

prediction accuracy achieved using ANN is 99.02% in 600 iterations and the maximum

prediction accuracy achieved using PSO-NN is 99.39% in 700 iterations. At 600 iterations, the

PSO-NN gets to the prediction accuracy of 99.27% which is still greater than ANN at 600

iterations.

84

Figure 38: Prediction accuracy comparisons for ANN and PSO-NN for candy box factory

Figure 39: Prediction accuracy comparisons for R-PSO-NN and VB-PSO-NN for candy box factory

92

93

94

95

96

97

98

99

100

100 200 300 400 500 600 700

P
re

d
ic

ti
o

n
 A

c
cu

ra
cy

 (
%

)

No. of Iterations

ANN PSO-NN

97.6

97.8

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100 200 300 400 500 600 700

P
re

d
ic

ti
o

n
 A

c
cu

ra
cy

 (
%

)

No. of Iterations

PSO-NN R- PSO-NN VB-PSO-NN

85

In Figure 39, we present the comparisons of prediction accuracy based on PSO based ANN

along with the variations of PSO based ANN as R-PSO-NN and VB-PSO-NN. The results show

the prediction accuracy of R-PSO-NN and VB-PSO-NN is further improved from PSO-NN. In

candy box factory predictions, VB-PSO-NN gives maximum prediction accuracy with least

number of iterations. The VB-PSO-NN performance is followed by R-PSO-NN, which gives

slightly less prediction accuracy. The maximum prediction accuracy achieved using PSO-NN is

99.39% in 700 iterations while the maximum prediction accuracy achieved using R-PSO-NN is

99.53% in 700 iterations and the maximum prediction accuracy achieved using VB-PSO-NN is

99.53% in 500 iterations.

(a) (b)

Figure 40: Proposed scheduling comparisons with prediction and without prediction for candy box factory (a)

average instances missing rate in percentage; (b) average task starvation rate in percentage

In Figure 40, we present the comparisons of basic FEF with the learned prediction FEF with

an aim to demonstrate the effect of learning to prediction in the scheduling algorithm. The

comparisons are performed on the candy box factory data. The results show the percentage of

task starvation rate and average instances missing rate in the simulations. It can be clearly

0%

5%

10%

15%

20%

25%

30%

Average Instances Missing

Rate

Learned Predictive FEF Scheduling

Basic FEF Scheduling

0%

5%

10%

15%

20%

25%

Task Starvation Rate

Learned Predictive FEF Scheduling

Basic FEF Scheduling

86

observed that learned predictive FEF has a smaller number of starved tasks rate and a smaller

number of tasks instances missing rate. The FEF scheduling algorithm has around 22.12 % of

tasks starved and 29.75 % of tasks instances missed whereas the learned predictive FEF

scheduling has around 8 % of tasks starved and 16 % of tasks instances missed. The learning of

prediction module in learning to scheduling mechanism increases the overall performance of the

scheduler as it enables the scheduler to make informed and learned decisions.

In the Figure 41, we present the comparisons among predictive FEF scheduling and learned

predictive FEF scheduling. The graph shows the tasks average response times at y-axis and test

iterations at x-axis. A significant decrease in the tasks’ response time is observed with the

addition of learning of module. The average response time for tasks set using predictive FEF

scheduling is 2191.39 milliseconds and the average response time for tasks set using learned

predictive FEF scheduling is 1954.13 milliseconds.

Figure 41: Response time comparisons with and without learned prediction for candy box factory

1700

1800

1900

2000

2100

2200

2300

2400

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

R
ep

o
n

se
 T

im
es

 (
m

s)

Simulation Iterations

Learned Predictive FEF Scheduling Predictive FEF Scheduling

87

In the Figure 42, we present the comparisons among learned predictive FEF scheduling and

learned predictive hybrid scheduling. The graph shows the tasks average response times at y-

axis and test iterations at x-axis. The hybrid scheduling mechanism is the combination of ACM

and FEF scheduling approach. The hybrid mechanism improves the overall task allocation to

machine pairs and hence also improves the response time as seen in the results. The average

response time for tasks set using learned predictive FEF scheduling is 1954.13 milliseconds and

the average response time for tasks set using learned predictive hybrid scheduling is 1769.69

milliseconds.

Figure 42: Response time comparisons with learned predictive FEF and learned predictive hybrid scheduling

for candy box factory

In the Figure 43, we present the comparisons among learned predictive hybrid scheduling

and learned predictive and optimized hybrid scheduling. The graph shows the tasks average

execution times at y-axis and test iterations at x-axis. The goal of optimization module is to

maximize the utilization of machine network and machine pairs to which tasks are allocated.

1500

1600

1700

1800

1900

2000

2100

2200

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

R
es

p
o

n
se

 t
im

e
T

im
es

 (
m

s)

Simulation Iterations

Learned Predictive Hybrid Scheduling

Learned Predictive FEF Scheduling

88

Hence the learned predictive and optimized hybrid scheduling results in better performance by

improving the machine utilization and improving the response time. The average response time

for tasks set using learned predictive hybrid scheduling is 1769.69 milliseconds and the average

response time for tasks set using learned predictive and optimized hybrid scheduling is 1555.4

milliseconds.

Figure 43: Response time comparisons with and without optimized scheduling for candy box factory

The Figure 44 shows the assembly machines network utilization rate for tasks scheduling

simulations. There are four assembly machines as AM1, AM2, AM3, and AM4. The graph

below shows average machine utilization for each machine in the assembly machine network.

The comparisons are drawn between proposed hybrid scheduling approach based on learning to

prediction and optimization with predictive FEF scheduling scheme. The learned scheduling

approach increases the machine utilization as it takes aid from the learning modules of prediction

and optimization to make intelligent scheduling decisions and increases the overall system

performance.

1300

1400

1500

1600

1700

1800

1900

2000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

R
es

p
o

n
se

 T
im

es
 (

m
s)

Simulation Iterations

Learned Predictive and Optimized Hybrid Scheduling

Learned Predictive Hybrid Scheduling

89

Figure 44: Machine utilization rate comparisons for proposed scheduling schemes in assembly machine in

candy box factory

(a) (b)

Figure 45: Average machine utilization for proposed scheduling schemes in candy box factory (a) for assembly

machine; (b) for packaging machine

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AM1 AM2 AM3 AM4

M
a

ch
in

e
U

ti
li

za
ti

o
n

Assembley Machine

Predictive FEF Scheduling

Learned Predictive and Optimized Hybrid Scheduling

0%

20%

40%

60%

80%

100%

Assembley Machines

A
v
er

a
g

e
M

a
ch

in
e

U
ti

li
za

ti
o
n

Predictive FEF Scheduling

Learned Predictive and Optimized Hybrid

Scheduling

0%

20%

40%

60%

80%

100%

Packaging Machine

A
v
er

a
g

e
M

a
ch

in
e

U
ti

li
za

ti
o
n

Predictive FEF Scheduling

Learned Predictive and Optimized Hybrid

Scheduling

90

Similarly, the machine utilization for the machines in the packaging machines networks is

observed to be higher in learned predictive and optimized hybrid scheduling in comparison to

the predictive FFF scheduling. The Figure 45 shows the overall average machine utilization rate

for each assembly network and packaging network; based on the comparisons among the

predictive FEF scheduling with learned predictive and optimized hybrid scheduling. The average

machine utilization for predictive FEF scheduling is 70% and the average machine utilization for

predictive and optimized hybrid scheduling is 89% for assembly machines. The average machine

utilization for predictive FEF scheduling is 69.90% and the average machine utilization for

predictive and optimized hybrid scheduling is 90% for packaging machines. The results prove

that learned predictive and optimized hybrid scheduling shows far better performance in

comparison to the predictive FEF scheduling.

5.3 Simulation and Performance Analysis of Simulated

Tasks Dataset

5.3.1 Input Tasks Modeling for Data Simulations
In this sub-section, we present the input tasks modeling for simulated tasks dataset. The

input tasks for simulated tasks dataset are randomly generated based on user inputs and system

thresholds to generate tasks set to be simulated. The tasks generated have initial parameters as

tasks ID, execution time, and deadline and machine ID. Next the system computes the tasks

parameters as start time, finish time, and time budget time based on initially generated

parameters. Table 20 below shows the list of tasks parameters generated for the tasks.

91

Table 20: Generated Task Parameters List

Task Parameter Description

Task ID Tasks’ unique identifier

Arrival Time Task arrival time at system

Execution Time Time required to complete task

Deadline Time before which task should complete

Machine ID Machine at which task is to be executed

Start Times Tasks’ start time at machine

Finish Time Tasks’ finish time at machine

At first, the number of tasks to be generated is taken as input from the user. Next the tasks

generation interval is taken as input from the user. The generated tasks are sensing tasks with

different sensing intervals as 5 seconds, 10 seconds, 15 seconds, 20 seconds, 30 seconds, 40

seconds and 60 seconds. For each task, task id are generated, arrival time is time at which task

arrived to at system, next the execution times are randomly generated between a given range,

task deadline are generated between given threshold of being greater than zero and less than the

tasks deadline, machine id is initialized as zero and later set to the scheduled machine, start times

are set to the scheduled start times at machine, finish time is set to the scheduled finish time at

machine.

92

In the first step for tasks generation, the sensing tasks are generated based on the initial

parameters for task id, execution time, and deadline and machine id. In the next step the tasks

parameter values generation function for start times assignment, finish time assignment and time

budget assignment are called where these parameters are initialized. Using these parameters, the

tasks are ready to be run at the scheduler at their scheduled time following scheduling

mechanism. In parallel to tasks scheduling at the scheduler, the scheduler keeps maintaining the

history logs with tasks detailed parameters and additional parameters of task completion status,

total number tasks at each machine with machine id, processing capacity of each machine with

machine id, total processing capacity required by each machine based on current load (Figure

46).

Figure 46: Tasks parameters generation and building history data parameters

5.3.2 Performance Analysis and Comparisons
In this part, we have used the ANN based prediction algorithm. The prediction algorithm is

then learned by optimizing the ANN weights using PSO algorithm. The addition of PSO in ANN

93

improves the performance of prediction algorithm greatly and gives better prediction accuracies

with fewer numbers of iterations.

In Figure 47, we present the performance results comparison for prediction accuracies based

on the ANN algorithm and PSO learning based ANN algorithm (PSO-NN). The maximum

prediction accuracy achieved using ANN is 99.32% in 600 iterations while the PSO-NN

achieves the prediction accuracy of 99.36% in 600 iterations and the maximum prediction

accuracy achieved using PSO-NN is 99.42% in 800 iterations. The results clearly show that

PSO-NN outperforms the ANN prediction accuracy results. It achieves higher accuracy with less

number of iterations.

Figure 47: Prediction accuracy comparisons for ANN and PSO-NN in simulated tasks dataset

Next, we compare the prediction accuracy results with prediction learning based on the

proposed variations of the PSO algorithm as R-PSO and VB-PSO. The Figure 48 shows the

output results for learned prediction with optimized weights of ANN based on PSO and its

93

94

95

96

97

98

99

100

100 200 300 400 500 600 700 800 900 1000

P
re

d
ic

ti
o

n
 A

c
cu

ra
cy

 (
%

)

Training Iterations

ANN PSO-NN

94

variations ad R-PSO and VB-PSO. The results show that R-PSO and VB-PSO, both achieve

higher accuracy within less iterations in comparison to the PSO so both variations are considered

fruitful improvements in PSO. In comparing R-PSO and VB-PSO, we can observe that initially

R-PSO-NN achieved higher prediction accuracy than VB-PSO but within next 100 iterations the

VB-PSO-NN’s prediction accuracy shoots higher and stays to 99.54% from 200 iterations

onwards. Whereas, though R-PSO-NN takes 600 iterations to achieve prediction accuracy of

99.51% and reaches to 99.69% of prediction accuracy 700 iterations and gives higher prediction

accuracy eventually.

Figure 48: Prediction accuracy comparisons based on PSO-NN, R-PSO-NN and VB-PSO-NN in simulated

tasks dataset

In Figure 49, we present the comparison of baseline FEF with learned prediction FEF with

aim to demonstrate the effect of learning to prediction in the scheduling algorithm. The Figure

shows the results for tasks starvation rate and average instances missing rate. We can observe

that the learned predictive FEF reduces the tasks starvation rate and also reduces the average

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100 200 300 400 500 600 700 800 900 1000

A
cc

u
ra

cy
 (

%
a

g
e)

Number of Iterations

R- PSO-NN VB-PSO-NN PSO-NN

95

instances missing rate. The average instances missing rate for predictive FEF scheduling 33.49%

and that for learned predictive and optimized hybrid scheduling is 19%. The tasks starvation rate

for predictive FEF scheduling 25% and that for learned predictive and optimized hybrid

scheduling is 9.19%. The learned predictive FEF decreases the tasks starvation rate with wisely

allocating the free machine slots. Hence, the learning to prediction module increases the overall

performance of the scheduler.

(a) (b)

Figure 49: Comparisons for learned predictive FEF and basic FEF scheduling for simulated tasks dataset (a)

average instances missing rate in percentage; (b) average tasks starvation rate in percentage

Now, we evaluate the effect of learning to optimization module. The optimization module

works with an objective of maximizing the machine utilization. It takes the current tasks

instances as input and finds the best orders and pairs for tasks to be processed at machines. The

objective function will struggle to find orders with maximum machine utilization and pass the

orders back to the scheduling module. We compare the learned predictive hybrid scheduling

with learned prediction and optimized hybrid scheduling in Figure 50. The average machine

utilization rate for learned predictive hybrid scheduling is 72.59% and the average machine

0%

5%

10%

15%

20%

25%

30%

35%

Average Instances

Missing Rate

Learned Predictive FEF Scheduling

Basic FEF Scheduling

0%

5%

10%

15%

20%

25%

Task Starvation Rate

Learned Predictive FEF Scheduling

Basic FEF Scheduling

96

utilization rate for learned predictive and optimized scheduling is 90.59%. In the results, we can

observe that optimization based task scheduling increases the machine utilization in comparison

the one without optimization.

Figure 50: Machine utilization comparisons with optimization vs. without optimization for simulated tasks

dataset

The Figure 51 shows the comparisons analysis for average response time taken for

predictive FEF scheduling, learned FEF scheduling, learned predictive hybrid scheduling, and

learned predictive and optimized hybrid scheduling scheme. We can observe from the

comparisons that as the learning module of prediction is added, a significant decrease in the

response times is noticed. Next, with the change in scheduling algorithm from FEF to hybrid

approach, the performance gets slightly better and further decrease is observed in the response

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

M
a

ch
in

e
U

ti
li

za
ti

o
n

 A
v

er
a

g
e

(%
a

g
e)

Simulation Iterations

Learned Predictive Hybrid Scheduling

Learned Predictive and Optimized Hybrid Scheduling

97

time. Finally, with the addition of learning to optimization module, as the machine utilization

increases, hence the task waiting time decreases and response time taken also decreases.

Figure 51: Response time comparisons of proposed scheduling schemes for simulated tasks dataset

700

750

800

850

900

950

1000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

R
es

p
o

n
se

 T
im

e
(m

s)

Simulation Iterations

Learned Predictive and Optimized Hybrid Scheduling

Learned Predictive Hybrid Scheduling

Learned Predictive FEF Scheduling

Predictive FEF Scheduling

98

The average response time for tasks set using predictive FEF scheduling is 915.64

milliseconds, using learned predictive FEF scheduling is 820.34 milliseconds, using learned

predictive hybrid scheduling is 797.59 milliseconds and using learned predictive and optimized

hybrid scheduling is 750.66 milliseconds.

The Figure 52 shows the average instances missed rate for the predictive FEF scheduling,

learned predictive FEF scheduling, learned predictive hybrid scheduling and learned predictive

and optimized hybrid scheduling. The average instances missing rate for tasks set using

predictive FEF scheduling is 36%, using learned predictive FEF scheduling is 19%, using

learned predictive hybrid scheduling is 10% and using learned predictive and optimized hybrid

scheduling is 8%. In the results shown, we can observe that the least number of tasks missing

rate is at learned predictive and optimized hybrid scheduling, as it includes the learning modules

and has the maximum machine utilization rate.

Figure 52: Average instances missing rate comparisons of proposed scheduling schemes for simulated tasks

dataset

0%

5%

10%

15%

20%

25%

30%

35%

40%

Learned

Predictive and

Optimized

Hybrid

Scheduling

Learned

Predictive

Hybrid

Scheduling

Learned

Predictive

FEF

Scheduling

Predictive

FEF

Scheduling

P
er

ce
n

ta
g

e

99

Figure 53: Average tasks starvation rate comparisons of proposed scheduling schemes for simulated tasks

dataset

The Figure 53 shows the average tasks starvation rate for the predictive FEF scheduling,

learned predictive FEF scheduling, learned predictive hybrid scheduling and learned predictive

and optimized hybrid scheduling. The average instances starvation rate for tasks set using

predictive FEF scheduling is 23%, using learned predictive FEF scheduling is 11%, using

learned predictive hybrid scheduling is 6% and using learned predictive and optimized hybrid

scheduling is 5%. In the results shown, we can observe that the least number of tasks starvation

rate is at learned predictive and optimized hybrid scheduling, as it includes the learning modules

and has the maximum machine utilization rate.

0%

5%

10%

15%

20%

25%

Learned

Predictive and

Optimized

Hybrid

Scheduling

Learned

Predictive

Hybrid

Scheduling

Learned

Predictive

FEF

Scheduling

Predictive

FEF

Scheduling

P
er

ce
n

ta
g

e

100

5.4 Simulation and Performance Analysis of Machine

Cluster Data

5.4.1 Input Dataset
In this section, we have used google cloud task scheduling dataset [55] for the simulations

and performance evaluations of our system. The dataset compromises of 500 sets of tasks

instances executed at multiple machines. Table 21 shows the data size.

Table 21: Machine cluster dataset size

Dataset Table Size

Machine Attributes 1048576

Machine Events 37780

Total Task Sets 500

Single Task Set Instances 1048576

The dataset has two main data as machine data and tasks data. Each task comprises of

multiple jobs and includes jobs data. The machine data has two main tables as machine events

table and machine attributes table. The machine events table contains timestamp, machine ID,

event type, platform ID, machine processing capacity and machine memory capacity. Machine

attributes table contains timestamp, machine ID, and attribute name, value and deletion status.

The tasks data has tasks events table, tasks constraints table and jobs events table. The jobs

events table contains time stamp, missing information, job ID, event type, user name, scheduling

class and job name. The tasks event table contains timestamp, missing information, job ID, task

101

index for job, machine ID, event type, scheduling class, priority, resources for CPU, RAM and

memory, and machine constraints. The tasks constraints table contains timestamp job ID, task

index, attribute name and value.

Figure 54: Detailed hierarchy view for in machine cluster dataset

5.4.2 Performance Analysis and Comparisons
In this sub-section, we present the experiments and performance analysis for the machine

cluster data as input.

First of all, the machine cluster data is used to train the prediction model. The predictions are

made using ANNs where ANNs’ weights are tuned using PSO variations. In the Figure 55

below, we show the prediction accuracy achieved and comparisons of the accuracy among

implementations of PSO based ANN predictions, R-PSO based ANN predictions and VB-PSO

based ANN predictions. In the graph, we observe that VB-PSO achieves the highest prediction

accuracy within least number of epochs, whereas though R-PSO-NN also achieves the same

102

accuracy as VB-PSO-NN but with higher number of epochs. The prediction accuracy of 98.42%

is achieved by R-PSO-NN in 800 iterations while VB-PSO-NN achieves the same within 300

iterations.

Figure 55: Prediction accuracy comparisons based on PSO-NN, R-PSO-NN and VB-PSO-NN in machine

cluster dataset

In Figure 56, we present the comparison of basic FEF scheduling and learned prediction FEF

scheduling. The learned predictive FEF scheduling has an addition prediction module based on

ANN which is learned using PSO. The learned prediction enhances the scheduling performance

using history data learning and optimization of prediction results using PSO to tune ANN’s

weights. Hence, we can observe in the graph that learned predictive FEF has less number of

tasks starved and less number of instances missed in comparison to basic FEF scheduling. The

average instances missing rate for basic FEF scheduling is 24% and for learned predictive FEF

scheduling is 11%. The average tasks starvation rate for basic FEF scheduling is 18.28% and for

learned predictive FEF scheduling is 5.35%.

95.5

96

96.5

97

97.5

98

98.5

99

100 200 300 400 500 600 700 800

P
re

d
ic

ti
o

n
 A

c
cu

ra
cy

 (
%

a
g

e)

Epochs

PSO-NN R- PSO-NN VB-PSO-NN

103

(a) (b)

Figure 56: Comparisons for learned predictive FEF and basic FEF scheduling in machine cluster dataset (a)

average instances missing rate in percentage; (b) average tasks starvation rate in percentage

In the Figure 57, we compare the predictive FEF scheduling with learned predictive and

optimized hybrid scheduling. The graph shows the machine utilization rate based on varying

tasks load. The tasks generated vary from 100 to 1000 during the simulation period. As the tasks

grow more than the total machine capacity, some of the tasks instances are must to drop out. In

basic FEF scheduling, the tasks instance missing rate is observed higher even when the machine

is not being fully utilized, while in the learned predictive and optimized hybrid scheduling the

tasks instances are only missed when the machine are in use to the fullest of their capacity. Also,

in learned predictive and optimized hybrid scheduling the tasks being processed are high priority

tasks and scheduler will make sure to allocate resources based on priorities, in order to not miss

any high priority task when it can be traded off with a less priority task.

0%

5%

10%

15%

20%

25%

Learned

Predictive FEF

Scheduling

Basic FEF

Scheduling

0%

5%

10%

15%

20%

Learned

Predictive FEF

Scheduling

Basic FEF

Scheduling

104

Figure 57: Tasks instances missing rate comparisons for proposed schemes with varying number of tasks in

machine cluster dataset

In the Figure 58, the average machine utilization for predictive FEF scheduling is compared

with learned predictive and optimized hybrid scheduling. The machine utilization is measured

with respect to varying number of available machines. In the results, we can observe that

machine utilization increases with the increase in the tasks; however, the learned scheduling has

high machine utilization in comparison to the predictive FEF scheduling. This indicates that

learned predictive and optimized hybrid scheduling executes a higher number of tasks

successfully while predictive FEF scheduling might be missing some tasks instances with high

starvation rate with machine slots not being utilized to their full potential.

0%

5%

10%

15%

20%

25%

30%

35%

40%

100 200 300 400 500 600 700 800 900 1000

T
a

sk
s

In
st

a
n

ce
 M

is
si

n
g

 R
a

te

Tasks Load

Predictive FEF Scheduling

Learned Predictive and Optimized Hybrid Scheduling

105

Figure 58: Average machine utilization rate comparisons for proposed schemes with varying number of tasks

in machine cluster dataset

In the Figure 59, we present the comparisons among predictive FEF scheduling, learned

predictive FEF scheduling, learned predictive hybrid scheduling and, learned predictive and

optimized hybrid scheduling. The x-axis shows the average response time of machine for tasks

and y-axis shows the test iterations. First, we analyze the predictive FEF scheduling and learned

predictive FEF scheduling. The addition of learning in the prediction module substantially

improves the performance and machine response time is reduced. Next, we evaluate the learned

predictive FEF scheduling and learned predictive hybrid scheduling. It majorly reflects the

difference in mechanism based on replacing the FEF scheduling algorithm to the hybrid ACM-

FEF scheduling algorithm.

0%

10%

20%

30%

40%

50%

60%

70%

80%

2 4 6 8 10 12 14 16 18 20 22

A
v

er
a

g
e

M
a

ch
in

e
U

ti
li

za
ti

o
n

Number of Machines

Predictive FEF Scheduling

Learned Predictive and Optimized Hybrid Scheduling

106

Figure 59: Average machine utilization rate comparisons for proposed schemes with varying number of

machines in machine cluster dataset

We can observe that hybrid approach brings an improvement in the performance by further

reducing the response time. At last we evaluate the learned predictive hybrid scheduling and

learned predictive and optimized hybrid scheduling. It highlights the performance of

optimization module which is based on the objective of maximizing the machine utilization as a

single object as well as maximizing the machine network utilization overall. The addition of

optimization module also improves the performance to some extent as observed in the results.

The average response time for tasks set using predictive FEF scheduling is 1505.45

850

950

1050

1150

1250

1350

1450

1550

1650
1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

Simulation Iterations

Learned Predictive and Optimized Hybrid Scheduling

Learned Predictive Hybrid Scheduling

Learned Predictive FEF Scheduling

Predictive FEF Scheduling

107

milliseconds, using learned predictive FEF scheduling is 1416.99 milliseconds, using learned

predictive hybrid scheduling is 1310.85 milliseconds and using learned predictive and optimized

hybrid scheduling is 957.8 milliseconds.

108

Chapter 6: Conclusions

Efficient real-time tasks scheduling based on predictive analytics and optimized techniques

is vital for smart factory systems. In this thesis, we have proposed an integrated solution for

smart factory’s efficient task management based on learning to scheduling. The proposed

proposal provides integrated task management solution based on learning to prediction and

learning to optimization techniques. The proposed system has four main modules as task

scheduler using ACM-FEF hybrid scheduling algorithm, learning to prediction using ANN for

predictions and PSO for learning, learning to optimization using PSO for optimization and ANN

for learning, and control mechanism based on inference engine. We proposed two improved

variations of PSO named as VB-PSO and R-PSO to be used in prediction and optimization

modules in place of PSO. The prediction and optimization module aid the scheduling module in

efficient task management by enabling scheduler to make learned decisions.

The learning to prediction mechanism predicts the tasks execution status and machine

utilization under given load of the machines/tasks based on history decisions. The variations of

PSO are used in learning to prediction mechanism as VB-PSO-NN and R-PSO-NN. In learning

to optimization mechanism, an objective function is proposed for enhancing machine utilization

and to seek the optimal results based on PSO algorithm. Also, we use the proposed improved

variations of PSO (VB-PSO and R-PSO) in the optimization module. We further implement the

ANN learning based VB-PSO and R-PSO; where ANN is used to tune the PSO particles’

positions for efficiently finding optimal solution.

Our main contributions in this thesis can be listed as

– Scheduling components

• Learned FEF Scheduling Scheme

109

• Hybrid ACM-FEF scheduling scheme

– Proposal of improved variations of PSO algorithm

• VB-PSO

• R-PSO

– Prediction components

• PSO learning based ANN weights tuning for enhancing prediction accuracy

– Optimization components

• Objective function for maximizing machine utilization

• ANN learning based PSO parameter tuning for enhancing optimization results

We have developed an emulator of smart factory tasks for simulating real-time task

generation and we have evaluated the proposed system based on the simulations using three

tasks datasets. The scheduling schemes used for results and comparisons analysis are basic FEF

scheduling scheme (FEF without learning factors), predictive FEF scheduling scheme (FEF with

ANN learning), learned predictive FEF scheduling scheme (FEF with PSO-NN learning),

learned predictive hybrid (ACM-FEF) scheduling scheme, and learned predictive and optimized

hybrid scheduling scheme (ACM-FEF with PSO-NN predictive learning and ANN-PSO

optimized learning).

The proposed task management mechanism is evaluated based on multiple scenario

simulations and performance analysis. We use three task modeling scenarios as candy box

factory tasks dataset; user input based simulated tasks dataset and machine cluster tasks dataset.

We analyses the results analysis based on the (a) analysis of the prediction module (b) analysis

of the optimization module and (c) analysis of the hybrid scheduling scheme. The performances

analysis metrics considered are prediction accuracy, tasks instances missing rate, tasks starvation

rate, machine utilization rate and machine response time.

110

The simulations are performed under overloaded tasks load at the machines to examine

worst case scenarios. In the simulations, as the tasks grow more than the total machine capacity,

some of the tasks’ instances are must to drop out.

The results analysis and comparisons clearly show that prediction and optimization modules

enhance the machine utilization and scheduler performance. The addition of learning modules

further increases the performance by reducing the response times. The PSO based ANN

predictions gives higher accuracy and the modification proposed for PSO improve the

performance of PSO both in prediction module and optimization module. In performance

analysis for candy box factory tasks dataset, we observe that prediction accuracy achieved by

PSO-NN is 99.39% in 700 iterations while the prediction accuracy achieved by R-PSO-NN is

99.53 in 700 iterations and the prediction accuracy achieved by VB-PSO-NN is 99.53% in 500

iterations. In performance analysis for simulated tasks dataset, we observe that prediction

accuracy achieved by PSO-NN is 99.42% in 800 iterations while the prediction accuracy

achieved by R-PSO-NN is 99.69 in 700 iterations and the prediction accuracy achieved by VB-

PSO-NN is 99.54% in 200 iterations. In performance analysis for machine cluster tasks dataset,

we observe that prediction accuracy achieved by PSO-NN is 98.21% in 800 iterations while the

prediction accuracy achieved by R-PSO-NN is 98.42% in 800 iterations and the prediction

accuracy achieved by VB-PSO-NN is 98.42% in 300 iterations.

In the comparisons’ analysis for candy box factory, we have observed the following

improvements. The learned predictive FEF scheduling in comparison to basic FEF scheduling

scheme shows an average of 50% reduction in tasks starvation rate and an average of 63.64%

reduction in tasks instances missing rate. The learned predictive and optimized hybrid

scheduling scheme (proposed task management mechanism) shows an average of 22% increase

in machine utilization, and an average of 30% improvement in response times. In the

comparisons’ analysis for simulated tasks dataset, we have observed the following

111

improvements. The learned predictive FEF scheduling in comparison to basic FEF scheduling

scheme shows an average of 77.78% reduction in tasks starvation rate and an average of 78.26%

reduction in tasks instances missing rate. The learned predictive and optimized hybrid

scheduling scheme (proposed task management mechanism) shows an average of 19.19%

increase in machine utilization, and an average of 26.98% improvement in response times. In the

comparisons’ analysis for machine cluster tasks dataset, we have observed the following

improvements. The learned predictive FEF scheduling in comparison to basic FEF scheduling

scheme shows an average of 72.23% reduction in tasks starvation rate and an average of 54.17%

reduction in tasks instances missing rate. The learned predictive and optimized hybrid

scheduling scheme (proposed task management mechanism) shows an average of 27.28%

increase in machine utilization, and an average of 36.38% improvement in response times.

Overall, we observe that the learned predictive FEF scheduling in comparison to basic FEF

scheduling scheme shows an average of 72.23% reduction in tasks starvation rate and an average

of 54.17% reduction in tasks instances missing rate. The learned predictive and optimized hybrid

scheduling scheme (proposed task management mechanism) shows an average of 27.28%

increase in machine utilization, and an average of 36.38% improvement in response times.

The comparisons analysis shows that proposed task management system, referred as learned

predictive and optimized hybrid scheduling scheme in the results analysis, significantly

improves the machine utilization rate and drastically drops the tasks instances missing rate and

tasks starvation rate. Hence, we can conclude that proposed modules, enhance prediction

accuracy, enhance the optimization results and also increase the machine utilization and

scheduling results.

112

References

1) https://www.siemens.com.tr/i/Assets/gida-

gunu/170524_KS_Industrie40_Presentation_Siemens_Turkey.pdf

2) What is Industry 4.0? Available at:

https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-

super-easy-explanation-for-anyone/#153613769788

3) http://www.lgcnsblog.com/features/industry-4-0-the-fourth-industrial-revolution-with-it-

and-the-manufacturing-industry-sgs-platform-2/#sthash.T1sgnNZk.dpbs

4) Zhong, R.Y., Xu, X. and Wang, L., 2017. IoT-enabled smart factory visibility and

traceability using laser-scanners. Procedia Manufacturing, 10, pp.1-14.

5) Nauck, D., et al., Predictive Customer Analytics and Real-Time Business Intelligence, in

Service Chain Management, C. Voudouris, D. Lesaint, and G. Owusu, Editors. 2008,

Springer Berlin Heidelberg. p. 205-214.

6) Saldivar, A.A.F., Goh, C., Chen, W.N. and Li, Y., 2016, July. Self-organizing tool for

smart design with predictive customer needs and wants to realize Industry 4.0. In 2016

IEEE Congress on Evolutionary Computation (CEC) (pp. 5317-5324). IEEE.

7) Lee, J. Smart Factory Systems. Informatik Spektrum 2015, 38, 230–235.

8) Liu, X.F.; Shahriar, M.R.; Al Sunny, S.M.N.; Leu, M.C.; Hu, L. Cyber-physical

manufacturing cloud: Architecture, virtualization, communication, and testbed. J. Manuf.

Syst. 2017, 43, 352–364

9) 7. Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J.

Ind. Inf. Integr. 2017, 6, 1–10.

10) Mowery, D.C.; Rosenberg, N. Technology and the Pursuit of Economic Growth;

Cambridge University Press: New York, NY, USA, 1989.

11) J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): A vision,

architectural elements, and future directions, Future Generation Computer Systems, 29

(2013) 1645-1660.

12) R. Y. Zhong, Z. Li, A. L. Y. Pang, Y. Pan, T. Qu, G. Q. Huang, RFID-enabled Real-time

Advanced Planning

13) https://www.manufacturing.net/industry40/article/13248934/industry-40-iot-is-key-to-

the-smart-factory

14) Lee, J., 2015. Smart Factory Systems. Informatik Spektrum, 38(3), pp.230-235.

15) “Process engineering.” [Online]. Available:

http://processengineering.theengineer.co.uk/home/contr ol-and-instrumentation/brave-

new-world-industry-40- technology/1017121.article.

16) H. Kagermann, W. Wahlster, and J. Helbig, “Recommendations for implementing the

https://www.siemens.com.tr/i/Assets/gida-gunu/170524_KS_Industrie40_Presentation_Siemens_Turkey.pdf
https://www.siemens.com.tr/i/Assets/gida-gunu/170524_KS_Industrie40_Presentation_Siemens_Turkey.pdf
https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-easy-explanation-for-anyone/#153613769788
https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-easy-explanation-for-anyone/#153613769788
http://www.lgcnsblog.com/features/industry-4-0-the-fourth-industrial-revolution-with-it-and-the-manufacturing-industry-sgs-platform-2/#sthash.T1sgnNZk.dpbs
http://www.lgcnsblog.com/features/industry-4-0-the-fourth-industrial-revolution-with-it-and-the-manufacturing-industry-sgs-platform-2/#sthash.T1sgnNZk.dpbs
https://www.manufacturing.net/industry40/article/13248934/industry-40-iot-is-key-to-the-smart-factory
https://www.manufacturing.net/industry40/article/13248934/industry-40-iot-is-key-to-the-smart-factory
http://processengineering.theengineer.co.uk/home/contr%20ol-and-instrumentation/brave-new-world-industry-40-%20technology/1017121.article
http://processengineering.theengineer.co.uk/home/contr%20ol-and-instrumentation/brave-new-world-industry-40-%20technology/1017121.article

113

strategic initiative INDUSTRIE 4.0,” 2013.

17) “Bosch.” [Online]. Available: http://www.boschsi.com/solutions/manufacturing/industry-

4-0/industry4-0.html

18) The Economist Intelligence Unit, “The Internet of Things Business Index: A Quiet

Revolution Gathers Pace,” 2013.

19) “PRWeb.” [Online]. Available: www.prweb.com/releases/2013/12/prweb11430148.ht m.

20) Lopez Research, “Building Smarter Manufacturing With The Internet of Things (IoT),”

2014.

21) Shrouf, F., Ordieres, J. and Miragliotta, G., 2014, December. Smart factories in Industry

4.0: A review of the concept and of energy management approached in production based

on the Internet of Things paradigm. In 2014 IEEE international conference on industrial

engineering and engineering management (pp. 697-701). IEEE.

22) Baheti, R. and Gill, H., 2011. Cyber-physical systems. The impact of control

technology, 12(1), pp.161-166.

23) Krogh, B.H., 2008. Cyber physical systems: the need for new models and design

paradigms. Presentation Report.

24) National Institute of Standards and Technology. Workshop report on foundations for

innovation in cyber-physical systems, January 2013 <http://www.nist.gov/el/upload/CPS-

WorkshopReport-1-30-13-Final.pdf/.

25) Lee, J. and Lapira, E., 2013. Predictive factories: the next transformation. Manufacturing

Leadership Journal, 20(1), pp.13-24.

26) Lee, J., Lapira, E., Yang, S. and Kao, A., 2013. Predictive manufacturing system-Trends

of next-generation production systems. IFAC Proceedings Volumes, 46(7), pp.150-156.

27) Lee, J., Bagheri, B. and Kao, H.A., 2015. A cyber-physical systems architecture for

industry 4.0-based manufacturing systems. Manufacturing letters, 3, pp.18-23.

28) https://cdn.auckland.ac.nz/assets/mech/about/our-

research/Industry4/LISMS_poster_Smart%20factory%20modeling.pdf

29) Hermann, M., Pentek, T. and Otto, B., 2016, January. Design principles for industrie 4.0

scenarios. In 2016 49th Hawaii international conference on system sciences (HICSS) (pp.

3928-3937). IEEE.

30) Wang, S., Wan, J., Li, D. and Zhang, C., 2016. Implementing smart factory of industrie

4.0: an outlook. International Journal of Distributed Sensor Networks, 12(1), p.3159805.

31) Sokolov, B. and Ivanov, D., 2015. Integrated scheduling of material flows and

information services in industry 4.0 supply networks. IFAC-PapersOnLine, 48(3),

pp.1533-1538.

32) Goryachev, A., Kozhevnikov, S., Kolbova, E., Kuznetsov, O., Simonova, E., Skobelev,

P., Tsarev, A. and Shepilov, Y., 2013. “Smart Factory”: Intelligent System for Workshop

Resource Allocation, Scheduling, Optimization and Controlling in Real Time.

http://www.nist.gov/el/upload/CPS-WorkshopReport-1-30-13-Final.pdf
http://www.nist.gov/el/upload/CPS-WorkshopReport-1-30-13-Final.pdf
https://cdn.auckland.ac.nz/assets/mech/about/our-research/Industry4/LISMS_poster_Smart%20factory%20modeling.pdf
https://cdn.auckland.ac.nz/assets/mech/about/our-research/Industry4/LISMS_poster_Smart%20factory%20modeling.pdf

114

In Advanced Materials Research (Vol. 630, pp. 508-513). Trans Tech Publications.

33) Kück, M., Ehm, J., Freitag, M., Frazzon, E.M. and Pimentel, R., 2016. A data-driven

simulation-based optimisation approach for adaptive scheduling and control of dynamic

manufacturing systems. In Advanced Materials Research (Vol. 1140, pp. 449-456). Trans

Tech Publications.

34) Ishii, N. and Talavage, J.J., 1994. A mixed dispatching rule approach in FMS

scheduling. International Journal of Flexible Manufacturing Systems, 6(1), pp.69-87.

35) Metan, G., Sabuncuoglu, I. and Pierreval, H., 2010. Real time selection of scheduling

rules and knowledge extraction via dynamically controlled data mining. International

Journal of Production Research, 48(23), pp.6909-6938.

36) Olafsson, S. and Li, X., 2010. Learning effective new single machine dispatching rules

from optimal scheduling data. International Journal of Production Economics, 128(1),

pp.118-126.

37) Son, Y.J., Rodríguez-Rivera, H. and Wysk, R.A., 1999. A multi-pass simulation-based,

real-time scheduling and shop floor control system. Transactions of the Society for

Computer Simulation, 16(4), pp.159-172.

38) Priore, P., Gómez, A., Pino, R. and Rosillo, R., 2014. Dynamic scheduling of

manufacturing systems using machine learning: An updated review. AI EDAM, 28(1),

pp.83-97.

39) Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1986. Learning internal

representations by error propagation", in\Parallel Distributed Processing", DE Rumelhart,

JL McClelland eds.

40) Vapnik, V., 2013. The nature of statistical learning theory. Springer science & business

media.

41) Quinlan, J.R., 2014. C4. 5: programs for machine learning. Elsevier.

42) Jules, G. and Saadat, M., 2016. Agent cooperation mechanism for decentralized

manufacturing scheduling. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 47(12), pp.3351-3362.

43) Schwiegelshohn, U.; Yahyapour, R. Analysis of first-come-first-serve parallel job

scheduling. SODA 1998, 98, 629–638.

44) Arpaci-Dusseau, R.H.; Arpaci-Dusseau, A.C. Operating Systems: Three Easy Pieces;

Chapter Scheduling Introduction; ;login: issue: Spring 2017, Vol. 42, No. 1 2014.

45) Ramamritham, K.; Stankovic, J.A. Scheduling algorithms and operating systems support

for real-time systems. Proc. IEEE 1994, 82, 55–67.

46) Oh, S.-H.; Yang, S.-M. A modified least-laxity-first scheduling algorithm for real-time

tasks. In Proceedings of the Fifth International Conference on Real-Time Computing

Systems and Applications, Hiroshima, Japan, 27–29 October 1998.

47) Lehoczky, J.; Sha, L.; Ding, Y. The rate monotonic scheduling algorithm: Exact

characterization and average case behavior. In Proceedings of the Real-time Systems

115

Symposium, Santa Monica, CA, USA, 5–7 December 1989; pp. 166–171.

48) Audsley, N.C.; Burns, A.; Richardson, M.F.; Wellings, A.J. Deadline Monotonic

Scheduling; University of York, Department of Computer Science: York, UK, 1990.

49) Stankovic, J.A.; et al. Deadline Scheduling for Real-Time Systems: EDF and Related

Algorithms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012;

Volume 460.

50) Chetto, H.; Chetto, M. Some results of the earliest deadline scheduling algorithm. IEEE

Trans. Softw. Eng. 1989, 15, 1261.

51) Stewart, D.B.; Khosla, P. Real-time scheduling of sensor-based control systems. IFAC

Proc. Vol. 1991, 24, 139–144.

52) Buttazzo, G.C. Rate monotonic vs. EDF: Judgment day. Real-Time Syst. 2005, 29, 5–26.

53) Wu, Y.; Song, X.; Gong, G. Real-time load balancing scheduling algorithm for periodic

simulation models. Simul. Model. Pract. Theory 2015, 52, 123–134.

54) Nakahira, Y.; Chen, N.; Chen, L.; Low, S.H. Smoothed Least-laxity-first Algorithm for

EV Charging. In Proceedings of the Eighth International Conference on Future Energy

Systems, Hong Kong, China, 16–19 May 2017; pp. 242–251.

55) Tabuada, P. Event-triggered real-time scheduling of stabilizing control tasks. Ieee Trans.

Autom. Control 2007, 52, 1680–1685.

56) Jejurikar, R.; Gupta, R. Dynamic slack reclamation with procrastination scheduling in

real-time embedded systems. In Proceedings of the 42nd annual Design Automation

Conference, Anaheim, CA, USA, 13–17 June 2005.

57) Tidwell, T.; Glaubius, R.; Gill, C.; Smart, W.D. Scheduling for reliable execution in

autonomic systems. In International Conference on Autonomic and Trusted Computing;

Springer: Berlin/Heidelberg, Germany, 2008; pp. 149–161.

58) Dighriri, M.; Alfoudi, A.S.D.; Lee, G.M.; Baker, T.; Pereira, R. Comparison data traffic

scheduling techniques for classifying QoS over 5G mobile networks. In Proceedings of

the 2017 31st International Conference on Advanced Information Networking and

Applications Workshops (WAINA), Taipei, Taiwan, 27–29 March 2017; pp. 492–497.

59) Dighriri, M.; Lee, G.M.; Baker, T. Applying Scheduling Mechanisms Over 5G Cellular

Network Packets Traffic. In Third International Congress on Information and

Communication Technology; Springer: Singapore, 2019; pp. 119–131.

60) Bala, A.; Chana, I. Autonomic fault tolerant scheduling approach for scientific workflows

in Cloud computing. Concurr. Eng. 2015, 23, 27–39.

61) Eker, J.; Hagander, P.; Årzén, Ka. A feedback scheduler for real-time controller tasks.

Control Eng. Pract. 2000, 8, 1369–1378.

62) Marzario, L.; Lipari, G.; Balbastre, P.; Crespo, A. Iris: A new reclaiming algorithm for

server-based real-time systems. In Proceedings of the Real-Time and Embedded

Technology and Applications Symposium, Toronto, ON, Canada, 25–28 May 2004; pp.

211-218.

116

63) Cho, H.; Ravindran, B.; Jensen, E.D. An optimal real-time scheduling algorithm for

multiprocessors. In Proceedings of the Real-Time Systems Symposium, Rio de Janeiro,

Brazil, 5–8 December 2006.

64) Buttazzo, G.C.; Bertogna, M.; Yao, G. Limited preemptive scheduling for real-time

systems. a survey. Ieee Trans. Ind. Inform. 2013, 9, 3–15.

65) Huang, W.-H.; Chen, Ji.; Zhou, H.; Liu, C. PASS: Priority assignment of real-time tasks

with dynamic suspending behavior under fixed-priority scheduling. In Proceedings of the

52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA,

USA, 8–12 June 2015; pp. 1–6.

66) Ayele, A.A.; Rao, V.S.; Dileep, K.G.; Bokka, R.K. Combining EDF and LST to enhance

the performance of real-time task scheduling. In Proceedings of the International

Conference on ICT in Business Industry & Government (ICTBIG), Indore, India, 18–19

November 2016; pp. 1–6.

67) Kang, Y.S., Park, I.H. and Youm, S., 2016. Performance prediction of a MongoDB-based

traceability system in smart factory supply chains. Sensors, 16(12), p.2126.

68) Wu, D., Jennings, C., Terpenny, J., Gao, R.X. and Kumara, S., 2017. A comparative

study on machine learning algorithms for smart manufacturing: tool wear prediction

using random forests. Journal of Manufacturing Science and Engineering, 139(7),

p.071018.

69) Yan, J., Meng, Y., Lu, L. and Li, L., 2017. Industrial big data in an industry 4.0

environment: Challenges, schemes, and applications for predictive maintenance. IEEE

Access, 5, pp.23484-23491.

70) Hsieh, Y.S., Cheng, F.T., Huang, H.C., Wang, C.R., Wang, S.C. and Yang, H.C., 2012.

VM-based baseline predictive maintenance scheme. IEEE Transactions on semiconductor

Manufacturing, 26(1), pp.132-144.

71) Chiu, Y.C., Cheng, F.T. and Huang, H.C., 2017. Developing a factory-wide intelligent

predictive maintenance system based on Industry 4.0. Journal of the Chinese Institute of

Engineers, 40(7), pp.562-571.

72) Wang, J., Zhang, L., Duan, L. and Gao, R.X., 2017. A new paradigm of cloud-based

predictive maintenance for intelligent manufacturing. Journal of Intelligent

Manufacturing, 28(5), pp.1125-1137.

73) Iverson, M.A., Ozguner, F. and Potter, L.C., 1999, April. Statistical prediction of task

execution times through analytic benchmarking for scheduling in a heterogeneous

environment. In Proceedings. Eighth Heterogeneous Computing Workshop

(HCW'99) (pp. 99-111). IEEE.

74) Kong, X., Lin, C., Jiang, Y., Yan, W. and Chu, X., 2011. Efficient dynamic task

scheduling in virtualized data centers with fuzzy prediction. Journal of network and

Computer Applications, 34(4), pp.1068-1077.

75) Li, J., Ma, X., Singh, K., Schulz, M., de Supinski, B.R. and McKee, S.A., 2009, April.

Machine learning based online performance prediction for runtime parallelization and

task scheduling. In 2009 IEEE International Symposium on Performance Analysis of

117

Systems and Software (pp. 89-100). IEEE.

76) Wang, L., von Laszewski, G., Huang, F., Dayal, J., Frulani, T. and Fox, G., 2011. Task

scheduling with ANN-based temperature prediction in a data center: a simulation-based

study. Engineering with Computers, 27(4), pp.381-391.

77) Lee, L.T., Liang, C.H. and Chang, H.Y., 2006, September. An adaptive task scheduling

system for Grid Computing. In The Sixth IEEE International Conference on Computer

and Information Technology (CIT'06) (pp. 57-57). IEEE.

78) Zhang, D., Liu, Y., Li, J., Xue, C.J., Li, X., Wang, Y. and Yang, H., 2016. Solar power

prediction assisted intra-task scheduling for nonvolatile sensor nodes. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 35(5), pp.724-737.

79) Daly, D.M., Franaszek, P.A. and Lastras-Montano, L.A., International Business

Machines Corp, 2012. Prediction based priority scheduling. U.S. Patent 8,185,899.

80) Ghiasi, S., Keller Jr, T.W., Kotla, R. and Rawson III, F.L., International Business

Machines Corp, 2008. Scheduling processor voltages and frequencies based on

performance prediction and power constraints. U.S. Patent 7,386,739.

81) Jiang, B., Ravindran, B. and Cho, H., 2012. Probability-based prediction and sleep

scheduling for energy-efficient target tracking in sensor networks. IEEE Transactions on

Mobile Computing, 12(4), pp.735-747.

82) Zhou, J. and Dexter, F., 1998. Method to assist in the scheduling of add-on surgical

cases-upper prediction bounds for surgical case durations based on the log-normal

distribution. Anesthesiology: The Journal of the American Society of

Anesthesiologists, 89(5), pp.1228-1232.

83) Zeng, F., Zhang, R., Cheng, X. and Yang, L., 2017. Channel prediction based scheduling

for data dissemination in VANETs. IEEE Communications Letters, 21(6), pp.1409-1412.

84) Israr Ullah, PHD Thesis “Enhanced Optimization Scheme based on Learning for

Efficient Energy Consumption in Smart Greenhouse”, Jeju National University,

December, 2018.

85) Shao, G., Shin, S.J. and Jain, S., 2014, December. Data analytics using simulation for

smart manufacturing. In Proceedings of the Winter Simulation Conference 2014 (pp.

2192-2203). IEEE.

86) Qian, F., Zhong, W. and Du, W., 2017. Fundamental theories and key technologies for

smart and optimal manufacturing in the process industry. Engineering, 3(2), pp.154-160.

87) Gjeldum, N., Mladineo, M., Crnjac, M., Veza, I. and Aljinovic, A., 2018. Performance

analysis of the RFID system for optimal design of the intelligent assembly line in the

learning factory. Procedia Manufacturing, 23, pp.63-68.

88) Chen, T. and Lin, Y.C., 2017. Feasibility evaluation and optimization of a smart

manufacturing system based on 3D printing: A review. International Journal of

Intelligent Systems, 32(4), pp.394-413.

89) Edgar, T.F. and Pistikopoulos, E.N., 2018. Smart manufacturing and energy

systems. Computers & Chemical Engineering, 114, pp.130-144.

118

90) C. Fang, X. Liu, P. M. Pardalos, and J. Pei, “Optimization for a three-stage production

system in the Internet of Things: procurement, production and product recovery, and

acquisition,” Int. J. Adv. Manuf. Technol., vol. 83, no. 5–8, pp. 689–710, 2016.

91) K. Kang, T. Qu, D. X. Nie, T. Zhang, Z. Z. Wang, and G. Q. Huang, “Production system

multi-stage synchronization based on collaborative optimization under the Internet-of-

Things environment,” in Networking, Sensing, and Control (ICNSC), 2016 IEEE 13th

International Conference on, 2016, pp. 1–6.

92) Y. Zhang and F. Tao, Optimization of Manufacturing Systems Using the Internet of

Things. Academic Press, 2016.

93) P. Ghashghaee, “Smart manufacturing: role of Internet of Things in process

optimization,” 2016.

94) X. Liu, J. Pei, L. Liu, H. Cheng, M. Zhou, and P. M. Pardalos, Optimization and

Management in Manufacturing Engineering: Resource Collaborative Optimization and

Management Through the Internet of Things, vol. 126. Springer, 2017.

95) X.-S. Yang, S. Deb, and S. Fong, “Accelerated particle swarm optimization and support

vector machine for business optimization and applications,” in International Conference

on Networked Digital Technologies, 2011, pp. 53–66.

96) Chen K (2012) Procurement strategy and coordination mechanism of the supply chain

with one manufacturer and multiple suppliers. Int J Prod Econ 138(1):125–135

97) Mukhopadhyay SK, Ma H (2009) Joint procurement and production decisions in

remanufacturing under quality and demand uncertainty. Int J Prod Econ 120(1):5–17

98) Fu Q, Lee CY, Teo CP (2010) Procurement management using option contracts: random

spot price and the portfolio effect. IIE Trans 43(11):793–811

99) Xu H (2010) Managing production and procurement through option contracts in supply

chains with random yield. Int J Prod Econ 126(2):306–131

100) Kim SH, Netessine S (2013) Collaborative cost reduction and component procurement

under information asymmetry. Manag Sci 59(1):189–206

101) Hu F, Lim CC, Lu Z (2014) Optimal production and procurement decisions in a supply

chain with an option contract and partial backordering under uncertainties. Appl Math

Comput 232(1): 1225–1234

102) Galbreth MR, Blackburn JD (2006) Optimal acquisition and sorting policies for

remanufacturing. Prod Oper Manag 15(3):384–392

103) Teunter RH, Flapper SDP (2011) Optimal core acquisition and remanufacturing policies

under uncertain core quality fractions. Eur J Oper Res 210(2):241–248

104) Zhou SX, Yu Y (2011) Optimal product acquisition, pricing, and inventory management

for systems with remanufacturing. Oper Res 59(2):514–521

105) Zeng AZ (2013) Coordination mechanisms for a three-stage reverse supply chain to

increase profitable returns. Nav Res Logist 60(1): 32–45

119

106) Konstantaras I, Skouri K (2010) Lot sizing for a single product recovery system with

variable setup numbers. Eur J Oper Res 203(2):326–335

107) Kim T, Goyal SK (2011) Determination of the optimal production policy and product

recovery policy: the impacts of sales margin of recovered product. Int J Prod Res

49(9):2535–2550

108) Kumar M, Husian M, Upreti N, Gupta D (2010) Genetic algorithm: review and

application. Int J Inform Tech Knowl Manag 2(2):451– 454

109) Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci

344:243–278

110) Suman B, Kumar P (2006) A survey of simulated annealing as a tool for single and

multiobjective optimization. J Oper Res Soc 57: 1143–1160

111) Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part

II: hybridization, combinatorial, multicriteria and constrained optimization, and

indicative applications. Nat Comput 7(1):109–124

112) McKay, K.N. and Wiers, V.C., 2003. Integrated decision support for planning,

scheduling, and dispatching tasks in a focused factory. Computers in Industry, 50(1),

pp.5-14.

113) Wan, J., Chen, B., Wang, S., Xia, M., Li, D. and Liu, C., 2018. Fog computing for

energy-aware load balancing and scheduling in smart factory. IEEE Transactions on

Industrial Informatics, 14(10), pp.4548-4556.

114) Yin, L., Luo, J. and Luo, H., 2018. Tasks scheduling and resource allocation in fog

computing based on containers for smart manufacturing. IEEE Transactions on Industrial

Informatics, 14(10), pp.4712-4721.

115) Kang, Y.S., Park, I.H. and Youm, S., 2016. Performance prediction of a MongoDB-based

traceability system in smart factory supply chains. Sensors, 16(12), p.2126.

116) Wu, D., Jennings, C., Terpenny, J., Gao, R.X. and Kumara, S., 2017. A comparative

study on machine learning algorithms for smart manufacturing: tool wear prediction

using random forests. Journal of Manufacturing Science and Engineering, 139(7),

p.071018.

117) Yan, J., Meng, Y., Lu, L. and Li, L., 2017. Industrial big data in an industry 4.0

environment: Challenges, schemes, and applications for predictive maintenance. IEEE

Access, 5, pp.23484-23491.

118) Chiu, Y.C., Cheng, F.T. and Huang, H.C., 2017. Developing a factory-wide intelligent

predictive maintenance system based on Industry 4.0. Journal of the Chinese Institute of

Engineers, 40(7), pp.562-571.

119) Wang, J., Zhang, L., Duan, L. and Gao, R.X., 2017. A new paradigm of cloud-based

predictive maintenance for intelligent manufacturing. Journal of Intelligent

Manufacturing, 28(5), pp.1125-1137.

120) Aversa, R., Petrescu, R.V., Petrescu, F.I. and Apicella, A., 2016. Smart-factory:

Optimization and process control of composite centrifuged pipes. American Journal of

120

Applied Sciences, 13(11), pp.1330-1341.

121) Qian, F., Zhong, W. and Du, W., 2017. Fundamental theories and key technologies for

smart and optimal manufacturing in the process industry. Engineering, 3(2), pp.154-160.

122) Qian, F., Zhong, W., Du, W., Wang, H., Yan, X., Lv, Z., Jiang, Q., Chen, X., Song, B.,

Ma, Y. and Shi, H., 2017. Smart and optimal manufacturing: The key for the

transformation and development of the process industry. Engineering, 3(2), p.151.

123) Jang, H.S., 2019, May. A Study on Optimal Automation Level of the Smart Factory for

Competitive Display Manufacturing. In 2019 년 한국산업경영시스템학회

춘계학술대회 (pp. 191-193).

124) Gjeldum, N., Mladineo, M., Crnjac, M., Veza, I. and Aljinovic, A., 2018. Performance

analysis of the RFID system for optimal design of the intelligent assembly line in the

learning factory. Procedia Manufacturing, 23, pp.63-68.

125) Reinfurt, L., Falkenthal, M., Breitenbücher, U. and Leymann, F., 2017. Applying IoT

Patterns to Smart Factory Systems. Advanced Summer School on Service Oriented

Computing, Summer SOC.

126) Zawadzki, P. and Żywicki, K., 2016. Smart product design and production control for

effective mass customization in the Industry 4.0 concept. Management and Production

Engineering Review, 7(3), pp.105-112.

127) Prinz, C., Morlock, F., Freith, S., Kreggenfeld, N., Kreimeier, D. and Kuhlenkötter, B.,

2016. Learning factory modules for smart factories in industrie 4.0. Procedia CiRp, 54,

pp.113-118.

128) Zheng, P., Sang, Z., Zhong, R.Y., Liu, Y., Liu, C., Mubarok, K., Yu, S. and Xu, X., 2018.

Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and

future perspectives. Frontiers of Mechanical Engineering, 13(2), pp.137-150.

129) McCulloch, W.; Walter, P. A Logical Calculus of Ideas Immanent in Nervous Activity.

Bull. Math. Biophys. 1943, 5, 115–133.

130) Minsky, M.; Papert, S. Perceptrons: An Introduction to Computational Geometry; MIT

Press: Cambridge, MA, USA, 1969.

131) Artificial Neural Networks as Models of Neural Information Processing|Frontiers

Research Topic. Available online: https://www.frontiersin.org/research-

topics/4817/artificial-neural-networks-as-models-of-neural-information-processing

(accessed on 30 March 2018).

132) Artificial Neuron Output. Available online:

https://en.wikipedia.org/wiki/Artificial_neuron (accessed on 4 May 2018).

133) Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE

International Conference on Neural Networks, Perth, Western Australia, 27 November–1

December 1995; pp. 1942–1948.

134) Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1,

33–57.

121

135) Jules, G. and Saadat, M., 2016. Agent cooperation mechanism for decentralized

manufacturing scheduling. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 47(12), pp.3351-3362.

136) Malik, S., Ahmad, S., Ullah, I., Park, D.H. and Kim, D., 2019. An Adaptive Emergency

First Intelligent Scheduling Algorithm for Efficient Task Management and Scheduling in

Hybrid of Hard Real-Time and Soft Real-Time Embedded IoT

Systems. Sustainability, 11(8), p.2192.

137) Malik, S. and Kim, D., 2018. Prediction-learning algorithm for efficient energy

consumption in smart buildings based on particle regeneration and velocity boost in

particle swarm optimization neural networks. Energies, 11(5), p.1289.

138) Malik, S., Ahmad, S., Kim, B.W., Park, D.H. and Kim, D., 2019. Hybrid Inference Based

Scheduling Mechanism for Efficient Real Time Task and Resource Management in

Smart Cars for Safe Driving. Electronics, 8(3), p.344.

139) Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M. and Yin, B., 2017. Smart factory of

industry 4.0: Key technologies, application case, and challenges. IEEE Access, 6,

pp.6505-6519

140) http://bry-air.com/casestudies/dehumidication-candy-processing-drying-packaging/

http://bry-air.com/casestudies/dehumidication-candy-processing-drying-packaging/

	Abstract
	Chapter 1: Introduction
	Chapter 2: Related Work
	2.1 Internet of Things and Cyber Physical Systems in Smart Factory
	2.2 Scheduling Mechanisms .
	2.3 Prediction Mechanisms .
	2.4 Optimization Mechanisms
	2.5 Limitations of Existing Solutions .
	2.6 Algorithms for Learning to Scheduling
	2.6.1 Neural Networks (NNs)
	2.6.2 Particle Swarm Optimization (PSO)

	Chapter 3: Proposed Learning to Scheduling in Smart Factory
	3.1 Conceptual Learning to Scheduling Mechanism Based on Prediction

	Optimization
	3.2 Proposed Learning to Scheduling Mechanism using Hybrid ACM-FEF .
	3.2.1 Agent Cooperation Mechanism for Scheduling
	3.2.2 Fair Emergency First Task Scheduler

	3.3 Learning to Prediction for Scheduling in Smart Factory
	3.3.1 Prediction using ANNs
	3.3.2 Learning to Prediction using PSO and ANNs

	3.4 Learning to Optimization for Scheduling in Smart Factory .
	3.4.1 Optimization Objective Function for Machine Utilization
	3.4.2 Learning to Optimization using ANNs

	3.5 Control Mechanism for Scheduling in Smart Factory

	Chapter 4: Simulation Developments for Learning to Scheduling Experiments
	4.1 Environment Modeling .
	4.2 Input Task Notations .
	4.2.1. Periodic Tasks Set Notation
	4.2.2. Event-Driven Tasks Set Notation

	4.3 Simulation Implementation Environment .
	4.4 Scheduling Simulation Application and Visualization .

	Chapter 5: Simulation and Performance Analysis
	5.1 Simulation Environment for Task Management
	5.2 Simulations and Performance Analysis of Candy Box Factory .
	5.2.1 Input Tasks Modeling of Candy Box Factory
	5.2.2 Tasks Simulation and Performance Analysis for Candy Box Factory

	5.3 Simulation and Performance Analysis of Simulated Tasks Dataset
	5.3.1 Input Tasks Modeling for Data Simulations
	5.3.2 Performance Analysis and Comparisons

	5.4 Simulation and Performance Analysis of Machine Cluster Data.
	5.4.1 Input Dataset
	5.4.2 Performance Analysis and Comparisons

	Chapter 6: Conclusions
	References

<startpage>15
Abstract 1
Chapter 1: Introduction 4
Chapter 2: Related Work 10
 2.1 Internet of Things and Cyber Physical Systems in Smart Factory 11
 2.2 Scheduling Mechanisms . 18
 2.3 Prediction Mechanisms . 20
 2.4 Optimization Mechanisms 22
 2.5 Limitations of Existing Solutions . 25
 2.6 Algorithms for Learning to Scheduling 29
 2.6.1 Neural Networks (NNs) 29
 2.6.2 Particle Swarm Optimization (PSO) 30
Chapter 3: Proposed Learning to Scheduling in Smart Factory 32
 3.1 Conceptual Learning to Scheduling Mechanism Based on Prediction and
Optimization 32
 3.2 Proposed Learning to Scheduling Mechanism using Hybrid ACM-FEF . 36
 3.2.1 Agent Cooperation Mechanism for Scheduling 37
 3.2.2 Fair Emergency First Task Scheduler 38
 3.3 Learning to Prediction for Scheduling in Smart Factory 41
 3.3.1 Prediction using ANNs 42
 3.3.2 Learning to Prediction using PSO and ANNs 43
 3.4 Learning to Optimization for Scheduling in Smart Factory . 46
 3.4.1 Optimization Objective Function for Machine Utilization 47
 3.4.2 Learning to Optimization using ANNs 48
 3.5 Control Mechanism for Scheduling in Smart Factory 50
Chapter 4: Simulation Developments for Learning to Scheduling Experiments 54
 4.1 Environment Modeling . 54
 4.2 Input Task Notations . 57
 4.2.1. Periodic Tasks Set Notation 58
 4.2.2. Event-Driven Tasks Set Notation 59
 4.3 Simulation Implementation Environment . 60
 4.4 Scheduling Simulation Application and Visualization . 60
Chapter 5: Simulation and Performance Analysis 63
 5.1 Simulation Environment for Task Management 63
 5.2 Simulations and Performance Analysis of Candy Box Factory . 65
 5.2.1 Input Tasks Modeling of Candy Box Factory 69
 5.2.2 Tasks Simulation and Performance Analysis for Candy Box Factory 74
 5.3 Simulation and Performance Analysis of Simulated Tasks Dataset 90
 5.3.1 Input Tasks Modeling for Data Simulations 90
 5.3.2 Performance Analysis and Comparisons 92
 5.4 Simulation and Performance Analysis of Machine Cluster Data. 100
 5.4.1 Input Dataset 100
 5.4.2 Performance Analysis and Comparisons 101
Chapter 6: Conclusions 108
References 112
</body>

