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ABSTRACT 

 

Icariin (ICA) is found in all species of Epimedium herbs, has strong antioxidant activity, 

and is thought to exert anti-aging effects in vitro. We investigated whether ICA treatment 

protects oocytes against aging in vitro. Treatment with 5 µM ICA (ICA-5) significantly 

decreased reactive oxygen species activity and increased the level of glutathione and mRNA 

expression of antioxidant genes (SOD1, SOD2, PRDX5, and NFE2L2) during aging. In 

addition, ICA-5 prevented defects in spindle formation and chromosomal alignment, and 

increased mRNA expression of cytoplasmic maturation factor genes (BMP15, CCNB1, MOS, 

and GDF9). ICA-5 prevented apoptosis, increased mRNA expression of anti-apoptotic genes 

(BCL2L1 and BIRC5), and reduced mRNA expression of pro-apoptotic genes (BAK1 and 

CASP3). Although the maturation and cleavage rates were similar in all groups, the total cell 

number per blastocyst and the percentage of apoptotic cells at the blastocyst stage were 

higher and lower, respectively, in the control and ICA-5 groups than in the aging group. 

These results indicate that ICA protects porcine oocytes against damage during aging in vitro 

by preventing oxidative stress. 

 

Key words: in vitro aging, porcine, oocyte, icariin, antioxidant  



２ 

 

1. INTRODUCTION 

 

In vitro production technologies comprise three major consecutive steps: in vitro 

maturation (IVM) of immature oocytes, in vitro fertilization, and in vitro culture (IVC) of 

fertilized oocytes (Somfai & Hirao, 2017). The quality of in vitro matured oocytes 

determines the success of assisted reproductive technologies in mammalian species (Pawlak, 

Renska, Pers-Kamczyc, Warzych, & Lechniak, 2011; W. H. Wang, Abeydeera, Prather, & 

Day, 1998). In porcine in vitro production systems, immature oocytes are usually obtained 

from antral follicles measuring 2–8 mm in diameter of ovaries collected from a local 

slaughterhouse. Meiosis spontaneously resumes in immature mammalian oocytes following 

their removal from follicles and culture (Pincus & Enzmann, 1935). These oocytes undergo 

germinal vesicle breakdown after 16–20 hr and reach metaphase of the second meiotic 

division (MII) by 40 hr, and then meiosis arrests again until fertilization occurs (Motlik & 

Fulka, 1976; Wehrend & Meinecke, 2001). The nuclear and cytoplasmic events that occur 

during this process are collectively referred to as maturation, and are required for 

monospermic fertilization and early embryonic development (Wehrend & Meinecke, 2001). 

If fertilization does not occur within a specific period of time, the quality of unfertilized 

oocytes in the oviduct (in vivo aging) or culture (in vitro aging) will deteriorate over time (Y. 

L. Miao, Kikuchi, Sun, & Schatten, 2009). Aging oocytes often display abnormal spindle 

formation, disturbances in chromosome congression, mitochondrial alterations, and changes 

in gene and protein expression (Eichenlaub-Ritter, 2012). Consequently, many researchers 

have sought to develop methods that protect oocytes against aging in vitro. 

Several studies reported that postovulatory aging is highly correlated with various oocyte 

defects, including precocious release of cortical granules, zona pellucida hardening, spindle 

and chromosomal abnormalities, a reduced fertilization ability, and abnormal development of 
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embryos and fetuses (Diaz & Esponda, 2004a, 2004b; Goud, Goud, Laverge, De Sutter, & 

Dhont, 1999; Saito et al., 1993; Tarin et al., 1999). In addition, postovulatory aging is 

accompanied by diverse molecular, cellular, and biochemical changes, such as dysfunction of 

mitochondria, generation of reactive oxygen species (ROS), reduced maturation-promoting 

factor activities, decreased expression of the anti-apoptotic factor B-cell lymphoma 2 (BCL-

2), activation of caspase-3 (CASP3), and changes in epigenetic modifications (Y. L. Miao et 

al., 2009; H. Wang, Jo, Oh, & Kim, 2017). These aging-induced deleterious changes can 

reduce oocyte quality and thereby adversely affect fertilization and subsequent embryo 

development (Y. Miao et al., 2018). 

The flavonoid icariin (ICA) is present in all species of Epimedium herbs and is extracted 

from the stem and leaves of the traditional Chinese medicinal plant Epimedium brevicornum 

Maxim (Herba Epimedii; family Berberidacae) (X. A. Li, Ho, Chen, & Hsiao, 2016; Ye et al., 

2017). In general, the ICA content of Epimedium species varies from 0.003% to 1.55% based 

on reversed-phase high-performance liquid chromatography analysis, but can reach 3.69% in 

certain species (Wu, Lien, & Lien, 2003). ICA has a broad range of pharmacological and 

biological properties, including estrogenic activity, anti-inflammatory, antioxidant, and anti-

tumor effects, and cardioprotective and neuroprotective properties (W. Li, Wang, Chu, Cui, 

& Bian, 2017; Liang, Vuorela, Vuorela, & Hiltunen, 1997; Liu et al., 2011; Makarova et al., 

2007; T. Wang et al., 2007). ICA stimulates synthesis of nitric oxide synthase and increases 

nitric oxide production. These events correlate with activation of the PI3K/Akt and mitogen‐

activated protein kinase (MAPK)‐extracellular signal-regulated kinase (ERK) 

kinase/ERK1/2 pathways (Chung et al., 2008). 

This study investigated the antioxidant effects of various concentrations of ICA on 

porcine oocytes during aging in vitro. We analyzed the level of ROS, expression of 

antioxidant, maternal, and estrogen receptor genes, and spindle morphology in aging porcine 
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oocytes treated with or without ICA. In addition, we determined the developmental 

competence and quality of embryos derived through the parthenogenesis of these oocytes. 

Our results demonstrate that ICA protects porcine oocytes against damage during aging in 

vitro by preventing oxidative stress. These findings may be applicable to in vitro fertilization 

and help to protect oocytes against aging.   
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2. MATERIALS & METHODS 

 

2.1. Chemicals and reagents 

 

All chemicals and reagents were purchased from Sigma (St. Louis, MO, USA) unless 

stated otherwise. 

 

2.2. Aging and IVM of porcine oocytes 

 

Prepubertal porcine ovaries were collected from a local slaughterhouse and transported to 

the laboratory in saline supplemented with 75 μg/mL penicillin G and 50 μg/mL 

streptomycin sulfate within 2 hr at 30–33°C. Cumulus-oocyte complexes (COCs) were 

aspirated from follicles with a diameter of 2–8 mm using an 18-gauge needle and a 

disposable 10 mL syringe. COCs were washed three times in tissue culture medium (TCM)-

199–HEPES containing 0.1% (w/v) bovine serum albumin (BSA). Thereafter, COCs were 

matured in groups of 50 in 500 μL TCM‐199 (Gibco, Grand Island, NY, USA) containing 

Earle’s salts, 0.57 mM cysteine, 10 ng/mL epidermal growth factor, 0.5 μg/mL follicle-

stimulating hormone, 0.5 μg/mL luteinizing hormone, and 10% (v/v) porcine follicular fluid 

under mineral oil for 44 hr at 38.8°C in 5% CO2 in air. Oocyte aging was induced by 

culturing COCs for an additional 24 hr (total of 68 hr) in TCM‐199. 

 

2.3. Oocyte aging and ICA treatment 

 

Mature oocytes were covered with mineral oil and cultured in a 4‐well dish containing 

500 μL TCM‐199 at 38.8°C in a humidified atmosphere of 5% CO2 in air. After maturation, 

MII oocytes were transferred to TCM‐199 containing 0, 5, 50, and 500 μM ICA and cultured 
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for an additional 24 hr (total of 68 hr) as described above. After treatment, oocytes were 

collected and aging was assessed.  

 

2.4. PA and embryo culture 

 

Following maturation, cumulus cells were removed by pipetting in the presence of 

1 mg/mL hyaluronidase for 2–3 min. PA was induced by treating oocytes with porcine 

zygote medium‐5 containing 0.4% (w/v) BSA (IVC medium) and 5 μM Ca2+ ionomycin for 

5 min. After 3 hr of culture in IVC medium containing 7.5 μg/ml cytochalasin B, embryos 

were washed three times in the same medium and cultured for 7 days at 38.8°C in a 

humidified atmosphere of 5% CO2 and 95% air. Oocytes and embryos were washed in 

Dulbecco's phosphate‐buffered saline (DPBS) and either fixed in 3.7% (w/v) 

paraformaldehyde for 20 min and stored at 4°C, or snap‐frozen in liquid nitrogen and stored 

at -70°C, depending on the experiment.  

 

2.5. Measurement of intracellular ROS and GSH levels 

 

DCFHDA and CMF2HC were used to determine the intracellular levels of ROS and 

GSH, respectively, as previously described (H. W. Yang et al., 1998; You, Kim, Lim, & Lee, 

2010) with slight modifications. Briefly, cumulus cells were removed from COCs by 

pipetting in the presence of 0.1% (w/v) hyaluronidase. Denuded oocytes were incubated in 

DPBS containing 50 μM DCFHDA or 100 μM CMF2HC in the dark for 20 min at 38.8°C. 

Thereafter, oocytes were washed more than five times with DPBS containing 0.1% (w/v) 

BSA to completely remove excess dye and immediately analyzed by epifluorescence 

microscopy (Olympus, Tokyo, Japan). The ROS level was measured using excitation and 
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emission wavelengths of 450–490 nm and 515–565 nm, respectively. The excitation and 

emission wavelengths of CMF2HC are 371 and 464 nm, respectively. Grayscale images were 

acquired with a digital camera (Nikon, Tokyo, Japan) attached to the microscope, and mean 

grayscale values were calculated using ImageJ software (NIH, Bethesda, MD, USA). 

Background fluorescence values were subtracted from the final values before statistical 

analysis. The replicate was independently repeated 6–7 times, with 20–30 oocytes per 

experiment. 

 

2.6. Immunofluorescence 

 

Meiotic spindles and nuclei of oocytes were visualized after maturation. Cumulus cells 

were removed from porcine COCs matured for 44 hr (control) or an additional 24 hr (total of 

68 hr) (0 and 5 μM ICA), and then oocytes were fixed overnight at 4°C in 4.0% (w/v) 

paraformaldehyde prepared in phosphate-buffered saline (PBS). Fixed oocytes were 

incubated for 30 min at 38.8°C with 0.5% (v/v) Triton X-100. After blocking for 1 hr with 1% 

BSA (w/v) prepared in PBS (blocking solution I), oocytes were incubated overnight at 4°C 

with a fluorescein isothiocyanate-conjugated anti-α-tubulin antibody (diluted 1:200 in 

blocking solution I). Nuclei were stained with Hoechst 33342 (1 μg/mL) for 30 min. Finally, 

oocytes were washed three times with PBS containing 0.1% (w/v) BSA, mounted on glass 

slides, and observed under an inverted Olympus IX-71 microscope. To further investigate the 

effect of ICA on spindle organization, spindles without abnormalities were classified as 

normal, whereas those in which chromosomes failed to align at the metaphase plate were 

classified as abnormal (Lenie, Cortvrindt, Eichenlaub-Ritter, & Smitz, 2008). Each 

experiment was independently repeated three times, and at least 20 oocytes were examined 

per group. 
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2.7. Terminal deoxynucleotidyl transferase dUTP nick-end labeling and Hoechst 

staining 

 

At 7 days after PA, blastocysts were fixed overnight at 4°C with 4.0% (w/v) 

paraformaldehyde prepared in PBS, washed more than three times with PBS containing 0.1% 

BSA, and then incubated with 0.1% Triton X‐100 at 38.8°C for 30 min. Blastocysts were 

incubated with fluorescein‐conjugated dUTP and terminal deoxynucleotidyl transferase (In 

Situ Cell Death Detection Kit; Roche, Manheim, Germany) in the dark for 1 hr at 38.8°C. 

Mitotic and apoptotic cells were scored. Nuclei were stained with Hoechst 33342 (1 μg/mL) 

for 30 min, and embryos were washed with PBS containing 0.1% BSA. Blastocysts were 

mounted on glass slides and examined under an inverted Olympus IX‐71 fluorescence 

microscope. The experiment was independently repeated 3–4 times, and at least 10–20 

blastocysts were examined per group. 

 

2.8. mRNA extraction and complementary DNA synthesis 

 

mRNA was isolated from more than three biological replicates, with 30–40 oocytes per 

replicate, using a Dynabeads mRNA Direct Kit (Invitrogen, Carlsbad, CA, USA) according 

to the manufacturer's instructions. mRNA was collected in 10 µL elution buffer provided 

with the kit. Eluted RNA was reverse‐transcribed into complementary DNA using an oligo 

(dT) 20 primer and SuperScript II reverse transcriptase (Invitrogen) according to the 

manufacturer's instructions. 

 

2.9. Real-time RT-PCR 

 

The protocol used was basically the same as that described previously (Lee, Sun, Choi, 
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Uhm, & Kim, 2012). Real‐time RT‐PCR was performed using the primer sets listed in Table 

1 and a StepOnePlus Real‐time PCR System (Applied Biosystems, Warrington, UK) with a 

final reaction volume of 20 µL containing SYBR Green PCR Master Mix (Applied 

Biosystems). The PCR conditions were as follows: 10 min at 95°C, followed by 39 cycles of 

15 s at 95°C and 60 s at 54°C or 60°C. Samples were then cooled to 12°C. Relative gene 

expression levels were analyzed by the 2-ΔΔCt method (Livak & Schmittgen, 2001) after 

normalization against the expression level of a housekeeping gene (glyceraldehyde‐3‐

phosphate dehydrogenase [GAPDH] or β‐actin). The experiment was independently repeated 

five times. 

 

 

Table 1. Primers used for real-time RT-PCR 

Gene 
GenBank accession 

no. 
Primer sequence* 

Annealing 

temperature 

(°C) 

Product 

size 

(bp) 

GAPDH AF017079.1 
F: GATGACATCAAGAAGGTGGT 

R: CACTGTTAAAGTCAGAGGACAC 
54 100 

GDF9 XQ687750.1 
F: GTCTCCAACAAGAGAGAGATTC 

R: CTGCCAGAAGAGTCATGTTAC 
54 109 

BMP15 NM_001005155.2 
F: GACACTGCCTTCTTGTTACTC 

R: CTCTTGCCATAAACTCTTCC 
54 94 

CCNB1 NM_001170768.1 
F: ATACCTACTGGGTCGTGAAG 

R: GGTCTCCTGTAGTAACCTGAAT 
54 97 

MOS NM_001113219.1 
F: ACCTTACACCAGGTCATCTAC 

R: GGAATACTTGAGACACTTCTCC 
54 105 
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SOD1 GU944822.1 
F: GTGTTAGTAACGGGAACCAT 

R: GGATTCAGGATTGAAGTGAG 
54 120 

SOD2 NM_214127.2 
F: AGACCTGATTACCTGAAAGC 

R: CTTGATGTACTCGGTGTGAG 
54 110 

PRDX5 AF110735.2 
F: GGCATGTCTGAGTGTTAATG 

R: ATCTGTCTCCTTCCCAAAG 
54 118 

NFE2L2 Gu991000.1 
F: CTATGGAGACACACTGCTTG 

R: ACAGGCTGTGTTTTAGGACT 
54 99 

ESR1 NM_214220.1 
F: TGGAGTGTACACGTTTCTGT 

R: GTGTCTGTGATCTTGTCCAG 
54 87 

ESR2 NM_001001533.1 
F: AACTCTCCTGTCTCCTACAACT 

R: GGCAGCTTTCTACATAGGAG 
54 91 

BCL2L1 NM_214285.1 
F: GGTTGACTTTCTCTCCTACAAG 

R: CTCAGTTCTGTTCTCTTCCAC 
54 118 

BIRC5 NM_214141.1 
F: CTTCTGCTTCAAAGAGCTG 

R: GGCTCTTTCTTTGTCCAGT 
54 154 

FAS AJ001202.1 
F: GAGAGACAGAGGAAGACGAG 

R: CTGTTCAGCTGTATCTTTGG 
54 194 

BAK1 AJ001204 
F: CTAGAACCTAGCAGCACCAT 

R: CGATCTTGGTGAAGTACTC 
60 151 

CASP3 NM_214131 
F: GACTGCTGTAGAACTCTAACTGG 

R: ATGTCATCTTCAGTCCCACT 
54 110 

*F, forward; R, reverse. 
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2.10. Western blot analysis 

 

The protocol was basically the same as that described previously (Lee et al., 2012). In 

brief, oocytes (40 per sample) were solubilized in 20 µL of 1× sodium dodecyl sulfate (SDS) 

sample buffer (62.5 mM Tris‐HCl, pH 6.8, containing 2% (w/v) SDS, 10% (v/v) glycerol, 

50 µM dithiothreitol, and 0.01% (w/v) bromophenol blue or phenol red) and heated for 5 min 

at 95°C. Proteins were resolved on 5–12% Tris SDS-polyacrylamide gel electrophoresis gels 

for 1.5 hr at 80–100 V. Samples were then transferred to Hybond‐ECL nitrocellulose 

membranes (Amersham, Buckinghamshire, UK) at 300 mA for 2 hr in transfer buffer 

(25 mM Tris, pH 8.5, containing 200 mM glycine and 20% [v/v] methanol). After blocking 

with 5% (w/v) nonfat milk prepared in PBS for 1 hr, the membranes were incubated for at 

least 2 hr with an anti‐p44/42 MAPK or anti‐phospho‐p44/42 MAPK antibody diluted 1:500 

in blocking solution (1× Tris‐buffered saline, pH 7.5, containing 0.1% [v/v] Tween‐20% and 

5% [w/v] nonfat milk). Thereafter, the membranes were washed three times in TBST 

(20 mM Tris‐HCl, pH 7.5, containing 250 mM NaCl and 0.1% [v/v] Tween‐20) and 

incubated for 1 hr with anti-rabbit IgG‐horseradish peroxidase diluted 1:2,000 in blocking 

solution. After three washes with TBST, immunoreactive protein bands were visualized to X-

ray films using chemiluminescent luminol reagent (Invitrogen) in the dark room. The 

experiment was independently repeated three times. 

 

2.11. Statistical analysis 

 

The general linear model procedure within the Statistical Analysis System (SAS User's 

Guide, 1985, Statistical Analysis System Inc., Cary, NC) was used to analyze data from all 

experiments. The paired Student's t test was used to compare relative gene expression. 

p < 0.05 was considered significant. 
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3. RESULTS 

 

3.1. ICA enhances the in vitro embryo development of aging porcine oocytes 

 

To determine the optimal concentration of ICA, porcine oocytes were matured for 44 

hr (control) or for an additional 24 hr (total of 68 hr) in the presence of 0, 5, 50, and 500 μM 

ICA (aging, ICA-5, ICA-50, and ICA-500, respectively). The percentage of oocytes that 

reached MII did not differ between the groups. Following parthenogenetic activation (PA), 

the percentage of oocytes that underwent cleavage and reached the 2–4‐cell stage did not 

differ between the aging, ICA-5, ICA-50, ICA-500, and control groups (control, 72.8 ± 5.6%; 

aging, 80.2 ± 5.0%; ICA-5, 86.0 ± 4.7%; ICA-50, 77.7 ± 3.7%; and ICA-500, 81.6 ± 4.1%; 

Table 1). The percentage of cleaved oocytes that reached the blastocyst stage on Day 7 was 

significantly higher (p < 0.05) in the control and ICA-treatde groups than in the aging group, 

and was similar in the ICA-5, ICA-50, and ICA-500 groups (control, 45.8 ± 3.2%; aging, 

22.9 ± 1.9%; ICA-5, 34.8 ± 2.3%; ICA-50, 36.8 ± 4.8%; and ICA-500, 37.8 ± 2.3%; Table 1). 

Therefore, the control, aging, and ICA-5 groups were compared in subsequent experiments. 

The replicate was independently repeated 7 times, with 50–60 oocytes per experiment. All 

data are presented as the means ± SEM. 

 

 

Table 2. Effect of ICA treatment during aging of porcine oocytes in vitro on subsequent embryo 

development 

Treatment 

group 

ICA 

concentration 

No. of 

germinal 

No. (%) of 

Surviving 

No. (%) of 

cleaved 

No. (%) of 

Blastocysts 
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(μM) vesicle 

oocytes

Oocytes1 oocytes on Day 22 on Day 73 

Control 0 56 51 (91.4 ± 1.6) 37 (72.8 ± 5.6) 17 (45.8 ± 3.2)c 

Aging 0 56 51 (89.8 ± 1.6) 41 (80.2 ± 5.0) 9 (22.9 ± 1.9)a 

ICA-5 5 56 52 (92.0 ± 0.8) 45 (86.0 ± 4.7) 16 (34.8 ± 2.3)bc 

ICA-50 50 59 54 (91.5 ± 2.9) 42 (77.7 ± 3.7) 15 (36.8 ± 4.8)b 

ICA-500 500 59 53 (90.5 ± 1.7) 43 (81.6 ± 4.1) 16 (37.8 ± 2.3)b 

1The percentage of oocytes that reached MII. 2The percentage of oocytes that underwent cleavage. 

3The percentage of cleaved oocytes that reached the blastocyst stage on Day 7. Values are means ± 

SEM of independent experiments. Values with different superscript letters are significantly different 

(a-cp < 0.05). ICA, icariin.  

 

  



１４ 

 

3.2. ICA reduces the level of ROS in aging porcine oocytes in vitro 

 

The effects of ICA on the levels of ROS and glutathione (GSH) were analyzed by 

staining oocytes with dichlorohydrofluorescein diacetate (DCFHDA) and CellTracker™ 

Blue 4‐chloromethyl‐6,8‐difluoro‐7‐hydroxycoumarin (CMF2HC), respectively (Figure 1A). 

The staining intensity of ROS was significantly lower (p < 0.05) in the ICA-5 group than in 

the aging group, but did not differ between the control and aging groups (control, 1.0 ± 0.0 

pixels/oocyte; aging, 1.0 ± 0.0 pixels/oocyte; and ICA-5, 0.8 ± 0.1 pixels/oocyte; Figure 1B). 

The staining intensity of GSH was significantly higher (p < 0.05) in the control and ICA-5 

groups than in the aging group (control, 1.0 ± 0.0 pixels/oocyte; aging, 0.8 ± 0.1 

pixels/oocyte; and ICA-5, 1.1 ± 0.1 pixels/oocyte; Figure 1C). 

Expression of the antioxidant genes superoxide dismutase 1 (SOD1), superoxide 

dismutase 2 (SOD2), peroxiredoxin 5 (PRDX5), and nuclear factor erythroid 2‐like 2 

(NFE2L2) was analyzed by real‐time reverse transcription polymerase chain reaction (RT‐

PCR; Figure 1D). mRNA expression of SOD1 and PRDX5 was significantly higher 

(p < 0.05) in the ICA-5 group than in the aging group, and was similar in the control and 

aging groups. mRNA expression of SOD2 was significantly higher (p < 0.05) in the ICA-5 

group than in the aging group, but similar to control. mRNA expression of NFE2L2 was 

significantly higher (p < 0.05) in the ICA-5 group than in the aging and control groups. All 

data are presented as the means ± SEM. 
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Fig. 1. Antioxidant effect of ICA during aging of porcine oocytes in vitro. A: 

Epifluorescence images of oocytes stained with DCHFDA (green) and CellTrackerTM Blue 

CMF2HC (blue). a and a’: control group; b and b’: aging group; and c and c’: ICA-5 group. a, 

b, and c: ROS staining; a’, b’, and c’: GSH staining. B: Fluorescence intensities of 

intracellular ROS staining. C: Fluorescence intensities of intracellular GSH staining. D: 

Relative expression of the antioxidant genes SOD1, SOD2, PRDX5, and NFE2L2. Data were 

derived from 3–4 independent replicates per group. Data are the means ± SEM (a–cp < 0.05). 

Scale bar = 120 μm. 
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3.3. ICA prevents aberrant spindle organization and chromosome misalignment in 

aging porcine oocytes in vitro 

 

The percentage of oocytes with normal meiotic spindles was significantly higher (p < 0.05) 

in the ICA-5 group than in the aging group, and was similar in the control and ICA-5 groups 

(control, 80.3 ± 0.8%; aging, 72.6 ± 2.1%; and ICA-5, 86.7 ± 4.5%; Figure 2). All data are 

presented as the means ± SEM. 

 

 

 

Fig. 2. Effect of ICA on meiotic spindle morphology in porcine oocytes during aging in 

vitro. A: Normal and abnormal chromosome alignment and meiotic spindle formation in 

oocytes. B: Percentage of oocytes in which the morphologies of chromosomes and the 
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meiotic spindle were normal. Data were derived from three independent replicates per group. 

Data are the means ± SEM (a–bp < 0.05). Scale bar = 50 μm. 
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3.4. ICA increases expression of cytoplasmic maturation markers in aging porcine 

oocytes in vitro 

 

To investigate the effect of ICA on cytoplasmic maturation of aging oocytes, we 

examined maternal gene expression and MAPK activity (Figure 3). Expression of the 

cytoplasmic maturation marker genes bone morphogenetic protein 15 (BMP15), cyclin B1 

(CCNB1), MOS proto‐oncogene, serine/threonine kinase (MOS), and growth differentiation 

factor‐9 (GDF9) was analyzed by real‐time RT‐PCR (Figure 3A). mRNA expression of 

CCNB1, MOS, and GDF9 was significantly higher (p < 0.05) and lower (p < 0.05) in the 

ICA-5 group than in the aging and control groups, respectively. mRNA expression of BMP15 

was significantly higher (p < 0.05) in the ICA-5 group than in the aging and control groups. 

Western blotting revealed that phosphorylated p44/42 MAPK (phospho‐p44/42 MAPK), the 

active form of this kinase, migrated as a doublet in lysates of matured and aged porcine 

oocytes. The relative ratio of phospho‐p44/42 MAPK to total p44/42 MAPK did not 

significantly differ (p < 0.05) between the groups (control, 1.0 ± 0.0; aging, 0.9 ± 0.1; and 

ICA-5, 1.0 ± 0.1; Figure 3B). All data are presented as the means ± SEM. 
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Fig. 3. Effect of ICA treatment during aging of porcine oocytes in vitro on expression of 

maternal genes and MAPK activity. A: Maternal gene expression. B: MAPK activity. Data 

were normalized against the levels in the control group and were derived from three or five 

independent replicates per group. Data are the means ± SEM (a–cp < 0.05). 



２０ 

 

3.5. ICA increases expression of estrogen receptor genes in aging porcine oocytes in 

vitro 

 

The effects of ICA on mRNA expression of estrogen receptor 1 (ESR1) and 2 (ESR2) 

were analyzed by real‐time RT‐PCR to determine if ICA activates these receptors. mRNA 

expression of ESR1 was significantly higher (p < 0.05) and lower (p < 0.05) in the ICA-5 

group than in the aging and control groups, respectively (Figure 4). mRNA expression of 

ESR2 was significantly higher (p < 0.05) in the ICA-5 group than in the control and aging 

groups (Figure 4). All data are presented as the means ± SEM. 

 

 

 



２１ 

 

Fig. 4. Effect of ICA treatment during aging of porcine oocytes in vitro on expression of 

estrogen receptor genes. Data were derived from five independent replicates per group. 

Data are the means ± SEM (a–cp < 0.05). 
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3.6. ICA changes expression of apoptosis-related genes in aging porcine oocytes in vitro 

 

Expression of the apoptosis-related genes BCL2-like 1 (BCL2L1), baculoviral IAP 

repeat-containing 5 (BIRC5), Fas cell surface death receptor (FAS), BCL2 antagonist/killer 1 

(BAK1), and CASP3 was analyzed by real‐time RT‐PCR (Figure 5). mRNA expression of 

BCL2L1 was significantly higher (p < 0.05) in the ICA-5 group than in the control and aging 

groups. mRNA expression of BIRC5 was significantly higher (p < 0.05) in the ICA-5 group 

than in the aging group, and was similar in the control and ICA-5 groups. mRNA expression 

of FAS was significantly higher (p < 0.05) in the aging group than in the control group, was 

similar in the control and ICA-5 groups, and did not significantly differ between the aging 

and ICA-5 groups. mRNA expression of BAK1 and CASP3 was significantly higher (p < 0.05) 

and lower (p < 0.05) in the ICA-5 group than in the control and aging groups, respectively. 

All data are presented as the means ± SEM. 
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Fig. 5. Effect of ICA treatment during aging of porcine oocytes in vitro on expression of 

apoptosis-related genes. Data were derived from five independent replicates per group. 

Data are the means ± SEM (a–cp < 0.05). 
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3.7. ICA improves the developmental capacity and quality of embryos derived from 

aging porcine oocytes in vitro 

 

To investigate whether ICA treatment during IVM of oocytes influences subsequent 

embryo development and quality, oocytes were matured in the presence or absence of 5 μM 

ICA and then parthenogenetically activated. The total number of cells per blastocyst was 

significantly lower (p < 0.05) in the ICA-5 group than in the control group. However, the 

aging group was significantly lower (p < 0.05) than the ICA-5 group (control, 90.4 ± 1.4; 

aging, 60.9 ± 3.3; and ICA-5, 73.8 ± 4.2; Figure 6B). Genomic DNA fragmentation was 

assessed by terminal deoxynucleotidyl transferase dUTP nick‐end labeling to detect 

apoptotic cells in blastocysts. The percentage of apoptotic cells was significantly higher 

(p < 0.05) in the aging group than in the control and ICA-5 groups (control, 1.8 ± 0.6%; 

aging, 6.0 ± 1.6%; and ICA-5, 2.3 ± 0.7%; Figure 6C). All data are presented as the means ± 

SEM. 
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Fig. 6. Effect of ICA treatment during aging of porcine oocytes in vitro on subsequent 

embryo quality. A: Blastocyst staining. B: Total cell number per blastocyst. C: Percentage 

of apoptotic cells in blastocysts. Data were derived from 3–4 independent replicates per 

group. Data are the means ± SEM (a–cp < 0.05). Scale bar = 50 μm. 
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4. DISSCUSTION 

 

The mechanism by which oocytes are protected from aging in vitro is unknown. This study 

investigated the effects of the antioxidant ICA on aging of porcine oocytes in vitro. Some 

studies have conducted parthenogenesis instead of IVF or intracytoplasmic sperm injection 

(ICSI). Before implantation, parthenogenesis can show the outcome of IVF or ICSI roughly. 

It is not exactly the same, but you can see the approximate pattern. Treatment with 5 µM 

ICA during 24 hr of aging significantly decreased than the aging group the level of ROS and 

expression of pro-apoptotic genes (BAK1 and CASP3), and significantly increased 

expression of antioxidant genes (SOD1, SOD2, PRDX5, and NFE2L2), expression of 

maternal genes (BMP15, CCNB1, MOS, and GDF9), expression of anti-apoptotic genes 

(BCL2L1 and BIRC5), the level of GSH, and the percentage of oocytes with normal spindles. 

In addition, embryos derived from these ICA‐treated oocytes exhibited an improved 

developmental capacity and quality. This study demonstrates that ICA protects oocytes 

against damage during aging in vitro. 

Others have shown that oxidative stress arises in postovulatory aging oocytes, in which the 

level of ROS is increased and antioxidant protection is concomitantly decreased (Dai et al., 

2017; Kim et al., 2019; Y. Miao et al., 2018). Although intracellular GSH plays an important 

role in protecting oocytes against oxidative damage, its level gradually decreases during 

aging (Boerjan & de Boer, 1990). The level of ROS was significantly lower in the ICA-5 

group than in the control and aging groups, but was similar in the control and aging groups 

(Figure 1B). Moreover, the level of GSH was significantly higher in the ICA-5 and control 

groups than in the aging group (Figure 1C). These results suggest that ICA decreases the 

level of ROS and prevents decrease in GSH level during in vitro aging of oocytes. In 



２７ 

 

addition, in addition, previous studies have shown that icariin inhibits ROS production in 

lipopolysaccharide‑treated microglia (Zeng, Fu, Liu, & Wang, 2010). Expression of 

antioxidant genes (SOD1, SOD2, PRDX5, and NFE2L2) was higher in the ICA‐5 group than 

in the aging group, expression of SOD1 and PRDX5 was similar in the control and aging 

groups, expression of SOD2 was similar in the control and ICA‐5 groups, and expression of 

NFE2L2 was higher in the ICA-5 group than in the control group (Figure 1D). SOD is an 

antioxidant enzyme that plays an important role in the defense system against ROS and is an 

important ROS scavenger. SOD1 converts two superoxide anions, which are normal products 

of cellular respiration, into hydrogen peroxide and oxygen [2O2
- + 2H+→H2O2 + O2] 

(McCord & Fridovich, 1969). SOD2 reduces the superoxide anion produced as a byproduct 

of oxidative phosphorylation to generate hydrogen peroxide and oxygen (Y. Li et al., 1995; 

Margalit et al., 2015). PRDX5 protects cells against ROS by prioritizing the elimination of 

hydrogen peroxide and alkyl hydroperoxides (Dubuisson et al., 2004; Knoops, Goemaere, 

Van der Eecken, & Declercq, 2011; Rhee, Woo, Kil, & Bae, 2012). Other studies reported 

that PRDX5 is only found in specific cellular organelles, namely, peroxisomes and 

mitochondria, and plays a role in protecting them against neurological damage caused by 

excessive ROS (Banmeyer et al., 2004; Kropotov, Usmanova, Serikov, Zhivotovsky, & 

Tomilin, 2007; Park et al., 2016; Sun et al., 2010). NFE2L2 transactivates genes containing 

antioxidant response elements and coordinates expression of cytoprotective genes to protect 

cells against oxidative stress (Itoh, Ye, Matsumiya, Tanji, & Ozaki, 2015). These results 

suggest that the expression of antioxidant genes was decreased in the aging group and that 

ICA protects oocyte against ROS by preventing reduction of the expression of antioxidant 

genes as shown in ICA-5 group. 

Chromosome condensation is the most noticeable event in meiotic maturation and is 

important for the formation and proper separation of chromosomes (Jelinkova & Kubelka, 
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2006). Postovulatory oocyte aging changes the levels of spindle‐associated proteins and 

induces acetylation of α‐tubulin (Cecconi et al., 2014). The percentage of oocytes with 

normal spindles was lower in the aging group than in the control group, but was similar in 

the ICA-5 and control groups (Figure 2B). Our results demonstrate that treatment with ICA 

during aging of oocytes in vitro protects chromosomes and spindles in MII. 

Expression of the maternal genes BMP15, CCNB1, MOS, and GDF9 was higher in the ICA-

5 group than in the aging group, expression of BMP15 was higher in the ICA-5 group than in 

the control group, and expression of CCNB1, MOS, and GDF9 was lower in the ICA-5 group 

than in the control group (Figure 3A). BMP15 prevents apoptosis of cumulus cells (Hussein, 

Froiland, Amato, Thompson, & Gilchrist, 2005). CCNB1 forms a complex with cyclin‐

dependent kinase 1 to allow cell cycle transition from G2 to M phase (Robert, Hue, McGraw, 

Gagne, & Sirard, 2002; Zhang et al., 2011). MOS plays a vital role in oocyte maturation by 

participating in MII arrest and asymmetric meiotic division (Evangelou et al., 2002). GDF9 

has multifunctional roles in communication of oocyte granulosa cells and regulation of the 

differentiation and function of follicular cells (Elvin, Clark, Wang, Wolfman, & Matzuk, 

1999). BMP15 and GDF9 interact and thereby play vital roles in follicular development, 

atresia, ovulation, formation of fertilized eggs, and maintenance of reproduction (Glister, 

Kemp, & Knight, 2004; Su et al., 2004; Yan et al., 2001; Yoon et al., 2015). These results 

suggest that the expression of maternal genes was decreased in the aging group and that ICA 

prevents deterioration of oocyte quality by preventing reduction of the expression of 

maternal genes as shown in ICA-5 group. 

In the present study, we determined the expression levels of ESR1 and ESR2 to investigate 

whether ICA enters oocytes via estrogen receptors. Expression of both genes was 

significantly higher in the ICA-5 group than in the aging group, expression of ESR1 was 



２９ 

 

lower in the ICA-5 group than in the control group, and expression of ESR2 was higher in 

the ICA-5 group than in the control group (Figure 4). These results suggest that the 

expression of receptor genes was decreased in the aging group and that ICA prevents 

decrease of receptor genes against in vitro aging of oocytes as shown in ICA-5 group. In 

addition, ICA might act via estrogen receptors or in cooperation with estrogen receptor 

signaling (Song, Zhao, Zhang, Li, & Zhou, 2013). The two types of estrogen receptor are 

ERα and ERβ, which are encoded by ESR1 and ESR2, respectively (Kim et al., 2019). ERα 

and ERβ antagonize the actions of one another in many tissues (Khalid & Krum, 2016). 

Variation in pre-mRNA splicing and expression of ESR1 alters the function of ERα (Ghali et 

al., 2018). ERβ is homologous to ERα, and these two proteins have similar, but not identical, 

tissue distributions (Mosselman, Polman, & Dijkema, 1996). Our results demonstrate that 

ICA enters porcine oocytes through estrogen receptors. 

Expression of the anti-apoptotic genes BCL2L1 and BIRC5 was higher in the ICA-5 group 

than in the aging group (Figure 5). Expression of the pro-apoptotic gene FAS was similar in 

the ICA-5 and aging groups, while expression of the pro-apoptotic gene BAK1 was lower in 

the ICA-5 group than in the aging group (Figure 5). Apoptosis occurs during development 

and aging, and is also a homeostatic mechanism to maintain cell populations in tissues 

(Elmore, 2007). In addition, apoptosis functions as a defense mechanism when cells are 

damaged by disease or noxious agents or in immune reactions (Norbury & Hickson, 2001). 

Apoptosis is a form of programmed cell death that kills individual cells in an organism while 

preserving the overall structure of the surrounding tissue (Parrish, Freel, & Kornbluth, 2013). 

Excessive apoptosis can affect blastocyst maturation, induce death of an early embryo, and 

cause fetal deformities (Brison & Schultz, 1997). Several genes control apoptosis. As a 

dominant inhibitor of apoptosis, BCL2L1 is a central regulator of programmed cell death and 

an important anti-cancer drug target (Oltersdorf et al., 2005). BIRC5 is a member of the 
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inhibitors of apoptosis family and is involved in regulation of cell division and inhibition of 

apoptosis (Contis, Lykoudis, Goula, Karandrea, & Kondi-Pafiti, 2018). FAS-mediated 

apoptosis is involved in development of immunity, regulation of immune responses, and 

killing of viral-infected cells and tumor targets (Eischen & Leibson, 1997; Krammer et al., 

1994; Nagata & Golstein, 1995). BAK1 is a member of the BCL-2 family and is an important 

regulator of mitochondrial apoptosis (Birkinshaw & Czabotar, 2017). Caspases are the 

primary drivers of apoptotic cell death and cleave cellular proteins, which is critical for 

dismantling dying cells (Parrish et al., 2013). CASP3 is the most well-characterized effector 

caspase (Parrish et al., 2013). Specifically, CASP3 is the executioner caspase and functions 

in the final phase of apoptosis. Consequently, it is cleaved and activated during late apoptotic 

events (Riedl & Shi, 2004). These results suggest that the expression of anti-apoptotic genes 

was decreased in the aging group and that ICA prevents decrease of anti-apoptotic genes 

against in vitro aging of oocytes as shown in ICA-5 group. In addition, the expression of pro-

apoptotic genes was increased in the aging group and ICA prevents the expression of pro-

apoptotic genes from increasing as shown in ICA-5 group. Thus, these results suggest that 

ICA prevents apoptosis induced by oxidative stress. Other studies reported that ICA 

prevented apoptosis in human vascular endothelial cells following oxidized low‑density 

lipoprotein treatment, in via the regulation of protein and mRNA expression levels of BCL-2 

and CASP3 (Hu et al., 2018). 

The easiest way to assess the quality of oocytes in vitro is to calculate the developmental rate. 

This rate determines the efficiency with which embryos are produced in vitro. Aging 

negatively affects oocyte competency and embryo development (Marshall & Rivera, 2018), 

and reduces the cleavage rate of oocytes (W. J. Yang et al., 2015). The percentage of oocytes 

that underwent cleavage did not significantly differ between the control, aging, and ICA-5 

groups (Table 2). The total number of cells per blastocyst and the percentage of apoptotic 
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cells in blastocysts were determined to investigate blastocyst quality (Figure 6). The total cell 

number per blastocyst was higher in the ICA-5 group than in the aging group, and was 

higher in the control group than in the ICA-5 group (Figure 6B). The percentage of apoptotic 

cells in blastocysts was significantly lower in the ICA-5 group than in the aging group, and 

did not significantly differ between the control and ICA-5 groups (Figure 6C). Thus, the 

developmental rate was decreased in the aging group and this was prevented in the ICA-5 

group, suggesting that treatment with 5 μM ICA protects oocytes against aging in vitro. 

In conclusion, this study indicates that treatment with 5 μM ICA reduces the level of ROS, 

prevents decrease of the expression of antioxidant gene, effectively protects oocytes against 

oxidative stress, prevents decrease of the expression of maternal gene, and thereby 

minimizes the deterioration in oocyte quality during aging in vitro. Moreover, prevents 

decrease of the expression of anti-apoptotic gene, prevents increase of the expression of pro-

apoptotic gene, enhancing blastocyst formation and development, thereby increasing 

production of good‐quality blastocysts. Therefore, ICA can be used to improve assisted 

reproductive technologies. 
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ABSTRACT IN KOREAN 

 

이카린 (ICA)은 모든 종의 에피메디움 허브에서 존재하며 강력한 항산화 

활성을 가지며 시험관 내에서 노화 방지 효과를 발휘하는 것으로 생각된다. 

우리는 ICA 처리가 시험관 내 노화에 대해 난모세포를 보호하는지 여부를 조사 

하였다. 5 μM ICA (ICA-5)로 처리하면 노화 동안 활성산소 수준은 크게 감소하고 

글루타티온 수준과 항산화 유전자 (SOD1, SOD2, PRDX5 및 NFE2L2)의 mRNA 

발현이 증가하였다. 또한, ICA-5 는 스핀들 형성 및 염색체 정렬에서의 결함을 

방지하고 세포질 성숙 인자 유전자 (BMP15, CCNB1, MOS 및 GDF9)의 mRNA 

발현을 증가시켰다. ICA-5 는 세포사멸을 방지하고, 항-세포사멸 유전자 (BCL2L1 

및 BIRC5)의 mRNA 발현을 증가시키고, 세포사멸 유전자 (BAK1 및 CASP3)의 

mRNA 발현을 감소시켰다. 성숙 및 난할율은 모든 그룹에서 유사하지만, 배반포 

당 총 세포 수 및 배반포 단계에서의 세포사멸 세포의 백분율은 각각 노화 

그룹보다 대조군 및 ICA-5 그룹에서 더 높고 더 낮았다. 이러한 결과는 ICA 가 

산화스트레스를 방지함으로써 시험관내 노화 동안 돼지의 난모세포를 

손상으로부터 보호한다는 것을 나타낸다. 
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