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Abstract

Developing a sustainable power source for powering low power consumer
electronic devices is very important because of increasing environmental issues
such as global warming and pollution due to use of fossil fuels. Also, it will
take thousands of years to recover the fossil fuels that have been utilized so far.
To overcome these environmental issues, researchers have been developing a
sustainable and clean energy source. The invention of nanogenerator paves the
way for the generation of green energy through the waste mechanical energy in
our day-to-day life. The nanogenerators such as triboelectric nanogenerator
(TENG) and piezoelectric nanogenerators (PENGs) work on triboelectric effect
and piezoelectric effect, respectively, upon actuating by an external mechanical
force. Mechanical energy is abundant in the environment, such as human
walking, water wave, vibrations, and can easily be utilized to convert into useful
electrical energy. The generated electrical output from the TENGs and PENGs
individually is not that efficient to power various electronic devices. The power
and power density of these generators are not high to perform various real-time
applications. In order to overcome this problem, hybrid nanogenerators were

introduced by combining different energy harvesters in a single unit.

The hybrid nanogenerators such as TENG-PENG, NGs-Solar cell,
NGs-electromagnetic generator (EMG) have been introduced in the recent past.
Each component has its unique advantages and several drawbacks. Herein, a
hybrid generator made of TENG and EMG in a single package with varying
structures for scavenging mechanical energy from water wave and the wind has

been fabricated. The device consists of a tubular-shaped structure with coils
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wound on either side of the tubes. The inner portion of the tube has a kapton
film with interdigitated electrode pattern, which acts as a triboelectric layer. The
magnet is placed inside the tube, which slides over the kapton layer leads to the
generation of triboelectric potential, and also the sliding magnet moves into the
inner side of the coil developing the EMG potential upon simultaneous
mechanical motions. The tubular structure is then placed into a buoy made of
plastic and kept into the sea for scavenging the water wave motions. The buoy

is then used for a real-time application of water spill detection.

The other type of hybrid generator made of TENG-EMG components for
scavenging wind energy based on a flutter mechanism. A lightweight kapton film
is used as a triboelectric layer with the creation of micro surface roughness
using an inductively coupled plasma etching process. The roughness enhances the
contact points leading to the generation of high triboelectric output. The other
side of kapton film is coated with platinum for electrical connections. Also the
kapton film is attached with a lightweight coil in a flat manner with a turn of
100 numbers. The kapton film is then placed inside an acrylic chamber with the
inner top side attached with aluminum, which acts as a positive triboelectric
layer as well as electrode. And the outer portion of acrylic on the top was
attached with magnets for the generation of electromagnetic flux in the coil.
These devices can effectively generate electrical output upon wind force and can
also be used as wind speed and wind direction monitoring sensors. Thus the
hybrid nanogenerators can scavenge electrical output effectively, which is much
higher than the individual components and can also be used for many

applications that require power in the range of milliwatts and can be used in the

future internet of things (IoT).

- Xii -



CHAPTER 1

1.1 Introduction

Vibration is abundant and a vast amount is produced in the environment all
over the time either naturally or by human-made. The generated vibrations are in
the form of human motions, ocean waves, vehicle motions, wind, and heavy
industries. The vibration energy harvesting in the past decades were done by
using many conventional methods, requires high investment, capital cost and
heavy machineries to convert wind into electricity. After the invention of
nanogenerators, it has been reported that the wind energy can be scavenged
easily in a cost-effective way. The intention of nanogenerators is to scavenge the
waste mechanical energy and been used for powering up low power or small
scale electronic devices. Also, the devices can also be used as a self-powered
system for applications such as portable and wearable systems. Nanogenerators
such as piezoelectric nanogenerator (PENG), triboelectric nanogenerator (TENG),
and electromagnetic generator (EMG) are the devices used for vibration energy
scavenging. Among these nanogenerator devices, TENG has shown enormous
advantages such as simple fabrication, low cost, and lightweight. Other than
harvesting vibration energy TENGs can be used to harvest most of the forms of
mechanical energy such as wind, ocean, rotational, tidal and acoustic. However,
TENG itself cannot produce high current to wuse for various real-time
applications. So, a hybrid system is highly desirable to improve the efficiency of
the TENG device, with the combination of two different energy harvesting
modes in a single package. This type of hybrid generators can be used for
boosting the electrical output performance of the nanogenerator and can also be
able to improve the efficiency of the energy harvester. The hybrid energy

harvesters, composed of TENG and EMG components had gained huge attention



because of its energy harvesting efficiency and performance under the
simultaneous mechanical motions. TENG and EMG can work efficiently as a

hybrid generator under sliding, contact-separation and rotation modes.

Triboelectric Series

Ethylcellulose

Melanie formol

Wool, knitted

Silk, woven

Polyethylene glycol succinate
Cellulose

Cellulose acetate

Cellulose (regenerated) sponge
Cotton, woven

Wood

Paper

Steel

Nickel

Copper

Polyvinyl alcohol

Silver

Polyester (DACRON)
Polychloroether

Natural rubber

Polystyrene

Polyethylene

Polypropylene

Polyvinyl Chloride (PVC)
Polyimide (Kapton)
Polydimethylsiloxane (PDMS)
Polytetrafluoroethylene (Teflon)
Polyvinylidine chloride (Saran)
Polyvinylidine fluoride (PVDF)
| ] Silicone elastomer
Polyacronitrile

Polybisphenol carbonate
Polyethylene Terephthalate

Figure 1.1.1 Triboelectric series chart showing materials with their charges



In the recent past a wide research is going on in the field of hybrid
generator for scavenging mechanical energy and vibrational energy and eventually
been used for various self-powered applications. A report by J. He et al. shows
a TENG, PENG, and EMG components in a single unit for self-powered
wireless monitoring system. Similarly, a report by H. Shao et al. shows the
fabrication of a hybrid generator device with TENG and EMG components for
scavenging water wave energy and this device has been used to operate an
electronic thermometer. In both the above cases, the device uses a high cost and
rugged construction, and also the device uses expensive triboelectric materials
such as copper, carbon nanotubes, polyethylene terephthalate (PET). However, the
device used in the present manuscript is used as the triboelectric material which
is very cheap and simple in overall construction of the device. Since the device
is a cylindrical type with the multi-unit energy harvesters and can harvest energy
upon vibrational motions with various mechanical motions. The triboelectric
components work on sliding mode triboelectrification made up of magnet and
kapton as triboelectric material. Similarly the thesis work involves with different
triboelectric materials based on their surface charges as shown in Figure 1.1.1.
The material could not create damage on the Kapton layer due to friction like

the traditional sliding mode triboelectric nanogenerator.

1.2 Working modes of TENG

The mechanism behind TENG is triboelectrification and electrostatic induction
effects; with the rapid advancement in the field of nanogenerators and TENG,
the exploration leads to the investigation of fundamental working modes of
TENG which covers four basic modes. This includes a vertical contact separation

mode, linear sliding mode, single electrode mode, and free-standing mode. These



modes require two different triboelectric materials with proper electrode
connections with proper insulation between each layer. The combination may be
either dielectric-dielectric or metal-dielectric arrangements. The basic principle
behind all the four modes is that whenever there is a displacement in any of the
triboelectric layers, the electrostatic charge movements break the electrostatic
status present, leading to the development of potential difference between the
electrodes. In the repeated mechanical actuation of layers with forward and
reverse direction makes the triboelectric layer to generate forward and reverse
potential between the electrodes. This makes the positive and negative peak in
the TENG output generating the AC signal. The four different working modes

are shown schematically in Figure 1.2.1.

/" (a) Contact Separation Mode L rd

b Sl e S
R Jg Ao d

A\ R L ;
o N, /

"E)peratiné‘

Modes of
TENG .77 d S
- Ay (d) Free-standing Mode N

5N
R N
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/) Single-electrode Mode

E ++++*I++#4'++

. Triboelectric Layer A . Triboelectric Layer B ’ Electrodes

Figure 1.2.1 Schematic representation of the four fundamental operating modes of TENG



1.2.1 Contact separation mode

In the contact separation mode TENG, the triboelectrification occurs by the
contact and separation process of two triboelectric materials or layers. This may
either happen between two different dielectric materials or maybe a dielectric and
metallic layers. This model has a high advantage with its simple design, easy
fabrication, and low cost. This mode of TENG is also the first developed and
demonstrated for powering low power electronics. This mode of TENG can be
designed with a multi-unit stacking for the enhanced output performance. The

simple contact separation mechanism is shown in Figure 1.2.1a.

1.2.2 Linear sliding mode

In the linear sliding mode, the charge generation is by the relative to and fro
sliding between the layers of TENG. The construction is almost similar to the
contact separation mode with electrodes attached on the back of the triboelectric
layers, but the displacement is in sideward as shown in Figure 1.2.1b. The
sliding mode has a low figure of merits compared to the vertical contact
separation mode due to its long displacement in the sliding process. The
advantage of this mode is that it can generate more charge density with a highly
effective charge generation due to its high contact area. Also, by introducing
more grating structures the output performance can be enhanced. The sliding
mode TENG can also be able to operate in a rotational way with cylindrical

grating structures.

1.2.3 Single electrode mode
The simplest structure of TENG is the single electrode mode TENG, but the
output performance is too low due to the small charge transfer. This makes the

generated voltage and current to be less, but it is highly suitable for



self-powered applications. The advantage of this device is, it overcomes the
application limitation due to the contact wire obstructing at both sides in the
contact separation mode and sliding mode TENG devices. The basic arrangement

of a single electrode mode TENG is shown in Figure 1.2.1c.

1.2.4 Free-standing mode

The freestanding model has one electrode move freely between the two
electrodes or triboelectric layers. The electrodes will be in a static position, and
a triboelectric layer without electrode can move over it. This mode of TENG
device has high figure of merits and has demonstrated high output efficiency and
electrical output. Also, this type of device can be easily fabricated and can be
integrated into various real-time applications. The basic arrangement of a single
electrode mode TENG is shown in Figure 1.2.1d.

The present work describes the TENG-EMG hybrid generator which works
simultaneously upon the same sliding motions. The device structure is aimed to
employ both energy harvesters such as TENG and EMG. To fabricate a hybrid
device composed of TENG and EMG components, the operating mode of the
energy harvesting components needs to be considered. As we discussed that
TENG has four working modes and the EMG, TENG components uses similar
operating modes for scavenging waste mechanical energy. The device is
fabricated for scavenging ocean wave energy, for that the suitable working mode
is sliding mode TENG component. In consideration with the following merits
and advantages we have chosen to fabricate a tubular shaped device comprising
of TENG and EMG components with the TENG components operates on sliding
mode with magnet slides over the Kapton film and the EMG component
activates with the magnet moves inside the coils. To boost the current of the

hybrid device the EMG component was made in both the sides of the tube. The



TENG component acts as a voltage source and the EMG component acts as a
current source. The hybrid device combining both TENG and EMG with proper
load matching resistance and rectification circuit the output power had been
boosted and eventually been used for real-time demonstration such as charging
the commercial capacitor and lighting up light-emitting diodes (LEDs). Further,
the hybrid device had been used for scavenging small-scale biomechanical energy
and also used for real-time oil spill detection. The flutter device can harvest
electrical energy from the wind motion and also can work as wind direction
monitoring and wind speed sensing. The enhanced output power generator with
high efficiency would open door towards the field of MEMS/NEMS based

applications in the near future with self-powered capability.



CHAPTER 2

Materials and Methods

2. 1 Materials Used

All materials used for this research are research grade and directly used
without any further alterations. The list of materials including chemicals is given

in the table below.

S. No Materials Supplier
1 Aluminum Foil Dai Han, Korea
2 Aluminum Tape Tae Kyung, Korea
3 Copper coil Trox, korea
4 Copper wire Trox, korea
5 Kapton film DUPONT
6 Kapton tape DUPONT
7 Polyethylene terephthalate (PET) | Hyosung chemicals
8 Neodymium magnets Duratool
9 Sodium chloride (NaCl) (99 %) | Daejung Chemicals
10 Gold electrode (sputtered) ACI alloys

Table 2.1 Table showing materials and methods used for this research



2.2 Materials Characterization and Measurements
2.2.1 Field emission scanning electron microscope (FE-SEM)

Field-emission scanning electron microscopy is a measurement tool used in
the field of materials science for investigating the morphology of the material.
The FE-SEM with EDAX can track the elements present in the material. The
FE-SEM measurements carried out during this research was using TESCAN

MIRA3.
2.2.2 Sputter coating

This deposition technique is a physical vapor deposition (PVD) technique. By
using this technique targets of metallic and oxide based materials can be
deposited on other substrate with the application of electric current on the
material. The process requires a high vacuum inside the chamber to eject the
material from the target placed inside the chamber. The sputtering process in
general can be used for coating electrodes for the fabricated device layers. The
sputtering measurements carried out during this research were using QUORUM

Q150 RS.
2.2.3 Reactive ion etching

Reactive-ion etching (RIE) is an etching technology used in micro-fabrication.
This is a type of dry etching which has different characteristics than wet
etching. RIE uses chemically reactive plasma to remove material deposited on
wafers. The plasma 1is generated wunder low pressure (vacuum) by an
electromagnetic field. High-energy ions from the plasma attack the wafer surface
and react with it. The RIE s carried out during this research were using RIE

machine VITA.



2.2.4 Linear Motor

The linear motor is used for the continuous application of force on the
device. The motor creates a periodical and continuous mechanical actuation with
respect to time. The motor is controlled with a computer software which controls
the operation of the motor. The electrical measurements in this research are

carried out using a linear motor LinMot, InC, United States.
2.2.5 Electrometer

An electrometer is an instrument for the analysis or measurement of electric
charge or potential difference in an electrical system. There are different types of
electrometer systems, ranging from handmade mechanical instruments to
high-precision electronic devices with different measurement ranges and
impedance ranges. The measuring instrument used for the measurement of
electrical output such as voltage and current is electrometer Keithley 6514 having
a measurement range of peak to peak 400 V and 40 mA respectively. Also, for
the measurement of current a low noise current amplifier SR 570 (Stanford

instruments Itd.).
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CHAPTER-3

Development of tubular shape triboelectric-electromagnetic hybrid

generator for blue energy scavenging and oil spill detection

Highlights

> In the present a tubular shaped hybrid device composed of both

EMG-TENG components for scavenging waste mechanical energy

» The tube is made of PET sheet rolled into a 20 mm cylinder and wound
with copper coils for EMG and a kapton with gold electrode placed
inside as TENG

> The magnet slides inside the tube creating the friction with Kapton to
generate TENG output and the magnet moves inside the coils activates

the EMG component

> The device generates an electrical output of 25 V /100 nA with TENG
and 3 V/I2 mA with EMG component

> The device has a capability of lighting up 80 green LEDs and charging

a commercial capacitor using PMU

> Finally the device has been used for the real-time application of oil spill

detection with the help of change in conductivity of the water

_’I’I_



3.1 Experimental Section
3.1.1 Device fabrication and measurements

The device structure is aimed to employ both energy harvesters such as
TENG and EMG. To fabricate a hybrid device composed of TENG and EMG
components, the operating mode of the energy harvesting components needs to
be considered. As we discussed that TENG has four working modes and the
EMG, TENG components uses similar operating modes for scavenging waste
mechanical energy. The device is fabricated for scavenging ocean wave energy,
for that the suitable working mode is sliding mode TENG component. In
consideration with the following merits and advantages we have chosen to
fabricate a tubular shaped device made of PET had been used as the outer layer
for the hybrid device (length is 120 mm and diameter is 20 mm) comprising of
TENG and EMG components A Kapton film was cut according to the size of
the PET and coated with aluminum (Al) at the backside as the -electrode
material. The Kapton layer was kept as the inner wall and also acts as the
negative triboelectric layer. Copper coils were wound on either side of the tube
as shown in Figure 3.1.1 with 1500 turns has been wounded outside the cylinder
for the EMG component. Further neodymium magnet (1/2” diameter and 1/4”
thick) had placed inside the cylinder, where the sliding of magnet over the
Kapton layer generates triboelectric potential and magnet moving into the coil

activates the generation of electromagnetic induction.
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Figure 3.1.1 Schematic diagram of the TENG component with different layers present in the device and the

mponent (Sliding mode )
Tube shaped device

inset shows an FE-SEM image showing the surface roughness made using the Kapton film. The right hand

side image shows the EMG components with coils attached and its layers

3.2 Working mechanism

The working mechanism of TENG and EMG component in the SB-HG device
is shown in Figure 3.2.1. The TENG component works on contact electrification
and electrostatic induction principle between the two triboelectric layers. When
the magnet moves on the Kapton layer, the negative charge on the Kapton layer
tends to develop a potential difference between the two electrodes of the TENG
component leading to drive electrons to flow from one electrode to other with
the presence of external load resistance. When the tube moves to opposite
direction, the magnet reverses, and the electrons flow back leads to the

generation of alternating current.

The mechanism is schematically shown in Figure 3.2.1 with the initial state,
sliding and reverse with the electron flow directions. The developed voltage and
current were measured in the laboratory using an electrometer, and the developed

electrical signals can be stated as follows using the equation.
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Figure 3.2.1 Working mechanism of TENG and EMG components of the blue energy harvesting hybrid

device. The TENG component works on linear sliding mode with the magnet slides over the Kapton film

generating electrical output and with the similar motion the magnet moves over the coil wound on the

outer side of the PET tube leading to the generation of electric flux in EMG component
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Where S is the contact area of the device, C is the capacitance between the

electrodes and s is the surface charge density.

With the same mechanical motion the neodymium magnet placed inside the
cylindrical tube moves in the inner part of the tube wound with coils, resulting
in the development of magnetic flux in the coil as shown in Figure 3.2.1. The
magnetic field then makes the electrons to move through the coil. As determined
by Lenz’s law the direction of movement of electric charge through the coil is
responsible for change in flux to utilize a mechanical force contrasting the
motion. The generated electrical output of the EMG component could be
calculated using the Faraday’s law of electromagnetic induction using the below

equation

Veme = *NW “““ (1)
_ Voe
Iemg = T 2)

Where N is the number of turns, the magnetic flux in each coil and B is the

magnetic field.
3.3 Results and discussions

Figure 3.3.1 (a) and (b) shows the triboelectric output with voltage and
current with the maximum electrical output of open-circuit voltage of 25 V and
short circuit current of 100 nA peak to peak. Similarly, the working mechanism
of EMG was shown in Figure 3.2.1 (i to iv). When a linear vibration is applied
to the device, the magnet inside the cylinder moves across the coil leads to the

production of magnetic flux around the coil which pushes electrons in the copper
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wire. The electrons mobility is directly responsible for the electric charge flow
which was determined through Lenz’s law. The generated output voltage and
current from the EMG component can be calculated using Faraday’s law. Figure
3.3.1 (c¢) and (d) shows the electrical output of the EMG with the maximum
peak to peak voltage 3 V and a current of 12 mA at an operating frequency of
2 Hz. On the other hand Figure 3.3.2 shows the electrical output of the EMG
with 2 coils and the maximum peak to peak voltage 7 V under series
connection and a maximum peak to peak output current of 20 mA at an
operating frequency of 2 Hz. The current recorded for 2 coils were under

parallel connection.

8
o
N

o
'
(=]
L

Voltage (V)
Current (nA)

'
o
1
[
[=1
N

I
T

10

20 30 40 50 60 . ; : ; ; .
Time (s) 0 10 20 30 40 50 60

I i
1 I
1 [
1 I
I [
I 1
1 1
1 I
1 1
I I
I 1
I I
1 1
1 [
1 [
1 I
1 I
: |
1
I Time (s) i
1 [
1 1
1 [
I [
1 [
1 I
1 I
I 1
1 [
1 I
1 [
I 1
1 1
1 I
: [
: i
I
1 1
I [

_
&)
~

(d),]

[=2]

il

o
L

\{oltage (V)

Current
[ 28]

4

N

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)

Figure 3.3.1 (a) and (b) voltage and current output of TENG component (c) and (d) voltage and

current output of EMG component
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Figure 3.3.2 shows the electrical output of the hybrid device with each
components separately and also under hybrid configuration with combination of
different energy harvesting components. The EMG device shows a rectified
electrical output of 2 V and the TENG component shows a rectified electrical
output of 6 V. TENG device with 1 EMG coil is then connected in series and

the output generated is 7 V and similarly TENG device is the connected with 2

EMG coils.
5
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Figure 3.3.2 (a) and (b) voltage and current response of EMG output with both coils connected

in series connection for voltage and parallel connection for current measurements

This combination of energy harvesters are leading to the generation of higher
output of 8 V under series connection as shown in Figure 3.3.3 (a). Similarly,
the current output of the tubular device was measured under parallel connection
leading to the generation of higher electrical output due to the connection of
components under parallel electrical connections. The measurements were carried
out with the acceleration frequency of 2 Hz using a linear motor as shown in
Figure 3.3.3 (b). The stability test of the TENG component is shown in Figure
3.3.3 (¢) in which the output is stable for a period of 2000 s, which is

approximately 33 minutes. The response shows a stable electrical output behavior

_’|7_



without much variation in the electrical output generated. The inset in the
stability shows the peak pattern after 1800 s showing there is no decrement in
the electrical output of the device, proving that the TENG device can be a
stable and reliable energy harvester. The device has been used rigourously in the
sliding motion for electrical analysis showing that the device can operate for a

long perod of time and can be highly suitable for using as a portable power

source.
_________________________________________________________ |
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Figure 3.3.3 (a) and (b) voltage and current response of TENG, EMG, TENG + 1 EMG and TENG + 2

EMG compositions (c) stability test of TENG for a period of 2000s using linear motor
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The TENG and EMG components are analyzed for different accelerations
ranging from 1 m/s’>, 3 m/s’, 5 m/s’ and 7 m/s’. This analysis shows that the
output generation of the energy harvesting component under various accelerations,
relating to the output generating capability of the device under various sea

circumstances as shown in Figure3.3.4.
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Figure 3.3.4 (a) and (b) force analysis of TENG component (c) and (d) force analysis of EMG

component

The real-time energy harvesting capability of the device has been discussed so
far and the utilization of the device for powering up electronic devices will be
discussed from here. Figure 3.3.5 shows the utilization of hybrid generator for

real-time powering of electronic components. Figure 3.3.5 (a) shows the circuit
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diagram with rectifiers used for charging the commercial capacitor and also to
glow different LEDs. Figure 3.3.5 (b) shows the powering up capacity of hybrid
device with high power white, green and red LEDs with the circuit and a
capacitor. Figure 3.3.5 also shows the powering up of 80 green LEDs under
high power using the device under hybrid combinations. This demonstration
proves that the hybrid device is an excellent power source for powering up low
power electronic devices and can have the potential to replace batteries in the

near future.

(b) ~ White, Green & Red LED lit up using Bridge Rectifier Circuit

—

Capacitor

Figure 3.3.5 (a) circuit diagram of capacitor charging and LED lit up (b) high power white,
green and red LED lit put using the bridge rectifier circuit and a set of 80 low power green

LEDs glowing using hybrid connections

In the similar fashion commercial low power electronic devices such as
calculator and hygrometer were powered by using a commercial capacitor with
its charging and discharging process. The capacitor charging was made by the
hybrid device and during the discharge; the electronic components were powered

as shown in Figure 3.3.6 (a) and (b).

To be a stable candidate for powering up electronic devices and components
a power management unit is highly desirable. The power management unit

regulates the electrical output and gives a stable output of continuous supply
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leading to the working of device stable for a longer period. The circuit diagram

of PMU and the digital photographic image is shown in Figure 3.3.7 (a) and
(b).

TESTEK-303A

TESTEK=3034

Figure 3.3.6 (a) powering up a commercial calculator using the hybrid device with charging a
commercial capacitor (b) powering up of a commercial hygrometer for a period of 30 seconds

by charging a commercial capacitor

(a)

01 §F

[
220 pF
11
11

DC-DC Conversion Output Unit

Figure 3.3.7 Power management circuit for the real-time application and (b) shows the real-time
image of the developed power management unit and the demonstration of lighting up an white

LED using the circuit

The real-time analysis of oil spill detection in ocean was performed in
laboratory scale using the hybrid generator device. Figure 3.3.8 (a) shows the
schematic of oil spill detection with and without oil and the buoy with the
conductors place and connected with PMU and LEDs. Figure 3.3.8 (b) shows
the formation of two distinct layers of water and oil in a beaker showing the oil

spill formation which can be detected using a hybrid generator buoy device.
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Similarly, figure 3.3.8 (c¢) shows the laboratory test condition of hybrid device
for oil spill detection and water wave energy harvesting. Figure 3.3.8 (d) shows
the oil spill detection with respect to change in conductivity of the solution with
the LED glowing. The trial was made by selecting water samples such as 1 M
NaCl solution, sea water, tap water, DI water, oil, oil in sea water and oil in

NacCl.

[Without Ol
(@

|

Probe  Wireless communication Module p o, I

Seai Water

Figure 3.3.8 (a) schematic of the oil spill detection system using the hybrid generator with and
without oil (b) two distinct layers of oil and water showing that the oil spill will be on the top
of the water due to the high viscosity (c¢) real time demonstration of oil-spill detection in lab
conditions (d) (i-vii) oil spill detection with respect to change in conductivity of the solution
with the LED glowing. The trial was made by selecting water samples such as 1 M NaCl

solution, sea water, tap water, DI water, oil, oil in sea water and oil in NaCl

Figure 3.3.9 and 3.3.10 shows the oil spill detection under wireless modes
using Bluetooth device. The Bluetooth is connected to a mobile phone and the
change in conductivity of the ocean is monitored directly under remote mode
using Bluetooth module. The change in conductivity triggers an LED and a

message in Bluetooth can inform the people remotely.

_22_



Hybrid
Generator

Arduino .3 Controller

(Power port)

f Constant

Power
Management
Circuit

\ 4 4
DC Source A
Energy Bluetoothl . LED.
Storage signaling

Circuit

Figure 3.3.9 Schematic of wireless oil spill identification using Bluetooth interface with mobile phone

Figure 3.3.10 (a) blue energy device made with buoy shape which can float in water had setup

with the Arduino board and Bluetooth device. The change in conductivity will be informed by

Bluetooth messaging and an LED lit up in the buoy

The Table 3.3.1 shows the conductivity value of various solutions used for
testing as well as the application of oil spill detection test using the hybrid

nanogenerator device.
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S. No solution conductivity
1 Pure Water 0.05 ps / cm
2 Power Plant Boiler Water 005~ 1 pus/cm
3 Distilled Water 0.5 us / cm
4 De-ionized Water 0.1 ~10 us / cm
5 De-Mineralized Water 1~ 80 pus/ cm
6 Mountain Water 10 us / cm
7 Drinking Water 05~1ps/cm
8 Waste-Water 09 ~9 pus/cm
9 Potable Water Maximum 1.5 us / cm
10 Brackish Water 1~ 80 us/cm
11 Industrial Process Water 7 ~ 140 ps / cm
12 Ocean Water 53 us / cm

Table 3.3.1 Conductivity of various water samples
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3.4 Conclusion

In conclusion, a tubular shaped single unit hybrid generator composed of
TENG and 2 EMG components via a cost-effective has been fabricated for
scavenging water wave energy and also used as a self-powered oil spill
detection. The device shows its performance in working actively upon various
accelerations from 1 m/s’ to 7 m/s> and generates electrical output
simultaneously from all the in built energy harvesters such as TENG and 2
EMG units working upon the same motion. The working mechanism of the
individual components have been discussed, and the electrical analysis had
performed extensively under various accelerations, load matching analysis,
capacitor charging, and LED litup. The device generates a maximum electrical
output of 25 V and 100 nA current at an acceleration of 5 m/s’> with an
instantaneous power of 200 mW for the TENG component. Similarly, the EMG
component generates a maximum output with the voltage of 7 V and a current

of 1276 mA at 5 m/s* with an instantaneous power 0.7 mW for EMG.
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CHAPTER 4

Development of Wind Energy harvesting hybrid generator made
of Triboelectric and Electromagnetic components for wind speed

and Wind direction monitoring
Highlights

> Herein, we have reported a flutter based hybrid generator (F-HNG)
composed of triboelectric nanogenerator (TENG) and electromagnetic
generator (EMG) components.

> The triboelectric component is composed of a contact and separation
mode using a roughness created fluorinated ethylene polymer (FEP) as a
negative material and aluminum as a positive triboelectric material.

> Similarly, the EMG component is made of coil wounded in a horizontal
way and attached on the other side of FEP.

> Both the components were housed inside a small rectangular wind tunnel
structure. A neodymium magnet is placed on the acrylic on the top side
of the structure.

» The contact and separation and electromagnetic actuation work
simultaneously upon the same wind force and actuation leads to the
generation of electrical output from both the TENG and EMG
components independently.

> The TENG component generates a maximum voltage and current of 100
V and 2 mA. Similarly, the EMG component generates a maximum
voltage of 200 mV and 200 mA.

> The generated energy can be utilized by lighting up low power electronic
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devices and can also be used for charging commercial capacitors.
» The device is then utilized for wind speed monitoring and wind direction

monitoring applications

4.1 Experimental Section
4.1.1 Device fabrication and measurements

The device fabrication is composed of an acrylic casing which houses the
TENG and EMG components are assembled in a way that they can actuate
simultaneously upon impact by wind. The TENG component is made of a
contact separation way using Aluminum and FEP, whereas the EMG component
works with the front and back motion of coil towards magnet upon wind

direction as shown in Figure 4.1.1.

" Flutter based TENG-EMG Hybrid Device |

EMG
Qutput
{Wind In Wind Out .

Mini Wind Tunnel Dlgltal Image of Hybrid Device}

@Coil i FEP . Aluminum g Magnet

Figure 4.1.1 Schematic of Flutter based hybrid device for scavenging wind energy with

TENG and EMG components working simultaneously
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Figure 4.1.2 shows various active layers used for the fabrication of wind
energy harvesting hybrid generator device. The digital photographic image shows
the coil wound on the back side of Kapton layer and the Kapton layer coated
with gold as electrode and the Al foil used. The friction between the Kapton
and Al creates triboelectric potential and between the coil and magnet activates

the EMG components.

EMG Coil Kapton layer Al layer

= R

EMG coil, Kapton Layer and Aluminum layer. The friction between Aluminum and Kapton

works as TENG component and the EMG coil with magnet generates the EMG component

4.2 Results and discussions

The surface modification in one of the triboelectric layers developed a
micro-roughness on the surface of the layer. Here we have developed surface

roughness in kapton layer using reactive ion etching technique. Figure 4.2.1 (a)
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to (d) shows the FE-SEM morphology of the Kapton film made using the
reactive ion etching technique under different conditions as shown in Table 4.1.
The conditions are tabulated in Table 4.1 and the corresponding voltage response

is shown in Figure 4.2.1 (e).

a) {})]
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Figure 4.2.1 (a-d) surface morphology of the Kapton film made with the plasma etching
process. The surface shows various roughness according to the etching conditions (e) voltage

response of Kapton film made with different surface roughness

Power Condition | O, Ar CF,

Con1 60 0 0

220 W Con2 60 20 10

Con3 60 20 0

Table 4.1 Showing the conditions with respect to gas level (in sccm)
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The process of plasma etching is to create micro roughness on the surface of
the triboelectric layers. The surface roughness increases the number of contact
points which enhances the generation of electrical output upon applying the
friction between the triboelectric layers. In plain layer, the number of contact
point is one, which makes the output to be less. When the contact point
multiplies with the increase in roughness, leads to the generation of higher

electrical output.

This mechanism involves interaction between the surface-modified FEP film
and the Al electrode with a combination of the triboelectric effect and
electrostatic induction. Initially, the top Al electrode layer is in contact with the
FEP layer. Next, because of the mechanical motion through wind force, the top
layer separates from the FEP layer, and a charge difference occurs across the
electrodes. This process induces a flow of electrons from the top electrode to
the bottom electrode through an externally connected circuit, as shown in until
an equilibrium state is reached This action contributes to the first half-cycle of
the alternating current (AC) signal; The second half-cycle is achieved when the
top electrode layer approaches the FEP film, inducing a flow of electrons in the
opposite direction. The device is then placed in a linear motor and the electrical
output of both TENG and EMG were measured. The TENG device generates a
maximum voltage and current of 100 V and 2 pA as shown in Figure 4.2.2.
Similarly, the EMG component generates a maximum voltage of 200 mV and
200 mA. This shows that the flutter based device is capable of generating

electricity from wind energy as shown in Figure 4.2.3.
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Figure 4.2.2 Electrical output response of the TENG component (a and b) voltage and current
output response of the TENG component (¢ and d) voltage and current of TENG component
under different acceleration (e) lead resistance analysis of TENG component with its
instantaneous peak power of 225 YW under the resistance of 100 MQ and (f) stability test of
TENG for a period of 1000 s at 12 m/s*acceleration
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Figure 4.2.3 Electrical output response of the EMG component (a and b) voltage and current
output response of the TENG component (¢ and d) voltage and current of EMG component
under different acceleration (e) lead resistance analysis of EMG component with its instantaneous

peak power of 0.8 mW under the resistance of 100 Q and (f) stability test of EMG for a period
of 1000 s at 12 m/s’acceleration
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Further, the device is used for analyzing the instantaneous power density,
switching polarity test for the confirmation of electrical output, demonstration of
lighting up low power electronics such as glowing LEDs, charging commercial
capacitors as shown in Figure 4.2.4. Then the device output under various
accelerating frequencies, which can be used for analyzing the energy harvesting
capability under various wind speeds. Finally, four devices were used in the top
of the building connected in parallel to harvest wind energy and been

successfully utilized with the help of an electronic power management circuit.

i 14 il
E (a) (b) Hybrid i
| 12 i
H ; i
E Bl :; a TENG i
e ——p o 8 ;
H © i
H = 6 - i
: o) !
1 4 - :
a T o |
! I 2+ |
! Capacitor EMG i
i — 0 H
H 1 F T T T T !
H Devices 0 20 40 60 80 100 i

Figure 4.2.4 (a) circuit diagram for charging capacitor and LED lit up connected with TENG
and EMG components (b) Capacitor charging using TENG, EMG and Hybrid connections (c)
glowing 100 green LEDs using hybrid combination of the flutter based device
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Figure 4.2.5 (a to d) real-time output analysis of the flutter based hybrid device with 4 devices
positioned at various directions to monitor the wind direction (e) real-time speed monitoring

under low and high speed in comparison with (f) which is measured using linear motor under
different accelerations

The device is then used for real-time application of wind speed sensor and
wind direction monitoring. Figure 4.2.5 shows the real-time application of flutter
based device for wind monitoring and direction monitoring. Figure 4.2.5 (a) to
(d) shows the wind direction monitoring with 4 units and the direction could be
found out via the output response from the device side. The wind speed is then

measured using an oscilloscope and the voltage response level with respect to
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the peed indicates the wind speed monitoring using the flutter based device as
shown in Figure 4.2.5 (e) and the corrsponding electrical output using linear

motor is shown in Figure 4.2.5 (f).

4.3 Conclusion

In summary, a flutter based wind energy harvesting device was made using
TENG and EMG components housed inside a small wind tunnel which can
harvest energy upon simultaneous wind motion and generates electricity
independently. The triboelectric component is composed of a contact and
separation mode using a roughness created fluorinated ethylene polymer (FEP) as
a negative material and aluminum as a positive triboelectric material. Similarly,
the EMG component is made of coil wounded in a horizontal way and attached
on the other side of FEP. The TENG component generates a maximum voltage
and current of 100 V and 2 pA. Similarly, the EMG component generates a
maximum voltage of 200 mV and 200 mA. The device is then used to study
and analyze its maximum area power density, force analysis and operating
commercial electronic devices. Finally, four devices were used in the top of the
building connected in parallel to harvest wind energy and been successfully

utilized with the help of an electronic power management circuit.
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