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(Abstract)

Kannan type fixed point theorems in modular

metric spaces

In 2010, V.V. Chistyakov introduced the concept of modular metric spaces.
This concept generalizes modular linear spaces, modular function spaces and met-
ric spaces. In this thesis, we prove the new existence theorem of a unique fixed
point for Kannan type w-contractive mappings in modular metric spaces. Our
result generalizes the results of Kannan on complete metric spaces.

In 2017, Aksoy et al. defined Bogin type w-contraction and Kannan type w-
contraction in modular metric spaces, and proved the existence theorems of a
fixed point under some conditions. Also, in 2019, Mitrovic et al. defined Reich
type w-contraction and Kannan type w-contraction in the same spaces, and also
proved the existence theorems of a fixed point under some conditions. But we
give counterexamples that the above two results of Aksoy et al. and Mitrovic et
al. do not hold.

Finally, we introduce the new concept of weak w-completeness, which gener-
alizes w-completeness and show that the converse of our main theorem holds as

a special case.



1 Introduction

In 2010, V.V. Chistyakov ([4]) introduced the notion of modular metric spaces (or
metric modular spaces) and investigated properties of the spaces. This concept gener-
alizes modular linear spaces ([15]), modular function spaces ([12]) and metric spaces.
Moreover, in 2011, Chistyakov ([5]) defined w-contraction in modular metric spaces and
proved the existence theorems of a fixed point under such contractive conditions. The
main idea behind this new concept is physical interpretations. Informally speaking, a
metric on a set represents nonnegative finite distances between any two points of the
set. On the other hand, a modular on a set attributes a nonnegative (possibly, infinite

valued) field of (generalized) velocities if we take A\ as a parameter of time: If we set

d(z,y)
A

wy(z,y) = , then w is average velocity which means that it takes time A to cover
the distance between = and y. What if z is disconnected with y? Clearly, it is impossible
to reach from x to y regardless of given time A, so it seems reasonable for us to assign
wy(x,y) to oo. It is a reason that we adopt extended real system as a codomain of a

modular metric.

In 1968, R. Kannan ([11]) proved the following theorem on complete metric spaces:

Theorem 1 ([11]) Let (X,d) be a complete metric space. If T : X — X and there

exists k € (0,1/2) such that for all z,y € X,

d(Txz,Ty) < k{d(z,Tx) +d(y,Ty)} (1.1)

then T has a unique fized point.

The main purposes of this thesis are to investigate fixed point results under Kan-

nan type w-contractive condition in modular metric spaces, and to give counterexamples



that two results of Aksoy et al. ([2]) and Mitrovic et al. ([13]) do not hold. This thesis
is organized as follows:

In chapter 2, we briefly introduce the notions and examples in ([4]) and ([5]) con-
cerning modular metric spaces.

In chapter 3, we not only compare a variety of definitions concerning Kannan type
w-contraction in modular metric spaces but also show the new existence theorem of
a unique fixed point under Kannan type w-contraction which is our main result. The
result generalizes Kannan contraction principle in ([11]). We also give counterexamples
that Theorem 3.6 of Aksoy et al. ([2]) and Theorem 2.1 of Mitrovic et al. ([13]) do not
hold, respectively.

In chapter 4, we define the new concept, the weak w-completeness in modular metric
spaces which is a generalization of w-completeness introduced in ([5]). Also, we show

that the converse of the main result in chapter 3 also holds as a special case.



2 Preliminaries

We mainly recall some basic terms and notations in ([4]) and ([5]). From now on,
X represents a nonempty set and w : (0,00) x X x X — [0, 00] will be written as

wy(z,y) =w(\ z,y) for all A\ >0 and z,y € X.

Definition 2.1. A function w: (0,00) x X x X — [0, 00] is called modular metric (or

modular) on X if it satisfies the following three conditions:
(i) given z,y € X, x =y iff wy(x,y) =0 for all A > 0.
(i) wr(z,y) =wx(y,z) for all A>0 and z,y € X.
(i) wxep(z,y) <wr(z,2) +wu(y,z) for all A, >0 and z,y,z € X.
If, instead of (i), the function w satisfies only
(i") wa(z,x) =0 for all A>0 and z € X,

then w is said to be a pseudomodular on X.

Also, if w satisfies (i) and

(i”) given x,y € X, x =y iff wy(z,y) =0 for some A >0, then the function w is called

a strict modular on X.

The relationships between them are as follows:
srtict modular =— modular = pseudomodular.

If, instead of (iii), the function w satisfies

7

A
(iii") wrp(z,y) < wy(y, z) for all A\, 1 >0 and z,y,2z € X,
A+ p I



then it is said to be a convex modular.

Let w be a convex modular and 0 < o < A. If we put z = y in Definition 2.1 (iii’),

then the following inequality holds:

wy(z,y) < %wu(%y) <wy(,y). (2.1)

The relationship between them is also as follows:
convex modular = modular.
Example 2.2. Let (X, d) be a metric space. Then two canonical strict modulars are
given as follows:

(i) If we set wy(z,y) = d(z,y), then it is a nonconvex modular on X.

d(z,y)

(i) If we set wy(z,y) = , then it is a convex modular on X.

Remark 2.3. (1) w is nonincreasing on A by (2.1).

(2) Let w be a (pseudo)modular. If we set wy(z,y) = M, then w is a convex
(pseudo)modular.
(3) If w is convex, the following inequality holds:
n
(A1 + Ao+ + A )W, xg et (1, Tne1) € ) Awn, (24, Tivn ), (2.2)
i=1

where A\; >0 and x; € X.

Example 2.4. We give a few of examples of (pseudo)modulars.

Let d be a (pseudo)metric on X.



(i) If we set wy(x,y) as follows:

w)\(xay) =

then w is a modular.

(ii) If we set wy(z,y) = d(z,y)/¢(N), where ¢ : (0,00) —> (0, 00) is a nondecreasing

function, then w is a (pseudo)modular.

(iii) If we set wy(x,y) as follows:

0, A>d(z,y),
’ll))\(x,y) =
oo? ASd('r7v’_l/)7

then w is a (pseudo)modular.

(iv) If we set wy(x,y) as follows:

07 )\Zd(-ﬁ,y),
U))\(x,y) =
0, )\<d($,y),

then w is a (pseudo)modular.

Definition 2.5. Let w be a pseudomodular on X. Then the two sets

Xy = Xy(wg) ={z e X :wy(z,20) — 0 as A —> oo},

X=X, (x9) ={z e X :wy(x,x9) < oo for some A(z)}

are called to be modular spaces (around x).



Definition 2.6. Let w be a pseudomodular on X. Then a sequence {x,} from X,, or
X, is said to be modular convergent (or w-convergent) to an element = € X if there

exists a number A({z,},z) > 0, such that wy(z,,x) — 0 as n — oo for some A > 0

and any such element = will be called a modular limit of the sequence {zy,}.

Definition 2.7. A pseudomodular w on X is said to satisfy the (sequential) Ay —
condition on X, if the following condition holds:
Given a sequence {z,} c X and z € X, if there exists a number X\ > 0, depending on

{2y} and z, such that wx(zn,z) — 0 as n —> oo, then wa (25, ) —> 0 as n —> oo.

Remark 2.8. In fact, there is another version of definition concerning w-convergence
in modular metric spaces. In ([6]), Cho et al. defined w-convergence in modular metric

spaces as follows:

w(Tp,x) — 0 as n—> oo for all A >0,
which is evidently stronger than Definition 2.6. Also, it is equivalent to Definition 2.6
under As-condition. Here we take Definition 2.6 as definition of w-convergence.
Theorem 2.9. ([5/) Let w be a pseudomodular on X. We have:

(1) the modular spaces Xy, and X, are closed with respect to the modular convergence
i.e., if {xn} c Xy (or X)), v € X and wy(zp,x) — 0 as n — oo, then x € X,

(or x € X}, respectively);

(2) if w is a strict modular on X, the modular limit is determined uniquely (if it

exists).



Remark 2.10. Remark 2.3 shows that if wy(z,,x) — 0 as n —> oo for some A > 0,

then w,(z,,2) — 0 as n — oo for all > A > 0.

Definition 2.11. Let w be a modular on X. Then a sequence {z,} in X is said to
be modular Cauchy (or w — Cauchy) if there exists a number A({z,}) > 0 such that

W (T, Tn) — 0 as m,n —> oo for some A > 0.

Definition 2.12. Let w be a modular on X. Then the modular space X, is said to
be modular complete (or w — complete) if each modular Cauchy sequence from X is
modular convergent in the following sense:

If {z,} c X and there exists a number A({zy}) > 0 such that wy(zm,z,) — 0 as

m,n —> oo, then there exists an xg € X, such that wy(x,,29) — 0 as n — oo.



3 Fixed point results in modular metric spaces

Banach contraction principle ([3]) is the very well-known metric fixed point theorem,
which asserts that if T': X — X, where X is a complete metric space, and there exists

k€ (0,1) such that for all z,y € X,
d(Tz,Ty) < kd(z,y),

then 7" has a unique fixed point. In ([5]), the same problem was raised in the context
of modular metric spaces: Is there a fixed point of T" satisfying conditions like Banach

contraction principle in modular metric spaces? The affirmative answer was also given

in ([5]).
Definition 3.1. ([5]) Let w be a modular metric on X and let X;; be a modular space.

(i) A map T : X, — X, is said to be w-contractive if there exist 0 < k < 1 and

Ao > 0 depending on k such that
’wk)\(TI', Ty) < U))\(SC, y)
for all 0< A< Mg and z,y € X,

(i) A map T: X, — X is said to be strongly w-contractive if there exist 0 <k < 1

and Ag > 0 depending on k such that
wix(T'z, Ty) < kwy(z,y)
for all 0 < A< Ag and z,y € X,

The following fixed point theorems were proved in ([5]).

8



Theorem 3.2. ([5]) Let w be a strict convex modular metric on X such that the

modular space X, is w-complete and let T : X, — X} be w-contractive such that

for each A >0, there exists an x = x(\) € X, such that wy(z,Tx) < co.

Then T has a fived point, i.e., Tz, =z, for some x, € X,. If, in addition, the modular

metric w assumes only finite values on X, then the fived point of T' is unique.

Theorem 3.3. ([5]) Let w be a strict modular metric on X such that the modular

space X, is w-complete and let T': X;;, — X, be strongly w-contractive such that

for each A >0, there exists an x = x(\) € X, such that wy(z,Tx) < co.

Then T has a fived point, i.e., Tz, =z, for some x, € X,. If, in addition, the modular

metric w assumes only finite values on X, then the fived point of T' is unique.

Since Banach contraction principle appeared, many different types of contraction
have been emerging in the framework of metric spaces. See ([17]) for more information
on it. Huge amount of fixed point results have been acquired under such various con-
tractions. Some of them are independent of Banach contraction principle while some
of others include it. For example, Kannan contraction principle in ([11]) is one of them
which is indepedent of Banach contraction principle. See ([16]) for independence. Like
metric spaces, there are various versions of w-contraction, so called Kannan type, Bogin

type and Reich type, etc.. At first, we look at some definitions.

Definition 3.4. Let w be a modular metric on X and let 7" be a self map on X .



(i) T is said to be Kannan type w-contractive ([14]) if there exist 0 < k < 1/2 such

that
wx(Tz, Ty) < k{wan(z, Tx) + wa(y, Ty)} (3.1)
for all A\>0 and z,y € X,

(ii) T is said to be Bogin type w-contractive ([2]) if there exist 0 < k <1 and A9 > 0

depending on k such that

wix(Tz, Ty) < awx(z,y) +b{war(z, Tx) +war(y, Ty)}

+e{won(z, Ty) + wor(y, Tx)} (3.2)

forall 0 < A< Ag, z,ye X, and a,b,c>0 with a+2b+2c=1. If weput a=c=0

and b =1/2, then it is Kannan type w—contractive in the sense of ([2]).

(iii) T is said to be Reich type w-contractive ([13]) if there exist 0 < k <1 and A9 >0

such that
w(Tz,Ty) < wa(z,y) +wa(z,Tr) +wa(y, Ty) (3.3)

for all 0 < A< A\g and z,y € X, with a,b,c€(0,1) and a+b+c < 1. If a tends to

0, it is Kannan type w—contractive in the sense of ([13]).

Now it is quite natural to ask, in the context of modular metric spaces, whether there
exists a result corresponding to Theorem 1 in ([11]), or not. we look at the following

three examples.
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Example 3.5. Set X ={0,1,2} and define w: (0,00) x X x X — [0, 00] by

0, T =y,
_) 1
wx(z,y) = Y x+y=1 or A>10,
00, r+y, x+y=2or3 and A<10.

Then w satisfies the following conditions:

(i) w is a strict convex modular on X.

(i) X, =X
(iii) X is w-complete.

Proof. (i) Tt is clear that wy(z,y) = 0 for some A > 0 <= x = y. Symmetry of w is

obvious. If wy,,(z,y) < oo, then its value is either 0 or . Since
+ i
A 1 1
) 2 . if +Z,
U L waril il el
7 poo1 .
wyu(y,z) > s— = if y+z,
A+ w(y:2) A+ A1 4
we see that
Wrin(2,9) € 2w (2,2) + ~—w,(y, 2)
H A+ A+p M

if wypu(z,y) < oo.

Suppose wxy,(x,y) = oo, which implies that A+ z < 10 and hence A, p < 10.

Case(1): wys,(0,2) = co. Then AiMwA(O,z) + /\'_L:Mwu(z,Z) = oo for any z € X.

Case(2): wys,(1,2) = co. Then /\iMwA(l,z) + /\ijuwu(z,Q) = oo for any z € X.

In both cases, we also see that

7
aan(9) < () ¢ T 2)

A+

Thus w is a strict convex modular.

11



(ii) Fix xg € X. Then wy(x,x0) =0 or 1/X if A > 10, which implies that X (zg) = X.

(iii) Fix A > 10 and set € > 0 such that 0 < e < 1/A. If & # y, then wy(z,y) = 1/\ > ¢,
which shows if {z,} is a w-Cauchy sequence, then there exists N € N such that
m,n > N = x,, = x,. Thus X} is w-complete.

From (i),(ii) and (iii), we see that w satisfies all required conditions. O

Example 3.6. Let w be the same as in Example 3.5. and define T": X}, — X} by

T(0)=1, T(1)=2, T(2)=0.

Then the following conditions hold:

(i) T is a Bogin w-contraction (or Kannan w-contraction) in the sense of ([2]), where

a=0,b=0.5,¢=0, k=0.5and Ao =5 in (3.2) of Definition 3.4.

(il) wx(0,7(0)) =1/X < oo for any A > 0.

From (i) and (ii), 7" satisfies all required conditions of Theorem 3.6 in ([2]), but it is

fixed point free.

Proof. (i) It suffices to show that (3.2) holds when z # y. If we set a =0,b=0.5,¢=0
and k = 0.5 1in (3.2), then we see that woy (x, T'z)+war(y, Ty) = oo forany 0 < A< 5
and any z,y € X, (x # y). Hence putting \g = 5, we see that (3.2) of Definition
3.4 holds for any 0 < A < A\g, which means that T is a Bogin w-contraction (or

Kannan w-contraction) in the sense of ([2]).

(ii) It is obvious that wy(0,7(0)) = wx(0,1) = 1/A < oo for any A > 0.
From (i) and (ii), we see that T disproves the results of Theorem 3.6 of Aksoy et
al. in ([2]). O

12



Example 3.7. Let w and T be the same as in Example 3.6. Then the following con-

ditions hold:

(i) T is a Reich w-contraction in the sense of ([13]), where a = 0.1, b = ¢ = 0.4 and

Ao = 3 in (3.3) of Definition 3.4.
(ii) wx(0,7°(0)) =1/A < oo for any A > 0.

From (i) and (ii), T satisfies all required conditions of Theorem 2.1 in ([13]), but it is

fixed point free as shown in Example 3.6.

Proof. If we set a = 0.1, b = ¢ = 0.4 and A\g = 3, then \o/b = \g/c = 7.5 < 10 and
wrs(x, Tx) + wr5(y, Ty) = oo for any z,y € X\, (z # y). Hence putting A\ = 3, as in
Example 3.6, we see that T satisfies all required conditions of Theorem 2.1 in ([13])

and so, T disproves the results of Theorem 2.1 of Mitrovic et al. in ([13]). O

Remark 3.8. In Examples 3.6 and 3.7, we note that if A < 10, there does not exist

x € X, such that

wa (T" 'z, T"x) < oo, for all n e N. (3.4)

Remark 3.9. Examples 3.6 and 3.7 obviously show that T satisfies all required condi-
tions of Theorem 3.6 in ([2]) and Theorem 2.1 in ([13]), but does not have a fixed point,
respectively. Thus, we have to be careful when dealing with modulars. In (]2, 13]), Picard
iteration is utilized for constructing {x, }nen, i.€., T, = T"x¢. In this case, wy(zy, Tni1)

may take an infinite value even if wy(z,-1,z,) take a finite value. Then the inequality

WA(Tn, Tnt1) < awp(Tp-1,Ty) + bwy(Tp, Tpe1), where 0 < a,b< 1,

13



no longer implies that inequality

a
w/\(xnaxrwl) < —’w)\(IEn_l,CL'n)

1-b

holds when w) (2, Zn+1) = co. This is the problem that the authors of (]2, 13]) did
not pay attention to. As we have shown in Examples 3.6 and 3.7, most of the claims
concerning properties of Reich or Kannan w-contractions are incorrect, nullifying the
validity of many fixed points results obtained in modular metric spaces. As a result,
unlike cases of Theorem 3.2 and 3.3, we can see that a slightly stronger condition like

(3.4) is needed. Additionally, some of flaws in ([14]) were also pointed out in ([1]).

Motivated by these results, we define an Kannan type w-contraction as follows:
Definition 3.10. Let w be a modular metric on X.

(i) Amap T : X, — X is said to be Kannan type w-contractive if there exist

0<k<1/2 and Ao > 0 depending on k such that
1
forall 0 < A< A\g and =,y € X

(i) A map T: X, — X is said to be strongly Kannan type w-contractive if there

exist 0 < k < 1/2 and A\g > 0 depending on k such that
wix(Tz, Ty) < k{w, (z, Tz) +wa (y, Ty)} (3.6)

forall 0 < A< Xg and z,y € X;.

14



Lemma 3.11. Let w be a modular metric on X and let X, be a modular space. Suppose
that

1
win (T, Ty) < S{wy (2, Tw) +wy (y,Ty)}

for some X\ >0 and x,y € X;,. If there exists x(\) € X5 such that
w%(T”_lx,T"x) < 00
for each n € N, then woigi+i\(T"x, T" ) < 0o for each i e Nu{0} and n>i+1.
Proof. Suppose that A > 0 satisfies (3.5). Then by assumption,
wien(T"z, T x) < %{w%(Tn_lx,T”x) + w%(T”x,T"Hx)} < 00
for all n € N. In general, using induction on ¢, we obtain
woigie\ (T, T z) < %{wzi—lki,\(Tn_lﬂf,TnfL’) + Wy iy (T, T 1)} < oo

for all n >4+ 1, and so our result holds. ]

Lemma 3.12. Let w be a convexr modular metric on X. Then the following inequality

holds: For alli,j €N and 0< k< 1/2,

w1 (2,y) < (2k) wairi-sgenn (2, ).

Proof. From (2.1), we obtain the following inequality:

2i+j—1ki+j)\

Ww2i+j—lki+j)\($, y)

wai-1pix(2,y) <

(2k)iwzi+j—lki+j)\($,y)
and so our result holds. O

15



Theorem 3.13. Let w be a strict convexr modular metric on X such that the modular
space X, 1s w-complete. Let T': X}, — X, be Kannan type w — contractive with the

property that
for each A >0, there exists an x(\) € X, such that wax (T e, T"z) < oo
for all n e N. Then there uniquely exists x. € X, such that
Wakyi-1x (T2, 24) — 0 as n —> oo

for each j € N. Moreover, if w aiyi-1y, (T4, ) < 00 for some j € N, where j > 1+
1-2k

log%(% — k), then x, is the unique fized point of T

1-2k
Proof. Put A\ = %)\0. Then there exists xg € X,;, depending on A;, such that

wQ(T"_lxo,T":ro) < o0
for all n € N. At first, we show that

Wy, (T2, T 29) < { )} was-1pn, (T9 g, T ). (3.7)

2(1— k
Using (3.5) and Lemma 3.12, for any j € Nu {0}, we have

. ) 1 ) ) . .
Wi fi+1 ), (Tﬁlxo, TﬁQl‘o) < é{ng—lkj)\l (T xo, Tﬁll‘o) + W14 A, (T]+1x0, TJ+2$0)}

§w2j—1kj)\1 (T].%'(), T]+l.%'()) + kngkjﬂ)\l (T]+lx0, T]JrZHJO).

A

IN

Since waigi+ix, (T g, T7*220) < 00 by Lemma 3.11, we obtain

1

i 1i+1 Tj+1 Tj+2 S -

j j+1
Woi-1ix, (T w0, T?" ).

16



In general, for any 7 € N,
. " 1 o .
Wi+i-1fi+i ), (Tl+]$Q,TH‘7+1$0) < 5 {w2i+]’—2ki+j—1)\1 (THJ ISUQ,THJJ,‘())

. il
+ Woiri-2fiti-1), (TH—]CC(), T+ .%'0)}

Woi+j—2fi+i-1)\; (TH]_IJJO, TH].’L’())

N |

<

+ kw2i+j—1ki+j)\1 (TH]iL‘O, T7'+]+1$0).
Keeping the fact that waisi-1pi+i, (T 20, T *120) < 0o in mind, and using induction

on 7, we have
Wi+i-1fi+i ), (Tl+j.%‘0,TZ+j+11E0) < 2(1 _ k)w2i+j—2ki+j—1)\1 (TH]_IJI[), THJ.T())
< { 1 }i (T mo, T )
S —7——< Woi-1ki xo, .
2(1-k) 2i-1ki X\ 0 0

and so (3.7) is true. Let m <n and set
kam+1{1 _ (Qk,)n—m}Al

— kam+1)\ 2n—1kn>\ —
)‘(man) 1+t 1 1-9k

Fix j € N. Then using (2.2) and (3.7), we have

wanyi-A (T w9, T 2

n-1 2i+j—1k,i+j>\
1 . .
Woi+i-1fi+i ), (TH].I(), TH]+1.%’0)

i:mm
n-1 2iki+1)\1 1 i A A
: i=tkd 1’ 7T]+1 3.8
S A {2(1_k)}w2 kix, (1720 x0) (3.8)
Al(l—k)k k m k B ‘ .
= 1-(—— )™ i1 T 7TJ+ )
/\(1—2k)(1—k) { (1 k) }w2 kix, (1720 x0)

Since 1 - (2k)™k > 1/2 and k{1 - (2k)"} < 1/2, we have
1—-k 2™ 1 - (2k)" ™)
)\O_A_{l—%_ 1-2k })‘1
_ {1-(@k)™k} - k{1 - (2K)"} |
B 1-2k !

> 0.
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A(1-k)

Noting that
oting tha No(1 = 2k)

=1 and A < \g, by (2.1) and (3.8),

'U)(Qk)j—l)\o (Tm+J:I,’0, Tn+]$())

PG
- (2K)" o
<3S () () e e
= k() 1= (72) T Jwnion, (T, T3 )

k
1-k

wany-A (T 20, T 2)

m . .
< ki( ) w2j—1kj)\1(T]£U0,Tj+1$0).

The last term of the above inequality tends to 0 as m — oo. Hence for any j € N,

W(2k)i-1 ) (T™ 20, T 20) — 0 as m — oo (m <n). (3.9)
2k)7 I\
Choose j; € N such that j; > 1+ log%(% — k) which leads to (1)—0 < Xo. By
1o
w—-completeness and (3.9), there exists z, € X, such that
W(2k)i1-1 0o (T"wo,x,{) —> 0 as n — oo. (310)

Moreover, we assume that w i-15, (T, ) < 0o. We claim that z, is the unique fixed
1-2k
point of T'. If jo > ji —logy, (1 — 2k) (j2 € N), then from (3.9), the following inequality

holds: Taking n — oo,
W (21)91=1 5 (T"‘lxg, Tnl'o) < W(2k)i2-170 (Tn_lfL'o, T"wo) — 0. (3.11)
Using Definition 2.1 (iii) and (3.5),

W aryin-tag (Tay TT4) = W (x4, Txy)
1-2k

REOLD0 k)

n n
< wkm(Tx*,T x()) + w(zk)jl—l)\o(T :ZZ(),:L'*)

1_
2k

1 1 -1
< ZW (2r)d1-1xg (IL'*, T.’L‘,‘.) T W (2r)i1-1x, (Tn xo, Tnl‘())
2 12k 2 12k

+ W(2k)31-1 ), (T"a;o, :c*).

18



Thus, we obtain

1 1 -1
éw(Qk)jl_l,\o (x*, Tx*) < §w(2k)j1_1 Ao (Tn X0, Tnl”o) + W(2k)i1-1 ) (Tn-rOv x*)-
1-2k 1-2k

Applying (3.10) and (3.11), we see that the right hand side of the last inequality tends

to 0 as n — oo. Hence, by the strictness of w, we obtain that
W (2k)91-1xg (I‘*,T‘I‘*) =0,
1-2k

ie., Tz, =x,.

If Ty, = y., then

1

Wiy (Tw, Yu) = Wien, (T4, Ty ) < 5 {w%o(x*,Tx*) +w%0(y*,Ty*)} =0,

and so x, is the unique fixed point of T O

Now, we show that Theorem 1 is a Corollary of Theorem 3.13 as follows:

Corollary 3.14. (Theorem 1 in ([11])) Let (X, d) be a complete metric space. If
T: X — X and there exists k € (0,1/2) such that (1.1) is satisfied for all z,y € X,

then T has a unique fized point.

d(z,y)

Proof. If we set wy(z,y) = , then Example 2.2 (ii) shows that w is a strict convex

modular. And it is clear that X, = X. Also, w-convergence and w-Cauchy sequence
are equivalent to convergence and Cauchy sequence in (X, d), respectively. Therefore,
w-completeness is equivalent to completeness in (X, d). Dividing both sides of (1.1) by

kX, we see that (1.1) implies (3.5). From which, the desired conclusion is derived. [
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Remark 3.15. In many cases of dealing with modular metric or generalized modular

metric ([21]), the condition
dw(N, ) = sup{w\(T™(z),T"(x)) :m,ne NU{0}} < o0

is often required for some z € X and for some A > 0, which is stronger than the
condition wy (T" 12, T"z) < oo for each n € N. So, the results of Theorem 3.13 is
independent of results in other papers, where d,,(\, ) < oo for some x € X and for

some A > 0 is assumed. See ([1, 6, 8, 10]) for more details.

Corollary 3.16. Let w be a strict modular metric on X such that the modular space

X, is w-complete. Let T : X; — X be strongly Kannan type w — contractive with

the property that
for each A >0, there exists an x(\) € X,, such that wa (T" e, T"z) < oo
for all n e N. Then there uniquely exists x. € X, such that
Wakyi-1a (T2, 24) —> 0 asn — oo

for each j € N. Moreover, if W aiyi-1, (T4, ) < 00 for some j € N, where j > 1+
1-2k
log%(% — k), then x,. is the unique fized point of T

w)\(x7y)

3 . Remark 2.3 shows that w is a strict convex

Proof. Let us set wy(z,y) =
modular metric with the property that X7 = X . It is easy to show that w satisfies

(3.5). Applying Theorem 3.13, we obtain the desired results. O

Corollary 3.17. Even if (3.5) is replaced by

1
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for some N e N, then T still has the unique fixed point.

Proof. By Theorem 3.13, there exists an unique =, € X, such that TNz, = x,. Hence
we see that TNTxz, = TTNz, = Tx,. Applying the uniqueness of a fixed point of TV,

we have Tz, = z,. O

Remark 3.18. The contraction (3.5) with k = 1/2 in complete modular metric spaces

does not guarantee the existence of a fixed point of 7. See Examples 1.4 or 1.5 in ([9]),

2d(z,y)
==

where we set wy(z,y) =
Example 3.19. Let w be the same as in Example 3.5. Define T} : X;, — X, by

T1(0) =0, Ti(1)=0, Ty(2)=0.

It is easy to prove that Ty satisfies all required conditions in Theorem 3.13. In particular,

W (TP~1(1),T7(1)) < oo for any A > 0. Also, T} has the unique fixed point at 0 € X
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4 Characterization of completeness in modular

metric spaces

P.V. Subrahmanyam ([18]) showed that fixed point properties under Kannan con-
traction can characterize completeness in metric spaces. Since a family of modular
metric spaces is properly larger than a family of metric spaces, it is quite natural to
ask whether fixed point properties under Kannan w-contraction can characterize com-
pleteness in modular metric spaces. In this context, as we show, we need a different

kind of definition of completeness. At first, we look at the following example.

Example 4.1. Set X =R and define w: (0,00) x X x X — [0, 00] by

00, A<10 and either x=0 or y =0,

A

It is easy to see that w is a strict (convex) modular and X (0) = X. Setting x,, = 1/n

, otherwise.

and X\ = 5, we have ws(zy,,x,) — 0 as m,n —> oo, which shows that {z,}ney is a
w-Cauchy sequence in this modular metric space. But ws(z;,0) = oo for any [ € N.
Hence X, is not w—complete in the sense of Definition 2.12. However, if we put \ = 10,

then wig(z;,0) — 0 as | — oo.

Example 4.1 motivates us to define so called weak w-completeness in modular metric

spaces.

Definition 4.2. Given a modular w on X, the modular space X, is said to be weak
modular complete (or weak w-complete) if each modular Cauchy sequence from X is
modular convergent in the following sense:

If {x,} c X, and there exists a number A\ ({zy}) > 0, such that wy, (zm,z,) — 0 as
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m,n —> oo, then there exist an zp € X, and Aa({zp},zo) > 0 such that wy, (zn,x0) —

0 as n — oo.

Remark 4.3. Noting that w is nonincreasing on A\, we see that Definition 4.2 is equiv-
alent to the following statement:
There exists a number A({z,},x9) > 0 with the property that wy(xm,z,) — 0 as

m,n —> oo implies that there exists an xg € X}, such that wy(z;,x9) — 0 as | — oo.

Remark 4.4. It is easy to see that X is weak w-complete in Example 4.1. Hence, it
shows that Definition 4.2 is weaker than Definition 2.12, properly. Also, the former is

equivalent to the latter under Ag—condition.

We are ready to say about characterization of completeness in modular metric

spaces without imposing Ay—condition (See Definition 2.7.) on X ;.

Theorem 4.5. Let w be a strict modular metric on X and let X, be a modular space.
Suppose that T : X; — X, has a fized point whenever the following two conditions

are satisfied:

(1) For fixred ¢>0, \1 >0 and Ay >0,

W), (T.Z',Ty) <c max{w)\z (%,TQ?), w/\z(y7 Ty)}

(2) T(X) is countable.

Then X, is weak w-complete.
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Proof. Suppose that X, is not weak w-complete and fix x € X;. Then there exists a
nonconvergent w-Cauchy sequence {z,} ¢ X7, where, without loss of generality, we can
assume T, # T, if m # n. In other words, wy, (zm,x,) — 0 as m,n — oo for some

A1 >0 but wy, (z,z) - 0 as | — oo for any x € X ) and A2 > 0. Fix Ay > 0 and set

L(x) = limsupw)g (l’l,.ﬁlf),

-0
which may be possible to be co. Clearly, L(z) > 0. So, there exists a subsequence {z;, }

of {x;} such that wy,(x;,,2) — L(x) as k —> oo. For convenience, we put {z;, } =

L(z)
2

. Set

{z;}. Then there exists n; € N such that for any { > ny, wy, (2, z) >
Li(z) = min{wy, (x;,z) : 1<l <ny = 1, a; # x}.

By the strictness of w, Lq(x) > 0. Then there exists the least positive integer na(z) € N,

which is not less than ny, such that if m,n > no and x; # x, then the following inequality

holds:
L
w, (Tm, Tn) < cmin{%, Ll(x)} < cwy, (z, 7).
: L(x) .
In particular, wy, (zp,, ) > 5 >0 and hence x,, # x. Therefore, if m > ng,
Wy, (T, T, ) < cwpy, (T, Tp,). (4.1)

Define T': X, — X, by Tx = x,,. Clearly, T is fixed point free and 7'(X) is countable.
It remains to prove condition (1). Given z,y € X, there exist m,n € N such that

Tz =y, Ty = x, by definition of T. From (4.1), if m > n,
wx, (T, Ty) = wx, (Tm, Tn) < cwy, (Y, 2n) = cwr, (y,Ty).
In a similar way, if m < n, we obtain

wy, (Tx, Ty) = wx, (T, Tn) = wx, (T, Tm) < cwr, (T, Tm) = cwy, (z,TT).
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From which, we obtain the following inequality:

wx, (Tx, Ty) < ¢ maz{wy, (x, Tx), wx,(y, Ty)}-

Consequently, we see that condition (1) also holds. This contradicts to the hypothesis
that 7' must have a fixed point if conditions (1) and (2) are all satisfied. Hence X, is

weak w-complete. O

Remark 4.6. Setting A\; = kA, Ay = A/2, ¢ = 1/2, it is clear that condition (1) in
Theorem 4.5 is stronger than the Kannan type w-contraction (3.5). It means that the
converse of the results of Theorem 3.13 still holds in modular metric spaces in the sense

of weak w—completeness.

Remark 4.7. Let {z,} be a nonconvergent Cauchy sequence in a metric space (X, d).
Then {d(xn,z)}nen is a Cauchy sequence in R for any x € X by virtue of triangle
inequality. But in a modular metric space, due to deficiency of triangle inequality,
even if {x,} is a nonconvergent w-Cauchy sequence in a modular metric space (X, w),
{wx(xn, ) fneny need not be a Cauchy sequence in R for any A > 0 and any x € X as
shown in Example 4.1. Taking into account this fact, we can not directly apply the
corresponding methods while possible in the framework of metric spaces. See ([18, 19,

20]) for more details.

Remark 4.8. In 1959, Connell (Example 3 in ([7])) showed that Banach contraction
principle can not characterize completeness in metric spaces. Considering Example 2.2
together with this fact, it is clear that the converse of Theorem 3.2 does not hold in

modular metric spaces.
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