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⟨Abstract⟩

Kannan type fixed point theorems in modular

metric spaces

In 2010, V.V. Chistyakov introduced the concept of modular metric spaces.

This concept generalizes modular linear spaces, modular function spaces and met-

ric spaces. In this thesis, we prove the new existence theorem of a unique fixed

point for Kannan type w-contractive mappings in modular metric spaces. Our

result generalizes the results of Kannan on complete metric spaces.

In 2017, Aksoy et al. defined Bogin type w-contraction and Kannan type w-

contraction in modular metric spaces, and proved the existence theorems of a

fixed point under some conditions. Also, in 2019, Mitrovic et al. defined Reich

type w-contraction and Kannan type w-contraction in the same spaces, and also

proved the existence theorems of a fixed point under some conditions. But we

give counterexamples that the above two results of Aksoy et al. and Mitrovic et

al. do not hold.

Finally, we introduce the new concept of weak w-completeness, which gener-

alizes w-completeness and show that the converse of our main theorem holds as

a special case.



1 Introduction

In 2010, V.V. Chistyakov ([4]) introduced the notion of modular metric spaces (or

metric modular spaces) and investigated properties of the spaces. This concept gener-

alizes modular linear spaces ([15]), modular function spaces ([12]) and metric spaces.

Moreover, in 2011, Chistyakov ([5]) defined w-contraction in modular metric spaces and

proved the existence theorems of a fixed point under such contractive conditions. The

main idea behind this new concept is physical interpretations. Informally speaking, a

metric on a set represents nonnegative finite distances between any two points of the

set. On the other hand, a modular on a set attributes a nonnegative (possibly, infinite

valued) field of (generalized) velocities if we take λ as a parameter of time: If we set

wλ(x, y) =
d(x, y)
λ

, then w is average velocity which means that it takes time λ to cover

the distance between x and y. What if x is disconnected with y? Clearly, it is impossible

to reach from x to y regardless of given time λ, so it seems reasonable for us to assign

wλ(x, y) to ∞. It is a reason that we adopt extended real system as a codomain of a

modular metric.

In 1968, R. Kannan ([11]) proved the following theorem on complete metric spaces:

Theorem 1 ([11]) Let (X,d) be a complete metric space. If T ∶X Ð→X and there

exists k ∈ (0,1/2) such that for all x, y ∈X,

d(Tx,Ty) ≤ k{d(x,Tx) + d(y, Ty)} (1.1)

then T has a unique fixed point.

The main purposes of this thesis are to investigate fixed point results under Kan-

nan type w-contractive condition in modular metric spaces, and to give counterexamples
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that two results of Aksoy et al. ([2]) and Mitrovic et al. ([13]) do not hold. This thesis

is organized as follows:

In chapter 2, we briefly introduce the notions and examples in ([4]) and ([5]) con-

cerning modular metric spaces.

In chapter 3, we not only compare a variety of definitions concerning Kannan type

w-contraction in modular metric spaces but also show the new existence theorem of

a unique fixed point under Kannan type w-contraction which is our main result. The

result generalizes Kannan contraction principle in ([11]). We also give counterexamples

that Theorem 3.6 of Aksoy et al. ([2]) and Theorem 2.1 of Mitrovic et al. ([13]) do not

hold, respectively.

In chapter 4, we define the new concept, the weak w-completeness in modular metric

spaces which is a generalization of w-completeness introduced in ([5]). Also, we show

that the converse of the main result in chapter 3 also holds as a special case.
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2 Preliminaries

We mainly recall some basic terms and notations in ([4]) and ([5]). From now on,

X represents a nonempty set and w ∶ (0,∞) × X × X Ð→ [0,∞] will be written as

wλ(x, y) = w(λ,x, y) for all λ > 0 and x, y ∈X.

Definition 2.1. A function w ∶ (0,∞)×X ×X Ð→ [0,∞] is called modular metric (or

modular) on X if it satisfies the following three conditions:

(i) given x, y ∈X, x = y iff wλ(x, y) = 0 for all λ > 0.

(ii) wλ(x, y) = wλ(y, x) for all λ > 0 and x, y ∈X.

(iii) wλ+µ(x, y) ≤ wλ(x, z) +wµ(y, z) for all λ,µ > 0 and x, y, z ∈X.

If, instead of (i), the function w satisfies only

(i′) wλ(x,x) = 0 for all λ > 0 and x ∈X,

then w is said to be a pseudomodular on X.

Also, if w satisfies (i′) and

(i′′) given x, y ∈X, x = y iff wλ(x, y) = 0 for some λ > 0, then the function w is called

a strict modular on X.

The relationships between them are as follows:

srtict modular Ô⇒ modular Ô⇒ pseudomodular.

If, instead of (iii), the function w satisfies

(iii′) wλ+µ(x, y) ≤
λ

λ + µwλ(x, z) +
µ

λ + µwµ(y, z) for all λ,µ > 0 and x, y, z ∈X,

3



then it is said to be a convex modular.

Let w be a convex modular and 0 < µ ≤ λ. If we put z = y in Definition 2.1 (iii′),

then the following inequality holds:

wλ(x, y) ≤
µ

λ
wµ(x, y) ≤ wµ(x, y). (2.1)

The relationship between them is also as follows:

convex modular Ô⇒ modular.

Example 2.2. Let (X, d) be a metric space. Then two canonical strict modulars are

given as follows:

(i) If we set wλ(x, y) = d(x, y), then it is a nonconvex modular on X.

(ii) If we set wλ(x, y) =
d(x, y)
λ

, then it is a convex modular on X.

Remark 2.3. (1) w is nonincreasing on λ by (2.1).

(2) Let w be a (pseudo)modular. If we set w̃λ(x, y) =
wλ(x, y)

λ
, then w̃ is a convex

(pseudo)modular.

(3) If w is convex, the following inequality holds:

(λ1 + λ2 +⋯ + λn)wλ1+λ2+⋯+λn(x1, xn+1) ≤
n

∑
i=1

λiwλi(xi, xi+1), (2.2)

where λi > 0 and xi ∈X.

Example 2.4. We give a few of examples of (pseudo)modulars.

Let d be a (pseudo)metric on X.
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(i) If we set wλ(x, y) as follows:

wλ(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, x = y,

∞, x ≠ y,

then w is a modular.

(ii) If we set wλ(x, y) = d(x, y)/φ(λ), where φ ∶ (0,∞) Ð→ (0,∞) is a nondecreasing

function, then w is a (pseudo)modular.

(iii) If we set wλ(x, y) as follows:

wλ(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, λ > d(x, y),

∞, λ ≤ d(x, y),

then w is a (pseudo)modular.

(iv) If we set wλ(x, y) as follows:

wλ(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, λ ≥ d(x, y),

∞, λ < d(x, y),

then w is a (pseudo)modular.

Definition 2.5. Let w be a pseudomodular on X. Then the two sets

Xw ≡Xw(x0) = {x ∈X ∶ wλ(x,x0)Ð→ 0 as λÐ→∞},

X∗
w ≡X∗

w(x0) = {x ∈X ∶ wλ(x,x0) <∞ for some λ(x)}

are called to be modular spaces (around x0).
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Definition 2.6. Let w be a pseudomodular on X. Then a sequence {xn} from Xw or

X∗
w is said to be modular convergent (or w-convergent) to an element x ∈ X if there

exists a number λ({xn}, x) > 0, such that wλ(xn, x) Ð→ 0 as n Ð→ ∞ for some λ > 0

and any such element x will be called a modular limit of the sequence {xn}.

Definition 2.7. A pseudomodular w on X is said to satisfy the (sequential) △2 −

condition on X∗
w if the following condition holds:

Given a sequence {xn} ⊂ X∗
x and x ∈ X∗

w, if there exists a number λ > 0, depending on

{xn} and x, such that wλ(xn, x)Ð→ 0 as nÐ→∞, then wλ
2
(xn, x)Ð→ 0 as nÐ→∞.

Remark 2.8. In fact, there is another version of definition concerning w-convergence

in modular metric spaces. In ([6]), Cho et al. defined w-convergence in modular metric

spaces as follows:

wλ(xn, x)Ð→ 0 as nÐ→∞ for all λ > 0,

which is evidently stronger than Definition 2.6. Also, it is equivalent to Definition 2.6

under △2-condition. Here we take Definition 2.6 as definition of w-convergence.

Theorem 2.9. ([5]) Let w be a pseudomodular on X. We have:

(1) the modular spaces Xw and X∗
w are closed with respect to the modular convergence

i.e., if {xn} ⊂ Xw (or X∗
w), x ∈ X and wλ(xn, x) Ð→ 0 as n Ð→∞, then x ∈ Xw

(or x ∈X∗
w, respectively);

(2) if w is a strict modular on X, the modular limit is determined uniquely (if it

exists).
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Remark 2.10. Remark 2.3 shows that if wλ(xn, x) Ð→ 0 as n Ð→ ∞ for some λ > 0,

then wµ(xn, x)Ð→ 0 as nÐ→∞ for all µ > λ > 0.

Definition 2.11. Let w be a modular on X. Then a sequence {xn} in X∗
w is said to

be modular Cauchy (or w − Cauchy) if there exists a number λ({xn}) > 0 such that

wλ(xm, xn)Ð→ 0 as m,nÐ→∞ for some λ > 0.

Definition 2.12. Let w be a modular on X. Then the modular space X∗
w is said to

be modular complete (or w − complete) if each modular Cauchy sequence from X∗
w is

modular convergent in the following sense:

If {xn} ⊂ X∗
w and there exists a number λ({xn}) > 0 such that wλ(xm, xn) Ð→ 0 as

m,nÐ→∞, then there exists an x0 ∈X∗
w such that wλ(xn, x0)Ð→ 0 as nÐ→∞.
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3 Fixed point results in modular metric spaces

Banach contraction principle ([3]) is the very well-known metric fixed point theorem,

which asserts that if T ∶X Ð→X, where X is a complete metric space, and there exists

k ∈ (0,1) such that for all x, y ∈X,

d(Tx,Ty) ≤ kd(x, y),

then T has a unique fixed point. In ([5]), the same problem was raised in the context

of modular metric spaces: Is there a fixed point of T satisfying conditions like Banach

contraction principle in modular metric spaces? The affirmative answer was also given

in ([5]).

Definition 3.1. ([5]) Let w be a modular metric on X and let X∗
w be a modular space.

(i) A map T ∶ X∗
w Ð→ X∗

w is said to be w-contractive if there exist 0 < k < 1 and

λ0 > 0 depending on k such that

wkλ(Tx,Ty) ≤ wλ(x, y)

for all 0 < λ ≤ λ0 and x, y ∈X∗
w.

(ii) A map T ∶X∗
w Ð→X∗

w is said to be strongly w-contractive if there exist 0 < k < 1

and λ0 > 0 depending on k such that

wkλ(Tx,Ty) ≤ kwλ(x, y)

for all 0 < λ ≤ λ0 and x, y ∈X∗
w.

The following fixed point theorems were proved in ([5]).
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Theorem 3.2. ([5]) Let w be a strict convex modular metric on X such that the

modular space X∗
w is w-complete and let T ∶X∗

w Ð→X∗
w be w-contractive such that

for each λ > 0, there exists an x = x(λ) ∈X∗
w such that wλ(x,Tx) <∞.

Then T has a fixed point, i.e., Tx∗ = x∗ for some x∗ ∈X∗
w. If, in addition, the modular

metric w assumes only finite values on X∗
w, then the fixed point of T is unique.

Theorem 3.3. ([5]) Let w be a strict modular metric on X such that the modular

space X∗
w is w-complete and let T ∶X∗

w Ð→X∗
w be strongly w-contractive such that

for each λ > 0, there exists an x = x(λ) ∈X∗
w such that wλ(x,Tx) <∞.

Then T has a fixed point, i.e., Tx∗ = x∗ for some x∗ ∈X∗
w. If, in addition, the modular

metric w assumes only finite values on X∗
w, then the fixed point of T is unique.

Since Banach contraction principle appeared, many different types of contraction

have been emerging in the framework of metric spaces. See ([17]) for more information

on it. Huge amount of fixed point results have been acquired under such various con-

tractions. Some of them are independent of Banach contraction principle while some

of others include it. For example, Kannan contraction principle in ([11]) is one of them

which is indepedent of Banach contraction principle. See ([16]) for independence. Like

metric spaces, there are various versions of w-contraction, so called Kannan type, Bogin

type and Reich type, etc.. At first, we look at some definitions.

Definition 3.4. Let w be a modular metric on X and let T be a self map on X∗
w.
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(i) T is said to be Kannan type w-contractive ([14]) if there exist 0 < k < 1/2 such

that

wλ(Tx,Ty) ≤ k{w2λ(x,Tx) +w2λ(y, Ty)} (3.1)

for all λ > 0 and x, y ∈X∗
w.

(ii) T is said to be Bogin type w-contractive ([2]) if there exist 0 < k < 1 and λ0 > 0

depending on k such that

wkλ(Tx,Ty) ≤ awλ(x, y) + b{w2λ(x,Tx) +w2λ(y, Ty)}

+c{w2λ(x,Ty) +w2λ(y, Tx)} (3.2)

for all 0 < λ < λ0, x, y ∈ X∗
w and a, b, c ≥ 0 with a + 2b + 2c = 1. If we put a = c = 0

and b = 1/2, then it is Kannan type w−contractive in the sense of ([2]).

(iii) T is said to be Reich type w-contractive ([13]) if there exist 0 < k < 1 and λ0 > 0

such that

wλ(Tx,Ty) ≤ wλ
a
(x, y) +wλ

b
(x,Tx) +wλ

c
(y, Ty) (3.3)

for all 0 < λ ≤ λ0 and x, y ∈ X∗
w with a, b, c ∈ (0,1) and a + b + c < 1. If a tends to

0, it is Kannan type w−contractive in the sense of ([13]).

Now it is quite natural to ask, in the context of modular metric spaces, whether there

exists a result corresponding to Theorem 1 in ([11]), or not. we look at the following

three examples.
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Example 3.5. Set X = {0,1,2} and define w ∶ (0,∞) ×X ×X Ð→ [0,∞] by

wλ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x = y,
1

λ
, x + y = 1 or λ ≥ 10,

∞, x ≠ y, x + y = 2 or 3 and λ < 10.

Then w satisfies the following conditions:

(i) w is a strict convex modular on X.

(ii) X∗
w =X.

(iii) X∗
w is w-complete.

Proof. (i) It is clear that wλ(x, y) = 0 for some λ > 0 ⇐⇒ x = y. Symmetry of w is

obvious. If wλ+µ(x, y) <∞, then its value is either 0 or
1

λ + µ . Since

λ

λ + µwλ(x, z) ≥ λ

λ + µ ⋅
1

λ
= 1

λ + µ if x ≠ z,

µ

λ + µwµ(y, z) ≥ µ

λ + µ ⋅
1

µ
= 1

λ + µ if y ≠ z,

we see that

wλ+µ(x, y) ≤ λ

λ + µwλ(x, z) +
µ

λ + µwµ(y, z)

if wλ+µ(x, y) <∞.

Suppose wλ+µ(x, y) =∞, which implies that λ + µ < 10 and hence λ, µ < 10.

Case(1): wλ+µ(0,2) =∞. Then
λ

λ + µwλ(0, z) +
µ

λ + µwµ(z,2) =∞ for any z ∈X.

Case(2): wλ+µ(1,2) =∞. Then
λ

λ + µwλ(1, z) +
µ

λ + µwµ(z,2) =∞ for any z ∈X.

In both cases, we also see that

wλ+µ(x, y) ≤ λ

λ + µwλ(x, z) +
µ

λ + µwµ(y, z).

Thus w is a strict convex modular.
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(ii) Fix x0 ∈X. Then wλ(x,x0) = 0 or 1/λ if λ ≥ 10, which implies that X∗
w(x0) =X.

(iii) Fix λ ≥ 10 and set ε > 0 such that 0 < ε < 1/λ. If x ≠ y, then wλ(x, y) = 1/λ > ε,

which shows if {xn} is a w-Cauchy sequence, then there exists N ∈ N such that

m,n ≥ N Ô⇒ xm = xn. Thus X∗
w is w-complete.

From (i),(ii) and (iii), we see that w satisfies all required conditions.

Example 3.6. Let w be the same as in Example 3.5. and define T ∶X∗
w Ð→X∗

w by

T (0) = 1, T (1) = 2, T (2) = 0.

Then the following conditions hold:

(i) T is a Bogin w-contraction (or Kannan w-contraction) in the sense of ([2]), where

a = 0, b = 0.5, c = 0, k = 0.5 and λ0 = 5 in (3.2) of Definition 3.4.

(ii) wλ(0, T (0)) = 1/λ <∞ for any λ > 0.

From (i) and (ii), T satisfies all required conditions of Theorem 3.6 in ([2]), but it is

fixed point free.

Proof. (i) It suffices to show that (3.2) holds when x ≠ y. If we set a = 0, b = 0.5, c = 0

and k = 0.5 in (3.2), then we see that w2λ(x,Tx)+w2λ(y, Ty) =∞ for any 0 < λ < 5

and any x, y ∈ X∗
w, (x ≠ y). Hence putting λ0 = 5, we see that (3.2) of Definition

3.4 holds for any 0 < λ < λ0, which means that T is a Bogin w-contraction (or

Kannan w-contraction) in the sense of ([2]).

(ii) It is obvious that wλ(0, T (0)) = wλ(0,1) = 1/λ <∞ for any λ > 0.

From (i) and (ii), we see that T disproves the results of Theorem 3.6 of Aksoy et

al. in ([2]).
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Example 3.7. Let w and T be the same as in Example 3.6. Then the following con-

ditions hold:

(i) T is a Reich w-contraction in the sense of ([13]), where a = 0.1, b = c = 0.4 and

λ0 = 3 in (3.3) of Definition 3.4.

(ii) wλ(0, T (0)) = 1/λ <∞ for any λ > 0.

From (i) and (ii), T satisfies all required conditions of Theorem 2.1 in ([13]), but it is

fixed point free as shown in Example 3.6.

Proof. If we set a = 0.1, b = c = 0.4 and λ0 = 3, then λ0/b = λ0/c = 7.5 < 10 and

w7.5(x,Tx) + w7.5(y, Ty) = ∞ for any x, y ∈ X∗
w, (x ≠ y). Hence putting λ0 = 3, as in

Example 3.6, we see that T satisfies all required conditions of Theorem 2.1 in ([13])

and so, T disproves the results of Theorem 2.1 of Mitrovic et al. in ([13]).

Remark 3.8. In Examples 3.6 and 3.7, we note that if λ < 10, there does not exist

x ∈X∗
w such that

wλ
2
(Tn−1x,Tnx) <∞, for all n ∈ N. (3.4)

Remark 3.9. Examples 3.6 and 3.7 obviously show that T satisfies all required condi-

tions of Theorem 3.6 in ([2]) and Theorem 2.1 in ([13]), but does not have a fixed point,

respectively. Thus, we have to be careful when dealing with modulars. In ([2, 13]), Picard

iteration is utilized for constructing {xn}n∈N, i.e., xn = Tnx0. In this case, wλ(xn, xn+1)

may take an infinite value even if wλ(xn−1, xn) take a finite value. Then the inequality

wλ(xn, xn+1) ≤ awλ(xn−1, xn) + bwλ(xn, xn+1), where 0 < a, b < 1,
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no longer implies that inequality

wλ(xn, xn+1) ≤
a

1 − bwλ(xn−1, xn)

holds when wλ(xn, xn+1) = ∞. This is the problem that the authors of ([2, 13]) did

not pay attention to. As we have shown in Examples 3.6 and 3.7, most of the claims

concerning properties of Reich or Kannan w-contractions are incorrect, nullifying the

validity of many fixed points results obtained in modular metric spaces. As a result,

unlike cases of Theorem 3.2 and 3.3, we can see that a slightly stronger condition like

(3.4) is needed. Additionally, some of flaws in ([14]) were also pointed out in ([1]).

Motivated by these results, we define an Kannan type w-contraction as follows:

Definition 3.10. Let w be a modular metric on X.

(i) A map T ∶ X∗
w Ð→ X∗

w is said to be Kannan type w-contractive if there exist

0 < k < 1/2 and λ0 > 0 depending on k such that

wkλ(Tx,Ty) ≤
1

2
{wλ

2
(x,Tx) +wλ

2
(y, Ty)} (3.5)

for all 0 < λ ≤ λ0 and x, y ∈X∗
w.

(ii) A map T ∶ X∗
w Ð→ X∗

w is said to be strongly Kannan type w-contractive if there

exist 0 < k < 1/2 and λ0 > 0 depending on k such that

wkλ(Tx,Ty) ≤ k{wλ
2
(x,Tx) +wλ

2
(y, Ty)} (3.6)

for all 0 < λ ≤ λ0 and x, y ∈X∗
w.
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Lemma 3.11. Let w be a modular metric on X and let X∗
w be a modular space. Suppose

that

wkλ(Tx,Ty) ≤
1

2
{wλ

2
(x,Tx) +wλ

2
(y, Ty)}

for some λ > 0 and x, y ∈X∗
w. If there exists x(λ) ∈X∗

w such that

wλ
2
(Tn−1x,Tnx) <∞

for each n ∈ N, then w2iki+1λ(Tnx,Tn+1x) <∞ for each i ∈ N ∪ {0} and n ≥ i + 1.

Proof. Suppose that λ > 0 satisfies (3.5). Then by assumption,

wkλ(Tnx,Tn+1x) ≤
1

2
{wλ

2
(Tn−1x,Tnx) +wλ

2
(Tnx,Tn+1x)} <∞

for all n ∈ N. In general, using induction on i, we obtain

w2iki+1λ(Tnx,Tn+1x) ≤
1

2
{w2i−1kiλ(Tn−1x,Tnx) +w2i−1kiλ(Tnx,Tn+1x)} <∞

for all n ≥ i + 1, and so our result holds.

Lemma 3.12. Let w be a convex modular metric on X. Then the following inequality

holds: For all i, j ∈ N and 0 < k < 1/2,

w2j−1kjλ(x, y) ≤ (2k)iw2i+j−1ki+jλ(x, y).

Proof. From (2.1), we obtain the following inequality:

w2j−1kjλ(x, y) ≤
2i+j−1ki+jλ

2j−1kjλ
w2i+j−1ki+jλ(x, y)

= (2k)iw2i+j−1ki+jλ(x, y)

and so our result holds.
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Theorem 3.13. Let w be a strict convex modular metric on X such that the modular

space X∗
w is w-complete. Let T ∶X∗

w Ð→X∗
w be Kannan type w − contractive with the

property that

for each λ > 0, there exists an x(λ) ∈X∗
w such that wλ

2
(Tn−1x,Tnx) <∞

for all n ∈ N. Then there uniquely exists x∗ ∈X∗
w such that

w(2k)j−1λ0
(Tnx,x∗)Ð→ 0 as nÐ→∞

for each j ∈ N. Moreover, if w (2k)j−1λ0
1−2k

(Tx∗, x∗) < ∞ for some j ∈ N, where j > 1 +

log2k(12 − k), then x∗ is the unique fixed point of T .

Proof. Put λ1 =
(1 − 2k)

1 − k λ0. Then there exists x0 ∈X∗
w, depending on λ1, such that

wλ1
2

(Tn−1x0, Tnx0) < ∞

for all n ∈ N. At first, we show that

w2i+j−1ki+jλ1
(T i+jx0, T i+j+1x0) ≤ { 1

2(1 − k)}
i

w2j−1kjλ1
(T jx0, T j+1x0). (3.7)

Using (3.5) and Lemma 3.12, for any j ∈ N ∪ {0}, we have

w2jkj+1λ1
(T j+1x0, T j+2x0) ≤

1

2
{w2j−1kjλ1

(T jx0, T j+1x0) +w2j−1kjλ1
(T j+1x0, T j+2x0)}

≤ 1

2
w2j−1kjλ1

(T jx0, T j+1x0) + kw2jkj+1λ1
(T j+1x0, T j+2x0).

Since w2jkj+1λ1
(T j+1x0, T j+2x0) <∞ by Lemma 3.11, we obtain

w2jkj+1λ1
(T j+1x0, T j+2x0) ≤ 1

2(1 − k)w2j−1kjλ1
(T jx0, T j+1x0).
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In general, for any i ∈ N,

w2i+j−1ki+jλ1
(T i+jx0, T i+j+1x0) ≤

1

2
{w2i+j−2ki+j−1λ1

(T i+j−1x0, T i+jx0)

+ w2i+j−2ki+j−1λ1
(T i+jx0, T i+j+1x0)}

≤ 1

2
w2i+j−2ki+j−1λ1

(T i+j−1x0, T i+jx0)

+ kw2i+j−1ki+jλ1
(T i+jx0, T i+j+1x0).

Keeping the fact that w2i+j−1ki+jλ1
(T i+jx0, T i+j+1x0) <∞ in mind, and using induction

on i, we have

w2i+j−1ki+jλ1
(T i+jx0, T i+j+1x0) ≤

1

2(1 − k)w2i+j−2ki+j−1λ1
(T i+j−1x0, T i+jx0)

≤ { 1

2(1 − k)}
i

w2j−1kjλ1
(T jx0, T j+1x0).

and so (3.7) is true. Let m < n and set

λ(m,n) = 2mkm+1λ1 +⋯ + 2n−1knλ1 =
2mkm+1{1 − (2k)n−m}λ1

1 − 2k
.

Fix j ∈ N. Then using (2.2) and (3.7), we have

w(2k)j−1λ(Tm+jx0, Tn+jx0)

≤
n−1

∑
i=m

2i+j−1ki+jλ1
(2k)j−1λ w2i+j−1ki+jλ1

(T i+jx0, T i+j+1x0)

≤
n−1

∑
i=m

2iki+1λ1
λ

{ 1

2(1 − k)}
i

w2j−1kjλ1
(T jx0, T j+1x0) (3.8)

= λ1(1 − k)k
λ(1 − 2k) ( k

1 − k)
m

{1 − ( k

1 − k )
n−m}w2j−1kjλ1

(T jx0, T j+1x0).

Since 1 − (2k)mk > 1/2 and k{1 − (2k)n} < 1/2, we have

λ0 − λ = { 1 − k
1 − 2k

− 2mkm+1{1 − (2k)n−m}
1 − 2k

}λ1

= {1 − (2k)mk} − k{1 − (2k)n}
1 − 2k

λ1

> 0.
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Noting that
λ1(1 − k)
λ0(1 − 2k) = 1 and λ < λ0, by (2.1) and (3.8),

w(2k)j−1λ0
(Tm+jx0, Tn+jx0)

≤ (2k)j−1λ
(2k)j−1λ0

w(2k)j−1λ(Tm+jx0, Tn+jx0)

≤ λ

λ0
⋅ λ1(1 − k)k
λ(1 − 2k) ( k

1 − k)
m

{1 − ( k

1 − k)
n−m

}w2j−1kjλ1
(T jx0, T j+1x0)

= k( k

1 − k)
m

{1 − ( k

1 − k)
n−m

}w2j−1kjλ1
(T jx0, T j+1x0)

≤ k( k

1 − k)
m

w2j−1kjλ1
(T jx0, T j+1x0).

The last term of the above inequality tends to 0 as mÐ→∞. Hence for any j ∈ N,

w(2k)j−1λ0
(Tm+jx0, Tn+jx0)Ð→ 0 as mÐ→∞ (m < n). (3.9)

Choose j1 ∈ N such that j1 > 1 + log2k(12 − k) which leads to
(2k)j1−1λ0

1
2 − k

< λ0. By

w−completeness and (3.9), there exists x∗ ∈X∗
w such that

w(2k)j1−1λ0
(Tnx0, x∗)Ð→ 0 as nÐ→∞. (3.10)

Moreover, we assume that w (2k)j1−1λ0
1−2k

(Tx∗, x∗) <∞. We claim that x∗ is the unique fixed

point of T . If j2 > j1 − log2k(1 − 2k) (j2 ∈ N), then from (3.9), the following inequality

holds: Taking nÐ→∞,

w (2k)j1−1λ0
1−2k

(Tn−1x0, Tnx0) ≤ w(2k)j2−1λ0
(Tn−1x0, Tnx0)Ð→ 0. (3.11)

Using Definition 2.1 (iii) and (3.5),

w (2k)j1−1λ0
1−2k

(x∗, Tx∗) = wk (2k)j1−1λ01
2
−k +(2k)j1−1λ0

(x∗, Tx∗)

≤ w
k (2k)

j1−1λ0
1
2
−k

(Tx∗, Tnx0) +w(2k)j1−1λ0
(Tnx0, x∗)

≤ 1

2
w (2k)j1−1λ0

1−2k
(x∗, Tx∗) +

1

2
w (2k)j1−1λ0

1−2k
(Tn−1x0, Tnx0)

+w(2k)j1−1λ0
(Tnx0, x∗).
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Thus, we obtain

1

2
w (2k)j1−1λ0

1−2k
(x∗, Tx∗) ≤ 1

2
w (2k)j1−1λ0

1−2k
(Tn−1x0, Tnx0) +w(2k)j1−1λ0

(Tnx0, x∗).

Applying (3.10) and (3.11), we see that the right hand side of the last inequality tends

to 0 as nÐ→∞. Hence, by the strictness of w, we obtain that

w (2k)j1−1λ0
1−2k

(x∗, Tx∗) = 0,

i.e., Tx∗ = x∗.

If Ty∗ = y∗, then

wkλ0
(x∗, y∗) = wkλ0

(Tx∗, T y∗) ≤ 1

2
{wλ0

2

(x∗, Tx∗) +wλ0
2

(y∗, T y∗)} = 0,

and so x∗ is the unique fixed point of T .

Now, we show that Theorem 1 is a Corollary of Theorem 3.13 as follows:

Corollary 3.14. (Theorem 1 in ([11])) Let (X, d) be a complete metric space. If

T ∶ X Ð→ X and there exists k ∈ (0,1/2) such that (1.1) is satisfied for all x, y ∈ X,

then T has a unique fixed point.

Proof. If we set wλ(x, y) =
d(x, y)
λ

, then Example 2.2 (ii) shows that w is a strict convex

modular. And it is clear that X∗
w = X. Also, w-convergence and w-Cauchy sequence

are equivalent to convergence and Cauchy sequence in (X, d), respectively. Therefore,

w-completeness is equivalent to completeness in (X, d). Dividing both sides of (1.1) by

kλ, we see that (1.1) implies (3.5). From which, the desired conclusion is derived.
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Remark 3.15. In many cases of dealing with modular metric or generalized modular

metric ([21]), the condition

δw(λ,x) = sup{wλ(Tm(x), Tn(x)) ∶m,n ∈ N ∪ {0}} <∞

is often required for some x ∈ X∗
w and for some λ > 0, which is stronger than the

condition wλ
2
(Tn−1x,Tnx) < ∞ for each n ∈ N. So, the results of Theorem 3.13 is

independent of results in other papers, where δw(λ,x) < ∞ for some x ∈ X∗
w and for

some λ > 0 is assumed. See ([1, 6, 8, 10]) for more details.

Corollary 3.16. Let w be a strict modular metric on X such that the modular space

X∗
w is w-complete. Let T ∶ X∗

w Ð→ X∗
w be strongly Kannan type w − contractive with

the property that

for each λ > 0, there exists an x(λ) ∈X∗
w such that wλ

2
(Tn−1x,Tnx) <∞

for all n ∈ N. Then there uniquely exists x∗ ∈X∗
w such that

w(2k)j−1λ0
(Tnx,x∗)Ð→ 0 as nÐ→∞

for each j ∈ N. Moreover, if w (2k)j−1λ0
1−2k

(Tx∗, x∗) < ∞ for some j ∈ N, where j > 1 +

log2k(12 − k), then x∗ is the unique fixed point of T .

Proof. Let us set w̃λ(x, y) = wλ(x, y)
λ

. Remark 2.3 shows that w̃ is a strict convex

modular metric with the property that X∗
w̃ = X∗

w. It is easy to show that w̃ satisfies

(3.5). Applying Theorem 3.13, we obtain the desired results.

Corollary 3.17. Even if (3.5) is replaced by

wkλ(TNx,TNy) ≤
1

2
{wλ

2
(x,TNx) +wλ

2
(y, TNy)}
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for some N ∈ N, then T still has the unique fixed point.

Proof. By Theorem 3.13, there exists an unique x∗ ∈ X∗ such that TNx∗ = x∗. Hence

we see that TNTx∗ = TTNx∗ = Tx∗. Applying the uniqueness of a fixed point of TN ,

we have Tx∗ = x∗.

Remark 3.18. The contraction (3.5) with k = 1/2 in complete modular metric spaces

does not guarantee the existence of a fixed point of T . See Examples 1.4 or 1.5 in ([9]),

where we set wλ(x, y) =
2d(x, y)

λ
.

Example 3.19. Let w be the same as in Example 3.5. Define T1 ∶X∗
w Ð→X∗

w by

T1(0) = 0, T1(1) = 0, T1(2) = 0.

It is easy to prove that T1 satisfies all required conditions in Theorem 3.13. In particular,

wλ
2
(Tn−11 (1), Tn1 (1)) <∞ for any λ > 0. Also, T1 has the unique fixed point at 0 ∈X∗

w.
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4 Characterization of completeness in modular

metric spaces

P.V. Subrahmanyam ([18]) showed that fixed point properties under Kannan con-

traction can characterize completeness in metric spaces. Since a family of modular

metric spaces is properly larger than a family of metric spaces, it is quite natural to

ask whether fixed point properties under Kannan w-contraction can characterize com-

pleteness in modular metric spaces. In this context, as we show, we need a different

kind of definition of completeness. At first, we look at the following example.

Example 4.1. Set X = R and define w ∶ (0,∞) ×X ×X Ð→ [0,∞] by

wλ(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞, λ < 10 and either x = 0 or y = 0,

∣x − y∣
λ

, otherwise.

It is easy to see that w is a strict (convex) modular and X∗
w(0) = X. Setting xn = 1/n

and λ = 5, we have w5(xm, xn) Ð→ 0 as m,n Ð→ ∞, which shows that {xn}n∈N is a

w-Cauchy sequence in this modular metric space. But w5(xl,0) = ∞ for any l ∈ N.

Hence X∗
w is not w−complete in the sense of Definition 2.12. However, if we put λ = 10,

then w10(xl,0)Ð→ 0 as l Ð→∞.

Example 4.1 motivates us to define so called weak w-completeness in modular metric

spaces.

Definition 4.2. Given a modular w on X, the modular space X∗
w is said to be weak

modular complete (or weak w-complete) if each modular Cauchy sequence from X∗
w is

modular convergent in the following sense:

If {xn} ⊂ X∗
w and there exists a number λ1({xn}) > 0, such that wλ1

(xm, xn) Ð→ 0 as
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m,nÐ→∞, then there exist an x0 ∈X∗
w and λ2({xn}, x0) > 0 such that wλ2

(xn, x0)Ð→

0 as nÐ→∞.

Remark 4.3. Noting that w is nonincreasing on λ, we see that Definition 4.2 is equiv-

alent to the following statement:

There exists a number λ({xn}, x0) > 0 with the property that wλ(xm, xn) Ð→ 0 as

m,nÐ→∞ implies that there exists an x0 ∈X∗
w such that wλ(xl, x0)Ð→ 0 as l Ð→∞.

Remark 4.4. It is easy to see that X∗
w is weak w-complete in Example 4.1. Hence, it

shows that Definition 4.2 is weaker than Definition 2.12, properly. Also, the former is

equivalent to the latter under △2−condition.

We are ready to say about characterization of completeness in modular metric

spaces without imposing △2−condition (See Definition 2.7.) on X∗
w.

Theorem 4.5. Let w be a strict modular metric on X and let X∗
w be a modular space.

Suppose that T ∶ X∗
w Ð→ X∗

w has a fixed point whenever the following two conditions

are satisfied:

(1) For fixed c > 0, λ1 > 0 and λ2 > 0,

wλ1
(Tx,Ty) ≤ c max{wλ2

(x,Tx), wλ2
(y, Ty)}.

(2) T (X) is countable.

Then X∗
w is weak w-complete.
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Proof. Suppose that X∗
w is not weak w-complete and fix x ∈ X∗

w. Then there exists a

nonconvergent w-Cauchy sequence {xn} ⊂X∗
w, where, without loss of generality, we can

assume xm ≠ xn if m ≠ n. In other words, wλ1
(xm, xn) Ð→ 0 as m,n Ð→ ∞ for some

λ1 > 0 but wλ2
(xl, x) /Ð→ 0 as l Ð→∞ for any x ∈X∗

w and λ2 > 0. Fix λ2 > 0 and set

L(x) = lim sup
l→∞

wλ2
(xl, x),

which may be possible to be ∞. Clearly, L(x) > 0. So, there exists a subsequence {xlk}

of {xl} such that wλ2
(xlk , x) Ð→ L(x) as k Ð→ ∞. For convenience, we put {xlk} =

{xl}. Then there exists n1 ∈ N such that for any l ≥ n1, wλ2
(xl, x) ≥

L(x)
2

. Set

L1(x) =min{wλ2
(xl, x) ∶ 1 ≤ l ≤ n1 − 1, xl ≠ x}.

By the strictness of w, L1(x) > 0. Then there exists the least positive integer n2(x) ∈ N,

which is not less than n1, such that if m,n ≥ n2 and xl ≠ x, then the following inequality

holds:

wλ1
(xm, xn) ≤ cmin{

L(x)
2

, L1(x)} ≤ cwλ2
(x,xl).

In particular, wλ2
(xn2

, x) ≥ L(x)
2

> 0 and hence xn2
≠ x. Therefore, if m ≥ n2,

wλ1
(xm, xn2

) ≤ cwλ2
(x,xn2

). (4.1)

Define T ∶X∗
w Ð→X∗

w by Tx = xn2
. Clearly, T is fixed point free and T (X) is countable.

It remains to prove condition (1). Given x, y ∈ X∗
w, there exist m,n ∈ N such that

Tx = xm, Ty = xn by definition of T . From (4.1), if m > n,

wλ1
(Tx,Ty) = wλ1

(xm, xn) ≤ cwλ2
(y, xn) = cwλ2

(y, Ty).

In a similar way, if m ≤ n, we obtain

wλ1
(Tx,Ty) = wλ1

(xm, xn) = wλ1
(xn, xm) ≤ cwλ2

(x,xm) = cwλ2
(x,Tx).
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From which, we obtain the following inequality:

wλ1
(Tx,Ty) ≤ c max{wλ2

(x,Tx), wλ2
(y, Ty)}.

Consequently, we see that condition (1) also holds. This contradicts to the hypothesis

that T must have a fixed point if conditions (1) and (2) are all satisfied. Hence X∗
w is

weak w-complete.

Remark 4.6. Setting λ1 = kλ, λ2 = λ/2, c = 1/2, it is clear that condition (1) in

Theorem 4.5 is stronger than the Kannan type w-contraction (3.5). It means that the

converse of the results of Theorem 3.13 still holds in modular metric spaces in the sense

of weak w−completeness.

Remark 4.7. Let {xn} be a nonconvergent Cauchy sequence in a metric space (X,d).

Then {d(xn, x)}n∈N is a Cauchy sequence in R for any x ∈ X by virtue of triangle

inequality. But in a modular metric space, due to deficiency of triangle inequality,

even if {xn} is a nonconvergent w-Cauchy sequence in a modular metric space (X,w),

{wλ(xn, x)}n∈N need not be a Cauchy sequence in R for any λ > 0 and any x ∈ X as

shown in Example 4.1. Taking into account this fact, we can not directly apply the

corresponding methods while possible in the framework of metric spaces. See ([18, 19,

20]) for more details.

Remark 4.8. In 1959, Connell (Example 3 in ([7])) showed that Banach contraction

principle can not characterize completeness in metric spaces. Considering Example 2.2

together with this fact, it is clear that the converse of Theorem 3.2 does not hold in

modular metric spaces.
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⟨국문초록⟩

모듈러 거리공간에서 Kannan 형태 축소사상의 부동점 정리

 V.V. Chistyakov는 2010년에 모듈러 거리공간(modular metric space)에 관한 개념을 정
립하였다. 이 개념은 모듈러 선형 공간, 모듈러 함수 공간, 그리고 거리공간을 일반화한 개념
이다. 
 본 논문에서는 모듈러 거리공간에서 Kannan 형태 -축소사상(contraction)의 부동점이 유
일하게 존재한다는 주요 정리를 증명한다. 이 결과는 1968년에 얻은 완비 거리공간(complete 
metric space)에서 Kannan의 결과를 일반화한다. 또한 Aksoy 외 2인의 2017년 논문의 결
과와 Mitrovic 외 4인의 2019년 논문의 결과를 반증하는 두 가지의 예를 제시한다. 마지막으
로, -완비성(completeness)을 일반화한 약한 -완비성을 정의하고 특별한 경우로 앞의 주
요 정리의 역이 성립함을 보인다.
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