On the Another proof of Liapounov’s theorem in the
Central Limit Theorem
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Summary

In this paper, we shall study the another proof that the normalized sum converges in distribution
to a random variable that is normal with mean and variance ] by coemparing the expectation of test

function,

1. Introduction

Let X1,X,,:+ be independent random variables

(r,v’s) with each X, having finite mean #; and

finite variance 3,7, Let S.=3°X,, n=1, 2, .
=1

then E(S.)=;.»:“,lp,, Var S.=s.? =l§"!6;’.

We consider normalized sum S.*=5."3(S.—E(S.))
which has mean 0 and variance 1 assuming that
If X*is arv,
having the normal distribution with mean ¢ and
so that the distribution

$.>0 for sufficiently large .

variance 1, N(0, 1),
function (df) of X* is

¢(x)=—1_

S en (1
Tor ffp( -2—!’)dt.

Let F, be the df of X,, f; be the Characteristic
function (Ch.f) of X;,, F®# be the df of S* and
&n(t) be the Ch f of r.v., S* . We shall investigate
the conditions, especially Liapounov’s, under which
S¥ converges in distribution to X* and the method

of proofs of the theorem under such restrictions,

9. Converges to a Normal Distribution
[I. Let Fbeadf of r.v. X and E(X)=#,
ifITXI‘dF(x) exists and is finite, then

the Ch,f f(t) of F may be written as

f(t)=1ﬂ;§ p: (’;%Hq,(g), rreerneeesinnn(2)

where
1
cpn [ =10 b dig wveeeees &)
Ruy=tr | LR
and
FO8) =f (ix)'ets dF (x),

1) =it [ 2dFx)=ity,

Also
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2 = F A

Ra(t) =_._._(;‘!)" I_f"dF(x)+o(t"), e (4)

where 0(¢") denotes a function of ¢ such that

o(t™)
tn

—( as t—o,
Furthermore

IR» (t)|—0“ 'j lxi» dF(z), |81<] ~ (5)

for every real ¢.
Pf. The exponential function satisfies

n-1 g
=1+ —~+r.(v),
i=1 J!
where
ra(v)=

I)J (=) L(er)du,

or
v n
r’i(v)—7|—+0(v ).

If we place v by it x and take expected values, we
obtain (3) and (4). Also (5)
applying) the Maclaurin expansion theorem of
calculus to f(¢).

is obtained by

II. Liapounov’s inequality

Lat X and Y be r,2's, 0<p<oo and p~t+g1=1,
Halder’s inequality

E(XYD<{E(X|"))Vr. {E(IY]9)}VT e (6)

If Y=1 in (6) we obtain

E(IX))<IE(X|#)}1»

Replacing 1X]| by |X]|7, where 1 <7 <p and writing
s=pr we obtain the Liapounov’s ineqnality ;

ECX|MW <E(XINV, 1<r<s (oo, oo (N

Theorem. Let S.=3 X, n=1, 2--, where the X;
i=1

are independent r,v's with y; and ¢.,2, they are
finite, Let S.*=5."1(S.—E(S.), where s,.’=jz_‘la,’

and let F; be the df of X..

12
8.2 E’:J-{

as n—»>rco,

If for every €>0,

(x—u)*dF(x)—0
x| x—p;l 2esm)

then S.* converges in ddistribution to X*, This

theorem implies that S*—— X* under any one of

the following conditjons,

1) The uniformly hounded case.

Assume | X;|<M for all j, and s,— o,

Then
J‘ (x—p;)? dFy(x)
{x ! |x—p;1>es.}

= E(Xi—)? T{1X—pt;13>¢5.))
(2M)?g;?

= el sﬂl

.................. seresisenead(f)

by Chebyshev’s inequality.
Thus

)

(x— #:)'dF(x)<(2M) —0
{x: |x—pil>esa} Sn

2) The identically distributed case.

Assume that the X; are identically
distributed 7. »’s with finite 4 and finite ¢2>0, then

inddpendent

8 ; (x—p)? dF(x
®= ”‘72 J\{x \xf—pﬁl>s\/n}
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On the Another proof of Liapounov’s theorem in the Central Limit Theorem 3

(x—w3dF(x)—:0, <o (10)
la—pl>en)

Jrf(x:

gince ¢? is finite and {x: |x

3) The Bernoulli case,

Let S. be the number of success in %  Bernoulli

trials, with probability of success p on a given trial,

We may write

S.=X1+ X+ o +Xa,

where the X, are independent and P(X;=])=p,
P(X,=0)=q= 1 —p. We may take X;

indicator of a success on trial j,

as the
thus case 2
applies with u= E(X,)= p, o*=E(X;)—{E(X)))?
=p(1—p), E(S.)=np=np, sd=na’=np(l—p).
Thus

S. —np

# — _On TP
S (npg)l'?

................. ...................(11)

and

st 4 X, that is, P(S¥ <x)—(x)

for all x.

4) Liapounov’s condition,

Assume that

1

.3

i TE (1X—pml*t] =0 roreenenn(12)
for some 3> 0.
where E(|X,;—p;|?**) exist.

Then

E(1xmmlr] = [ Lol B

>j{x

Jx—usl® Ix—p;l’ dF(x)
le—ﬂj]>€$n}

—p' € n) | das n—oo,

(x—p;)%dF ;(x)
Dix—ui| Zesn}

=€ s,.'j
{x

Thus

(8)<____2l E{lX} Elz*']

Sn € 5.0

;';lEclx, —s11+]

= € 5,37t 0.

Now we shall show that Theorem holds under case

4). let E(|X;1%)=7;and [.= z:r, ZE(lx, M.

To prove Theorem in (12) we need only show that
tl

g,.(t)——»e_—z— or log g.(t)—> —g as m—roo,

without loss of

0 and that the r,v's X, all

have finite third moments, thatis, §=1.

Furthermore we may assume
generality that all g;=

Proof 1.
The condition (12) in case 4) is written as
I'»/s:*—0.
By I, the Ch.f f;(¢t) of X, has the expansion ;
£t = 1—-Lam+ LEX) ity +olBx )
.................. sererensnnnnnineen (14)

The Ch.f g(¢) of the r.v. S is given by

e®=Ts () =T {1-25¢

2s.?
+E(x, )ity +0 [E(X, )t’] } . (15)
Writing
i E(X; E(X e
m= —-rn B D iy g (HEDL)
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we note that !

SR L s :
=7 . 6sa(zt)):E(X)
b (E(X AN
+20 (55

step 1:7,—0 for all 7, uniformly in j as n—o,
Clearly the o-term—Q as n—> 0,

Recalling(7)

(EQX: PN =, <{E(X 1),

we obtain
2 2 2
PR Y L t s, 1
0< 55, TH<5 (r.] ™ 2[[7] 5.2

inequalities are obvious and,
right hand side

The first and trird
by (13), the upper bound on the

tends to zero as n— <, 1, ¢,

5 "s"T‘tz—“'O' uniformly in j as n— o0,
Finally
1 EXY 1 7t
0< |57 U | <% =55
1t
<g sl

By (13) the quantity on the right tends to zero

as n—o, i, ¢,

E(XY
Sad

A, i)
6 (it) 0,

uniformly in j as n—> o0,

step 2 : Given €>0, 0<e <§1, we can find N(¢, €)

such that for n>N(t, €), |7;| <e for all j<n
Using the logarithmic expansion wc¢ obiain

log(1+7)= Sx(—1)7« 370

=7,472 E(=D = 20T,
r=3

v v (16)

where
Y= 5~

However

since (2+r’)"<_;_ for all »/>>1 and since %; tends

to zero uniformly in j. The logarithm of the Ch,f

gn(t) of S.* may be written as follows,

log g..(t)=leog(1+ﬂ;)=2171+?1ﬂj‘¢(71)
= = =

=_1 E(XJ )83
., -30 (X0
+J)E_;l;ylz¢(77j) .................................... (18)

step 3: j}i:‘ﬂ,‘g’;(ﬂ,)——»o as n—co
By (A7), | £700m) | <Znr| g | <z,
iz i= i=

Now, let show }E}W}%O as n— o0,
=1

m i (2.5 Sryq2
Sn ,-1’ T g5 B

BANES
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On the Another proof of Liapounov’s theorem in the Central Limit Theorem 5

+@% (oG EXN) ot La,

TR (E(X Dt |
2 ;
+6 5.3 ,z;lg’ \OL s - l

=@t £ |0 (X

Appealing twice to (7) we have

Zlﬂj‘ 2[7}]4/3

j= =1

J < El < 1"l
s.?

= 5,"

Sat

and the upper bound tends to zero by (13), this
taket care of @.
Next, by expanding the square on the right that

%}[7:‘]’ r
i . J 2

$a3

(
$a8 < L
add upper bound of @ tends to zero.

Also @) tends to zero because of the o(s), so do

& and ®. Finally @ satisfies

Ea',’?’,

WS

since ¢,2<sa?, j=1, 2,1

The upper bounds on the right go to zero as

n—> o by (13), hence completes the proof of step3,

step 4: 277’ ?—’0 as n—
We have ;
2y t? [HY m e (E(X 0
>:“77’+2 ‘< 65.° F"',L;OL 5.3 /1

and both on the right
The first by (13) and the second because of the

tend to zero as n—oo,

small o.

We conculude that

log gn(t)—> —521

for every ¢ and so complete the proof of Theorem.
Let proceed to another proof of Theorem by the
idea that is to approximate the sum §. successively

by replacing one X at a time with a normal r,2,7Y,

Proof 2.

Let {Y;; j>>1} be r.v's having N(0, o), thus
Y, has the same mean and variance as the corres-
ponding X, ;let all the X’s and Y’s be totally
independent.

Now put

Z,=Y1-:‘ Yz"'+ Yj_x+X,‘x+"'+Xny 1<]<n,

with the convension that

Z]ZX2+"'+X3, Zn:Yl‘*'"'"l‘Yn-l.

We now write
f(X1+Xz+"'+Xn)—f(yl+"'+Yn)

?‘é {f(X,+Z,) —f(Y,-+Z.v)} .

Let estimate the difference for a suitable class of
function f to compare the disiribution of (X,
+Z;)/s» with that of (Y, +Z,)/s.. f.€;
X -J-..._l_X"
E {f(—l“) }

= {f(YH- +Yu) }

=% [e{rt e {r ] as

i

On the other hand, if we take f in C?, the class
threz bounded

to show that

of bounded continuous function with

continuous derivatives, it suffices
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E{f(S* 1 —E(f(X")}.
Now by Taylor’s Th, we have for every x and ¥ ;

firi = (s r oy L52y) [<M2E

where M=sup' fGI(x)].
x2€R!

Hence if & and 7 are independent 7, ¢’s such that

E{{7{%) <%, by substitution and integration,

(/& M1 —E(fEN—Ef(OIEM
~Leir@emy<fEcT)

gince the r.v's f(&), f'(£) and f’(§) are bounded
hence integrable.

If T is another 7.v, independent of & and having
the same mean and variance as 7, and E{1{|"} <8,
we obtain by replacing 7 with { and taking the

difference ,

|E{f(E=)) —E{f(E+C))l<%E{l’7\’+lCl’}.

Appling to the right side of (19) with

2 K
C——sT' Kialreat

L= %L and the bounds on

n

the right-hand side of (21) then add up to

M 7 CUI’ }
?Em{ 5n° t Sn

where ¢= /8/x since the absolute third moment of
N0, ¢?) is equal to ¢a* - By (7). 0°<7;, so that
the quantity in (22) is o(['+/s-.*). We have thus
obtained the following estimate ;

r-

sn?

vfeC; |E(f(S-H)—Ef(X*)1<o(53)

and under (13) this converges to zero as #—.

Hence

E(f(§:*))— E{f(X*)} as n—o,

Example :
Let €>0 and fgeC?

1 ifz<0
fe(x) ={(1—(xe ) ifo<a<e
0 ifx ¢

Then
B(—x+6) >j'f¢(x+y> dO(N>P(—x), x€R.
Similarly

Fa¥( —x+e)>I-fc(x+y)dF,.*(y)>Fn‘(—x).

x€R,

since l:'_»_gj'if(x+y) dF* (y)='rf(x+y)d¢(y)

for any x (uniformly in x), feC® (Ref (6])
We conclude that

Tim Fa (=)l [ feta ) dF2()
= [“1tx+9) d0I<O=2+0
and
LimF.» (—x+e)>l’fﬁj‘i{e(x+y) dF 4(3)
=J‘:{e(x+y) d¢(y)>¢(_x) ............... (23)

for all real x and €>0.
By (23),

lim pa (—x)>0(—z—0),

and we get
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On the Another proof of Liapounov’s thesrem in the Central Limit Theorem 7

d)(—x—e)<!;'ﬁ F,.*(—x)gt—l}}} F *(—x) for all x¢R and €>0. Since € is arbitrary,
LP(—x+¢€
<& ) lim F*((—2)=9(—x), z¢R.
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