creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

A Thesis
for the Degree of Master of Science

Dynamic Resource Management On Top of SDN and
NFYV platforms by applying Machine Learning

Khan Talha Ahmed

Department of Computer Engineering

GRADUATE SCHOOL
JEJU NATIONAL UNIVERSITY

June 2019

Dynamic Resource Management On Top of SDN and NFV platforms by applying Machine
Learning.

Khan Talha Ahmed
(Supervised by Professor Khi — Jung Ahn)

Submitted to the Department of Computer Engineering and the Faculty of Graduate School of
Jeju National University in partial fulfillment of the requirements for the degree of Master of
Computer Engineering

2019.06.27

This thyi\shas been examined and approved.
%

Thesis Dircctor, Wang - Cheol Song, Profussor. Jeyu National University

Thesis Director, Yung - Cheol B)?Profcssor. Jeju National University

Thesis Supervisor. Khi —Jung Ahn, Professor, Jeju National University

Department of Computer Engineering
GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

Dedicated ta
My dearest paverts, loving lvatfiers and sisters, friends and colleagues.

ACKNOWLEDGMENTS

First and foremost, my humble praise and gratitude to Allah Almighty; the most gracious,
the most merciful, for showering His endless blessings on me throughout my life. Many
blessings and salutations on Prophet Muhammad (PBUH) who taught and emphasized the
importance of learning and seeking knowledge.

I am enormously grateful to my supervisor Prof. Wang-Cheol Song for his continuous
guidance, suggestions, and constant interaction throughout my Master's studies at Jeju National
University. I would like to extend my sincere gratitude towards my Korean language teacher,
Madam Kim Yun Mi.

I offer my humble gratitude to Prof. Khi- Jung Ahn, Prof. Yung-Cheol Byun for their
valuable suggestions and extremely important comments during the process of my thesis
evaluation. I would like to thank all the professors and teachers for their contributions throughout
the program.

I would like to acknowledge the company, cooperation, and help of my friends and
colleagues during the tenure of the study. I offer special thanks to Dr. Afaqg Muhammad, Dr.
MugeetRehman, Dr. Israr Ahmed, Dr. Jahanzeb Gul, Adeel Rafique, Muhammad Ali Jibran,
Khizar Abbas, Jahanzeb Ahmed, Muhammad Tahir Abbas, Hafiz Mutee Ur Rehman, Mudassar
Liaq, Saim Satti, and Mr. VigarAhmed Kiyani for their enormous help and support.

I will be in debt to Shahbaz Raza who has been very kind and supportive to me in all
circumstances since the beginning of my stay in South Korea. He was always a supportive hand
in many hard times that [faced during my stay. I am greatly thankful for your enormous support.

I owe a debt of special thanks to Javier Diaz and Asif Mehmood for their cordial
cooperation for overcoming research problem and providing technical support to overcome dark
moments. Their support, encouragement, and continuous help with kindness, and care allowed
me to finish this walk of life. We joined Network Convergence Lab on the same day and shared
many ups and downs together throughout the journey. I would also like to offer special thanks to
my elder brotherFasih-Ullah Khan who has always been my mentor and well-wisher. His
deterministic guidance never let my moral down.

It is worth it to mention my dearest parents and sisters, and all the family members. I am
most indebted to my father and mother for their guidance love and prayers. I cannot describe
their support and love in words. Their faith in me made it possible for me to never stop.

Last but not least my special thanks to Wei-Yu Chen for his open-source code of OAI for
cord services and a special thanks for GWAT-13 Materna dataset providers.

Talha Ahmed Khan
June 2019

Dynamic Resource Management of SDN and NFV
platforms by applying Machine Learning

Khan Talha Ahmed

Supervisor: Prof. Wang-Cheol Song

ABSTRACT

The upcoming 5™ generation network is not only restricted to mobile devices and high
bandwidth provision but also will support multiple services with their dynamic resource demands
while enabling ultra-reliability and low latency. As a matter of fact, this increased in the domain
made it very complex to design, configure and control the next generation platforms.
Considering the fact, SDN (Software Defined Networking) and NFV (Network Function
Virtualization) enabled programmability and elasticity in network infrastructure and also
provided freedom from the dedicated hardware was a major achievement which broke the
monopoly of the major networking industry. They are capable to accomplish the dynamic
demands of upcoming applications through the programmable capabilities and network slicing
1.e. provisioning of multiple virtual resources over a single physical infrastructure. The SDN and
NFV based platforms enable slicing and optimized resource provisioning but they still require
complex configurations for setting up each slice and it requires several proficient experts for any
additional updates. Also, the 5G support of many services resulted in a lot of dynamicity in terms
of user demands e.g. number of cars in C-V2X and also in events like Olympic games the traffic
stream through the network can raise exponentially and requiring the network to provide tons of
resources. Currently, the resource management is done by experts which are not very efficient
and is prone to errors requiring a replacement. Considering the complexity of 5G and its
requirements manuscript aims to automate configuration management using IBN (Intent-based
Networking) application and apply ML(Machine Learning) to manage the next generation
platforms for the automatic scaling of resources in accordance with dynamic user demands. The
IBN application will simplify the configuration procedure by enabling what to achieve (high-

level generic instructions) as input and how to achieve (Policies and Configuration) as its output.

Vi

On the other hand, the ML with a monitoring integration proficiently perceive the current state of

the system resources and predicts future utilization to suggest updates in network configuration.

Vii

CONTENTS

II.

II1.

Iv.

VI

ACKNOWLEDGMENTS ...ttt ettt ettt et st st e s e b eiee e v
ABSTRACT ..ot ettt ettt ettt e sbe e et s sat e sae et e s et e e vi
CONTENT S ettt ettt e ettt e et e e she e e e e e ebe e eabeeebeeeateeebeeesaeeenseeennee viii
[IE o) 7 Yo] o 0 1Y/ o TSROt Xi
(010 F=T o) <1 o PSP RURUURRSR 1
INEEOAUCTION ..ttt ettt ettt e ettt et e e s ae e et e e be e ebteesbbeeeneeesaneas 1
(010 F=T o) =1 APPSR PURUURRRR 6
RELALEA WOTK. ...ttt ettt e e h et e e e sbbeesabe e eeeenneeas 6
(00 F=T o] <1 g J P 11
The overall system, IBN-Application, and M-CORD platformcc.cccoveeenieinieeinecniicnneennne 11
3.1 Overall system in view point of SDN and NFV platforms:cccccveeeeiiiiiiieiiiieeeeeeeee, 11
3.2 IBN-APPHCATION oot 13
3.3 M-CORD With it COMPONENES....vvuuiiiieeeeieeiieeeiii e e e e e eeeeeeree e eeeeeeeeseesaesrr e eeeeeeseeees 22
3.3 M-CORD based Network SIiCing SCENAMIOccvviiiiiieiiiei e ee e ee e 31
(@ 0= o T PSP 35
Machine Learning Approach and Experimental ReSults.............cccevviiiiiiiiiiniiiie e, 35
(007 o T o S PP 59
COMNCIUSIONS ...ttt ettt ettt st et st e e ettt eab e st e ettt e bt e e sbe e eabaeenbeeennneesaeees 59
L2 10) 1 Te) a1 o) 1)7 PSPPSR 60

viii

List of Figures and Tables

I

I1.

I11.
Iv.

VI
VII.
VIIIL.

IX.

XI.
XII.
XIIIL.
XIV.
XV.
XVI.
XVIIL.
XVIIIL.
XIX.

XX.
XXI.
XXII.
XXIII.
XXIV.

Figure 2. 1: Shows 8 slice classes that are that can further be extended to requirement and
SEIVICES [2]ururuuuniiieeeiiiiieeeitteee e ee et e e e et ettt e e ee et eeeeseata bbb eaeeeeeeseesesbabab i aeseeesesaesessbsabnseseeereserees 7

Figure 2. 2: The Standardization Bodies and the application that will be served by them as

referenNCEA UNEY [1]. ..ot e e e et e e e e e e e e e eeeses bbb e aeeeeeeeeesesesaraannaneaeeas 8
Figure 3. 1: The detailed architecture of IBN- Application.........cceeevviiiiiiiiiiiiniiiiciecccciiians 14
Figure 3. 1. 1: Contracts GUI @XamPle......ccceeeieiiciiiiiiiiiiiieieereree e e e e e e e e e e e e e e e e s e e e es s s eaesnnanenees 16
Figure 3. 1. 2: Network Catalogue Database DeSigN.........uuuieriieiiiiiiiiiieeeeiieeieiieeeesecsscsveenvennennes 18
Figure 4: Service Graph Template eXample.oouuiiioiiii i e 21
Figure 3. 2. 1: The building BIOcks Of CORD..........cuuvuuiiiiiiiiiiiiieriieeeeeeeeeeee e e e s eeeesssesseseeaeeeaeneenes 23
Figure 3. 2. 2: Shows interworking of Containers inside XOS and the real infrastructure that can

be deployed USING XOS.... ..o et e e es st e e e eeeeeeeeaaeaeeaeaeeeesensennaan 26
Figure 3. 2. 3: Shows howW CORD VTN WOTKS.uuuuuuiiuiriiriirieiereeiereeeeeeeeeeseeeeesessessssssesssnsnnsnnsneenes 28
Figure 3. 2. 4: CORD Fabric with Trellis Control Application.cccccceeeiiieiieiiec s 29
Figure 3. 2. 5: OpenStack internal architeCture.........ccccvvevieiiiiiiiiiiieeee s 30
Figure 3. 3. 1: NSSF in 5G archit@cture [19]......ccccciuiiiiiiiiiiiieieieeieeeeeee e e e e e e e e ee e eeeesee e e abanaennaraees 32
Figure 3. 3. 2: NSSF internal WOrKiNGcooooiiiiiiiiiiiiiitiieeee et e e e e e e e e e e e e eeeee e es e e e e baneeanaeanes 33
Figure 3. 3. 3: Overall Network Slicing test-bed including M-CORD NSSF and OAlccccuuee. 34
Figure 4. 0. 1: General Lifecycle dynamic resource management system...........coeeveccuvnvnnvnnnnnnnns 36
Figure 4. 1. 1: Front end of Nagios with different number of Monitoring Parameters................ 37
Figure 4. 1. 2: Showing graph value for a Load parameter at time 12:30 from the front end...... 38
Table I: Schema of MATERNA GWA-T-13uiiiiiiiieeiiiee ettt ettt et stbe e e s sanae e enbee s 39

Figure 4. 2. 1: Comparison between the average CPU-utilization and memory usage with the

L8103 TSSO P PO P PP PP PTPPPTPPPPUP 40
Figure 4. 2. 2: Comparison of disk and memory utilization with time stampccccccocvnninnnns 40
Table I1: Average Data-Set StrUCTUNE.......coiee e e e e e e e e e e e e e e e e s es s s s beaeeeebreees 41
Table 11 INput Data SChEMA ... e e et e e e e e e e e e e e e e e e e e e e s aabaneasaarenes 42
Table IV: Classification of CPU-ULIHZAtioNccooviiuiiiiiiiiiiiiiiee et eee e 43
Table V: Results in terms of train and teSt aCCUIaCy.......uuuiuiiiiiiiiiiiiiieieeeeeee e 44

XXV.
XXVIL
XXVII.
XXVIII.
XXIX.
XXX.
XXXI.
XXXII.
XXXIII.
XXXIV.
XXXV,
XXXVIL

Table VI: Results of Model training for predicting Memory and Storage.............cccoeeeeeecnnvninnnnns 45
Figure 4. 3. 1: The Logic of the deciSion ENGINE..........uuuiiiiiiiiiiiiiiiiiecee s 48
Table VII: Shows Image Distribution for the test-Bed...........eueveeiiiiiiiiii s 50
Figure 4. 4. 1: Initial network test-bed configuration with 2 slice example...........cccccoeenrnrinnnns 50
Figure 4. 4. 2: Python APl between NSSF and VIMIMEouuviiiiiiiiiiiieiiee e 51
Figure 4. 4. 3: Down-Rate for the configured slices usingthe UEcooeeiiiiiiiciicinniinnnns 51
Figure 4. 4. 4: up-rate graph for the SICES ..o 52
Figure 4. 5. 1: Shows the front end of the IBN-application with the five test slices..................... 53
Figure 4. 5. 2: Shows the down-rate for each of the slice.......cuuvvvviiiiiiiiiii s 54
Figure 4. 5. 3: shows the up-rate for each of the slice.........uvviiiiiiiiiii s 55
Figure 4. 6. 1: Overall test-bed with the working mechanism.ccccccceviiiiiiiiiiiiicieccns 56

Figure 4. 6. 2: Figure Shows the dynamic update in the no instances with the increase in traffic
AN N0 OF USEIS ..ttt e e s e sttt et e e e s s bt ee e e e e s bt e e e e e eseaabeteeeseensasbaeeas 57

List of Acronyms

5G

SDN

NFV

NFV-MANO

ETSI

NGMN

IBN

ONF

co

CORD

M-CORD

Xaa$S

X0S

ONOS

NGPaaS

laaS

ML

MLM

OAl

OAI-SIM

OAI-EPC

NSSF

vSPGWC

vSPGWU

vMME

VvHSS

5th Generation

Software Defined Networks

Network Function Virtualization

Network Function Virtualization management and Orchestration
European Telecommunication Standard Institute
Next Generation Mobile Networks

Intent-Based Networking

Open Networking Foundation

Central Office

Central Office Re-architected as Datacenter
Mobile-CORD

Everything as a Service

Xaa$ Operating System

Open Networking Operating System
Next-Generation Platform as a Service
Infrastructure as a Service

Machine Learning

Machine Learning Model

OpenAir-Interface

OAl-Simulator

OAl-Evolved Packet Core

Network Slice selection Function

virtual Serving and Provider Gateway Control Plane
virtual Serving and Provider Gateway Data Plane
virtual Mobility Management Entity

virtual Home Subscriber server

Xi

eNB

RAN

(ORN)

BSS

TOSCA

UE

SLA

VTN

AMF

SMF

UPF

ZSM

evolved NodeB

Radio Access Network

Operation Support System

Business Support System

Topology and Orchestration Specification for Cloud
User Equipment

Service Level Agreement

Virtual Tenant Application

Access and Mobility Management Function
Session Management Function

User Plane Function

Zero Touch Network and Service Management

Xii

Chapter 1

Introduction
1.1. Background

The future 5G network has the aim to support not only the mobile devices but also many
other services including connected cars, augmented and virtual reality, smart homes, e-health,
and many others. Additionally, 5G guarantee not only the bandwidth but it also ensures ultra-low
latency and ultra-reliable connectivity depending on the type of service. Furthermore, it also
assures to fulfill the dynamic resource demands of users depending on time, event, type of
service and position [1] [2]. In order to accomplish the goals of 5G, many platforms have been
designed based on NFV-MANO (Network Function Virtualization- Management and
Orchestration) architecture. MANO is developed by ETSI (European Telecommunications
Standards Institute) both serve as key players in achieving 5G goals. In the first place, it is based
on SDN (Software Defined Networks) and NFV (Network Function Virtualization) and hence it
enables network slicing which empowers the implementation of multiple virtual slices over a
single physical infrastructure [1]. Also, such platforms enable programmability flexibility and
scalability i.e. firstly, they enable users to program the network on runtime, secondly they enable
customized service model for providers and finally they enable scalable resource allocation
dynamically. M-CORD is one of the example platforms that provide the above three properties
and is an open reference solution provided by ONF (Open Networking Foundation) also serves
as the test-bed for this work [1].

In general, SDN/NFV platforms are based on MANO architecture where from the top it has
the NFV orchestrator which consist of multiple network function, slice, instances and resource

catalogs which are instantiated using policy and configuration provided by operators. Such

policy and configuration define the network properties and change in policy and configuration
also changes the network behavior on runtime. Orchestrator replicates the policy/configurations
and instantiates the network resources on the physical infrastructure using VNF (virtual network
function) managers. It has the VIM (Virtual Infrastructure Manager) that manages the physical
resources. The goal of this work is to simplify policy and orchestration of the platforms and
automate the updates in resources with the dynamic requirements.

On the other hand, M-CORD enabled the virtualization of CO (Central Office) by moving
it to the cloud-datacenter, as a result, it provides freedom from the dedicated hardware [3]. Hence,
M-CORD is a single platform that enables optimized QoS and resource allocation in accordance
with each service demands. CORD consists of XOS (everything-as-a-service operating system)
orchestrator. XOS lies on top of the ONOS (Open Networking Operating system) SDN controller
and OpenStack [aaS (Infrastructure as a Service) provider. Basically, XOS enables the user to
integrate two types of services first, VNF as a service and second ONOS control application as a
service for controlling the network [4]. We will use specific 3GPP (3" Generation Partnership
Project) based LTE modules as VNF’s under CORD and specified ONOS applications are
provided with the M-CORD package for controlling the network. M-CORD combined with a
network slicing scenario combines to form the test-bed for our platform.

Even though M-CORD and other SDN and NFV platforms fulfill the requirement of the
next-generation platform and it enables the user to configure the network to fulfill the goals of
5G. But, it requires multiple experts to generate the configuration for the management and
deployments; also it requires the involvement of many decision makers per update. The manual
procedure for generating policy and configuration is tedious and error-prone. Hence, we

developed a simplified configuration management engine in the form of IBN application which

provides a high-level interface to insert generic information for the configuration of a network.
Also, it simplifies and automates the configuration and update procedures for underground
platforms. Technically, IBN-application automates the policy generation for the underground
platforms and it determines proper resources depending on the requirement and resource
availability.

1.2. Research Problems and Objectives

The broad scope of 5G made it complex to provide and allocate resources for each of the
services under the umbrella. However, technology provided the solutions that enable multiple
virtually allocate-able resources and they can be scaled on runtime. As a matter of fact, the
support for multiple services forced the platforms to optimized allocation of the resources, and
use the scalable property at runtime to change resources. The technical requirement of 3GPP as
referenced under [7] for orchestration and management of next-generation networks requires us
to enable a user to instantiate, monitor and update network resources as per dynamic demands.
Also, it suggests providing a platform that can accept user SLA (Service Level Agreement) and
can properly allocate resources using the underground platform. Firstly, for such process each
network service providing platform requires many tedious configurations, the simplification and
automation of those configurations is an esteem requirement. Not only the configuration
management but also the time for orchestration of dynamic resources is a complex issue and
requires some novel solutions. Hence, this research is focused on applying Machine learning to
predict beforehand to dynamically update the system resources so that to improve the smooth
user experience and keep the SLA in operation mode. The main objective of the system is to

provide a platform that can automatically manage, configure and control the network platforms

and is capable of managing dynamic updates using the prediction through Machine Learning.

More precisely, the following research problems are investigated:

How to automatically configure a large scale network? This part we implemented an
abstraction layer on top of the 5G network as an Intent-Base application. The purpose of
the application is to hide the internal details of the underground platforms. It also
provides a High-level interface for the users to interact and provide what they require
from the underground system. Hence, by the use of intended high-level information, it
configures the underground platforms.

How to determine resources? A resource manager is part of the IBN-Tool which
determines the amount of resource for each host based on requested and available
resources.

How to monitor resources in a 5G platform? A mechanism in the form of analytics
application is designed to monitor resources. It fetches a virtual machine resource
statistic from VIM/ Cloud providers.

When to initiate scaling up of a VM. The decision is made based on predictions of
future resource usage by Machine Learning models and then decide to scale the system
for avoiding performance degradations keeping the optimized resource allocation in

accordance with SLA.

As a solution for the above outline challenges, the following objectives are considered:

Investigate the research area of dynamic resource allocation and introducing automation
in next-generation networks using ML.
Develop an IBN-tool which can be used for simplifying configurations that will result in

the automation of configuration update procedure.

e Define new and enhance network approaches that can support resource allocation on the
physical plane in form M-CORD based network slicing scenario.

e Develop an ML approach for predicting future system states and a decision engine for
suggesting the proper updates.

1.3. Thesis Organization
The core chapters of this thesis are structured as shown in Figure 1.1. They are organized as
follows:

e Chapter 2 considers the overview of existing literature on the topics of next-generation
network requirements, SDN/NFV platforms, M-CORD and use of ML in the 5G network
for dynamic resource control. Also, it explains the automation of 5G configurations.

e Chapter 3 discusses the details of Overall system, IBN-application and M-CORD, and the
specially enhanced network slicing test-bed.

e Chapter 4 explains the Monitoring of the test-bed, Machine Learning approaches and
Experimental Results of the overall system.

e Chapter 5 Concludes the thesis.

Chapter 2
Related Work

The 5th generation network goal for providing the internet of everything compelled many new
applications in its domain. The upcoming applications of 5G require specific changes in the
existing networks in terms of technology, architectures, and platforms. Hence, many novel
approaches have been proposed by research groups and standardization bodies for achieving the
aims of 5G. 3GPP is the most prominent standard body for defining the standard architectures for
5@, it introduced the network slicing and it introduced association of S-NSSAI (Single-Network
Slice Selection Instance Information) to describe the requirement of a certain device from the
network. The total number of S-NSSAI considered here is 8 however 3GPP only support 3 S-
NSSAI for its current version and the 8 different slices are based onQoSrequirementsand
specifically it considers latency, bandwidth and reliability parameters [1][2][7][19]. Figure 2.1
shows the details of how services are divided into 8 different groups and is referenced from

NGMN (Next Generation Mobile Networks) [2].

Families Categories Use Cases

= Pervasive video
z Operator cloud services
Broadband access in dense area Dense urban society

Broadband
access in Indoor ultra-high broadband access Smart Office

dense area : r——
Broadband access in a crowd Dy niceaiphoto; shanng n
stadium/open-air gathering

Broadband 50+Mbps everywhere = 50 Mbps everywhere |

R Ultra low-cost broadband access for low
everywhere = Ultradow cost networks |
ARPU areas

= High speed train

. Mobile broadband in vehicles *: Maving Hot Spots
High user = Remote computing

mobility 5 S
Hupiaien Coleciviy = 3D Connectivity: Aircrafts |
- = = Smartwearables (clothes)
Massive Massive low-costilong-range/low-power MTC = Sensor networks
Internet of 4
Things Broadband MTC = Mobile video surveilance |
Extreme real
time Ultra low latency = Tactile internet |
communication
Lifeline = "
S Resilience and traffic surge = Natural disaster |
communication

= Automatic traffic control/driving

= Collaborative robots

= Remote object manipulation -
Remote surgery

= eHealth: Extreme Life Critical
= Public safety

= 3D Connectivity: Drones

= News and information
= Broadcast like services: Local,
Regional, National

Ultra-high reliability & Ultra low latency
Ultra-reliable

communication

Ultra-high availability and reliability

Broadcast like

: Broadcastlike services
services

Figure 2. 1: Shows 8 slice classes that are that can further be extended to requirement and services [2].

The standardization bodies that include the development and defining of standards for fulfilling
the aims are as follows ITU, ETSI, FP-7, 5G-PPP, 5G Forum, 5G Promotion Group, SGMF, 5G
America’s, NGMN and SCF. Figure 2.2 shows applications that lie under the umbrella of each
standard body. Standardization Bodies are not just focusing on providing architectures of
platforms that will serve all the application but also aims at providing easy management and
ultimately wants to include features like plug and play, self-configuration with optimization and
healing capabilities. Also, the technical requirements documents of 3GPP already focused on

explaining the requirement of next-generation networks. One of the main requirement is

orchestration and management where it requires that the platforms should be able to provide the

users with full control and can automatically manage the user requirements on the go [7].

Standard. : S Indust,
Regional initiatives

5G Forum

L8] 5G America's

<

1. Pervasive video

2. Operator Cloud Services

3. Dense urban society /Smart city

4, Smart office/Unified enterprise communication

5. Smart home

6. HD video/photo sharing in open-air gathering v

7. 50+ Mbps everywhere

8. Location aware services v

9. Ultra-low cost networks

10. High speed vehicles v

11. Moving hot-spots

12. Remote computing and industrial control v

13. Vehicular networks v

14. 3D connectivity v

15. Fleet management/Logistics

16. Smart wearables v

17. Sensor networks v

18. Online trading v

19. Machine-to-machine (M2M) v

20. Mobile video surveillance

21. Tactile internet v
v
v
v
v
v
v
v
v
v

@
w
v
v

A
LA
AL SR N

<
SRS

SBE O EN

<
LS R WY 5G Promotion Group

<
ASAN TR RS RRY FP-7
Ay R
SESE B OSSN E SIS S X
]
< AUAN
AN
AN BN BN RS RS RY O AS-] NGMN
L X AL LS N AR RS SCF

AN

22. Gaming

23. Augmented/virtual/assisted reality

24, Natural disaster actions

25. Military actions

26. Mission critical systems

27. Smart Grid and critical infrasructure monitoring
28. Automatic traffic control and driving

29. Collaborative robots

30. Remote object manipulation/Remote surgery
31.eHealth: extreme life critical

32. News and information

33. Broadcast-like services: local, regional, national
34. Context-aware services

35. Remote education

SLE OB O RYVE s

VENE R

SECE S S SN S S S
<

SRS
LAY
AN BN AW RS CRY - Y
SNs S <
SSSSNsSss
AR N SR
b A Y
LSRN hY
SRS ss
&R

v

Figure 2. 2: The Standardization Bodies and the application that will be served by them as referenced under [1].

ONF (Open Networking Foundation) is one other key player in designing platforms for the 5G, it
introduced CORD as a novel platform for SDN and NFV based network application. It
simplifies the network architecture deployment and enables flexibility and scalability through
network slicing [3]-[5]. In a very short time CORD becomes a favorite platform for many
network operators and companies including Argella, Qualcomm, China Unicom, Skt and many
others around the world. The flexibility, scalability and its capabilities allow the operator with
freedom of deploying and controlling network. In the past, many operators have shown many
demonstrations of its capabilities in terms of slicing scaling on different platforms and one of the
major can be referenced from Radisys CORD videos on YouTube channel. Radisys is one of the

key partners and collaborators with CORD [34] [35].

ETSI-NFV is one other platform that enables programmability both in terms of network data
plane function and network control. It enables a platform that introduces OSS/BSS (Operation
Support System/ Business Support System) firstly BSS deploys business requirement using
Orchestrator and secondly, OSS fetches the monitor data to operate the system through the

orchestrator [8].

OAI (OpenAirinterface) is compliance with ETSI and it provides open source network
components including OAI-SIM and OAI-EPC [9] [10]. We can simulate and emulate different

Network Functions using OAI components.
2.2.Intent-based platforms for simplifying Configuration

NGpaaS (Next-Generation Platform as a Service) is a platform that focuses on providing a
generic platform that can easily configure and manage multiple 5G platforms, e-g M-CORD and
NFV-MANO can coexist under one platform. It allows the user to configure underlying systems

no matter from which vendor they belong to, it does it by defining SLA (Service Level

9

Agreements) from the top and converts them to policies for fulfilling them [18]. Another
platform that should not be neglected is provided by Nokia Bell Lab. Firstly, it is a demo
provided by Nokia bells lab in which the simplify the resources allocation for energy slices and

monitored slices for updating resources [11] [12].

2.3. The ML Approaches for Dynamic Resource Management

If look closely M-CORD is a CO on a cloud data center, so it allows us to develop and deploy
VNF as VM (virtual Machines) on the cloud. But, at the configuration time, we cannot decide
how much traffic will be streamed through the network. So it is an esteem requirement to follow
a smart approach to dynamically manage the VM. Recently many researchers have worked on
predicting the load on cloud i.e. they followed different approaches to find out the future load on
the cloud [13]. Machine learning can be applied to the network in different many ways and a
comprehensive survey can be referenced under [14]. Furthermore, researchers detected the VM
error detection a SOM (Self Organizing Model) has been proposed and they decide VM
performance based on CPU, RAM, Storage, and Network and used Machine Learning to detect
the anomaly [15]. Conclusively, a very novel approach has been followed using apache spark
and used big data to classify the VM/ HOST machine state in Fault and Normal on the basis of
CPU, RAM, and Storage [16]. Finally, a very extensive comparison between different ML-
approaches applied to the datacenter and VM resources usage and updates have been studied in
the thesis and compared many approaches and results and found regression fits the best on such
problems [17]. ETSI zero touch network and service management (ZSM) is an initiative which
aims to automate the network control so that network management does not require any human

assistance [32].

10

Chapter 3

The overall system, IBN-Application, and M-CORD
platform

The two major parts of the work consist of an automatic configuration and policy
management application and automatic control over network operation for dynamic management
of resources using Machine Learning. The detailed overall architecture design and IBN

application with CORD are described as follows:
3.1 Overall system in view point of SDN and NFV platforms:

The overall system is aimed at providing a platform for network operators to simply configure
network and it automates the dynamic resource management by applying machine learning. The
IBN application provides an abstraction for network operators to configure underlying
SDN/NFV platforms as shown in figure 3.1. It also accepts monitoring information to update
system resources as is capable of predicting future resource utilization depending upon current
resource usage. The IBN-application from top requires high-level information (what) and convert
it to system policies and configurations (how) and eliminates the requirement of proficient
experts required for different platforms. The system is designed to provide a top-level layer
which can provide detailed configuration for network orchestrators. Currently, one of the major
issue for operators is to monitor the network and keep the network state stable as resource
requirement for fulfilling user demand may increase at any timestamp. The operator follows the
manual updates by increasing number of resources by changing the system configurations which
is tedious and error-prone. Hence, we follow a smart approach in which we will train Machine
Learning models which perceives the current state of the system and predicts the system state at

future time stamps which enable the IBN-application to decide what should be changed to keep

11

the system at a stable state. Figure 3.1 shows IBN application integrated with NFV-MANO
based SDN/NFV platforms where IBN application receives high-level configuration that is
network administrator intents in the form of contracts and is converted to system level-policies
and configuration. Upon receiving the configurations, the NFV orchestrator instantiates the
network function and slices on the physical network. On the other hand, a Monitoring/ Feedback
agent provides monitoring information to the ML model which predicts future resource
utilization of network on the basis of the predicted state decision engine decides the required
updates in the system. So the system is a complete loopback system where network operator

defines high-level intents and SLA and system automatically updates its state using ML.

Manager

6
Decision Engine IBN Manager £ Policy Catalog
5
ML-Model

a/8 Policy

Configurator
]

Policy/
. Configurations
Updates

SDN/NFV Platform
Network Function Virtualization
MF-Or Orchestrator (NFVO)

N N N S S S S N S N N S S S -y

VNF Catalog NFV-Instances

EEEEE Monitoring/ Feedback

: 1

Element Management I
EM I
VeEn-Vnfm NS-Catalog NFVI-resources [
______________________ ’

| or-Vi =1~
VeNf-Vnfm

Manager(s)
Oor-Vi

vn-Nf
Network Function Nf-Vi
Virtualization

Virtual Infrastructure Manager (VIM)

Infrastructure (NFVI

Figure 3. 1: Overall system in view point of NFV-MANO architecture.

12

3.2IBN-Application

The need for simplification in the configuration of next-generation networks cannot be
neglected. The purpose of IBN-Application is to simplify, generalize and automate the policy
and configuration of 5G networks. The application is designed while considering the complexity
of 5G and solutions available in the market [2][10][11][12][18]. The application is developed not
only to automate and simplify the configuration and policy management but also to optimize the
resource management. Furthermore, the application consists of five major parts Contract, IBN-
Manager, Policy Catalog, Resource Manager and Policy Configurator. The overall working of
the system is as follows. System Administrator or User inserts the SLA (Service Level
Agreements) in the form of contracts from top and Intent-Manager as central part receive the
SLA and its goal is to generate the system configuration in accordance with the agreement. For
doing so it requires to consider many aspects of the networks. For example, slice type, network
platform type, infrastructure constraints and Policy that should be applied. So, the Intent-
Manager is assisted by the three other components that are Policy catalog for deciding the policy,
network catalog, decision of dependencies and the VNF and architecture that will be required for
configuring the SLA. The second is resource manager which determines the amount of resource
required or can be allocated for each SLA while considering the stable state of the physical
infrastructure. Thirdly the Policy Configurator Modules responsibility is to generate policies for
the underground platform depending on the SLA or user request. IBN detailed working model of
IBN application considering M-CORD as underground platform is depicted in figure 3.1.

Furthermore, detailed design and working of each module is explained below.

13

Contracts

Architecture || S-NSSAl |
Up-Rate

enerate Fetch
4 5

Intent Vocabulary
Manager Store
Service i]
Vocabulary
Graph Architecture
| Main | dipe
Conflict Policy
Configuration

Module
Relations

Policy
Configurator

1
45 Main_|
2 Compute
Generation

3
S 554 Node, Link
Configure
Policy

Policies

XOS-Core

Resource
Management

Determine
1
Determine g
RAM Main

Update
Policy

Determine 28 (Compute H3;
Contlct

X0S-DB

OpenStack NSSF OAI-EPC ONOS
Synch Synch Synch Synch

Figure 3. 2: The detailed architecture of IBN- Application.

I. Contracts
Contracts are the simple and high-level instruction that is required by the system to generate
the configurations and policy for the underground system. The reason to introduce contracts for

14

the IBN-application is that they must be understandable by the entire technical person and they
must overcome the requirement of multiple experts for network configurations. Hence, it used S-
NSSAI as a major field and from the studies of different standardization bodies specifically
3GPP each S-NSSALI refers to a specified requirement that can be requested by a specified class
of user equipment. Also, S-NSSAI is simple information that can explain what a user can require
from the underlying system. Furthermore, each S-NSSAI can further be classified into subclasses
as SST (Slice/Service Type) and SD (Slice Differentiator). In fact, SST classifies the slice and its
service type, which allows us to select the Network function and capabilities accordingly.
Likewise, SD further classifies the exact slice within a specific service type. Hence, it is clear
that the use of S-NSSAI can allow the application to generate detailed network configurations

which can be requested by user equipment [19].

Architecture-ID is the second most important input of the contract information. Since
companies and organization have developed unique architectures and components that will be
used as part of their network services. Also, for this test-bed, a new network architecture is
designed and it consists of a mixture of OAI with NSSF. This Architecture ID simply classifies

among the different architectures and components to be used as part of the configurations.

Since the beginning of networking and computing, the race was always about speed and
bandwidth. Hence, the fourth most important input required by the system is QoS. In this, we
enabled a user to allocate the Up-rate and Down-rates in accordance with its requirement.

Furthermore, the application will tune the underlying system in accordance with the selected

QoS.

15

pat

System Contracts

This application allows the end user to define high level contracts.

Contract Information Contracts

0
(o)

Contract name Architecture
LTE

QoS Neiwork Slices (upratesidownrates in MBE) TEST

8 slice_no_1 (uprate: 10, downrare: 20) slice_no_2 (uprare: 15, cownrare: 30)

slice_no_3 (uprate: 20, downrate: 40) slice_no_4 (upate: 25, downrate: 50) TEST-3 (LTE)

Custom QoS Network Slice

Submit your intent csnpn k

Figure 3. 1. 1: Contracts GUI example.

II. IBN-Manager
IBN-manager implements the central logic of the IBN-Application and is responsible for

collecting and formatting the data required for configuration. It follows the following steps:

e Firstly, it receives the contract from the user and using the contract information it sends a
request to network catalog for fetching the details of required architecture and slice
demands. The details are provided in the form of a service graph which determines the
number of services, their order, and details about the dependency among them.

e Second, step is to request the resources for the architecture to be deployed and allocate
proper QoS for each of the slices.

e Finally, on completion of requirement and determination of resources to be allocated it
request Policy Configurator to convert the requirement into the configurations for the
underlying platforms.

The following section explains the internal architecture and details of each of the above steps.

16

III. Network Catalogue

It is the central database it fulfills two requirements first it consists of all the details of
architecture; second, the architecture details are stored in a form that they consider the
dependency of each service on each other hence helps in policy formation for the underground
system. In [11][12] and [21][22] they are showing some form policy blueprints, policy
information which serves similar to the Network Catalogue. The uniqueness of our DB is that its
architectural style is so well formed that it stores information while considering dependencies.

The Database consists of four tables the details are as follows:

o Firstly, the Contract Table contains information about each of the requested contracts.
That will be used by the database to fetch the architectural details to form a network
catalog.

e The second table is the architecture table which contains the available architecture that
can be configured. It is mapped through the contract.

e The third and most important table is Modules, it contains the information of the
network functions to be allocated and it defines the location and relations of the
function with other network functions.

e Finally, the module relation table is used to define the relationship between the VNF’s
that can be a bi/uni-directional. On the basis of the dependency, we define the
Networks between the nodes also the network service graph is generated in
accordance with the relation among the nodes.

It basically, provides information inform of service graph, and the graph contains the information of
dependency and order. Figure 3. 1. 2 shows the internal architecture of the database.

17

Contracts

mm arch-id |uprate |Downrate w
il

1 KT-1 20 40 1
2 K288] 10 20 2

Architectures

i Trose e oo roinoces B L
1 5G
1 2 eNB 1 1,3,7
2 2 vMME 23 2,4,5,7

—I Module Relation |
o Jretid|noereme oo inpecs
1 1 UE 2 al

2 2 eNB 1 1

2 LTE

Figure 3. 1. 2: Network Catalogue Database Design.

IV. Resource Manager

Resource management is the crucial requirement of the system; the purpose is to develop a
smart approach to determine resources for the network modules. As we are allowing the user
from top to configure the network to allocate slices and determine configurations for the
underground system but each slice requires a certain amount of resources. So, we determined an
approach through which we can define resources for each of the slices in accordance with the

available resource amount. The details of the resource manager are as follows:

e [BN-Manager, request resources for the detailed number of instances required in
accordance with the architecture details provided by Network Catalogue.
e From the list of the required number of slices, it calculates the number of VNFs i-e

required no of VM, using the following formula.

Required Number of Instances = a + bx) Contracts

18

» In network architecture e.g.vMME, vHSS and NSSF don’t scale out with the
increase in the number of slices and named as common functions. So ‘a’
represents such function

» However, data-plane functions like SPGWU instances are specified for each slice
and increase in the number of instances occurs. Also, a single slice can require
more than one scalable instance, Hence, ‘b’ represents the number of instances
that should be instantiated per slice.

» A contract represents the requests by users and it is equal to the number of slices.
Secondly, now for each instance, we need to decide how much of the CPU, RAM, and
Storage should be allocated. Hence, we use the monitoring information which details
the total available resources to determine the resources for each of the VNF.
Depending Upon the total available resources we allocate the flavors for the VNF
similar to standard flavor size defined by OpenStack.

» Small: 1 vCPU and 2 GB RAM
» Medium: 2 vCPU and 4 GB RAM
» Large: 4 vCPU and 8GB RAM

If, the number of slices cannot be allocated according to the above policy system

decides 2 approaches
» First is notify the user with a resource overload condition
» Secondly, it just updates the configuration of the system to slice the sharing

policy. The slice sharing policy basically forces two different slice requests to
use the same resources and it is allocated using the slice information that is

most similar to the requested slice.

19

Hence, by using the above strategy, resource management assures to determine conflict-
free and stable resources for the underlying platform. Also, it tries to give a solution for

resource shortage. Following, the algorithm represents the whole procedure.

Algorithm 1 Resource Manager

Input: Service Graph (Mode, Links), 5_NSSAI_list[]

Output: S_NSSAI list, Image Size, number of Instances

1. Function1:Main {Service graph, 5 NSSAI list[]})

2. required_slices< size of [5-NSSAIL list[])

InstanceFlavor€ Allocate(required_instances)

3. required_instances€ 4+ 2 xrequired_slices
4. While{change in Monitoring)

5. wCPU € Fetch(Cores) x4

6. RAM<Fetch{RAM)

7. Disk¥Fetch(Disk)

8.

9.

Function 2: Allocate [required_instances)

10. if (required_instances>{vCPU-=4) &8 [RANM-=8) & & (DISK=80))

11. Imagesize € Large

12. elseif (required_instances>(vCPU=2) & & (RAM-4) & & (DISK=40))
13. Imagesize €Medium

14. elseif (required_instances={vCPU-1)& & (RAM=2) & & (DISK=20))
15. Imagesize € Small

16. else

17. extraslices=(required_instances-{(vCPU+1) && [RAM=2) && (DISK+20))}+2
18. itr€0

19. X4 required_slices

20. while|extraslices=0)

21. 5_NSSAI[itr] €{S_NSSAI[itr]x10+5_NSSAI[X])

22, update_QoS(Max, Max, 5_NSSAl[itr])

23. ftréitrel

24, NEN-1

25. templist [] size & X
26. €0

27. while(i<X)

28. templist[itrl]=S_ NSSAI_list[itr1]
29. i€H1

30. 5_MNSSAI_list[]=templist[]

31. Imagesize € small

32. Returnimagesize

33. Return5_MSSAIL_list[], InstanceFlavor

20

V. Policy Configurator

Policy Configurator converts the generated requirements and policies to the underlying

platforms compatible pattern. In this work we developed it for configuring CORD platform so

TOSCA is the most compatible option for orchestrating the configuration/policies on top of

CORD [23]. The information received by the Policy Configurator can be listed as

a. Service Graph

b. Number of instances per VNF/ service/Node

c. Flavor of Instance

d. Dependency among the services

e. Order of VNFs

f. QoS in terms of up-rate and down-rate

In order to convert this information into CORD compatible configuration it generates three

TOSCA files named as:

a. Service Graphs: it replicates the name of the nodes and considers them as a service in

XOS and defines the dependencies among each of the services in accordance with the

information listed above.

Figure 1: Service Graph Template example.

topology_template:
node_templates:

Service elB
service#fenb:
type: tosca.nodes.ellBService
properties:
name: elBService

Service vMME
service#vmme :
type: tosca.nodes.vMMEService
properties:
name: vMMEService

21

b. Networks: it determines the private network for each service. It is responsible to
associate the Ip address for each of the services and it uses an iterative approach for
determining the networks e.g. for vmme network IP is 10.0.1.0 and nssf net will be
assigned with 10.0.2.0.

c. Service Instances: it uses the number of slices and associates number instances per
service according to the slicing policy provided by the above-listed information. Also,
it associates QoS policies with each instance in accordance with user demand.

Once all the TOSCA files are created and information/Policies are converted the Policy
Configurator using the TOSCA-RESTFUL API send it to CORD. It uses the following example

command to accomplish this goal.

curl -H "xos-username: xosadmin@opencord.org" -H

"Xos-password: <xos-password>" -X POST --data-binary
@<path/to/file> http://<head-node-ip>:<head-node-
port>/xos-tosca//run

After, pushing TOSCA-file to CORD controller the Policies are then processed by XOS to

synchronize them to the physical layer next section will detail about CORD.
3.3 M-CORD with it Components

M-CORD is one of the prestigious platforms for developing SDN and NFV based network
architecture. It provides freedom of defining the network functions and SDN control applications.
M-CORD provides the freedom from dedicated hardware and it shifted the CO to the Datacenter.
M-CORD due to its novel design and applications is adopted by many telecom operators and
industrial alliances have joined CORD community as partners including Radysis, Skt, China
Unicom, Turk Telecom, Argella, Qualcomm and many others. The CORD consists of XOS
everything as a service operating system, it allows the network functions and SDN control

22

application as services. As a comparison, it is a service operating system while normal operating
systems are files based OS. XOS further uses ONOS as network controller and OpenStack as a
cloud IaaS [24]. These three combined are the building blocks of CORD as shown in Figure 3.
2.1. XOS allows to create and deploy new services from the top, also ONOS is an open platform
and one can develop its own network control applications for controlling the network [35]. A
service can be anything from VNF to Function that can perform enhancements in the network.
The network architecture, for example, whole 5G components including AMF (Access and
Mobility Management Function), UPF (User Plane Function) and others can be developed as M-
CORD services. Also, a specific control application can be developed as services, for example, a
control application for an SMF (Session Management Function) functionality can be developed
to control the UPF tunneling. Figure 3.2.1 shows the building block of the CORD including XOS,

ONOS, and OpenStack. Each component is explained in the remaining section.

u Service

H) Control App

OpenStack/Docker

Figure 3. 2. 1: The Building Blocks of CORD

23

a. XOS (Everything as a Service Operating System)

XOS is the orchestrator used by CORD and is supported by OpenStack and ONOS in M-CORD
architecture. Basically, it behaves similar to an operating system as it allows the assembling and
composing of network functions and control application as services [4]. XOS can be divided into

three layers as follows.

» Firstly, from the top, it accepts network configurations using two interfaces either GUI
or TOSCA recipe. XOS GUI allows the user to generate configuration using an
interactive interface. However, it allows third parties to configure it using the TOSCA

recipe that can be pushed using REST-API.

» Secondly, XOS core constitutes of core models and each model represents a specific
service. Also, models are created and instantiated using the configuration provided from
the top. A service in XOS is the instantiated model using specified parameters. By an
instantiated Model it means that Model instantiates the developed network Functions

using the configuration provided from the top.

» Basically, a model is an abstraction of how service will behave on a real physical system.
So the third and most important part of XOS is synchronizers that orchestrated these
models on the physical system. Synchronizers basically use ONOS and OpenStack and

other services to replicate the instruction provided from top to the physical system.

XOS consists of a set of Docker containers as illustrated in Figure 3. 2. 2. Each of the containers
has a specific role in the above-mentioned steps. Each layer of XOS has specified containers so

the first layer that represents the XOS northbound interface consists of the following:

24

xos-tosca: It consists of a TOSCA engine, upon receiving TOSCA configuration it
forwards the defined configuration in it to xos-core over gRPC.

xos-gui: it is a gui interface for allowing the system administers to easily manage and
change the service configuration. Each change is processed through REST using xos-
chameleon.

xos-chameleon: it is the REST interface translates messages received from GUI to gRPC

and send s them to xos-core.

As we know the second layer constitute of data model following four containers manage the data

models.

xos-db: A PostgreSQL database used for the storage of model instances.

xos-core: it contains the definition for each model and is used to translate the model
instances that exist in xos-db into PythonDjango classes using Object Relational
Mapping(ORM).

xos-redis: it manages internal notifications using pub/sub channels. Watchers, a
particular type of synchronizer use it to notify about the changes and system states.
xo0s-ws: it propagates the notification generated by xos-redis to gui and notifies about the

failures in synchronization.

The third and most important layer in CORD 1is synchronization so it is done using the

synchronizers as follows.

synchronizers: the purpose of the synchronizer is to replicate the models on to physical
layer and any change in the model must also be replicated. So the synchronizers always
accept model from xos-core and xos-db and convert them to the configuration for the

specified service. The keep on watching both the changes in system and model using

25

watchers to keep the system state same as defined by models. They are the one
responsible to update the underlying system for each entry made by an administrator [3]
[4] [5].

XOS also contain other modules that are as follows:

e xo0s-ui: it is basically used on the deployment time and has no use on runtime. Also, is
expected to be depreciated in the upcoming version of CORD.

e registrator: in CORD every service has its own synchronizer and synchronizers exist in
CORD as a Docker container. So, on every new service discovery, it finds out the
container for it and adds it to a service registry.

e consul: it is registry in CORD and is used for managing clusters of datacenter. But in our
example, it will be sued to deploy different CORD deployment scenarios.

Figure 3. 2. 2 represents overall XOS Docker container and the blue boxes in the bottom shows
the real system that will be deployed using CORD, VNFs box represent the actual virtual

network functions that can be deployed using CORD.

xos-tosca xos-chameleon

X0s-core xos-redis

Figure 3. 2. 2: Shows interworking of Containers inside XOS and the real infrastructure that can be deployed using XOS.

26

b. ONOS

ONOS is an open networking operating system it basically manages the physical and virtual

connectivity and it is also responsible for hosting first-class CORD services [24]. ONOS in

CORD has two separate instances which are as follows

e onos-cord: it consists of VTN (Virtual Tenant Networking Application) which provides us
with the implementation of service composition. It helps the user to basically map
instances across the services. It is basically responsible to apply the policy and
dependency provided from the top onto the physical system. For example, it ensures that
there is bidirectional communication required between two services or unidirectional. Either
service requires connectivity to the internet or it requires the services from the management
plane. So all the decisions and policy related to services and their tenants can be implemented
using VTN. Implementation of working of VTN is depicted in Figure 3.2.3. It explains three
services with multiple instances and it is shown that VTN provides the network between services
and selects instance that will serve a certain slice. It shows that service dependency Policy is
being provided from top e-g in the case of this development it will be provided using IBN-
Application. VTN according to dependencies implements networking among the services using
OpenStack Neutron. While Configuring Policy we also decide the network subnets and port for
each instance of service and XOS orchestrate the physical VNF using OpenStack.
e Each Service has multiple instances, in CORD the multiple instances for a service can have two

reasons one is load distribution and second is a tenant for specified SLA. So, from the top the
service dependency can describe the tenants and CORD VTN decides the selection of Service

instances based on the tenancy. Secondly, one tenant service can have multiple instances so

27

CORD through its built-in load balancing functionality selects among the same type of instances

as shown in figure 3.2.3.

Service 1Virtual Network Service 2 Virtual Network Service 3 Virtual Network

@

service/dependency CRUD

§1A

X0s

@ 5

network/subnet/port CRUD

L\

§18 [

dependency CD

y

OpenStack Neutron

dependency R

P
WA

s1c 34

network/subni

ovs L ovs o ovs i ovs -—I
i i : populate rules .|

Compute Nodes H Compute Nodes H Compute Nodes M Compute Nodes J

ONOS CORD-VTN

et/port R,

Figure 3. 2. 3: Shows how CORD VTN works.

onos-fabric: it configures the fabric switches and also provides Internet-as-a-service in CORD

through the vRouter application. Figure 3.2. 4 how CORD moved the CO office to Datacenter and

how it reinvented datacenter to be used as CO. It consists of VNF deployed on the physical

network and are being controlled by Trellis CORD ONOS application which consists of Fabric

Control, vRouter, and VTN as building blocks.

28

'1- —————————————————— (LT I I I 1 T L _I'%

C
! | Overlay Underlay || vRouter
A Control Control Control
-

[Other J[Other

\
|
. Apps Apps) 1
= h |
=" ONOS Controller Cluster :
-
i
> |
4..}5 +# | White Box | [WhiteBox | [White Box | [White Box | '
M T — — . e — !
” '| e Dl '
/v' 1 ~ e ,.:-t— — .-“x -—— Jf\ 8 - l
/ > - 4 -
I e N
1 [White Box] [White Box] White Box
l\ i White Box

iainoy
IEIT]

Access
Links

Figure 3. 2. 4: CORD Fabric with Trellis Control Application.

c. OpenStack

OpenStack in CORD serves as IaaS, it is open-source software that manages compute, network
and storage in large scale data centers. It consists of several components each has a specified role
and each component in CORD exists as LXD containers and can be seen in Figure 3. 2. 5. The
communication of the components is also depicted in Figure 3. 2. 5. Few of them are considered
important for explanation and are as follows.
e Nova (nova-cloud-controller): It provides and manages the compute resources and also it
creates VM on physical machines. Basically, each VNF is developed as an OS image which

implements the functionality of the VNF. So, Nova creates VM on Physical Machines for the

required network functions

29

Neutron (neutron-api): it is a network manager and provides VN’s for connecting compute
instances. However, it does all this in CORD on the instructions from ONOS controller as was
explained above.

Keystone: it is used for authenticating clients, discovering services and managing multi-tenant
authorizations. As each tenant will be restricted to its own domain instances as was explained
CORD VTN the service instance was selected based on tenant and load.

Glance: it is for managing the discovery, registry, and retrieval of VM images.

Ceilometer: it collects all the data that can be used for monitoring, customer billing, resource

tracking and alarming capabilities from all OpenStack components. The data it can provide also

includes VM resource utilization and it stores it in term of the time stamp, CPU utilization, RAM

and Storage.
Nagios: It is the built-in Monitoring agent for OpenStack that exists in CORD and it is used to

fetch ceilometer info which may include CPU utilization, RAM and Memory logs.

Ceilometer Neutron-api Rabbitmg-server

-

Mongodb Keystone Percona-cluster

Openstack- Nova-cloud-
dashboard controller

Figure 3. 2. 5: OpenStack internal architecture.

30

3.3 M-CORD based Network Slicing Scenario

As 5G standards were recently defined by 3GPP and the components and network function
designed have not yet been developed and not available as open-source network functions. So for
this research work, we used the open-source LTE virtual network function developed by OAL
OAI is an ETSI complaint organization which develops and provides network components.
There are two types of the open-source network component that are used as part of our test-bed.
Firstly, the access network that is provided in a package named as OAI-SIM which means OAI
simulator. It basically simulates up to 20 user equipment and an eNodeB. Hence, it can simulate
enough traffic for our core network. The second and most important open-source package it
provides is OAI-EPC which is OAI- Evolved Packet Core. It consists of core network functions
listed as vMME, vHSS, SPGWC, and SPGWU. The Source code and licensing information can
be referenced from [25]-[28].The working of all the network functions is as follows:

e OAI-SIM: it can simulate the traffic from UE through eNodeB and sends a PDU session
request to vVMME. And after a successful session establishment, it sends traffic using the
tunnel and SPGWU.

e VMME: upon receiving the connection request from eNodeB it forwards the request to
VvHHS for checking the subscription and it selects proper SPGWC for the UE on the
confirmation.

e VHSS: it is a database server that contains all the subscription information and it allows a
user to receive only those services which are subscribed for them.

e SPGWC: it receives the request from vMME and allocates a proper SPGWU and data-

plane tunnel in accordance with the UE request.

31

e SPGWU: it is the gateway which creates a tunnel between eNodeB and the SPGWU that
connects it to the internet.

It is all provided by the OAI interface and is all up to 3GPPP standard document. Our test-bed

not only considered these function we also included a unique network function that is NSSF

(Network Slice Selection Function) [19]. This function was discussed in previous standards of

3GPP documents and also it is part of 3GPPP 5G architecture as shown in Figure 3. 3. 1.

AUSF = UDM

22\.\”2 NE N10
AMEF SMF 7 PCF —ne—o{ AF

Tl | A s |
— UPF

Figure 3. 3. 1: NSSF in 5G architecture [19]

UE RAN

This function basically selects the core network slices in accordance with the UE session request.
For integrating this function in the test-bed we were required to make changes to the test-bed
procedures and are as follows:

e The vMME internal procedure required some changes as NSSF sits on top of it. Before,
NSSF inclusion vVMME was selecting core network slices based on load balancing
techniques. So, now it sends a request to NSSF for selecting a proper slice or core
network instance, that will lead to the fulfillment of the desired service by user [30].

As OALI is platform independent development we have to use the functionality of each

function inside M-CORD. As it is known that M-CORD allows everything as service so, the OAI

32

developed network was changed to M-CORD based service. We developed NSSF as a Service
in M-CORD. The procedure followed to develop and integrate OAI into M-CORD based
services can be referenced from the following [29].

The specialty of each service is that we created a Synchronizer for each of them and
synchronizers accepts the Model from xos-db and replicate them on to physical layers. One of
the special synchronizers that are very important to discuss is NSSF synchronizer [30].

The NSSF synchronizer fetches the core network model information from xos-db and stores
them into its database, xos-db contains the information of the type of service and the host that is
responsible to deliver the service. Hence, using this database NSSF is able to decide about the
selection slice or network function in accordance with UE session request [30]. Also,
synchronizer keeps a watch on updates in xos-db i.e.it keeps itself updated with any change in

core network models as depicted in Figure 3. 3. 2.

X0s

Monitor Changes in @ Push network
State of Network | instance changes

NSSF |
Service seciia

Address List

ﬁSSF)
Slice Request o 5 Slice Selection
- essage N F ‘ :l Sg;e

4

| |

|V uoi1eaiuNwwo?)
w

Figure 3. 3. 2: NSSF internal working

33

Hence overall network slicing test-bed consists of OAI components with an enhancement for

making it compatible with NSSF based slicing scenario. Also, all the components are integrated

into M-CORD as services. Finally, M-CORD based network slicing scenario is depicted in

Figure 3. 3. 3 where from top XOS contains the Models and Synchronizer including ONOS and

OpenStack while real-time network function exists on the physical layer. Also, the VNFs are

controlled using synchronizers, ONOS and OpenStack [30].

X0S
eNB NSSF EPC OpenStack ONOS
o | OAI-EPC
S -
' slice-net !
OAI-SIM : sé_net |
@ slnet —— ---1] vSPGWC
- -1 vMIME [---" .
eNodeB sll-net oM
@ | : |
GTP-TUN | vspawu
DSynchronizer

Figure 3. 3. 3: Overall Network Slicing test-bed including M-CORD NSSF and OAI

34

Chapter 4

Machine Learning Approach and Experimental
Results

Our goal in this research is not only to simplify the configuration but also to enable dynamic
resource management for the M-CORD environment. So to achieve this goal we need to design a
system that should have the following properties.
o Firstly, it should automatically detect the resource demand.
e Secondly, it should be able to predict the future failure state in terms of resource
requirement.
e Third, it should dynamically update the system resources in accordance with the resource
requirement.
To achieve the above-mentioned goals system considered a monitoring application that will
monitor the system resources with time. Secondly, we integrated machine learning model
inside the IBN-Application that upon receiving the system current resource state predicts the
future resource status. In accordance with the future resource status, we designed a decision
engine that decides whether the future state of the system leads to failure or not. According to
the future state of the system, it makes the decision of scaling out of the system resources.
Then it requests the IBN-Application to change the system configuration to increase the
number of instance for that particular resource. Furthermore, this chapter includes the details
about the monitoring app and the machine learning model training and the overall system is

depicted in Figure 4. 0. 1.

35

Machine-Learning IBN-Tool

0
o

L O Monitoring

Grafana $/'
‘ M-CORD como

Figure 4. 0. 1: General Lifecycle dynamic resource management system

4.1 Monitoring Application

OpenStack is the default IaaS provider for M-CORD, hence all the VM are under the control of
OpenStack. Chapter 3, explained OpenStack components, Ceilometer is the one that logs the
information about resources that can be used for monitoring purposes. There are many ways to
fetch this monitoring information and perform the required operation on the information
accordingly. For our work, we chooseNagios as a Monitoring tool, which is very flexible with
CORD. It enables us to monitor each tenant and instance with the required monitoring
information. Also, it is a very good tool to analyze the system state at any random time. But, as
our goal is not only to check the current state of the system rather we need to be advanced to
predict the future state of the system. So, that we can avoid any resource failure at runtime. Why
is it important to predict the future state? It is because the orchestration and management of
system scalability require time. If we will depend on the current state of the system. The
orchestration time required will generate overhead in terms of latency and user will feel a little
delay which does not fulfill the goals of 5G.

Nagios has a very interactive GUI and it also is enabled with rest-api we can receive and request

using rest interfaces. So, we deployed Nagios inside the compute node and it monitors the hosts

36

and we can view analyze and collect the information. A performance matrix is depicted in figure
4.1.1. Where it is clear that it can monitor CPU, Load, Memory, and Storage. Also as it is
designed as a generic monitoring tool it can also help us with Monitoring other information,
including network bandwidth, and protocol monitoring. It can graph the utilization of the

parameters at any time as shown in figure 4.1.2.

Nagios’ Hame Views Dashboards Reparts Coafigure Tesls Help Admin Q @ &nagiosadmin @ Logout

w Configure

Service Status

Configuration Options + Host Status Summary ¥ Service Status Summary
w Configuration Tools oL A0 Bt 1A Up Down Unrcachable Pending Ok Warning Unkmown Critical Pending
Configuration Wizards
- Al Damcneany Unhandled Problems Al Unhandled Problems Al
B Manage Templates
1
v Advanced Configuration
@ Core Config Manager
hortyes Showing 1-16 of 16 total reconds Page 1 | of1 00 oe |r| Go a
My Account Settings
r* System Caonfiguration } Host 1 senvice § staws § Duration § Anempt § Last Check 1 status nformation
70 User Management
 Unconfigured Chjects 2188472 4 [Jaef /Disk L o Ok Tm3s W5 2018-02-12123202 DISK OK - free space. / 13316 MB (80% inode=01%}
#* Deadpool Settings -
£ oK 6m 373 s 2016-02-12123226 DISK OK - ree space / 13316 M8 0e=31%)
ok gs 105 2016-0212123355 DISK OK - free space: / 13316 MB (80% inode=01%]
ok 7m31s 1 2018-02-12123203 hitpd (pid 1374} s running
0K 6m 263 1 2016-02-12123237 GPU STATISTICS OK: User=3 40% system=1.00% lowalt=0 20% ifle=05 40%
oK &m 585 1 2016-02-12123203 crond (pid 1334) is running.
Ok Gm3s 1 2016-02-12 123139 OK - load average: 0.09.0.29, 0.22
o Ok 6m58s 1 2016-02-12123204 OK- 508/ 1054 MB (57%) Free Memory, Used: 755 MB, Shared: 0 M8, Buffers: 105 MB, Cachedt 309 M8
Ok 5m 593 115 2016-02-12123304 mysqid (pid 1269) is running
[p =t ok &m 88s 4 2016-02-1212:3204 OK: 1568 open files (1% of max 104724)
Ok Tm3ts 1 2018-0212123205 OK- 192168.4 72 ria 0.872ms, lost D%
ox 6m 583 1 2016-02-12123205 openssh-gsemon (pid 1114] is runming
o Ox Tm3ts 1 2016-02-12123206 SWAP OK - 100% free (2047 MB out of 2047 MB}
Ok 6m0s 1 2016-02-12123303 PROCS OK 111 processas
o OK 6m 58s 1 2018-02-12123207 USERS OK.- 1 users currently logged in
Waming 7m31s S 2016-02-121230:02 YUM WARNING. OIS requires an updale.

Figure 4. 1. 1: Front end of Nagios with different number of Monitoring Parameters

37

Nagios’

» Configure
Corfiguration Options
w Configuration Tools

Configuration Wizards
® Auto-Discavery
W Manage Templates

v Advanced Configuration
© Core Config Manager
~ Mare Dplions

#* My Account Settings

System Configuration

User Management

* Unconfigured Objects
#* Deadpoal Settings

Views Dashboards

Service Status

Host: 192.168.4.72

Showing 1-16 of 16 total records

4 Host I senvice

Reparts

Configure Tools

Help

Page 1 of 1 1000

§ Status ¥ Duration § Attempt
w Ok Tm3s 15
+ Ok 6m37s 5
o

4
o
- N
w
= 30 1140
I load]

E
4
Ok Bm Sas s

waming 7m31s

Admin

¥ LastCheck
2016-02-12 123202

2016-02-12 123226

192.168.4.72 : Load

2016-02-12 1

207

20160212 12:30.02

* Host Status Summary # Service Status Summary
Up Down Unreachable Pending Ok Warning Unknown Critical Pending
ndled Problems Al Unhandled Problems All
1
er Page |x| Go Q

1§ Status nformation
DISK OK - free space: / 13316 MB (80% inode=01%]

DISK OK - free space: / 13316 MB (B0% inode=31%)

0.20% Idle=95 40%

Reset zoom
[o Buffars: 105 M8, Cached: 303 MB
| Friday Feb, 12 - 12:28 PM
® load1: 0.11
® loads 0,302 M)
| ® load15: 0.22

USERS OK - 1 users currently logged in

YUM WARNING: OFS réquires an upaate.

Figure 4. 1. 2: Showing graph value for a Load parameter at time 12:30 from the front end.

38

4.2 The Machine Learning approach

This section starts with data gathering, then it discusses the data preprocessing and further
explains the Machine Learning approaches followed.

e Data Collection:

The open-source GWA-T-13 MATERNA data is used for this model training. The set is
collected from three distributed Traces and each contains 520, 527 and 547 VMs data. Each
Trace spans about a 1 month of monitoring data.Each, VM performance evaluation data is stored
as .csv file.

o TRACE 1 on average contains 8340 rows for each VM record.

o TRACE 2 on average contains 8600 rows for each VM record.

o TRACE 3 on average contains 10000 rows for each VM record.
Each row contains 12 monitored parameters as elaborated in Table I. Special thanks to Materna a
service provider for many German public sector users and banking applications for the open-
sourced resource. The details about how data-collection and distributed datacenters can be
referenced from [31].The first goal is to train a model that can efficiently predict CPU-utilization

using the dataset. Hence, the target variable is CPU-Utilization for training the model.

Table I: Schema of MATERNA GWA-T-13

Schema
Index Name Description
0 Timestamp Number of Milliseconds
1 CPU Cores No. of vCPU cores provisioned
2 CPU Capacity No. of cores x speed per core
3 CPU usage In MHZ
4 CPU usage In percentage (%)
5 Memory provisioned Total memory of VM in KB
6 Memory Usage Actively used memory (KB)
7 Memory Usage Percent
8 Disk write In KB/s
9 Disk Size InGB
10 Network in throughput In KB/s
11 Network out throughput In KB/s

39

e Data Visualization:

The view of the average CPU utilization compared with memory is shown in Figure 4. 2. 1. It can be
perceived that most of the time pattern of usage of the avg CPU and memory stays the same except few
timestamps. They follow the same up and down but the amount of the usage up for CPU and memory
cannot stay the same. From this, we assumed that the memory can be used for prediction of CPU-

Utilization.

(%)

1sage (KB)

CPU average usage

o 1000 2000 3000 4000 5000 6000 7000 8000
Timestamp index #

Figure 4. 2. 1: Comparison between the average CPU-utilization and memory usage with the time.

Similarly, other parameters showed different patterns with time as can be seen in Figure 4. 2. 2.
However, for this work, we considered disk and CPU utilization as a critical part. When the streaming
packet increases with a very high amount they form a queue in the VM which directly impacts memory
and CPU utilization. However, we can see that network and disk utilization shows different behavior
with the time sometime they match but have a lot of difference also compared to memory and CPU

utilization they follow a different pattern.

e (KB/s

Abs disk usag

| |

l [l \ I| “ ‘ | (fTAN h
[[l \H\ I“ If ‘ F'I ‘ I' lJ l‘.l \"r\wl ‘w'ﬂ.“.,ﬁ.“l‘“ ‘fl
i “v‘l I.‘I‘\.\JJ‘J!L?I} ku"‘ﬁ \Nﬁ\’ MJj 1\ \l _LAIJ ', g ‘N' \ ﬁ’ \ J l / | “} Jﬂ\\/‘ ‘f‘w"‘.r‘ L Jr\ |‘1'u.“"u" M‘t.‘d Hrf’ fkh

M‘ |' \.J“')

0 1000 2000 3000 4000 5000 6000 7000 8000
Timestamp index #

Figure 4. 2. 2: Comparison of disk and memory utilization with time stamp

40

e Data Preprocessing:

After investigating the dataset, the data-set rows look redundant for multiple numbers of rows.
So the problem is that data is collected for every millisecond and the changes that occur takes a
little time and also due to this fact we have a very large dataset. As a result, the averaging filter
is used on the raw data. The averaging window size was set to 9 seconds which equals 30 rows
of the data. This will calculate the average resource utilization on all the 520, 527 and 547 VMs
of the three TRACES respectively.

After applying the averaging filter, the dataset is changed to the avg-filter-data, structure of the
avg-data is illustrated in Table II.

Table lI: Average Data-Set Structure

Trace ID | AVG no of rows | No. of VM / .csv
TRACE 1 | 278 520
TRACE 2 | 287 527
TRACE 3 | 334 547

After applying to average the next step is to generate input and output for the Model. To generate
inputs all of the parameters were cascaded and aggregated in groups using-dataset. We kept one
last row for CPU utilization which will be used for CPU utilization classification. The total
number of rows considered for aggregation and cascading are 10 and the 11" will be used for

CPU utilization. Hence the dimension of input data will be 60 and is shown in Table III.

41

Table IlI: Input Data Schema

Schema
Index Name
average-CPU-usage-0 (%)
average-memory-usage-0 (%)
average-disk-read-0 (KB/s)
average-disk-write-0 (KB/s)
average-network-in-0 (KB/s)
average-network-out-0 (KB/s)
average-CPU-usage-1 (%)
average-memory-usage-1 (%)
average-disk-read-1 (KB/s)
average-disk-write-1 (KB/s)
average-network-in-1 (KB/s)
average-network-out-1 (KB/s)

oo 1 kW N = O

i
e

54 average-CPU-usage-9 (%)

59 average- memory-usage-9 (%)
56 average-disk-read-9 (KB/s)
o7 average-disk-write-9 (KB/s)
58 average-network-in-9 (KB/s)
09 average-network-out-9 (KB/s)

The output of the dataset is formulated, using aggregation and cascading on average CPU-
utilization. It resulted in the classification of CPU-utilization into upper and lower bounds. The
classification method used is Uniform classification method where the range between each group
is 5 and are shown in Table IV. Not only this, but we also tried the exponential classification
method but the results were not good also the exponential classification is not a good scheme for

our proposed model.

42

Table IV: Classification of CPU-utilization

Class # Percentage Range
0 0-5%

1 5-10%
2 10-15%
3 15-20%
4 20-25%
5 25-30%
6 30—-35%
7 35-40%
8 40 —-45%
9 45 -50%
10 50-55%
11 55-60%
12 60 — 65 %
13 65—-70%
14 70—-75%
15 75— 80 %
16 80— 85 %
17 85—-90 %
18 90 — 95 %
19 95 —-100 %

The input and output data capture all the required data to map the CPU, memory, disk and
network utilization to predict any CPU utilization in the future.

e ML Model Training:

A very detailed explanation of different approaches and results achieved by a different research
group in the prediction of CPU- utilization are referenced under [14] [17]. The dimension of
input data is very high hence only neural networks are the most suitable approach in our scenario.
For this case, we trained our model using ARNN (Artificial Recurrent Neural Network) and NN
MLP (Neural Network Multilayer Perceptron) classifier. Both, the models were trained for

predicting the CPU utilization. As in the data visualization section we have seen that there were

43

similarities and exceptions in the parameters and their dependence upon each other so we used
different parameter selection approaches for training our models.
o The first configuration contains only CPU utilization; where each time stamp has only
CPU utilization.
o Second, configuration contains CPU and memory; where each timestamp considers
CPU and memory utilization.
o Third, the configuration contains all the parameter of the dataset across the given
timestamp.

e Evaluation and Results for each of the Model:

Table V: Results in terms of train and test accuracy

ML-Algorithm | Input data Train Accuracy Test Accuracy

cpu 0.955 0.951
NN-MLP cpu-mem 0.921 0.916

all 0.899 0.890

cpu 0.883 0.881
NN-ARNN cpu-mem 0.854 0.851

all 0.846 0.834

Table V showed an inverse relationship between the number of parameters and accuracy. It
shows that the increase in parameters adds more noise to the CPU utilization prediction. Even,
memory utilization does not add to the results and behaved as noise for the prediction. Second,
the thing that we recognized is that MLP-Classifier performed much better than ARNN in this
case. Therefore, we decided to use MLP-NN as our default Model. The second step is to train a
Model for memory prediction and disk utilization prediction. We followed a similar approach in
the data preprocessing and performed cascading and aggregation on an averaging dataset which

divided both the disk utilization and memory utilization into uniform classes similar to CPU

44

utilization. After that Models were trained for both the disk and memory utilization as the output

parameters. Evaluation of the Models is shown in the following Table VI.

Table VI: Results of Model training for predicting Memory and Storage

NN-MLP
Output Input data Train Accuracy Test Accuracy
memory mem 0.924 0.911
disk disk 0.899 0.884

As it was evident from data visualization that disk utilization patterns are different and also for
an unknown reason the results of disk prediction are not as good as compared with memory and
CPU-utilization. Furthermore, we can include other parameters and train models for increasing
the decision boundary. Network utilization is one of the important parameters to be considered
so for our final and single model configuration will be like. Timestamp, CPU, Memory, Storage,
and Network as an input parameter and it will predict the future time utilization for each of the
parameters. The Final Model architecture can be perceived in figure 4. 2. 3 which consists of 5
inputs and 3 hidden layers and 4 output layers. The next step is to decide that what predicted
values can result in a Failure state or require a change in the configuration of the system. The
decision module is responsible for deciding the predicted state of the VM on the bases of

predicted values of CPU, Memory, and Storage.

45

Time Stamp

CPU

Memory

Storage

Network

Input Layer

0T

Hidden Layers

RELN . AN N Memory
\ . e AN Storage
2 . - B c itk

Output Layer

Figure 4. 2. 3: The NN architecture where we have 5 input neurons and each hidden layer is fully connected layer and 4

output layer neurons.

The results of the final model are depicted in Table VII. The results of the final single training

are not that good compared to the results of the multi model approach. The training results shows

a decline whenever we try to insert multiple parameter as input because they act as noise for each

other. For further work it is recommended to train model using a different dataset and other ML

approaches.
Table VII: The result of the final trained model.
NN-MLP
Output Input data Train Accuracy Test Accuracy
cpu,mem,disk, cpu,mem,disk, 0.85 0.83
network network

46

4.3 Decision Engine:
After predicting the future CPU, Memory and Disk utilization we need to decide the predicted
status of the VM for which we were predicting. So, it classifies the predicted values into three
classes in terms of utilization condition.

a) Overload

b) Normal load

¢) Low load
If the predicted state is the overload condition this will mean that the system requires a scale-out
for that kind of VM. But before scaling out it checks whether other VM are serving for that
service are also overloaded or not and after that, it takes the decision and stores the prediction
results in the directory. The Logic for the decision engine is shown in Figure 4. 3. 1. The

decision of overload condition is measured using;

Max utilization Normal Minimum
C-max>= CPU utilization above 90 % 60<=C-medium<90 | C-low<60
R-max>= Memory utilization above 85 % 60<=R-medium<85 | R-low<60
S-max>= Storage Utilization above 90% 60<=S-medium<90 | S-low<60

Failure State= C-max || R-max | | S-max
Normal State = ~ (C-max & R-Max& S-Max) & (C-medium | | R-medium | | S-medium)
Underload State= (C-low & R-low & S-low)

Hence, the logic of the predicted state of the resource utilization can easily be converted to

system state using the logic above.

47

4 ® disk
= @ ® = o .
El® o o @ Decision Engine
@ | @ -
g : 5: Recommend Updates Berision
: : Hiddénmem
- g : Py :Over-Load
2@ | | @ @ 4:Response
2igs
@ © @
Hidden Layers
g i: mem
;@ @ @ ™
@ e ©
g : l: 3:List under/normal load with respective service
@ @
Hidden Layers

Figure 4. 3. 1: The Logic of the decision engine.

4.4 The Experimental Test-Bed

The experiments are divided into three phases. Firstly, NSSF and implementation of OAI-
components inside M-CORD have been considered. Secondly, the integration IBN-application
from the top is explained for showing the simplification in the configuration and policy
management of CORD. Third part interprets the results after integration of ML models and
Monitoring tool.

The first experimental Test-Bed consists of OAI (OpenAir interface) eNB and EPC integrated
with M-CORD [30]. The test-bed consists of two parts. First is the setting up of IBN application
and second is the network slicing scenario. We based our development of network slicing
scenario using M-CORD version 4.1 as a cord in a box (CiaB) deployment. This allows for a
virtualized environment that can exist in a single physical server. The machine that houses the

deployment has 64GB of RAM, 20 physical cores and is running on Linux 14.05. The EPC

48

represented by open-air-CN is running on a modified version based on commit a58735fe, also
the eNB version of the OAISIM implementation is the latest master branch. The EPC is running
on Linux 16.04 and eNodeB on Linux 14.04 both with kernel modifications i.e. 4.7.7 oaiepc
kernel for the EPC and Linux 3.19.0-61-low-latency kernel for the eNB. The NSSF was
developed using python and is running on Linux 16.04. Communication between MME and
NSSF is done via RPyC (Python native RPC). A Python API is needed to enable communication
between MME and NSSF. Also, XOS Services were created with a mix of python, and yaml
scripting [30].

For setting up the environment four VM images had previously been created using the cloud-init
package which is required for creating VM images that can be used by OpenStack. The EPC
image was obtained from the oai-scenario repo of the developer aweimeow who also changed the
standard OAI architecture for compatibility with M-CORD [29] [30]. The eNB, vMME and
NSSF images were created as part of the research. The approach followed for slicing the network
is based on 3GPP LTE architecture for which considered network slicing in the core part where
there is no network slicing available on the access part.

When each VNF is instantiated i.e. The EPC comprised by the vHSS, vSPGW-C, and vSPGW-U
will be provisioned by a unique VM image but each XOS service that represents the VNF will
have some particular directive that affects the configuration of the instance, so even though all
the EPC are been instantiated using the same VM, they will act differently thanks to the
configuration specific to each VNF. For the vMME, NSSF and eNB case, the VM images are
particular to each service for which they are not reused by any other VNF. Moreover, system

configurations are detailed in Table VII.

49

Table VIII: Shows Image Distribution for the test-Bed

VM Image Distribution

VNF Image-name
vHSS

EPC vSPGW-C image-oaicn
vSPGW-U

vMME image-vmme

eNB-OAISIM image-oaisim

NSSF image-nssf

To showcase the functionality of the NSSF, multiple slices were configured on the platform. Our
purpose is to have two UE connecting to the mobile network and have each of them routed
through different paths for connecting to the data network. The initial underlying topology for

two slices of the test-bed can be appreciated in Figure 4. 4. 1.

NSSF vHSS
Data Plane
nssf-net

Sl VSPGWC VSPWGU
UE - eNB b=
_|
m
o)
_ =
vSPGWC spgw-net | vSPWGU —

S1-U

Figure 4. 4. 1: Initial network test-bed configuration with 2 slice example.

OAISIM is the actor that triggers the Mobile Network test. Initially, we have it configured with
two UE that have different IMSI. The last digit of this id represents a type of service (Relative to
this test scenario: 1 being eMBB, 2 being IoT). As the IMSI is a combination of the PLMN and
IMSI, the first five digits are always common 20893. We are working in the same PLMN so the
eNB and vMME need to match these five numbers before any UE starts registration into the
network. The rest of the numerical that represent the IMSI, are particular to each UE. In our

scenario, UE1 has 208930100001111 and UE2 has 208930100000402 defined as their IMSI.

50

The vMME gets this information from the eNB and by communicating with the vHSS, verifies
that this numerical Id exists in the UE Data Base (UE allowed to be served by the network
operator), once the UE is registered into the network, the original OAI implementation of the
vMME would select an SPGW on the basis of the TAC and TAI information that the eNB had to
send during network registration. Instead, we changed this procedure in order to demonstrate our
Slice Selection scenario. Modifications had to be done on the vVMME for it to achieve
communication with the NSSF, so we created a new vVMME image that contains the
modifications. TAC and TAI were discarded for SPGW selection and IMSI was used in their
place. As vMME and NSSF are two different developments, an API was created to interact

between both modules, and achieve exchange of messages. Figure 4 .4.2 illustrates this process.

icati vVMME
Commupeation I C Implementation
API
Python Code for
Interaction with
NSSF | NSSF
RPC Call Python Implementation

Figure 4. 4. 2: Python APl between NSSF and vMME

The test Results after creating two slices and for the two user equipment are shown in the figures

4.4.3 and figure 4.4.2.

Iperf-Downrate

50
40
30

20 c—==0C—= ® S — C=——=C=—=0
10

[& & & & ® o9 o9

—@— Web-Slice Downrate —@—Slice5- Downrate

Figure 4. 4. 3: Down-Rate for the configured slices using the UE.

51

The down-rate shown in figure 4.4.3 stayed stable from start to end which means that the system
provides stable download rates. However, in the case of uprate we can clearly see a disruptive behavior
at the beginning of the test when video slice started but after that, it maintains stable QoS. For
performing these test the QoS parameters were not decided before the creation of the slices so through
the iperf test we tried provided the input QoS and system behavior is shown in the figure below.

Iperf-Uprate

50

40
N_.__‘ PS PS PS PY

30

20
10 o g e T S —0————¢]

0

1 2 3 4 5 6 7 8 9 10
—@— \Web-Slice - Uprate =~ —@=\ideo- Uprate

Figure 4. 4. 4: Up-rate graph for the slices.

4.5 Experiment after IBN Application integration

For this test the test-bed consists of IBN-application, M-CORD with NSSF and OAI based
network slicing scenario, as in Figure 4. 0. 1. The purpose of the test-bed is to automate network
configuration and management, for testing purpose we inserted 5 slice configurations from the
top using the contracts as shown in Figure 4. 5. 1. Actually, by slices, we meant a number of a
different combination of SPGWC and SPGWU each with different configurations from the top.
This slicing model can be referenced from [5] [34]. Also, in 3GPP the concept of core network
slicing is also the generation of multiple core network instances of SPGW with different QoS. So,
we set a test-bed with the 5 slices with different QoS. Our goal of representation for IBN
application, for instance, is that it should replicate the configurations to the physical layer. We
have performed multiple iperf-test on the user-plane functions in the core network that is SPGW-
U gateway. The results show that the information provided from the top is replicated on the

physical layer properly. As Figure 4. 5. 2 and Figure 4. 5. 3 represents the results of QoS

52

allocation in terms of up-rate and down-rate for each of the slices with time intervals. Further, for
more intensive bandwidth results we require very sophisticated hardware on RAN part and the
core part, the capability of CORD can be referenced from the demo provided by Radisys [36].

Figure 4. 5. 1, shows the front end of the IBN-application, it accomplishes our challenge of
simplification in the configuration of next-generation platforms. As we can see in the front end
we configured 5 test slices for our system each having different QoS configurations. Also, the
different slices were marked with S-NSSAI 1 only because we don’t have the developed

infrastructure for all the network slices.

K

System Contracts

This application allows the end user to define high level contracts.

Contract Information Contracts & ©

Contract name Architecture
TEST-1(LTE)
LTE

QoS Network Slices (uprates/downrates in MBs)

B slice_no_1 juprate: 10, downrate: 20) slice_no_2 (uprate: 15, downrate: 30)
slice_no_3 (uprate: 20, downrate: 40) slice_no_4 (uprate: 25, downvate: 50) TEST-3 (LTE)

Custom QoS Network Slice

Submit your intent ey

Figure 4. 5. 1: Shows the front end of the IBN-application with the five test slices.

In Figure 4. 5. 2, we can see that the entire slice configuration provided from top created five
different slices and for each slice, the down-rate stays stable for all the 10 tests performed. We

can see the values of the down rate provided from the top is maintained by the platform.

53

Down-rate for each slice

80

70

60

50

40

Bandwidth

30

20 Slice5

10 Slice3

Slicel

0
1 2 3 4 5 6 7 8 9 10
mSlicel 19.1 19.2 19 19.1 19.1 19.3 19.1 19.1 19.9 19.1

W Slice2 287 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.3
mSlice3 38.2 38.3 38.3 38.3 38 38.3 38.2 38.3 38.2 38.3
W Sliced 47.8 47.8 47.8 47.9 47.8 47.9 47.8 47.8 47.8 47.9
m Slice5| 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76.6

Figure 4. 5. 2: Shows the down-rate for each of the slice.

Similarly, Figure. 4. 5. 3shows the up-rate stability for each of the created slices. The end to end
test can qualify the quality of service using the test-bed because OAI-SIM does not support more
than 20 users and also don’t provide the Bandwidth of more than 20, so the test shown is directly
performed on the User-plane function i.e. SPGW-U and they perfectly show the mapping of the

QoS provided from top is allocated properly on the physical layer.

54

Up-rate for each slice

70
60
50
40
30
20

10
0 Slicel

1 2 3 4 5 6 7 8 9 10
HSlicel 9.1 9.9 9.17 9.8 9.09 9.8 9.1 9.7 9.52 9.53

W Slice2 143 14.3 143 14.3 143 143 143 14.3 14.3 14.4
mSlice3| 19 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19 19.3
M Slice4 23.8 239 23.8 23.8 23.8 23.8 23.8 23.9 23.8 23.9
mSlice5 67 67.2 61 60 60.1 60.3 60.3 65.3 67.3 67.3

Bandwidth

Slice5

Slice3

Figure 4. 5. 3: shows the up-rate for each of the slice.

4.6 The test-bed and results including ML and Monitoring enabled:

The test-bed for final results consists of the following

e The IBN and M-CORD

e The integration of ML models and Decision engine with IBN application

e The deployment of the monitoring tool inside CiaB test-bed.
The IBN application is developed using the web on the front end and Python as the back-end
language with SQL database. All the modules mentioned in Figure 4.6.1 for the IBN-Application
are Rest-Enabled. Similarly, python is used for developing the ML- Model using standard
libraries and SciKit-Learn. Nagios is used as monitoring and communication between Nagios

and ML model is done using Rest Interfaces. Figure 4. 6. 1 shows the detailed architecture of the

55

overall test-bed, where we have integrated the whole test-bed. So, whenever user traffic will

increase the burden on the network will result in scaling of the network instances.

IBN Application-layer

Resource 1-rcv:|contracts Policy

Manager

Catalog

3-req:resource

v

Intent
Manager 2-req:policy

Predicted CP! Decision Fault: True
Utilization VM State

req:config

:Cloud Monitoring App:

Update Policy
NN-Models Configuration 5-req:update Configurator
Monitaring: info Policy /|config
CORD Management-layer .
Tosca-Interface Restful API

OpenStack | NSSF EPC ONOS

Data fwd:info . =
: Sammmmes Nagios = | »
Formatting Opens c

Physical-layer m OALEPC m

Nssf-net| . vHSS-net

a3 | OoAlsim st " s
; VMME ' ‘ SPGWC

Figure 4. 6. 1: Overall test-bed with the working mechanism.

56

The test is performed by initiating one slice that serves video and initially we initiated one
SPGWU instance that serves as the provider gateway for video slice. For the test traffic was
streamed using 1 UE’s. We observed the values of CPU-Utilization, predicted values of CPU and
also the number of instances of the slice was observed. Then gradually the No. of UE were
increased until 3 and with the increased amount of streaming traffic on the slice hence requiring
an update. Figure 4.6.2 shows the results of the test performed on the video slice where the
number of user equipment and amount of traffic streamed was increased hence requiring an
increase in no of instances. The results show how the system decided automatically to increase
the number of instances that were serving the Video Slice. As we can see in the figure 4.6.2 after
the 6th time interval the number instances were increased as the predicted CPU-Utilization went
up to 98 percent. Hence, we can have a system that can automate the system resources

autonomously using the platform described above.

SCLING OF THE VIDEO SLICE

H No.of.instances No of User = Cpu-utilization ~ B Predicted-Utilization Traffic-Streamed
140 130

2 12
g 120 > 124
S 120
% 98 97 96
- 96
s 78 = 80
e 8 7 =
s 57 65 of7 5 6 6 1 f oo
X 59 60 B E E E 6 -
2 %0 s 4 5 4 = = = | E |
© B E B = B E E E B E
5 40 E g g | g g E E | E
° E E E E | E E E E E
f= B B = = = B 1=} B =] | |
3] = = = = B = = = = =
5 20 £ g E E | E E E E E
= 115 115 115 115 125 125 238 235 235 238
[5) - B 8 B i e =m mmi B —
2

2 4 6 8 9 10

Test-No- with time

Figure 4. 6. 2: Figure Shows the dynamic update in the no instances with the increase in traffic and no of users

57

The rigorous tests were not performed considering physical resource availability. The video was
streamed using FFMPEG which allow us to stream video using the Command-line. As the UE created
under OAI-Sim are only enabled with Command-line Interface. While trying to further increase the user
equipment or amount of traffic through the OAI-SIM it always crashes causing the failure in the test-bed.

The future plan is to use the test-bed on more stable physical infrastructure so that we can test multiple
slices and can create many UE and slices.

58

Chapter 5

Conclusions

The dynamic service provisioning in next-generation networks also required dynamic
management for the resources. This thesis work developed an automatic procedure that can
manage resources and can provide self-organization, self-healing and self-management
capabilities for the VNFs serving different slices. One of the major achievement explained in this
work is IBN-Application that provided simplification of configuration and management of the
next-generation networks. Additionally, the IBN-Application is used here to replicate the users
SLA to the physical system and it determines optimized resource allocation and also assures the
QOE (quality of service). Furthermore, the system achieved the goal of catering the dynamic
user demands beforehand that can cause a failure state. The Machine learning algorithms were
used to predict future resource usage depending on current usage. It is evident that if the future
usage is high resulting in resource demand and in light of the predicted demand system can
decide the configuration and policy for a future time. Hence, the platform can automatically
manage the dynamic resource demand and also automates the policy and configuration

management for next-generation platforms.

59

Bibliography

[1] B. Blanco et al., “Technology pillars in the architecture of future 5G mobile networks:
NFV, MEC and SDN,”Comput. Stand. Interfaces, vol. 54, no. April 2016, pp. 216-228,

2017.
[2] NGMN, 5G White Paper, 2015.
[3] White Paper, “Central Office Re-architected as a Datacenter (CORD)” March 14, 2016

[4] L. Peterson et al., “XOS: An Extensible Cloud Operating System,” ACM BigSystems

2015, June 2015.
[5] M-CORD, “M-CORD as an Open Reference Solution for 5G Enablement.”

[6] BessemSayadi and Laurent Roullet, Nokia Bell-Labs France ”5G: Platforms Not Protocol”

IEEE Sofwarization, January 2018.

[7] 3GPP TR 28.801 V15.1.0 (2018-01), “Technical Specification Group Services and
System Aspects; Telecommunication management; Management:Study on management

and orchestration of network slicing for next generation networks;” Release 15, Nov. 20.
[8] “Impact of SDN and NFV on OSS/BSS”, ONF Solution Brief, March 1,2016.

[9] Cleverson Nahum, Jose Soares, Pedro Batista and AldebaroKlautau "Emulation of 4G/5G
Network Using OpenAirinterface", = SIMPO’ SIO BRASILEIRO DE
TELECOMUNICAC, OES E PROCESSAMENTO DE SINAIS - SBrT2017, 3-6 DE

SETEMBRO DE 2017, S~ AO PEDRO, SP.

60

[10] NavidNikaein, Mahesh K. Marina, SaravanaManickam, Alex Dawson, Raymond

Knopp, Christian Bonnet "OpenAirInterface: A Flexible Platform for 5G Research".

[11] Fred Aklamanu, Sabine Randriamasy, Eric Renault, Imran Latif, AbdelkrimHebbar,
Alberto Conte, Bilal Al Jamal, WardaHamdaoui. "Demo: Intent-Based 5G IoT
Application Slice Energy Monitoring". IFIP Networking 2018. Zurich, Switzerland: may

2018.

[12] Fred Aklamanu, Sabine Randriamasy, Eric Renault, Imran Latif and AbdelkrimHebbar.
"Intent-Based Real-Time 5G Cloud Service Provisioning". IEEE Globecom Workshops

2018. Abu Dhabi, United Arab Emirates: dec. 2018, pages 1-6.

[13] John J. Prevost, KranthiManojNagothu, Brian Kelley and Mo Jamshidi “Prediction of
Cloud Data Center Networks Loads Using Stochastic and Neural Models” 6th

International Conference on System and Systems Engineering.

[14] Boutaba et al., Mohammad A. Salahuddin, NouralLimam, Sara Ayoubi, NashidShahriar,
Felipe Estrada-Solano and Oscar M. Caicedo, “A comprehensive survey on machine
learning for networking: evolution, applications and research opportunities”, Journal of

Internet Servicesand Applications (2018)

[15] Jun Liu, Shuyu Chen, Zhen Zhou, and Tianshu Wu, ”An Anomaly Detection Algorithm
of Cloud Platform Based on Self-Organizing Maps” Hindawi Publishing Corporation

Mathematical Problems in Engineering, Volume 2016, Article ID 3570305.

61

[16] Ameen Alkasem, Hongwei Liu, DechengZuo and Basheer Algarash” Cloud Computing:
A model Construct of Real-Time Monitoring for Big Dataset Analytics Using Apache

Spark™, IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012018.

[17] GokalpUrul, “Energy Efficient Dynamic Virtual Machine Allocation with CPU Usage
Prediction In Cloud Data Centers” a thesis submitted to the graduate school of

engineering and science of bilkent university.

[18] Kentis, A. M., OlloraZaballa, E., &Soler, J. (2018), “Policy Framework for the Next
Generation Platform as a Service,” In Proceedings of 27th European Conference on

Networks and Communications (pp. 125-9), IEEE. DOI: 10.1109/EuCNC.2018.8443260

[19] TS23.501 Section 5.15.2 “Technical Specification Group Services and System Aspects,

System Architecture for the 5G System, Stage 2 (Release 16)”

[20] “The Next Generation Platform as a Service” “Cloudifying Service Deployments in

Telco-Operators Infrastructure “

[21] Van Rossem, S, Sayadi, B, Roullet, L, Kentis, AM, Paolino, M, Veitch, P, Berde, B,
Labrador, I, Ramos, A, Tavernier, W, OlloraZaballa, E&Soler, J 2018, A Vision for the
Next Generation Platform-as-a-Service. in Proceedings of 2018 IEEE 1st 5G World
Forum. IEEE, pp. 14-19, 2018 IEEE 1st 5G World Forum, Santa Clara, United States,

09/07/2018.

[22] Kentis, AngelosMimidis; OlloraZaballa, Eder; Soler, José; Bessem, S.; Roullet, Laurent;
Van Rossem, S.; Pinneterre, S.; Paolino, M.; Raho, D.; Du, X.; Mariani, L.; Ramos, A.;

Labrador, 1.; Broadbent, A.; Zembra, M. “The Next Generation Platform as a Service

62

Cloudifying Service Deployments in TelcoOperators Infrastructure” Proceedings of the

25th International Conference on Telecommunications (ICT 2018).

[23] Paul Lipton, Derek Palma, Matt Rutkowski, Damian Andrew Tamburri, “TOSCA
Solves Big Problems in the Cloud and Beyond!” DOI :10.1109/MCC.2018.111121612,

12-Jan-2018.

[24] “Introducing ONOS - a SDN network operating system for Service Providers” ONF,

White Paper 2014.

[25] OpenAirinterface public license vl.1
[online],Available:https://www.openairinterface.org/?page 1d=698 (Accessed: 5 Jan,

2019)

[26] OpenAirnterface System Emulation[online],
Available:https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OpenAirLTEEmulation

(Accessed: 5 Jan, 2019)

[27] OpenAirinterfacefreeDiameter usage [online],

Available:https://gitlab.eurecom.fr/oai/freediameter (Accessed: 9 September, 2018)

[28] OpenAirnterface Project [online], Available:

https://gitlab.eurecom.fr/oai/openairinterfaceSg/wikis/home (Accessed: 5 Jan, 2019)

[29] https://github.com/aweimeow/oai_scenario/oai_scenario in M-CORD (Accessed: 5 Jan,

2019).

63

[30] J.DiazRavera, T. Ahmed Khan, A, Mehmood& Wang-Cheol S. (2018), “Network Slice

Selection Function on M-CORD,” KNOM Review ’18-02 Vol.21 No.02.

[31] “http://gwa.ewi.tudelft.nl/datasets/gwa-t-13-materna” (Accessed: 16 May, 2019).

[32] ETSI GS ZSM 006 V1.1.1 (2018-05), “Zero touch network and Service Management

(ZSM); Proof of Concept Framework™.

[33] “https://docs.openstack.org/infra/system-config/grafana.html.” (Accessed: 16 May,

2019).

[34] Radisys Solution Brief: Radisys M-CORD: The Open Platform for Emerging 5G
Applications.

[35] Jim Hodges, "The Open Road Migration: Rearchtecting Service Innovation
Models ” A custom Heavy report for Radysis.

[36] “Radysis Demonstration of end-to-end network slicing at MWC-A 17 Multi-
Access CORD” LINK:“https://hub.radisys.com/videos”.

64

	I. List of
	II. Chapter 1
	Introduction
	III. Chapter 2
	Related Work
	IV. Chapter 3
	The overall system, IBN-Application, and M-CORD platform
	3.1 Overall system in view point of SDN and NFV platforms:
	3.2 IBN-Application
	3. 3 M-CORD with it Components
	3. 3 M-CORD based Network Slicing Scenario

	V. Chapter 4
	Machine Learning Approach and Experimental Results .
	VI. Chapter 5
	Conclusions
	Bibliography .

<startpage>14
I. List of Acronyms
II. Chapter 1 1
Introduction 1
III. Chapter 2 6
Related Work 6
IV. Chapter 3 11
The overall system, IBN-Application, and M-CORD platform 11
 3.1 Overall system in view point of SDN and NFV platforms: 11
 3.2 IBN-Application 13
 3. 3 M-CORD with it Components 22
 3. 3 M-CORD based Network Slicing Scenario 31
V. Chapter 4 35
Machine Learning Approach and Experimental Results . 35
VI. Chapter 5 59
Conclusions 59
Bibliography . 60
</body>

