

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

 I

A Thesis for the Degree of Master of Science

Automatic Data Plane provisioning in a Sliced Mobile

Network Scenario

Javier Jose Diaz Rivera

Department of Computer Engineering

GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

June 2019

 II

Automatic Data Plane provisioning in a Sliced Mobile Network Scenario.

Javier Jose Diaz Rivera

(Supervised by Professor Wang-Cheol Song)

Submitted to the Department of Computer Engineering and the Faculty of

Graduate School of Jeju National University in partial fulfillment of the

requirements for the degree of Master of Computer Engineering

2019.06.27

This thesis has been examined and approved.

Thesis Director, Khi-Jung Ahn, Professor, Jeju National University

Thesis Supervisor, Wang-Cheol Song, Professor, Jeju National University

Department of Computer Engineering

GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

---(PL '4 �
The,;, Diecto,. Yo"'f �o, �o;,ec,;iy

 III

Dedicated to

My Family

 IV

Acknowledgments

This thesis represents the culmination of my graduate studies for a master’s

degree. I would like to thank a number of people who have accompanied me in this

exciting journey and also people that have been supporting me to achieve my goal.

First of all, I would like to thank my wife, kids, and parents for their love,

patience, and support. Without them, I would not have the motivation and energy for

finishing successfully this degree.

I want to express my sincere gratitude and appreciation to my supervisor Prof.

Wang-Cheol Song for his patience, motivation, knowledge, and support, but most

importantly for his trust in my skills and judgment. Without my supervisor, I would

not have been able to enter the Network Convergence Laboratory where I met

excellent colleagues and widened my professional experience.

I would also like to thank Prof. Elda Quiroga, Head of the Computer Science Major

on my Alma Mater “Instituto Tecnologico de Estudios Superiores de Monterrey”. I do

not have enough words to express how grateful I am to her, for the trust and

recommendation letter that were fundamental for earning the Korean Government

Scholarship that allowed me to do my master’s degree studies.

I also want to thank the National Institute for International Education (NIIED) in

South Korea who gave me the opportunity to apply and earn the Korean Government

Scholarship. Also, special thanks to Miss Ji Hyojung for her invaluable help and

guidance on applying to Jeju National University.

Finally, over the past 2 years, I have met wonderful people. I want to especially

thank my colleagues and friends Talha Ahmed and Asif Mehmood who I respect and

appreciate tenfold. I also want to thank Adeel Rafiq, Ali Jibran, Tahir Abbas, Khizar

Abbas, Jahanzeb Ahmed, Muhammad Afaq, Mudassar Liaq, Alexander Tsarev, Wei-

Yu Chen for his important work in ONF and M-CORD related developments, and

many others that I met and were part of my learning process during these 2 years.

Thanks for the friendship and memories.

 V

Table of Contents

Acknowledgements ... IV
List of Figures. .. VI
List of Tables ... VII
Glossary .. VIII
Abstract ... 1
1 Introduction .. 2

1.1 Background .. 2
1.2 Research Contribution ... 7
1.3 Structure of Thesis ... 8

2. Literature Review ... 10
2.1 Data Plane Provisioning. ... 10
2.2 Network Monitoring... 12

3. Network Sliced Mobile Network System Description .. 14
3.1 Application Layer. ... 16
3.2 Management Layer. ... 17
3.3 Physical Layer ... 19

4. Automatic Data Plane provisioning in a Sliced Mobile Network 20
4.1 Data Plane Provisioning Module. .. 20
4.2 Network Monitoring Agent. ... 25
4.3 Network Slice Selection Function. .. 35
4.4 Physical Layer Modifications. ... 40
4.5 XOS Service Definition for Data Plane Slices. .. 42

5.0 Evaluation and Results .. 44
5.1 Network Contract definition in IBN Tool .. 44
5.2 Mobile Network E2E connection and Network Slice Selection. 46
5.3 Automatic Data Plane Provisioning when a Slice is Saturated. 53
5.4 Results in a Non-Sliced scenario and no Automatic Data Plane Provisioning. . 57
5.5 Performance Test when the System is Overloaded ... 61

6.0 Conclusion and Future Work .. 63
6.1 Conclusion ... 63
6.2 Future Work ... 64

REFERENCES .. 67
APPENDIX A - TOSCA Definition of Slices ... 71
APPENDIX B – OVS configuration Leaf-Spine .. 74
APPENDIX C – xproto Data Model ... 75

 VI

List of Figures.

Figure 1. Network Slicing in 5G Mobile Networks .. 3
Figure 2. CUPS 5G Network Functions .. 4
Figure 3. NFV-MANO Architecture ... 5
Figure 4. Virtual Mobile Network System of Network Convergence Laboratory......... 7
Figure 5. Thesis proposed system ... 9
Figure 6. Mobile Network System with Data Plane Provisioning Module. 14
Figure 7. Relevant Information for definition of Contracts .. 17
Figure 8. Service Graph and corresponding Service Chain for a Sliced Scenario

(Black) and regular E2E mobile scenario (Gray) ... 18
Figure 9. Data Plane Provisioning Module Flow Chart .. 21
Figure 10. Possible Virtual Instances based on lesser value of RAM and CPU

calculations .. 22
Figure 11. sFlow Agent inside a Switch/Router ... 26
Figure 12. LEAF-SPINE with interfaces and SFLOW .. 27
Figure 13. sFLOW Environmental Variables configuration example 28
Figure 14. sFlow-RT Integration inside a Network ... 29
Figure 15. CiaB deployment figure ... 31
Figure 16. JSON Link utilization example. ... 33
Figure 17. NSSF XOS Service .. 35
Figure 18. NSSF VNF operation. .. 38
Figure 19. IMSI based slice selection. ... 39
Figure 20. Communication API between MME and NSSF .. 41
Figure 21. UE1 – VIDEO1 Slice Performance Test (OAISIM) 47
Figure 22. UE2 – VIDEO2 Slice Performance Test (OAISIM) 47
Figure 23. UE3 – WEB1 Slice performance test (OAISIM) .. 48
Figure 24. SSH-Tunneling between Virtual UE, Data Plane Slices and Web Server . 49
Figure 25. UE1 – VIDEO1 Slice Performance Test (SSH-Tunnel) 50
Figure 26. UE2 – VIDEO2 Slice Performance Test (SSH-Tunnel) 50
Figure 27. UE3 – WEB1 Slice performance test (SSH-Tunnel) 51
Figure 28. Adaptive Bitrate Test for VIDEO1 and VIDEO2 Slice 52
Figure 29. Streaming Speed Test for VIDEO1 and VIDEO2 Slice 53
Figure 30. iPerf bandwidth stress test for VIDEO1 Slice .. 55
Figure 31. Streaming Speed Test for oai3 UE in new VIDEO1 Slice 56
Figure 32. Adaptive Bitrate Test for oai3 UE in new VIDEO1 Slice 56
Figure 33. Representation of new VIDEO1 slice and disabled VIDEO1 slice 57
Figure 34. Streaming Speed Test for oai1, oai2 and oai3 in Stress Test Slice 58
Figure 35. Adaptive Bitrate Test for oai3 UE in Stress Test Data Plane 59
Figure 36. Streaming Speed Test for oai1, oai2 and oai3 in Stress Test Slice in non-

Automatic Data Plane Provisioning Scenario ... 60
Figure 37. Adaptive Bitrate Test for oai3 UE in Stress Test Data Plane in non-

Automatic Data Plane Provisioning Scenario ... 61
Figure 38. Total compute node bandwidth in relation to the number of Data Plane

Slices that are deployed. .. 62
Figure 39. Total compute node bandwidth with 16 Data Planes. 62
Figure 40. Abstracted view of the system ... 64
Figure 41. Multiple compute nodes for data plane slices .. 65

 VII

List of Tables
Table 1. Data Model Definitions ... 43

Table 2. Value of QoS defined by the Contracts. .. 45

Table 3. SPGW-C and SPGW-U allocation .. 45

Table 4. IMSI configuration for three UE ... 46

Table 5. New IMSI configuration for connecting to a single Video Slice 54

Table 6. Single Video Slice ... 54

 VIII

Glossary

Data Plane Slice: Combination of SPGW-C and SPGW-U

Data Plane: SPGW-U

DPPM: Data Plane Provisioning Module

EPC: Evolved Packet Core

HSS: Home Subscriber Service

IBN: Intent-Based Networking

M-CORD: Mobile Central Office Rearchitected as a Datacenter

MME: Mobility Management Entity

NFV: Network Function Virtualization

NMA: Network Monitoring Agent

NSSF: Network Slice Selection Function

ONOS: Open Network Operating System

QoS: Quality of Service

SDN: Software Defined Networking

SPGW-C: Serving Packet Data Network Gateway - Control

SPGW-U: Serving Packet Data Network Gateway - User

TOSCA: Topology and Orchestration Specification for Cloud Applications

UDPR: Unused Data Plane Repository

UE: User Equipment

VNF: Virtual Network Functions

 1

Abstract

One of the main concerns that motivate the innovation in the development of new

technologies for 5G networks is the automation of Network Services catered to the

Users. The focus on research and manufacture of specialized hardware is shifted to

the use of virtualization technologies such as Network Function Virtualization (NFV)

and Software Defined Networking (SDN) which drastically reduces time to market

deployment. The benefits of these technologies bring more flexibility on how and

when to deploy network services in order to adapt to the market needs. This

flexibility allows network operators to increase or decrease network performance on

the basis of the user's consumption and also provide specific resources that cater to

the need of a specific Tenant. This thesis proposal centers its idea in the automatic

provision of Data Plane network functions based on Video Streaming Network Usage.

It achieves this by adding a Network Monitoring Agent (NMA) in order to collect

Data Plane related information from the network and use it to extend the multiple

slice selection functionality provided by a Network Slice Selection Function (NSSF).

The automatic data plane provisioning is handled from a Top to Bottom approach, by

taking advantage of a previously developed Intent Based Networking Tool alongside

the open-source Mobile Central Office Rearchitected as a Data-Center (M-CORD)

Platform by introducing a Data Plane Provisioning Module (DPPM) that receives the

monitoring information from the NMA and defines the directives for creation of new

Data Plane network functions. The results of this proposal aim to achieve a further

step into network automation by taking advantage of the capabilities of a Network

Controller and consolidating emerging solutions related to Network Slicing and QoS

policy definition based on Network Contracts.

 2

1 Introduction

1.1 Background

The evolution of mobile networking has brought with it a shift in the paradigm for

the use of telecommunication technologies. Starting with the invention of the cellular

phone and consequently the inception of the 1G Mobile Networks, the focus on the

technology was to mirror the functionality of land networks i.e The Telephone and

provide a communication experience that was not tied to the bounds of cables and

physical location. The 2G brought with it a digitalization of signals, bigger coverage

and the inclusion of Short Message Service (SMS) which became a disruptive

technology on its own, this generation of networks took advantage of the shift of

digital signals to also provide a limited form of internet connection for mobile

devices. Network data provision was a big catalyst for the move to 3G which gave a

"broadband" network connection experience to capable devices. It was during this

generation that more powerful and complex user equipment (UE) know as

Smartphones came to be. These UE have the capability to provide a wide variety of

services to the users, which in turn started to use their devices for consuming more

Data Services instead of Voice Services (Cellular communication). The smartphones

pushed the evolution of mobile networks to more Data Transfer oriented services,

which led the 4G networks to focus on the provision of high bandwidth technologies

that could cater to these services. [1] Nowadays, the mobile user equipment is used

more for Internet Data consuming services than actual voice calls, which paired with

the variety of services provided by the smartphones have started to make the

current mobile infrastructure insufficient.

5G mobile networks are becoming a reality, this step is a natural evolution to 4G

that many see as an increase in the Data Network bandwidth, however, the main

motivation of the Fifth Generations of mobile networks is different. 5G aims to be an

integrative ecosystem that not only focuses on Smartphones, but encompass and

support a wide range of applications, namely, IoT (e.g. smart-home, drones, 4th

 3

Industrial Revolution, health, IoV) mission-critical applications, 4k-8k Video

Streaming, Augmented Reality, Virtual Reality, Entertainment, etc. [2] These

scenarios range from similar to drastically different performance requirements which

having them under the same umbrella of mobile infrastructure can pose a serious

challenge if we just consider previous mobile network generation technologies

approaches.

Network Slicing is a functionality embedded in 5G mobile networks and it's the

enabler for achieving the necessary conditions for a plethora of services to optimally

perform under the same mobile network infrastructure [3] This is done by creating

multiple isolated virtual network channels that can be configured to satisfy the

specific needs and performance requirements of multiple services over a single

physical infrastructure.

Emerging technologies such as Software Defined Networking (SDN) and Network

Function Virtualization (NFV) have paved the road for Network Slicing to materialize

as a viable solution for 5G mobile networks. SDN refers to the separation of the

Control Plane and the Data Plane of a network. The Control Plane is the part of a

network that carries signaling traffic and is responsible for routing, on the other

hand, the Data Plane is the part of the network that carries the data traffic, in other

words, the physical link of the network. These concepts go hand to hand with the

Figure 1. Network Slicing in 5G Mobile Networks

 4

current generation of Mobile Networks, as with the Advent of 4G LTE, the concept

of Evolved Packet Core (EPC) and the multiple Network Functions that focus on

Registration and Control e.g. Mobility Management Entity (MME) and Home

Subscriber Server (HSS), etc. and user/data Plane focused functions e.g. Packet Data

Network Gateway (PGW) and Serving Gateway (SGW), etc. [4] accommodate the

principles of Control/User plane separation of SDN, likewise as 5G is a direct

evolution of LTE-A, the network functions integrated in the Fifth Generations Mobile

Network Architecture also approach this Control-User Plane Separation (CUPS). [5]

NFV is commonly known as the process of decoupling the network functions from

proprietary hardware equipment in order for them to run in software on commodity

hardware. It is a concept that can be applied to any kind of network, including mobile

networks. By virtualizing the network functions, Service Providers and Telco. can

improve on the Control, Reliability, Scalability and Cost Efficiency of their network

resources, e.g. (Real-time and dynamic provisioning, Reduction in complexity of

physical device technology, Acceleration of implementation, Power consumption

reduction). [6] As mentioned above, one of the key benefits of applying NFV to

mobile networking is the Scalability of network resources by providing new

functionality or replicating existing network functions on the fly. This capability,

coupled with the specific UE requirements for consumption of diverse services on a

Figure 2. CUPS 5G Network Functions

 5

mobile network, is what allows Network Slicing to be implemented in this current

generation.

SDN, NFV and the implementation of Network Slicing bring many benefits in the

fields of mobile networks, but also posed a set of challenges on the management and

orchestration of the diverse virtual resources. Positioning, Deploying, Proper-

Interconnection, etc. of Virtual Network Functions (VNF) requires a proper entity

capable of overseeing in a Vertical and Horizontal perspective. [7] Due to this,

diverse organizations have engaged in the task to define and create a proper

Framework to guarantee the required orchestration of network functions. A

prominent head in NFV activities, the European Communication Standards Institute,

have defined a reference architecture for NFV Management and Orchestration by the

name of MANO [8].

MANO is composed of 3 functional blocks, a Virtual Infrastructure Manager (VIM),

NFV Orchestrator (NFVO) and a VNF Manager (VNFM). These 3 blocks together aim

to guarantee the proper operation of a VNF ecosystem. From the lower level, VIM

manages the physical and virtual resources of VNF instances, The VNFM manages

and keeps track of the status of each instance and, the NFVO keeps control of the

relation between VNF with the aim of having end to end services.

Figure 3. NFV-MANO Architecture

 6

MANO framework has become a reference for NFV orchestration. For actual

implementation and use cases, open-source projects like the Open Network

Foundation's (ONF) Central Office Re-architected as a Datacenter (CORD) [9]

follows on the principle of management and orchestration to deploy a network

environment. CORD proposes its own architecture that differs from MANO in

implementation but considers the essence of the three main blocks that comprise the

ETSI proposed Architecture. One advantage of CORD is that it gives a workable

solution that can be implemented in relative any environment (As long as it meets the

system requirements) and more importantly it comes with a Mobile Network oriented

profile by the name of M-CORD that is prepackaged with a Service Orchestrator, a

Network Controller, and a Cloud Management Platform for deployment of Mobile

Network Functions.

The M-CORD Platform provides the right environment for research on network

function development, interconnection and orchestration, for this reason, the M-

CORD platform has been selected in order to investigate on Network Slicing by

adding a Network Slice Selection Function (NSSF) [10] to the network functions that

represent the EPC. Furthermore, with the purpose to automate the procedure of

creation of policies for the definition of Quality of Service (QoS) for each slice, an

Intent-Based Networking (IBN) Tool has been added. It serves as an Application

Layer where a User/Network Operator can define through a GUI a series of QoS

parameters that are processed into policies and pushed to the physical layer [11].

The purpose of this tool, as its name implies, is to simplify the configuration of

network components by telling the Underlying System what to do, instead of how to

do it, minimizing greatly the steps of the configuration of a complex network system

thus giving a degree of automation in the network service configuration.

 7

1.2 Research Contribution

The research of this Thesis focuses on extending the grade of automation that the

IBN Tool is providing to a Network Platform in order to meet the traffic demands of

different user equipment that are assigned to specific network slices, specifically for

the consumption of Video Services. Video streaming is a very popular service and

one that can quickly fill the network traffic of any infrastructure. According to [12],

Video streaming accounted for 60% of the total network data traffic in 2016. 5G

faces bigger challenges related to high bandwidth data streaming, and even though

Network Slicing can solve part of this issue, there is still room for improvement.

The objective of this investigation is to provide automatic Data Plane (SPGW-U)

deployment on the basis of network traffic that is flowing on assigned network

slices, e.g. video streaming that has already taken the full bandwidth of a designated

Figure 4. Virtual Mobile Network System of Network Convergence
Laboratory

 8

slice thus triggering the additional provision of network slices without manual input.

To achieve this, enhancements to both the IBN Application and the M-CORD

platform are proposed and developed for the testbed and showcase of results.

Taking into consideration the overall picture of the IBN Tool, a Data Plane

Provisioning Module is added into the Application Layer, as well as a Network

Monitoring Agent is built as part of the Physical Layer. Furthermore, enhancements

are done to the Physical Layer by modifying the functionality of the NSSF to

accommodate this new automatic Data Plane Slices. The proposed system can be

overviewed in Figure 5

1.3 Structure of the Thesis

This document is organized as follows. Chapter 2 contains the relevant Literature

Review details, chapter 3 focuses on the Network Sliced Mobile Network System

Description, chapter 4 presents the Data Plane Provisioning Module and Network

Monitoring Agent logic and implementation, chapter 5 showcases the evaluation and

results, and finally, chapter 6 concludes the thesis.

 9

Figure 5. Thesis proposed system

 10

2. Literature Review

2.1 Data Plane Provisioning.

Various techniques, architectures, and proposals related to Data Plane

Provisioning in Network Slicing by using SDN and NFV concepts have been

presented in literature over the last years. In [13], Vinod Kumar Choyi et al. have

defined various QoS requirements for the creation of network slices. On the basis of

SDN and NFV solutions, they also proposed a framework and mechanism for defining

high-level policies that will translate into the underlying system. To elaborate,

application-specific slice selection and User Equipment association is well described

in the literature. Definition of VNF and connection between them using Service

Function Chaining (SFC) is also presented in this research, as well as routing in what

is called a Software Function Path (SFP) selection that refers to the multiple

deployments of slices that represent the User/Data Plane within a 5G network. Still,

there is no system implementation and evaluation results provided in this paper.

In [14], Jose Ordonez-Lucena et al. presented relevant concepts pertaining to

virtualization, orchestration, and isolation for designing network slices in the

forwarding plane (Data Plane). By using the Open Networking Foundation (ONF) SDN

based architectures alongside NFV design references, they managed to present a

complete solution that spans across different layers. Scaling of resources of the

forwarding plane (Data Plane) is done with the objective of delivering tailored

services to users located in the Application Layer. Although the solution and

proposal of this research paper are attractive, it relies on a complex architecture

that poses difficulties on the actual implementation, thus it remains as purely

conceptual design.

In [15], Peter Roost et al. presented various architectural principles for achieving

Network slicing in the Core Network part of a mobile network. In this research, the

authors propose the existence of a Software Defined Mobile Network Controller

(SDM-C) which can oversee the management of different slices. In line with NFV

orchestration, they also introduce a coordinator (SDM-X) that is in charge of

 11

managing and controlling the process of sharing Network Functions (NFs) and

resources between different network slices, It also ensures maintaining high

resource efficiency while guaranteeing individual Service Level Agreements (SLAs)

set by the service provider. In other words, this entity is in charge of modifying the

QoS of the Data Plane according to the needs of the User Equipment. This work

mainly describes a conceptual design for Network Slice and Data Plane Provisioning

and Orchestration of VNF in 5G networks, but the actual implementation is left for

further work.

In [16], the authors present a testbed with results of an SDN and NFV based LTE

EPC implementation. Conclusions of their research have conveyed that an SDN-

Based LTE EPC is ideal for managing big amount of data traffic, as forwarding

packets are managed from a centralized SDN controller compared to an NFV-Based

EPC where forwarding decisions are made in the Data Plane. Implementation details

and results are showcased in this literature, also, available open-source

development is presented for the EPC components of the mobile network.

In [17], the authors propose a Bit-rate Aware Autoscaling (BAAS) mechanism for

autoscaling the Data Plane of a Mobile Network. They used the NFV-Based LTE

EPC development from [16] to perform actual experiments. The authors mention the

use of a tool for timely monitoring the throughput of a Data Plane and reporting the

status to the MME which in turn has the logic of the BAAS that auto-scales the bit

rate of the Data Plane when necessary. Another objective of the BAAS is to minimize

resource utilization of network slices without affecting the throughput that is served

to the UE, thus it can scale down the DP as needed. Although the solution presented

in this paper goes in hand with the benefits of Network Slicing in 5G, the system

proposal and testbed is just centered in the physical layer of the network, without

considering a Service Orchestrator, Application Layer and Automatic management of

policies. There is also no mention of a Network Slice Selection Function to handle a

selection of slices because all the slice selection logic is put in the MME, thus the

proof of concept only refers to this particular NFV-Based scenario.

 12

2.2 Network Monitoring.

Network Monitoring is an essential mechanism to achieve self-management and

self-optimization of network resources. There are multiple solutions and tools that

range from commercial grade to open source. In this sense, OpenNetMon [18] is a

solution that continuously monitors all flows between predefined link and destination

pairs on throughput, packet loss, and packet delay that is developed as a module for

the OpenFlow controller POX. In order to determine throughput, OpenNetMon

regularly queries switches about the number of bytes that are sent, for it to retrieve

Flow Statistics and the duration of each flow. Equally, OpenNetMon uses these flow

statistics to compute the packet loss by measuring the packet counters from the first

and the last switch of each path between the link and destination. Although it is a

powerful tool for network monitoring, it is a specific development for the POX

controller which is python based and not compatible with the Open Network

Foundation ONOS Network Controller that is used in the NCL research.

Another monitoring solution, PayLess [19] was proposed as a low-cost active

monitoring framework based on the active monitoring approach. PayLess is built on

top of an OpenFlow controller thru communication via a flexible RESTful API

interface and is capable of monitoring information from switches in the data plane. It

also provides statistics collection that delivers highly accurate information in real-

time without incurring significant network overhead. Although theoretically, it could

be compatible with the ONOS controller by using REST APIs, test and development

were focused on the RYU controller.

Finally, in [20] the authors propose a flow monitoring approach for traffic

engineering by using sFlow metrics. sFlow enabled switches to exist in the Data

Plane and provide periodical samples of flows that pass between devices. These

samples are collected in traffic analysis tools, e.g. sFlow-RT, that sits on the control

plane of the network which in turn provides real-time flow summary statistics to

control application or network controllers through northbound REST APIs. sFlow is

now considered an industry standard, and diverse switch manufactures include this

 13

metric as part of the protocol stack inside of the switches. For the case of virtual

environments, OpenvSwitch has also included sFlow traffic monitoring which enables

extended visibility into virtual servers.

 14

3. Network Sliced Mobile Network System Description

The Automatic Provision of Data Planes requires a working mobile network

system for its operation, due to this, the solution is integrated inside a three-layered

architecture as shown in Figure 6 that aims to integrate a complete network sliced

virtual mobile network system. The main objective of this proposal is to provide a

Figure 6. Mobile Network System with Data Plane Provisioning Module.

 15

high grade of automation for the deployment of multiple data planes in order to

guarantee an optimal flow of traffic for mobile network services. For achieving this,

specific functionality is provided on each level of the proposed architecture which

provides complete integration between Business and Operation rules definition,

Implementation of Policies, Service Orchestration, Virtual Network Function

instantiation, and operation. The high-level description of the operation is as follows:

The user defines a set of QoS policies from the Application Layer which are

translated into TOSCA definitions that are pushed into the Management Layer. These

QoS policies represent the multiple network slices that are going to be created

depending on the services that the user is consuming in the mobile network. The

Management Layer takes this policies and proceeds to generate the VNFs that are

part of each network slice and uses the configuration of the QoS that was set up on

the Application Layer to differentiate the transmission rate of each Data Plane. Inside

of the Physical Layer, a Network Slice Selection Function gets the complete

information from the Management Layer of all the network slices that were created

and when mobile network operation starts redirects the requests from the UE to an

appropriate network slice depending on the requirements of the network service.

During this operation, a Network Monitoring Agent collects data from the OVS that

are part of the network fabric, as can be seen in Figure 6 this is achieved through a

sFlow Agent statistics that are periodically sent to a sFlow-RT collector that focuses

on network traffic information. Whenever traffic does not meet the QoS created in

the Application Layer, the Network Monitoring Agent notifies a Data Plane

Provisioning Module that resides on the top Layer of the architecture, this module

automatically defines new rules that create a new Data Plane Slice for the service

that is being consumed e.g. Continuous video streaming. Following this, new Data

Plane rules are fed into the Management Layer which proceeds to create the new

VNFs for the new Data Plane Network Slice. Once the VNFs are provisioned in the

Physical Layer, the old Data Plane operation shifts to the newly created Data Plane

Slice. In order to provide more details for each step of the operation, the following

 16

sections describe the functionality of each of the levels of the three-layered

Architecture.

3.1 Application Layer.

The upper layer main functionality is to provide an ease of configuration for the

creation of network slices and definition of QoS for each of the slices that are

created. This is achieved by applying the concept of Intent-Based Networking (IBN)

which focuses on defining “what to do” without specifying “how to. This concept has

as its priority, to deliver the business goals in the most abstracted form as possible

independently of the complexity of the network system that sits in the bottom layer.

The IBN Tool is composed of a User Interface (GUI), Architecture Catalog, Resource

Manager, Policy Configurator and a Data Plane Provisioning Module.

The GUI provides a clean interface where a user can define network slices as

“Contracts”. Each contract has an associated slice with specific QoS that are defined

based on the type of service that the user is consuming from the mobile network.

The contracts also have information about the type of architecture for what the

slices are going to be defined, this information exists on a database called

Architecture Catalog, which includes specific deployment information of VNF, e.g.

LTE-A has slice QoS definitions for SPGWU and 5G may have definitions specific to

a UPF (User Plane Function). This information is an important part of the contract as

it lets the Policy Configurator know how to properly translate the contract policies

into TOSCA configuration files which may differ from one network architecture to

another. These TOSCA files have the information of which data plane slices are

going to be instantiated as VNF with a proper definition of QoS. Before passing the

TOSCA configuration to the Management Layer, the Resource Manager has the task

of verifying that appropriate RAM and CPU resources exist on the Physical Layer for

the instantiation of the VNFs. Finally, the Data Plane Provisioning Module only acts

after the physical layer Data Plane Slices are operational, its functionality relies on

direct communication with the Network Monitoring Agent that exists in the Physical

 17

Layer which will feed the current state of each Data Plane in terms of link utilization,

the Data Plane Provisioning Module triggers a redeployment of new Data Plane

Network Slices only if the link utilization of current Data Planes do not meet the

requirements of the QoS that were previously configured. The Data Plane

Provisioning Module design and implementation details are presented in chapter 4.

3.2 Management Layer.

This layer takes the TOSCA configuration files defined by the Application Layer

and uses it to configure each VNF that is defined as a Data Plane Network Slice by

the contracts. The heart of this layer is the M-CORD Platform which contains an

extensible service control plane known as XOS that serves as the orchestrator, a

network controller (ONOS) and a cloud manager (OpenStack).

Without the management layer, the instantiation and configuration of multiple

VNFs in the Physical Layer is no trivial task, due to this, the orchestrator is an

essential component of the M-CORD platform. It coordinates the creation of VNF by

managing the Networks, Ports, Image and Resource allocation in coordination with

OpenStack and ONOS. To guarantee the operation of the Physical Layer, XOS uses

Figure 7. Relevant Information for definition of Contracts

 18

an abstracted representation of the VNF in the form of a Service. Each service

defines the data model properties of underlying VNF but does not contain any logic

of its functionality, its main purpose is to ease the management and configuration of

the instantiation of network functions. The relationship between a service and its

VNF is one-to-many, i.e. for each service, there could be many instances sharing

the same properties through the data model. To differentiate each instance from one

another, the concept of tenancy is used, and each tenant can have specific properties

that will affect the operation of the VNF. Also, the services are essential for

defining the relations between VNF, as a bidirectional mapping of services creates

what is known as a Service Graph which will be used in back-end process to define

the required Service Function Chaining (SFC) between VNF, minimizing the

complexity of managing the connections between multiple instances of network

functions.[21]

The XOS services also include a component that monitors the operation of the VNFs.

The synchronizer’s role is to keep the management layer up to date with the status

Figure 8. Service Graph and corresponding Service Chain for a Sliced Scenario (Black) and
regular E2E mobile scenario (Gray)

 19

of the physical layer. Each service has a synchronizer that monitors basic VNF

status e.g. Number of instances, deployment errors, network interface, and IP-

Address assignment, etc. It also can be configured in such a way that one service

can collect the status of all the VNFs that are managed by other services. Through

the synchronizer, the Management Layer can get bidirectional communication with all

the running VNF and keep up to date with the operation of the underlying system.

3.3 Physical Layer

The multiple VNFs that represent a mobile network sits on this layer. For the

purpose of the research presented in this Thesis, LTE-A based open source

components from Open Air Interface were used for both the EPC and the eNodeB

Emulation. [22] The configuration of the mobile network is done by the Management

Layer for each VNF, it will automatically provision proper IP-Addresses, ports,

network configuration (Dependent on the relationship defined in the Service Graph)

and virtual machine image allocation. This is achieved by feeding proper TOSCA

configuration files that include the Service Graph definitions, network, and service

instance creation. As the aim of the research is to provide multiple data plane

network slices to this layer, this implementation includes a Network Slice Selection

Function which sole functionality is to select the slice that will serve a UE on the

basis of the service that is been consumed. The physical layer is in constant change

due to the policies that are pushed from the upper layer and the NSSF will always

contain the up-to-date status of the system, thanks to the synchronizer that is

running on the management layer.

The networking fabric of switches in the physical layer is organized on a leaf-

spine fashion. sFlow statistics are collected from the Leaf switch that serves as the

ToR (Top of the Rack) switch for the compute node that houses the Data Plane

VNFs. This information is collected through a sFlow-RT collector, as part of the

Network Monitoring Agent that will calculate the link utilization of each data plane

and forward it to the Data Plane Provisioning Module in the Application Layer.

 20

4. Automatic Data Plane provisioning in a Sliced Mobile Network

The implementation details for the main idea of this thesis are presented in this

chapter. As previously mentioned, to achieve the automatic deployment of data plane

network slices, inter-operation within a virtual mobile network system is essential.

Inside this system, there are three actors that play a key role to achieve the

objectives of this research, namely, the Data Plane Provisioning Module, the

Network Monitoring Agent and the Network Slice Selection Function plus minor

modifications inside the physical layer VNFs required for the handover of Data

Planes.

4.1 Data Plane Provisioning Module.

Situated inside the Application Layer, the module is in charge of high-level

decision making for creating and configuring the data planes. It receives the Link

Utilization (Lu) data alongside the Data Plane Id (SPGWU Ip-Address) of all the Data

Planes that are currently active and operational i.e. A UE has established PDU

session into the mobile network. The logic of the module can be seen in Figure 9.

The Lu arrives flagged by the Network Monitoring Agent, the flag has three possible

values, Unused, Normal and Saturated. If the Lu comes flagged as Saturated, it

means that Data Plane link utilization is not optimal and the QoS that was configured

for that specific Data Plane Network Slice are not being successfully met. In the case

that the Lu arrives flagged as Unused, the information will be saved inside an

“unused data plane repository” (UDPR) for later processing, in case the of a Normal

flag the Data Plane Information will be used to update the UDPR by removing active

entries. A Lu flagged as Saturated triggers the Data Plane Provisioning procedure

which requires firstly to remove the Data Plane entry inside the UDPR (If it exists),

after this, interaction with the Resource Manager is required in order to calculate the

current physical resources available before deploying the new VNFs.

The Resource Manager calculates the available resources for the compute node

 21

that houses the Data Plane VNFs. It follows a standard formula that calculates the

available number of instances (VIn) by considering the available CPU and RAM of the

compute node, VIn=(OR*CPU)/VCPU or VIn=(OR*RAM)/VRAM.

VIn is the maximum number of instances that can be allocated to a compute node,

CPU is the number of physical cores, VCPU is the number of virtual cores required

per instance, RAM is the total physical RAM of the compute node and VRAM is the

Virtual RAM required per instance. OR is the overcommit ratio which is different

between RAM and CPU. For CPU the OR=16 and for RAM OR=1.5 (OpenStack

Figure 9. Data Plane Provisioning Module Flow Chart

 22

Standard [36]), due to this, in a typical scenario, a compute node capability for

Virtual Instantiation is constrained by the total RAM. Figure 10 shows the VNF

Instance allocation for a compute node with 8 cores for CPU and 16 gigabytes of

RAM while using a customized deployment flavor for the VNF that allocates 2 virtual

cores and 2 gigabytes of RAM per instance.

The Data Plane Provisioning Module will take the VIn and subtracts the amount of

Data Plane Slices that are currently instantiated on the compute node, AIn=VIn-DPIn,

where AIn refers to the Available space for Instances in the current compute node

and DPIn to the number of Data Plane Slices that are currently instantiated, this

value can be obtained from the Application Layer itself, as active contracts are

mapped to Data Plane Slices and this record exists inside the Contracts Table. The

value of AIn is pivotal for continuing with the rest of the process, by default it needs

to be AIn>1 as we need to leave the room of operation for the compute node to avoid

overloading of resources. In case the value of AIn is greater than 1 the Data Plane

Figure 10. Possible Virtual Instances based on lesser value of RAM and CPU
calculations

 23

Provisioning Module generates TOSCA configuration for a new Data Plane Slice

Instance by taking the Data Plane Id that corresponds to the flagged Lu and copying

its QoS policies, effectively creating a new Data Plane Slice for an already defined

contract. The TOSCA configuration is pushed to the management layer by means of

REST communication.

Algorithm 1. Find a proper Data Plane from an Unused Data Plane repository

 24

On the other hand, if the value of AIn is lesser or equals to 1 the Data Plane

Provisioning Module will carry on with the procedure illustrated on Algorithm 1. The

UDPR contains all the Data Plane Slices that have been instantiated but are never

used. This information is taken as the basis for the three procedures that are

presented in the Algorithm. The DPPM has the capability of selecting a slice from

this repository by triggering the findUPD (Find Unused Data Plane) function which

receives the saturated Data Plane Slice (sDP) Information as its argument. The

function iterates the records of the UDPR and finds the contract information of the

oldest (being stored for more than 60s) unused data plane slice by calling the

findContract() function, Before re-deploying a Data Plane Slice, the contract

information is used to verify if more than 1 Data Plane Slice is assigned. This

constraint exists due to the nature of the contracts defined by the Application Layer,

which mandates that a contract defined for a specific service must have at least one

data plane. In other words, even if there are available unused Data Plane Slices

inside the UDPR, they cannot be used for re-deploying when they are the only Data

Plane Slice assigned to a contract. Finally, the re-deployment of slices is realized by

the deployDP() which uses the saturated Data Plane service name (Which is

associated with a contract) and assigns it to the unused Data Plane Slice. Once the

procedure finishes, a new TOSCA file with this configuration is generated and

pushed into the Management Layer. By following the logic of the Algorithm, it is

evident that, if the data contained inside the UDPR does not meet this requirement,

re-deployment cannot be achieved.

To elaborate more on the findContract() functionality, it fetches from the

Management Layer the total information of Data Planes as a jSONArray. This array is

iterated according to a spgwuId (Data Plane Id) that was received as a parameter for

this function when a proper record of a Data Plane is found inside the JSONArray the

service name attribute is extracted and used for finding the whole contract

information directly from the contracts repository inside the Application Layer. The

function returns this contract to the findUPD() function for constraint verification.

 25

The value of the flags plays an important role in the selection of Data Plane Slices

that the NSSF will perform in the Physical Layer. The DPPM is able to change the

selection status of configured Data Plane Slices according to the type of flag that the

module receives. When a Data Plane arrives flagged as saturated, the DPPM changes

the selectable property of the slice as disabled, on the other hand, when the data

planes arrive with any other type of flag e.g. (normal, unused) the DPPM enables the

selectable property of the data plane. This is reflected in the TOSCA configuration

file that is sent to the management layer. A reference file can be seen in APPENDIX

A. Further details of how this selectable property affects the NSSF operation is

detailed in section 4.3.

Lastly, the DPPM takes into consideration the event when no available physical

resources exist for creating new data plane slices, e.g. (AIn is lesser or equals to 1

and the UDPR does not contain any candidate for re-deployment). Due to this, DDPM

operation cannot supply new data plane slices which means that the maximum mobile

network slice capability has been reached. This limitation is only evident in the

implementation done in this research as the physical resources available in the

laboratory are constrained.

4.2 Network Monitoring Agent.

The NMA spans across three components that work together for monitoring the

status of the Data Plane Slices, namely, sFlow Agent, sFlow-RT, and an API module

for Link Utilization Calculation.

4.2.1 sFlow Agent

sFlow is a standard sampling technology for a network traffic monitoring solution.

sFlow stats are measured on the switch level of a network infrastructure. It applies a

scalable (allows a virtually infinite number of interfaces to be monitored from a

single location) technique for measuring network traffic, collecting, storing, and

analyzing traffic data. sFlow has minimal impact on the performance of core network

devices, without adding significant network load [23].

 26

The sFlow Agent runs as a process inside the management software of a switch

as seen in Figure 11. Its main purpose is to create sFlow datagrams, which are a

combination of interface counters and flow samples, these datagrams are sent to a

sFLow Collector (Which does the monitoring and representation of flows) that exists

as another entity inside the network. Due to this, the sFlow Agent does very little

processing. It only packages data into sFlow Datagrams that are immediately sent to

the collector. This Immediate forwarding of data minimizes memory and CPU

requirements associated with the sFlow Agent.

sFlow is available for a wide variety of devices, most importantly for this

research, it is also available in the software implementation of OpenFlow switch

known as OpenvSwitch (OVS), which is an opensource implementation of a virtual

switch. OVS is a standard for virtual network implementation and supports multiple

protocols used in computer networks.

Our research implementation uses four OVS deployed in a Leaf-Spine Fabric, our

Leaf2 connects two compute nodes that contain the Data Plane Slices and a sFLow

Collector (sFlow-RT) respectively.

Figure 11. sFlow Agent inside a Switch/Router

 27

For sFlow to operate, identification of the interfaces that connect the Host

machine that contains the VNFs to be monitored and the Host that contain the sFlow

Collector is necessary. Figure 12 shows the OVS configuration that is set up in the

physical server. As part of the M-CORD deployment, multiple virtual interfaces are

created (from vnet1 to vnet11) these are reserved for interconnecting compute

nodes and switches. As this thesis implementation includes three compute nodes,

Leaf1 has been assigned a vnet11 interface between the switch and node1. Leaf 2

has two interfaces, vnet8 for node2 and vnet3 for node3 (interface assignment to

switches is a random process of the M-CORD deployment). For this scenario, node2

contains the Data Plane Slices that are going to be monitored and node3 houses the

sFlow Collector for sFLow datagram analysis. It is important to take notice that this

Spine-Leaf Fabric is not enabled by default during the M-CORD deployment, specific

configuration must be modified in order to created four switches and properly set up

the connection to the ONOS controller, see APPENDIX B. Also, each compute node

has an OVS called br-int that is also managed by ONOS, which the main purpose is to

provide interconnection to the underlying VNF.

Figure 12. LEAF-SPINE with interfaces and SFLOW

 28

The configuration required for enabling sFlow statistics is configured in the

compute node where the OVS configuration for the VNF resides. It follows some

definitions of Environmental Variables that assign the values for COLLECTOR_IP,

COLLECTOR_PORT, AGENT_IP, HEADER_BYTES, SAMPLING_N, POLLING_SECS.

The COLLECTOR_IP address refers to the management IP that is assigned to the

compute node where the sFlow Collector resides, the COLLECTOR_PORT is

standard and uses the value 6343, the AGENT_IP refers to the name of the interface

that connects the OVS and the compute node that has the Data Plane Slices that are

going to be monitored. The rest of the variables use a default value that is enough

for monitoring all the flows that an OVS can handle. Figure 13 has the values used

for this scenario.

COLLECTOR_IP=10.0.10.16

COLLECTOR_PORT=6343

AGENT_IP=fabric

HEADER_BYTES=128

SAMPLING_N=64

POLLING_SECS=10

Figure 13. sFLOW Environmental Variables configuration example

For activating the sFlow agent the following command is issued in the Compute

Node that needs to be monitred.

$ ovs-vsctl -- --id=@sflow create sflow agent=${AGENT_IP}

target="${COLLECTOR_IP}\:${COLLECTOR_PORT}" header=${HEADER_BYTES} sampling=${SAMPLING_N}

polling=${POLLING_SECS} -- set bridge br-int sflow=@sflow

Which takes the values that were set as Environmental Variables and applies them

to bridge br-int. A bridge is the actual representation of an OVS. For this

deployment, seven bridges exist, spine1, spine2, leaf1, leaf2, and three br-int for the

 29

compute nodes. We only required sFLow statistics on the compute node that houses

the Data Plane Slices. By setting up the sFlow Agent inside br-int it will periodically

send the data to the sFlow Collector.

4.2.2 sFlow-RT

The sFlow Collector chosen for this scenario is sFlow-RT. There exist multiple

opensource sFlow Collector available with different capabilities. The main reasoning

for using sFlow-RT is the strong collection of REST API that comes packed with the

solution, which is essential for feeding the monitoring data to the rest of the Mobile

Network System. The multiple benefits of sFlow-RT can be seen in Figure 14[24]

As evident from the above picture, besides the native benefits of sFlow (Real-

Time and scalability), sFlow-RT also include a level of programmability for

definitions of how the sFlow datagrams are going to be represented and organized.

With this, it is possible to define flows that match packets or transactions that share

common attributes and do real-time computation. For this scenario, we require the

definition of a flow that captures the source and destination IP addresses of requests

done to the Data Plane Slices connected to br-int inside the Compute Node 2 and

then calculate bytes per second for each flow. This can be achieved with the

following instruction.

Figure 14. sFlow-RT Integration inside a Network

 30

setFlow('Bps',

 { keys:'ipsource,ipdestination,tcpsourceport,tcpdestinationport',

 value:'bytes', log:true }

);

The above statement creates a Flow definition name Bps (Bytes per second)

which include the following Flow Keys: ipsource that refers to the IP-address of the

host that initiates the flow, ipdestination refers to the IP-address of the destination

host, tcpsourceport refers to port that is going to be used for accepting the reply of

the request that is being made by the host, and the tcpdestinationport refers to the

type of request that is being generated e.g. an HTTP request will have

tcpdestinationport as 80. It is important to notice that this information already exists

in the sFlow datagram that is being sent regularly to the sFlow-RT collector by the

sFlow Agent inside the OVS, but it is necessary to give the proper representation for

further calculations. The statement will return all the flows of the Data Plane Slices,

formatted according to the Flow Keys that were used and also the Transfer Rate

associated with each flow.

 31

4.2.3 API module for Link Utilization Calculation

Figure 15. CiaB deployment figure

The module for Link Utilization Calculation resides as a standalone process

running on the Head Node of the M-CORD deployment. Figure 15 shows the block

diagram of a deployment of M-CORD 4.1 in a single physical server also known as

Cord in a Box (CiaB). In this representation, the Head Node is the embodiment of the

Management Layer that houses XOS, OpenStack and ONOS controller. For this

research, the Link Utilization Module is implemented as a process that constantly

proves the sFlow-RT collector for getting the current Transfer Rate of flows that

exist in the Data Plane Slices.

 32

The logic of this module is as follows. Firstly, the module will send a REST-API

request to the sFlow-RT collector to get the current flows and transfer rates (rq1),

then a pause occurs for 10 seconds (t=10s), after this a second request for transfer

rates is done (rq2). The module will then calculate the transfer rate average for

flows that have the same Flow Key values ipsource, ipdestination, tcpsourceport,

tcpdestinationport between rq1 and rq2 (arqn= (rq2n + rq1n)/2). As the average

Algorithm 2. API Link Utilization

 33

transfer rate(arqn) for each flow is expressed in Bytes/sec it needs to be converted

to bits/sec multiplying it by 8 and then divided by the LinkRate in bits/sec of the Data

Plane Slice that generates the flow (FLun= (arqn * 8)/LinkRate). The Flow Link

Utilization FLu is a decimal number from 0 to 1. As many Flows can occur for the

same Data Plane Slice, the FLu for flows with the same ipsource are summed up to

get the Data Plane Link Utilization (Lu). If the Lu is equals or greater than 0.8 the

module will flag the Data Plane as saturated else, it flags the Data Plane as normal.

This value is heuristically applied by taking into consideration the “Best Practices in

Core Network Capacity Planning” from CISCO which states that average link

utilization should not be higher than approximately 70 percent [37]. The whole

process repeats every 10 seconds

A parallel process is done for detecting unused data plane slices. The module

sends a REST-API request to the sFlow-RT collector to get the current flows and

transfer rates (rq1), then a pause occurs for 60 seconds (t=60s), after this a second

request for transfer rates is done (rq2). The module will request the List of Data

Plane Slices to XOS by means of REST-API and compare the Flow Key ipsource of

the rq1 and rq2 with the IP-Addresses of the Data Plane Slices requested to XOS. If

a Data Plane IP-Address does not exist in both the rq1 and rq2 flow information, it is

flagged as unused. The process repeats every 60 seconds.

The flagged Lu data is sent to the Data Plane Provisioning Module for processing

and deployment of new Data Plane Slices (If required). The data is sent in a JSON

Format that includes the Lu, the Data Plane Id (SPGWU Ip-Address) and the Flag as

seen below.

Figure 16. JSON Link utilization example.

 34

An important value that is highly dependent on the QoS policies for the Data Plane

Slices is the LinkRate. This is obtained by fetching the QoS properties of the slice

where the current calculation of the Lu is taking place. For example, if calculation for

Lu with an ipsource of 10.0.9.3 corresponds to a Data Plane Slice with QoS set for a

3Mbps of down-rate, then, the LinkRate is 2 (Multiplier) times the specified QoS, in

this case, 6Mbps. This specification for the LinkRate is particular for the experiments

done on this research and does not follow any industry standard. The reasoning

behind it depends on the limitations of the physical resources for the testbed. As the

operation of the network only allows a maximum of three UE to connect

simultaneously, their number represents the highest throughput that can be achieved

for being able to saturate a Data Plane Slice. In the case that more UE could be

supported, the Multiplier for the LinkRate will change accordingly.

 35

4.3 Network Slice Selection Function.

Figure 17. NSSF XOS Service

The NSSF is based on 3GPP implementation for the 5G Mobile Network

Architecture [5]. Due to the complexity and unavailability of open source 5G

components, the research of this thesis use LTE-A network functions for creating

the Mobile Network inside the physical layer, for this, the absence of an AMF

prompted the selection of network slices to be exclusively on the NSSF which

requires to keep the current status of the VNF that represent the Data Plane

Network Slices, namely, SPGW-C and SPGW-U. Figure 17 Shows how the XOS

Service for the Network Slice Selection Function plays a key role in collecting the

information of current deployed VNFs and keeps it on record in a Data Base that the

NSSF VNF will access for selecting slices.

4.3.1 Network Slice Selection Function synchronizer

The synchronizer running inside the XOS service for the NSSF has the following

functionality. Algorithm 3 shows the logic behind the synchronizer. Firstly, it

 36

watches over the status of the mobile network by monitoring all available SPGW-C

and SPGW-U VNFs that gets instantiated. For both cases, it will get a list of Tenants

that are successfully provisioned. These tenants are represented as objects with

specific attributes that were defined in the data model of their respective XOS

service. Secondly, The NSSF synchronizer will verify for each SPGW-U tenant the

value of the selectable property that was set by the DPPM according to the status of

the Data Plane (Saturated, Normal, Unused). Thirdly, the NSSF extracts two

attributes from both SPGW-C and SPGW-U tenant lists, the first attribute is the

network.port and the second attribute is the network service. It will ignore any

SPGW-U tenant that has a selectable property as disabled. As the synchronizer

works on the Management Layer it can obtain all the tenant information directly from

XOS, because all the Data Model definitions for the Services are kept in a database

inside the Orchestrator. The network.port is represented by the IP-Address of the

tenants, and the service is defined by the type of contract that was created in the

Application Layer e.g. HD-Video, WEB, IoT. This attribute is the most important for

association of network slices, as the SPGW-C and SPGW-U will be linked together

based on the service that was assigned to them when the contracts were defined.

The information pertaining to the total SPGW-C and SPGW-U tenants that currently

exist in the network is inserted in a Slice-Table which is located inside the HSS

database by the means of an Ansible Automation Playbook. This process executes

whenever there is a change in the VNFs that the synchronizer monitors. The

contents of the Slice-Table are indirectly affected by the DPPM, due to Provision of

new Data Planes or Re-assignment of unused Data Planes to different network

services. Also, when the DPPM sets the value of the selectable property of each

Data Plane, it affects the NSSF synchronizer decision of which SPGW-U to include in

the Slice-Table. This effectively prevents UE allocation to saturated Data Plane

Slices, minimizing further network performance impact.

 37

There is only one SPGW-C per service_name and multiple SPGW-U that can be

linked to it. The reasoning behind this is to easily differentiate the multiple Data

Plane Network Slices that are created in the Physical Layer, as the SPGW-C

represents a stitching point for the SPGW-U. The SPGW-C role is to handle session

establishment and SPGW-U association to the UE, due to this, network throughput is

not considerably affected as only control messages are exchanged during its

operation. On the other hand, the SPGW-U Tenants get the QoS configuration from

the contracts and directly affect PDU session and further differentiate the Data Plane

Network Slices.

4.3.2 Network Slice Selection Function VNF

Beside the synchronizer that runs on the Management Layer, the NSSF also has

logic that runs on the Physical Layer as a VNF. It follows the UE Network

Registration procedure and Session Establishment and interacts directly with the

Mobility Management Entity (MME) for Data Plane Network Slice Selection and

indirectly with the Home Subscriber Server (HSS) for accessing the information of

available slices from the database that is housed inside this VNF. The procedure for

slice selection can be appreciated in the sequence diagram presented in Figure 18.

Algorithm 3. NSSF Synchronizer Algorithm.

 38

Firstly, the UE initiates network registration by sending the connection message

from the eNodeB to the MME. The message includes the International Mobile

Subscriber Identity (IMSI) which is a fifteen-digit combination that contains the

Public Land Mobile Network (PLMN) for the first five digits and Mobile Subscription

Identification Number (MSIN) for the rest of the enumeration. These numbers are

used for both, UE identification and Data Plane Network Slice allocation. Secondly,

once the MME finish the registration of the UE into the network, it forwards the IMSI

to the NSSF which in turn connects to the database inside the HSS and queries the

Slice-Table to get the current SPGW-C IP-Address that is enabled as a stitch point

for the Data Plane Slices and also the SPGW-U IP-Address that is related to the

network service requested by the UE, the NSSF keeps the record of each UE

assigned to a Data Plane Slice. Thirdly, the IP-Addresses are forwarded to the MME

which will proceed with the session establishment for the UE using the IP

information for connecting with the SPGW-C and storing the SPGW-U IP-Address in

the bearer-context message that is sent to the SPGW-C with session information.

Finally, the SPGW-C uses the bearer-context information to select an SPGW-U

Figure 18. NSSF VNF operation.

 39

(From a list of registered Data Planes) using the IP-Address of the Data Plane Slice

that was received from the MME and proceeds to create a PDU Session by enabling

a GTP-Tunnel between the UE and the selected SPGW-U.

The IMSI plays a crucial part in the selection of a slice by the NSSF. This

research has labeled the last two digits of the IMSI as Slice Differentiators (SD) by

allocating the second last digit to identify the stitch point of a Data Plane Slice i.e.

SPGW-C and the last digit to identify the SPGW-U that is going to serve the

connection of the UE. Figure 19 shows the case when two UE with specified IMSI try

to access the network and are directed to their correspondent Data Plane Network

Slices.

Figure 19. IMSI based slice selection.

By basing our research in the 5G Architecture from 3GPP the decision of adding

the Slice-Table inside the HSS emulates the concept of a Unified Data Management

(UDM) network function. Although in this implementation, the relationship between

the NSSF and the HSS does not include any logic that makes these two network

functions interact between each other apart from database manipulation from the

NSSF side. As mentioned above, the table is filled by the NSSF synchronizer, due to

this, it has the updated view of the status of the network. A representation of this

 40

table is shown in Table 3 where six Data Plane Network Slices are configured for

three services. The services are directly proportional to the number of SPGW-C. For

a new service to exist, it needs to be defined in the Contract policies on the

Application Layer, this will create a new SPGW-C tenant in the Physical Layer once

the TOSCA configuration passes through the Management Layer. Following the same

logic, any QoS defined for a Data Plane Slice will be associated with a Service and

will create SPGW-U tenants that will register to their corresponding SPGW-C.

4.4 Physical Layer Modifications.

The physical layer is mostly composed by the Mobile Network VNFs from Open

Air Interface The eNodeB and UE implementations are secured using the

OpenAirInterface System Emulation (OAISIM). It includes a standard-compliant

implementation of a subset of release 10 LTE for UE and eNodeB. The simulation of

multiple UE that can act simultaneously in connecting to a single eNodeB can be

tested with the use of OAISIM.

Like the eNodeB, the EPC is also part of OpenAirInterface Software Alliance

solution for mobile open source VNFs. It houses the implementation of MME, HSS,

SPGW-C, and SPGW-U that serve as core network components. Both projects are

freely distributed by the OpenAirInterface Software Alliance (OSA) under the terms

stipulated by a new open-source license catering to the intellectual property

agreements used in 3GPP which allows contributions from members holding patents

on key procedures used in the standard. The original implementation of the mobile

core network from Open Air Interface does not consider a Network Slicing Scenario

and does not have any communication with an NSSF. Fortunately, the code for each

of the components is freely available which allowed modifications inside the MME,

SPGW-C, and SPGW-U for achieving a proper interaction with the NSSF and

effective selection of slices.

4.4.1 Mobility Management Entity (MME) Modifications.

The MME is the key control-node for the LTE access network. It works in

conjunction with the eNodeB and SPGW-C in the core network to realize the

 41

following actions relevant to our Data Plane Slice Scenario:

• Responsible for choosing an SPGW-C for a UE at session establishment on the

Network.

• Responsible for authenticating the user (by interacting with the HSS).

Although the MME natively has the ability to select an SPGW-C for session

establishment, it only does it on the basis of the Tracking Area Code (TAC), Mobile

Network Code (MNC) and Mobile Country Code (MCC) information of the network

which only varies if the UE connection comes from different areas. In order to

showcase a Network Slice Selection Scenario based on UE Network Service

Request, the selection of SPGW-C is handed over to the NSSF. For this, the MME

code had to be modified to include a call to a Communication API that contains

python code that translates C function requests into Python methods. It also

executes a Remote Procedure Call (RPC) for requesting the SPGW-C and SPGW-U

Id to the NSSF. In other words, the API holds the communication channel that allows

the MME to interact with the NSSF.

Figure 20. Communication API between MME and NSSF

As mentioned above, the MME is developed in C by Open Air Interface, which

requires modification in the mme_app_select_sgw procedure to include the

ue_context.imsi in the call to the API. The logic of the API will separate the last

characters of the IMSI in order to identify the Type of Service that is being

requested in the same fashion as explained in Figure 19. Furthermore, the

mme_app_send_s11_create_session_req procedure is modified to include the Data

Plane Slice (SPGW-U) IP-Address that was in the response of the NSSF and pack it

 42

inside the bearer_context as a Packet Data Network Id pdn_id, which is forwarded to

the serving SPWG-C as part of the session message.

4.4.2 Serving PDN Gateway for the Control Plane SPGW-C.

The relevant functionality of the SPGW-C is to establish a session request for a

UE by control message interaction with the MME. It also selects the right SPGW-U

from a list of attached PDN in order to initiate PDU session with the UE. In the Open

Air Interface original implementation without Network Slicing, the SPGW-C records

an SPGWU_IP_LIST[] in the attachment order of each SPGW-U. The attachment

occurs whenever an SPGW-U “turns on” and is discovered by the SPGW-C. The list

is then iterated in the specific order of PDN registration. Once an SPGW-U is

selected, an spgwu_ip.s_addr is added to the bearer_context for PDU session

establishment.

In a Network Slice Scenario, Multiple SPGW-C can be connected to a vast number

of SPGW-U Data Planes. An SPGW-C is associated to a network service and the

connected SPGW-U carry the different QoS for Data Plane Slices, due to this, in

order to guarantee a Slice Selection on the basis of UE and Network Service, instead

of the above procedure, the SPGW-U logic selection is not handled by the SPGW-C,

in its place, the SPGW-C receives the bearer_context from the MME with the

spgwu_ip.s_addr as a pdn_id. This IP-Address is used for initiating PDU session

directly with the appropriate SPGW-U that was selected by the NSSF.

4.5 XOS Service Definition for Data Plane Slices.

In order to achieve manipulation of SPGW-U (Data Planes) across the multiple

levels of the proposed system, the proper definition of VNF attributes must be

created in the Management Layer. The SPGW-U XOS Service Data Model has the

definitions for the QoS, Network Service and Slice Selection attributes that are used

by the whole system. Table 1 showcases the specific definitions added to the Data

Model and APPENDIX C has the xproto code of the actual Data Model file that

represents the XOS service.

 43

Table 1. Data Model Definitions

As can be seen in the above table, uprate, downrate, service and selectable. are

the attributes defined for the SPGW-U Data Model. The values for uprate, downrate

and service are provided by the IBN Tool every time a new contract is created. In

the case of the selectable attribute, the value is provided by the DPPM during

operation. When a TOSCA configuration file is created, it will contain the values for

each of these attributes. see APPENDIX A

Every XOS Service has a Data Model that represents the abstract state of the

system which is defined as an xproto file [25]. This type of implementation is

particular to the M-CORD Platform for the management of Services.

A service attribute is also defined in the SPGW-C XOS Service Data Model with

the purpose of achieving a Data Plane slice association based on network service.

 44

5.0 Evaluation and Results

For the evaluation of the proposed functionality, the complete Virtual Mobile

Network System that includes a previously developed IBN Tool, M-CORD 4.1, Open

Air Interface eNodeB and UE emulator (OAISIM), and Open-Air Interface Core

Network was used alongside the implemented modules for Automatic Data Plane

Provisioning.

The deployment of the whole system is done in two machines that include a Lab

Server for the deployment of CiaB M-CORD 4.1 (XOS, OpenStack, ONOS, Mobile

Network VNFs) and a development PC where the IBN Tool (Including the Data Plane

Provisioning Module) is running. Both equipment is connected to the laboratory LAN

with the Lab Server that houses M-CORD 4.1 having a data-link of 100Mbps.

The evaluation procedure has the following steps. First, a set of contracts for

three services are defined using the IBN Tool. This will trigger the creation of Data

Plane Network Slices by the Management Layer, each of them configured with

proper QoS. Secondly, using the OAISIM, three UE is set up for connecting

simultaneously to the Mobile Network where slice selection is verified. Network

performance tests are realized in this step. Thirdly, performance tests are realized

on the Video Data Plane Slices and Verification of automatic data plane provision is

performed in this step. Finally, comparison of results when there are no Network

Slices and a Data Plane Provisioning Module does not exist is also presented.

5.1 Network Contract definition in IBN Tool

Table 2 shows the information of three contracts that are defined using the GUI of

the IBN Tool. For the VIDEO Contract, two data plane slices are configured using

predefined QoS values, Video-1 has an up-rate of 10 Mbps and downrate of 20

Mbps, Video-2 an up-rate of 15 Mbps and downrate of 30 Mbps. The WEB Contract

defines three Data Plane Slices with custom QoS. Web-1 has and an up-rate of 5

Mbps and a down-rate of 10 Mbps, Web-2 an up-rate of 2 Mbps and downrate of 4

 45

Mbps, Web-3 an up-rate of 1 Mbps and downrate of 2 Mbps. Finally, a Stress Test

Contract is created with an up-rate of 100 Mbps and downrate of 100 Mbps. This

contract creates a data plane slice that has the maximum throughput of the CiaB

server physical link, its main purpose is to saturate the data plane traffic for the

tests that are performed in this chapter. The TOSCA configuration file with the full

Data Plane Slices configuration is shown in APPENDIX A

The Management Layer takes the TOSCA information and creates a total of three

SPGW-C and six Data Plane Slices that are represented by the SPGW-U VNF. This

information is portrayed in Table 3 where each service defined by the contract takes

the form of an SPGW-C and the SPGW-U Data Planes are associated to it based on

the service attribute defined in the Data Model.

Table 3. SPGW-C and SPGW-U allocation

Table 2. Value of QoS defined by the Contracts.

 46

5.2 Mobile Network E2E connection and Network Slice Selection.

A mobile network connection starts from the OAISIM VNF. In order to have UE

routed to different network slices specific configuration is required for the creation

of the UE. Table 4 shows the IMSI information pertaining to each UE which is used

for registration into the network and Data Plane Network Slice Selection and the

virtual interface name of the UE that is created by OAISIM.

The last two digits of the IMSI are used for the slice selection as explained in

previous sections. According to this configuration oa1 and oa2 are assigned to two

different VIDEO slices, and oai3 is assigned to the first WEB slice. In order to verify

that the Data Plane Slices QoS were correctly deployed and that each user

equipment is connected to an isolated Network Slice, two different tests are

performed.

5.2.1 iPerf performance test in E2E connection using OAISM (LTE connection).

This test focus on using iPerf [26] to stress the bandwidth of the Data Plane Slice

assigned to user equipment. The test setup follows a simple Client-Server setup

where an external Lab Web Server has three instances of iPerf running on port 5001,

5002 and 5003 respectively. As each client is represented by a virtual network

interface that exists on the OAISIM Virtual Machine, the iPerf command running on

the UE needs to specify the proper network interface where the traffic is going to be

channeled. e.g. (iperf –c <Server-IP> -p<Server-Port> -B <Interface-Name>) where

<Server-IP> refers to the IP of the machine that has the iPerf server running e.g.

(220.149.42.102), <Server-Port> to one of the ports specified for the server and

<Interface-Name> refers to the name of the interface that represents the UE e.g.

Table 4. IMSI configuration for three UE

 47

(oai1). This is done for the three interfaces in order to test simultaneous traffic to

the iPerf Server. In order to simulate continuous traffic, the test is modified to run

for 60 seconds in just one iteration per test.

Figure 22. UE2 – VIDEO2 Slice Performance Test (OAISIM)

Figure 21. UE1 – VIDEO1 Slice Performance Test (OAISIM)

 48

The above results were taken by using the Wireshark [27] application on the

device that is running the iPerf Server. By configuring Wireshark to listen to a

specific interface and ports, it is possible to log the transfer rate of the iPerf tests.

The graphs show mixed results in terms of bandwidth stability, this is due to the use

of an emulated eNodeB that is not capable enough for handling multiple virtual user

equipment that stresses the transfer rate of the GTP (GPRS Tunneling Protocol) -

Tunnel created by the LTE connection emulation. Even though it is evident that

Network Slice Selection is working as intended as each UE is assigned to a different

data plane slice, the above results cannot showcase the type of tests that are

necessary for the research of this thesis. In order to work with proper bandwidth

results, a workaround that simulates and E2E connection with proper transfer rates

is proposed.

5.2.2 iPerf performance test using SSH Tunnels for simulating an E2E connection.

To achieve the desired transfer rates specified in the QoS for the High-Level

contracts of each slice, the use of SSH-Tunneling is required. SSH Tunneling (also

known as SSH Port Forwarding) is a feature of SSH which forwards encrypted

connections between a local and remote system [38]. It is natively supported by

Ubuntu distributions which makes it ideal for the scenario that this research is

presenting. SSH-Tunnel is used for each of the virtual interfaces that represent the

UE that are connected in the mobile network and replaces the GTP-Tunnel provided

Figure 23. UE3 – WEB1 Slice performance test (OAISIM)

 49

by the EPC and OAISIM in order to achieve stable data transfers.

As can be seen in Figure 24, once the virtual equipment is created during the E2E

connection, ssh-tunnels are configured for each of them in order to facilitate the

performance tests and reaching the desired QoS rates specified for each Data Plane.

There are multiple ways that an ssh-tunnel can be achieved, in this case, a tunnel

needs to be created between three hosts, it is necessary to specify the interfaces

and ports that are going to be forwarded during the tunnel configuration. For

example, for doing a tunnel between oa1 interface (UE1) and the Web Server (For

Iperf Tests), the tunnel needs to pass through the VIDEO1 data plane slice. The

command will be as follows: ssh -L oai1<ip-address>:<port>:pdu1<ip-

address>:<port> VIDEO1 ssh -L pdu1<ip-address>:<port>:WebServer<ip-

address><port> -N WebServer. With this command, the virtual IP-address of the

UE1 is used as a tunnel starting point and the WebServer IP-address as the ending

point of the tunnel. In order to replicate the iPerf test, the WebServer IP-address

needs to be changed to the UE1 IP-address as all the traffic that goes through that

interface and port will be redirected to the WebServer, e.g. (iperf –c <oa1-IP> -p

<ssh-port>) there is no need to bind to the interface anymore. The results of this

test can be seen in the following graphs.

Figure 24. SSH-Tunneling between Virtual UE, Data Plane Slices and Web Server

 50

Figure 25. UE1 – VIDEO1 Slice Performance Test (SSH-Tunnel)

Figure 26. UE2 – VIDEO2 Slice Performance Test (SSH-Tunnel)

 51

By exchanging the GTP-Tunnel to an SSH-Tunnel the results are closer to the

QoS Policies specified for each Data Plane Slice. It is important to clarify that this is

just a workaround in order to achieve good transfer rates for the tests that are

relevant to Data Plane slices due to lack of good eNodeB emulation. From this point

forward the remaining tests performed for this Thesis are achieved by utilizing SSH-

Tunnels.

5.2.3 Video Streaming with Adaptive Bitrate (ABR) Test.

The best scenario for show-casing the isolation of network slice traffic is by

testing the capabilities of video streaming on the UE. Adaptive bitrate streaming is a

technique used in streaming multimedia over computer networks that are mostly

based on HTTP and designed to work efficiently over large distributed HTTP

networks such as the Internet [28]. Basically, the source content is encoded at

diverse-multiple bit rates, then each of the different bit rate segments is divided into

small parts. The client is aware of the available streams at differing bit rates, by a

manifest that is encoded into the video file. When video streaming starts, the client

requests the segments from the lowest bit rate stream (lowest Quality). If the client

finds the download speed is greater, then it will request the next higher bit rate

segments until it achieves maximum quality. If the network performance degrades,

the bitrate will also go to a lower tier to avoid pausing the stream. [28]. This

Figure 27. UE3 – WEB1 Slice performance test (SSH-Tunnel)

 52

technique is used widely on HTTP based video streaming on the Internet. In order to

achieve a real-life scenario for Data Plane Network Slicing, video files encoded in

multiple bitrates using HTTP live streaming ABR technique (HLS) [29] are placed on

the same Web Server where the previous iPerf test was performed. For the UE to be

able to consume the Video, the ffplay tool that is part of the FFmpeg [30] package

was installed on the OAISIM virtual machine. An important function of this tool is the

capability of running without displaying Video by passing the option –nodisp during

the execution command.

The tests are performed using ffplay while routing traffic through oai1 interface

and doing a simultaneous iPerf test from oai2 in a similar fashion as the previous

performance tests. A second test is performed by using ffplay while routing traffic to

oai2 and using iPerf on oai1 interface. The main reason for doing the tests in this

fashion is that ffplay cannot be used simultaneously while connecting using two

different network interfaces and we need a way to inject traffic in both slices at the

same time in order to showcase that traffic does not interfere between each other.

The above graph shows the results of video streaming using ffplay for both Video

Slices. The variation of the bitrate is similar for both tests, as the same Video File is

being used for the streaming. Even though in some cases the bitrate dipped below

7000Kbps, it kept the resolution of 1920 x 1080p through the length of the test.

Figure 28. Adaptive Bitrate Test for VIDEO1 and VIDEO2 Slice

 53

Normally Full-HD streaming requires a minimum of 4000kbps which is way below

the results presented in the graph. Both Video slices have enough down-rate QoS to

keep a good quality stream.

An interesting result can be seen on the streaming speed test using ffplay. As

soon as the Video Streaming starts, the speed rate stays on the range of 11 Mbps for

both Video Slices, but after around 25 seconds of streaming, the speed rate goes

down and normalize in between 1Mbps and 500Kbps. The main reason for this to

happen is the buffering that the video player requires to do at the beginning of the

stream, once the buffer is full, the speed rate goes down to the values shown in the

graph. It is important to take notice that neither slice went up more than 12Mbps for

the rate of the streaming, this is due to the quality of the Video File that is being

streamed, as 1080p Full HD video does not require that much bandwidth to work

with, both VIDEO slices have more than enough room to handle high-quality Video

Streaming from multiple UE without problem.

5.3 Automatic Data Plane Provisioning when a Slice is Saturated.

The aim of the evaluation and test results is to verify that the Network Monitoring

Agent is triggering the Data Plane Provisioning Module operation when a Data Plane

is saturated with network traffic. Due to the current limitations posed by OAISIM, the

system becomes unstable when more than three UE are created for connection tests.

Figure 29. Streaming Speed Test for VIDEO1 and VIDEO2 Slice

 54

Because of this, a re-arrangement for the current UE is necessary to force them to

connect to a single VIDEO Slice. The new configuration of the UE can be seen in

Table 5.

The above configuration shows that the three UE is assigned to a single VIDEO

slice (VIDEO1). Due to this, there is no requirement for multiple Video slices for this

test. The new arrangement of slices can be seen in the table below. An advantage of

working with the IBN Tool is that Data Plane Slices can be easily managed from the

Application Layer. Deleting or creating new slices does not pose a big downtime

during the tests.

In order to trigger the functionality of the DPPM, VIDEO1 Slice must reach the

peak of traffic and saturate the Network Utilization of its “physical” link. The QoS

set for this slice have a down-rate of 20Mbps, and maximum link rate that can

support is 40Mbps. As explained in previous sections, the link rate limitation for each

Data Plane Slice is forced and particular for achieving the results of this thesis. As

only three UE can be connected at the same time, it is necessary to saturate the link

Table 5. New IMSI configuration for connecting to
a single Video Slice

Table 6. Single Video Slice

 55

before the 3rd UE connects. The test procedure is as follows. oai1 and oai2 connect

first to the mobile network and are assigned to VIDEO1 Slice. The iPerf tool is used

for both UE virtual interfaces with the purpose of filling the bandwidth limit of the

Data Plane. The Network Monitoring Agent is constantly probing the sFlow-RT

collector for the status of all the data planes. After approximately 15 seconds of the

iPerf Test, the DPPM successfully triggers its functionality and creates a new Data

Plane Slice and disables the selection of the saturated Data Plane. At this point, oai3

connects to the Mobile Network and starts a similar Video Streaming Test using the

ffplay tool. Streaming is achieved without the interfering of oai1 and oai2 traffic test

as the last UE is connected to a different Data Plane in a transparent fashion.

Figure 30. iPerf bandwidth stress test for VIDEO1 Slice

 56

As seen in Figure 31 and 32 the results of the Video Streaming test are similar to

the ones performed in the previous section. Full video quality is achieved in both

Bitrate and Stream Speed because the oai3 user equipment is assigned to a complete

new VIDEO1 Slice. This slice keeps the QoS and Data Model details of the saturated

VIDEO1 Slice and is automatically provisioned by the DPPM in order to serve a new

UE connection. The saturated VIDEO1 Slice is not included in the Network Slice

Selection process by the NSSF due to its selectable property being disabled by the

DPPM. Figure 33 has the representation of how the current slices are viewed by the

Mobile Network System.

Figure 31. Streaming Speed Test for oai3 UE in new VIDEO1 Slice

Figure 32. Adaptive Bitrate Test for oai3 UE in new VIDEO1 Slice

 57

It is important to remark that the “disabled” VIDEO1 slice is fully operational and

the UE connected to it will continue to have network connection until they un-

register from the network. But this slice will not serve any new UE connection

request and after a period of time will be assigned to the Unused Data Plane

Repository. In its place, the new VIDEO1 slice is essentially a twin or replica with

the same QoS policies and Data Model attributes.

5.4 Results in a Non-Sliced scenario and no Automatic Data Plane

Provisioning.

The benefits of the proposal made in this thesis are completely visible if

comparison with results obtained by not including an NSSF and a DPPM is

showcased. The test is divided into two categories. Firstly, tests performed in a

single Data Plane Slice are presented, and secondly, tests performed in a Network

Sliced Scenario with no Automatic Data Plane Provision are presented.

5.4.1 Non-Sliced Scenario.

For this test, a single Data Plane exists for serving three simultaneous UE. The

test focus only on the downrate for iPerf and Video Streaming. The Data Plane Slice

used for this scenario is the Stress Test with 100Mbps, all three UE are connected to

this Data Plane Slice. Two UE (oai1 and oai2) perform an iPerf test to the Lab Web

Server and oai3 perform ffplay video streaming.

Figure 33. Representation of new VIDEO1 slice and disabled VIDEO1 slice

 58

The behavior of the test shows that iPerf tries to occupy the maximum traffic as

possible during execution. The physical link to the network only allows a maximum

of 100Mbps, so the rate is divided between the three UE. oai1 and oai2 network rate

hover in between the 40 to 50Mbps range. The interesting result can be seen for

oai3 which is streaming video by using the ffplay tool. It tries to take as much

bandwidth as possible but is not able to compete with the iPerf test, and as can be

seen, it cannot reach the same speed rate of previous streaming tests. Of course,

when the buffer is filled, the speed rate goes down to less intensive values. The

effect of the reduced bandwidth for video streaming can be seen in the following

graph.

Figure 34. Streaming Speed Test for oai1, oai2 and oai3 in Stress Test Slice

 59

As can be seen, the saturation of the Data Plane does not allow optimal Video

Streaming performance. The Overall Bitrate achieved during this test is less than

half than the previous test done in Data Plane Slices that had less downrate

(20Mbps) in comparison with the current Data Plane(100Mbps). Even though the

video manages to play in 1080p (Full-HD) during the first few seconds of the stream,

the speed rate was so constrained that the video switched automatically to 720p

(HD) quality in order to keep streaming without having to re-buffer the video. These

tests make evident that if there are no different Network Slices tailored for multiple

UE and network services, even if the data link has enough capacity for high-quality

video streaming, the performance of the UE connection will reduce if demanding

network consumption activities e.g. (File downloading, P2P) are mixed into a single

Data Plane.

Figure 35. Adaptive Bitrate Test for oai3 UE in Stress Test Data Plane

 60

5.4.2 Non-automatic Data Plane Provisioning Scenario.

The following test is performed in a similar fashion as section 5.3 tests related to

Data Plane Provisioning. The main difference for this case is that, instead of VIDEO1

Slice, the Stress Test slice is used. Again, oai1 and oai2 perform iPerf tests with the

purpose of filling the bandwidth limit of the Data Plane. Because there is no

Automatic Data Plane Provisioning, when oai3 connects to the Mobile Network it is

assigned to the same Data Plane as oai1 and oai2. The test shows result far worse

than in the case of Non-Sliced Scenario. As the iPerf test was already running

before the oai3 UE connected into the network, the moment that the video stream

started there was not enough bandwidth to reach 1080p Full-HD quality, and the

stream started in 720p. Also, during the test, the bitrate went down to the low

1000kbps switching the quality of the stream to Standard Definition.

Figure 36. Streaming Speed Test for oai1, oai2 and oai3 in Stress Test Slice in non-Automatic
Data Plane Provisioning Scenario

Figure 36 and 37 results show that even if Network Slicing and Network Slice

Selection is enabled, if the network is not capable to adapt to the current situation, it

risks on assigning new UE connection to already saturated Data Planes, thus

diminishing the user experience.

 61

5.5 Performance Test when the System is Overloaded.

The Data Plane Provisioning Module is designed to avoid over-provisioning of

Data Plane slices in cases where there are no system resources available. An ideal

scenario will never over commit resources of a Compute Node above the

recommended values (see section 4.1). The results presented below are particular to

the testbed of this thesis where compute resources are constrained, and Data Plane

overprovision can be easily achieved. To reach this stage, sixteen Data Plane slices

have been manually provisioned using the orchestrator UI (XOS). The focus of this

test is not to showcase End-to End connection, but to verify the bandwidth

performance of the compute node when 16 Data Planes are doing an iPerf test

simultaneously.

Figure 38 has the condensed results of the average of ten iPerf tests related to

the increasing number of Data Plane Slices. The test starts with 2 Data Planes and

increments by 2 until it reaches the 16 Data Planes. As the focus is the performance

of the compute node that houses the Data Plane Slices, bandwidth is measured for

the whole compute node link (100mbps max) instead of individual data planes, as

there are no QoS policies in place.

Figure 37. Adaptive Bitrate Test for oai3 UE in Stress Test Data Plane in non-Automatic Data
Plane Provisioning Scenario

 62

The above figure shows that provisioning Data Plane Slices without considering

the resources of the Compute Node, has a direct relation to network performance,

especially if the compute node is also a virtual entity, as nested virtualization has an

inherent impact on performance. According to the graph, the compute node

bandwidth starts to degrade around the mark of 10 data plane slices, until it reaches

the lowest possible value with 16 Data Plane Slices.

Figure 39 shows the case when 16 Data Planes are doing an iPerf test

simultaneously. This graph represents the last record from Figure 38 before

calculating the average values of the data transmission. As can be observed, due to

overprovision of slices, the compute node is overloaded and cannot provide steady

transfer rates for even simple iPerf tests.

Figure 39. Total compute node bandwidth with 16 Data Planes.

Figure 38. Total compute node bandwidth in relation to the number of Data Plane Slices that
are deployed.

 63

6.0 Conclusion and Future Work

6.1 Conclusion

The shift to virtualization technologies has brought with it a big change in the way

Mobile Networks are managed and deployed. Software Engineers have a bigger role

to play as network logic has moved from dedicated hardware to commodity

equipment. This aspect is made evident with the increased proliferation of Open

Source Projects [9,31,32] that aim to bring new/optimized functionality to the

network. In this thesis, a mechanism for Automatic Data Plane Provisioning

integrated into a Network Sliced Virtual Mobile Network system is proposed in order

to leverage the network load during consumption of network services.

The benefits of Automatic Data Plane Provisioning have been detailed in the

literature. It not only provides a way for monitoring the status of the mobile network

during operation but also brings a level of automatic decision for adapting to the

consumption of network services. The clearest example of showcasing the added

value of this mechanism is the Video Streaming scenario. According to [33], Netflix

consumes 15% of all internet bandwidth in the world, next is followed by HTTP

Media Streaming with 13.1% and in Third place is Youtube with 11.4%. The top three

places for global internet bandwidth consumption is related to Video Streaming. By

2018, there were 3.7 billion mobile internet users in the world and the topmost

demanding mobile traffic service is Youtube video with 35% of the total use of

mobile internet [34]. This data makes evident the need for a mechanism for adapting

to high consuming network services.

Taking into consideration HTTP media streaming services in the evaluation tests

done for showcasing the functionality of Automatic Data Plane Provisioning, it is

easy to observe that the network can be prepared for cases when UE wants to

consume High-Quality video services. This is done by setting up Data Planes when

the network load goes above the standard QoS policies that were set up by the

Network Contracts. Also, during the comparison test, when there is no Automatic

Data Plane Provision mechanism it is clear that the network performance degrades

 64

heavily when multiple UE are consuming high bandwidth network services.

The mechanism relies heavily on the deployment of the M-CORD Platform [9]

and the use of an IBN Tool [11] for the definition of High-Level Contracts and

configuration of QoS for Network Slices. Although it follows independent

functionality (sFlow and sFlow-RT) in order to Monitor and calculate the Link

Utilization of the Data Plane Slices, it still requires integration with the Virtual

Mobile Network System presented in this literature in order to apply the TOSCA

configuration into the physical system and also interact with the Network Slice

Selection Function. This is not to be considered a weak point, as the M-CORD

platform is constantly maturing, and more partners are interested in the functionality

that it provides. Also, the use of TOSCA configuration is standard for many operators

and open source Network Orchestrators [35]. Which means that migration or

portability of the Automatic Data Plane Provisioning functionality is possible.

6.2 Future Work

Figure 40. Abstracted view of the system

 65

Limited compute resources are the main constraint that the solution presented in

this thesis could face for the deployment of Data Plane Slices. Figure 40 shows an

abstracted view of the proposed system considering the three virtual compute nodes

that are created. As the testbed is housed in a single physical server, the real limit of

how many compute nodes can be created is dependent on the RAM and CPU cores of

the physical system (Currently 64 Gigabytes of RAM with 40 CPU cores) this is

barely enough for creating 3 compute nodes that house multiple Virtual Machines

that represent the VNF of the EPC and Data Plane Slices. If physical resources were

limitless, multiple virtual compute nodes could be created in order to load balance

the provision of Data Plane Slices. The load balancing is inherent to the orchestrator

and follows a LeastUsedResources approach in order to select a compute node for

the deployment of VMs. Also, the selection of Data Plane Slices is still be handled by

the NSSF regardless of the compute node where the slices are provisioned, as each

compute node is part of the Virtual Tenant Network (VTN) that is managed by the

Orchestrator together with the Cloud Manager and Network Controller. Figure 41

shows a scenario where multiple compute nodes house the data plane slices for

connecting to the Data Network.

Figure 41. Multiple compute nodes for data plane slices

 66

The above figure focuses only on the compute nodes that handle the deployment

of data plane slices. Although this scenario may be possible if the physical resources

are infinite, is not feasible and not cost-effective. That is why better management of

existing resources is required.

 The thesis proposal requires interaction with a Resource Manager in order to

calculate the available physical resources for accommodating the Data Plane Slices.

This consideration exists as part of the work done in the Thesis, but it will benefit

more if the Resource Manager had the functionality of providing an instantiation of

resources in real time. Currently, it relies on calculations done by taking into account

the physical resources of the Compute Node and static values for the type of VMs

that are created. In a real scenario, Virtual Network Functions could be encased

inside containers which require fewer system resources for operation and in some

cases, they are able to upscale or downscale their resources on the basis of the

current system load. This poses a challenge for the current method of calculating

resources, which will require additional functionality to be added to this module in

order to correctly measure the Data Plane Slices resource requirements.

 67

REFERENCES

[1] Indika A. M. Balapuwaduge and Frank Y. Li, “Cellular Networks: An Evolution

from 1G to 4G”, Centre for Integrated Emergency Management, July 2018

[2] Yousaf Bin Zikria, Sung Won Kim, Muhammad Khalil Afzal, Haoxiang Wang and

Mubashir Husain Rehmani “5G Mobile Services and Scenarios: Challenges and

Solutions” Sustainability, 2018

[3] Adel Nadjaran Toosi, Redowan Mahmud, Qinghua Chi and Rajkumar Buyya

“Management and Orchestration of Network Slices in 5G, Fog, Edge and Clouds” Fog

and Edge Computing: Principles and Paradigms (Book), pp 79-101, 2019.

[4] Intel “Evolved Packet Core (EPC) for Communications Service Providers”,

Solutions Reference Architecture, Revision 1.2 May 2016.

[5] 3GPP, TS 23.501 V15.0.0, Technical Specification Group Services and System

Aspects; System Architecture for the 5G System; Release 15, Dec 2017

[6] Christos Bouras, Anastasia Kollia, Andreas Papazois, “SDN & NFV in 5G:

Advancements and Challenges”, 20th Conference on Innovations in Clouds, Internet

and Networks (ICIN), April 2017

[7] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Steven Latre, Marinos

Charalambides, and Diego Lopez, “Management and Orchestration Challenges in

Network Functions Virtualization”, IEEE Communications Magazine, Volume: 54,

Issue: 1, pp 98-105, January 2016.

[8] ETSI, ETSI GS. NFV-MAN 001: Network Function Virtualisation (NFV):

Management and Orchestration, 2014.

[9] Open Network Foundation. Mobile-Central Office Rearchitected as a Datacenter

(M-CORD) v4.1, [Online; accessed 06-2019] From https://guide.opencord.org/cord-

4.1/

[10] Javier Diaz Rivera, Talha Ahmed Khan, Mehmood Asif, Wang-Cheol Song.

 68

“Network Slice Selection Function on M-CORD”, KNOM Review '18-02 Vol.21

No.02, 2018

[11] Asif Mehmood, Javier Diaz Rivera, Talha Ahmed Khan, Wang-Cheol Song, “An

intent-based mechanism to create a network slice using contracts”, Proceedings of

Symposium of the Korean Institute of Communications and Information Sciences,

2018. (pp. 180-181).

[12] Ala’a Al-Habashna, Gabriel Wainer, Stenio Fernandes, “Improving Video

Streaming over Cellular Networks with DASH-based Device-to-Device Streaming”

International Symposium on Performance Evaluation of Computer and

Telecommunication Systems (SPECTS), September 2017

[13] Vinod Kumar Choyi, Ayman Abdel-Hamid, Yogendra Shah, Samir Ferdi, Alec

Brusilovsky, “Network Slice Selection, Assignment and Routing within 5G

Networks”, IEEE Conference on Standards for Communications and Networking

(CSCN), 2016.

[14] Jose Ordonez-Lucena, Pablo Ameigeiras, Diego Lopez, Juan J. Ramos-Munoz,

Javier Lorca, and Jesús Folgueira, “Network Slicing for 5G with SDN/NFV: Concepts,

Architectures, and Challenges”, IEEE Communications Magazine, Volume: 55, Issue:

5, pp. 80-87 May 2017.

[15] Peter Rost, Christian Mannweiler, Diomidis S. Michalopoulos, Cinzia Sartori,

Vincenzo Sciancalepore, Nishanth Sastry, Oliver Holland, Shreya Tayade, Bin Han,

Dario Bega, Danish Aziz, and Hajo Bakker, “Network Slicing to Enable Scalability and

Flexibility in 5G Mobile Networks”, IEEE Communications Magazine,Volume: 55,

Issue: 5, pp 72-79, May 2017.

[16] Aman Jain, Sadagopan N S, Sunny Kumar Lohani, Mythili Vutukuru, “A

Comparison of SDN and NFV for Re-designing the LTE Packet Core”, IEEE

Conference on Network Function Virtualization and Software Defined Networks

(NFV-SDN), 2016.

 69

[17] Tulja Vamshi Kiran Buyakar, Anil Kumar Rangisetti, Antony Franklin A, and

Bheemarjuna Reddy Tamma, “Auto Scaling of Data Plane VNFs in 5G Networks”,

13th International Conference on Network and Service Management (CNSM), 2017.

[18] Niels L. M. van Adrichem, Christian Doerr and Fernando A. Kuipers,

“OpenNetMon: Network Monitoring in OpenFlow Software-Defined Networks”, IEEE

Network Operations and Management Symposium (NOMS), 2014

[19] Shihabur Rahman Chowdhury, Md. Faizul Bari, Reaz Ahmed, and Raouf Boutaba,

“PayLess: A Low-Cost Network Monitoring Framework for Software Defined

Networks”, IEEE Network Operations and Management Symposium (NOMS), 2014.

[20] Muhammad Afaq, Shafqat Rehman, Wang-Cheol Song, “Large Flows Detection,

Marking, and Mitigation based on sFlow Standard in SDN” Journal of Korea

Multimedia Society. pp. 189-198, 2015.

[21] Nèstor Bonjorn López Ferran Cañellas Cruz, “VIM Adaptation Layer for CORD”,

M.Sc. Thesis, Technical University of Denmark, Kgs. Lyngby, Denmark, 2018.

[22] Eurecom, Open Air Interface Alliance. Open-Air Interface Project. [Online;

accessed 06-2019] from https://gitlab.eurecom.fr/oai/

[23] sFlow.org, "sFlow - Making the Network Visible". [Online; accessed 06-

2019] from https://sflow.org/

[24] Nevyan Neykov, “Real-time detection and mitigation of flood attacks in SDN

networks”, 2017.

[25] Protocol Buffers. “A language-neutral, platform-neutral extensible mechanism

for serializing structured data”. [Online; accessed 06-2019] from

https://developers.google.com/protocol-buffers/

[26] iPerf. “A tool for measuring TCP and UDP network performance”, [Online;

accessed 06-2019] from https://iperf.fr/ *Software.

[27] The Wireshark Foundation, “Wireshark”, [Online; accessed 06-2019] from

https://www.wireshark.org/ *Software.

 70

[28] Saamer Akhshabi; Ali C. Begen; Constantine Dovrolis. “An Experimental

Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP” In

Proceedings of the second annual ACM conference on Multimedia systems (MMSys

'11). New York, NY, USA. 2011.

[29] Pantos, R.P. "HTTP Live Streaming draft-pantos-HTTP-live-streaming-19".

Network Working Group, 2016.

[30] FFmpeg, “ffplay”, [Online; accessed 06-2019] from:

https://ffmpeg.org/ffplay.html. *Software.

[31] ONF, “ONOS -A new carrier-grade SDN network operating system”, [Online;

accessed 06-2019] from https://onosproject.org/.

[32] OpenStack, “Tacker - OpenStack NFV Orchestration”, [Online; accessed 06-

2019] from: https://wiki.openstack.org/wiki/Tacker

[33] Sandvine, “The Global Internet Phenomena Report”, 2018.

[34] Sandvine, “The Mobile Internet Phenomena Report”, 2019.

[35] sdxcentral “TOSCA Orchestration for Service Providers＂ [Online; accessed

06-2019] from https://www.sdxcentral.com/networking/nfv/definitions/tosca-

orchestration/

[36] “OpenStack Overcommit Ratio” [Online; accessed 06-2019] from:

https://docs.openstack.org/arch-design/design-compute/design-compute-

overcommit.html

[37] CISCO, “Best Practices in Core Network Capacity Planning”, White Paper

[Online; accessed 06-2019] from

https://www.cisco.com/c/en/us/products/collateral/routers/wan-automation-

engine/white_paper_c11-728551.html

[38] Bill Brassfield, “Advanced SSH Tunneling”, White Paper [Online; accessed 06-

2019] from https://docplayer.net/10733625-Advanced-ssh-tunneling-by-bill-

brassfield-dev-ops-technical-consultant-taos.html

 71

APPENDIX A - TOSCA Definition of Slices
tosca_definitions_version: tosca_simple_yaml_1_0

description: created by platform-install, need to add M-CORD services later

imports:
 - custom_types/xos.yaml
 - custom_types/slice.yaml
 - custom_types/site.yaml
 - custom_types/image.yaml
 - custom_types/flavor.yaml
 - custom_types/network.yaml
 - custom_types/networkslice.yaml
 - custom_types/vspgwuservice.yaml
 - custom_types/vspgwuvendor.yaml
 - custom_types/vspgwutenant.yaml
 - custom_types/vspgwcservice.yaml
 - custom_types/vspgwcvendor.yaml
 - custom_types/vspgwctenant.yaml

topology_template:
 node_templates:

 m1.medium:
 type: tosca.nodes.Flavor
 properties:
 name: m1.medium

 image-oai:
 type: tosca.nodes.Image
 properties:
 name: image-oai

 service#vspgwu:
 type: tosca.nodes.VSPGWUService
 properties:
 name: VSPGWUService

 oai_vspgwu:
 type: tosca.nodes.VSPGWUVendor
 properties:
 name: oai_vspgwu

 service#vspgwc:
 type: tosca.nodes.VSPGWCService
 properties:
 name: VSPGWCService

 oai_vspgwc:
 type: tosca.nodes.VSPGWCVendor
 properties:
 name: oai_vspgwc

OAI Service instances
 serviceinstance#vSPGWC_Web:
 type: tosca.nodes.VSPGWCTenant
 properties:
 name: Web
 service: web
 requirements:
 - vspgwc_vendor:
 node: oai_vspgwc
 relationship: tosca.relationships.BelongsToOne
 - owner:
 node: service#vspgwc
 relationship: tosca.relationships.BelongsToOne

 72

OAI Service instances
 serviceinstance#vSPGWC_StressTest:
 type: tosca.nodes.VSPGWCTenant
 properties:
 name: StressTest
 service: stresstest
 requirements:
 - vspgwc_vendor:
 node: oai_vspgwc
 relationship: tosca.relationships.BelongsToOne
 - owner:
 node: service#vspgwc
 relationship: tosca.relationships.BelongsToOne

OAI Service instances
 serviceinstance#vSPGWC_Video:
 type: tosca.nodes.VSPGWCTenant
 properties:
 name: Video
 service: video
 requirements:
 - vspgwc_vendor:
 node: oai_vspgwc
 relationship: tosca.relationships.BelongsToOne
 - owner:
 node: service#vspgwc
 relationship: tosca.relationships.BelongsToOne

OAI Service instances
 serviceinstance#vSPGWU_Video1:
 type: tosca.nodes.VSPGWUTenant
 properties:
 name: Video1
 service: video
 selectable: true
 uprate: 10
 downrate: 20
 requirements:
 - vspgwu_vendor:
 node: oai_vspgwu
 relationship: tosca.relationships.BelongsToOne
 - owner:
 node: service#vspgwu
 relationship: tosca.relationships.BelongsToOne

OAI Service instances
 serviceinstance#vSPGWU_Video2:
 type: tosca.nodes.VSPGWUTenant
 properties:
 name: Video2
 service: video
 selectable: true
 uprate: 15
 downrate: 30
 requirements:
 - vspgwu_vendor:
 node: oai_vspgwu
 relationship: tosca.relationships.BelongsToOne
 - owner:
 node: service#vspgwu
 relationship: tosca.relationships.BelongsToOne

 73

OAI Service instances
 serviceinstance#vSPGWU_Web1:
 type: tosca.nodes.VSPGWUTenant
 properties:
 name: Web1
 service: web
 selectable: true
 uprate: 5
 downrate: 10
 requirements:
 - vspgwu_vendor:
 node: oai_vspgwu
 relationship: tosca.relationships.BelongsToOne
 - owner:
 node: service#vspgwu
 relationship: tosca.relationships.BelongsToOne

OAI Service instances
 serviceinstance#vSPGWU_Web2:
 type: tosca.nodes.VSPGWUTenant
 properties:
 name: Web2
 service: web
 selectable: true
 uprate: 2
 downrate: 4
 requirements:
 - vspgwu_vendor:
 node: oai_vspgwu
 relationship: tosca.relationships.BelongsToOne
 - owner:
 node: service#vspgwu
 relationship: tosca.relationships.BelongsToOne

OAI Service instances
 serviceinstance#vSPGWU_Web3:
 type: tosca.nodes.VSPGWUTenant
 properties:
 name: Web3
 service: web
 selectable: true
 uprate: 1
 downrate: 2
 requirements:
 - vspgwu_vendor:
 node: oai_vspgwu
 relationship: tosca.relationships.BelongsToOne
 - owner:
 node: service#vspgwu
 relationship: tosca.relationships.BelongsToOne

OAI Service instances
 serviceinstance#vSPGWU_StressTest:
 type: tosca.nodes.VSPGWUTenant
 properties:
 name: StressTest
 service: stresstest
 selectable: true
 uprate: 100
 downrate: 100
 requirements:
 - vspgwu_vendor:
 node: oai_vspgwu
 relationship: tosca.relationships.BelongsToOne
 - owner:
 node: service#vspgwu
 relationship: tosca.relationships.BelongsToOne

 74

APPENDIX B – OVS configuration Leaf-Spine
e2974151-9340-42fc-94b2-64edb1387373
 Bridge "leaf2"
 Controller "tcp:10.100.198.201:6653"
 is_connected: true
 Port "leaf2-spine2"
 Interface "leaf2-spine2"
 type: patch
 options: {peer="spine2-leaf2"}
 Port "leaf2"
 Interface "leaf2"
 type: internal
 Port "leaf2-spine1"
 Interface "leaf2-spine1"
 type: patch
 options: {peer="spine1-leaf2"}
 Port "vnet8"
 Interface "vnet8"
 Port "vnet3"
 Interface "vnet3"
 Bridge "leaf1"
 Controller "tcp:10.100.198.201:6653"
 is_connected: true
 Port "vnet11"
 Interface "vnet11"
 Port "leaf1-spine2"
 Interface "leaf1-spine2"
 type: patch
 options: {peer="spine2-leaf1"}
 Port "leaf1"
 Interface "leaf1"
 type: internal
 Port "leaf1-spine1"
 Interface "leaf1-spine1"
 type: patch
 options: {peer="spine1-leaf1"}
 Bridge "spine1"
 Controller "tcp:10.100.198.201:6653"
 is_connected: true
 Port "spine1"
 Interface "spine1"
 type: internal
 Port "spine1-leaf2"
 Interface "spine1-leaf2"
 type: patch
 options: {peer="leaf2-spine1"}
 Port "spine1-leaf1"
 Interface "spine1-leaf1"
 type: patch
 options: {peer="leaf1-spine1"}
 Bridge "spine2"
 Controller "tcp:10.100.198.201:6653"
 is_connected: true
 Port "spine2"
 Interface "spine2"
 type: internal
 Port "spine2-leaf2"
 Interface "spine2-leaf2"
 type: patch
 options: {peer="leaf2-spine2"}
 Port "spine2-leaf1"
 Interface "spine2-leaf1"
 type: patch
 options: {peer="leaf1-spine2"}
 ovs_version: "2.5.3"

 75

APPENDIX C – xproto Data Model
option name = "vspgwu";
option app_label = "vspgwu";

message VSPGWUService (Service){
 option verbose_name = "Virtual Serving Gateway User Plane Service";
}

message VSPGWUVendor (XOSBase){
 option verbose_name = "Virtual Serving Gateway User Plane Vendor";

 required string name = 1 [help_text = "vendor name", max_length = 32, null = False, db_index = False, blank = False];
 required manytoone image->Image:+ = 2 [help_text = "select image for this vendor", db_index = True, null = False, blank =
False];
 required manytoone flavor->Flavor:+ = 3 [help_text = "select openstack flavor for vendor image", db_index = True, null = False,
blank = False];

}

message VSPGWUTenant (TenantWithContainer){
 option verbose_name = "Virtual Serving Gateway User Plane Service Instance";
 required string name = 1 [help_text = "Network Service", max_length = 32, null = False, db_index = False, blank = False];
 required bool selectable = 2 [help_text = "Enable/Disable selection of Data Plane by NSSF", default = True, null = False,
db_index = False, blank = True];
 required int32 uprate = 3 [help_text = "Uprate QoS in Mb/s", default = 5, null = False, db_index = False, blank = False];
 required int32 downrate = 4 [help_text = "Downrate QoS in Mb/s", default = 10, null = False, db_index = False, blank = False];
 optional manytoone vspgwu_vendor->VSPGWUVendor:vendor_tenants = 3 [help_text = "select vendor of choice, leave blank for slice
default", db_index = True, null = True, blank = True];

}

	Abstract .
	1 Introduction
	1.1 Background
	1.2 Research Contribution .
	1.3 Structure of Thesis .

	2. Literature Review .
	2.1 Data Plane Provisioning. .
	2.2 Network Monitoring.

	3. Network Sliced Mobile Network System Description
	3.1 Application Layer. .
	3.2 Management Layer. .
	3.3 Physical Layer .

	4. Automatic Data Plane provisioning in a Sliced Mobile Network .
	4.1 Data Plane Provisioning Module.
	4.2 Network Monitoring Agent. .
	4.3 Network Slice Selection Function.
	4.4 Physical Layer Modifications. .
	4.5 XOS Service Definition for Data Plane Slices.

	5.0 Evaluation and Results
	5.1 Network Contract definition in IBN Tool
	5.2 Mobile Network E2E connection and Network Slice Selection.
	5.3 Automatic Data Plane Provisioning when a Slice is Saturated. .
	5.4 Results in a Non-Sliced scenario and no Automatic Data Plane Provisioning. .
	5.5 Performance Test when the System is Overloaded .

	6.0 Conclusion and Future Work
	6.1 Conclusion .
	6.2 Future Work .

	REFERENCES
	APPENDIX A - TOSCA Definition of Slices .
	APPENDIX B OVS configuration Leaf-Spine
	APPENDIX C xproto Data Model .

<startpage>10
Abstract . 1
1 Introduction 2
 1.1 Background 2
 1.2 Research Contribution . 7
 1.3 Structure of Thesis . 8
2. Literature Review . 10
 2.1 Data Plane Provisioning. . 10
 2.2 Network Monitoring. 12
3. Network Sliced Mobile Network System Description 14
 3.1 Application Layer. . 16
 3.2 Management Layer. . 17
 3.3 Physical Layer . 19
4. Automatic Data Plane provisioning in a Sliced Mobile Network . 20
 4.1 Data Plane Provisioning Module. 20
 4.2 Network Monitoring Agent. . 25
 4.3 Network Slice Selection Function. 35
 4.4 Physical Layer Modifications. . 40
 4.5 XOS Service Definition for Data Plane Slices. 42
5.0 Evaluation and Results 44
 5.1 Network Contract definition in IBN Tool 44
 5.2 Mobile Network E2E connection and Network Slice Selection. 46
 5.3 Automatic Data Plane Provisioning when a Slice is Saturated. . 53
 5.4 Results in a Non-Sliced scenario and no Automatic Data Plane Provisioning. . 57
 5.5 Performance Test when the System is Overloaded . 61
6.0 Conclusion and Future Work 63
 6.1 Conclusion . 63
 6.2 Future Work . 64
REFERENCES 67
APPENDIX A - TOSCA Definition of Slices . 71
APPENDIX B OVS configuration Leaf-Spine 74
APPENDIX C xproto Data Model . 75
</body>

