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Abstract 

 

One of the main concerns that motivate the innovation in the development of new 

technologies for 5G networks is the automation of Network Services catered to the 

Users. The focus on research and manufacture of specialized hardware is shifted to 

the use of virtualization technologies such as Network Function Virtualization (NFV) 

and Software Defined Networking (SDN) which drastically reduces time to market 

deployment. The benefits of these technologies bring more flexibility on how and 

when to deploy network services in order to adapt to the market needs. This 

flexibility allows network operators to increase or decrease network performance on 

the basis of the user's consumption and also provide specific resources that cater to 

the need of a specific Tenant. This thesis proposal centers its idea in the automatic 

provision of Data Plane network functions based on Video Streaming Network Usage. 

It achieves this by adding a Network Monitoring Agent (NMA) in order to collect 

Data Plane related information from the network and use it to extend the multiple 

slice selection functionality provided by a Network Slice Selection Function (NSSF). 

The automatic data plane provisioning is handled from a Top to Bottom approach, by 

taking advantage of a previously developed Intent Based Networking Tool alongside 

the open-source Mobile Central Office Rearchitected as a Data-Center (M-CORD) 

Platform by introducing a Data Plane Provisioning Module (DPPM) that receives the 

monitoring information from the NMA and defines the directives for creation of new 

Data Plane network functions. The results of this proposal aim to achieve a further 

step into network automation by taking advantage of the capabilities of a Network 

Controller and consolidating emerging solutions related to Network Slicing and QoS 

policy definition based on Network Contracts. 
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1 Introduction 

 

1.1 Background 

The evolution of mobile networking has brought with it a shift in the paradigm for 

the use of telecommunication technologies. Starting with the invention of the cellular 

phone and consequently the inception of the 1G Mobile Networks, the focus on the 

technology was to mirror the functionality of land networks i.e The Telephone and 

provide a communication experience that was not tied to the bounds of cables and 

physical location. The 2G brought with it a digitalization of signals, bigger coverage 

and the inclusion of Short Message Service (SMS) which became a disruptive 

technology on its own, this generation of networks took advantage of the shift of 

digital signals to also provide a limited form of internet connection for mobile 

devices. Network data provision was a big catalyst for the move to 3G which gave a 

"broadband" network connection experience to capable devices. It was during this 

generation that more powerful and complex user equipment (UE) know as 

Smartphones came to be. These UE have the capability to provide a wide variety of 

services to the users, which in turn started to use their devices for consuming more 

Data Services instead of Voice Services (Cellular communication). The smartphones 

pushed the evolution of mobile networks to more Data Transfer oriented services, 

which led the 4G networks to focus on the provision of high bandwidth technologies 

that could cater to these services. [1] Nowadays, the mobile user equipment is used 

more for Internet Data consuming services than actual voice calls, which paired with 

the variety of services provided by the smartphones have started to make the 

current mobile infrastructure insufficient. 

5G mobile networks are becoming a reality, this step is a natural evolution to 4G 

that many see as an increase in the Data Network bandwidth, however, the main 

motivation of the Fifth Generations of mobile networks is different. 5G aims to be an 

integrative ecosystem that not only focuses on Smartphones, but encompass and 

support a wide range of applications, namely, IoT (e.g. smart-home, drones, 4th 
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Industrial Revolution, health, IoV) mission-critical applications, 4k-8k Video 

Streaming, Augmented Reality, Virtual Reality, Entertainment, etc. [2] These 

scenarios range from similar to drastically different performance requirements which 

having them under the same umbrella of mobile infrastructure can pose a serious 

challenge if we just consider previous mobile network generation technologies 

approaches.  

Network Slicing is a functionality embedded in 5G mobile networks and it's the 

enabler for achieving the necessary conditions for a plethora of services to optimally 

perform under the same mobile network infrastructure [3] This is done by creating 

multiple isolated virtual network channels that can be configured to satisfy the 

specific needs and performance requirements of multiple services over a single 

physical infrastructure.  

Emerging technologies such as Software Defined Networking (SDN) and Network 

Function Virtualization (NFV) have paved the road for Network Slicing to materialize 

as a viable solution for 5G mobile networks. SDN refers to the separation of the 

Control Plane and the Data Plane of a network. The Control Plane is the part of a 

network that carries signaling traffic and is responsible for routing, on the other 

hand, the Data Plane is the part of the network that carries the data traffic, in other 

words, the physical link of the network. These concepts go hand to hand with the 

Figure 1. Network Slicing in 5G Mobile Networks 
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current generation of Mobile Networks, as with the Advent of 4G LTE, the concept 

of Evolved Packet Core (EPC) and the multiple Network Functions that focus on 

Registration and Control e.g. Mobility Management Entity (MME) and Home 

Subscriber Server (HSS), etc. and user/data Plane focused functions e.g. Packet Data 

Network Gateway (PGW) and Serving Gateway (SGW), etc. [4] accommodate the 

principles of Control/User plane separation of SDN, likewise as 5G is a direct 

evolution of LTE-A, the network functions integrated in the Fifth Generations Mobile 

Network Architecture also approach this Control-User Plane Separation (CUPS). [5] 

NFV is commonly known as the process of decoupling the network functions from 

proprietary hardware equipment in order for them to run in software on commodity 

hardware. It is a concept that can be applied to any kind of network, including mobile 

networks. By virtualizing the network functions, Service Providers and Telco. can 

improve on the Control, Reliability, Scalability and Cost Efficiency of their network 

resources, e.g. (Real-time and dynamic provisioning, Reduction in complexity of 

physical device technology, Acceleration of implementation, Power consumption 

reduction). [6] As mentioned above, one of the key benefits of applying NFV to 

mobile networking is the Scalability of network resources by providing new 

functionality or replicating existing network functions on the fly. This capability, 

coupled with the specific UE requirements for consumption of diverse services on a 

Figure 2. CUPS 5G Network Functions 
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mobile network, is what allows Network Slicing to be implemented in this current 

generation.  

SDN, NFV and the implementation of Network Slicing bring many benefits in the 

fields of mobile networks, but also posed a set of challenges on the management and 

orchestration of the diverse virtual resources. Positioning, Deploying, Proper-

Interconnection, etc. of Virtual Network Functions (VNF) requires a proper entity 

capable of overseeing in a Vertical and Horizontal perspective. [7] Due to this, 

diverse organizations have engaged in the task to define and create a proper 

Framework to guarantee the required orchestration of network functions. A 

prominent head in NFV activities, the European Communication Standards Institute, 

have defined a reference architecture for NFV Management and Orchestration by the 

name of MANO [8]. 

MANO is composed of 3 functional blocks, a Virtual Infrastructure Manager (VIM), 

NFV Orchestrator (NFVO) and a VNF Manager (VNFM). These 3 blocks together aim 

to guarantee the proper operation of a VNF ecosystem. From the lower level, VIM 

manages the physical and virtual resources of VNF instances, The VNFM manages 

and keeps track of the status of each instance and, the NFVO keeps control of the 

relation between VNF with the aim of having end to end services. 

Figure 3. NFV-MANO Architecture 
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MANO framework has become a reference for NFV orchestration. For actual 

implementation and use cases, open-source projects like the Open Network 

Foundation's (ONF) Central Office Re-architected as a Datacenter (CORD) [9] 

follows on the principle of management and orchestration to deploy a network 

environment. CORD proposes its own architecture that differs from MANO in 

implementation but considers the essence of the three main blocks that comprise the 

ETSI proposed Architecture. One advantage of CORD is that it gives a workable 

solution that can be implemented in relative any environment (As long as it meets the 

system requirements) and more importantly it comes with a Mobile Network oriented 

profile by the name of M-CORD that is prepackaged with a Service Orchestrator, a 

Network Controller, and a Cloud Management Platform for deployment of Mobile 

Network Functions. 

The M-CORD Platform provides the right environment for research on network 

function development, interconnection and orchestration, for this reason, the M-

CORD platform has been selected in order to investigate on Network Slicing by 

adding a Network Slice Selection Function (NSSF) [10] to the network functions that 

represent the EPC. Furthermore, with the purpose to automate the procedure of 

creation of policies for the definition of Quality of Service (QoS) for each slice, an 

Intent-Based Networking (IBN) Tool has been added. It serves as an Application 

Layer where a User/Network Operator can define through a GUI a series of QoS 

parameters that are processed into policies and pushed to the physical layer [11]. 

The purpose of this tool, as its name implies, is to simplify the configuration of 

network components by telling the Underlying System what to do, instead of how to 

do it, minimizing greatly the steps of the configuration of a complex network system 

thus giving a degree of automation in the network service configuration. 
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1.2 Research Contribution 

The research of this Thesis focuses on extending the grade of automation that the 

IBN Tool is providing to a Network Platform in order to meet the traffic demands of 

different user equipment that are assigned to specific network slices, specifically for 

the consumption of Video Services. Video streaming is a very popular service and 

one that can quickly fill the network traffic of any infrastructure. According to [12], 

Video streaming accounted for 60% of the total network data traffic in 2016. 5G 

faces bigger challenges related to high bandwidth data streaming, and even though 

Network Slicing can solve part of this issue, there is still room for improvement. 

The objective of this investigation is to provide automatic Data Plane (SPGW-U) 

deployment on the basis of network traffic that is flowing on assigned network 

slices, e.g. video streaming that has already taken the full bandwidth of a designated 

Figure 4. Virtual Mobile Network System of Network Convergence 
Laboratory 
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slice thus triggering the additional provision of network slices without manual input. 

To achieve this, enhancements to both the IBN Application and the M-CORD 

platform are proposed and developed for the testbed and showcase of results. 

Taking into consideration the overall picture of the IBN Tool, a Data Plane 

Provisioning Module is added into the Application Layer, as well as a Network 

Monitoring Agent is built as part of the Physical Layer. Furthermore, enhancements 

are done to the Physical Layer by modifying the functionality of the NSSF to 

accommodate this new automatic Data Plane Slices. The proposed system can be 

overviewed in Figure 5 

 

1.3 Structure of the Thesis 

This document is organized as follows. Chapter 2 contains the relevant Literature 

Review details, chapter 3 focuses on the Network Sliced Mobile Network System 

Description, chapter 4 presents the Data Plane Provisioning Module and Network 

Monitoring Agent logic and implementation, chapter 5 showcases the evaluation and 

results, and finally, chapter 6 concludes the thesis. 
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Figure 5. Thesis proposed system 
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2. Literature Review 

2.1 Data Plane Provisioning. 

Various techniques, architectures, and proposals related to Data Plane 

Provisioning in Network Slicing by using SDN and NFV concepts have been 

presented in literature over the last years. In [13], Vinod Kumar Choyi et al. have 

defined various QoS requirements for the creation of network slices. On the basis of 

SDN and NFV solutions, they also proposed a framework and mechanism for defining 

high-level policies that will translate into the underlying system. To elaborate, 

application-specific slice selection and User Equipment association is well described 

in the literature. Definition of VNF and connection between them using Service 

Function Chaining (SFC) is also presented in this research, as well as routing in what 

is called a Software Function Path (SFP) selection that refers to the multiple 

deployments of slices that represent the User/Data Plane within a 5G network. Still, 

there is no system implementation and evaluation results provided in this paper. 

In [14], Jose Ordonez-Lucena et al. presented relevant concepts pertaining to 

virtualization, orchestration, and isolation for designing network slices in the 

forwarding plane (Data Plane). By using the Open Networking Foundation (ONF) SDN 

based architectures alongside NFV design references, they managed to present a 

complete solution that spans across different layers. Scaling of resources of the 

forwarding plane (Data Plane) is done with the objective of delivering tailored 

services to users located in the Application Layer. Although the solution and 

proposal of this research paper are attractive, it relies on a complex architecture 

that poses difficulties on the actual implementation, thus it remains as purely 

conceptual design. 

In [15], Peter Roost et al. presented various architectural principles for achieving 

Network slicing in the Core Network part of a mobile network. In this research, the 

authors propose the existence of a Software Defined Mobile Network Controller 

(SDM-C) which can oversee the management of different slices. In line with NFV 

orchestration, they also introduce a coordinator (SDM-X) that is in charge of 
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managing and controlling the process of sharing Network Functions (NFs) and 

resources between different network slices, It also ensures maintaining high 

resource efficiency while guaranteeing individual Service Level Agreements (SLAs) 

set by the service provider. In other words, this entity is in charge of modifying the 

QoS of the Data Plane according to the needs of the User Equipment. This work 

mainly describes a conceptual design for Network Slice and Data Plane Provisioning 

and Orchestration of VNF in 5G networks, but the actual implementation is left for 

further work. 

In [16], the authors present a testbed with results of an SDN and NFV based LTE 

EPC implementation. Conclusions of their research have conveyed that an SDN-

Based LTE EPC is ideal for managing big amount of data traffic, as forwarding 

packets are managed from a centralized SDN controller compared to an NFV-Based 

EPC where forwarding decisions are made in the Data Plane. Implementation details 

and results are showcased in this literature, also, available open-source 

development is presented for the EPC components of the mobile network. 

In [17], the authors propose a Bit-rate Aware Autoscaling (BAAS) mechanism for 

autoscaling the Data Plane of a Mobile Network. They used the NFV-Based LTE 

EPC development from [16] to perform actual experiments. The authors mention the 

use of a tool for timely monitoring the throughput of a Data Plane and reporting the 

status to the MME which in turn has the logic of the BAAS that auto-scales the bit 

rate of the Data Plane when necessary. Another objective of the BAAS is to minimize 

resource utilization of network slices without affecting the throughput that is served 

to the UE, thus it can scale down the DP as needed. Although the solution presented 

in this paper goes in hand with the benefits of Network Slicing in 5G, the system 

proposal and testbed is just centered in the physical layer of the network, without 

considering a Service Orchestrator, Application Layer and Automatic management of 

policies. There is also no mention of a Network Slice Selection Function to handle a 

selection of slices because all the slice selection logic is put in the MME, thus the 

proof of concept only refers to this particular NFV-Based scenario. 
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2.2 Network Monitoring. 

Network Monitoring is an essential mechanism to achieve self-management and 

self-optimization of network resources. There are multiple solutions and tools that 

range from commercial grade to open source. In this sense, OpenNetMon [18] is a 

solution that continuously monitors all flows between predefined link and destination 

pairs on throughput, packet loss, and packet delay that is developed as a module for 

the OpenFlow controller POX. In order to determine throughput, OpenNetMon 

regularly queries switches about the number of bytes that are sent, for it to retrieve 

Flow Statistics and the duration of each flow. Equally, OpenNetMon uses these flow 

statistics to compute the packet loss by measuring the packet counters from the first 

and the last switch of each path between the link and destination. Although it is a 

powerful tool for network monitoring, it is a specific development for the POX 

controller which is python based and not compatible with the Open Network 

Foundation ONOS Network Controller that is used in the NCL research. 

Another monitoring solution, PayLess [19] was proposed as a low-cost active 

monitoring framework based on the active monitoring approach. PayLess is built on 

top of an OpenFlow controller thru communication via a flexible RESTful API 

interface and is capable of monitoring information from switches in the data plane. It 

also provides statistics collection that delivers highly accurate information in real-

time without incurring significant network overhead. Although theoretically, it could 

be compatible with the ONOS controller by using REST APIs, test and development 

were focused on the RYU controller.  

Finally, in [20] the authors propose a flow monitoring approach for traffic 

engineering by using sFlow metrics. sFlow enabled switches to exist in the Data 

Plane and provide periodical samples of flows that pass between devices. These 

samples are collected in traffic analysis tools, e.g. sFlow-RT, that sits on the control 

plane of the network which in turn provides real-time flow summary statistics to 

control application or network controllers through northbound REST APIs. sFlow is 

now considered an industry standard, and diverse switch manufactures include this 
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metric as part of the protocol stack inside of the switches. For the case of virtual 

environments, OpenvSwitch has also included sFlow traffic monitoring which enables 

extended visibility into virtual servers.  
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3. Network Sliced Mobile Network System Description 

The Automatic Provision of Data Planes requires a working mobile network 

system for its operation, due to this, the solution is integrated inside a three-layered 

architecture as shown in Figure 6 that aims to integrate a complete network sliced 

virtual mobile network system. The main objective of this proposal is to provide a 

Figure 6. Mobile Network System with Data Plane Provisioning Module. 
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high grade of automation for the deployment of multiple data planes in order to 

guarantee an optimal flow of traffic for mobile network services. For achieving this, 

specific functionality is provided on each level of the proposed architecture which 

provides complete integration between Business and Operation rules definition, 

Implementation of Policies, Service Orchestration, Virtual Network Function 

instantiation, and operation. The high-level description of the operation is as follows: 

The user defines a set of QoS policies from the Application Layer which are 

translated into TOSCA definitions that are pushed into the Management Layer. These 

QoS policies represent the multiple network slices that are going to be created 

depending on the services that the user is consuming in the mobile network. The 

Management Layer takes this policies and proceeds to generate the VNFs that are 

part of each network slice and uses the configuration of the QoS that was set up on 

the Application Layer to differentiate the transmission rate of each Data Plane. Inside 

of the Physical Layer, a Network Slice Selection Function gets the complete 

information from the Management Layer of all the network slices that were created 

and when mobile network operation starts redirects the requests from the UE to an 

appropriate network slice depending on the requirements of the network service. 

During this operation, a Network Monitoring Agent collects data from the OVS that 

are part of the network fabric, as can be seen in Figure 6 this is achieved through a 

sFlow Agent statistics that are periodically sent to a sFlow-RT collector that focuses 

on network traffic information. Whenever traffic does not meet the QoS created in 

the Application Layer, the Network Monitoring Agent notifies a Data Plane 

Provisioning Module that resides on the top Layer of the architecture, this module 

automatically defines new rules that create a new Data Plane Slice for the service 

that is being consumed e.g. Continuous video streaming. Following this, new Data 

Plane rules are fed into the Management Layer which proceeds to create the new 

VNFs for the new Data Plane Network Slice. Once the VNFs are provisioned in the 

Physical Layer, the old Data Plane operation shifts to the newly created Data Plane 

Slice. In order to provide more details for each step of the operation, the following 
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sections describe the functionality of each of the levels of the three-layered 

Architecture. 

 

3.1 Application Layer. 

The upper layer main functionality is to provide an ease of configuration for the 

creation of network slices and definition of QoS for each of the slices that are 

created. This is achieved by applying the concept of Intent-Based Networking (IBN) 

which focuses on defining “what to do” without specifying “how to. This concept has 

as its priority, to deliver the business goals in the most abstracted form as possible 

independently of the complexity of the network system that sits in the bottom layer. 

The IBN Tool is composed of a User Interface (GUI), Architecture Catalog, Resource 

Manager, Policy Configurator and a Data Plane Provisioning Module. 

The GUI provides a clean interface where a user can define network slices as 

“Contracts”. Each contract has an associated slice with specific QoS that are defined 

based on the type of service that the user is consuming from the mobile network. 

The contracts also have information about the type of architecture for what the 

slices are going to be defined, this information exists on a database called 

Architecture Catalog, which includes specific deployment information of VNF, e.g. 

LTE-A has slice QoS definitions for SPGWU and 5G may have definitions specific to 

a UPF (User Plane Function). This information is an important part of the contract as 

it lets the Policy Configurator know how to properly translate the contract policies 

into TOSCA configuration files which may differ from one network architecture to 

another. These TOSCA files have the information of which data plane slices are 

going to be instantiated as VNF with a proper definition of QoS. Before passing the 

TOSCA configuration to the Management Layer, the Resource Manager has the task 

of verifying that appropriate RAM and CPU resources exist on the Physical Layer for 

the instantiation of the VNFs. Finally, the Data Plane Provisioning Module only acts 

after the physical layer Data Plane Slices are operational, its functionality relies on 

direct communication with the Network Monitoring Agent that exists in the Physical 
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Layer which will feed the current state of each Data Plane in terms of link utilization, 

the Data Plane Provisioning Module triggers a redeployment of new Data Plane 

Network Slices only if the link utilization of current Data Planes do not meet the 

requirements of the QoS that were previously configured. The Data Plane 

Provisioning Module design and implementation details are presented in chapter 4. 

3.2 Management Layer. 

This layer takes the TOSCA configuration files defined by the Application Layer 

and uses it to configure each VNF that is defined as a Data Plane Network Slice by 

the contracts. The heart of this layer is the M-CORD Platform which contains an 

extensible service control plane known as XOS that serves as the orchestrator, a 

network controller (ONOS) and a cloud manager (OpenStack).  

Without the management layer, the instantiation and configuration of multiple 

VNFs in the Physical Layer is no trivial task, due to this, the orchestrator is an 

essential component of the M-CORD platform. It coordinates the creation of VNF by 

managing the Networks, Ports, Image and Resource allocation in coordination with 

OpenStack and ONOS. To guarantee the operation of the Physical Layer, XOS uses 

Figure 7. Relevant Information for definition of Contracts 
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an abstracted representation of the VNF in the form of a Service. Each service 

defines the data model properties of underlying VNF but does not contain any logic 

of its functionality, its main purpose is to ease the management and configuration of 

the instantiation of network functions. The relationship between a service and its 

VNF is one-to-many, i.e. for each service, there could be many instances sharing 

the same properties through the data model. To differentiate each instance from one 

another, the concept of tenancy is used, and each tenant can have specific properties 

that will affect the operation of the VNF.  Also, the services are essential for 

defining the relations between VNF, as a bidirectional mapping of services creates 

what is known as a Service Graph which will be used in back-end process to define 

the required Service Function Chaining (SFC) between VNF, minimizing the 

complexity of managing the connections between multiple instances of network 

functions.[21]  

The XOS services also include a component that monitors the operation of the VNFs. 

The synchronizer’s role is to keep the management layer up to date with the status 

Figure 8. Service Graph and corresponding Service Chain for a Sliced Scenario (Black) and 
regular E2E mobile scenario (Gray) 
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of the physical layer. Each service has a synchronizer that monitors basic VNF 

status e.g. Number of instances, deployment errors, network interface, and IP-

Address assignment, etc. It also can be configured in such a way that one service 

can collect the status of all the VNFs that are managed by other services. Through 

the synchronizer, the Management Layer can get bidirectional communication with all 

the running VNF and keep up to date with the operation of the underlying system. 

 

3.3 Physical Layer 

The multiple VNFs that represent a mobile network sits on this layer. For the 

purpose of the research presented in this Thesis, LTE-A based open source 

components from Open Air Interface were used for both the EPC and the eNodeB 

Emulation. [22] The configuration of the mobile network is done by the Management 

Layer for each VNF, it will automatically provision proper IP-Addresses, ports, 

network configuration (Dependent on the relationship defined in the Service Graph) 

and virtual machine image allocation. This is achieved by feeding proper TOSCA 

configuration files that include the Service Graph definitions, network, and service 

instance creation. As the aim of the research is to provide multiple data plane 

network slices to this layer, this implementation includes a Network Slice Selection 

Function which sole functionality is to select the slice that will serve a UE on the 

basis of the service that is been consumed. The physical layer is in constant change 

due to the policies that are pushed from the upper layer and the NSSF will always 

contain the up-to-date status of the system, thanks to the synchronizer that is 

running on the management layer. 

The networking fabric of switches in the physical layer is organized on a leaf-

spine fashion. sFlow statistics are collected from the Leaf switch that serves as the 

ToR (Top of the Rack) switch for the compute node that houses the Data Plane 

VNFs. This information is collected through a sFlow-RT collector, as part of the 

Network Monitoring Agent that will calculate the link utilization of each data plane 

and forward it to the Data Plane Provisioning Module in the Application Layer.  



 20 

4. Automatic Data Plane provisioning in a Sliced Mobile Network 

 

The implementation details for the main idea of this thesis are presented in this 

chapter. As previously mentioned, to achieve the automatic deployment of data plane 

network slices, inter-operation within a virtual mobile network system is essential. 

Inside this system, there are three actors that play a key role to achieve the 

objectives of this research, namely, the Data Plane Provisioning Module, the 

Network Monitoring Agent and the Network Slice Selection Function plus minor 

modifications inside the physical layer VNFs required for the handover of Data 

Planes. 

 

4.1 Data Plane Provisioning Module. 

Situated inside the Application Layer, the module is in charge of high-level 

decision making for creating and configuring the data planes. It receives the Link 

Utilization (Lu) data alongside the Data Plane Id (SPGWU Ip-Address) of all the Data 

Planes that are currently active and operational i.e. A UE has established PDU 

session into the mobile network. The logic of the module can be seen in Figure 9.  

The Lu arrives flagged by the Network Monitoring Agent, the flag has three possible 

values, Unused, Normal and Saturated. If the Lu comes flagged as Saturated, it 

means that Data Plane link utilization is not optimal and the QoS that was configured 

for that specific Data Plane Network Slice are not being successfully met. In the case 

that the Lu arrives flagged as Unused, the information will be saved inside an 

“unused data plane repository” (UDPR) for later processing, in case the of a Normal 

flag the Data Plane Information will be used to update the UDPR by removing active 

entries. A Lu flagged as Saturated triggers the Data Plane Provisioning procedure 

which requires firstly to remove the Data Plane entry inside the UDPR (If it exists), 

after this, interaction with the Resource Manager is required in order to calculate the 

current physical resources available before deploying the new VNFs. 

The Resource Manager calculates the available resources for the compute node 
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that houses the Data Plane VNFs. It follows a standard formula that calculates the 

available number of instances (VIn) by considering the available CPU and RAM of the 

compute node, VIn=(OR*CPU)/VCPU or VIn=(OR*RAM)/VRAM. 

 

VIn is the maximum number of instances that can be allocated to a compute node, 

CPU is the number of physical cores, VCPU is the number of virtual cores required 

per instance, RAM is the total physical RAM of the compute node and VRAM is the 

Virtual RAM required per instance. OR is the overcommit ratio which is different 

between RAM and CPU. For CPU the OR=16 and for RAM OR=1.5 (OpenStack 

Figure 9. Data Plane Provisioning Module Flow Chart 
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Standard [36]), due to this, in a typical scenario, a compute node capability for 

Virtual Instantiation is constrained by the total RAM. Figure 10 shows the VNF 

Instance allocation for a compute node with 8 cores for CPU and 16 gigabytes of 

RAM while using a customized deployment flavor for the VNF that allocates 2 virtual 

cores and 2 gigabytes of RAM per instance. 
 

The Data Plane Provisioning Module will take the VIn and subtracts the amount of 

Data Plane Slices that are currently instantiated on the compute node, AIn=VIn-DPIn, 

where AIn refers to the Available space for Instances in the current compute node 

and DPIn to the number of Data Plane Slices that are currently instantiated, this 

value can be obtained from the Application Layer itself, as active contracts are 

mapped to Data Plane Slices and this record exists inside the Contracts Table. The 

value of AIn is pivotal for continuing with the rest of the process, by default it needs 

to be AIn>1 as we need to leave the room of operation for the compute node to avoid 

overloading of resources. In case the value of AIn is greater than 1 the Data Plane 

Figure 10. Possible Virtual Instances based on lesser value of RAM and CPU 
calculations 
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Provisioning Module generates TOSCA configuration for a new Data Plane Slice 

Instance by taking the Data Plane Id that corresponds to the flagged Lu and copying 

its QoS policies, effectively creating a new Data Plane Slice for an already defined 

contract. The TOSCA configuration is pushed to the management layer by means of 

REST communication. 

Algorithm 1. Find a proper Data Plane from an Unused Data Plane repository 
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On the other hand, if the value of AIn is lesser or equals to 1 the Data Plane 

Provisioning Module will carry on with the procedure illustrated on Algorithm 1. The 

UDPR contains all the Data Plane Slices that have been instantiated but are never 

used. This information is taken as the basis for the three procedures that are 

presented in the Algorithm. The DPPM has the capability of selecting a slice from 

this repository by triggering the findUPD (Find Unused Data Plane) function which 

receives the saturated Data Plane Slice (sDP) Information as its argument. The 

function iterates the records of the UDPR and finds the contract information of the 

oldest (being stored for more than 60s) unused data plane slice by calling the 

findContract() function, Before re-deploying a Data Plane Slice, the contract 

information is used to verify if more than 1 Data Plane Slice is assigned. This 

constraint exists due to the nature of the contracts defined by the Application Layer, 

which mandates that a contract defined for a specific service must have at least one 

data plane. In other words, even if there are available unused Data Plane Slices 

inside the UDPR, they cannot be used for re-deploying when they are the only Data 

Plane Slice assigned to a contract. Finally, the re-deployment of slices is realized by 

the deployDP() which uses the saturated Data Plane service name (Which is 

associated with a contract) and assigns it to the unused Data Plane Slice. Once the 

procedure finishes, a new TOSCA file with this configuration is generated and 

pushed into the Management Layer. By following the logic of the Algorithm, it is 

evident that, if the data contained inside the UDPR does not meet this requirement, 

re-deployment cannot be achieved. 

To elaborate more on the findContract() functionality, it fetches from the 

Management Layer the total information of Data Planes as a jSONArray. This array is 

iterated according to a spgwuId (Data Plane Id) that was received as a parameter for 

this function when a proper record of a Data Plane is found inside the JSONArray the 

service name attribute is extracted and used for finding the whole contract 

information directly from the contracts repository inside the Application Layer. The 

function returns this contract to the findUPD() function for constraint verification. 
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The value of the flags plays an important role in the selection of Data Plane Slices 

that the NSSF will perform in the Physical Layer. The DPPM is able to change the 

selection status of configured Data Plane Slices according to the type of flag that the 

module receives. When a Data Plane arrives flagged as saturated, the DPPM changes 

the selectable property of the slice as disabled, on the other hand, when the data 

planes arrive with any other type of flag e.g. (normal, unused) the DPPM enables the 

selectable property of the data plane. This is reflected in the TOSCA configuration 

file that is sent to the management layer. A reference file can be seen in APPENDIX 

A. Further details of how this selectable property affects the NSSF operation is 

detailed in section 4.3. 

Lastly, the DPPM takes into consideration the event when no available physical 

resources exist for creating new data plane slices, e.g. (AIn is lesser or equals to 1 

and the UDPR does not contain any candidate for re-deployment). Due to this, DDPM 

operation cannot supply new data plane slices which means that the maximum mobile 

network slice capability has been reached. This limitation is only evident in the 

implementation done in this research as the physical resources available in the 

laboratory are constrained. 

 

4.2 Network Monitoring Agent. 

The NMA spans across three components that work together for monitoring the 

status of the Data Plane Slices, namely, sFlow Agent, sFlow-RT, and an API module 

for Link Utilization Calculation. 

4.2.1 sFlow Agent 

sFlow is a standard sampling technology for a network traffic monitoring solution. 

sFlow stats are measured on the switch level of a network infrastructure. It applies a 

scalable (allows a virtually infinite number of interfaces to be monitored from a 

single location) technique for measuring network traffic, collecting, storing, and 

analyzing traffic data. sFlow has minimal impact on the performance of core network 

devices, without adding significant network load [23]. 
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The sFlow Agent runs as a process inside the management software of a switch 

as seen in Figure 11. Its main purpose is to create sFlow datagrams, which are a 

combination of interface counters and flow samples, these datagrams are sent to a 

sFLow Collector (Which does the monitoring and representation of flows) that exists 

as another entity inside the network. Due to this, the sFlow Agent does very little 

processing. It only packages data into sFlow Datagrams that are immediately sent to 

the collector. This Immediate forwarding of data minimizes memory and CPU 

requirements associated with the sFlow Agent. 

sFlow is available for a wide variety of devices, most importantly for this 

research, it is also available in the software implementation of OpenFlow switch 

known as OpenvSwitch (OVS), which is an opensource implementation of a virtual 

switch. OVS is a standard for virtual network implementation and supports multiple 

protocols used in computer networks. 

Our research implementation uses four OVS deployed in a Leaf-Spine Fabric, our 

Leaf2 connects two compute nodes that contain the Data Plane Slices and a sFLow 

Collector (sFlow-RT) respectively. 

 

Figure 11. sFlow Agent inside a Switch/Router 
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For sFlow to operate, identification of the interfaces that connect the Host 

machine that contains the VNFs to be monitored and the Host that contain the sFlow 

Collector is necessary. Figure 12 shows the OVS configuration that is set up in the 

physical server. As part of the M-CORD deployment, multiple virtual interfaces are 

created (from vnet1 to vnet11) these are reserved for interconnecting compute 

nodes and switches. As this thesis implementation includes three compute nodes, 

Leaf1 has been assigned a vnet11 interface between the switch and node1. Leaf 2 

has two interfaces, vnet8 for node2 and vnet3 for node3 (interface assignment to 

switches is a random process of the M-CORD deployment). For this scenario, node2 

contains the Data Plane Slices that are going to be monitored and node3 houses the 

sFlow Collector for sFLow datagram analysis. It is important to take notice that this 

Spine-Leaf Fabric is not enabled by default during the M-CORD deployment, specific 

configuration must be modified in order to created four switches and properly set up 

the connection to the ONOS controller, see APPENDIX B. Also, each compute node 

has an OVS called br-int that is also managed by ONOS, which the main purpose is to 

provide interconnection to the underlying VNF.   

 

Figure 12. LEAF-SPINE with interfaces and SFLOW 
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The configuration required for enabling sFlow statistics is configured in the 

compute node where the OVS configuration for the VNF resides. It follows some 

definitions of Environmental Variables that assign the values for COLLECTOR_IP, 

COLLECTOR_PORT, AGENT_IP, HEADER_BYTES, SAMPLING_N, POLLING_SECS. 

The COLLECTOR_IP address refers to the management IP that is assigned to the 

compute node where the sFlow Collector resides, the COLLECTOR_PORT is 

standard and uses the value 6343, the AGENT_IP refers to the name of the interface 

that connects the OVS and the compute node that has the Data Plane Slices that are 

going to be monitored. The rest of the variables use a default value that is enough 

for monitoring all the flows that an OVS can handle. Figure 13 has the values used 

for this scenario. 

 

COLLECTOR_IP=10.0.10.16 

COLLECTOR_PORT=6343 

AGENT_IP=fabric 

HEADER_BYTES=128 

SAMPLING_N=64 

POLLING_SECS=10 

 

Figure 13. sFLOW Environmental Variables configuration example 

For activating the sFlow agent the following command is issued in the Compute 

Node that needs to be monitred.  

$ ovs-vsctl -- --id=@sflow create sflow agent=${AGENT_IP} 

target="${COLLECTOR_IP}\:${COLLECTOR_PORT}" header=${HEADER_BYTES} sampling=${SAMPLING_N} 

polling=${POLLING_SECS} -- set bridge br-int sflow=@sflow 

 

Which takes the values that were set as Environmental Variables and applies them 

to bridge br-int. A bridge is the actual representation of an OVS. For this 

deployment, seven bridges exist, spine1, spine2, leaf1, leaf2, and three br-int for the 
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compute nodes. We only required sFLow statistics on the compute node that houses 

the Data Plane Slices. By setting up the sFlow Agent inside br-int it will periodically 

send the data to the sFlow Collector.  

 

4.2.2 sFlow-RT 

 

The sFlow Collector chosen for this scenario is sFlow-RT. There exist multiple 

opensource sFlow Collector available with different capabilities. The main reasoning 

for using sFlow-RT is the strong collection of REST API that comes packed with the 

solution, which is essential for feeding the monitoring data to the rest of the Mobile 

Network System. The multiple benefits of sFlow-RT can be seen in Figure 14[24] 

As evident from the above picture, besides the native benefits of sFlow (Real-

Time and scalability), sFlow-RT also include a level of programmability for 

definitions of how the sFlow datagrams are going to be represented and organized.  

With this, it is possible to define flows that match packets or transactions that share 

common attributes and do real-time computation. For this scenario, we require the 

definition of a flow that captures the source and destination IP addresses of requests 

done to the Data Plane Slices connected to br-int inside the Compute Node 2 and 

then calculate bytes per second for each flow. This can be achieved with the 

following instruction. 

Figure 14. sFlow-RT Integration inside a Network 
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setFlow('Bps', 

 { keys:'ipsource,ipdestination,tcpsourceport,tcpdestinationport', 

  value:'bytes', log:true }  

); 

The above statement creates a Flow definition name Bps (Bytes per second) 

which include the following Flow Keys: ipsource that refers to the IP-address of the 

host that initiates the flow, ipdestination refers to the IP-address of the destination 

host, tcpsourceport refers to port that is going to be used for accepting the reply of 

the request that is being made by the host, and the tcpdestinationport refers to the 

type of request that is being generated e.g. an HTTP request will have 

tcpdestinationport as 80. It is important to notice that this information already exists 

in the sFlow datagram that is being sent regularly to the sFlow-RT collector by the 

sFlow Agent inside the OVS, but it is necessary to give the proper representation for 

further calculations. The statement will return all the flows of the Data Plane Slices, 

formatted according to the Flow Keys that were used and also the Transfer Rate 

associated with each flow. 
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4.2.3 API module for Link Utilization Calculation 

Figure 15. CiaB deployment figure 

The module for Link Utilization Calculation resides as a standalone process 

running on the Head Node of the M-CORD deployment. Figure 15 shows the block 

diagram of a deployment of M-CORD 4.1 in a single physical server also known as 

Cord in a Box (CiaB). In this representation, the Head Node is the embodiment of the 

Management Layer that houses XOS, OpenStack and ONOS controller. For this 

research, the Link Utilization Module is implemented as a process that constantly 

proves the sFlow-RT collector for getting the current Transfer Rate of flows that 

exist in the Data Plane Slices. 
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The logic of this module is as follows. Firstly, the module will send a REST-API 

request to the sFlow-RT collector to get the current flows and transfer rates (rq1), 

then a pause occurs for 10 seconds (t=10s), after this a second request for transfer 

rates is done (rq2). The module will then calculate the transfer rate average for 

flows that have the same Flow Key values ipsource, ipdestination, tcpsourceport, 

tcpdestinationport between rq1 and rq2 (arqn= (rq2n + rq1n)/2). As the average 

Algorithm 2. API Link Utilization 
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transfer rate(arqn) for each flow is expressed in Bytes/sec it needs to be converted 

to bits/sec multiplying it by 8 and then divided by the LinkRate in bits/sec of the Data 

Plane Slice that generates the flow (FLun= (arqn * 8)/LinkRate). The Flow Link 

Utilization FLu is a decimal number from 0 to 1. As many Flows can occur for the 

same Data Plane Slice, the FLu for flows with the same ipsource are summed up to 

get the Data Plane Link Utilization (Lu). If the Lu is equals or greater than 0.8 the 

module will flag the Data Plane as saturated else, it flags the Data Plane as normal. 

This value is heuristically applied by taking into consideration the “Best Practices in 

Core Network Capacity Planning” from CISCO which states that average link 

utilization should not be higher than approximately 70 percent [37]. The whole 

process repeats every 10 seconds 

A parallel process is done for detecting unused data plane slices. The module 

sends a REST-API request to the sFlow-RT collector to get the current flows and 

transfer rates (rq1), then a pause occurs for 60 seconds (t=60s), after this a second 

request for transfer rates is done (rq2). The module will request the List of Data 

Plane Slices to XOS by means of REST-API and compare the Flow Key ipsource of 

the rq1 and rq2 with the IP-Addresses of the Data Plane Slices requested to XOS. If 

a Data Plane IP-Address does not exist in both the rq1 and rq2 flow information, it is 

flagged as unused. The process repeats every 60 seconds. 

The flagged Lu data is sent to the Data Plane Provisioning Module for processing 

and deployment of new Data Plane Slices (If required). The data is sent in a JSON 

Format that includes the Lu, the Data Plane Id (SPGWU Ip-Address) and the Flag as 

seen below. 

 

Figure 16. JSON Link utilization example. 
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An important value that is highly dependent on the QoS policies for the Data Plane 

Slices is the LinkRate. This is obtained by fetching the QoS properties of the slice 

where the current calculation of the Lu is taking place. For example, if calculation for 

Lu with an ipsource of 10.0.9.3 corresponds to a Data Plane Slice with QoS set for a 

3Mbps of down-rate, then, the LinkRate is 2 (Multiplier) times the specified QoS, in 

this case, 6Mbps. This specification for the LinkRate is particular for the experiments 

done on this research and does not follow any industry standard. The reasoning 

behind it depends on the limitations of the physical resources for the testbed. As the 

operation of the network only allows a maximum of three UE to connect 

simultaneously, their number represents the highest throughput that can be achieved 

for being able to saturate a Data Plane Slice. In the case that more UE could be 

supported, the Multiplier for the LinkRate will change accordingly. 
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4.3 Network Slice Selection Function. 

 

Figure 17. NSSF XOS Service 

The NSSF is based on 3GPP implementation for the 5G Mobile Network 

Architecture [5]. Due to the complexity and unavailability of open source 5G 

components, the research of this thesis use LTE-A network functions for creating 

the Mobile Network inside the physical layer, for this, the absence of an AMF 

prompted the selection of network slices to be exclusively on the NSSF which 

requires to keep the current status of the VNF that represent the Data Plane 

Network Slices, namely, SPGW-C and SPGW-U. Figure 17 Shows how the XOS 

Service for the Network Slice Selection Function plays a key role in collecting the 

information of current deployed VNFs and keeps it on record in a Data Base that the 

NSSF VNF will access for selecting slices.  

4.3.1 Network Slice Selection Function synchronizer 

The synchronizer running inside the XOS service for the NSSF has the following 

functionality. Algorithm 3 shows the logic behind the synchronizer. Firstly, it 
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watches over the status of the mobile network by monitoring all available SPGW-C 

and SPGW-U VNFs that gets instantiated. For both cases, it will get a list of Tenants 

that are successfully provisioned. These tenants are represented as objects with 

specific attributes that were defined in the data model of their respective XOS 

service.  Secondly, The NSSF synchronizer will verify for each SPGW-U tenant the 

value of the selectable property that was set by the DPPM according to the status of 

the Data Plane (Saturated, Normal, Unused). Thirdly, the NSSF extracts two 

attributes from both SPGW-C and SPGW-U tenant lists, the first attribute is the 

network.port and the second attribute is the network service. It will ignore any 

SPGW-U tenant that has a selectable property as disabled. As the synchronizer 

works on the Management Layer it can obtain all the tenant information directly from 

XOS, because all the Data Model definitions for the Services are kept in a database 

inside the Orchestrator. The network.port is represented by the IP-Address of the 

tenants, and the service is defined by the type of contract that was created in the 

Application Layer e.g. HD-Video, WEB, IoT. This attribute is the most important for 

association of network slices, as the SPGW-C and SPGW-U will be linked together 

based on the service that was assigned to them when the contracts were defined. 

The information pertaining to the total SPGW-C and SPGW-U tenants that currently 

exist in the network is inserted in a Slice-Table which is located inside the HSS 

database by the means of an Ansible Automation Playbook. This process executes 

whenever there is a change in the VNFs that the synchronizer monitors. The 

contents of the Slice-Table are indirectly affected by the DPPM, due to Provision of 

new Data Planes or Re-assignment of unused Data Planes to different network 

services. Also, when the DPPM sets the value of the selectable property of each 

Data Plane, it affects the NSSF synchronizer decision of which SPGW-U to include in 

the Slice-Table. This effectively prevents UE allocation to saturated Data Plane 

Slices, minimizing further network performance impact. 
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There is only one SPGW-C per service_name and multiple SPGW-U that can be 

linked to it. The reasoning behind this is to easily differentiate the multiple Data 

Plane Network Slices that are created in the Physical Layer, as the SPGW-C 

represents a stitching point for the SPGW-U. The SPGW-C role is to handle session 

establishment and SPGW-U association to the UE, due to this, network throughput is 

not considerably affected as only control messages are exchanged during its 

operation. On the other hand, the SPGW-U Tenants get the QoS configuration from 

the contracts and directly affect PDU session and further differentiate the Data Plane 

Network Slices.  

4.3.2 Network Slice Selection Function VNF 

Beside the synchronizer that runs on the Management Layer, the NSSF also has 

logic that runs on the Physical Layer as a VNF. It follows the UE Network 

Registration procedure and Session Establishment and interacts directly with the 

Mobility Management Entity (MME) for Data Plane Network Slice Selection and 

indirectly with the Home Subscriber Server (HSS) for accessing the information of 

available slices from the database that is housed inside this VNF. The procedure for 

slice selection can be appreciated in the sequence diagram presented in Figure 18.  

Algorithm 3. NSSF Synchronizer Algorithm. 
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Firstly, the UE initiates network registration by sending the connection message 

from the eNodeB to the MME. The message includes the International Mobile 

Subscriber Identity (IMSI) which is a fifteen-digit combination that contains the 

Public Land Mobile Network (PLMN) for the first five digits and Mobile Subscription 

Identification Number (MSIN) for the rest of the enumeration. These numbers are 

used for both, UE identification and Data Plane Network Slice allocation. Secondly, 

once the MME finish the registration of the UE into the network, it forwards the IMSI 

to the NSSF which in turn connects to the database inside the HSS and queries the 

Slice-Table to get the current SPGW-C IP-Address that is enabled as a stitch point 

for the Data Plane Slices and also the SPGW-U IP-Address that is related to the 

network service requested by the UE, the NSSF keeps the record of each UE 

assigned to a Data Plane Slice. Thirdly, the IP-Addresses are forwarded to the MME 

which will proceed with the session establishment for the UE using the IP 

information for connecting with the SPGW-C and storing the SPGW-U IP-Address in 

the bearer-context message that is sent to the SPGW-C with session information. 

Finally, the SPGW-C uses the bearer-context information to select an SPGW-U 

Figure 18. NSSF VNF operation. 
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(From a list of registered Data Planes) using the IP-Address of the Data Plane Slice 

that was received from the MME and proceeds to create a PDU Session by enabling 

a GTP-Tunnel between the UE and the selected SPGW-U. 

The IMSI plays a crucial part in the selection of a slice by the NSSF. This 

research has labeled the last two digits of the IMSI as Slice Differentiators (SD) by 

allocating the second last digit to identify the stitch point of a Data Plane Slice i.e. 

SPGW-C and the last digit to identify the SPGW-U that is going to serve the 

connection of the UE. Figure 19 shows the case when two UE with specified IMSI try 

to access the network and are directed to their correspondent Data Plane Network 

Slices. 

Figure 19. IMSI based slice selection. 

By basing our research in the 5G Architecture from 3GPP the decision of adding 

the Slice-Table inside the HSS emulates the concept of a Unified Data Management 

(UDM) network function. Although in this implementation, the relationship between 

the NSSF and the HSS does not include any logic that makes these two network 

functions interact between each other apart from database manipulation from the 

NSSF side. As mentioned above, the table is filled by the NSSF synchronizer, due to 

this, it has the updated view of the status of the network. A representation of this 
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table is shown in Table 3 where six Data Plane Network Slices are configured for 

three services. The services are directly proportional to the number of SPGW-C. For 

a new service to exist, it needs to be defined in the Contract policies on the 

Application Layer, this will create a new SPGW-C tenant in the Physical Layer once 

the TOSCA configuration passes through the Management Layer. Following the same 

logic, any QoS defined for a Data Plane Slice will be associated with a Service and 

will create SPGW-U tenants that will register to their corresponding SPGW-C. 

4.4 Physical Layer Modifications. 

The physical layer is mostly composed by the Mobile Network VNFs from Open 

Air Interface The eNodeB and UE implementations are secured using the 

OpenAirInterface System Emulation (OAISIM). It includes a standard-compliant 

implementation of a subset of release 10 LTE for UE and eNodeB. The simulation of 

multiple UE that can act simultaneously in connecting to a single eNodeB can be 

tested with the use of OAISIM. 

Like the eNodeB, the EPC is also part of OpenAirInterface Software Alliance 

solution for mobile open source VNFs. It houses the implementation of MME, HSS, 

SPGW-C, and SPGW-U that serve as core network components. Both projects are 

freely distributed by the OpenAirInterface Software Alliance (OSA) under the terms 

stipulated by a new open-source license catering to the intellectual property 

agreements used in 3GPP which allows contributions from members holding patents 

on key procedures used in the standard. The original implementation of the mobile 

core network from Open Air Interface does not consider a Network Slicing Scenario 

and does not have any communication with an NSSF. Fortunately, the code for each 

of the components is freely available which allowed modifications inside the MME, 

SPGW-C, and SPGW-U for achieving a proper interaction with the NSSF and 

effective selection of slices. 

4.4.1 Mobility Management Entity (MME) Modifications. 

The MME is the key control-node for the LTE access network. It works in 

conjunction with the eNodeB and SPGW-C in the core network to realize the 
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following actions relevant to our Data Plane Slice Scenario: 

• Responsible for choosing an SPGW-C for a UE at session establishment on the 

Network. 

• Responsible for authenticating the user (by interacting with the HSS). 

Although the MME natively has the ability to select an SPGW-C for session 

establishment, it only does it on the basis of the Tracking Area Code (TAC), Mobile 

Network Code (MNC) and Mobile Country Code (MCC) information of the network 

which only varies if the UE connection comes from different areas. In order to 

showcase a Network Slice Selection Scenario based on UE Network Service 

Request, the selection of SPGW-C is handed over to the NSSF. For this, the MME 

code had to be modified to include a call to a Communication API that contains 

python code that translates C function requests into Python methods. It also 

executes a Remote Procedure Call (RPC) for requesting the SPGW-C and SPGW-U 

Id to the NSSF. In other words, the API holds the communication channel that allows 

the MME to interact with the NSSF. 

Figure 20. Communication API between MME and NSSF 

As mentioned above, the MME is developed in C by Open Air Interface, which 

requires modification in the mme_app_select_sgw procedure to include the 

ue_context.imsi in the call to the API. The logic of the API will separate the last 

characters of the IMSI in order to identify the Type of Service that is being 

requested in the same fashion as explained in Figure 19. Furthermore, the 

mme_app_send_s11_create_session_req procedure is modified to include the Data 

Plane Slice (SPGW-U) IP-Address that was in the response of the NSSF and pack it 
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inside the bearer_context as a Packet Data Network Id pdn_id, which is forwarded to 

the serving SPWG-C as part of the session message. 

4.4.2 Serving PDN Gateway for the Control Plane SPGW-C. 

The relevant functionality of the SPGW-C is to establish a session request for a 

UE by control message interaction with the MME. It also selects the right SPGW-U 

from a list of attached PDN in order to initiate PDU session with the UE. In the Open 

Air Interface original implementation without Network Slicing, the SPGW-C records 

an SPGWU_IP_LIST[] in the attachment order of each SPGW-U. The attachment 

occurs whenever an SPGW-U “turns on” and is discovered by the SPGW-C. The list 

is then iterated in the specific order of PDN registration. Once an SPGW-U is 

selected, an spgwu_ip.s_addr is added to the bearer_context for PDU session 

establishment.  

In a Network Slice Scenario, Multiple SPGW-C can be connected to a vast number 

of SPGW-U Data Planes. An SPGW-C is associated to a network service and the 

connected SPGW-U carry the different QoS for Data Plane Slices, due to this, in 

order to guarantee a Slice Selection on the basis of UE and Network Service, instead 

of the above procedure, the SPGW-U logic selection is not handled by the SPGW-C, 

in its place, the SPGW-C receives the bearer_context from the MME with the 

spgwu_ip.s_addr as a pdn_id. This IP-Address is used for initiating PDU session 

directly with the appropriate SPGW-U that was selected by the NSSF. 

 

4.5 XOS Service Definition for Data Plane Slices. 

In order to achieve manipulation of SPGW-U (Data Planes) across the multiple 

levels of the proposed system, the proper definition of VNF attributes must be 

created in the Management Layer. The SPGW-U XOS Service Data Model has the 

definitions for the QoS, Network Service and Slice Selection attributes that are used 

by the whole system. Table 1 showcases the specific definitions added to the Data 

Model and APPENDIX C has the xproto code of the actual Data Model file that 

represents the XOS service.  
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Table 1. Data Model Definitions 

As can be seen in the above table, uprate, downrate, service and selectable. are 

the attributes defined for the SPGW-U Data Model. The values for uprate, downrate 

and service are provided by the IBN Tool every time a new contract is created. In 

the case of the selectable attribute, the value is provided by the DPPM during 

operation. When a TOSCA configuration file is created, it will contain the values for 

each of these attributes. see APPENDIX A 

Every XOS Service has a Data Model that represents the abstract state of the 

system which is defined as an xproto file [25]. This type of implementation is 

particular to the M-CORD Platform for the management of Services.  

A service attribute is also defined in the SPGW-C XOS Service Data Model with 

the purpose of achieving a Data Plane slice association based on network service. 
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5.0 Evaluation and Results 

 

For the evaluation of the proposed functionality, the complete Virtual Mobile 

Network System that includes a previously developed IBN Tool, M-CORD 4.1, Open 

Air Interface eNodeB and UE emulator (OAISIM), and Open-Air Interface Core 

Network was used alongside the implemented modules for Automatic Data Plane 

Provisioning. 

The deployment of the whole system is done in two machines that include a Lab 

Server for the deployment of CiaB M-CORD 4.1 (XOS, OpenStack, ONOS, Mobile 

Network VNFs) and a development PC where the IBN Tool (Including the Data Plane 

Provisioning Module) is running. Both equipment is connected to the laboratory LAN 

with the Lab Server that houses M-CORD 4.1 having a data-link of 100Mbps.  

The evaluation procedure has the following steps. First, a set of contracts for 

three services are defined using the IBN Tool. This will trigger the creation of Data 

Plane Network Slices by the Management Layer, each of them configured with 

proper QoS. Secondly, using the OAISIM, three UE is set up for connecting 

simultaneously to the Mobile Network where slice selection is verified. Network 

performance tests are realized in this step. Thirdly, performance tests are realized 

on the Video Data Plane Slices and Verification of automatic data plane provision is 

performed in this step. Finally, comparison of results when there are no Network 

Slices and a Data Plane Provisioning Module does not exist is also presented.  

 

5.1 Network Contract definition in IBN Tool 

Table 2 shows the information of three contracts that are defined using the GUI of 

the IBN Tool. For the VIDEO Contract, two data plane slices are configured using 

predefined QoS values, Video-1 has an up-rate of 10 Mbps and downrate of 20 

Mbps, Video-2 an up-rate of 15 Mbps and downrate of 30 Mbps. The WEB Contract 

defines three Data Plane Slices with custom QoS. Web-1 has and an up-rate of 5 

Mbps and a down-rate of 10 Mbps, Web-2 an up-rate of 2 Mbps and downrate of 4 
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Mbps, Web-3 an up-rate of 1 Mbps and downrate of 2 Mbps. Finally, a Stress Test 

Contract is created with an up-rate of 100 Mbps and downrate of 100 Mbps. This 

contract creates a data plane slice that has the maximum throughput of the CiaB 

server physical link, its main purpose is to saturate the data plane traffic for the 

tests that are performed in this chapter. The TOSCA configuration file with the full 

Data Plane Slices configuration is shown in APPENDIX A 

The Management Layer takes the TOSCA information and creates a total of three 

SPGW-C and six Data Plane Slices that are represented by the SPGW-U VNF. This 

information is portrayed in Table 3 where each service defined by the contract takes 

the form of an SPGW-C and the SPGW-U Data Planes are associated to it based on 

the service attribute defined in the Data Model. 

Table 3. SPGW-C and SPGW-U allocation 

  

Table 2. Value of QoS defined by the Contracts. 
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5.2 Mobile Network E2E connection and Network Slice Selection. 

A mobile network connection starts from the OAISIM VNF. In order to have UE 

routed to different network slices specific configuration is required for the creation 

of the UE. Table 4 shows the IMSI information pertaining to each UE which is used 

for registration into the network and Data Plane Network Slice Selection and the 

virtual interface name of the UE that is created by OAISIM. 

The last two digits of the IMSI are used for the slice selection as explained in 

previous sections. According to this configuration oa1 and oa2 are assigned to two 

different VIDEO slices, and oai3 is assigned to the first WEB slice. In order to verify 

that the Data Plane Slices QoS were correctly deployed and that each user 

equipment is connected to an isolated Network Slice, two different tests are 

performed. 

5.2.1 iPerf performance test in E2E connection using OAISM (LTE connection). 

This test focus on using iPerf [26] to stress the bandwidth of the Data Plane Slice 

assigned to user equipment. The test setup follows a simple Client-Server setup 

where an external Lab Web Server has three instances of iPerf running on port 5001, 

5002 and 5003 respectively. As each client is represented by a virtual network 

interface that exists on the OAISIM Virtual Machine, the iPerf command running on 

the UE needs to specify the proper network interface where the traffic is going to be 

channeled. e.g. (iperf –c <Server-IP> -p<Server-Port> -B <Interface-Name>) where 

<Server-IP> refers to the IP of the machine that has the iPerf server running e.g. 

(220.149.42.102), <Server-Port> to one of the ports specified for the server and 

<Interface-Name> refers to the name of the interface that represents the UE e.g. 

Table 4. IMSI configuration for three UE 
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(oai1). This is done for the three interfaces in order to test simultaneous traffic to 

the iPerf Server. In order to simulate continuous traffic, the test is modified to run 

for 60 seconds in just one iteration per test.  

 

 

  

Figure 22. UE2 – VIDEO2 Slice Performance Test (OAISIM) 

Figure 21. UE1 – VIDEO1 Slice Performance Test (OAISIM) 
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The above results were taken by using the Wireshark [27] application on the 

device that is running the iPerf Server. By configuring Wireshark to listen to a 

specific interface and ports, it is possible to log the transfer rate of the iPerf tests. 

The graphs show mixed results in terms of bandwidth stability, this is due to the use 

of an emulated eNodeB that is not capable enough for handling multiple virtual user 

equipment that stresses the transfer rate of the GTP (GPRS Tunneling Protocol) -

Tunnel created by the LTE connection emulation. Even though it is evident that 

Network Slice Selection is working as intended as each UE is assigned to a different 

data plane slice, the above results cannot showcase the type of tests that are 

necessary for the research of this thesis. In order to work with proper bandwidth 

results, a workaround that simulates and E2E connection with proper transfer rates 

is proposed. 

5.2.2 iPerf performance test using SSH Tunnels for simulating an E2E connection. 

To achieve the desired transfer rates specified in the QoS for the High-Level 

contracts of each slice, the use of SSH-Tunneling is required. SSH Tunneling (also 

known as SSH Port Forwarding) is a feature of SSH which forwards encrypted 

connections between a local and remote system [38]. It is natively supported by 

Ubuntu distributions which makes it ideal for the scenario that this research is 

presenting. SSH-Tunnel is used for each of the virtual interfaces that represent the 

UE that are connected in the mobile network and replaces the GTP-Tunnel provided 

Figure 23. UE3 – WEB1 Slice performance test (OAISIM) 
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by the EPC and OAISIM in order to achieve stable data transfers. 

As can be seen in Figure 24, once the virtual equipment is created during the E2E 

connection, ssh-tunnels are configured for each of them in order to facilitate the 

performance tests and reaching the desired QoS rates specified for each Data Plane. 

There are multiple ways that an ssh-tunnel can be achieved, in this case, a tunnel 

needs to be created between three hosts, it is necessary to specify the interfaces 

and ports that are going to be forwarded during the tunnel configuration. For 

example, for doing a tunnel between oa1 interface (UE1) and the Web Server (For 

Iperf Tests), the tunnel needs to pass through the VIDEO1 data plane slice. The 

command will be as follows: ssh -L oai1<ip-address>:<port>:pdu1<ip-

address>:<port> VIDEO1 ssh -L pdu1<ip-address>:<port>:WebServer<ip-

address><port> -N  WebServer. With this command, the virtual IP-address of the 

UE1 is used as a tunnel starting point and the WebServer IP-address as the ending 

point of the tunnel. In order to replicate the iPerf test, the WebServer IP-address 

needs to be changed to the UE1 IP-address as all the traffic that goes through that 

interface and port will be redirected to the WebServer, e.g. (iperf –c <oa1-IP> -p 

<ssh-port>) there is no need to bind to the interface anymore. The results of this 

test can be seen in the following graphs. 

 

 

Figure 24. SSH-Tunneling between Virtual UE, Data Plane Slices and Web Server  
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Figure 25. UE1 – VIDEO1 Slice Performance Test (SSH-Tunnel) 

Figure 26. UE2 – VIDEO2 Slice Performance Test (SSH-Tunnel) 
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By exchanging the GTP-Tunnel to an SSH-Tunnel the results are closer to the 

QoS Policies specified for each Data Plane Slice. It is important to clarify that this is 

just a workaround in order to achieve good transfer rates for the tests that are 

relevant to Data Plane slices due to lack of good eNodeB emulation. From this point 

forward the remaining tests performed for this Thesis are achieved by utilizing SSH-

Tunnels. 

5.2.3 Video Streaming with Adaptive Bitrate (ABR) Test. 

The best scenario for show-casing the isolation of network slice traffic is by 

testing the capabilities of video streaming on the UE. Adaptive bitrate streaming is a 

technique used in streaming multimedia over computer networks that are mostly 

based on HTTP and designed to work efficiently over large distributed HTTP 

networks such as the Internet [28].  Basically, the source content is encoded at 

diverse-multiple bit rates, then each of the different bit rate segments is divided into 

small parts. The client is aware of the available streams at differing bit rates, by a 

manifest that is encoded into the video file. When video streaming starts, the client 

requests the segments from the lowest bit rate stream (lowest Quality). If the client 

finds the download speed is greater, then it will request the next higher bit rate 

segments until it achieves maximum quality. If the network performance degrades, 

the bitrate will also go to a lower tier to avoid pausing the stream. [28]. This 

Figure 27. UE3 – WEB1 Slice performance test (SSH-Tunnel) 
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technique is used widely on HTTP based video streaming on the Internet. In order to 

achieve a real-life scenario for Data Plane Network Slicing, video files encoded in 

multiple bitrates using HTTP live streaming ABR technique (HLS) [29] are placed on 

the same Web Server where the previous iPerf test was performed. For the UE to be 

able to consume the Video, the ffplay tool that is part of the FFmpeg [30] package 

was installed on the OAISIM virtual machine. An important function of this tool is the 

capability of running without displaying Video by passing the option –nodisp during 

the execution command.  

The tests are performed using ffplay while routing traffic through oai1 interface 

and doing a simultaneous iPerf test from oai2 in a similar fashion as the previous 

performance tests. A second test is performed by using ffplay while routing traffic to 

oai2 and using iPerf on oai1 interface. The main reason for doing the tests in this 

fashion is that ffplay cannot be used simultaneously while connecting using two 

different network interfaces and we need a way to inject traffic in both slices at the 

same time in order to showcase that traffic does not interfere between each other. 

The above graph shows the results of video streaming using ffplay for both Video 

Slices. The variation of the bitrate is similar for both tests, as the same Video File is 

being used for the streaming. Even though in some cases the bitrate dipped below 

7000Kbps, it kept the resolution of 1920 x 1080p through the length of the test. 

Figure 28. Adaptive Bitrate Test for VIDEO1 and VIDEO2 Slice 
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Normally Full-HD streaming requires a minimum of 4000kbps which is way below 

the results presented in the graph. Both Video slices have enough down-rate QoS to 

keep a good quality stream. 

An interesting result can be seen on the streaming speed test using ffplay. As 

soon as the Video Streaming starts, the speed rate stays on the range of 11 Mbps for 

both Video Slices, but after around 25 seconds of streaming, the speed rate goes 

down and normalize in between 1Mbps and 500Kbps. The main reason for this to 

happen is the buffering that the video player requires to do at the beginning of the 

stream, once the buffer is full, the speed rate goes down to the values shown in the 

graph. It is important to take notice that neither slice went up more than 12Mbps for 

the rate of the streaming, this is due to the quality of the Video File that is being 

streamed, as 1080p Full HD video does not require that much bandwidth to work 

with, both VIDEO slices have more than enough room to handle high-quality Video 

Streaming from multiple UE without problem. 

 

5.3 Automatic Data Plane Provisioning when a Slice is Saturated. 

The aim of the evaluation and test results is to verify that the Network Monitoring 

Agent is triggering the Data Plane Provisioning Module operation when a Data Plane 

is saturated with network traffic. Due to the current limitations posed by OAISIM, the 

system becomes unstable when more than three UE are created for connection tests. 

Figure 29. Streaming Speed Test for VIDEO1 and VIDEO2 Slice 
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Because of this, a re-arrangement for the current UE is necessary to force them to 

connect to a single VIDEO Slice. The new configuration of the UE can be seen in 

Table 5. 

The above configuration shows that the three UE is assigned to a single VIDEO 

slice (VIDEO1). Due to this, there is no requirement for multiple Video slices for this 

test. The new arrangement of slices can be seen in the table below. An advantage of 

working with the IBN Tool is that Data Plane Slices can be easily managed from the 

Application Layer. Deleting or creating new slices does not pose a big downtime 

during the tests.  

In order to trigger the functionality of the DPPM, VIDEO1 Slice must reach the 

peak of traffic and saturate the Network Utilization of its “physical” link. The QoS 

set for this slice have a down-rate of 20Mbps, and maximum link rate that can 

support is 40Mbps. As explained in previous sections, the link rate limitation for each 

Data Plane Slice is forced and particular for achieving the results of this thesis. As 

only three UE can be connected at the same time, it is necessary to saturate the link 

Table 5. New IMSI configuration for connecting to 
a single Video Slice 

Table 6. Single Video Slice 
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before the 3rd UE connects. The test procedure is as follows. oai1 and oai2 connect 

first to the mobile network and are assigned to VIDEO1 Slice. The iPerf tool is used 

for both UE virtual interfaces with the purpose of filling the bandwidth limit of the 

Data Plane. The Network Monitoring Agent is constantly probing the sFlow-RT 

collector for the status of all the data planes. After approximately 15 seconds of the 

iPerf Test, the DPPM successfully triggers its functionality and creates a new Data 

Plane Slice and disables the selection of the saturated Data Plane. At this point, oai3 

connects to the Mobile Network and starts a similar Video Streaming Test using the 

ffplay tool. Streaming is achieved without the interfering of oai1 and oai2 traffic test 

as the last UE is connected to a different Data Plane in a transparent fashion. 

 

  

Figure 30. iPerf bandwidth stress test for VIDEO1 Slice 
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As seen in Figure 31 and 32 the results of the Video Streaming test are similar to 

the ones performed in the previous section. Full video quality is achieved in both 

Bitrate and Stream Speed because the oai3 user equipment is assigned to a complete 

new VIDEO1 Slice. This slice keeps the QoS and Data Model details of the saturated 

VIDEO1 Slice and is automatically provisioned by the DPPM in order to serve a new 

UE connection. The saturated VIDEO1 Slice is not included in the Network Slice 

Selection process by the NSSF due to its selectable property being disabled by the 

DPPM. Figure 33 has the representation of how the current slices are viewed by the 

Mobile Network System. 

Figure 31. Streaming Speed Test for oai3 UE in new VIDEO1 Slice 

 

Figure 32. Adaptive Bitrate Test for oai3 UE in new VIDEO1 Slice 
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It is important to remark that the “disabled” VIDEO1 slice is fully operational and 

the UE connected to it will continue to have network connection until they un-

register from the network. But this slice will not serve any new UE connection 

request and after a period of time will be assigned to the Unused Data Plane 

Repository. In its place, the new VIDEO1 slice is essentially a twin or replica with 

the same QoS policies and Data Model attributes. 

 

5.4 Results in a Non-Sliced scenario and no Automatic Data Plane 

Provisioning. 

The benefits of the proposal made in this thesis are completely visible if 

comparison with results obtained by not including an NSSF and a DPPM is 

showcased. The test is divided into two categories. Firstly, tests performed in a 

single Data Plane Slice are presented, and secondly, tests performed in a Network 

Sliced Scenario with no Automatic Data Plane Provision are presented. 

5.4.1 Non-Sliced Scenario. 

For this test, a single Data Plane exists for serving three simultaneous UE. The 

test focus only on the downrate for iPerf and Video Streaming. The Data Plane Slice 

used for this scenario is the Stress Test with 100Mbps, all three UE are connected to 

this Data Plane Slice. Two UE (oai1 and oai2) perform an iPerf test to the Lab Web 

Server and oai3 perform ffplay video streaming. 

Figure 33. Representation of new VIDEO1 slice and disabled VIDEO1 slice 
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The behavior of the test shows that iPerf tries to occupy the maximum traffic as 

possible during execution. The physical link to the network only allows a maximum 

of 100Mbps, so the rate is divided between the three UE. oai1 and oai2 network rate 

hover in between the 40 to 50Mbps range. The interesting result can be seen for 

oai3 which is streaming video by using the ffplay tool. It tries to take as much 

bandwidth as possible but is not able to compete with the iPerf test, and as can be 

seen, it cannot reach the same speed rate of previous streaming tests. Of course, 

when the buffer is filled, the speed rate goes down to less intensive values. The 

effect of the reduced bandwidth for video streaming can be seen in the following 

graph. 

Figure 34. Streaming Speed Test for oai1, oai2 and oai3 in Stress Test Slice 
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As can be seen, the saturation of the Data Plane does not allow optimal Video 

Streaming performance. The Overall Bitrate achieved during this test is less than 

half than the previous test done in Data Plane Slices that had less downrate 

(20Mbps) in comparison with the current Data Plane(100Mbps). Even though the 

video manages to play in 1080p (Full-HD) during the first few seconds of the stream, 

the speed rate was so constrained that the video switched automatically to 720p 

(HD) quality in order to keep streaming without having to re-buffer the video. These 

tests make evident that if there are no different Network Slices tailored for multiple 

UE and network services, even if the data link has enough capacity for high-quality 

video streaming, the performance of the UE connection will reduce if demanding 

network consumption activities e.g. (File downloading, P2P) are mixed into a single 

Data Plane. 

  

Figure 35. Adaptive Bitrate Test for oai3 UE in Stress Test Data Plane 
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5.4.2 Non-automatic Data Plane Provisioning Scenario. 

The following test is performed in a similar fashion as section 5.3 tests related to 

Data Plane Provisioning. The main difference for this case is that, instead of VIDEO1 

Slice, the Stress Test slice is used. Again, oai1 and oai2 perform iPerf tests with the 

purpose of filling the bandwidth limit of the Data Plane. Because there is no 

Automatic Data Plane Provisioning, when oai3 connects to the Mobile Network it is 

assigned to the same Data Plane as oai1 and oai2. The test shows result far worse 

than in the case of Non-Sliced Scenario. As the iPerf test was already running 

before the oai3 UE connected into the network, the moment that the video stream 

started there was not enough bandwidth to reach 1080p Full-HD quality, and the 

stream started in 720p. Also, during the test, the bitrate went down to the low 

1000kbps switching the quality of the stream to Standard Definition.  

Figure 36. Streaming Speed Test for oai1, oai2 and oai3 in Stress Test Slice in non-Automatic 
Data Plane Provisioning Scenario 

Figure 36 and 37 results show that even if Network Slicing and Network Slice 

Selection is enabled, if the network is not capable to adapt to the current situation, it 

risks on assigning new UE connection to already saturated Data Planes, thus 

diminishing the user experience. 
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5.5 Performance Test when the System is Overloaded. 

The Data Plane Provisioning Module is designed to avoid over-provisioning of 

Data Plane slices in cases where there are no system resources available. An ideal 

scenario will never over commit resources of a Compute Node above the 

recommended values (see section 4.1). The results presented below are particular to 

the testbed of this thesis where compute resources are constrained, and Data Plane 

overprovision can be easily achieved. To reach this stage, sixteen Data Plane slices 

have been manually provisioned using the orchestrator UI (XOS). The focus of this 

test is not to showcase End-to End connection, but to verify the bandwidth 

performance of the compute node when 16 Data Planes are doing an iPerf test 

simultaneously. 

Figure 38 has the condensed results of the average of ten iPerf tests related to 

the increasing number of Data Plane Slices. The test starts with 2 Data Planes and 

increments by 2 until it reaches the 16 Data Planes. As the focus is the performance 

of the compute node that houses the Data Plane Slices, bandwidth is measured for 

the whole compute node link (100mbps max) instead of individual data planes, as 

there are no QoS policies in place.   

Figure 37. Adaptive Bitrate Test for oai3 UE in Stress Test Data Plane in non-Automatic Data 
Plane Provisioning Scenario 
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The above figure shows that provisioning Data Plane Slices without considering 

the resources of the Compute Node, has a direct relation to network performance, 

especially if the compute node is also a virtual entity, as nested virtualization has an 

inherent impact on performance. According to the graph, the compute node 

bandwidth starts to degrade around the mark of 10 data plane slices, until it reaches 

the lowest possible value with 16 Data Plane Slices.  

Figure 39 shows the case when 16 Data Planes are doing an iPerf test 

simultaneously. This graph represents the last record from Figure 38 before 

calculating the average values of the data transmission. As can be observed, due to 

overprovision of slices, the compute node is overloaded and cannot provide steady 

transfer rates for even simple iPerf tests.  

 

Figure 39. Total compute node bandwidth with 16 Data Planes. 

Figure 38. Total compute node bandwidth in relation to the number of Data Plane Slices that 
are deployed. 
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6.0 Conclusion and Future Work 

6.1 Conclusion 

The shift to virtualization technologies has brought with it a big change in the way 

Mobile Networks are managed and deployed. Software Engineers have a bigger role 

to play as network logic has moved from dedicated hardware to commodity 

equipment. This aspect is made evident with the increased proliferation of Open 

Source Projects [9,31,32] that aim to bring new/optimized functionality to the 

network. In this thesis, a mechanism for Automatic Data Plane Provisioning 

integrated into a Network Sliced Virtual Mobile Network system is proposed in order 

to leverage the network load during consumption of network services. 

The benefits of Automatic Data Plane Provisioning have been detailed in the 

literature. It not only provides a way for monitoring the status of the mobile network 

during operation but also brings a level of automatic decision for adapting to the 

consumption of network services. The clearest example of showcasing the added 

value of this mechanism is the Video Streaming scenario. According to [33], Netflix 

consumes 15% of all internet bandwidth in the world, next is followed by HTTP 

Media Streaming with 13.1% and in Third place is Youtube with 11.4%. The top three 

places for global internet bandwidth consumption is related to Video Streaming. By 

2018, there were 3.7 billion mobile internet users in the world and the topmost 

demanding mobile traffic service is Youtube video with 35% of the total use of 

mobile internet [34]. This data makes evident the need for a mechanism for adapting 

to high consuming network services. 

Taking into consideration HTTP media streaming services in the evaluation tests 

done for showcasing the functionality of Automatic Data Plane Provisioning, it is 

easy to observe that the network can be prepared for cases when UE wants to 

consume High-Quality video services. This is done by setting up Data Planes when 

the network load goes above the standard QoS policies that were set up by the 

Network Contracts. Also, during the comparison test, when there is no Automatic 

Data Plane Provision mechanism it is clear that the network performance degrades 
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heavily when multiple UE are consuming high bandwidth network services.  

The mechanism relies heavily on the deployment of the M-CORD Platform [9] 

and the use of an IBN Tool [11] for the definition of High-Level Contracts and 

configuration of QoS for Network Slices. Although it follows independent 

functionality (sFlow and sFlow-RT) in order to Monitor and calculate the Link 

Utilization of the Data Plane Slices, it still requires integration with the Virtual 

Mobile Network System presented in this literature in order to apply the TOSCA 

configuration into the physical system and also interact with the Network Slice 

Selection Function. This is not to be considered a weak point, as the M-CORD 

platform is constantly maturing, and more partners are interested in the functionality 

that it provides. Also, the use of TOSCA configuration is standard for many operators 

and open source Network Orchestrators [35]. Which means that migration or 

portability of the Automatic Data Plane Provisioning functionality is possible. 

 

6.2 Future Work 

Figure 40. Abstracted view of the system 
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Limited compute resources are the main constraint that the solution presented in 

this thesis could face for the deployment of Data Plane Slices. Figure 40 shows an 

abstracted view of the proposed system considering the three virtual compute nodes 

that are created. As the testbed is housed in a single physical server, the real limit of 

how many compute nodes can be created is dependent on the RAM and CPU cores of 

the physical system (Currently 64 Gigabytes of RAM with 40 CPU cores) this is 

barely enough for creating 3 compute nodes that house multiple Virtual Machines 

that represent the VNF of the EPC and Data Plane Slices. If physical resources were 

limitless, multiple virtual compute nodes could be created in order to load balance 

the provision of Data Plane Slices. The load balancing is inherent to the orchestrator 

and follows a LeastUsedResources approach in order to select a compute node for 

the deployment of VMs. Also, the selection of Data Plane Slices is still be handled by 

the NSSF regardless of the compute node where the slices are provisioned, as each 

compute node is part of the Virtual Tenant Network (VTN) that is managed by the 

Orchestrator together with the Cloud Manager and Network Controller. Figure 41 

shows a scenario where multiple compute nodes house the data plane slices for 

connecting to the Data Network.  

Figure 41. Multiple compute nodes for data plane slices 
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The above figure focuses only on the compute nodes that handle the deployment 

of data plane slices. Although this scenario may be possible if the physical resources 

are infinite, is not feasible and not cost-effective. That is why better management of 

existing resources is required. 

 The thesis proposal requires interaction with a Resource Manager in order to 

calculate the available physical resources for accommodating the Data Plane Slices. 

This consideration exists as part of the work done in the Thesis, but it will benefit 

more if the Resource Manager had the functionality of providing an instantiation of 

resources in real time. Currently, it relies on calculations done by taking into account 

the physical resources of the Compute Node and static values for the type of VMs 

that are created. In a real scenario, Virtual Network Functions could be encased 

inside containers which require fewer system resources for operation and in some 

cases, they are able to upscale or downscale their resources on the basis of the 

current system load. This poses a challenge for the current method of calculating 

resources, which will require additional functionality to be added to this module in 

order to correctly measure the Data Plane Slices resource requirements. 
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APPENDIX A - TOSCA Definition of Slices 
tosca_definitions_version: tosca_simple_yaml_1_0 
 
description: created by platform-install, need to add M-CORD services later 
 
imports: 
   - custom_types/xos.yaml 
   - custom_types/slice.yaml 
   - custom_types/site.yaml 
   - custom_types/image.yaml 
   - custom_types/flavor.yaml 
   - custom_types/network.yaml 
   - custom_types/networkslice.yaml 
   - custom_types/vspgwuservice.yaml 
   - custom_types/vspgwuvendor.yaml 
   - custom_types/vspgwutenant.yaml 
   - custom_types/vspgwcservice.yaml 
   - custom_types/vspgwcvendor.yaml 
   - custom_types/vspgwctenant.yaml 
 
topology_template: 
  node_templates: 
 
 
    m1.medium: 
      type: tosca.nodes.Flavor 
      properties: 
        name: m1.medium 
  
    image-oai: 
      type: tosca.nodes.Image 
      properties: 
        name: image-oai 
 
    service#vspgwu: 
      type: tosca.nodes.VSPGWUService 
      properties: 
        name: VSPGWUService 
         
    oai_vspgwu: 
      type: tosca.nodes.VSPGWUVendor 
      properties: 
        name: oai_vspgwu 
 
    service#vspgwc: 
      type: tosca.nodes.VSPGWCService 
      properties: 
        name: VSPGWCService 
         
    oai_vspgwc: 
      type: tosca.nodes.VSPGWCVendor 
      properties: 
        name: oai_vspgwc 
 
# OAI Service instances 
    serviceinstance#vSPGWC_Web: 
      type: tosca.nodes.VSPGWCTenant 
      properties: 
        name: Web 
        service: web 
      requirements: 
        - vspgwc_vendor: 
            node: oai_vspgwc 
            relationship: tosca.relationships.BelongsToOne 
        - owner: 
            node: service#vspgwc 
            relationship: tosca.relationships.BelongsToOne 
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# OAI Service instances 
    serviceinstance#vSPGWC_StressTest: 
      type: tosca.nodes.VSPGWCTenant 
      properties: 
        name: StressTest 
        service: stresstest 
      requirements: 
        - vspgwc_vendor: 
            node: oai_vspgwc 
            relationship: tosca.relationships.BelongsToOne 
        - owner: 
            node: service#vspgwc 
            relationship: tosca.relationships.BelongsToOne 
 
# OAI Service instances 
    serviceinstance#vSPGWC_Video: 
      type: tosca.nodes.VSPGWCTenant 
      properties: 
        name: Video 
        service: video 
      requirements: 
        - vspgwc_vendor: 
            node: oai_vspgwc 
            relationship: tosca.relationships.BelongsToOne 
        - owner: 
            node: service#vspgwc 
            relationship: tosca.relationships.BelongsToOne 
 
# OAI Service instances 
    serviceinstance#vSPGWU_Video1: 
      type: tosca.nodes.VSPGWUTenant 
      properties: 
        name: Video1 
        service: video 
        selectable: true 
        uprate: 10 
        downrate: 20 
      requirements: 
        - vspgwu_vendor: 
            node: oai_vspgwu 
            relationship: tosca.relationships.BelongsToOne 
        - owner: 
            node: service#vspgwu 
            relationship: tosca.relationships.BelongsToOne 
 
# OAI Service instances 
    serviceinstance#vSPGWU_Video2: 
      type: tosca.nodes.VSPGWUTenant 
      properties: 
        name: Video2 
        service: video 
        selectable: true 
        uprate: 15 
        downrate: 30 
      requirements: 
        - vspgwu_vendor: 
            node: oai_vspgwu 
            relationship: tosca.relationships.BelongsToOne 
        - owner: 
            node: service#vspgwu 
            relationship: tosca.relationships.BelongsToOne 
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# OAI Service instances 
    serviceinstance#vSPGWU_Web1: 
      type: tosca.nodes.VSPGWUTenant 
      properties: 
        name: Web1 
        service: web 
        selectable: true 
        uprate: 5 
        downrate: 10 
      requirements: 
        - vspgwu_vendor: 
            node: oai_vspgwu 
            relationship: tosca.relationships.BelongsToOne 
        - owner: 
            node: service#vspgwu 
            relationship: tosca.relationships.BelongsToOne 
 
# OAI Service instances 
    serviceinstance#vSPGWU_Web2: 
      type: tosca.nodes.VSPGWUTenant 
      properties: 
        name: Web2 
        service: web 
        selectable: true 
        uprate: 2 
        downrate: 4 
      requirements: 
        - vspgwu_vendor: 
            node: oai_vspgwu 
            relationship: tosca.relationships.BelongsToOne 
        - owner: 
            node: service#vspgwu 
            relationship: tosca.relationships.BelongsToOne           
             
# OAI Service instances 
    serviceinstance#vSPGWU_Web3: 
      type: tosca.nodes.VSPGWUTenant 
      properties: 
        name: Web3 
        service: web 
        selectable: true 
        uprate: 1 
        downrate: 2 
      requirements: 
        - vspgwu_vendor: 
            node: oai_vspgwu 
            relationship: tosca.relationships.BelongsToOne 
        - owner: 
            node: service#vspgwu 
            relationship: tosca.relationships.BelongsToOne 
 
# OAI Service instances 
    serviceinstance#vSPGWU_StressTest: 
      type: tosca.nodes.VSPGWUTenant 
      properties: 
        name: StressTest 
        service: stresstest 
        selectable: true 
        uprate: 100 
        downrate: 100 
      requirements: 
        - vspgwu_vendor: 
            node: oai_vspgwu 
            relationship: tosca.relationships.BelongsToOne 
        - owner: 
            node: service#vspgwu 
            relationship: tosca.relationships.BelongsToOne           
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APPENDIX B – OVS configuration Leaf-Spine 
e2974151-9340-42fc-94b2-64edb1387373 
    Bridge "leaf2" 
        Controller "tcp:10.100.198.201:6653" 
            is_connected: true 
        Port "leaf2-spine2" 
            Interface "leaf2-spine2" 
                type: patch 
                options: {peer="spine2-leaf2"} 
        Port "leaf2" 
            Interface "leaf2" 
                type: internal 
        Port "leaf2-spine1" 
            Interface "leaf2-spine1" 
                type: patch 
                options: {peer="spine1-leaf2"} 
        Port "vnet8" 
            Interface "vnet8" 
        Port "vnet3" 
            Interface "vnet3" 
    Bridge "leaf1" 
        Controller "tcp:10.100.198.201:6653" 
            is_connected: true 
        Port "vnet11" 
            Interface "vnet11" 
        Port "leaf1-spine2" 
            Interface "leaf1-spine2" 
                type: patch 
                options: {peer="spine2-leaf1"} 
        Port "leaf1" 
            Interface "leaf1" 
                type: internal 
        Port "leaf1-spine1" 
            Interface "leaf1-spine1" 
                type: patch 
                options: {peer="spine1-leaf1"} 
    Bridge "spine1" 
        Controller "tcp:10.100.198.201:6653" 
            is_connected: true 
        Port "spine1" 
            Interface "spine1" 
                type: internal 
        Port "spine1-leaf2" 
            Interface "spine1-leaf2" 
                type: patch 
                options: {peer="leaf2-spine1"} 
        Port "spine1-leaf1" 
            Interface "spine1-leaf1" 
                type: patch 
                options: {peer="leaf1-spine1"} 
    Bridge "spine2" 
        Controller "tcp:10.100.198.201:6653" 
            is_connected: true 
        Port "spine2" 
            Interface "spine2" 
                type: internal 
        Port "spine2-leaf2" 
            Interface "spine2-leaf2" 
                type: patch 
                options: {peer="leaf2-spine2"} 
        Port "spine2-leaf1" 
            Interface "spine2-leaf1" 
                type: patch 
                options: {peer="leaf1-spine2"} 
    ovs_version: "2.5.3" 
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APPENDIX C – xproto Data Model 
option name = "vspgwu"; 
option app_label = "vspgwu"; 
 
message VSPGWUService (Service){ 
    option verbose_name = "Virtual Serving Gateway User Plane Service"; 
} 
 
message VSPGWUVendor (XOSBase){ 
    option verbose_name = "Virtual Serving Gateway User Plane Vendor"; 
 
    required string name = 1 [help_text = "vendor name", max_length = 32, null = False, db_index = False, blank = False];  
    required manytoone image->Image:+ = 2 [help_text = "select image for this vendor", db_index = True, null = False, blank = 
False]; 
    required manytoone flavor->Flavor:+ = 3 [help_text = "select openstack flavor for vendor image", db_index = True, null = False, 
blank = False]; 
 
} 
 
message VSPGWUTenant (TenantWithContainer){ 
    option verbose_name = "Virtual Serving Gateway User Plane Service Instance"; 
    required string name = 1 [help_text = "Network Service", max_length = 32, null = False, db_index = False, blank = False]; 
    required bool selectable = 2 [help_text = "Enable/Disable selection of Data Plane by NSSF", default = True, null = False, 
db_index = False, blank = True];   
    required int32 uprate = 3 [help_text = "Uprate QoS in Mb/s", default = 5, null = False, db_index = False, blank = False]; 
    required int32 downrate = 4 [help_text = "Downrate QoS in Mb/s", default = 10, null = False, db_index = False, blank = False]; 
    optional manytoone vspgwu_vendor->VSPGWUVendor:vendor_tenants = 3 [help_text = "select vendor of choice, leave blank for slice 
default", db_index = True, null = True, blank = True];  
 
} 
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