

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Thesis for the Degree of Masters

Efficient Autoscaling of VNF(s) in NFV environment

Asif Mehmood

Department of Computer Engineering

GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

June 2019

Efficient Autoscaling of VNF(s) in NFV environment

Asif Mehmood
(Supervised by Professor Sang-Joon Lee)

Submitted to the Department of Computer Engineering and the Faculty
of Graduate School of Jeju National University in partial fulfillment of the

requirements for the degree of Master of Computer Engineering

2019.06

This thesis has been examined and approved.

Department of Computer Engineering

GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

iii

Dedicated to
My Parents and Teachers

iv

Acknowledgements

This study is wholeheartedly dedicated to my beloved family, who have
been a source of inspiration and by continually providing their spiritual,
emotional, and financial support.

I would also like to thank the most respected and kind supervisor
Wang-Cheol Song for his support, guidance and advice during the whole
project. This thesis without the precious advices of my supervisor wouldn’t have
been completed, that were provided time to time on regular basis. I would like
to acknowledge that he played a vital role in building up my ability to perceive
knowledge in multiple perspectives.

I feel indebted to many of the colleagues and the friends at Jeju
National University for providing a very professional and friendly environment. I
can not mention all of the fellows but there are a few names I would like to
mention as their role was very special. I am grateful to Dr. Afaq Muhammad,
Dr. Israr Ullah, Dr. Muhammad Fayaz, Faisal Mehmood, Shabir Ahmad, Javier
Diaz, Talha Ahmed.

Last, but not the least, a very special role that this country played in
providing me an exposure to study abroad and to fulfil my dreams is not
forgettable. All the people living in this country, whose names I couldn’t
mention are very special to me I want to thank all of you to play a very useful
role in my life.

v

Abbreviations

API(s) Application Program Interfaces
ATM Automated Teller Machine

BAAS Bit-rate Aware Auto Scaling
BP Business Process
BSS Business Support System

CAPEX Capital Expenditure
CiaB CORD-in-a-Box
CORD Central Office Rearchitectured Datacenter
CORD-VTN CORD Virtual Tenant Network
CPS Clocks Per Cycle
CPU Central Processing Unit

EMS Element Management Service(s)
EPC Evolved Packet Core
ETSI European Telecommunications Standards Institute

GUI Graphical User Interface

IaaS Infrastructure as a Service
IBN Intent Based Networking
IMS IP Multimedia Subsystem

JSON JavaScript Object Notation

KVM Kernel-based Virtual Machine

LIBVIRT library for virtualization
LTE Long Term Evolved
LXD Linux [Container] Docker

M-CORD Mobile Central Office Rearchitectured Datacenter
MaaS Monitoring as a Service
MaaS-target Metal as a Service targets
MANO Management and Orchestration
MCN Monitoring and Control Network
MySQL My Structured Query Language

NIC Network Interface Card
NFD Network Function Descriptor
NFV Network Function Virtualization
NFVI Network Function Virtualization Infrastructure

vi

NFVO Network Function Virtualization Orchestrator
NS Network Service
NSD Network Service Descriptor
NSSF Network Slice Selection Function

OAI Open Air Interface
OAISIM Open Air Interface Simulator
ONF Open Networking Foundation
ONOS Open Networking Operating System
OPEX Operational Expenditure
OPNFV Open Platform for NFV
OSS Operations Support System
OVF Open Virtualization Format

PMU Performance Monitoring Unit

RAM Random Access Memory
REST Representational State Transfer

SDN Software Defined Networking
SDNC SDN Controller

TOSCA Topology and Orchestration Specification for Cloud Application

vEPC Virtual Evolved Packet Core
vHSS Virtual Home Subscriber Server
VIM Virtual Infrastructure Manager
vMME Virtual Mobility Management Entity
VM Virtual Machine
VND Virtual Network Deployment
VNF Virtual Network Function
VNFC Virtual Network Function Component
VNFM Virtual Network Function Manager
VoIP Voice over IP
vSPGW-C Virtual Software Packet Gate Way Control Plane
vSPGW-U Virtual Software Packet Gate Way User Plane

QoS Quality of Service

XOS Everything as a service Operating System

5G 5th Generation

vii

Table of Contents

Sections Page
- Acknowledgements iv
- Abbreviations v
- Table of Contents vii
- List of Figures ix
- List of Tables x

- Abstract 1

1 Introduction 2

2 Literature Review 5
2.1 - General Literature 5
2.1.1 - - Cloud 5
2.1.2 - - SDN and NFV 7
2.1.2.1 - - - SDN – Software Defined Networking 7
2.1.2.2 - - - NFV – Network Function Virtualization 8
2.1.3 - - MANO Architecture 11
2.1.4 - - M-CORD 12
2.2 - Related work Literature 13

3 Monitoring and Autoscaling System 18
3.1 - Modifications proposed 20
3.2 - Layers 21
3.2.1 - - Infrastructure Layer 21
3.2.2 - - Management Layer 22
3.2.3 - - Application Layer 23
3.3 - Modules 24
3.3.1 - - Intent Based Autoscale Application 27
3.3.1.1 - - - Information Assembler 27
3.3.1.2 - - - Autoscale Controller 29
3.3.1.3 - - - Configuration Invoker 32
3.3.2 - - Monitoring Microservice 33
3.4 - Configuration of System 34
3.5 - Specifications 35
3.5.1 - - Application specifications 35
3.5.2 - - Microservice specifications 35

viii

4 Evaluation and Results 36
4.1 - CORD Configuration Steps 37
4.1.1 - - Preparation-targets 37
4.1.2 - - MaaS-targets 37
4.1.3 - - XOS-targets 38
4.1.4 - - ONOS-targets 38
4.1.5 - - OpenStack-targets 38
4.1.6 - - Post Onboarding-targets 38
4.1.7 - - Additional CiaB-targets 38
4.2 - Evaluation Metrics 39
4.2.1 - - Assigned CPU Usage 39
4.2.2 - - Overall CPU Usage 39
4.3 - Evaluation Results 40
4.3.1 - - Assigned CPU Usage 40
4.3.1.1 - - - Average stats for each VNF 40
4.3.1.2 - - - Average stats for all VNFs 44
4.3.2 - - Overall CPU Usage 48
4.3.2.1 - - - Average stats for overall CPU 48

5 Conclusion and Future Work 51

6 References 52

ix

List of Figures

Name Pp.
Figure 1: OpenStack Overview – Infrastructure as a Service 6
Figure 2: SDN Architecture – Abstracted Logical View of SDN 7
Figure 3: NFV Architecture – An Overview of NFV Elements 9
Figure 4: NFVO interaction with OSS/BSS and VNFM 10
Figure 5: NFV MANO – Management and Orchestration 11
Figure 6: Overall Architecture for Autoscaling VNFs 19
Figure 7: Monitoring microservice comm. with sync. via an API 22
Figure 8: Steps – Overall mechanism between the sys. components 24
Figure 9: Information Assembler Database Tables 27
Figure 10: Autoscale-Controller – Flow chart of decision-making prc. 29
Figure 11: Autoscale-Controller – Mechanism of decision-making prc. 30
Figure 12: Autoscale-Controller – Algorithm of decision-making prc. 31
Figure 13: Configuration Invoker comm. with Autoscale Controller 32
Figure 14: Configuration and Requirements of the System 34
Figure 15: CORD installation steps 37
Figure 16: Usage of Assigned CPU/VNF for first cycle 41
Figure 17: Usage of Assigned CPU/VNF for second cycle 42
Figure 18: Usage of Assigned CPU/VNF for third cycle 43
Figure 19: Usage of Assigned CPU/VNFs for first cycle 45
Figure 20: Usage of Assigned CPU/VNFs for second cycle 46
Figure 21: Usage of Assigned CPU/VNFs for third cycle 47
Figure 22: Usage of Total CPU (bar) 49
Figure 23: Usage of Total CPU (line) 49
Figure 24: Core allocation by applying different workloads on VM 50

x

List of Tables

Name Pp.
Table 1: Specifications of Physical and Deployment system 36
Table 2: Cycle 1: Usage percentage for each VNF at time interval ‘t’ 40
Table 3: Cycle 2: Usage percentage for each VNF at time interval ‘t’ 42
Table 4: Cycle 3: Usage percentage for each VNF at time interval ‘t’ 43
Table 5: Cycle 1: Usage percentage for all VNFs at time interval ‘t’ 44
Table 6: Cycle 2: Usage percentage for all VNFs at time interval ‘t’ 46
Table 7: Cycle 3: Usage percentage for all the VNF at time interval ‘t’ 47
Table 8: Average usage percentage of Total CPU at time-interval ‘t’ 48

1

Abstract

Autoscaling is one of the principal objectives for the intent based future
networks. Scaling the cloud resources in different situations was dependant on
a cloud expert administrator. This dependancy led to the demand of automating
the process of scaling resources. Specifically, one of the key players that drove
and came up with the idea of autoscaling network resources was SDN, Invention
of SDN led to the possibility of autoscaling in cloud environments because of its
capability to separate the control plane from the data plane. Automating the
process of scaling network resources was not possible without the need of an
administrator but as the networks evolved with the invention of SDN, it led to
provide connectivity between the virtualized network resources. To use the
network resources efficiently is the focal interests of future networks. The
proposed system comprises of an intent based autoscaling application,
monitoring microservice and a few modifications proposed to the elementary
management services. The application takes the network resource’s key factors
into account such as cores in execution-times, CPS, RAM, Hard disk,
hyper-threads etc, and keeps weight factor into consideration for
virtualized/physical core, while deciding the resource scalability after the
intervals. All the factors mentioned above, ensure to estimate the assignation of
resources up to optimal. This mechanism provides us a platform with efficient
computation capabilities. While the necessary monitoring keeps track of the
information from all over the virtual network resources assigned to a specific
tenant. The proposed monitoring service being at the management layer
provides us a way to fetch realtime data from the resources in a less latent
approach. For the overall system, M-CORD (a Framework developed by ONF)
was used to deploy network functions inside compute machines and integrated
the proposed system with it to evaluate the aforementioned key factor such as
efficiency, in terms of CPU, RAM usages for specific intervals.

2

1 Introduction
We present the introduction by starting with the problem-statement and then
jump towards explaining our motivation to introduce the system objectives. The
way the content is organized, is also described at the end of this section.

As central offices being put on the edge clouds makes them of more vital
importance when it comes to the performance of the network services.
Mentioning the telco’s infrastructure, it is not wrong to say that it requires a
lot of expense in the infrastructure to provide the network resources. Making
the orchestration [9] process automatic [2] and efficient provides us the
motivation to introduce a solution of autoscaling. One of the use case for
automation is autoscaling, which means to automatically scale in/out the
network resources in the time when it is needed.

Scaling services in cloud [10] environments is of importance no doubt, but the
quality of service that the network services should provide to the
vendors/clients must be guaranteed and is of vital importance. As it all depends
upon the usage of resources responsible to serve the traffic coming from end
users, so ignoring the key factors including the computing resources whether
they are virtual/physical can either result in over utilization or under utilization
of the resources. Another factor of interest is the weight factor [11] used to
calculate the accurate resources to be assigned to a tenant/vendor through the
use of an efficient algorithm proposed in terms of usage the amount of
resources over the whole interval of time as well as the efficiency into account.

So, the architecture in itself proposes an efficient way to place the modules in
such a way that it provides a less latent model of request handling between the
microservices. This model is defined through well defined API(s) [12] which
provides us a way to program such services which are platform/language
independent through the use of JSON [13] formatted requests and responses.

3

The primary motivation and objective of this research is to make the process of
autoscaling efficient. Efficiency of the system comes through the proper
allocation of computing resources including CPU, RAM, Hard disk in the telco
networks, which run network services on them. System comprises of an Intent
[14] Based Autoscaling application and Monitoring [4] microservice. Firstly, the
application comprises of a database store that is synchronized with the resource
usage of each of the network function instances. The usage information of
resources is provided through a proper and well defined interface between the
Monitoring [4] microservice and the Intent [14] Based Autoscaling application.

The realtime data and the policies defined by the contract [14], both define
when to scale in/out which of network instances. This improves the usage of
resources by an intelligent decision-making algorithm. i.e. efficiency of the
system. The system also takes the factor into account that the user defined
contract is not violated.

By following the above mentioned objectives and procedures, it is intended to
provide a mechanism of autoscaling which is efficient. Secondly, through well
defined procedures in the architecture, the plan is to show efficiency by
comparing the assigned resources with the used resources. The evaluation of
the system performance is proven to be better. To show the future
enhancements that can be made to this system are also one of the objectives of
this document.

The content of this thesis is organized from Chapter 2 – Chapter 6 as:

Chapter 2 – This section starts by providing the necessary information of cloud,
specifically the OpenStack [15] which provides IaaS. After enlightening the cloud
infrastructure, a detailed literature for the SDN [3] and NFV [9,16] is provided.
M-CORD [6,7] platform is enlightened in details with its technical architecture.

4

Chapter 3 – This section covers the details of proposed design for this
document, with the interfaces it has and then the minor details of the
mechanism is described. The layered architecture and the placement of
applications is also discussed in terms of benefits.

Chapter 4 – This section covers the steps taken to evaluate the results. Firstly,
the setup environment is discussed. The necessary steps/targets required to
configure the test environment is also explained in detail. At the end, the
metrics used to evaluate are shown and their impacts on the system are
analysed with discussion.

Chapter 5 – Finally, concluded the whole thesis’s purpose and provided the
necessary direction for future to be followed.

Chapter 6 – References section provides all the documents, papers, open source
projects that were used as help in different ways such as for a referral, details
and implementations.

5

2 Literature Review
We have divided the literature into 2 sections as there are some vast topics to
be discussed earlier rather than to start jumping towards the related work. For
this purpose, we present them as followed:

2.1 General Literature

The general literature introduces each and every detail of the concepts used in
this document. We also tried to explain them in a way to make our project
more easily understandable.

2.1.1 Cloud

As the clouds [10] play a very important and vital role to provide either
software, platform or infrastructure as a service. The main theme of cloud is to
provide a flexible environment to the service providers, so that they don’t have
to worry or think about the technical problems that could arise while upgrading
or migrating the system. It is clear from the figure below which allows the
cloud resource provider to partition the infrastructure into multiple isolated
environments. This further gives the flexibility to achieve platform
independency. This attribute of cloud improves the efficient resource usage of
the infrastructure.

The below figure shows an example of Infrastructure as a Service i.e.
OpenStack. The way this platform works is that it has services deployed across
the compute nodes as distribute services. It has some of the services deployed
on the controller node. A few names of the services that are used in this
project are Keystone, Glance, Nova, Neutron, Horizon etc [15].

Keystone authenticates the requests made among the services of OpenStack
cloud controller. Glance is another important service that OpenStack has, which
stores the images of the virtual machines. Nova provisions the VMs by fetching
Glance images on a specific network. Neutron is there only to create network(s),

6

subnet(s) and is responsible to handle the requests related to network
management. By default it has some of the basic capabilities of networking
embedded in its own project, but it can be integrated with SDN to enhance the
functionality of networking in cloud environment. Horizon service in order to
make the IaaS to work properly provides a GUI.

Figure 1 OpenStack Overview – Infrastructure as a Service

Concluding all of the services that it provides, this project (OpenStack [15]) at
the end tends to provide infrastructure as a service. On this infrastructure, the
it provides the ability to create virtual resources such as virtual-machines,
virtual-networking and virtual-storage which are logically isolated from the
other virtual-resources deployed on the same infrastructure. This architecture
of providing infrastructure as a Service retains flexibility both for the clients as
well as the vendors. The vendors flexibility means that they can add their own
custom services as on top of OpenStack to manage their infrastructure
according to their own custom requirements.

7

2.1.2 SDN & NFV

First we give a brief overview of what SDN is and how it relates to our work
and in the second subsection we put more details on the NFV architectures
available and how are these related to our work. How much the current
platform differs from NFV is also discussed here.

2.1.2.1 SDN – Software Defined Networking

Software Defined Networking had its deep root concepts from the very early age
of networks. The need of this kind of architecture was due to the high cost of
hardware and even after investing too much money on the hardware, the
network operators were not able to bring innovativeness without the need of a
new hardware. The SDN Architecture had its concept in ATM(s) [23] and in
some of the traditional systems but approaches were not officially standardized.

Figure 2 SDN Architecture – Abstracted Logical View of SDN

First staring with the network devices that build up the network infrastructure
layer. These devices could be switches, routers, radio-access points or any kind
of device that is needed to build up a complete network to provide connectivity.
These devices in the case of SDN, only have the role to forward the data-plane

8

traffic rather than to take the decisions autonomously like traditional network
devices. This gives the control to some other party [3] that we are going to talk
about in the next paragraph. Second layer of the SDN is also known as the
brain of SDN. The intelligence that was separated from the infrastructure is
now a part of SDN Controller. This is the part where Network Services exist.
and are in the form of a software. This separation of control-plane from the
data-plane allows us to control the data-plane by a variety of network
applications. Then comes the last and top most layer of SDN Architecture. It is
where the northbound applications run and communicate with the controller via
REST API interfaces. This gives the flexibility to developers to use any type of
language to use for developing the application. OpenStack or VMware vCloud
Director could be integrated via the REST API(s) exposed on the northbound.
Then these kind of applications could be useful to manage the network services
in a cloud. Other example of network applications could be given such as a
custom routing application and monitoring application.

2.1.2.2 NFV – Network Function Virtualization

NFV is often confused with the term SDN. So in this part of the literature, first
we’re going to have a look at what NFV [16,17] is. Then we will observe the
differences between the SDN and NFV. The main goal of NFV is to provide a
cheaper platform to control the virtual networks using both the attributes of a
Orchestration techniques, Cloud and SDN together. A lot of standards have
been defined from different organizations of which the most prominent
organizations are ETSI [17] and OPNFV [18]. Both are explained with details in
the later sections. Now we put some light on the key elements involved in the
NFV architecture. The below shown figure has 3 layers. Starting from bottom
most layer, it can be seen that it comprises of NFVI and VIM [17]. NFVI is
known Network Function Virtualization Infrastructure while VIM is called a
Virtual Infrastructure Manager. VIM is a manager for the cloud infrastructure
manager. The most popular example of cloud IaaS is OpenStack [15]. OpenStack
provides a way to create isolated/virtual environments (for storages, networks,

9

VMs) on the infrastructure via the services it provides. NFVI has a virtualization
layer in between the virtual resources and the actual resources. Actually this
virtualization layer is called as a hypervisor/container-engine in the case of a
VM/container respectively. SDN switch works as network hypervisor which
enables the separation of control plane and data plane. Virtual storage
hypervisor [25] runs as an agent inside the VM and maps it onto the physical
infrastructure.

Figure 3 NFV Architecture – An Overview of NFV Elements

The second layer is the virtual resources. The first component in this layer is
VNFM (Virtual Network Function Manager). It is responsible to manage the
life-cycle of the VNF(s) that are specific to a VNF Manager. Each VNF is
associated to a specific VNFM. There can be multiple VNFM(s) under the
orchestrator to handle multiple domains. It takes care of the instantiation of the
VNF(s), scaling them up or down on the virtual layer. It can also take necessary
actions such as updating, upgrading or the termination of the VNF(s). VNFM
also has other interfaces for interacting with EMS(s) and the Orchestrator. The

10

main difference between the VNFM and EMS is that the VNFM manages the VNF
such as scaling them up or down while the EMS manages the functional part of
the VNF. An EMS has usually a one to one relation with a VNF but it can span
up to manage multiple VNF(s). These VNF(s) are deployed on the NFVI.

The third layer in NFV comprises of OSS/BSS and Orchestrator. OSS/BSS just
lets the network organization employee(s) to interact with the whole system.
These tasks or responsibilities could be to apply policies to the underlying
system or it could allow the businesses to define the network services via the
help of an orchestrator [9]. Orchestrator is the one which holds the network
service definitions that are described as NSD(s) and NFD(s) [26] from within
different domains of network operators. These NSD(s) and NFS(s) are translated
by the Orchestrator (via VNFM, VIM and NFVI) into applicable configurations to
the underlying platforms. The NFV Orchestrator abbreviated as NFVO [19] has
information of NS-catalogue, VNF-catalogue, NFV Instances and NFVI resources.
Network service and VNF catalogues contain all information of the network
services and VNF(s). The two main responsibilities of NFVO are resource and
network service orchestration.

Figure 4 NFVO interaction with OSS/BSS and VNFM

11

2.1.3 MANO Architecture

In this section we describe the MANO [19] as a subpart of NFV Architecture. It
comprises of an Orchestrator [9], VNFM and a VIM. The orchestrator has the
responsibility to orchestrate two things. One is resource and the second is the
network services. It interacts with VIM in order to orchestrate the necessary
virtual resources such as compute (VMs), network resources.

Figure 5 NFV MANO – Management and Orchestration

Second is the network service to be orchestrated. This is achieved by the
interaction of an orchestrator with the VNFM. For this purpose, the
orchestrator requires NS-catalogue and VNF-catalogue.

Then VNFM communicates with the VIM to look for the resources if they have
been setup for deployment or not. Until they are setup, VNFM waits and after
the procedure is completed, it deploys the Element Managers inside the VNF or
the VM. These element-managers are responsible to manage the functions
inside a VNF. These element-manager deploy the function initially and also
manage the functions while they are running too.

12

2.1.4 M-CORD

This section is to familiarize you with the M-CORD [6] terminologies. The owner
organization of this project is ONF. It’s goal is to provide a framework which
can orchestrate everything as a network services. M-CORD is the framework on
which any vendors network services can be deployed. We as a student chose an
opensource and free solution i.e. OAI [28,30] Network Services. We used their
eNB and vEPC network services for deploying the access and core network
functionality and our own developed NSSF network service.

This framework with the help of their own developed XOS [20] enables the
stakeholder to run every thing as a service. Even the most common opensource
projects such as OpenStack and ONOS run under XOS as a services, thus
allowing to integrate multiple projects to communicate with each other. This
ability of running each thing on the same level allows flexibility in terms of
your service exposure and openness as well. First we’ll start by explaining how
OpenStack and ONOS runs as a service under the roof of XOS. For deployment,
consider 3 nodes corddev, head and compute nodes. The head-node contains
the synchronizers services. In case of OpenStack [15], ONOS and VNFs, it has
synchronizers for each of them. The purpose of OpenStack in this framework is
that it handles the management of VMs. ONOS [21] has two of the applications
highly customized e.g vRouter [31,32,33] (which is responsible to route the
traffic from one subnet to other subnet) and CORD-VTN [31,32,34] (which is
responsible to manage the isolated networks).

XOS is the manager of all the services. It is the brain of this architecture. The
synchronizers are responsible to perform the steps to setup the state of an
entity to the desired state with some predefined steps. Synchronizers does the
job of an Elementary management services to ensure the management of
system.

13

2.2 Related work Literature

In this section, we discuss about the related work that has been done is
currently being researched on.

The author in the paper [1] uses the Tacker to showcase the benefits of NFV
Architecture. Throughout this paper, autoscaling functionality and the reasons
of deploying VNFs in virtual-machines has been discussed. It also shows how
we can reduce time of automatic-provisioning or autoscaling resources
dynamically.

Author of paper [2] describes a mechanism to autoscale the resources.
Specially, the data plane functions such as SGW, PGW and how they can affect
the CAPEX and OPEX. The unique thing about this document is that they
propose a BAAS. This autoscaling mechanism maintains an accurate and precise
user-equipment bit-rate required in the network-slices without over-provisioning
of the resources.

Monitoring in NFV environment is much of an importance as the response-time
of monitoring could dynamically change due to the nature of cloud. In this
paper [4], they propose a solution of VNFC monitoring driver. Instead of their
approach, we used API based interfaces to achieve platform independency for
the network developers. This lets the developers and organizations to deploy
their services (monitoring-services) on platforms irrespective of platforms.

In the paper [5], we proposed a solution in NFV environment that comprises of
an application to autoscale as well as a monitoring solution, as our
contribution. The importance of orchestration has been mentioned for the
future networks. The monitoring importance is related with the orchestration
mechanism, as it is of vital importance to provide real-time data correctly and
without any delay.

14

In the thesis [6], the author proposes a layered solution termed as VIM
Adaptation Layer for CORD. The author describes the need for a generic layer
in order to define a generic XOS models. This will also allow to us to define
generic synchronizers which will merge the functionality of multiple Virtual
Infrastructure Managers and Multiple SDNC. The author also describes the way
of installing M-CORD platform which we also discuss in our section relevant to
the M-CORD platform.

In the mentioned paper [8], we as contributor explained a way to manage
network slicing inside the M-CORD framework. We also developed a prototype to
demonstrate the LTE Advanced architecture. We used the OpenStack and ONOS
based integrated test-bed. The slicing in this prototype was done at transport
level. This paper helps us to understand transport network slice management.

In the paper [9], author highlights the need of dynamic adaptation of SFC paths
due to the high availability requirements. They propose an SDN orchestrator
that adapts the service chaining paths to reduce congestion in the network.
Along with this mechanism, it ensure the QoS provided.

Writer of the paper [10] describes the issues and techniques that are used to
fulfil the demands of network users at peak workloads. These needs require a
central/autonomic management system which the author proposes. They provide
a mechanism of provisioning virtual machine resources dynamically at the peak
workload time. They provided a solution that guarantees the optimal power
consumption in the time of high/low traffic both.

In the paper [11], author proposes an algorithm in which autoscaling decision is
made by trading off between the cost an performance. For this purpose, they
use the weight factors, capacity of VNFs, threshold, job arrival rate, service
rate for each server, setup rate (time required) for each VM.

15

Author highlights two issues in the current systems in this paper [13].
Consistency and data-integrity are achieved via subsystems that exchange
information in JSON format. This approach also lets two different systems to be
interoperable via a standardized message exchange format i.e. JSON.

In the paper [14], we proposed and developed a sloution in which we give the
facility of defining high-level contractual information to the subscriber as well
as the network operator. This approach fulfills the requirement of user/operator
driven system for the provisioning of a network slice. We developed an IBN
application for this purpose which was responsible to detect and resolve
conflicts via the use of our vocabulary-store that stored the necessary
information of the supported network-services and architectures.

In the book [15], author defines the necessary literature related to the NFV
(Network Function Virtualization) required for the beginner, intermediate level
learners. Author also describes the need of an SDN inside the defined NFV
architecture with different perspectives of a user.

The paper [20] proposing an application defined operating-system solution for
the Datacenter computing platforms. As from the name XOS, it refers to an
Operating System which runs everything as a service. This provides good
scalability and strong performance with isolation. This kind of mechanism in
order to orchestrate everything on the same level achieves high level of
integrity among the services. It is a Service Orchestrator in M-CORD framework
that provides a GUI to interact with as well it exposes REST API interfaces in
order to allow the integration of outside systems too. We used these XOS
provided REST API(s) to integrate our IBN application [14] with M-CORD.

16

The white paper [24] discussing about new norms for the networks has a
section about the Openflow agent. This document also puts some of the light on
the protocol that is used for the communication between switches and the
Software Defined Controller. The benefits of having Openflow as a southbound
protocol are discussed in this paper such as central control for multiple
vendors, less complexity in networking, higher rate of innovation, increased
security, more granular network control and better user experiences.

In the paper [26], author proposes a way of describing a virtual network
deployment termed as VND. It proposes an extended OVF solution that is
constraint based. It discusses the behaviour of elements involved in the virtual
networks which are nodes, links, networks and then put two viewpoints:
requested service quality and quality of service offered.

From this paper [35], we refer to show or raise the point of how much dependent
memory and core requirements are on the applications hosted on it. So the first
thing that comes into mind is that the application has a number of functions to
perform so why not take the execution-time of the specific actions for calculating
the resources requirements. The author talks about the parallelism involved in the
applications which could be either inter or intra application. These two aspects are
important for estimating the core for a virtual machine as there are other
applications running on the virtual-machine as well as the same application might
have some processes which are running concurrently for achieving better
performance.

Firstly, the author discusses the dependencies and communication between tasks
within a BP, Secondly it takes into account several objectives like to minimize the
execution time/cost of a program and maximizing the resource utilization. Other
factors when involved such as unavailability of resources and due to the overloaded
networks which make the scheduling algorithm more complex. The solution in this
paper [36] is the proposal of an adaptive BP in the cloud.

17

The author in this paper [37] proposes an extensible orchestration technique,
specifically for the IP multimedia subsystem i.e. IMS. IP multimedia services which
could be VoIP and Calling etc. The author used MCN Monitoring as a Service MaaS
and OpenBaton for building up a complete setup for monitoring and orchestration
together respectively. This is completely compliant to ETSI NFV’s MANO
specifications

Although the current NFV implementations done by the current organizational bodies
are improving day by day but the service lifecycle is not managed well enough
which includes the responsibility of reducing time of resource creation, repairing
and deletion. Author in the paper [38] proposes a solution fulfilling the
aforementioned attributes which could overall improve the lifecycle management for
the VNFs in NFV Architecture.

The author of this paper [39] proposes a new solution that is a two
time-targeted scheduling scheme. This involves both systems which are to be
deployed sequentially as well as in a distributed deployment. At the end they
compare their system’s performance, in the form of an number which is an
optimized number to show how much resources are to be assigned.

In the paper [40] discusses the impacts of hyperthreading overhread on the
processing capabilities. They calculated the efficiency by providing a comparison
between the hyper-threaded and single-threaded processors with the use of
PMU data.

18

3 Monitoring and Autoscaling System

We propose a solution to autoscale [35] the VNF(s) inside M-CORD framework
with the help of our custom monitoring application. The VNF(s) are under/over
utilized in some cases causing unfairness on the cloud data-centers for other
operators. We intend to provide a solution for the following problem to
distribute the resources among different tenants depending on the policies as
well as the resource usage by the VNF(s). The resource usage parameters are
the uniqueness of this system that the other systems don’t take into account.
The design of the system is followed by this section. The conceptual layers are
explained in the coming subsections.

The design presented below defines the architecture and overview of how
modules are logically separated on different layers of the design. First comes
the Application layer which is at the top of architecture and it includes our
Autoscaling Application having 3 sub-modules named as Configuration-invoker,
Autoscale-controller and Information Assembler. Then comes the Management
layer where our custom monitoring application lies which reduces the latency of
processing in the current mechanisms. The elementary management services
[17] often termed as synchronizers in the world of ONF, have been modified to
adopt the situation. Each synchronizer exposes an API interface which provides
a way to fetch the information of resources used. This information includes the
number of requests received and the memory related parameters. Using this
information, we estimate the resources to be assigned for the next cycle e.g.
CPU, RAM etc. We use the weight factor [10,11] to assign the cores as it is
obvious that the virtual core’s performance is not equal to the physical core’s
performance, specifically in the worst cases. As the mobile networks is a critical
area where we can’t take risks but also to utilize the resources up to optimum.
We provide a mechanism and an algorithm to solve the problems addressed in
an efficient manner. This approach as a prerequisite leads us to calculate the
number of CPU(s) to be assigned upon the bases of the execution-times [36] for

19

the programs that run inside the VNF(s). This approach as a result frees up the
resources that not need to be assigned, letting the other tenants or network
operators to use the resources. Another that results using our proposed
architecture is that the resources that are assigned are used up to the optimum
level. This study and demonstration proves itself in the Experiments and
Evaluation’s section to be worthy. Another aspect of our application is that you
can customize it in a really simple way which offers flexibility to the developers.

Figure 6 Overall Architecture for Autoscaling VNFs

Lets go into the details of each of the modules, their interfaces, the layers
where they reside as well as the modifications proposed in the already used
functionalities.

20

3.1 Modifications proposed

We have modified some of the parts inside the network services provided by
OAISIM [28,30]. These changes are made only for the purpose to enhance the
functionality, performance wise as well as simpler architecture. The
modifications made in the system are specifically related to the synchronizers.

First we modified each of the function of a VNF to dump the request time for
that action. Then we exposed an API for each of the VNF’s dumped data. All
these changes were made to achieve simplicity, platform independency,
customization and better performance. The most prominent benefit is the
performance which we achieved by reducing the process communication
involved in the cloud service based monitoring. So, we proposed a customized
monitoring [4] solution that has less process latency as it is directly linked to
the synchronizer level.

Another change made to the request dumping procedure is that, usually we
store request-in time for the action [36], but we don’t use request-finish time.
as we have the execution-time for each of the action, thus the processing
capabilities of the monitoring application were also enhance and optimized.

We also plan to enhance other parts to improve performance of the calculation
of execution-times for the actions. The conversion of execution-times to clocks
per cycle was a difficult job to perform. Though, the results were productive by
achieving the defined criteria through the designed and programmed system, we
plan to further enhance this mechanism of conversion to improve the system.

21

3.2 Layers

We have 3 layers in the proposed architecture built upon the M-CORD
framework. We describe them as the Application, Management and
Infrastructure layers. Lets get into the details of each of it

3.2.1 Infrastructure Layer

This part of the architecture includes is the infrastructure on which the cloud
services run and collectively provide us an NFVI. OpenStack plays the part of
VIM over here and for the purpose of NFVI, we have an hypervisor
KVM/LIBVIRT [6]. It also includes virtual switches which lets the virtual
machines connect to each other through networks which are created using the
TOSCA [6,] formatted configuration.

This layer has three nodes named as corddev-node, head-node and
compute-node. We can have more compute nodes as much as we can. But for
our use-case, we only have one compute-node. The VNF(s) running on the
virtual-machine as instances are inside the compute-nodes. These network
services comprising of VNF services could be IMS [37], VoIP, Calling etc. While
the management services and the synchronizers (element management services)
run on the head-node. Apart from these services there are synchronizers
running for each of the project service of OpenStack (cloud) as well as for
ONOS (SDN). All this setup is done using the corddev-node. Once the
head-node and compute-node are up, running and functional the corddev-node
is of no use to us. The two main concerned parts of the infrastructure layer
are head-node on which services run and the compute-node on which the
actual VNF(s) run with the switched virtual networks. In the next section, we
define the Management layer that plays an important role in the monitoring of
resources in an efficient way.

22

3.2.2 Management Layer

This layer contains most of the part on head-node, which was told previously
in detail that it holds the management. As we know that the OpenStack
monitoring or any of the cloud supported monitoring systems are not supposed
to be deployed onto a known location which does not let the overall system to
measure the process latency or delay. For this purpose, we propose a
monitoring microservice that is supposed to be on the head-node, closer to the
other element management services. This gives the monitoring service a straight
forward connection to the synchronizers resulting in less process latency, which
was one of the goals in our architecture. Secondly it is a flexible and custom
way to be adopted by the developers. Because of the messaging mechanism
between the monitoring service and synchronizers is achieved by the exchange
of JSON formatted messages, this lets developers to focus on what to develop
rather than what platforms/languages to chose for development.

Figure 7 Monitoring microservice communication with synchronizers via an API

Now lets talk about the application’s functionality. It fetches information from
the synchronizers and passes it over to the Information Assembler residing
inside the Autoscaling application at the application layer. The data includes the
requests related to a specific action of a VNF. This information is stored in the
Information Assembler’s store about which we will further discuss about, in
details under the section of Modules.

23

3.2.3 Application Layer

This part of the architecture includes our Autoscaling Application, which is the
brain to decide. It is responsible to scale up/down the resources according to
the usage of resources based on real-time data. Putting the Autoscaling
Application on this layer is that the application deployable becomes easier to
upgrade or migrate the application in this case. We put three modules as our
contribution inside this application. The modules are Information Assembler,
Autoscale Controller and the Configuration Invoker. The role of Information
Assembler is to store the information of resource usage. It’s design is highly
customizable. The decisions made in this application are intelligent thus provide
an efficient orchestration [9,38] mechanism

24

3.3 Modules

The system contains two modules and some changes in the modules of the
proposed system. The first one is Intent [14] Based Autoscale application while
the second one is the Monitoring [4] microservice and the other modules
already in existence are the microservices based synchronizer which have been
slightly modified to accomplish the criteria defined in the objectives of this
document.

Before going into much details of each of the modules, I feel the necessity to
explain how they interact with each other diagrammatically.

Figure 8 Steps - Overall mechanism between the system components

25

All these modules work in parallel and are not bound to execute their programs
based on triggers. This provides a mechanism to achieve parallelism in
computing of the management and application.

For the purpose of easy illustration, we believe to start the from synchronizers.
We have modified them to fit in the situation and proposed scenario of ours to
accomplish efficient mechanism. Whenever the requests are received by the
VNF(s), the request with its time-stamp is dumped onto a storage residing on
the head-node. This request is associated with a specific instance’s action
performed. Now coming towards the monitoring application, it fetches the
information stored from each of the synchronizers (element managers). This
fetching process takes place via API interfaces. The messaging format exchange
between the monitoring application and the synchronizers is JSON. This allows
the creation of a platform independent application as well as allows the
application to be used on multiple type of platforms.

The monitoring microservice then stores this information onto the Information
Assembler. The design for this store is provided in the next coming subsections.
For database development, we used MySQL and the tables were named as VNFs,
Instances, Actions and Requests. In simple words, these tables contain the
request information for each of the VNF instance. It also stores the necessary
information such as Network service catalogue with it instance catalogue as
well. All this fetching procedure occurs on regular cycle of intervals, to
maintain consistency in our proposed system which is responsibility of
Autoscaling application to take decisions based on latest and real-time historical
data.

The autoscaling [11] decision process is the key factor of our system i.e.
Autoscale Controller. The factors that make it unique are the conversion of
CPU(s) as clocks per cycle and using the execution-time [36,39] of a program to
estimate the CPU(s) required for the next interval. Another important factor in

26

selecting the number of CPU(s) is the weight factor [11]. It is used for making
comparisons between the nesting level of virtualization. The more the nested
level increases, we decrease the weight as the virtualized CPU loses it’s capacity
in worst cases. An algorithm for the purpose to illustrate decision-making
process is going to be discussed in later section with diagrams and an
algorithmic representation.

The last step to be taken in this mechanism (for one cycle of decision) is the
generation of configurations. For this purpose, we’ve developed a module named
as a Configuration Invoker. This module takes number of instances, their id(s)
as an input, number of resources to be assigned. With the context of these
inputs, this module generates a configuration in the TOSCA format, which is
then passed backed as a response to the Autoscale Controller.

The Autoscale controller posts this configuration to the XOS via its exposed
API(s). The rest of the responsibility is fulfilled by the services deployed on the
head-node of our system deployment. The XOS synchronizers store this
configuration information into the XOS-DB [20], while the other synchronizers
run a scheduled check of change in the configurations. By detecting this
change in the configuration, they try to reflect the changes to the VNF(s)
deployed and running on the compute-nodes.

27

3.3.1 Intent Based Autoscale Application

This part of proposed is intended to explain the internals of Autoscale
application. Now that we’ve briefly defined the modules, they need to be
technically described in detail.

3.3.1.1 Information Assembler

It is the catalogue where the information related to VNF(s), instances, database
is stored. It has four tables named as VNFs, Instances, Actions and the
Requests. As from the name VNFs, is obvious that it is the catalogue for VNFs.
It holds the details of a VNF such as its name, number of actions it has in its
program, minimum cps (clocks per cycle speed) required for the VNF to boot
up and the threshold cps (clocks per cycle) required for the program to run up
to its best performance. Instances table have the information related to an
actual instance of VNF running. One VNF can have multiple instances. From
the table Actions, we can presume that it should contain the number of actions
that it can perform. So it indirectly to saying that this table contains the details
of actions of an instances. It also has an execution-time [39] associated with
each of the action it contains in its database. The Requests table, contains the
requests received by a specific instance.

Figure 9 Information Assembler Database Tables

28

One thing to be noted is that we use different iterators throughout this
document. i, j, k and x. “i” relates to the VNFs list iterator, “j” relates to the
instance iterator, “k” relates to the action iterator while “x” is the iterator used
for the number of requests received by a specific instance. Below are the sets
of VNF(s) deployed and the set of requests received by an instance:

IC denotes Instance count while AC denotes Action count. The below two
equations are to accumulate the Instance count as well as the Actions count for
a specific VNF and an instance respectively:

The ET denotes to execution-time [39]. First equation shows the execution-time
for a specific instance “i”, by assuming 1 request per action of the instance.
The second equation shows the overall execution-time for the specific interval
of time “t”:

29

3.3.1.2 Autoscale Controller

First of all there are some norms to be standardized before moving on further.
Lets consider PR is the sorted set of VNFs in order of priority. This priority
shows the priority of necessity to be auto-scaled first:

The procedure of Autoscaling Controller flow-chart is as follows. First of all it
iterates the VNFs list by priority. Then loops on each of the instance and the
inner dark-grey box use the inner iteration, specific to an instance. First it
fetches the necessary information from the Information Assembler, then
calculates cps used for this interval and estimate the cps required for the next
interval. This calculation of cps from execution-time is done with the help of
getting information about the number of requests per second.

Figure 10 Autoscale-Controller – Flow chart of decision-making process

30

We’ve pre-calculated the minimum cps and threshold cps required for the
current running instance. If the required cps (calculated) is greater than sum
of minimum cps and threshold cps, then it moves on otherwise the algorithm
continues with the same steps for next instance in cycle. While we’re assuming
here that check of assuring the resource is passed so the algorithm will assign
a weight factor [11] on the basis of checking whether resource is physical or
virtual. By default, it is 1.0, while for virtual resource its value turns out to be
0.8 that shows the performance is low in worst cases for virtual cores.

Figure 11 Autoscale-Controller – Mechanism of decision-making process

Then by using required cps (that was calculated in the previous steps) and
weight factor for core, we put variation in core clocks per cycle estimated. The
final goal is achieved by multiplying final cps required with factor of 10^9. After
finalizing value for each instance, autoscale controller requests Configuration
Invoker to generate TOSCA configuration. This way it receives the configuration
and applies it through a post request to XOS (the Service Orchestrator).

31

Now we explain the same mechanism, in the form of an algorithm. The first
line shows the set of VNFs in priorities. It loops each VNF and then each of its
instances. It queries the results of that specific instance for the requests
received in that specific interval of time. Calculates the required cps for this
instance. Fetches the minimum cps required in order to boot the VNF instance
while considering the threshold cps value that ensures the minimum extra
processing to be assigned. This process is followed by the check to ensure the
correct estimation of cores to be assigned. It assigns a weight factor for the
nesting level of virtualization used. At the last part of this algorithm, it converts
the cps to GHz unit to check how much frequency of processing is required.

For the assignation of RAM, we use the defined standard which states that the
ratio between a CORE and RAM should 1:4. We modified it. So, considering an
example of 4 cores to be assigned to a VNF, We use the weight factor of
assigning the RAM 0.4 for all of the VNFs. and take the ceiling of that value.

Figure 12 Autoscale-Controller – Algorithm of decision-making

32

3.3.1.3 Configuration Invoker

This module of our Autoscaling application generates the TOSCA by translating
the JSON requirements sent by the Autoscale Controller. It has a few file
formats already stored into the CORD directory, from where it writes the file
and replaces the number of cores and RAM parameters for each of the VNF. As
the number of VNFs as the number of instances with the number of cores will
also change so, we also have to put the number of instance in the TOSCA
format. So, it results in creation or upgradation of resources.

Figure 13 Configuration Invoker Communication with Autoscale Controller

33

3.3.2 Monitoring Microservice

The microservice is a container based application on management layer. It
resides besides the other synchronizer services running on the head-node of
our configured system. It interacts with the synchronizers specific to a VNF
through a well defined API. We have modified the synchronizers to dump the
real-time data on the current node for a specific interval of time. This data is
then fetched by the monitoring microservice application from the synchronizers
and stores it as an object. This object is handed over to the Autoscale
application. The responsible module of Autoscale application for storing this
information is the Information Assembler. Once the information is stored, then
the responsibility of Monitoring microservice is finished until the time for next
cycle of fetching comes.

Monitoring microservice was developed in Python and libraries were used to
read and write monitoring data. All this mechanism was only to support a
custom monitoring solution, which is not platform dependent. The developer and
the organization who are providing this solution do not need to worry about the
platform as the message communication with the synchronizers is API based.
This property gives us platform independency. It also gives the application
developers to deploy their application on multiple platforms with a slighter
modification in the mechanism procedures.

34

3.4 Configuration of System

We developed and tested our proposed system on a server Intel Xeon with 16
physical cores having the capacity to handle instructions at the frequency of
2.4 GHz. Hyperthreading level was 2, which means we had 32 virtual cores. It
had 64 GB of memory (RAM) and 3.9 TB of the Hard disk.

For the deployment part, we used the CORD platform with M-CORD profile
configured with OAISIM Network services. First we configured the deployment of
network services one by one. After building it the final result was to have three
nodes. corddev, head and compute. As the name suggests that corddev node
was used for the purpose to setup head and compute node. Specification for
each of the nodes are provided in the figure below. Hyperthreading on the
compute node was done through the configurations at start, to increase number
of the cores. So, this was the overall configurations.

Figure 14 Configuration and Requirements of the System

35

3.5 Specifications

This section provides the specifications of the application and microservice that
we proposed and developed. The content is divided into two subsections to
enlighten the technical specifications and messages exchanged from each of the
modules with other modules. The subparts are as follows:

3.5.1 Application specifications

We have built our Autoscaling application in Python. All the mechanism
involved it is purely based on logic the factors involved, to autoscale the VNFs.
This application has three modules named as Autoscale Controller for the
purpose to decide when the system VNFs will scale up/down depending upon on
the usage of the resources. These resources are CPU usage and RAM usage.

Then comes the Information Assembler. We used the MySQL database platform
for the database creation. The data is stored on it by the monitoring application
and the maintenance of this data is done by the Information Assembler. The
usage of this data is requested by the Autoscale Controller.

3.5.2 Microservice specifications

The Microservice application is also developed in Python. It is implemented as a
container application which can interact with the other synchronizers through
its exposed interfaces. It is deployed in parallel with the synchronizers. These
synchronizers are often termed as Elementary Management Services as they are
involved in the management of VNF's functionality rather than the management
of VNFs lifecycle which is the job of a VNFM. Each VNF’s design is modified
such that it exposes the information of incoming requests.

Microservice application communicates with the Information Assembler to post
the data over there. Thus the purpose of Microservice application is to monitor
the real-time data and pass it onto the Autoscale application.

36

4 Evaluation and Results
This section contains the requirements for the environment setup, evaluation
metrics to be considered and then the evaluation results. The below table
describes the detailed specifications used for the physical system that we used.
Afterwards, it puts highlights the deployment details to accomplish the
test-environment. The table is as follows:

Physical
System

Server Details Intel Xeon(R) CPU ...
Server Hard Drive 3.9 TB
System Cores 16 (2.4 GHz)
Hyperthreads 2
Virtual Cores 16*(2) = 32
NIC 2
System Memory 64 GB
Operating System Ubuntu 16.04.3 LTS

Deployment
System

CORD profile M-CORD
Network Services OpenAir Interface
M-CORD release version 4.1
Nodes corddev, head, compute
corddev CORES/RAM 1/2
head CORES/RAM 8/16
compute CORES/RAM 8/16
compute hyperthreads 5
compute node virtual cores 8*(5) = 40
Database type MySQL
Python plugin for database SqlAlchemy
Languages Python 3.6
Development IDE PyCharm 2019.1.1
Hypervisor kvm/libvirt

Table 1 Specifications of Physical and Deployment system

37

4.1 CORD Configuration Steps

First we start by giving a brief overview of the targets to consider while setting
up the deployment. The figure shown below shows steps for the installation to
complete. These steps are categorized into 7 sections.

Figure 15 CORD installation steps

This section contains the steps to be taken to deploy the M-CORD framework.

4.1.1 Preparation-targets

The orange boxes shown refer to the preparation targets. These steps are the
intial steps to setup the head-node which contains synchronizers. It also builds
the VMs before the configuration of these VMs take place.

4.1.2 MaaS-targets

This term stands for Metal as a Service and allows the operator to use the
physical machine as a virtual machine. It helps the system to treat a physical
resource as a virtual resource. Green boxes represent these targets in figure.

38

4.1.3 XOS-targets

The targets represented as red boxes are responsible to pull the images, build
them and then to run the images. These images are run as Docker-containers.
One more purpose of these targets is to configure the XOS.

4.1.4 ONOS-targets

The blue boxes in previous figure represent ONOS targets. These targets install
the instances of ONOS as well as the applications to be used into them. Most
popular ONOS applications used under this platform are CORDVTN and vRouter.

4.1.5 OpenStack-targets

The only one target that deploys OpenStack is deploy-openstack highlighted as
purple box. This target is divided into two main steps. First one is to create
and configure the LXD containers for each subsystem of the OpenStack cloud
platform. Secondly, it deploys OpenStack with the help of Juju which is an
orchestration tool used to deploy, manage the applications running on cloud.

4.1.6 Post Onboarding-targets

This target configures the compute-node by using the playbook named as
cord-automation-playbook.yml. The specific target linked to this playbook is
termed as setup-automation. The two generated configurations are further used
to verify the compute-node’s deployment.

4.1.7 Additional CiaB-targets

This step is specific for the CiaB deployment. Here we just mention the two
targets which are setup-ciab-pcu and compute1-up. The first mentioned target
named as setup-ciab-pcu allows the remote control of power for the CiaB.
Compute1-up target boots up the compute node.

39

4.2 Evaluation Metrics

We used CPU usage to evaluate the proposed and developed system. As the
resource of CPU is critical and needs to be estimated as accurate as possible to
neither over-utilize nor under-utilize the CPU resource usage. We show the CPU
percentage used for the assigned CPU per VNFs, per all of the VNFs. We also
show the evaluations for the overall CPU resources used and freed up for the
tenant.

4.2.1 Assigned CPU Usage

This subsection highlights what the assigned cpu usage means. When we use
the term “assigned CPU usage”, we are talking about the number of CPU
percentage used by the entity/entities that had been assigned by the
orchestrator. Entity/entities refers to that we evaluate the metric assigned cpu
usage for each VNF instance as well as for the overall VNFs building up a
single network service.

4.2.2 Overall CPU Usage

We use this metric in order to show the total number of resources that are
freed up which helps out the orchestrator to verify and confirm the number of
resources freed up that can be used for other network domains. Our results
show the number of resources are freed up on one side and on the other side
prove that the resources assigned to them are being used up to the optimum.

40

4.3 Evaluation Results

This section provides the graphical and tabular representations for the results
that we concluded from our experiments. For the purpose of demonstration, we
divided this part into two subparts as follows:

4.3.1 Assigned CPU Usage

We divided this section into two subparts as follows:

4.3.1.1 Average stats for each VNF

The table shown below, contains the statistical details of the CPU percentage
used for each of the VNF instance running during this ‘t’ time-interval. By
analysing the statistics, we can clearly see that the number of resources are
being assigned as per needed. This causes the system to free up the unused
resources. It also ensures the optimum usage of resources during the ‘t’
time-interval. At start, most of the VNF instance are using the assigned CPU(s)
from the range 30 to 45. But after running 7 cycle intervals of time ‘t’, we are
able to get better results that use 50 to 60 percentage of the CPU assigned
CPU. It is deduced from the explanation of below shown statistics that our
system is moving towards efficient usage of resources. The stats for cycle # 1
are as follows:

VNF Usage % at time interval ‘t’ for VNF for first cycle
t=1 t=2 t=3 t=4 t=5 t=6 t=7

eNB 31.25 46.00 76.00 51.67 58.00 60.00 60.00
vMME 33.75 50.00 78.00 53.33 62.00 60.00 58.00
NSSF 50.00 50.00 65.00 45.00 35.00 40.00 50.00
vHSS 50.00 60.00 70.00 26.67 40.00 50.00 45.00

vSPGWC 57.50 56.67 75.00 52.50 60.00 46.67 43.33
vSPGWU 43.75 53.33 70.00 58.00 44.00 46.00 46.00

Table 2 Cycle 1: Usage percentage for each VNF at time interval ‘t’

41

Now we present the graphical form of statistical data shown in above table. It
can be seen that the all of the VNFs are using almost 50-60 of the assigned
resources. The number of free resources that not need to be assigned are also
released. This way the resources are accommodated according to the situation
and the equal distribution of the resources is achieved. This mechanism
concludes by the this graph that the system is assigning the resources up to
optimum value. Hence, the resources are neither over-utilized nor
under-utilized. The graphical stats for cycle # 1 are as follows:

Figure 16 Usage of Assigned CPU/VNF for first cycle

42

We performed the same test on different time-slots from the start to check the
variation in our statistics for the second time. The stats for cycle # 2 are as
follows:

For the graph given above we depict these values to be shown in the below
graph. The graphical stats for the second cycle are as follows:

Figure 17 Usage of Assigned CPU/VNF for second cycle

VNF Usage % at time interval ‘t’ for VNF for first cycle
t=1 t=2 t=3 t=4 t=5 t=6 t=7

eNB 30.00 48.00 58.00 51.67 60.00 60.00 64.00
vMME 31.25 52.00 76.00 53.33 68.00 58.00 66.00
NSSF 45.00 55.00 65.00 50.00 30.00 40.00 60.00
vHSS 40.00 55.00 70.00 30.00 45.00 55.00 35.00

vSPGWC 55.00 63.33 75.00 52.50 63.33 46.67 40.00
vSPGWU 42.50 55.00 68.33 60.00 46.00 42.00 48.00

Table 3 Cycle 2: Usage percentage for each VNF at time interval ‘t’

43

We performed the same test on different time-slots from the start to check the
variation in our statistics for the third time. The stats for cycle # 3 are as
follows:

For the graph given above we depict these values to be shown in the below
graph. The graphical stats for the third cycle are as follows:

Figure 18 Usage of Assigned CPU/VNF for third cycle

VNF Usage % at time interval ‘t’ for VNF for first cycle
t=1 t=2 t=3 t=4 t=5 t=6 t=7

eNB 26.25 42.00 54.00 50.00 62.00 60.00 66.00
vMME 33.75 50.00 66.00 58.33 68.00 54.00 64.00
NSSF 40.00 60.00 45.00 45.00 40.00 35.00 50.00
vHSS 35.00 50.00 55.00 33.33 45.00 35.00 50.00

vSPGWC 50.00 50.00 67.50 60.00 60.00 43.33 50.00
vSPGWU 40.00 46.67 65.00 68.00 46.00 44.00 48.00

Table 4 Cycle 3: Usage percentage for each VNF at time interval ‘t’

44

4.3.1.2 Average stats for all VNFs

The below table, contains the statistical details of the CPU percentage used for
overall VNF instances running during the ‘t’ time-interval. By the deep analysis
of these statistics, it is clear that the number of resources are being freed up.
This ensures that the resources which are being assigned are properly being
utilized. The percentage usage of overall VNFs has moved the range 40 percent
to 51, referring to the efficient usage of resources. This also ensures freeing up
the resources. It can be deduced from the explanation that the system is using
the resources in an efficient manner.

Now we show the graphical form for the stats discussed above mentioned in the
previous tabular form. It is shown that in the first cycle of time-interval ‘t’, the
usage of assigned resources is almost 41%, which shows that the resources
assigned to it should have been different so that almost 50-60 of the resources
were used. But as this is this the first cycle so after some time of autoscaling
cycles, our system will take care of this problem automatically. The percentage
usage of overall VNFs has moved the range 40 percent to 51, which supports
the claim/statement that the resources usage has been increased by the
percentage it uses. This technique frees the resources that are not being used
by the VNFs and creates an healthy environment for other tenants to use the
underlying resources provided by the virtualization layer whether it be via the
hypervisor of compute, network or storage resource.

Time Usage % at time interval ‘t’ for all VNFs
Assigned Assign used Used % Available %

t=1 32 13 40.63 59.38
t=2 23 12 51.74 48.26
t=3 24 18 73.33 26.67
t=4 26 13 50.00 50.00
t=5 22 12 52.27 47.73
t=6 22 12 52.27 47.73
t=7 22 11 51.82 48.18
Table 5 Cycle 1: Usage percentage for all VNFs at time interval ‘t’

45

Figure 19 Usage of Assigned CPU/VNFs for first cycle

46

We performed the same test on different time-slots from the start to check the
variation in our statistics for the second time. The below shown stats are for
cycle # 2 and are as follows:

The graph given below depicts the values from the above table. The graphical
stats for the second cycle are as follows:

Figure 20 Usage of Assigned CPU/VNFs for second cycle

Time Usage % at time interval ‘t’ for all VNFs
Assigned Assign used Used % Available %

t=1 32 12 38.13 61.88
t=2 23 12 53.91 46.09
t=3 24 17 68.75 31.25
t=4 26 13 51.15 48.85
t=5 22 12 55.00 45.00
t=6 22 11 51.36 48.64
t=7 22 12 54.55 45.45
Table 6 Cycle 2: Usage percentage for all VNFs at time interval ‘t’

47

We performed the same test on different time-slots from the start to check the
variation in our statistics for the third time. The below shown stats are for
cycle # 3 and are as follows:

The graph given below depicts the values from the above table. The graphical
stats for the third cycle are as follows:

Figure 21 Usage of Assigned CPU/VNFs for third cycle

Time Usage % at time interval ‘t’ for all VNFs
Assigned Assign used Used % Available %

t=1 32 12 35.94 64.06
t=2 23 11 48.26 51.74
t=3 24 15 60.83 39.17
t=4 26 14 54.62 45.38
t=5 22 12 55.91 44.09
t=6 22 11 48.18 51.82
t=7 22 12 56.36 43.64

Table 7 Cycle 3: Usage percentage for all the VNF at time interval ‘t’

48

4.3.2 Overall CPU Usage

In this section we provide the overall CPU usage for all of the three cycles,
each having seven intervals of time for autoscaling. Then we present the
average values in the graphical form to show the consistency of our system
behaviour by showing three cycles of procedural test.

4.3.2.1 Average stats for overall CPU

The table contains the total number of CPU(s) used and available. These
statistics are for overall VNF instances running during the ‘t’ time-interval
under different tenants control. But in our case, we have just considered a
single tenant. The analysis of these statistics shows that at the start of the
cycle for time-interval t=0, we assigned all of the 32 cores to all of the VNFs.
By further analysing, we conclude that as the time-interval moves on, the free
number of resources is increased by a valuable factor. This graph This ensures
that the resources which are being assigned are properly being utilized. The
percentage usage of overall VNFs has moved the range 40 percent to 51,
referring to the efficient usage of resources. This also ensures freeing up the
resources. It can be deduced from the explanation that the system is using the
resources in an efficient manner.

Time Usage % at time interval ‘t’ for total CPU
Total Total used Total free Used % Free %

t=1 32 32 0 100.00 0.00
t=2 32 23 9 71.88 28.13
t=3 32 24 8 75.00 25.00
t=4 32 26 6 81.25 18.75
t=5 32 22 10 68.75 31.25
t=6 32 22 10 68.75 31.25
t=7 32 22 10 68.75 31.25

Table 8 Average usage percentage of Total CPU at time-interval ‘t’

49

The graph contains the information that shows the total number of CPU(s) being
used and available for over the tim-intervals. The free number of resources
was 0% at start and after running 6-7 cycles of autoscaling time-intervals, The
free number of resources that were assigned unnecessarily were up to 31.25%.
These stats show the positive impact of autoscaling the resources efficiently.
Hence these resources are freed up and can be used by other network services
by the same tenant or other tenants sharing the same physical infrastructure
via isolated virtual environments.

Figure 22 Usage of Total CPU (bar)

Figure 23 Usage of Total CPU (line)

50

This graph shown in Fig. 24. is taken from the paper [35] which shows the core
allocation by applying different workloads on the virtual machine:

Figure 24 Core allocation by applying different workloads on VM

51

5 Conclusion and Future Work

The concluding remark of this system is that autoscaling [1] is a very important
part of MANO [1,19] architecture, specifically in the VNFM (Virtual Network
Function Management). The management should rely on the real-time data as
well as the decision should be made intelligently. So, our system goal was
achieved through the use of different factors such as the clocks per cycle,
execution-times [36,39] of actions rather than the programs and weight-factors
[11] involved for the involved virtualization-level. By combining all these factors
into the decision-making algorithm, we introduced a system that makes sure
that usage of resources is neither over-utilized nor under-utilized. The results
at the end proved the efficient usage of resources such as CPU and RAM. For
this purpose, we provide the results in the form of statistics and graphs. We
used these results as a promising solution that distributes the resources equally.
Another important attribute of our system is the platform independency. Our
proposed and developed application and services communicate with each other,
using the restful APIs as a channel. The communication done has been
improved by introducing proper error responses between the services, so that
the state or problems are easily identifiable.

We further plan to improve the system by introducing other factors involved in
the network as well as to create a system that calculates the execution-time
more accurately and precisely. Through the results were good, in this case but
there is always a room for improvement. The conversion process of
execution-times to clocks per cycle could be improved based on other factors
that were not considered in this thesis. By researching and putting more efforts
cloud yield better results in this field, as the nature of network-environments is
too much diverse than it looks.

52

References

1. William Sales, Emanuel Coutinho, and Jose Neuman de Souza “Auto-Scaling in
NFV Using Tacker” 5th International Workshop on ADVANCEs in ICT
Infrastructures and Services, 2015.

2. Tulja Vamshi Kiran Bayakar, Anil Kumar Rangisetti, Antony Franklin A,
Bheemarjuna Reddy Tamma “Auto Scaling of Data Plane VNFs in 5G Networks”,
13th International Conference on Network and Service Management (CNSM), 2017.

3. SDxCentral, “Understanding the SDN Architecture – SDN Control Plane & SDN
Data Plane” [Online: accessed 06-2019]
https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-architecture

4. Hynsik Yang, Briytone Mutichiro, Younghan Kim “Implementation of VNFC
Monitoring Driver in the NFV Architecture”, International Conference on
Information and Communication Technology Convergence (ICTC), 2017.

5. Asif Mehmood, Wang-Cheol Song “Autoscaling application and microservice based
monitoring for VNFs”, KNOM Review (Proceeding of KNOM Conference 2019).

6. Nestor Bonjorn Lopez Ferran Canellas Cruz, “VIM Adaptation Layer for CORD”, 63
M.Sc. Thesis, Technical University of Denmark, Kgs. Lyngby, Denmark, 2018.

7. Open Cord, “M-CORD Project Overview” [Online: accessed 06-2019]
https://wiki.opencord.org/display/CORD/M-CORD+Project+Overview

8. Muhammad Tahir Abbas, Talha Ahmed Khan, Asif Mahmood, Javier Jose Diaz
Rivera, Wang-Cheol Song “Introducing network slice management inside
M-CORD-based-5G framework”, 2018 IEEE/IFIP Network Operations and
Management Symposium (NOMS), 2018.

9. B. Martini, M. Gharbaoui, S. Fichera, and P. Castoldi “Network Orchestration in
Reliable 5G/NFV/SDN Infrastructures”, 19th International Conference on
Transparent Optical Networks (ICTON), 2017.

10. Farah Fargo, Cihan Tunc, Youssif Al-Nashif, Ali Akoglu, Salim Hariri “Autonomic
Workload and Resource Management of Cloud Computing Services”, International
Conference on Cloud and Autonomic Computing, 2014.

11. Yi Ren, Tuan Phung-Duc, Jyh-Cheng Chen, and Zheng-Wei Yu “Dynamic
Autoscaling Algorithm (DASA) for 5G Networks”, IEEE Global Communications
Conference (GLOBECOM), 2016.

53

12. MuleSoft, “What are APIs and how do APIs work?” [Online: accessed 06-2019]
https://blogs.mulesoft.com/biz/tech-ramblings-biz/what-are-apis-how-do-apis-work

13. Gaurav Goyal, Karanjit Singh, Dr. K.R. Ramkumar “A detailed analysis of data
consistency concepts in data exchange formats (JSON & XML)”, International
Conference on Computing, Communication and Automation (ICCCA), 2017.

14. Asif Mehmood, Talha Ahmed Khan, Javier Diaz Rivera, Wang-Cheol Song “An
intent-based mechanism to create a network slice using contracts”, Proceedings
of Symposium of the Korean Institute of communications and Information
Sciences, 2018.

15. OpenStack, “What is OpenStack?” [Online: accessed 06-2019]
https://www.openstack.org/software

16. Rajendra Chayapathi, Syed Farrukh Hassan, Paresh Shah “Network Functions
Virtualization (NFV) with a Touch of SDN”, A book published by Addison-Wesley.

17. ETSI, “ETSI GS NFV 002 V1.2.1” [Online: accessed 06-2019]
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf

18. SDxCentral, “What is OPNFV or Open Platform for NFV Project?” [Online:
accessed 06-2019] https://www.sdxcentral.com/networking/nfv/definitions/opnfv

19. ETSI, “ETSI GS NFV-MAN 001 V1.1.1” [Online: accessed 06-2019]
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010
101p.pdf

20. Chen Zheng, Lei Wang, Sally A. McKee, Lixin Zhang, Hainan Ye and Jianfeng
Zhan “XOS: An Application-Defined Operating System for Datacenter Computing”,
IEEE International Conference on Big Data (Big Data), 2018.

21. ONOS, “Architecture and Internals Guide – System Overview” [Online: accessed
06-2019] https://wiki.onosproject.org/display/ONOS/System+Components

22. ONF, “Our Mission” [Online: accessed 06-2019]
https://www.opennetworking.org/mission

23. FiberMountain, “Is SDN the Ethernet of the 80’s or ATM of the 90’s?” [Online:
accessed 06-2019]
https://blog.fibermountain.com/blog/is-sdn-the-ethernet-of-the-80s-or-atm-of-the-90s

24. Open Networking Foundation “Software-Defined Networking: The New Norm for
Networks“ ONF White Paper, April 13, 2012.

25. SearchStorage, “Storage Hypervisor ” [Online: accessed 06-2019]
https://searchstorage.techtarget.com/definition/storage-hypervisor

54

26. Gladys Diaz, Noemie Simoni “Network Service Description for Virtual Network
Deployment: A constraints based OVF extension proposal”, 12th International
Conference on Network and Service Management (CNSM), 2016.

27. Eurecom, Open Air Interface Alliance. Open-Air Interface Project [Online:
accessed 06-2019]
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/HowToConnectCOTSUEwithOAIeNBNew

28. Eurecom, Open Air Interface Alliance. Open-Air Interface Project [Online:
accessed 06-2019] https://gitlab.eurecom.fr/oai/openairinterface5g

29. Eurecom, Open Air Interface Alliance. Open-Air Interface Project, “Basic
Deployment of vEPC” [Online: accessed 06-2019]
https://github.com/OPENAIRINTERFACE/openair-cn/wiki/Basic-Deployment-of-vEPC

30. Network Convergence Lab – Jeju National University, “Open Air EPC with NSSF
Modifications” [Online: accessed 06-2019] https://github.com/ncl427/openair-cn

31. Open Networking Foundation, “CORD: Central Office Re-architected as a
Datacenter” [Online: accessed 06-2019]
http://opencord.org/wp-content/uploads/2016/10/BBWF-CORD.pdf

32. Open Cord, “CORD: Central Office Re-architected as a Datacenter” [Online:
accessed 06-2019]
https://xosproject.org/wp-content/uploads/2018/08/CORD-XOS-Platform.pdf

33. ONOS, “vRouter” [Online: accessed 06-2019]
https://wiki.onosproject.org/display/ONOS/vRouter

34. ONOS, “CORD VTN” [Online: accessed 06-2019]
https://wiki.onosproject.org/display/ONOS/CORD+VTN

35. Kapil Kumar, Nehal J. Wani and Suresh Purini “Dynamic Memory and Core
Scaling in Virtual Machines“, IEEE 8th International Conference on Cloud
Computing, 2015.

36. Molka Rekik, Khouloud Boukadi, Hanene Ben-Abdallah “A Context Based
Scheduling Approach for Adaptive Business Process in the Cloud”, IEEE 7th
International Conference on Cloud Computing, 2014.

37. Paolo Bellavista, Luca Foschini, Riccardo Venanzi, Giuseppe Carella “Extensible
Orchestration of Elastic IP Multimedia Subsystem as a Service using Open
Baton”, 5th IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering (MobileCloud), 2017.

38. Keisuke Kuroki, Masaki Fukushima and Michiaki Hayashi “Framework of Network

55

Service Orchestrator for Responsive Service Lifecycle Management”, IFIP/IEEE
International Symposium on Integrated Network Management (IM), 2015.

39. In-Yong Jung, Chang-Sung Jeong “Selective Task Scheduling for Time-Targeted
Workflow Execution on Cloud”, 2014 IEEE Intl Conf on High Performance
Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety
and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC,
CSS, ICESS), 2014.

40. Subhash Saini, Haoqiang Jin, Robert Hood, David Barker, Piyush Mehrotra and
Rupak Biswas “The impact of hyper-threading on processor resource utilization
in production applications”, 18th International Conference on High Performance
Computing, HiPC 2011, Bengaluru, India, December 18-21, 2011.

	- Abstract
	1 Introduction
	2 Literature Review
	2.1 - General Literature
	2.1.1 - - Cloud
	2.1.2 - - SDN and NFV
	2.1.2.1 - - - SDN Software Defined Networking
	2.1.2.2 - - - NFV Network Function Virtualization

	2.1.3 - - MANO Architecture
	2.1.4 - - M-CORD

	2.2 - Related work Literature

	3 Monitoring and Autoscaling System
	3.1 - Modifications proposed
	3.2 - Layers
	3.2.1 - - Infrastructure Layer
	3.2.2 - - Management Layer
	3.2.3 - - Application Layer

	3.3 - Modules
	3.3.1 - - Intent Based Autoscale Application
	3.3.1.1 - - - Information Assembler
	3.3.1.2 - - - Autoscale Controller
	3.3.1.3 - - - Configuration Invoker

	3.3.2 - - Monitoring Microservice

	3.4 - Configuration of System
	3.5 - Specifications
	3.5.1 - - Application specifications
	3.5.2 - - Microservice specifications

	4 Evaluation and Results
	4.1 - CORD Configuration Steps
	4.1.1 - - Preparation-targets
	4.1.2 - - MaaS-targets
	4.1.3 - - XOS-targets
	4.1.4 - - ONOS-targets
	4.1.5 - - OpenStack-targets
	4.1.6 - - Post Onboarding-targets
	4.1.7 - - Additional CiaB-targets

	4.2 - Evaluation Metrics
	4.2.1 - - Assigned CPU Usage
	4.2.2 - - Overall CPU Usage

	4.3 - Evaluation Results
	4.3.1 - - Assigned CPU Usage
	4.3.1.1 - - - Average stats for each VNF
	4.3.1.2 - - - Average stats for all VNFs

	4.3.2 - - Overall CPU Usage
	4.3.2.1 - - - Average stats for overall CPU

	5 Conclusion and Future Work
	6 References

<startpage>12
- Abstract 1
1 Introduction 2
2 Literature Review 5
 2.1 - General Literature 5
 2.1.1 - - Cloud 5
 2.1.2 - - SDN and NFV 7
 2.1.2.1 - - - SDN Software Defined Networking 7
 2.1.2.2 - - - NFV Network Function Virtualization 8
 2.1.3 - - MANO Architecture 11
 2.1.4 - - M-CORD 12
 2.2 - Related work Literature 13
3 Monitoring and Autoscaling System 18
 3.1 - Modifications proposed 20
 3.2 - Layers 21
 3.2.1 - - Infrastructure Layer 21
 3.2.2 - - Management Layer 22
 3.2.3 - - Application Layer 23
 3.3 - Modules 24
 3.3.1 - - Intent Based Autoscale Application 27
 3.3.1.1 - - - Information Assembler 27
 3.3.1.2 - - - Autoscale Controller 29
 3.3.1.3 - - - Configuration Invoker 32
 3.3.2 - - Monitoring Microservice 33
 3.4 - Configuration of System 34
 3.5 - Specifications 35
 3.5.1 - - Application specifications 35
 3.5.2 - - Microservice specifications 35
4 Evaluation and Results 36
 4.1 - CORD Configuration Steps 37
 4.1.1 - - Preparation-targets 37
 4.1.2 - - MaaS-targets 37
 4.1.3 - - XOS-targets 38
 4.1.4 - - ONOS-targets 38
 4.1.5 - - OpenStack-targets 38
 4.1.6 - - Post Onboarding-targets 38
 4.1.7 - - Additional CiaB-targets 38
 4.2 - Evaluation Metrics 39
 4.2.1 - - Assigned CPU Usage 39
 4.2.2 - - Overall CPU Usage 39
 4.3 - Evaluation Results 40
 4.3.1 - - Assigned CPU Usage 40
 4.3.1.1 - - - Average stats for each VNF 40
 4.3.1.2 - - - Average stats for all VNFs 44
 4.3.2 - - Overall CPU Usage 48
 4.3.2.1 - - - Average stats for overall CPU 48
5 Conclusion and Future Work 51
6 References 52
</body>

