

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

 A Thesis

For the Degree of Master of Science

Autonomous UAV Navigation in Unknown

Terrain/Environment using Reinforcement Learning

Mudassar Liaq

Department of Computer Engineering

GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

June 2019

ii

iii

Dedicated to "Salma Yasmin"

"Mom, I am privileged to be your Son".

iv

ACKNOWLEDGMENTS

In the name of Allah, the most beneficent, the merciful. Without his grace, I am nothing, and to

whom I am bound to return.

First and foremost, Professor Yung-Cheol Byun, for continuously guiding me and helping me in

research here at JNU.

Some very humble seniors from Dr. Afaq to Dr. Israr from whom I was able to learn very different,

contrast yet successful ways of life.

Some very close friends who have drifted away in winds of time (The Molvis, Ustads, Murshids,

Silents, and Sattis)

To Ms. Wafa Shafqat. You are something else entirely.

Lastly and most importantly my nephew Aayad, my brother-in-law Waqar Ahmed, my sisters

Shahwana Waqar and Ridda Liaq, my father Liaq M. Khan, and of course "Salma Yasmin," my

mother to whom I owe everything.

Mudassar Liaq

June 2019

v

Autonomous UAV Navigation in Unknown

Terrain/Environment using Reinforcement Learning
Mudassar Liaq

Supervisor: Prof. Yung-Cheol Byun

ABSTRACT

Over the last few years, UAV applications have grown immensely from delivery services to

military use. Major goal of UAV applications is to be able to operate and implement various tasks

without any human aid. To best of our knowledge, in the existing works for autonomous navigation

for UAV’s, ideal environments (e.g., 2D) are considered instead of realistic or special hardware

are used (e.g., nine range sensors) to navigate through an ideal environment. Therefore, in this

thesis, we aim to overcome the limitations of the existing works by proposing a model for

navigating a drone in an unknown environment without any human help or aid. The goal of this

research is to navigate from location A to location B in unknown terrain without having any prior

knowledge about the terrain using default drone sensors only. We present a model which is

compatible with almost every off-the-shelf drone available in the market. Our methodology utilizes

only standard drone sensors which are attached to almost every drone. These include a camera,

GPS, IMU, magnetometer, and barometer. Our methodology uses 3D, POMDP, and continuous

environment. We have experimented with three different types of simulation environments in this

work; Blocks, Landscape, Neighborhood.

In our approach, we use a DNN for predicting UAV’s next movement. First few layers are

convolutional layers with propose of generating deep vector representation of camera image. This

vi

deep vector representation is combined with other sensor data in fully connected layers. The

network outputs the next movement for our UAV. Our neural network architecture is sort of CNN

but the key difference is instead of classification, it generates probability distribution for the next

possible movement of UAV.

We achieved completely autonomous (unaided) flight and navigation using Deep Q-

learning, which is a subfield of RL. We implemented two different versions of the algorithm, i.e.

policy-based DQN and value-based DQN. We were able to achieve 97.24% success rate for policy-

based DQN and 96.74% success rate for value base DQN. We were able to demonstrate that our

proposed approach was able to navigate the unknown environment successfully when it was

trained for over 1000 iterations. The results showed that the rewards for the first 500 iterations

were low. This was because the DQN was exploring different strategies and finding ones which

work. Post 500 iterations the reward started to go up, and the performance started to improve. After

1000 iterations the DQN was successfully able to navigate drone in an unknown environment with

ease.

Our main contributions are: 1) We are using realistic environment model including factors

like rain and wind. 2) We are only using onboard computing resources to run our model instead of

some external server. 3) We were able to achieve improved results in terms of success (97.24%),

failure (1.09%), and stray rate (1.66%). Another factor that distinguishes this work from other

works is its potential for mass adaptability. In this work we are only using standard sensors without

any special hardware requirements. This make our work widely adaptable for any off-the-shelf

drone in the market.

vii

List of Acronyms

UAV Unmanned Aerial Vehicles

UAS Unmanned Aircraft System

NN Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Networks

RL Reinforcement Learning

DQN Deep Q Network

POMDP Partially Observable Makarovian Decision Process

API Application Programming Interfaces

ICCA intelligent Cooperative Control Architecture

PPO Proximal Policy Optimization

DDPG Deep Deterministic Gradient Policy

ROS Robot Operating System

VLOT Vertical Take-off and Landing

RTT Round Trip Time

MDP Makarov Decision Process

YOLO You Only Look Once

IMU Inertial Measurement Unit

PID Proportional Integral Derivative Unit

GPS Global Positioning System

TRPO Trust Region Policy

MAV Micro-Air Vehicle

SLAM Simultaneous Localization and Mapping

CGLA Cooperative and Geometric Learning Algorithm

viii

CONTENTS

Introduction ... 1

1.1. Drones and UAVs ... 1

1.2. Applications of UAVs ... 2

1.3. Quadcopters: Brief Overview ... 3

1.4. Quadcopters and AI .. 3

1.5. RL in Drones and Potential Issues .. 4

1.6. Research Problems and Objectives ... 5

1.7. Thesis Orientation ... 6

Related Works ... 7

2.1. UAV and Unknown Terrain .. 7

2.2. Machine Learning Methodologies .. 8

2.3. Existing Frameworks .. 8

2.4. Performance Comparisons with Existing Works .. 11

Proposed Model and Architecture... 15

3.1. System Overview .. 16

3.2. Proposed Model and System Design .. 17

3.3. Layered View of Architecture... 19

3.4. An Example Simulation Scenario ... 31

3.5. System Specifications ... 34

Experimental Results .. 35

4.1. Experimental Setting ... 35

4.2. Reward Function ... 36

4.3. NN Training .. 37

4.4. Performance Evaluation .. 39

Conclusion .. 50

Bibliography ... 52

ix

List of Tables

Table 1. Research Objectives .. 6

Table 2. Comparisons with State-of-the-art Works (Summary) ... 14

Table 3. Description of Actions ... 18

Table 4. Key RL Elements .. 19

Table 5. Details of the Simulation Environment ... 21

Table 6. Statistical Quantities of Value-Based DQN and Policy-Based DQN in Different Environments 43

Table 7. Effect of Discount Factor ... 44

Table 8. Effect of Learning Rate .. 45

Table 9. Performance Evaluation Summary .. 47

Table 10. Performance evaluation of our approach (Summary) .. 47

file:///C:/Uni/Research/Thesis/Final_Presentation/Thesis/Final%20V9_Mudassar_Liaq_Thesis.docx%23_Toc13152112
file:///C:/Uni/Research/Thesis/Final_Presentation/Thesis/Final%20V9_Mudassar_Liaq_Thesis.docx%23_Toc13152119
file:///C:/Uni/Research/Thesis/Final_Presentation/Thesis/Final%20V9_Mudassar_Liaq_Thesis.docx%23_Toc13152120

1

Chapter 1

Introduction

With the rapid advancements in the technology, the fields of robotics and mechatronics

have drastically upgraded in terms of their role in the modern business and different industries.

UAV also known as a drone is an aircraft that flies without any human pilot and are controlled

remotely.

1.1. Drones and UAVs

These UAVs will potentially affect the way traditional businesses run and how different

companies operate. Besides the challenges and risks the commercial UAVs industry is facing, a

range of diverse products are being presented. There are organizations and companies focusing on

to generate productive ways of UAVs usage in daily tasks.

A considerable number of investors are investing in the idea of new vehicles generation

that are capable of multiple tasks, e.g., flying, swimming, crawling up a wall or even walk.

According to a report [1], drone companies managed to take around $3,163 billion of investments

since 2008.

The excellent growth rate of the UAV industry makes it nearly impossible to list down or

explain all the applications that have been used regularly nowadays; also, its difficult to mention

all the businesses concerned in developing drone platforms or drone parts suppliers e.g., sensors

as cameras, thermal, video, and infrared, etc.

2

1.2. Applications of UAVs

The UAV applications have attained a high reputation as they benefit the aerial vehicles

e.g., quadcopters with an ease that can help them execute different tasks such as avoiding obstacles

without collisions, autonomous maneuvering, and VLOT. For a quadcopter to perform in an indoor

environment, it requires to operate with agility and efficient feedback without losing control.

Stabilization is needed for an outdoor environment for a drone to operate against external forces.

In short, for both situations, a stable flight is immensely important for a drone to function

effectively. This can help a quadcopter to survive in extreme external factors e.g., heavy rain or

wind as it will be able to prevent crashing. In order to use these applications for navigation and

stabilization, UAVs and drones need to be supplied with a series of sensors e.g., depth cameras,

accelerometer, gyroscope, magnetometer, etc.

37%

13%

25% 25%

0

10

20

30

40

Aerial Surveying Surveillance and
Security

Infrastructure
Inspection

Aerial Delivery

UAV Market Growth

Drone Application

Figure 1. UAV Applications (Market Growth)

3

Apart from this, applications of drones can be observed in many fields such as accident

reporting, infrastructure inspection, crop monitoring, etc. Figure 1 is from a survey which presents

the growth rate of different UAV applications, it can be seen that aerial surveying and mapping is

growing at a higher rate [2].

1.3. Quadcopters: Brief Overview

Quadcopters are a more specific form of an aerial vehicle known as multicopter having an

arbitrary number of rotors. Quadcopters are driven by four rotors. In the 1920s, when quadcopters

were first introduced, they were unable to gain popularity due to challenges like having

comparatively large size and weight, mechanical complexity, control management, and etc. [1, 2].

In recent years, as a result of advances in electronics, efficient microcontrollers, better

sensors, and durable batteries; quadcopters and UAVs managed to attract many researchers and

developers to put some research efforts towards the potent utilization, design, and implementation

of the quadcopter. Today, many applications of quadcopters can be observed in areas like crop

monitoring, video surveillance, military operations, and rescue or search operations and many

others. This accelerated growth of UAVs suggests that in the next decade there will be a high

demand for the experts who can design and implement UAVs.

1.4. Quadcopters and AI

Data in large volumes are often spawned by drones and UAVs. These UAV applications

will only be useful for the consumer if this data is managed efficiently and effectively without

requiring extra efforts. Therefore, AI (Artificial Intelligence) seems to cover these challenges as

nowadays every other company or industry is using AI techniques, machine learning or deep

4

learning to process immense amount of data. There are many AI based tasks that deal with image

recognition, UAVs are also required to perceive and understand the environment, detect and avoid

collisions in order to achieve a smooth flight and motion planning is also another task which

requires AI and machine learning to play an active part as shown in Figure 2.

1.5. RL in Drones and Potential Issues

A subfield of machine learning known as RL is gaining success in solving many difficult

research problems. In RL an optimal behavior is learned by an agent via interacting and getting a

response from the environment. In contrast with supervised learning where the knowledge is

already provided to an agent in order to execute a certain task, RL uses a different way of training

Figure 2. Role of AI in UAVs

5

and get through rewards and punishments [3]. This method is beneficial when the environment

can’t be explored completely or easily i.e., it’s large and dynamic [4].

RL has many advantages over optimization techniques and supervised learning [5] such as,

i) there is no requirement of a predefined controller structure which helps reduce the human efforts

and ii) enhances the performance as well. In different researches, it has been proved that for many

difficult jobs, a well-trained model will be able to perform better and effective as compared with

human experts [6, 7]. In continuous spaces, traditional methods do not perform extraordinarily but

RL based methods show promising results [8].

Though for decades robotics are using RL, there are still limitations to the areas where it

can be applied. It can help control a UAV, not just controlling its trajectory but also its complete

movement with a NN based trained model. In this work, we determine that a UAV can be fully

operated and controlled using a NN trained in a RL based simulation environment. We use a DQN

which is policy-based as to overcome the limitations of the previously done researches.

1.6. Research Problems and Objectives

This work aims to address the limitations of existing research works and hence contributing

by taking into account different parameters, listed in Table 1. We propose a model for navigating

a drone in an unknown environment without any human help or aid. The goal is to navigate from

location A to location B in unknown terrain without having any prior knowledge about the terrain

using default drone sensors only. As per the flight is concerned, we want to achieve a fully

autonomous flight with a small set of data. We aim to achieve a successful navigation in different

large-scale complex environments

6

Table 1. Research Objectives

1.7. Thesis Orientation

The main chapters of this thesis are structured and organized in the following way: Chapter 2

is a literature review. It considers the contributions of existing works in the UAV navigation field

using deep learning techniques. Chapter 3 elaborates the proposed system and architecture and

explain the layered architecture in detail. Chapter 4 explains the experimental results and

performance evaluation of the overall system compared with existing works. Finally, Chapter 5

concludes this thesis.

Performance

metrics/Objectives
Domain Goal

Environment 3D/2D 3D

Observable
Fully/Partially observable Markov

decision process or POMDP.

Partially observable

Markov decision process

or POMDP.

Prior Knowledge
Partial/

No Environmental Knowledge

No Environmental

Knowledge

Drone flight Autonomy Partial/complete Complete

Dataset Large/Small Small

7

Chapter 2

Related Works

Work in this research is related to autonomous UAV or UAS navigation using RL.

Therefore, it is important to discuss some major concepts of machine learning, drones, and to

elaborate on the related works done in this area. This chapter deals with the limitations of the

existing models and benefits of the proposed mechanism.

2.1. UAV and Unknown Terrain

The usage rate of UAV is increasing on a daily basis. It is not only utilized for security

surveillance but also for wildfire monitoring, civilian tasks, target tracking, rescue operations, and

among many others, military operations. Covering a widespread known or unknown area

automatically is its forte and hence having an unprecedented growth rate. The most challenging

task is to research on unknown paths or depicting the unknown environment based on prior

knowledge of the environment. The UAV is defined as a “powered, aerial vehicle that does not

carry a human operator, uses aerodynamic forces to provide vehicle lift, can fly autonomously or

be piloted remotely, can be expendable or recoverable, and can carry a lethal or nonlethal payload”

[9]. In this case, RL helps us in remotely piloting the drone to the required destination whose path

is unknown to us, or we have little information about the environment. UAVs are classified into

six functional categories [9]:

a. Target and decoy – yielding ground and aerial force a prey that reproduce an enemy

aircraft or missile

8

b. Reconnaissance – produce intelligence related to battlefield

c. Combat – for missions with high-risk, it provides attacking capabilities

d. Logistics – cargo delivery

e. Research and development – improvement of UAV technologies

f. Civil and commercial UAVs –data collection and photography on the aerial force

2.2. Machine Learning Methodologies

Machine Learning can be categorized into supervised learning, unsupervised learning, and

RL. Regression and classification are labeled as supervised learning, whereas clustering is

classified as unsupervised learning. RL is useful in making real-time decisions, AI games, tasks

learning, skills acquisition, and robot navigation.

In this research, we focus on RL and how it is helpful in UAV navigation in an unknown

environment. In RL, the input or output is not labeled as supervised learning. It is helpful even if

the prior knowledge of the environment is less known or not known at all. As the model works, it

learns by itself and thus helpful in our research area. Previously UAV applications have been

developed using RL algorithm. RL algorithm depends on feedback and uses trial and error method

to maximize the correctness of the output. It is based on MDP which has set of states s, actions a,

rewards r and probability of transition T. T (s’, a, s) = P(s’ | s, a) describes the effect on the state.

It requires the next state’s’ and the reward depends on the previous state s and action a [9].

2.3. Existing Frameworks

Relatively much work has been going on with respect to automatic UAV navigation with

machine learning algorithms but less or no work has been done on unknown path travel by UAV.

Su Yeon Choi and Dowan Cha in their paper “Unmanned aerial vehicles using machine learning

9

for autonomous flight; state-of-the-art” has divided their research areas into three categories

parameter tuning, adaptive control and real-time path planning [10].

Hwangbo, Jemin, et al. "Control of a quadrotor with reinforcement learning" deals with

policy network that is mapped to the state of rotor thrust instead of high-level trajectory decisions.

Recommends controlling and dynamic stabilization from upside down throw. Also encourages

new deterministic on-policy method to learn separate policy and value network [11]. Drawbacks

of this research is high tracking error and unsatisfactory simulation model accuracy.

Pham, Huy X., et al. "Autonomous UAV navigation using reinforcement learning"

proposes a framework to apply RL algorithm to enable UAV to operate in an unknown

environment. It uses the Q-learning algorithm using MATLAB. Drawbacks are the deterministic

environment. It uses a 2D environment instead of 3D, and another drawback is it is infeasible for

the real world [12]. Koch, William, et al. "Reinforcement learning for UAV attitude control" uses

flight control system train with DDGP, TRPO and PPO. Compares performance with PID using

their GYM-FC environment. Drawbacks are ideal environment considered and decreased

convergence [13]. Lambert, Nathan O., et al. "Low Level Control of a Quadrotor with Deep

Model-Based Reinforcement learning" proposes a model based RL to rapidly generate low level

controllers w/o specific domain knowledge. Disadvantages are only using experience data and

model divergence for longer timestamp [14].

Smolyanskiy, et al. "Toward low-flying autonomous MAV trail navigation using DNN for

environmental awareness" proposes a micro air vehicle system to follow trails in an unstructured

outdoor environment. Drawbacks are NVidia custom hardware chips (TX1+J120) are used and not

fully autonomous (Human intervention required) [15]. For non-colliding paths for multi-agent

10

UAV’s cooperative planners have been developed. It has inaccuracies. Geramifard et al. studies

on the ICCA for combining cooperative planners and RL techniques as a framework [16 -20].

Zhang et al. [21] propose a CGLA, which is made for path planning on multiple UAV cooperation

[22]. In CGLA, to balance between the economy of paths and collision avoidance, the parameters

are trained. The individual weight matrix and cost matrix are proposed for an efficient path

planning of both single and multiple UAVs [10]. Based on the geometric distance and risk

information shared among UAVs, the individual weight matrix is calculated and adaptively

updated. The optimal path from a starting point to a target point is calculated. The simulation

results validate the effectiveness and feasibility of CGLA for safe navigation of multiple UAVs.

However, it is required to utilize the coarse and fine grid to design a fast path planning algorithm

in the proposed framework and apply the algorithm to an actual UAV [10].

There are results to avoid a collision for UAV using laser range finders or Kinect cameras.

Vandapel et al. [23] avoid a collision in 3D space using lidars, and Bachrach et al [24], and Bry et

al. [25] depict obstacle avoidance in an unknown room using scanning lidars for SLAM [23, 24,

25, 26]. Bachrach et al. use Microsoft Kinetic camera in an unknown room [26]. However, these

research works are required to improve on problems of power supply, payload, UAVs cost, and

the reliability of localization. As a result, Achtelik et al. [27], Wendel et al. [28], Fraundorfer et al.

[29] created maps by a single camera, or stereo cameras [26, 27, 29]. Achtelik et al. [30] created

sparse maps of the environment using a single, cheap camera [26]. Wendel et al. [20] created dense

maps of the environment using a camera [19]. Fraundorfer et al. [29] demonstrated accurate depth

estimation and localization using stereo cameras. However, even though the algorithms are

reasonably fast to avoid a collision, they were still too computationally expensive for UAVs flight.

Recently, many researchers have studied path planning and formation light techniques [32, 13, 32].

11

2.4. Performance Comparisons with Existing Works

In this section, we have compared the recent works in the same field. The performance is

evaluated on the following parameters. Table 2 presents a summary of performance comparisons

with existing works.

I. Environmental Model

 The environmental model defines the space in which drone navigates. In [12], the 2D

environmental model is utilized. In [11], a simplified model in a 3D environment is used where

the impact of drag forces on the drone is ignored. In [12], the 3D model is utilized for modeling.

In our work, we have considered a complete 1D environment with consideration to all the

environmental factors, which include winds, rain as well as drag effect created by these elements.

II. Observation Space

Observational Space defines how the environment behaves when some action is performed.

In the deterministic environment, if given a state, action pair next state can be guaranteed while in

a stochastic environment, it’s not guaranteed that state, action pair will generate the same output

every time. In [11, 12], observational space is set to deterministic while [14, 15, 32] have used

stochastic model. We have also utilized the stochastic observational model for our environment as

its closer depiction of real-world scenarios.

III. Observability

Observability refers to how much environmental state is available to UAV at any given

point in time. In [12, 15], completely observable environment is utilized. In [11, 15, 32], assumed

the partially observable environment is assumed where some part of the state is available at any

12

given time instead of whole (which is in case of fully observable). We have taken environment

observability to be partial.

IV. NN Architecture

In [14], Model based RL along with random shooter model is deployed. In [12, 32], model

free RL is used while in [11, 15], standard DNNs are exploited. In our work, we are utilizing model

free RL.

V. Separate Image Processing Module

In [14], a separate module for image processing is used, but detailed explanations are not

specified in the paper. In [11, 12, 32], no camera module is utilized at all. Therefore, there is no

image processing module. In [15], a separate module for video processing is utilized. For this

purpose, the YOLO module is utilized. In our work, we are not utilizing any separate module for

video processing. The data is instead fed into the NN, which utilizes it for generating action

probabilities.

VI. Outside Helper Modules

Ideally, a UAV should not rely on any other external help for its decision making. In [14],

however, an external ROS server is used as a helping node. In [12], the extra onboard PID module

is used. In [11, 15, 32], any helper modules are not required. In our work, we are not utilizing any

external helper modules except the NN.

VII. Drone Type

Drone type is essential as it plays a huge part in deciding the adaptability of research in

real-world scenarios. Off the shelf, drones are the desired scenario as it increases the chances of

13

adaptability to very high. In [11, 12, 14], off the shelf drones are used. In [15, 32], customized

drones are used for the experiment. In our work, we are using off the shelf drone.

VIII. External Hardware

In [14], an extra ROS server is used, which is deployed on a high-end machine. In [11, 12],

no off-board resources are deployed in their work. In [15], TX-1 and AuVedia chips are placed on

a drone for processing. In [32], an extra nine range sensors are deployed for the experiment. In our

work, we have not utilized any off-board computing resource and have used only off the shelf

drone.

IX. Pre-training

When a model is pushed into drone memory which is already trained on some existing

dataset, then that model is called pre-trained model and process is called pre-training. In [12, 14,

32], they have not used any pre-training. In [11], 512 initial and 1024 branching trajectories are

utilized for pre-training the model. In [15] IDSIA dataset is being utilized for pre-training. In our

work, we have not utilized any pre-training.

X. Primary Data Source

In [15], state action pairs from the previous 15 iterations are used as an input for the NN.

In [12], the 3D environmental state is deployed as its primary data source. In [11], orientation,

position, and velocity are exploited as input. In [15], cameras are used as input. In [32],

14

gyroscope, GPS, and range sensors are deployed as input. In our work, we have utilized the

camera, IMU, GPS, barometer, and magnetometer as input.

Table 2. Comparisons with State-of-the-art Works (Summary)

15

Chapter 3

Proposed Model and Architecture

In this section, we propose a model for navigating a drone in an unknown environment

without any human help or aid. The goal is to navigate from location A to location B in unknown

terrain without having any prior knowledge about the terrain using default drone sensors only. This

work aims to address the limitations of existing research works by taking into account the

following parameters as primary contributions of this work:

• A continuous domain is being considered rather than a discrete one

• The simulation environment is 3D

• 3D navigation is enabled, i.e., the quadcopter can navigate across all three-axis x, y,

and z.

• High model accuracy (High success rate, low stray and failure rate)

• The model is completely autonomous

• Performance evaluation on comparatively larger datasets.

The rest of this section covers the details of the proposed design and architecture. First, the

proposed system design is presented followed by a three-layered system architecture which aims

to divide the system into different tiers and explains what is happening at each level.

16

3.1. System Overview

The baseline idea is to autonomously navigate a drone in an unknown environment, which

means in whatever environment a drone is, it must be able to navigate effectively and efficiently.

This is achieved by using policy-based DQN, a deep learning technique.

Figure 3. Conceptual View of Proposed System

Figure 3 presents the conceptual view of our system, environment, and the functionalities

this UAV navigation will enable us with. The quadcopter drone is enabled with monitoring devices,

i.e., GPS, camera, and IMU sensors. It navigates autonomously, learns the trajectory in real time,

performs environment monitoring, detects obstacles, and avoids collisions.

17

3.2. Proposed Model and System Design

Here, the proposed system design and model is explained in detail. There are five major

modules in our system named as Input, Output, System, Environment, and Reward, as shown in

Figure 4. Input deals with the sensor generated values. The environment here represents the terrain

where our quadcopter is flying or navigating. Environment generates many parameters like

sensor’s readings and some states on which the reward function is based.

Figure 4. Proposed System Design

The reward is calculated as an indicator of an action’s feedback. The more the action is

performed accurately, the higher is the reward. Next, this reward is forwarded to the system, where

our policy-based DQN model (described in next section) processes all the inputs and generates

18

output in the form of the probability distribution of actions as shown in Table 3. The most favorable

action is performed by the quadcopter; action feedback is recorded, passed to our DNN, and the

cycle continues.

3.2.1. Policy-based DQN vs Value-based DQN

DQN is the product of RL combined with deep learning. DQNs use Q-learning to learn to

take an optimal in a given state (the Q-value) and use CNN as an approximating function for the

Q-learning function. It is represented and denoted as Q(s, a; θ), where θ represents the trainable

weights of the network.

Table 3. Description of Actions

In this work, we are using DQN to predict the policy directly instead of Q-value. For

comparison we are also implementing a value-based DQN. Both the algorithms utilize same NN

Actions
Action’s Probability

Representation
Description

Move up
P ()

P (Up): Probability of quadcopter to move in an

upward direction

Move down
P ()

P (down): Probability of quadcopter to move in

a downward direction

Move right
P ()

P (Right): Probability of quadcopter to move in

the right direction

Move Left
P ()

P (Left): Probability of quadcopter to move in

the left direction

Move

Forward

P ()

P (Forward): Probability of quadcopter to

move in the forward direction

Move

Backward

P ()

P (Backward): Probability of quadcopter to

move in the backward direction

Hover at

place

P (.)

P (Hover): Probability of quadcopter to a place

or do nothing

19

architecture. Value-based DQN treats the output of neural network in a different way as compared

to policy-based DQN. In case of value-based DQN, output action is the one which has the

maximum value in the output layer. In case of policy-based DQN the output from NN is treated as

probability distribution. Actual action is then sampled from this probability distribution. The

advantage of using policy-based approach is it works better for continuous domains.

Figure 4 is the complete system design covering all the inputs, methods, and outputs. The

elements of DQN are explained in Table 4. An agent is an entity which decides and takes certain

actions. State refers to the internal state of our DNN, e.g., learning weights. An action is a decision

made by the agent to make quadcopter do some movement, e.g., moving up or down. The reward

is a measure of how good an agent is performing.

Table 4. Key RL Elements

3.3. Layered View of Architecture

The overall system architecture is presented in this section. The system consists of a layered

architecture, as described in Figure 5. Layer I, is the physical layer. It consists of our simulation

environment, sensors, and actuators. Data and control layer (Layer II) deals with data from sensors,

Key RL Terms Explanation Examples

Agent
Decision-making entity

that takes action
DQN

State NN internal weights Camera, GPS

Action

A decision made by the

agent to take any of the

actions mentioned above

Quadcopter moving left or right

Reward
How good agent is

performing
Distance from goal

20

formatting this data to be interpretable by the processing layer. The processing layer (Layer III) is

based on a DNN trained on the data collected through sensors. The functions it performs include

actions to be taken by the drone. These actions might include hovering, drone movement in

forward or backward direction.

Once the actions are decided, the AI module forwards these actions to actuators, i.e.,

electronic speed controllers (ESCs), actuators perform these actions. This process happens in a

loop after the actions are taken, new data is being collected through sensors, and new actions are

Figure 5. Proposed Architecture- Layered View

21

decided by the AI module, and hence, this cycle continues to repeat. Each layer is explained in

detail below.

3.3.1. Physical Layer

This is layer I, which comprises of our simulation environment, sensors, and actuators.

A. Simulation Environment

To experiment with deep learning, RL, and computer vision algorithms for UAVs, we have

used AirSim as a simulation tool. Figure 6 is a screenshot of our simulation environment. AirSim

enables us to use different APIs to retrieve images, control the vehicle, etc. Table 5 presents the

components and their details for the simulator. AirSim is used as a platform for simulations. It

provides different APIs to enable communication with vehicles in the simulation environment.

Some example APIs are given in table below.

Table 5. Details of the Simulation Environment

Componentts Name Details

Simulation

tool/Platform
AirSim

Open-source simulator for

UAVs, cars and more

AirSim APIs

simGetImage,

reset,

confirm connection,

simGetObjectPose,

simGetCollisionInfo

To retrieve images, get

state, control the vehicle and

for many other tasks

Vendor Microsoft

Sensors

Camera, GPS

IMU,

magnetometer, barometer

AirSim currently supports

these sensors data

22

These APIs can be deployed on a computer on the vehicle with which you aim to interact,

in our case, its quadcopter as these APIs are also accessible as an independent cross-platform

library. Code written in the simulator can later be executed on the real UAVs.

In this thesis, we have experimented drone’s navigation in three different environments

named as Blocks, Landscape, and Neighborhood. All these environments are supported by AirSim.

These environments are open source and are readily available on unity's unreal engine store [33]

for free. Following is an explanation about the environments along with screenshots.

i. Blocks

Blocks is the default environment that comes with AirSim simulator. It’s a simple

environment as it spans by few buildings and obstacles of arbitrary height over an area of half

kilometers. The major obstacles in this environment are building blocks along with a spherical

object and a small cone as shown in Figure 7.

Figure 6. Screenshot of Our Simulator

23

ii. Landscape

Landscape is a well-known simulation environment. It’s a large size environment like a

jungle. In this environment the major objects are trees, buildings and power transmission lines. It

also contains a road on the right side of the map as shown in Figure 8.

Figure 8. Screenshot of Landscape Environment

Figure 7. Screenshot of Blocks Environment

24

iii. Neighborhood

Neighborhood is a medium size environment which is based on a busy urban neighborhood.

There are many obstacles in this environment such as buildings of random heights, cars, trucks,

trees, houses, and traffic signals as shown in Figure 9.

Table 6 summarizes the different aspects of these environments.

 Table 6. Simulation Environment Details

Environment Dimensions Number

of

obstacles

Major

obstacles

Size

(MBs)

Open source Computa

bility OS

Blocks 400 * 600 m 10 Buildings 650

MB

Yes, Default

Airsim

environment

Windows

/ Linux

Landscape 2 * 2 Km 1000+ Buildings,

Trees,

Power

lines

4.3 GB Yes,

Available on

unity assets

store for free

Windows

/ Linux

Neighborhood 1.2 *1.2 Km 1000+ Cars,

Trees,

Homes,

Traffic

Signals

4.5 GB Yes,

Available on

unity assets

store for free

Windows

/ Linux

Figure 9. Screenshot of Neighborhood Environment

25

B. Drone Sensors and Actuators

We have used GPS, camera, magnetometer, IMU, and barometer, which are currently

supported by AirSim. There are four ESCs in total, working as actuators. Figure 10 presents the

default configuration of our sensors.

There are in total four ESCs; Front Right, Front Left, Back Right, Back Left as shown in Figure

5. Following are the details of the sensors we used.

i. GPS Sensor

It is used to calculate the drone’s position accurately, also to collect the coordinates of the

destination. Figure 11 shows the GPS data in our scenario; latitude and longitude describe the

exact location of the drone at a specific timestamp. Velocity is another important parameter which

describes the velocity of the drone with respect to x, y, and z-axis at the time of measuring the

GPS coordinates.

Figure 10. Sample Drone Sensors Configuration

Figure 8. Screenshot of our GPS sensor

dataFigure 6. Sample Drone Sensors

Configuration

26

ii. Magnetometer Sensor

It is used to handle the wind effect. It calculates the value of magnetic north based on which

it can measure the angle of deviation or the amount of drift caused by wind or some other factors,

e.g., rain. Figure 12 shows the magnetometer data in our scenario.

iii. IMU Sensor

IMU repeatedly compute the existing position of a drone. It first incorporates the sensed

acceleration, with gravity estimate, to compute the current velocity of the drone. Then this velocity

is being used to calculate the current position. Figure 13 shows the IMU data in our scenario.

Figure 13. Screenshot of our IMU Sensor Data

Figure 11. Screenshot of our GPS Sensor Data

Figure 12. Screenshot of our Magnetometer Sensor data

27

iv. Barometer Sensor

 It is used to measure air pressure. Figure 14 shows the barometer sensed data in our

scenario.

v. Camera Sensor

We used depth vision as a camera for collision avoidance, detection, or looking ahead.

Figure 15 shows the comparison between a normal camera view and depth vision camera view. \

On the left side, a normal camera view is shown. On the right side, the same view is

shown but from a depth vision camera. The way to measure depth is using the intensity of black

pixels, i.e., the more black a pixel is, the nearer the object is.

Figure 14. Screenshot of our Barometer Sensor Data

Figure 15. Screenshot of Image taken by Normal camera vs Depth Camera

28

3.3.2. Data and Control Layer

This layer consists of sensors unit and actuators unit. This layer acts as a bridge between

the physical layer and the processing layer. The data from the physical layer collected through

sensors is sent to the sensing unit where it’s stored in a specific format and is forwarded to the

processing layer. After processing the output in the form of actions is passed to the control unit.

Control unit interprets it and forwards it to actuators to perform a specific action.

3.3.3. Processing Layer

This layer comprises of our DNN model, i.e. policy-based DQN. RL is a machine learning

technique in which an autonomous agent acquires to discover an optimum performance over trial

and error exchanges with its environment [5]. In our proposed network model, there are six layers

in total, i.e., one input layer, two convolutional layers, two fully connected layers, and one output

layer.

The input data is collected through different sensors. First, images are taken as input;

different convolutions are performed on it to extract features, as shown in Figure 16. These features

are flattened, and convolutions are performed again to extract low-level features, which result in

dense vector representation. Adam optimizer is used for optimization.

Other sensors data, e.g., data from IMU, barometer, and GPS, are combined with the dense

vector representation, and all these features are passed to two fully connected layers. Output layer

presents the probability distribution of all the possible actions as shown in Table 3.

29

Table 7 lists the neural network specifications used to create the model and to achieve effective

performance results.

Our NN takes camera pixels as an input. The input is [192 * 256 * 3] where 192 is the image

width, 256 is the image length and 3 are RGB frames. This input is passed through three different

convolutional layers which have 16, 32, 32 filters respectively. This generates a dense vector

representation of the image.

Figure 16. NN architecture

30

 Table 7. Implementation Details

On the other side, all the sensors data is accumulated and then normalized. Normalization

is done to map different sensor input values into same range [0-1]. These normalized input values

are then passed to fully connected layer 1 along with dense vector representation. This layer has

256 neurons. Its followed by another layer with 128 neurons followed by output layer. Output

layer has 6 neurons each of which is the probability of action which neuron can take.

Components Techniques

AI module Value-based DQN

Network Training Backpropagation

Optimizer Adam Optimizer

Loss Function and Reward DQN

Number of Hidden layers 5

Camera Input dimensions [192*256*3] = 147,456

Sensors Input dimensions [10 * 1] + [3 *1] + [10*1] + [3*1] = 26

Camera Hidden Layer1 Filters = 16 * [8*8], stride= 4

Camera Hidden Layer2 Filters =32 * [4*4], stride= 2

Camera Hidden Layer3 Filters= 32 * [3*3], stride= 1

Dense Layer 1 dimensions 256 * 1

Dense Layer 2 dimensions 128 * 1

Output Layer dimensions 7 * 1

31

3.4. An Example of Simulation Scenario

Here, an example of the simulation environment is presented. We have taken a block

environment and run few iterations. A starting point is selected for the drone to start navigation

towards the target or goal called as finishing location. Each obstacle in the environment has a

specific height. There are three types of blocks or obstacles based on heights, the small size blocks

are of height range up to 50m, medium size blocks are in height range of 51-100m and obstacles

above 100m are categorized as large blocks.

Table 8. Simulation Parameters

The details of the simulation environment used to illustrate how a drone navigate from one

point towards its goal are shown in Table 8.

Parameter Value

Environment Simulation

Drone’s Max. altitude 200m

Block types

(Based on heights)

Small, Medium, Large

Block sizes

Height ranges

Small: [0-50m]

Medium: [51-100m]

Large: [100m+]

Simulation Input Drone Movements (Up, Down, Left, Right, Forward, Backward)

Simulation Output Sensor Readings (GPS, Camera, Magnetometer, Barometer)

Neural network Input Sensor Readings (GPS, Camera, Magnetometer, Barometer)

Neural network Output

Drone’s Next Movement (Up, Down, Left, Right, Forward,

Backward)

Reward Function 1. (Euclidian distance between current location and final

destination) + collision penalty

32

3.4.1. Environment Details

The complete environment can be shown in Figure 17. The drone can move in all six

directions in this environment. When the environment starts the neural network takes sensor

readings from the simulator. It decides to make a move based on these readings. NN then outputs

next movement for the drone, simulator implements that movement and returns the next sensor

readings.

After this process, a reward is calculated. This reward is a simple fusion of Euclidian

distance and collision penalty. To be precise, it’s a sum of the negative distance from the drone's

current location to its final destination and collision penalty. Collision penalty is essentially a

penalty which occurs when a drone collides with some obstacle. Whenever a collision occurs, the

drone is reset to its initial position and the iteration starts again.

Figure 17. Simulation Environment Primarily Consisting of Blocks of Different Heights as Obstacles

33

When the simulation starts, this cycle of inputs to the neural network from the simulator

and corresponding movement from the neural network to simulator begins. The neural network is

trying to maximize the reward all the way possible. The drone follows the path shown in yellow

as shown in Figure 18. It collides with the obstacle Infront of it. This is because it didn’t anticipate

that it would collide with obstacle if it only considered reducing the distance (maximize reward).

This collision will incur a high penalty and very low reward. This will discourage the drone from

following this set of moves again.

Over multiple iterations, the neural network will try a different set of moves to maximize

the reward. After a certain amount of iterations, it will learn that getting too close to an obstacle

can result in a collision. Due to this, it will try to make moves which increase the reward but at the

same time also fly not too close to an obstacle. Once it’s able to learn rules like these, it will start

to navigate in the environment successfully. After a neural network is fully trained, successful

Figure 18. Drone’s Navigation Path After Some Iterations

34

navigation path from the starting location towards the goal destination is shown in Figure 19. More

information about the environments is provided in the Appendix A.

3.5. System Specifications

 Table 9 presents the system specifications. We used python 3.6 as a programming

language, Tesorflow version 1.13, Cuda version 10.0, cudann version 7.4.2.

 Table 9. System Specifications

Components Versions

Operation System Linux (x64)

Python 3.6

Tesorflow 1.13

Cuda 10.0

CudaNN 7.4.2

Figure 19. Drone’s Successful Navigation Path from starting point towards its Goal

35

Chapter 4

Experimental Results

This section explains the simulation results. The simulator described in the previous

section is used to execute the experiments.

 4.1. Experimental Setting

The drone is initially spawned in a random location on the map, and the final destination

is set to a predefined location (usually midpoint in the map). The goal of the drone is to fly from

its random initial position to the final destination without any collisions. If the drone collides with

any obstacle, then the episode ends, and the drone is restarted from the initial position. For a drone,

we selected a standard off the shelf drone. We are utilizing gyroscope, magnetometer, GPS, and

camera as sensors in a simulation environment. The configuration file for these sensors is shown

in Figure 7.

We used three types of large-scale environments, each of a different kind. The first

environment is called Blocks as it spans with multiple buildings and obstacles of arbitrary height

over an area of half kilometers. The second environment is called Landscape, a well-known

simulation environment, here, drone navigates in a jungle. The third environment is called

Neighborhood; it is based on an urban city location where the drone is supposed to navigate in an

environment crowded with buildings of random height. During implementation, the drone is

trained in each environment separately, where on every collision, it finishes one iteration.

36

Whenever an agent initiates an interaction with the environment, several objects and obstacles are

generated based on the environment it chooses for navigation.

The speed and altitude of the UAV range between 0 to10m/s and 5 to 200m respectively.

The speed and altitude can change depending upon the moves or actions UAV takes. The episode

length (i.e., time step) can be up to 200. The network parameters are learned by using Adam

Optimizer with a learning rate of 10-3. The discount factor γ for the experiments is varied in the

range of 0.91 to 0.99, as shown in Table 10.

 Table 10. Values and Range of Different Simulation Factors

4.2. Reward Function

The reward is the incentive that the algorithm gets when it makes the desired move. In our

scenario, the reward is the combination of the distance between target and collision. A simple

example would be distance plus collision. If there is no collision, then reward is +10 and distance

covered in the shortest path. In case of collision, the reward would be -10 and the learning episode

will end. In our case, the reward value ranges from 0 to 200. The rewards get to 200 when the

Simulation components Value/Range

Simulation Environments Three [Blocks, Landscape, Neighborhood]

Sensors Gyroscope, Magnetometer, GPS, Camera

UAV speed 0 to 10 m/s

UAV altitude 5 to 200 m

Episode length 200

Learning rate 10-3

Discount factor 0.91 to 0.99

37

UAV reaches the destination, and the iteration ends. The environment is continuous; therefore, the

state is the reading gathered from sensors.

We used Bellman’s equation for the optimization of our DQN.

 Here r(s, a) represents the immediate reward that we get from that action. Q(s', a) is the reward

that is achieved when we get into state s' after taking action a. Gemma is the discount factor that

we use to give preference to current reward and discourage future reward. In our scenario, the

possible actions would be moving forward, backward, up, down, left, right, and hover. The state

would be the sensor readings. The DQN network will predict Q-Value, and we will optimize the

network using the following cost function.

In this equation, we calculate the cost of the predicted value vs. the original cost. Here the

first part of the equation will be the original value, and the second part would be predicted by the

network. In training iterations, we continuously optimize this loss.

4.3. NN Training

The following graph shown in Figure 20 presents a trend of reward function values when

we run the program for 500 epochs. It can be observed that the network was learning very slowly.

This is a known behavior as the network is experimenting with different outputs to check which

38

strategy works. After a few hundred iterations, it starts to learn about some successful strategies,

and reward gradually starts to build up.

The only measurable factor that can quantify that the DQN algorithm is working properly

is a reward. In our scenario, the reward function comprises of the combination of hubber loss and

distance from the destination.

0

10

20

30

40

50

60

70

80

90

100
1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

2
1

1

2
2

6

2
4

1

2
5

6

2
7

1

2
8

6

3
0

1

3
1

6

3
3

1

3
4

6

3
6

1

3
7

6

3
9

1

4
0

6

4
2

1

4
3

6

4
5

1

4
6

6

4
8

1

4
9

6

R
ew

ar
d

 V
al

u
es

No. of iterations

Figure 20. Reward Function (500 Iterations)

0

50

100

150

200

250

1
3

0
5

9
8

8
1

1
7

1
4

6
1

7
5

2
0

4
2

3
3

2
6

2
2

9
1

3
2

0
3

4
9

3
7

8
4

0
7

4
3

6
4

6
5

4
9

4
5

2
3

5
5

2
5

8
1

6
1

0
6

3
9

6
6

8
6

9
7

7
2

6
7

5
5

7
8

4
8

1
3

8
4

2
8

7
1

9
0

0
9

2
9

9
5

8
9

8
7

R
ew

ar
d

 V
al

u
es

No. of Iterations

Figure 21. Reward Function (1000 Iterations)

39

The graph shown in Figure 21 shows a trend of reward function values when we run the

program for 1000 epochs. After a few small tweaks and an increasing number of iterations to 1000,

we can observe that the reward is maxing out. The reward was capped at 200. As the iterations

increase, the reward values show a rapid increase, respectively.

4.4. Performance Evaluation

In this section, we have evaluated the performance of our proposed model both on

qualitative and quantitative measures using both policy-based DQN and value-based DQN, as

shown in Table 11.

 Table 11. Types of Performance Metrics

4.4.1 Quantitative Evaluation

In this section, we have evaluated the performance of multiple implementations (value-

based vs. policy-based DQN) based on different metrics. The first parameter which affects the

performance of UAV is the RTT or Round-Trip Time, as shown in Figure 22. RTT pattern for both

value-based DQN and policy-based DQN.

Performance Metrics Description

Quantitative measures System Round Trip Time, Avg. the execution time of

each iteration, Effect of gamma, Different learning

rates, varying iterations

Qualitative measures Model free RL, Learning based on no prior

knowledge (No large datasets required for training),

efficient, Scalable

40

In our scenario, it comprises of taking sensor readings from simulation, feeding it into the

DQN, getting the predicted action, forwarding that action to the simulator and finally getting new

sensor readings. This cycle is an important metric as it allows us to calculate the real-time

performance of our algorithm. In value-based DQN the RTT is slightly lower than policy-based

DQN. The reason for this increase in RTT is the extra probability sampling that is done in policy-

based DQN but is not present in value-based DQN. For policy-based DQN, the mean value for

RTT is 6.5 milliseconds while for value-based DQN this value is 6.0 milliseconds.

Average execution time for each iteration is an important parameter for measuring the

performance of the DQN. Figure 20 shows the pattern of execution time for each iteration for the

first 180 iterations. Execution time shows the time in seconds that UAV navigated in the

environment before colliding with an obstacle.

0

1

2

3

4

5

6

7

8

9

10
1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

R
es

p
o

n
se

 T
im

e
(m

s)

Iterations

System Round Trip Time

DQN (Policy based)

DQN (Value based)

Figure 22. System Round Trip Time vs. Iterations

Figure 45. System Round Trip Time vs. Iterations

41

For initial iterations, DQN usually tries to figure out the policy that works better. In this

process, the execution time is relatively unstable and is varying. In Figure 23, both policy-based

DQN, as well as value-based DQN, are showing a slight increase in execution time as the iteration

count increases.

0

5

10

15

20

25

30

35

40

45

1 60 120 180

Ex
e

ct
u

ti
o

n
 T

im
e

 (
Se

cs

Iterations

Average Execution Time for each iteration

DQN (Policy based) DQN (Value based)

Figure 23. Average Execution Time for each Iteration

Figure 56. Average execution time for each iteration

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 >8

A
vg

. f
re

q
u

en
cy

No. of Moves

Average number of moves in 1st 100 iterations

DQN (Policy based)

DQN (Value based)

Figure 24. Average Number of Moves in 100 Iterations

42

Policy-based DQN is showing a bit more execution time than value-based DQN. This

behavior is expected as the policy-based gradient is using probability distribution for actions as

compared to value-based, which is forwarding action with maximum value. The average number

of moves in the first 100 iterations also shows important results in comparing the performance of

two DQN variants.

The graph in Figure 25 presents the collisions count as the time progresses. The collisions

gradually decrease as the training time increases. This is because as the network starts to learn

more about the environment, the collision count decreases. For both the value-based DQN as well

as policy-based DQN the count decreases; however, the policy-based DQN performs slightly better

in the long run with collision count reducing as the time passes.

Initially, value-based DQN performs better in the first 10 mins with low collision count,

but as we approach the hour mark, policy-based DQN takes the lead. The difference between the

two algorithms is very small, though.

5
6

1
0

0 1
3

2

1
7

6

2
1

2 2
2

4 2
4

4 2
5

6 2
6

8

6
4

9
6

1
2

4

1
8

6

2
2

0 2
3

6 2
5

2 2
6

4

2
7

2

5 1 0 1 5 2 0 2 5 3 0 4 0 5 0 6 0

A
V

ER
A

G
E

O

F
C

O
LL

IS
IO

N
S

TRAINING TIME (MINUTES)

AVERAGE COLLISIONS VS.TRAINING TIME

DQN (Policy based) DQN (Value based)

Figure 25. Average Number of Collisions with respect to Time

Figure 78. Average number of collisions with respect to time

43

 Table 6. Statistical Quantities of Value-Based DQN and Policy-Based DQN in Different Environments

Table 12 summarizes the performance of both value-based DQN as well as proposed

policy-based DQN. We define the success rate as the percentage of iterations in which the UAV

was able to successfully navigate from source to destination using a fully trained model.

The crash rate is defined as the percentage of iterations the drone had collusion and stray

rate as the percentage of epochs when the drone was unable to reach a destination or have a

collision. We compare these three rates in three different simulation environments.

In all three environments, policy-based DQN outperforms the value-based DQN by a small

margin. The performance on the success rate for both the networks is very good. The highest

success rate is in Blocks due to its comparatively small size as compared to Landscape or

Neighborhood. The average success rate for all three environments for policy-based DQN is 97.24 %

while 96.74 % for value-based DQN.

Environment |Results Success Rate Crash Rate Stray Rate

DQN (Policy-

based)

DQN

(Value-

based)

DQN (Policy-

based)

DQN (Value-

based)

DQN (Policy-

based)

DQN (Value-

based)

Blocks 98.02% 97.25% 1.50% 1.70% 0.48% 1.05%

Landscape 96.45% 96.17% 2.00% 2.12% 1.55% 1.71%

Neighborhood 97.25% 96.80% 1.50% 1.50% 1.25% 1.70%

Average 97.24% 96.74% 1.66% 1.77% 1.09% 1.48%

44

 Table 7. Effect of Discount Factor

The crash rate is also very low, varying between 1.5 to 2.0 percent for all three

environments for both the algorithms. Similarly, the stray rate is also relatively small, ranging from

0.48 to 1.48. Table 13 summarizes the output based on different discount factors used. The

discount factor is used to determine the importance of future reward as compared to the current

reward. Higher discount factor means high importance to future reward and vice versa. Above

table summarizes an important pattern in this regard. As we decrease the discount factor, the

success rate starts to decrease (by 4.17 %), and the stray rate starts to increase (by 3.71%).

Interestingly the failure rate increases but very minutely (by .07%). This indicates that by

increasing the discount factor, we can look ahead in the future and achieve better results at high

values as compared to lower ones. Another important point is that although by decreasing the

discount factors, the success rate also decreases but policy-based DQN still performs better than

value-based DQN. Table 14 summarizes the success rate variation based on different learning

rates over 1000 iterations.

Discount Factor | Results Success Rate Crash Rate Stray Rate

DQN

(Policy-

based)

DQN (Value-

based)

DQN (Policy-

based)

DQN (Value-

based)

DQN (Policy-

based)

DQN (Value-

based)

0.99 97.24% 96.74% 1.66% 1.77% 1.09% 1.48%

0.97 96.31% 96.10% 1.68% 1.78% 2% 2.12%

0.95 94.15% 93.84% 1.72% 1.79% 4.13% 4.37%

0.93 93.07% 92.96% 1.83% 1.85% 5.10% 5.19%

45

Table 8. Effect of Learning Rate

The results show that the learning rate for 0.001 gives the best performance with 97.24% success

rate. If we decrease the learning rate, then the network remains undertrained. For values greater

than 0.001, learning rate shows oscillations and fails to converge to an optimal state.

4.4.2 Qualitative Evaluation

In this section, we will evaluate our approach in comparisons with state-of-the-art work

based on a few important parameters. Table 15 summarizes the performance of our approach in

comparison with existing works.

I. Realistic Environment

In any navigation, the most important part is a realistic and complete environmental model.

It’s a baseline for interaction as a strong environmental model would result in strong results. In

[11, 12], complete environments are used. In [12], a 2D environment is used, which in itself

reduces the complexity model. It also removes a lot of complication from the problem statement.

In [11], the 3D model is used, but a very simplified model is assumed. All the drag forces that act

Learning Rate | Results Success Rate Crash Rate Stray Rate

DQN

(Policy-

based)

DQN (Value-

based)

DQN (Policy-

based)

DQN (Value-

based)

DQN (Policy-

based)

DQN (Value-

based)

0.1 75.08 74.54 3.74 3.90 21.18 21.56

0.01 92.15% 91.84% 2.32% 2.39% 5.46% 5.77%

0.001 97.24% 96.74% 1.66% 1.77% 1.09% 1.48%

0.005 91.07% 90.96% 2.83% 2.85% 6.10% 6.19%

0.0001 84.19% 82.55% 6.57% 6.84% 9.24% 10.61%

46

on the drone and make navigation a difficult task are ignored. In [14, 15, 32], completely realistic

environment is utilized. In our work, we are also utilizing a completely realistic environment

taking into account all the factors that make the environment more stochastic.

II. Model Free RL

 Model free RL is not the golden standard for navigation tasks. Its performance is best

among all the available methods. In [14], model based RL is utilized. In [15], simple DNNs are

deployed. In [11, 12, 32], Deep model free RL is used.

III. Use of Commodity Hardware

 It’s very important that what kind of hardware is utilized for the navigation as it has a direct

impact on its adaptability if someone is getting very good results but is utilizing very specific

hardware, then its less useful as compared to one which has relatively less impressive results but

is using commodity hardware. [11, 12, 14] are using commodity hardware, so their work is

extensible. In [15], very specific Nvidia TX1, AuVedia 120, and three cameras are utilized. In [32],

an extra nine range sensors were attached to their UAV. In our work, we are using off the shelf

drone with all the standard sensors. This makes our work more relevant for implementation by

industry.

IV. Onboard Processing

 Onboard processing is an important benchmark in drone navigation. Nowadays, it’s

necessary that the drone should have all the processing onboard to guarantee complete autonomy.

47

In [14], an extra ROS server is deployed. In [11, 12, 32], only using onboard processing

power is exploited. In [15], extra chips beside the traditional hardware are utilized. TX-1 and

Auvedia-120 chips are being used. In our work, we are also not utilizing any off-board processing.

V. Camera Utilization

 The camera is an essential part of drones nowadays. Its effective utilization is an

important factor for any navigation system. In [14], they utilize standard drone camera as part of

the proposed research. In [15], drone cameras are utilized, but instead of using the only available

camera, 12 extra cameras are utilized that were installed separately. In [11, 12], no extra drone

camera is deployed in proposed works. In [32], no drone camera is utilized but to detect the

environment; nine range sensors are used as a replacement. In our work, we have utilized the

commodity hardware that usually comes installed with most drones.

Table 9. Performance Evaluation Summary

Table 10. Performance evaluation of our approach (Summary)

48

VI. Learning on the Fly

This refers to the ability to learn from its mistakes as its flies instead of training model

explicitly. In [11, 12, 14, 32], deep RL is utilized; therefore, the ability to have a model that learns

on the fly exists. In [15], DNN is used; therefore, they lack this ability. We are also utilizing

learning on the fly ability as we are also using model free RL.

VII. Navigation for Long Durations

 This parameter defines whether the authors were able to fly drone autonomously for more

than 5 mins. In [15], they were able to achieve 6 seconds flight from 3 minutes of data. If they

tweaked with the training data, their results deteriorated. In [12], results were presented for the 2D

environment. Therefore, the work was only good enough for the testbed. For an outdoor, real-

world 3D environment where drag forces effect, the model couldn’t perform well. In [11], drone

stabilization was achieved but not the navigation. Their work shows that the drone can hover for

more than 5 minutes but cannot navigate through the environment. Another issue in this work [11]

was a simplified model assumption which makes even hovering unstable in a real-world

environment.

In the above section, we have summarized the critical factors that are important in drone

navigation scenario. We have concluded from the above considerations that most of the works

only cover a few of the above considerations. This makes our work stand out from rest as no one

has covered all these factors in their research (till date) along with our state-of-the-art results to

the best of our knowledge. The work that was closest to our implementation is presented in [32],

but it also misses a few key aspects (e.g., customized hardware, extra sensors, etc.). We were also

49

able to achieve state-of-the-art success rate in our work. In our research work, we have taken into

account all these factors and have completed autonomous navigation.

50

Chapter 5

Conclusion

Autonomous navigation in unknown terrain is an exponentially hard task due to

unavailability of pre-constructed maps or path planning. In this thesis, a deep RL based framework

is developed for UAVs navigation in unknown large-scale complex environments.

Specifically, first, an efficient policy-based DQN is designed, which comprises of

convolutional and fully connected layers to extract important features from images taken through

depth vision camera. These features are then combined with inputs taken directly from other

sensors, e.g., IMU or magnetometer, etc. and are passed to a fully connected layer. This is followed

by a policy-based Q-learning approach to apprehend UAV navigation.

We implement two different versions of this algorithm, i.e. policy-based DQN and value-

based DQN. We can achieve 97.24% success rate for policy-based DQN and 96.74 % success rate

for value-based DQN. Our results show that both these algorithms perform good but policy-based

DQN outperforms value-based DQN by a small margin. We also achieve failure rates to around

1.6% for policy-based DQN and 1.7% for value-based DQN. As far as our knowledge, these are

the best results presented to date. We are also able to autonomously navigate from start to finish

line using only standard sensors. This factor combined with high accuracy in results is important

in enabling this work to be adaptable to any off-the-shelf drone available in the market.

In regard to the contributions of this work, we were able to achieve a completely

autonomous drone flight in a 3D environment through partially observable Markov decision

51

process or POMDP without having any prior knowledge of the environment and feature

engineering. We were able to achieve 97.24% success rate and able to design a model that can run

on any off-the-shelf drone available. Besides, focusing on to cover the shortcomings of the

previous works, many aspects of the dynamic environment in which drone flies are also being

considered.

 Our research has proved that DRL is an effective tool to navigate a UAV from one location

to another in a 3D environment. It will be useful for efficient resource management and dynamic

tracking. Nonetheless, there is still room for future research. For instance, one next step for this

research would be to experiment with this model in a real environment and enabling drone to fly.

52

Bibliography

[1] https://www.droneii.com/drone-investment-trends-update.

[2] https://www.gpsworld.com/uav-report-growth-trends-opportunities-for-2019/

[3] J. Hwangbo, C. Gehring, D. Bellicoso, P. Fankhauser, R. Siegwart, and M. Hutter, “Direct

state-to-action mapping for high dof robots using elm,” in Intelligent Robots and Systems

(IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015, pp. 2842–2847.

[4] W.D. Smart and L.P. Kaelbling. Reinforcement learning for robot control. Mobile Robots

XVI (Proc. SPIE 4573), 2001.

[5] L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning: A survey. Arxiv

preprint cs/9605103, 1996

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.

Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game

of go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,

2016.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

https://www.gpsworld.com/uav-report-growth-trends-opportunities-for-2019/

53

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,

“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971,

2015.

[9] https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle

[10] Su Yeon Choi & Dowan Cha (2019): Unmanned aerial vehicles using machine learning

for autonomous flight; state-of-the-art, Advanced Robotics, DOI:

10.1080/01691864.2019.1586760

[11] Hwangbo, Jemin, et al. "Control of a quadrotor with reinforcement learning." IEEE

Robotics and Automation Letters 2.4 (2017): 2096-2103.

[12] Pham, Huy X., et al. "Autonomous uav navigation using reinforcement learning." arXiv

preprint arXiv:1801.05086

[13] Koch, William, et al. "Reinforcement learning for UAV attitude control." ACM

Transactions on Cyber-Physical Systems 3.2 (2019): 22

[14] Lambert, Nathan O., et al. "Low Level Control of a Quadrotor with Deep Model-Based

Reinforcement learning." arXiv preprint arXiv:1901.03737 (2019).

[15] Smolyanskiy, et al. "Toward low-flying autonomous MAV trail navigation using deep

neural networks for environmental awareness." (IROS). IEEE 2017.

[16] ReddingJ, Geramifard A, UndurtiA, et al. An intelligent cooperative control architecture.

In American Control Conference (ACC), 2010; IEEE; 2010. p.57–62.

https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle

54

[17] Redding J, Geramifard A, How JP. Actor-critic policy learning in cooperative planning.

In AAAI Spring Symposium: Embedded Reasoning,2010.

[18] Geramifard A, Redding J, Roy N, et al. UAV cooperative control with stochastic risk

models. In American Control Conference (ACC),2011; IEEE;2011. p.3393–3398.

[19] Geramifard A, Redding J, How JP. Intelligent cooperative control architecture: a

framework for performance improvement using safe learning. J Intel Robot Syst.

2013;72(1):83–103.

[20] Zhang B, Liu W, Mao Z, et al. Cooperative and geometric learning algorithm (CGLA) for

path planning of UAVs with limited information. Automatica. 2014;50(3):809–820.

[21] Xu H, Carrillo LRG. Fast reinforcement learning based distributed optimal flocking

control and network codesign for uncertain networked multi-UAV system. In Unmanned

Systems Technology XIX; International Society for Optics and Photonics; 2017. vol.

10195, p. 1019511.

[22] Vandapel N, Kuffner J, Amidi O. Planning 3-d path networks in unstructured

environments. In (Proceedings of) the 2005 IEEE International Conference on Robotics

and Automation (ICRA); IEEE;2005. p.4624–4629.

[23] Bachrach A, He R, Roy N. Autonomous flight in unknown indoor environments. Int J

Micro Air Vehicle. 2009;1(4):217–228.

55

[24] Bry A, Bachrach A, Roy N. State estimation for aggressive flight in GPS-denied

environments using onboard sensing. In 2012 IEEE International Conference on Robotics

and Automation (ICRA); IEEE;2012, p.1–8.

[25] Bachrach A, Prentice S, He R, et al. Estimation, planning, and mapping for autonomous

flight using an RGBD camera in GPS-denied environments. Int J Rob Res.

2012;31(11):1320–1343.

[26] Achtelik, M., Achtelik, M., Weiss, S., & Siegwart, R. (2011, May). Onboard IMU and

monocular vision based control for MAVs in unknown in-and outdoor environments.

In 2011 IEEE International Conference on Robotics and Automation (pp. 3056-3063).

IEEE.

[27] Wendel, A., Maurer, M., Graber G., et al. Dense reconstruction on-the-fly. In 2012 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR); IEEE; 2012.p. 1450–

1457.

[28] Fraundorfer, F., Heng, L., Honegger, D., et al. Vision-based autonomous mapping and

exploration using a quadrotormav. In2012IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS); IEEE, 2012. p. 4557–4564.

[29] Luo, Q., Duan, H. Distributed uav flocking control based on homing pigeon hierarchical

strategies. Aerosp Sci Technol. 2017;70:257–264.

[30] Lee D, Kim S, Suk J. Formation flight of unmanned aerial vehicles using track guidance.

Aerosp Sci Technol. 2018;76:412–420.

56

[31] Ambroziak, L., Gosiewski, Z. Two stage switching control for autonomous formation

flight of unmanned aerial vehicles. AerospSciTechnol.2015;46:221–226.

[32] Wang, Chao, et al. "Autonomous Navigation of UAVs in Large-scale Complex

Environments: A Deep Reinforcement Learning Approach." IEEE Transactions on

Vehicular Technology

 [33] https://www.unrealengine.com/marketplace/en-US/store

https://www.unrealengine.com/marketplace/en-US/store

	Introduction .
	1.1. Drones and UAVs .
	1.2. Applications of UAVs .
	1.3. Quadcopters: Brief Overview .
	1.4. Quadcopters and AI
	1.5. RL in Drones and Potential Issues
	1.6. Research Problems and Objectives .
	1.7. Thesis Orientation .

	Related Works .
	2.1. UAV and Unknown Terrain
	2.2. Machine Learning Methodologies
	2.3. Existing Frameworks
	2.4. Performance Comparisons with Existing Works

	Proposed Model and Architecture.
	3.1. System Overview
	3.2. Proposed Model and System Design
	3.3. Layered View of Architecture.
	3.4. An Example Simulation Scenario .
	3.5. System Specifications .

	Experimental Results
	4.1. Experimental Setting .
	4.2. Reward Function .
	4.3. NN Training
	4.4. Performance Evaluation

	Conclusion
	Bibliography .

<startpage>11
Introduction . 1
 1.1. Drones and UAVs . 1
 1.2. Applications of UAVs . 2
 1.3. Quadcopters: Brief Overview . 3
 1.4. Quadcopters and AI 3
 1.5. RL in Drones and Potential Issues 4
 1.6. Research Problems and Objectives . 5
 1.7. Thesis Orientation . 6
Related Works . 7
 2.1. UAV and Unknown Terrain 7
 2.2. Machine Learning Methodologies 8
 2.3. Existing Frameworks 8
 2.4. Performance Comparisons with Existing Works 11
Proposed Model and Architecture. 15
 3.1. System Overview 16
 3.2. Proposed Model and System Design 17
 3.3. Layered View of Architecture. 19
 3.4. An Example Simulation Scenario . 31
 3.5. System Specifications . 34
Experimental Results 35
 4.1. Experimental Setting . 35
 4.2. Reward Function . 36
 4.3. NN Training 37
 4.4. Performance Evaluation 39
Conclusion 50
Bibliography . 52
</body>

