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ABSTRACT 

Over the last few years, UAV applications have grown immensely from delivery services to 

military use. Major goal of UAV applications is to be able to operate and implement various tasks 

without any human aid. To best of our knowledge, in the existing works for autonomous navigation 

for UAV’s, ideal environments (e.g., 2D) are considered instead of realistic or special hardware 

are used (e.g., nine range sensors) to navigate through an ideal environment. Therefore, in this 

thesis, we aim to overcome the limitations of the existing works by proposing a model for 

navigating a drone in an unknown environment without any human help or aid. The goal of this 

research is to navigate from location A to location B in unknown terrain without having any prior 

knowledge about the terrain using default drone sensors only. We present a model which is 

compatible with almost every off-the-shelf drone available in the market. Our methodology utilizes 

only standard drone sensors which are attached to almost every drone. These include a camera, 

GPS, IMU, magnetometer, and barometer. Our methodology uses 3D, POMDP, and continuous 

environment. We have experimented with three different types of simulation environments in this 

work; Blocks, Landscape, Neighborhood. 

In our approach, we use a DNN for predicting UAV’s next movement. First few layers are 

convolutional layers with propose of generating deep vector representation of camera image. This 
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deep vector representation is combined with other sensor data in fully connected layers. The 

network outputs the next movement for our UAV. Our neural network architecture is sort of CNN 

but the key difference is instead of classification, it generates probability distribution for the next 

possible movement of UAV. 

We achieved completely autonomous (unaided) flight and navigation using Deep Q-

learning, which is a subfield of RL. We implemented two different versions of the algorithm, i.e. 

policy-based DQN and value-based DQN. We were able to achieve 97.24% success rate for policy-

based DQN and 96.74% success rate for value base DQN. We were able to demonstrate that our 

proposed approach was able to navigate the unknown environment successfully when it was 

trained for over 1000 iterations. The results showed that the rewards for the first 500 iterations 

were low. This was because the DQN was exploring different strategies and finding ones which 

work. Post 500 iterations the reward started to go up, and the performance started to improve. After 

1000 iterations the DQN was successfully able to navigate drone in an unknown environment with 

ease.  

Our main contributions are: 1) We are using realistic environment model including factors 

like rain and wind. 2) We are only using onboard computing resources to run our model instead of 

some external server. 3) We were able to achieve improved results in terms of success (97.24%), 

failure (1.09%), and stray rate (1.66%). Another factor that distinguishes this work from other 

works is its potential for mass adaptability. In this work we are only using standard sensors without 

any special hardware requirements. This make our work widely adaptable for any off-the-shelf 

drone in the market.   
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Chapter 1 

Introduction 

With the rapid advancements in the technology, the fields of robotics and mechatronics 

have drastically upgraded in terms of their role in the modern business and different industries. 

UAV also known as a drone is an aircraft that flies without any human pilot and are controlled 

remotely. 

1.1.  Drones and UAVs 

These UAVs will potentially affect the way traditional businesses run and how different 

companies operate. Besides the challenges and risks the commercial UAVs industry is facing, a 

range of diverse products are being presented. There are organizations and companies focusing on 

to generate productive ways of UAVs usage in daily tasks.  

A considerable number of investors are investing in the idea of new vehicles generation 

that are capable of multiple tasks, e.g., flying, swimming, crawling up a wall or even walk. 

According to a report [1], drone companies managed to take around $3,163 billion of investments 

since 2008.  

The excellent growth rate of the UAV industry makes it nearly impossible to list down or 

explain all the applications that have been used regularly nowadays; also, its difficult to mention 

all the businesses concerned in developing drone platforms or drone parts suppliers e.g., sensors 

as cameras, thermal, video, and infrared, etc. 
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1.2.  Applications of UAVs 

The UAV applications have attained a high reputation as they benefit the aerial vehicles 

e.g., quadcopters with an ease that can help them execute different tasks such as avoiding obstacles 

without collisions, autonomous maneuvering, and VLOT. For a quadcopter to perform in an indoor 

environment, it requires to operate with agility and efficient feedback without losing control. 

Stabilization is needed for an outdoor environment for a drone to operate against external forces. 

In short, for both situations, a stable flight is immensely important for a drone to function 

effectively. This can help a quadcopter to survive in extreme external factors e.g., heavy rain or 

wind as it will be able to prevent crashing. In order to use these applications for navigation and 

stabilization, UAVs and drones need to be supplied with a series of sensors e.g., depth cameras, 

accelerometer, gyroscope, magnetometer, etc. 
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Figure 1. UAV Applications (Market Growth) 



3 
 

Apart from this, applications of drones can be observed in many fields such as accident 

reporting, infrastructure inspection, crop monitoring, etc. Figure 1 is from a survey which presents 

the growth rate of different UAV applications, it can be seen that aerial surveying and mapping is 

growing at a higher rate [2].  

1.3.  Quadcopters: Brief Overview 

Quadcopters are a more specific form of an aerial vehicle known as multicopter having an 

arbitrary number of rotors. Quadcopters are driven by four rotors. In the 1920s, when quadcopters 

were first introduced, they were unable to gain popularity due to challenges like having 

comparatively large size and weight, mechanical complexity, control management, and etc. [1, 2]. 

In recent years, as a result of advances in electronics, efficient microcontrollers, better 

sensors, and durable batteries; quadcopters and UAVs managed to attract many researchers and 

developers to put some research efforts towards the potent utilization, design, and implementation 

of the quadcopter. Today, many applications of quadcopters can be observed in areas like crop 

monitoring, video surveillance, military operations, and rescue or search operations and many 

others. This accelerated growth of UAVs suggests that in the next decade there will be a high 

demand for the experts who can design and implement UAVs. 

1.4.  Quadcopters and AI 

Data in large volumes are often spawned by drones and UAVs. These UAV applications 

will only be useful for the consumer if this data is managed efficiently and effectively without 

requiring extra efforts. Therefore, AI (Artificial Intelligence) seems to cover these challenges as 

nowadays every other company or industry is using AI techniques, machine learning or deep 
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learning to process immense amount of data. There are many AI based tasks that deal with image 

recognition, UAVs are also required to perceive and understand the environment, detect and avoid 

collisions in order to achieve a smooth flight and motion planning is also another task which 

requires AI and machine learning to play an active part as shown in Figure 2.  

 

1.5.  RL in Drones and Potential Issues 

A subfield of machine learning known as RL is gaining success in solving many difficult 

research problems. In RL an optimal behavior is learned by an agent via interacting and getting a 

response from the environment.  In contrast with supervised learning where the knowledge is 

already provided to an agent in order to execute a certain task, RL uses a different way of training 

Figure 2. Role of AI in UAVs 
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and get through rewards and punishments [3]. This method is beneficial when the environment 

can’t be explored completely or easily i.e., it’s large and dynamic [4]. 

RL has many advantages over optimization techniques and supervised learning [5] such as, 

i) there is no requirement of a predefined controller structure which helps reduce the human efforts 

and ii) enhances the performance as well.  In different researches, it has been proved that for many 

difficult jobs, a well-trained model will be able to perform better and effective as compared with 

human experts [6, 7]. In continuous spaces, traditional methods do not perform extraordinarily but 

RL based methods show promising results [8]. 

Though for decades robotics are using RL, there are still limitations to the areas where it 

can be applied. It can help control a UAV, not just controlling its trajectory but also its complete 

movement with a NN based trained model.  In this work, we determine that a UAV can be fully 

operated and controlled using a NN trained in a RL based simulation environment.  We use a DQN 

which is policy-based as to overcome the limitations of the previously done researches. 

1.6.  Research Problems and Objectives 

This work aims to address the limitations of existing research works and hence contributing 

by taking into account different parameters, listed in Table 1. We propose a model for navigating 

a drone in an unknown environment without any human help or aid. The goal is to navigate from 

location A to location B in unknown terrain without having any prior knowledge about the terrain 

using default drone sensors only. As per the flight is concerned, we want to achieve a fully 

autonomous flight with a small set of data. We aim to achieve a successful navigation in different 

large-scale complex environments 
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Table 1. Research Objectives 

 

1.7.  Thesis Orientation 

The main chapters of this thesis are structured and organized in the following way: Chapter 2 

is a literature review. It considers the contributions of existing works in the UAV navigation field 

using deep learning techniques. Chapter 3 elaborates the proposed system and architecture and 

explain the layered architecture in detail. Chapter 4 explains the experimental results and 

performance evaluation of the overall system compared with existing works. Finally, Chapter 5 

concludes this thesis. 

 

 

Performance 

metrics/Objectives 
Domain Goal 

Environment 3D/2D 3D 

Observable 
Fully/Partially observable Markov 

decision process or POMDP. 

Partially observable 

Markov decision process  

or POMDP. 

Prior Knowledge 
Partial/ 

No Environmental Knowledge 

No Environmental 

Knowledge 

Drone flight Autonomy Partial/complete Complete 

Dataset Large/Small Small 
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Chapter 2 

Related Works 

Work in this research is related to autonomous UAV or UAS navigation using RL. 

Therefore, it is important to discuss some major concepts of machine learning, drones, and to 

elaborate on the related works done in this area. This chapter deals with the limitations of the 

existing models and benefits of the proposed mechanism. 

2.1. UAV and Unknown Terrain 

The usage rate of UAV is increasing on a daily basis. It is not only utilized for security 

surveillance but also for wildfire monitoring, civilian tasks, target tracking, rescue operations, and 

among many others, military operations. Covering a widespread known or unknown area 

automatically is its forte and hence having an unprecedented growth rate. The most challenging 

task is to research on unknown paths or depicting the unknown environment based on prior 

knowledge of the environment. The UAV is defined as a “powered, aerial vehicle that does not 

carry a human operator, uses aerodynamic forces to provide vehicle lift, can fly autonomously or 

be piloted remotely, can be expendable or recoverable, and can carry a lethal or nonlethal payload” 

[9]. In this case, RL helps us in remotely piloting the drone to the required destination whose path 

is unknown to us, or we have little information about the environment. UAVs are classified into 

six functional categories [9]: 

a. Target and decoy – yielding ground and aerial force a prey that reproduce an enemy 

aircraft or missile 
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b. Reconnaissance – produce intelligence related to battlefield 

c. Combat – for missions with high-risk, it provides attacking capabilities 

d. Logistics – cargo delivery 

e. Research and development – improvement of UAV technologies 

f. Civil and commercial UAVs –data collection and photography on the aerial force 

2.2. Machine Learning Methodologies 

Machine Learning can be categorized into supervised learning, unsupervised learning, and 

RL. Regression and classification are labeled as supervised learning, whereas clustering is 

classified as unsupervised learning. RL is useful in making real-time decisions, AI games, tasks 

learning, skills acquisition, and robot navigation. 

In this research, we focus on RL and how it is helpful in UAV navigation in an unknown 

environment. In RL, the input or output is not labeled as supervised learning. It is helpful even if 

the prior knowledge of the environment is less known or not known at all. As the model works, it 

learns by itself and thus helpful in our research area. Previously UAV applications have been 

developed using RL algorithm. RL algorithm depends on feedback and uses trial and error method 

to maximize the correctness of the output. It is based on MDP which has set of states s, actions a, 

rewards r and probability of transition T. T (s’, a, s) = P(s’ | s, a) describes the effect on the state. 

It requires the next state’s’ and the reward depends on the previous state s and action a [9]. 

2.3. Existing Frameworks 

Relatively much work has been going on with respect to automatic UAV navigation with 

machine learning algorithms but less or no work has been done on unknown path travel by UAV. 

Su Yeon Choi and Dowan Cha in their paper “Unmanned aerial vehicles using machine learning 
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for autonomous flight; state-of-the-art” has divided their research areas into three categories 

parameter tuning, adaptive control and real-time path planning [10]. 

Hwangbo, Jemin, et al. "Control of a quadrotor with reinforcement learning" deals with 

policy network that is mapped to the state of rotor thrust instead of high-level trajectory decisions. 

Recommends controlling and dynamic stabilization from upside down throw. Also encourages 

new deterministic on-policy method to learn separate policy and value network [11]. Drawbacks 

of this research is high tracking error and unsatisfactory simulation model accuracy. 

Pham, Huy X., et al. "Autonomous UAV navigation using reinforcement learning" 

proposes a framework to apply RL algorithm to enable UAV to operate in an unknown 

environment. It uses the Q-learning algorithm using MATLAB. Drawbacks are the deterministic 

environment. It uses a 2D environment instead of 3D, and another drawback is it is infeasible for 

the real world [12]. Koch, William, et al. "Reinforcement learning for UAV attitude control" uses 

flight control system train with DDGP, TRPO and PPO. Compares performance with PID using 

their GYM-FC environment. Drawbacks are ideal environment considered and decreased 

convergence [13]. Lambert, Nathan O., et al. "Low Level Control of a Quadrotor with Deep 

Model-Based Reinforcement learning" proposes a model based RL to rapidly generate low level 

controllers w/o specific domain knowledge. Disadvantages are only using experience data and 

model divergence for longer timestamp [14]. 

Smolyanskiy, et al. "Toward low-flying autonomous MAV trail navigation using DNN for 

environmental awareness" proposes a micro air vehicle system to follow trails in an unstructured 

outdoor environment. Drawbacks are NVidia custom hardware chips (TX1+J120) are used and not 

fully autonomous (Human intervention required) [15]. For non-colliding paths for multi-agent 
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UAV’s cooperative planners have been developed. It has inaccuracies. Geramifard et al. studies 

on the ICCA for combining cooperative planners and RL techniques as a framework [16 -20]. 

Zhang et al. [21] propose a CGLA, which is made for path planning on multiple UAV cooperation 

[22]. In CGLA, to balance between the economy of paths and collision avoidance, the parameters 

are trained. The individual weight matrix and cost matrix are proposed for an efficient path 

planning of both single and multiple UAVs [10]. Based on the geometric distance and risk 

information shared among UAVs, the individual weight matrix is calculated and adaptively 

updated. The optimal path from a starting point to a target point is calculated. The simulation 

results validate the effectiveness and feasibility of CGLA for safe navigation of multiple UAVs. 

However, it is required to utilize the coarse and fine grid to design a fast path planning algorithm 

in the proposed framework and apply the algorithm to an actual UAV [10]. 

There are results to avoid a collision for UAV using laser range finders or Kinect cameras. 

Vandapel et al. [23] avoid a collision in 3D space using lidars, and Bachrach et al [24], and Bry et 

al. [25] depict obstacle avoidance in an unknown room using scanning lidars for SLAM [23, 24, 

25, 26]. Bachrach et al. use Microsoft Kinetic camera in an unknown room [26]. However, these 

research works are required to improve on problems of power supply, payload, UAVs cost, and 

the reliability of localization. As a result, Achtelik et al. [27], Wendel et al. [28], Fraundorfer et al. 

[29] created maps by a single camera, or stereo cameras [26, 27, 29]. Achtelik et al. [30] created 

sparse maps of the environment using a single, cheap camera [26]. Wendel et al. [20] created dense 

maps of the environment using a camera [19]. Fraundorfer et al. [29] demonstrated accurate depth 

estimation and localization using stereo cameras. However, even though the algorithms are 

reasonably fast to avoid a collision, they were still too computationally expensive for UAVs flight. 

Recently, many researchers have studied path planning and formation light techniques [32, 13, 32]. 
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2.4. Performance Comparisons with Existing Works 

In this section, we have compared the recent works in the same field.  The performance is 

evaluated on the following parameters. Table 2 presents a summary of performance comparisons 

with existing works. 

I. Environmental Model 

      The environmental model defines the space in which drone navigates. In [12], the 2D 

environmental model is utilized. In [11], a simplified model in a 3D environment is used where 

the impact of drag forces on the drone is ignored. In [12], the 3D model is utilized for modeling. 

In our work, we have considered a complete 1D environment with consideration to all the 

environmental factors, which include winds, rain as well as drag effect created by these elements. 

II. Observation Space 

Observational Space defines how the environment behaves when some action is performed. 

In the deterministic environment, if given a state, action pair next state can be guaranteed while in 

a stochastic environment, it’s not guaranteed that state, action pair will generate the same output 

every time. In [11, 12], observational space is set to deterministic while [14, 15, 32] have used 

stochastic model. We have also utilized the stochastic observational model for our environment as 

its closer depiction of real-world scenarios. 

III. Observability 

Observability refers to how much environmental state is available to UAV at any given 

point in time. In [12, 15], completely observable environment is utilized. In [11, 15, 32], assumed 

the partially observable environment is assumed where some part of the state is available at any 
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given time instead of whole (which is in case of fully observable). We have taken environment 

observability to be partial.  

IV. NN Architecture 

In [14], Model based RL along with random shooter model is deployed. In [12, 32], model 

free RL is used while in [11, 15], standard DNNs are exploited. In our work, we are utilizing model 

free RL. 

V. Separate Image Processing Module 

In [14], a separate module for image processing is used, but detailed explanations are not 

specified in the paper. In [11, 12, 32], no camera module is utilized at all. Therefore, there is no 

image processing module. In [15], a separate module for video processing is utilized. For this 

purpose, the YOLO module is utilized. In our work, we are not utilizing any separate module for 

video processing. The data is instead fed into the NN, which utilizes it for generating action 

probabilities.  

VI. Outside Helper Modules 

Ideally, a UAV should not rely on any other external help for its decision making. In [14], 

however, an external ROS server is used as a helping node. In [12], the extra onboard PID module 

is used. In [11, 15, 32], any helper modules are not required. In our work, we are not utilizing any 

external helper modules except the NN. 

VII. Drone Type 

Drone type is essential as it plays a huge part in deciding the adaptability of research in 

real-world scenarios. Off the shelf, drones are the desired scenario as it increases the chances of 
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adaptability to very high.  In [11, 12, 14], off the shelf drones are used. In [15, 32], customized 

drones are used for the experiment. In our work, we are using off the shelf drone.      

VIII. External Hardware 

In [14], an extra ROS server is used, which is deployed on a high-end machine. In [11, 12], 

no off-board resources are deployed in their work. In [15], TX-1 and AuVedia chips are placed on 

a drone for processing. In [32], an extra nine range sensors are deployed for the experiment. In our 

work, we have not utilized any off-board computing resource and have used only off the shelf 

drone.  

IX. Pre-training 

When a model is pushed into drone memory which is already trained on some existing 

dataset, then that model is called pre-trained model and process is called pre-training.  In [12, 14, 

32], they have not used any pre-training. In [11], 512 initial and 1024 branching trajectories are 

utilized for pre-training the model. In [15] IDSIA dataset is being utilized for pre-training. In our 

work, we have not utilized any pre-training. 

X. Primary Data Source 

In [15], state action pairs from the previous 15 iterations are used as an input for the NN. 

In [12], the 3D environmental state is deployed as its primary data source. In [11], orientation, 

position, and velocity are exploited as input. In [15], cameras are used as input. In [32], 
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gyroscope, GPS, and range sensors are deployed as input. In our work, we have utilized the 

camera, IMU, GPS, barometer, and magnetometer as input.  

Table 2. Comparisons with State-of-the-art Works (Summary) 
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Chapter 3 

Proposed Model and Architecture 

In this section, we propose a model for navigating a drone in an unknown environment 

without any human help or aid. The goal is to navigate from location A to location B in unknown 

terrain without having any prior knowledge about the terrain using default drone sensors only. This 

work aims to address the limitations of existing research works by taking into account the 

following parameters as primary contributions of this work: 

• A continuous domain is being considered rather than a discrete one 

• The simulation environment is 3D 

• 3D navigation is enabled, i.e., the quadcopter can navigate across all three-axis x, y, 

and z. 

• High model accuracy (High success rate, low stray and failure rate) 

• The model is completely autonomous 

• Performance evaluation on comparatively larger datasets.  

The rest of this section covers the details of the proposed design and architecture. First, the 

proposed system design is presented followed by a three-layered system architecture which aims 

to divide the system into different tiers and explains what is happening at each level.  
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3.1. System Overview 

The baseline idea is to autonomously navigate a drone in an unknown environment, which 

means in whatever environment a drone is, it must be able to navigate effectively and efficiently. 

This is achieved by using policy-based DQN, a deep learning technique. 

 

Figure 3. Conceptual View of Proposed System 

 

Figure 3 presents the conceptual view of our system, environment, and the functionalities 

this UAV navigation will enable us with.  The quadcopter drone is enabled with monitoring devices, 

i.e., GPS, camera, and IMU sensors. It navigates autonomously, learns the trajectory in real time, 

performs environment monitoring, detects obstacles, and avoids collisions.   
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3.2. Proposed Model and System Design 

Here, the proposed system design and model is explained in detail. There are five major 

modules in our system named as Input, Output, System, Environment, and Reward, as shown in 

Figure 4. Input deals with the sensor generated values. The environment here represents the terrain 

where our quadcopter is flying or navigating. Environment generates many parameters like 

sensor’s readings and some states on which the reward function is based.  

Figure 4. Proposed System Design 

The reward is calculated as an indicator of an action’s feedback. The more the action is 

performed accurately, the higher is the reward. Next, this reward is forwarded to the system, where 

our policy-based DQN model (described in next section) processes all the inputs and generates 
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output in the form of the probability distribution of actions as shown in Table 3. The most favorable 

action is performed by the quadcopter; action feedback is recorded, passed to our DNN, and the 

cycle continues.  

3.2.1.  Policy-based DQN vs Value-based DQN 

DQN is the product of RL combined with deep learning. DQNs use Q-learning to learn to 

take an optimal in a given state (the Q-value) and use CNN as an approximating function for the 

Q-learning function. It is represented and denoted as Q(s, a; θ), where θ represents the trainable 

weights of the network. 

Table 3. Description of Actions 

 

In this work, we are using DQN to predict the policy directly instead of Q-value. For 

comparison we are also implementing a value-based DQN. Both the algorithms utilize same NN 

Actions 
Action’s Probability 

Representation 
Description 

Move up 
P (       ) 

 

P (Up): Probability of quadcopter to move in an 

upward direction 

Move down 
P (       ) 

 

P (down): Probability of quadcopter to move in 

a downward direction 

Move right 
P (       ) 

 

P (Right):  Probability of quadcopter to move in 

the right direction 

Move Left 
P (      ) 

 

P (Left):  Probability of quadcopter to move in 

the left direction 

Move 

Forward 

P (      ) 

 

P (Forward):  Probability of quadcopter to 

move in the forward direction 

Move 

Backward 

P (      ) 

 

P (Backward):  Probability of quadcopter to 

move in the backward direction 

Hover at 

place 

P (  .  ) 

 

P (Hover):  Probability of quadcopter to a place 

or do nothing 
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architecture. Value-based DQN treats the output of neural network in a different way as compared 

to policy-based DQN. In case of value-based DQN, output action is the one which has the 

maximum value in the output layer. In case of policy-based DQN the output from NN is treated as 

probability distribution. Actual action is then sampled from this probability distribution. The 

advantage of using policy-based approach is it works better for continuous domains.  

Figure 4 is the complete system design covering all the inputs, methods, and outputs. The 

elements of DQN are explained in Table 4. An agent is an entity which decides and takes certain 

actions. State refers to the internal state of our DNN, e.g., learning weights. An action is a decision 

made by the agent to make quadcopter do some movement, e.g., moving up or down. The reward 

is a measure of how good an agent is performing. 

Table 4. Key RL Elements 

 

3.3. Layered View of Architecture 

The overall system architecture is presented in this section. The system consists of a layered 

architecture, as described in Figure 5. Layer I, is the physical layer. It consists of our simulation 

environment, sensors, and actuators. Data and control layer (Layer II) deals with data from sensors, 

Key RL Terms Explanation Examples 

Agent 
Decision-making entity 

that takes action 
DQN 

State NN internal weights Camera, GPS 

Action 

A decision made by the 

agent to take any of the 

actions mentioned above 

 

Quadcopter moving left or right 

Reward 
How good agent is 

performing 
Distance from goal 
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formatting this data to be interpretable by the processing layer. The processing layer (Layer III) is 

based on a DNN trained on the data collected through sensors. The functions it performs include 

actions to be taken by the drone. These actions might include hovering, drone movement in 

forward or backward direction.  

Once the actions are decided, the AI module forwards these actions to actuators, i.e., 

electronic speed controllers (ESCs), actuators perform these actions. This process happens in a 

loop after the actions are taken, new data is being collected through sensors, and new actions are 

Figure 5. Proposed Architecture- Layered View 
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decided by the AI module, and hence, this cycle continues to repeat. Each layer is explained in 

detail below. 

3.3.1. Physical Layer 

This is layer I, which comprises of our simulation environment, sensors, and actuators. 

A. Simulation Environment 

To experiment with deep learning, RL, and computer vision algorithms for UAVs, we have 

used AirSim as a simulation tool. Figure 6 is a screenshot of our simulation environment. AirSim 

enables us to use different APIs to retrieve images, control the vehicle, etc. Table 5 presents the 

components and their details for the simulator.  AirSim is used as a platform for simulations. It 

provides different APIs to enable communication with vehicles in the simulation environment.  

Some example APIs are given in table below. 

Table 5. Details of the Simulation Environment 

Componentts Name Details 

Simulation 

tool/Platform 
AirSim 

Open-source simulator for 

UAVs, cars and more 

AirSim APIs 

simGetImage,  

reset,  

confirm connection, 

simGetObjectPose, 

simGetCollisionInfo 

To retrieve images, get 

state, control the vehicle and 

for many other tasks 

Vendor Microsoft  

Sensors 

Camera, GPS 

IMU,  

magnetometer, barometer 

AirSim currently supports 

these sensors data 
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These APIs can be deployed on a computer on the vehicle with which you aim to interact, 

in our case, its quadcopter as these APIs are also accessible as an independent cross-platform 

library. Code written in the simulator can later be executed on the real UAVs.  

In this thesis, we have experimented drone’s navigation in three different environments 

named as Blocks, Landscape, and Neighborhood. All these environments are supported by AirSim. 

These environments are open source and are readily available on unity's unreal engine store [33] 

for free. Following is an explanation about the environments along with screenshots.  

i. Blocks 

Blocks is the default environment that comes with AirSim simulator. It’s a simple 

environment as it spans by few buildings and obstacles of arbitrary height over an area of half 

kilometers. The major obstacles in this environment are building blocks along with a spherical 

object and a small cone as shown in Figure 7. 

Figure 6. Screenshot of Our Simulator 
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ii. Landscape 

Landscape is a well-known simulation environment. It’s a large size environment like a 

jungle. In this environment the major objects are trees, buildings and power transmission lines. It 

also contains a road on the right side of the map as shown in Figure 8. 

 

Figure 8. Screenshot of Landscape Environment 

Figure 7. Screenshot of Blocks Environment 
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iii. Neighborhood 

Neighborhood is a medium size environment which is based on a busy urban neighborhood. 

There are many obstacles in this environment such as buildings of random heights, cars, trucks, 

trees, houses, and traffic signals as shown in Figure 9.  

 

Table 6 summarizes the different aspects of these environments.  

 Table 6. Simulation Environment Details 

Environment  Dimensions Number 

of 

obstacles 

Major 

obstacles 

Size 

(MBs) 

Open source Computa

bility OS 

Blocks 400 * 600 m 10 Buildings 650 

MB 

Yes, Default 

Airsim 

environment 

Windows 

/ Linux 

Landscape 2 * 2 Km 1000+ Buildings, 

Trees, 

Power 

lines 

4.3 GB Yes, 

Available on 

unity assets 

store for free 

Windows 

/ Linux 

Neighborhood 1.2 *1.2 Km 1000+ Cars, 

Trees, 

Homes, 

Traffic 

Signals 

4.5 GB Yes, 

Available on 

unity assets 

store for free 

Windows 

/ Linux 

Figure 9. Screenshot of Neighborhood Environment 
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B. Drone Sensors and Actuators 

We have used GPS, camera, magnetometer, IMU, and barometer, which are currently 

supported by AirSim. There are four ESCs in total, working as actuators. Figure 10 presents the 

default configuration of our sensors. 

There are in total four ESCs; Front Right, Front Left, Back Right, Back Left as shown in Figure 

5. Following are the details of the sensors we used. 

i. GPS Sensor 

It is used to calculate the drone’s position accurately, also to collect the coordinates of the 

destination. Figure 11 shows the GPS data in our scenario; latitude and longitude describe the 

exact location of the drone at a specific timestamp. Velocity is another important parameter which 

describes the velocity of the drone with respect to x, y, and z-axis at the time of measuring the 

GPS coordinates. 

Figure 10. Sample Drone Sensors Configuration 

 

Figure 8. Screenshot of our GPS sensor 

dataFigure 6. Sample Drone Sensors 

Configuration 
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ii. Magnetometer Sensor 

It is used to handle the wind effect. It calculates the value of magnetic north based on which 

it can measure the angle of deviation or the amount of drift caused by wind or some other factors, 

e.g., rain. Figure 12 shows the magnetometer data in our scenario. 

 

 

 

iii. IMU Sensor 

IMU repeatedly compute the existing position of a drone. It first incorporates the sensed 

acceleration, with gravity estimate, to compute the current velocity of the drone. Then this velocity 

is being used to calculate the current position. Figure 13 shows the IMU data in our scenario. 

Figure 13. Screenshot of our IMU Sensor Data 

Figure 11. Screenshot of our GPS Sensor Data 

Figure 12. Screenshot of our Magnetometer Sensor data 
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iv. Barometer Sensor 

 It is used to measure air pressure. Figure 14 shows the barometer sensed data in our 

scenario. 

v. Camera Sensor 

We used depth vision as a camera for collision avoidance, detection, or looking ahead. 

Figure 15 shows the comparison between a normal camera view and depth vision camera view. \ 

On the left side, a normal camera view is shown. On the right side, the same view is 

shown but from a depth vision camera. The way to measure depth is using the intensity of black 

pixels, i.e., the more black a pixel is, the nearer the object is. 

Figure 14. Screenshot of our Barometer Sensor Data 

Figure 15. Screenshot of Image taken by Normal camera vs Depth Camera 
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3.3.2. Data and Control Layer 

This layer consists of sensors unit and actuators unit. This layer acts as a bridge between 

the physical layer and the processing layer. The data from the physical layer collected through 

sensors is sent to the sensing unit where it’s stored in a specific format and is forwarded to the 

processing layer. After processing the output in the form of actions is passed to the control unit. 

Control unit interprets it and forwards it to actuators to perform a specific action. 

3.3.3. Processing Layer  

This layer comprises of our DNN  model, i.e. policy-based DQN. RL is a machine learning 

technique in which an autonomous agent acquires to discover an optimum performance over trial 

and error exchanges with its environment [5]. In our proposed network model, there are six layers 

in total, i.e., one input layer, two convolutional layers, two fully connected layers, and one output 

layer.   

The input data is collected through different sensors. First, images are taken as input; 

different convolutions are performed on it to extract features, as shown in Figure 16. These features 

are flattened, and convolutions are performed again to extract low-level features, which result in 

dense vector representation. Adam optimizer is used for optimization.  

Other sensors data, e.g., data from IMU, barometer, and GPS, are combined with the dense 

vector representation, and all these features are passed to two fully connected layers. Output layer 

presents the probability distribution of all the possible actions as shown in Table 3. 
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Table 7 lists the neural network specifications used to create the model and to achieve effective 

performance results.  

Our NN takes camera pixels as an input. The input is [192 * 256 * 3] where 192 is the image 

width, 256 is the image length and 3 are RGB frames. This input is passed through three different 

convolutional layers which have 16, 32, 32 filters respectively. This generates a dense vector 

representation of the image. 

Figure 16. NN architecture 
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  Table 7. Implementation Details 

   

On the other side, all the sensors data is accumulated and then normalized. Normalization 

is done to map different sensor input values into same range [0-1].  These normalized input values 

are then passed to fully connected layer 1 along with dense vector representation. This layer has 

256 neurons. Its followed by another layer with 128 neurons followed by output layer. Output 

layer has 6 neurons each of which is the probability of action which neuron can take.   

Components Techniques 

AI module Value-based DQN 

Network Training Backpropagation 

Optimizer Adam Optimizer  

Loss Function and Reward DQN 

Number of Hidden layers 5 

Camera Input dimensions [192*256*3] = 147,456  

Sensors Input dimensions [10 * 1] + [3 *1] + [10*1] + [3*1] = 26 

Camera Hidden Layer1 Filters = 16 * [8*8], stride= 4  

Camera Hidden Layer2  Filters =32 * [4*4], stride= 2 

Camera Hidden Layer3 Filters= 32 * [3*3], stride= 1  

Dense Layer 1 dimensions 256 * 1 

Dense Layer 2 dimensions 128 * 1 

Output Layer dimensions 7 * 1 
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3.4. An Example of Simulation Scenario 

Here, an example of the simulation environment is presented. We have taken a block 

environment and run few iterations. A starting point is selected for the drone to start navigation 

towards the target or goal called as finishing location. Each obstacle in the environment has a 

specific height. There are three types of blocks or obstacles based on heights, the small size blocks 

are of height range up to 50m, medium size blocks are in height range of 51-100m and obstacles 

above 100m are categorized as large blocks.  

Table 8. Simulation Parameters 

 

The details of the simulation environment used to illustrate how a drone navigate from one 

point towards its goal are shown in Table 8.  

Parameter Value 

Environment Simulation  

Drone’s Max. altitude 200m 

Block types  

(Based on heights) 

Small, Medium, Large 

Block sizes 

Height ranges 

Small: [0-50m] 

Medium: [51-100m] 

Large: [100m+] 

Simulation Input Drone Movements (Up, Down, Left, Right, Forward, Backward) 

Simulation Output Sensor Readings (GPS, Camera, Magnetometer, Barometer) 

Neural network Input Sensor Readings (GPS, Camera, Magnetometer, Barometer) 

Neural network Output 

 

Drone’s Next Movement (Up, Down, Left, Right, Forward, 

Backward) 

Reward Function 1. (Euclidian distance between current location and final 

destination) + collision penalty  



32 
 

3.4.1. Environment Details 

The complete environment can be shown in Figure 17. The drone can move in all six 

directions in this environment. When the environment starts the neural network takes sensor 

readings from the simulator. It decides to make a move based on these readings. NN then outputs 

next movement for the drone, simulator implements that movement and returns the next sensor 

readings. 

After this process, a reward is calculated. This reward is a simple fusion of Euclidian 

distance and collision penalty. To be precise, it’s a sum of the negative distance from the drone's 

current location to its final destination and collision penalty. Collision penalty is essentially a 

penalty which occurs when a drone collides with some obstacle. Whenever a collision occurs, the 

drone is reset to its initial position and the iteration starts again. 

Figure 17. Simulation Environment Primarily Consisting of Blocks of Different Heights as Obstacles 
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When the simulation starts, this cycle of inputs to the neural network from the simulator 

and corresponding movement from the neural network to simulator begins. The neural network is 

trying to maximize the reward all the way possible. The drone follows the path shown in yellow 

as shown in Figure 18. It collides with the obstacle Infront of it. This is because it didn’t anticipate 

that it would collide with obstacle if it only considered reducing the distance (maximize reward). 

This collision will incur a high penalty and very low reward. This will discourage the drone from 

following this set of moves again. 

Over multiple iterations, the neural network will try a different set of moves to maximize 

the reward. After a certain amount of iterations, it will learn that getting too close to an obstacle 

can result in a collision. Due to this, it will try to make moves which increase the reward but at the 

same time also fly not too close to an obstacle. Once it’s able to learn rules like these, it will start 

to navigate in the environment successfully. After a neural network is fully trained, successful 

Figure 18. Drone’s Navigation Path After Some Iterations 
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navigation path from the starting location towards the goal destination is shown in Figure 19. More 

information about the environments is provided in the Appendix A.  

3.5. System Specifications 

 Table 9 presents the system specifications. We used python 3.6 as a programming 

language, Tesorflow version 1.13, Cuda version 10.0, cudann version 7.4.2.   

   Table 9. System Specifications 

 

 

Components Versions 

Operation System Linux (x64) 

Python 3.6 

Tesorflow 1.13 

Cuda 10.0 

CudaNN 7.4.2 

Figure 19. Drone’s Successful Navigation Path from starting point towards its Goal  
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Chapter 4 

Experimental Results 

This section explains the simulation results. The simulator described in the previous 

section is used to execute the experiments.  

 4.1. Experimental Setting 

The drone is initially spawned in a random location on the map, and the final destination 

is set to a predefined location (usually midpoint in the map). The goal of the drone is to fly from 

its random initial position to the final destination without any collisions. If the drone collides with 

any obstacle, then the episode ends, and the drone is restarted from the initial position.  For a drone, 

we selected a standard off the shelf drone. We are utilizing gyroscope, magnetometer, GPS, and 

camera as sensors in a simulation environment. The configuration file for these sensors is shown 

in Figure 7. 

We used three types of large-scale environments, each of a different kind. The first 

environment is called Blocks as it spans with multiple buildings and obstacles of arbitrary height 

over an area of half kilometers. The second environment is called Landscape, a well-known 

simulation environment, here, drone navigates in a jungle. The third environment is called 

Neighborhood; it is based on an urban city location where the drone is supposed to navigate in an 

environment crowded with buildings of random height. During implementation, the drone is 

trained in each environment separately, where on every collision, it finishes one iteration. 
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Whenever an agent initiates an interaction with the environment, several objects and obstacles are 

generated based on the environment it chooses for navigation.  

The speed and altitude of the UAV range between 0 to10m/s and 5 to 200m respectively. 

The speed and altitude can change depending upon the moves or actions UAV takes. The episode 

length (i.e., time step) can be up to 200. The network parameters are learned by using Adam 

Optimizer with a learning rate of 10-3. The discount factor γ for the experiments is varied in the 

range of 0.91 to 0.99, as shown in Table 10. 

  Table 10. Values and Range of Different Simulation Factors 

 

4.2. Reward Function 

The reward is the incentive that the algorithm gets when it makes the desired move. In our 

scenario, the reward is the combination of the distance between target and collision. A simple 

example would be distance plus collision. If there is no collision, then reward is +10 and distance 

covered in the shortest path. In case of collision, the reward would be -10 and the learning episode 

will end. In our case, the reward value ranges from 0 to 200. The rewards get to 200 when the 

Simulation components Value/Range 

Simulation Environments Three [Blocks, Landscape, Neighborhood] 

Sensors Gyroscope, Magnetometer, GPS, Camera 

UAV speed 0 to 10 m/s 

UAV altitude 5 to 200 m 

Episode length 200 

Learning rate 10-3 

Discount factor 0.91 to 0.99 
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UAV reaches the destination, and the iteration ends. The environment is continuous; therefore, the 

state is the reading gathered from sensors.  

We used Bellman’s equation for the optimization of our DQN. 

 

       Here r(s, a) represents the immediate reward that we get from that action. Q(s', a) is the reward 

that is achieved when we get into state s' after taking action a. Gemma is the discount factor that 

we use to give preference to current reward and discourage future reward. In our scenario, the 

possible actions would be moving forward, backward, up, down, left, right, and hover. The state 

would be the sensor readings. The DQN network will predict Q-Value, and we will optimize the 

network using the following cost function. 

 

In this equation, we calculate the cost of the predicted value vs. the original cost. Here the 

first part of the equation will be the original value, and the second part would be predicted by the 

network. In training iterations, we continuously optimize this loss.   

4.3. NN Training 

The following graph shown in Figure 20 presents a trend of reward function values when 

we run the program for 500 epochs. It can be observed that the network was learning very slowly. 

This is a known behavior as the network is experimenting with different outputs to check which 
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strategy works. After a few hundred iterations, it starts to learn about some successful strategies, 

and reward gradually starts to build up.  

The only measurable factor that can quantify that the DQN algorithm is working properly 

is a reward. In our scenario, the reward function comprises of the combination of hubber loss and 

distance from the destination. 
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Figure 20. Reward Function (500 Iterations) 
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The graph shown in Figure 21 shows a trend of reward function values when we run the 

program for 1000 epochs. After a few small tweaks and an increasing number of iterations to 1000, 

we can observe that the reward is maxing out. The reward was capped at 200. As the iterations 

increase, the reward values show a rapid increase, respectively. 

4.4. Performance Evaluation 

In this section, we have evaluated the performance of our proposed model both on 

qualitative and quantitative measures using both policy-based DQN and value-based DQN, as 

shown in Table 11.   

  Table 11. Types of Performance Metrics 

 

4.4.1 Quantitative Evaluation 

In this section, we have evaluated the performance of multiple implementations (value-

based vs. policy-based DQN) based on different metrics. The first parameter which affects the 

performance of UAV is the RTT or Round-Trip Time, as shown in Figure 22. RTT pattern for both 

value-based DQN and policy-based DQN. 

 

Performance Metrics Description 

Quantitative measures System Round Trip Time, Avg. the execution time of 

each iteration, Effect of gamma, Different learning 

rates, varying iterations  

Qualitative measures Model free RL, Learning based on no prior 

knowledge (No large datasets required for training), 

efficient, Scalable 
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In our scenario, it comprises of taking sensor readings from simulation, feeding it into the 

DQN, getting the predicted action, forwarding that action to the simulator and finally getting new 

sensor readings. This cycle is an important metric as it allows us to calculate the real-time 

performance of our algorithm. In value-based DQN the RTT is slightly lower than policy-based 

DQN. The reason for this increase in RTT is the extra probability sampling that is done in policy-

based DQN but is not present in value-based DQN. For policy-based DQN, the mean value for 

RTT is 6.5 milliseconds while for value-based DQN this value is 6.0 milliseconds.   

Average execution time for each iteration is an important parameter for measuring the 

performance of the DQN. Figure 20 shows the pattern of execution time for each iteration for the 

first 180 iterations. Execution time shows the time in seconds that UAV navigated in the 

environment before colliding with an obstacle.  
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Figure 45. System Round Trip Time vs. Iterations 
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For initial iterations, DQN usually tries to figure out the policy that works better. In this 

process, the execution time is relatively unstable and is varying. In Figure 23, both policy-based 

DQN, as well as value-based DQN, are showing a slight increase in execution time as the iteration 

count increases.  
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Figure 56. Average execution time for each iteration 
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Policy-based DQN is showing a bit more execution time than value-based DQN. This 

behavior is expected as the policy-based gradient is using probability distribution for actions as 

compared to value-based, which is forwarding action with maximum value. The average number 

of moves in the first 100 iterations also shows important results in comparing the performance of 

two DQN variants. 

The graph in Figure 25 presents the collisions count as the time progresses. The collisions 

gradually decrease as the training time increases. This is because as the network starts to learn 

more about the environment, the collision count decreases. For both the value-based DQN as well 

as policy-based DQN the count decreases; however, the policy-based DQN performs slightly better 

in the long run with collision count reducing as the time passes.  

Initially, value-based DQN performs better in the first 10 mins with low collision count, 

but as we approach the hour mark, policy-based DQN takes the lead. The difference between the 

two algorithms is very small, though.  

5
6

1
0

0 1
3

2

1
7

6

2
1

2 2
2

4 2
4

4 2
5

6 2
6

8

6
4

9
6

1
2

4

1
8

6

2
2

0 2
3

6 2
5

2 2
6

4

2
7

2

5 1 0 1 5 2 0 2 5 3 0 4 0 5 0 6 0

A
V

ER
A

G
E 

# 
O

F 
C

O
LL

IS
IO

N
S

TRAINING TIME (MINUTES)

AVERAGE COLLISIONS VS.TRAINING TIME

DQN (Policy based) DQN (Value based)

Figure 25. Average Number of Collisions with respect to Time 

 

Figure 78. Average number of collisions with respect to time 
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 Table 6. Statistical Quantities of Value-Based DQN and Policy-Based DQN in Different Environments 

 

Table 12 summarizes the performance of both value-based DQN as well as proposed 

policy-based DQN. We define the success rate as the percentage of iterations in which the UAV 

was able to successfully navigate from source to destination using a fully trained model.  

The crash rate is defined as the percentage of iterations the drone had collusion and stray 

rate as the percentage of epochs when the drone was unable to reach a destination or have a 

collision. We compare these three rates in three different simulation environments.  

In all three environments, policy-based DQN outperforms the value-based DQN by a small 

margin. The performance on the success rate for both the networks is very good. The highest 

success rate is in Blocks due to its comparatively small size as compared to Landscape or 

Neighborhood. The average success rate for all three environments for policy-based DQN is 97.24 % 

while 96.74 % for value-based DQN. 

 

Environment |Results Success Rate  Crash Rate  Stray Rate 

DQN (Policy-

based) 

DQN 

(Value-

based) 

DQN (Policy-

based) 

DQN (Value-

based) 

DQN (Policy-

based) 

DQN (Value-

based) 

Blocks 98.02% 97.25% 1.50% 1.70% 0.48% 1.05% 

Landscape 96.45% 96.17% 2.00% 2.12% 1.55% 1.71% 

Neighborhood 97.25% 96.80% 1.50% 1.50% 1.25% 1.70% 

Average 97.24% 96.74% 1.66% 1.77% 1.09% 1.48% 
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 Table 7. Effect of Discount Factor 

 

The crash rate is also very low, varying between 1.5 to 2.0 percent for all three 

environments for both the algorithms. Similarly, the stray rate is also relatively small, ranging from 

0.48 to 1.48. Table 13 summarizes the output based on different discount factors used. The 

discount factor is used to determine the importance of future reward as compared to the current 

reward. Higher discount factor means high importance to future reward and vice versa. Above 

table summarizes an important pattern in this regard. As we decrease the discount factor, the 

success rate starts to decrease (by 4.17 %), and the stray rate starts to increase (by 3.71%). 

Interestingly the failure rate increases but very minutely (by .07%). This indicates that by 

increasing the discount factor, we can look ahead in the future and achieve better results at high 

values as compared to lower ones. Another important point is that although by decreasing the 

discount factors, the success rate also decreases but policy-based DQN still performs better than 

value-based DQN.  Table 14 summarizes the success rate variation based on different learning 

rates over 1000 iterations. 

Discount Factor | Results Success Rate  Crash Rate  Stray Rate 

DQN 

(Policy-

based) 

DQN (Value-

based) 

DQN (Policy-

based) 

DQN (Value-

based) 

DQN (Policy-

based) 

DQN (Value-

based) 

0.99 97.24% 96.74% 1.66% 1.77% 1.09% 1.48% 

0.97 96.31% 96.10% 1.68% 1.78% 2% 2.12% 

0.95 94.15% 93.84% 1.72% 1.79% 4.13% 4.37% 

0.93 93.07% 92.96% 1.83% 1.85% 5.10% 5.19% 
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Table 8. Effect of Learning Rate 

 

The results show that the learning rate for 0.001 gives the best performance with 97.24% success 

rate. If we decrease the learning rate, then the network remains undertrained. For values greater 

than 0.001, learning rate shows oscillations and fails to converge to an optimal state. 

4.4.2 Qualitative Evaluation  

In this section, we will evaluate our approach in comparisons with state-of-the-art work 

based on a few important parameters. Table 15 summarizes the performance of our approach in 

comparison with existing works. 

I. Realistic Environment  

In any navigation, the most important part is a realistic and complete environmental model. 

It’s a baseline for interaction as a strong environmental model would result in strong results. In 

[11, 12], complete environments are used. In [12], a 2D environment is used, which in itself 

reduces the complexity model. It also removes a lot of complication from the problem statement. 

In [11], the 3D model is used, but a very simplified model is assumed. All the drag forces that act 

Learning Rate | Results Success Rate  Crash Rate  Stray Rate 

DQN 

(Policy-

based) 

DQN (Value-

based) 

DQN (Policy-

based) 

DQN (Value-

based) 

DQN (Policy-

based) 

DQN (Value-

based) 

0.1 75.08 74.54 3.74 3.90 21.18 21.56 

0.01 92.15% 91.84% 2.32% 2.39% 5.46% 5.77% 

0.001 97.24% 96.74% 1.66% 1.77% 1.09% 1.48% 

0.005 91.07% 90.96% 2.83% 2.85% 6.10% 6.19% 

0.0001 84.19% 82.55% 6.57% 6.84% 9.24% 10.61% 
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on the drone and make navigation a difficult task are ignored. In [14, 15, 32], completely realistic 

environment is utilized. In our work, we are also utilizing a completely realistic environment 

taking into account all the factors that make the environment more stochastic.  

II. Model Free RL  

 Model free RL is not the golden standard for navigation tasks. Its performance is best 

among all the available methods. In [14], model based RL is utilized. In [15], simple DNNs are 

deployed. In [11, 12, 32], Deep model free RL is used.  

III. Use of Commodity Hardware 

 It’s very important that what kind of hardware is utilized for the navigation as it has a direct 

impact on its adaptability if someone is getting very good results but is utilizing very specific 

hardware, then its less useful as compared to one which has relatively less impressive results but 

is using commodity hardware. [11, 12, 14] are using commodity hardware, so their work is 

extensible. In [15], very specific Nvidia TX1, AuVedia 120, and three cameras are utilized. In [32], 

an extra nine range sensors were attached to their UAV. In our work, we are using off the shelf 

drone with all the standard sensors. This makes our work more relevant for implementation by 

industry.  

IV. Onboard Processing 

 Onboard processing is an important benchmark in drone navigation. Nowadays, it’s 

necessary that the drone should have all the processing onboard to guarantee complete autonomy.  
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In [14], an extra ROS server is deployed. In [11, 12, 32], only using onboard processing 

power is exploited. In [15], extra chips beside the traditional hardware are utilized. TX-1 and 

Auvedia-120 chips are being used. In our work, we are also not utilizing any off-board processing. 

 

V. Camera Utilization 

 The camera is an essential part of drones nowadays. Its effective utilization is an 

important factor for any navigation system. In [14], they utilize standard drone camera as part of 

the proposed research. In [15], drone cameras are utilized, but instead of using the only available 

camera, 12 extra cameras are utilized that were installed separately. In [11, 12], no extra drone 

camera is deployed in proposed works. In [32], no drone camera is utilized but to detect the 

environment; nine range sensors are used as a replacement. In our work, we have utilized the 

commodity hardware that usually comes installed with most drones. 

Table 9. Performance Evaluation Summary 

 

Table 10. Performance evaluation of our approach (Summary) 
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VI. Learning on the Fly 

This refers to the ability to learn from its mistakes as its flies instead of training model 

explicitly. In [11, 12, 14, 32], deep RL is utilized; therefore, the ability to have a model that learns 

on the fly exists. In [15], DNN is used; therefore, they lack this ability. We are also utilizing 

learning on the fly ability as we are also using model free RL.  

VII. Navigation for Long Durations 

 This parameter defines whether the authors were able to fly drone autonomously for more 

than 5 mins. In [15], they were able to achieve 6 seconds flight from 3 minutes of data. If they 

tweaked with the training data, their results deteriorated. In [12], results were presented for the 2D 

environment. Therefore, the work was only good enough for the testbed. For an outdoor, real-

world 3D environment where drag forces effect, the model couldn’t perform well. In [11], drone 

stabilization was achieved but not the navigation. Their work shows that the drone can hover for 

more than 5 minutes but cannot navigate through the environment. Another issue in this work [11] 

was a simplified model assumption which makes even hovering unstable in a real-world 

environment. 

In the above section, we have summarized the critical factors that are important in drone 

navigation scenario. We have concluded from the above considerations that most of the works 

only cover a few of the above considerations. This makes our work stand out from rest as no one 

has covered all these factors in their research (till date) along with our state-of-the-art results to 

the best of our knowledge. The work that was closest to our implementation is presented in [32], 

but it also misses a few key aspects (e.g., customized hardware, extra sensors, etc.). We were also 
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able to achieve state-of-the-art success rate in our work. In our research work, we have taken into 

account all these factors and have completed autonomous navigation.   
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Chapter 5 

Conclusion 

Autonomous navigation in unknown terrain is an exponentially hard task due to 

unavailability of pre-constructed maps or path planning. In this thesis, a deep RL based framework 

is developed for UAVs navigation in unknown large-scale complex environments. 

Specifically, first, an efficient policy-based DQN is designed, which comprises of 

convolutional and fully connected layers to extract important features from images taken through 

depth vision camera. These features are then combined with inputs taken directly from other 

sensors, e.g., IMU or magnetometer, etc. and are passed to a fully connected layer. This is followed 

by a policy-based Q-learning approach to apprehend UAV navigation.  

We implement two different versions of this algorithm, i.e. policy-based DQN and value-

based DQN. We can achieve 97.24% success rate for policy-based DQN and 96.74 % success rate 

for value-based DQN. Our results show that both these algorithms perform good but policy-based 

DQN outperforms value-based DQN by a small margin. We also achieve failure rates to around 

1.6% for policy-based DQN and 1.7% for value-based DQN. As far as our knowledge, these are 

the best results presented to date. We are also able to autonomously navigate from start to finish 

line using only standard sensors. This factor combined with high accuracy in results is important 

in enabling this work to be adaptable to any off-the-shelf drone available in the market.  

In regard to the contributions of this work, we were able to achieve a completely 

autonomous drone flight in a 3D environment through partially observable Markov decision 



51 
 

process or POMDP without having any prior knowledge of the environment and feature 

engineering. We were able to achieve 97.24% success rate and able to design a model that can run 

on any off-the-shelf drone available. Besides, focusing on to cover the shortcomings of the 

previous works, many aspects of the dynamic environment in which drone flies are also being 

considered.  

    Our research has proved that DRL is an effective tool to navigate a UAV from one location 

to another in a 3D environment. It will be useful for efficient resource management and dynamic 

tracking. Nonetheless, there is still room for future research. For instance, one next step for this 

research would be to experiment with this model in a real environment and enabling drone to fly.  
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