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—Summary—

The purpose of this paper is to review several of the code-division multiple-access sequence

desings which are known to nearly achieve the Welch bound. Specially, with the variety of desings

available, it appears that convenience of mechanization may very well be the deciding factor in a

design,

Introduction

Judge (1962) has considered code-division
multiplexing by using quasiorthogonal binary
function (linear maximal sequences) and states
that for two equal power signals multiplexed

together signal to noise is

S __ _ S

N(©2) =~ (K2+T./T)isz (€))]
in each receiver. For b signals

S _ _ S

N() ~  [(b(K3+T./T))t72 )

where T =the crosscorrelation integration period,
To=the code bit period,
K,=value of DC correlation.

Judge’s result shows that some Mersenne prime
sequences exhibit crosscorrelation values superior
to other, sometime even for nonprime sequences

longer than prime sequences. The composite

code sequences are of great utility when cross-
correlation is a prime consideration. Their real
advantage lies in that for every code in a set
of 2*—1, crosscorrelation values are well defined
, and a system can be designed to operate
within this definition.

Welch (1974) published a bound on inner
products which could be specialized to the case
of periodic correlation of spread-spectrum code-
multiple-access(CDMA)

division signal sets.

Specifically, consider a set of M sequences a:
i=1, -+, M, of period L,
a =a 3

The periodic crosscorrelation between sequence i
and soquence j at shift 7 is defined as

L-1 (3 4
CADA T a8, (a)* O

(O* denotes conjugation), the maximum auto-
correlation of the set is
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2 = F 3

Ci & max max [Ciy(0)|
v o i maxy 1Cu (5)

and the maximum crosscorrelation of the set is

max max |Ci;(7)|

C: & jj osr<L 6
Under the assumption that ‘the sequences all
have the same energy per period, i.e,,

Cij(O)=Cu(0) (7)

Welch demonstrates the .nomalized correlation

bound

max(CnCz) < _MT
C-ux A C“(O) —E__—l' (8)

This bound has become the standard against
which a possible CDMA signal set design is
compared, despite the fact that Cmax often is
not specifically a parameter in the communica-
tion system design(Pursley and Darwate, 1977).

All of the designs basically achieve Welch’s
Jower bound on the maxmum value of periodic
crosscorrelation between signals and are optimum
in this sense,

Optimum CDMA Code Designs

The Gold codes (Gold, 1966, 1967) are attrac-
tive for application in which a number of code-
division multiplexed signals are to be used. The
same guarantee of bounded crosscorrelation is
impossible for *maximal sequnces of the same
length. Gold has presented a methode for choos-
ing the codes used as components to generate
Gold sequences that gives a set of sequences,
each of whose members has crosscorrelation
bounded by |8(z) | <2¢*+1/24 1¢itsIywhen compared
with any other member of the set. An equivalent
result is given by Anderson (1969) for the Gold
codes ; that is, Anderson’s expression for the
crosscorrelation bound is

18(z) | o=<( ¥ 2 JIT/LHNZ W2 o

It is apparent from this expression that as L—»
©,08(z)[— 2/ L. Convergence is sufficiently
rapid that for any code sequence length of inte-
rest |0(f)|= 42/ L percent. Notice that one
expressiong ives crosscorrelation, in bits, whereas
the other gives a percentage of maximum corre-
lation. Bynormalizing maximum correlation to
one 20*+1/34 1 /2 L/ L for large L. Anderson
also states that the crosscorrelation function for
maximal sequences is bounded by

loco) < (ALY 172 (10)

Now, as L—oo, |8()|-1/ /L. For a given
value of L the Gold codes exhibit crosscorrelation
that (v 2//L)/(1//L) =JZ greater than
maximal length sequences of the same length.

(Kasami, 1966, Roefs,

1977) were designed originally as linear cyclic
error-correcting codes, The underlying arithm-
etic in Kasami’s design is performed in the
finite field GF(2"), n even, with M(z) repres-
enting the minimum polynomial over GF(2) of a
primitive element of GF(2"), and M.(z) repres-
enting ‘the minimum polynomial over GF(2) of
a*, where s=2"/3-1, Thus a* has order 27/3—1]
and is a primitive element of GF(2"/2).
M,(2) and M,(z) can be viewed as the charact-
eristic  polynomials of binary (0,1) linear
feedback shift registers which generate M-

Kasami sequences

Hence

sequences, b: and b: of lengths 2"—1 and

Kasami
combinations of the two
after converting to 1

2"/3—1 respectively. The
consists of linear
which,

sequences, are

sequence set

sequences

al=(-Db.+ b, and af “=()% an

i
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This yields a’set of
M=2~/2 (12)

sequences, all with period

L=722-1 3
and
max{C’,;,Cz)=2"/2+1 (14)
Bent sequences  (Olsen, 1977) possess an
underlying  arithmetic structure in GF(2"), n

divisible by 4, which is linked to the space
Vn of binary n-tuples over GF(2) by a basis
B, B2y -, Bx for GF(2) which has the property
that
g =y = (15)
! 0, otherwisc

Here t,( - ) represents the trace function mapping
GF(2") onto GF(2) 1968). This
a corresporidence beiween discrete

(Berlekamp,
generates
Fourier transforms of functions defined on Vn

and trace transforms of the same functions
defined on GF(2~). This property is

along with the fact that bent functions (Rothaus,

exploited

1976) on Vn hase a flat Fourier transform to

eventually give the following set of sequences:

a: :(_I)G(Yl) +uTe+ Tx—1 Ty (16)

where X is the (vector) contents at time t of
a Galois-configured linear-fecdback shiftregister
with a primitive characteristic polynomial of

degree n,
Yy
Y;;[Y’] =LX Qan
where L is a specially designed n/2Xn matrix,

the dimensions of Y, and Y, being n/4, I is the
representation of i as a binary n/2-tuple, C is

a fixed non-zero constant and G(Y;) is a fixed
This desig.

results in a set of sequeaces with the same M, L,

arbitrary Boolean Function of Y,.

and max(C;,C;)parameters as the Kasami Sequences.
1961,
Scholtz and Welch, 1978) are based on proner-
ties of the group M(L) of integers

Group charaoter sequences (Lerner,
relatively
prime to L under muliiplication moduls L, In

the special case when L is a prime, then

a ={

° , t=0
. ot KKKL (18)

unity and
2 () is the moduol L legarithm of t in the

where p is a primitive L-1st root of

sense that

g!=t modulo L (1

g being a primitive element of M(L). The iadex
i is restricted to 1=i<L—1., Of course for large
values of L the use -of alzl will make little
difference in the final results. Group character

sequences have the following propertics :

1=L-2
L =prime number
C1=1 (20>
C.=4+L
Cu(O)ZL—l

Generally the ith sequence is composed of (L—1)
/ged(i,L—1) order roots of unity, "e.g., i=

(L—1)/2 is a sequence of x1's and is usually
called a quadratic residue sequence.
Welch and Alltop separately has proposed

signal designs which incorporate a cyclic difference
set structure (Baumert, 1971) to determine the
locations of the non-zero elements of a sequence.

Alv, %, ) cyclic difference set is a collection {t,}

of integers in the range 0=d;<v with the
property that the equation

ti—t;=€mod v
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s = A

has A solutions for £+#0 and k solutions when
2 =0. We view
The values of the non-zero elements of each

pair of

the elements are non-zero.
sequence are chosen so that any
sequenceS is orthogonal or nearly orthogonal
when the shift paramter 7 is zero,

For example let {Xt} be an m-sequence over
GF(q), i.e., it satisfies an nth order linear
recursion over GF(q) and has period q*—1.
Then a cyclic difference set with parameters

qr! k= qn-l_l, =qn-l_,l o)

M a-1 q—1
is given by
D={t:xt=0} 23

If we consider a set of sequences based on the
above difference set with n=3, then the resulting
design parameters are
L=v=q*+q+1
M=k=q+1
max(C;, C;)=2=1

Cul=| (24)

Orthogonality of the sequences at =0 imposes
M=k,
multiple of 4, then the rows of a Hadamard
Street, and Wallis, 1972) is
denoted by b:,, and the elements of the differe-

nce set are ty, -+, ty, then

the result When g is one less ‘than a

matrix (Wallis,

— (bis ISHSM, 1M
a::_{OJ otherwise = (25)

Other similar designs are possible,
Discrete linear FM sequences (Chu, 1972)

of various types have been studied, For
example,

a, = pir’, Ost (L, O<i ¢p(L)  (26)

where L is an odd number, 9 is a primitive

Lth root of unity, and p(L) is the smallest prime
divisor of L, When L is prime,

L=p) 27)
and using Gaussian sums, it can be shown that

Cmax=L"1/2 (28)

Rusults and Discussion

A common point of failure in the design of
direct sequence systems lies in using codes that
are too short (too few bits between repetitions)
Worse vyet,
inter

for projected interference levels.
the shorter codes when multiplied with
ference (especially narrowband interference) tend
to produce correlations that are not at all noiselike,
Therefore a synchro-nization detector or demo-
dulator in such a system is likely to give sur-
rising.y poor parformance when it has been
correlator
output products due to interference are charact-

assumed (as is the usual case) that

eristically Gaussian.

It appears that there are many designs which
asymptotically achieve the Welch bound on
correlation as the sequence period L increases,
How does one choose a CDMA signal set design
from among the class of optimum designs?

If you are restricted to binary (£1) modulation,
the obvious candidates are the Kasami sequences
and the bent function sequences. The choice may
be dictated by L. which is 4¥—1 for
sequences and 16%—1 for bent sequences, k being

Kasami

an arbitrary integer in each case. The sequences

are comparable in terms of implementation
complexity for the same L but the bent sequence
set has two distinct advantages :

(1) The Kasami sequences have a linear span
on the same order of 3n when GF(2") is
the basic field,
apparently have linear spans which can
nearly achieve Key’s upper bound (Key,

1976),

while bent sequences
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d
@) (29)

i=1

where d is the degree of the bent function

(d<n/4 depending on the function chosen).
(2) All of the Kasami sequence are generated
by the same hardware, with choice of

sequence made by initializing register
contents. Thus it is diff.icult to initialize
a generator to begine producing a copy of
a particular Kasami sequence at some
arbitrary point within the sequence. On
the other hand bent sequence generators
have time controlled by a shift register
and sequence selection performed by an
independent setting. Hence bent sequence
generators are easily set to produce a
given sequence,
1t is worth noting that Gold codes (Gold, 1957)
which are now in use in several systems, €.g.,
Spilker, Jr. (1978) have the same drawbacks as
Kasami sequences. In addition, while Gold ccdes
collection (M=2"+1) of binary

sequences for the same period (L=2"—1), they

are a larger

do not come close to achieving the Welch bound.
The ability to generate and correlate multiph-

ase sequences cosiderably enlarges the variety

ofzperiods L for which optimum designs are

known. The number of distinct phases which

must be handled is a function of the number of
sequences actually required as well as the perior
length. For example the group character
sequences of length L =257 are composed in
general of 256th roots but the ith

sequence in the set is made up of 256/gcd(256,

of unity,

i)th roots of unity. Hence in this case*the 128th
sequence is the binary quadratic residue sequence
, the 64th and 192th sequences are composed of
4th roots of

2X-1 sequences using 2%th

unity, and in general there are
roots of unity k=1,
«+,7, with the remainder using some primitive
256th roots of unity.

In comparing the group character sequences
with the discrete linear FM sequances, one must
consider the problem of mechanization for large
L. The FM sequences have a relatively simple
algorithm(26) for determining the phase of each
bit. On the other hand group character sequence
generation is based on computing the logarithm
of t modulo L—1. In most cases this is a
difficult computation (Pohlig and Hellman, 1973).

The main detractions of the difference set
design are: (1) irregularity of the transmitter
phase

power, and (2) the requirement of

coherence, despite the on-off nature of the
signal, The orthogonal 1 modulation of the

non-zero pulses is easily achieved, especially
when the number k of pulscs per period is a

power of 2.
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