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<Abstract>

Common Coupled Coincidence Point Theorems
of Three Mappings satisfying Generalized
Contractive Condition

Mi Hye Song

Let X be an arbitrary nonempty set and f: X— X be a mapping. A fixed point

for f is a point & X such that fr=x. In 1922, Banach proved the fixed point
theorem for a single-valued mapping in the setting of a complete metric space
known as the Banach contraction principle. After that a considerable amount of
research work for the development of fixed point theory have been executed by
several authors. Fixed point theory is one of the most powerful and fruitful tools
of modern mathematics and may be considered a core subject of nonlinear
analysis started by Banach.

In 2013, Liu and Xu introduced the concept of cone metric space over Banach
algebra and considered fixed point theorems. After that, some researchers started
to study the existence problems of fixed points for some contractions in such cone
metric spaces.

In this paper, using the properties of spectral radius, we obtain sufficient
conditions for existence of some common coupled coincidence point results and
coupled fixed point results for three mappings S, 7: X X X—X and ¢g: X—X

satisfying generalized contractive condition in a complete cone b-metric space
()(, d) over Banach algebra. And by applying Theorem 3.2(not giving direct proof),
we prove some common coupled coincidence point results and coupled fixed point
results for three self-mappings f,h,g: X— X satisfying more general contractive
condition in a cone b-metric space (X, d) over Banach algebra. Our results not
only directly improve and expand several well-known comparable assertions in
cone b-metric spaces over Banach algebra, but also unify and improve some
previous results in cone metric spaces over Banach algebras.

As applications, we obtain the existence and uniqueness of solution for some

equations by using our results.



1. Introduction

A mapping T : X — X, where (X, d) is a metric space, is said to be a contraction
mapping if, for all x,y € X, there is a contractive constant k € [0,1) such that

d(Tx,Ty) < kd(z,y).

In 1922, Banach proved the fixed point theorem for a single-valued mapping in the
setting of a complete metric space known as the Banach contraction principle. The
famous Banach contraction principle states that if (X,d) is a complete metric space
and f : X — X is a contraction mapping, then f has a unique fixed point. As a
classical example, it is well known that every continuous function f : [0,1] — [0, 1] has
a fixed point and Brouwer generalized it like this: If f : D™ — D" is continuous where
D" ={x € R": ||z|| < 1}, then f has a fixed point.

This Banach contraction principle has further several generalizations in metric spaces
as well as in cone metric spaces. This principle has been generalized in different direc-
tions in all kinds of spaces by mathematicians over the years and is widely recognized as
one of the most influential sources in pure and applied mathematics. Also, in the contem-
porary research, it remains a heavily investigated branch as a consequence of the strong
applicability. After that a considerable amount of research work for the development of
fixed point theory have been executed by several authors.

The interplay between the notion of a nearness among abstract objects of a set and
fixed point theory is very strong and fruitful. This gives rise to an interesting branch
of nonlinear functional analysis called metric fixed point theory. This theory is studied
in the framework of a set equipped with some notion of a distance along with appro-
priate mappings satisfying certain contraction conditions and has many applications in
economics, computer science and other related disciplines.

In 2007, Huang and Zhang [6] introduced the concept of cone metric space which is a
meaningful generalization of metric space by replacing the set of real numbers with an
ordering Banach space, and proved some fixed point theorems for contractive mappings
on these spaces. Recently, in ([6], [10], [13], [14], [16], [17], [18]), some common fixed
point theorems have been proved for contractive maps on cone metric spaces. Gnana
Bhaskar and Lakshmikantham [3] introduced the concept of coupled fixed point of a
mapping F' : X x X — X and investigated some coupled fixed point theorems in
partially ordered sets. Since then this new concept is used in various directions and also
extended in various spaces like metric space, partially ordered metric space, fuzzy metric

space, cone metric space, etc([9]).



Very recently, Liu and Xu [8] introduced the concept of cone metric space over Banach
algebra and considered fixed point theorems in such spaces in a different way by replacing
Banach space with Banach algebra and by restricting the contractive constants to be
vectors and the relevant multiplications to be vector ones instead of usual real constants
and scalar multiplications. And they proved some fixed point theorems of generalized
Lipschitz mappings with weaker and natural conditions on generalized Lipschitz constant
k by means of spectral radius and pointed out that it is significant to introduce this
concept because it can be proved that cone metric spaces over Banach algebras are not
equivalent to metric spaces in terms of the existence of the fixed points of the generalized
Lipschitz mappings. That is, they provided an example to explain the non-equivalence
of fixed point results between the vectorial versions and scalar versions. In the past three
years, some researchers started to study the existence problems of (coupled) fixed points
for some contractions in cone metric spaces over Banach algebras (see [7], [8], [12], [16],
[17], [18], [19], [20]). As a result, there is still both interest and need for research in the
field of studying fixed point theorems in the framework of cone metric or cone b-metric
spaces.

This thesis consists of four sections as follows:

In section 2, we give well known properties of Banach algebra, cone metric spaces,
cone b -metric spaces over Banach algebra, convergence and Cauchy sequence on these
spaces, spectral radius, etc. In section 3, we prove some common coupled coincidence
point results and coupled fixed point results for three mappings 5,7 : X x X — X and
g : X — X satisfying generalized contractive condition in a cone b-metric space (X, d)
over Banach algebra without assumption of normality. The results not only directly
improve and expand several well-known comparable assertions in cone b-metric spaces
over Banach algebra( [12], [19], [20]), but also unify and improve some previous results
in cone metric spaces over Banach algebras in three senses. Firstly, the considered
contractive conditions are more general than earlier ones. Secondly, noncommuting
maps are considered. Finally, normality of the cone is not assumed. Furthermore, we
give two examples to support our conclusions.

In section 4, we prove some common coupled coincidence point results and coupled
fixed point results for three self-mappings f,h,g : X — X satisfying more generalized
contractive condition with ten terms in a cone b-metric space (X, d) over Banach algebra,
where the cone is not necessarily normal. This results extend and improve recent related
results in the literature( [8], [12], [14], [19], [20]).

In section 5, we obtain the existence and uniqueness of solution for some equations

by using our results.



2. Preliminaries

Let A always be a real Banach algebra. That is, A is a real Banach space in which
an operation of multiplication is defined, subject to the following properties (for all
x,y,z € A, a € R):

(1) (zy)z = z(yz);
(2) x(y+2) =2y +zz and (z 4+ y)z = z2 + yz;
(3) a(zy) = (ax)y = z(ay);
(4) [lzyll < ll=[[l[y]l

In this paper, we shall assume that A is a real Banach algebra with a unit (i.e., a
multiplicative identity) e. An element x € A is said to be invertible if there is an inverse
element y € A such that 2y = yxr = e. The inverse of z is denoted by z~!

Let A be a real Banach algebra with a unit e and 6 the zero element of A. A nonempty

closed subset P of Banach algebra A is called a cone if

(1) {6,e} C P;

(2) 04P + BP C P for all nonnegative real numbers «, 3 ;
(3) PP=PPCP;

(4) PN (—=P) = {9} ie,x € Pand —z € P imply z = 6.

For any cone P C A, we can define a partial ordering < with respect to P by x <y
if and only if y — 2 € P. x < y stands for x < y but  # y. Also, we use r < y to
indicate that y — x € int P where int P denotes the interior of P. If int P # () then P is
called a solid cone. A cone P is called normal if there exists a number K such that for
all z,y € F,

0 <z <y implies [z| < K]|y|l. (2.1)
Equivalently, the cone P is normal if
Tp 2 Yn = zpand lim z, = lim z, =2 imply  lim y,, == (2.2)

The least positive number K satisfying condition (2.1) is called the normal constant of

P.

Example 2.1. ([5]) Let £ = C§[0, 1] be the set of all real valued functions on X which

also have continuous derivatives on [0, 1] with ||z|| = ||2|lc + ||2/]|cc and P = {z € E :
£ 1

x(t) > 0}. This cone is non-normal. For example, consider z,(t) = - and y,(t) = .

3



Then 6 < x,, < vy, and vy, — 0 as n — oo. but
t" 1
|2, || = max |—| + max [t = =+ 1> 1.
tef0,1] n t€[0,1] n

Hence x,, does not converge to zero and hence P is a non-normal cone.

Definition 2.2. ([6]) Let X be a nonempty set and let E be a real Banach space
equipped with the partial ordering < with respect to the cone P C E. Suppose the
mapping d : X x X — FE satisfies the following conditions:

(1) 0 < d(z,y) for all x,y € X and d(z,y) =6 if and only if x =y ;

(2) d(z,y) = d(y,x) for all z,y € X ;

(3) d(z,y) = d(x,z) + d(z,y) for all z,y,z € X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Example 2.3. (1) Let £ = R>, P = {(z,y) € F : z,y > 0}, X = R. Define d :
X x X — E by d(z,y) = (Jr — y|, ]z — y|), where a« > 0 is a constant. Then (X,d) is

clearly a complete cone metric space.

(2) (The case of non-normal cone) Let X = [0,00), F = C§[0,1] and P = {¢ € F :
¢(t) > 0, t € [0,1]}. The mapping d : X x X — E is defined in the following way:
d(z,y) = |x —y|o, where ¢(t) = €. Then (X, d) is clearly a complete cone metric space.

Definition 2.4. ([7]) Let X be a nonempty set, s > 1 be a constant and A be a real
Banach algebra. Suppose the mapping d : X x X — A satisfies the following conditions:
(1) 0 < d(x,y) for all z,y € X and d(x,y) = 0 if and only if z =y ;
(2) d(x,y) =d(y,x) for all z,y € X ;
(3) d(x,y) = sld(x, z) + d(z,y)] for all z,y,z € X.
Then d is called a cone b-metric on X, and (X, d) is called a cone b-metric space over

Banach algebra A.

In particular, if s = 1, then a cone b-metric space over Banach algebra A is a cone

metric space over Banach algebra A.

Remark 2.5. The class of cone b-metric space over Banach algebra is larger than the
class of cone metric space over Banach algebra since the latter must be the former,
but the converse is not true. We can present many examples, as follows, which show
that introducing a cone b-metric space over Banach algebra instead of a cone metric
space over Banach algebra is very meaningful since there exist cone b-metric spaces over
Banach algebras which are not cone metric spaces over Banach algebras.

4



Example 2.6. Let (X, d) be a metric space and p(z,y) = (d(x,y))?, where p > 1 is a

real number. We show that p is a b-metric with s = 2P~1,

Proof. Obviously condition (1) and (2) of Definition 2.4 are satisfied.
If 1 < p < oo, then the convexity of the function f(z) =P (z > 0) implies

a+c
( 2
and hence (a + ¢)? < 2P~ Y(a? + ¢P) holds. Thus for each z,y, 2z € X we obtain

pla,y) = (d(z,9))? < (dz,2) +d(z,y))’
< 277Y((d(x, 2))" + (d(z,y)")
= 27 (p(x,2) + p(2,9))-
So condition (3) of Definition 2.4 holds and p is a b-metric. O

1
)p S E(a’p + Cp)7

Remark 2.7. In the preceding example, it should be noted that if (X,d) is a metric
space, then (X p) is not necessarily a metric space. For example, let X = R be the set of
real numbers and d(z,y) = |x — y| be the usual Euclidean metric then p(z,y) = |z — y|?
is a cone b-metric on R with s = 2, but is not a metric on R, because the triangle

inequality does not hold.

In the following, we always assume that (X, d) is a cone b-metric space over Banach

algebra A.

Definition 2.8. ([8]) Let {z,} be a sequence in (X,d) and z € X.
(1) If for every ¢ € A with § < ¢, there exists a natural number N such that

d(x,,x) < cforalln > N, then {z,} is said to be convergent and {z, } converges
to x, and the point x is the limit of {z,,}. We denote this by

lim z, =2 or z,—>z (n— ).
n—oo

(2) If for all ¢ € A with 6 < ¢, there exists a positive integer N such that d(x,,, z,,) <
c for all m,n > N, then {z,} is called a Cauchy sequence in X.
(3) A cone metric space (X, d) is said to be complete if every Cauchy sequence in X

is convergent.

Definition 2.9. Let F be a real Banach space with a solid cone P. A sequens {z,} C P
is called a c—sequence if for any ¢ € A with 6 < ¢, there exists a positive integer N such
that z,, < cfor all n > N.



Example 2.10. Let A = R? with the norm |[(uy,us)|| = |ui| + |us|. (1) Define the

multiplication by
uv = (uq, uz)(v1, v2) = (uv1, UgVs).

Let P = {u = (uy,u2) € A:uy,ug > 0}. It is clear that P is a normal cone and A is a
Banach algebra with a unit e = (1,1). Put X = R? and define a mapping d : X x X — A
by

d((z1, 1), (22, 92)) = (|21 — 22|, [y1 — v2]?).

It is easy to see that (X, d) is a complete cone b-metric space over Banach algebra A
with the coefficient s = 2.
(2) Define the multiplication by

wv = (ug, ug)(vy,ve) = (Ugvy, ugvs + Uy ).

Let P = {u = (u1,uz) € A:uyp,ug > 0}. It is clear that P is a normal cone and A is a
Banach algebra with a unit e = (1,0). Put X = R? and define a mappingd : X x X — A
by

d((1,91), (22, 2)) = (|21 = w2, [yr = w2]).

It is easy to see that (X, d) is a complete cone b-metric space over Banach algebra A
with the coefficient s = 1.

Example 2.11. Let A = C|a,b] be the set of continuous functions on [a,b] with the
supremum. Define multiplication in the usual way. Then A is a Banach algebra with
aunit 1. Set P ={x € A:x(t) >0, t € [a,b]} and X = R. We define a mapping
d: X x X — Aby d(z,y)(t) = |& — y[Pe’ for all z,y € X and for each t € [a,b], where
p > 1 is a constant. This makes (X, d) into a cone b-metric space over Banach algebra
A with the coefficient s = 2P~!. But it is not a cone metric space over Banach algebra

since it does not satisfy the triangle inequality.

Example 2.12. Let A = C}[0,1] be the set of all real valued functions on X which
also have continuous derivatives on [0, 1] with the norm ||z| = ||z]/s + ||2'||cc. Define
multiplication in A as just pointwise multiplication. Then A is a real Banach algebra
with a unit e = 1 (e(t) =1 for all t € [0, 1]). The set

P={zreA:z(t)>0,te X}

6



is cone. Moreover P is a non-normal solid cone. Let X = {a,b,c}. Define a mapping
d: X xX — Aby

d(a,b)(t) = d(b,a)(t) =¢€", d(b,c)(t) =d(c,b)(t) = 2¢,
d(c,a)(t) = d(a,c)(t) =3¢

and d(z,z)(t) = 0 for all t € [0,1] and each z € X. Then (X,d) is a solid cone metric
space over Banach algebra A.

Example 2.13. ([7]) (the case of a non-normal cone). Let X = [0, 1] and let A = C}|0, 1]
be the set of all real valued functions on X which also have continuous derivatives on X
with the norm ||z|| = ||z||cc + [|2/]|c and the usual multiplication. Let

P={xecA:x(t) >0,t e X}.

It is clear that P is a non-normal cone and A is a Banach algebra with a unit e = 1.
Define a mapping d : X x X — A by

d(z,y)(t) = |z — y[*e".

We make a conclusion that (X, d) is a complete cone b-metric space over Banach algebra
A with the coeflicient s = 2.

Example 2.14. ([7]) Let A = {a = (a;j)3x3 : a;; € R, 1 <i,j < 3} be the set of 3 x 3
real matrices and
1
lall = 5 > lail-
1<i,j<3

Take a cone

PI{CLEAZCLUZO, 1§’l,j§3}
in A. Let X ={1,2,3}. Define a mapping d: X x X — A by

d(1,1) = d(2,2) = d(3,3) =0 and

1 1 4 4 1 4
d1,2)=d2,1)=| 4 2 3|, d1,3)=d3,1)=|4 3 5 |,
1 2 3 2 3 1
9 5 6
d(2,3)=d(3,2)=| 16 4
3 4



It ensures us that (X, d) is a cone b-metric space over Banach algebra A with the coef-
ficient s = g , but it is not a cone metric space over Banach algebra since the triangle
inequality is lacked.

Example 2.15. ([7]) Let X =1, = { = (n)n>1 © 2oy |2a]? < 00} (0 < p < 1).
Define a mapping d : X x X — R by

da,y) = <§_O:1 20— )

B =

where = (24)n>1,Y = (Yn)n>1 € [, Clearly, (X, d) is a b-metric space. Put

o

A=l ={a=(an)p>1: Y las| < oo}

n=1
with convolution as multiplication:
ab = (an)HZI(bTL)nZI = ( Z aibj)nZL
i+j=n

It is valid that A is a Banach algebra with a unit e = (1,0,0,---). Choose a cone

P={a=(apn)p>1 € A:a, >0 foral n>1}.

Define d : X x X — A by d(x,y) = (d(;;y))nzl, it may be verified that (X, d) is a cone

b-metric space over Banach algebra A with the coefficient s = 271 > 1, but it is not a

cone metric space over Banach algebra since the triangle inequality does not hold.

Lemma 2.16. ([10]) Let E be a real Banach space with a cone P. Then
(1) Ifa << b and b < ¢, then a < c.
(2) Ifa =2 b and b < ¢, then a < c.
(3) If a 2 b+ c for each § < ¢, then a < b.
(4) If {zn},{yn} are sequences in E such that x, — x, y, — y and x, =y, for all
n>1, then x < y.

Lemma 2.17. ([10]) If E is a real Banach space with cone P. Then

(1) If a < Aa where a € P and 0 < X\ < 1 then a = 6.

(2) If c € int P, 0 < a, and a, — 0, then there exists a positive integer N such that
a, < c foralln > N.

Proof. (1) The condition @ = Aa means that Aa — a € P that is, —(1 — A\)a € P. Since
a € Pand 1— \> 0, then also (1 — A\)a € P. Thus we have

(1—MNaePn(—P)=1{6}

8



and so a = 6.

(2) Let § < ¢ be given. Choose a symmetric neighborhood V' such that ¢ +V C P.
Since a,, — 0, there exists a positive integer ng such that a,, € V = —V for n > ng. This
means that c+a, € c+V C P for n > nyg, that is, a,, < c. O

Lemma 2.18. ([14]) Let A be a real Banach algebra with a unit e and P be a solid
cone in A. We define the spectral radius r(z) of v € A by

— 1; n(l/n _ ; n||l/n
rla) = Jim "V = inf 2"
(1) If 0 <r(z) <1, then e — x is invertible,
1
(e —x) Zx and T e—x)_l)gl_r(w).

(2) If r(z) < 1, then ||z"|| — 0 as n — oc.

(3) Ifr € P and r(x) < 1, then (e —z)~' € P.

(4) If k,u € P, r(k) <1 and u = ku, then u = 6.

(5) r(z) < ||z|| for all x € A.

(6) If x,y € A and x,y commute, then the following holds:
(a) r(zy) < r(z)r(y)
(b) r(x+y) <r(x)+r(y) and
() [r(x) =r(@) < r(z—y).

Lemma 2.19. ([10], [14]) Let (X,d) be a complete cone b-metric space over Banach
algebra A and let P be a solid cone in A. Let {x,} be a sequence in X. Then
(1) If ||zn|l = 0 as n — oo, then {z,} is a c—sequence.
(2) If k € P is any vector and {x,} is c—sequence in P, then {kx,} is a c—sequence.
(3) Ifz,y€ A, a € P and z = y, then axr <X ay.
(4) If {x,} converges to x € X, then {d(z,,x)}, {d(xn,Tnip)} are c-sequences for
any p € N.



3. Common coupled coincidence point for two maps on the product space

In this section, we give common coincidence point results and coupled fixed point
results for two mappings S, T : X x X — X satisfying some natural and more general
contractive condition given by fixed mapping g defined on a complete cone b-metric space
X over Banach algebra. Our main results generalize the results of Yang([19], [20]) and
Song [12] by giving the weak radius condition (3.2), and modify many exciting results
in the literature.

Definition 3.1. ([3], [14]) Let (X, d) be a cone b-metric space over Banach algebra A.

(1) An element (z,y) € X x X is called a coupled fized point of F': X x X — X if
x=F(z,y) and y = F(y,x).

(2) An element (z,y) € X x X is called a coupled coincidence point of mappings
F:XxX — Xand g : X — X if g(x) = F(z,y) and g(y) = F(y,x), and
(g9z, gy) is called coupled point of coincidence;

(3) An element (z,y) € X x X is called a common coupled fized point of mappings
F:XxX—=Xandg: X - Xifx=g(x)=F(z,y) and y = g(y) = F(y, x).

(4) The mappings F' : X x X — X and g : X x X are called weakly compatible if
9(F(z,y)) = F(gz, gy) whenever g(z) = F(z,y) and g(y) = F(y, z).

Theorem 3.2. Let (X, d) be a complete cone b-metric space over Banach algebra A with
the coefficient s > 1 and the underlying solid cone P. Suppose that S,T : X x X — X
and g : X — X are mappings satisfying the contractive condition

d(S(z,y), T(u,v)) = ard(gr, gu) + asd(gy, gv)
+ a3d(S(x,y), gx) + asd(S(y, x), gy)
+ asd(T(u,v), gu) + agd(T (v,u), gv) (3.1)
+ a7d(S(z,y), gu) + asd(S(y, ), gv)
) 97)

+ CLgd(T(U,'U, X +a10d(T<U>U)7gy)7

for all x,y,u,v € X, where a; € P commute fori=1,2,--- 10 and

4

ST(Z: a;) + sr(as + ag) + r(ar + ag) + (s> + s)r(ag + ap) < 1. (3.2)

IfS(X x X), T(X x X) C g(X) and g(X) is a complete subspace of X, then S, T and g

have a common coupled coincidence point in X, that is, there exist x,y € X such that
gr = S(z,y) =T(z,y) and gy=S(y,z)=T(y, ).

10



Also, if S, T and g are weakly compatible, then S, T and g have a unique coupled fized
point, that is, there is a unique u € X such that u = gu = S(u,u) = T(u,u).

Proof. Let zg and yo be two arbitrary elements in X. Since S(X x X) C ¢(X), we
can choose z1,y; € X such that gr; = S(xo,%) and gy = S(yo,z0). Again noting
T(X x X) C g(X), we can choose xg,y2 € X such that gzy = T(xq,y1) and gy, =
T(y1,x1). Continuing this process, we construct two sequences {z,} and {y,} in X
such that gzony1 = S(Tan, Y2n);,  9Y2nt1 = S(Y2n,  T2n),  9Tony2 = T(T2n41, Y2ns1)

and gyant2 = T (Y2nt1, Tant1)-
For each k € N, by the given contractive condition (3.1), we have

d(gToky1, 9Torre) = d(S(wak, yor), T(T2r11, Yort1))

= ad(gror, gToky1) + a2d(gyor, 9Y2k+1)
+  asd(S(war, Yor), 9T2k) + asd(S(Yor, Tor), 9Y2r)
+ asd(T(22k41, Yor+1), 9Tokt1) + asd(T (Yar+1, Tort1), GYort1)
+  ard(S(zok, Yor ), 9Tok+1) + asd(S Yok, T2k), GY2k+1)
+ agd(T(Tort1, Yor+1)s 972k) + a10d(T (Yort1, T2rt1), 9Y2r)

= ayd(gwok, gTo41) + azd(gyor, 9Yor+1) + a3d(gToni1, 9Tor)
+  asd(gyori1, 9Yor) + asd(grari2, 9Tok11) + asd(gyor+2, 9Yor+1)
+ ard(9Tok+1, 9Tok+1) + asd(9Y2kt1, 9Y2k+1)
+  agd(9ran12, gT2k) + a10d(gYart2, GYar),

which implies that

(e — a5 — sag)d(gxokt1, Taks2) = (a1 + as + sag)d(9Taok, 9Tok+1)
+  (ag + ag + sai)d(9y2k, 9Y2k+1) (3.3)
+  (as + 5a10)d(gY2rt1, GY2r42)-

since d(gak+2, 9Tor) = sd(9Tok, 9Tak+1) + SA(gTok+1, 9Tok42) and

d(gyar-+2, 9Y2r) = $A(gYak+2, 9Y2k+1) + SA(gY2rk-+1, 9Y2k)-
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Similarly, we have

d(gyak+1, 9Yar+2) = d(S(Yar, Tar), T (Yor+1, Tarv1))

= ad(gyok, gYar+1) + a2d(gTok, 9Tk 1)
+  azd(S(yar, T2k), 9Y2r) + asd(S(Tok, Yor ), 9T2)
+ asd(T(Yarv1, Tok+1), 9Y2r+1) + a6d(T(Tor 41, Yor+1), GTort1)
+  a7d(S(yar, T2k ), gyart1) + agd(S(Tok, Yor ), 92k 11)
+  agd(T (Yo s1, Tort1), 9Y2k) + a10d(T (Togi1, Yort1), 9T2k)

= a1d(gYak; 9Yor+1) + a2d(gTok, gTok 1) + azd(gyori1, gYor)
+  asd(grari1, gTar) + asd(gYzkr2, 9Yort1) + asd(9T2k 12, 9Tk 11)
+  agd(gYart2, gYor) + a10d(gTok 2, gTok)

= ad(gyak, gYar+1) + a2d(gTor, gTok 1) + azd(gyort1, gYor)

+ a4d(9$2k+17 9$2k) + a5d(9y2k+27 gy2k+1) + a6d(9l‘2k+27 9$2k+1)
+  saold(gyar+2: 9Y2r+1) + A(gY2k+1, 9Y2k)]
+  say|d(gxokt2, 9Tok+1) + A(9Tont1, 9T21)],

which implies that

(e —as — sag)d(gyoki1, 9Y2r+2) = (a2 + as + sai)d(grar, gTort1)
+  (ae + sai0)d(gTari1, gTor+2) (3.4)
+ (a1 + ag + sag)d(gyar, GYor+1)-
Adding both inequalities, we have
(e — as — sag)[d(grars1, 9Tar12) + d(gY2rt1, GYart2)]
= (a1 +ag + az + ay + sag + sa)|d(grar, 9To2k11) + d(gY2r, 9Y2r+1)]
+ (as + sa10)[d(gT2x11, 9T2m+2) + d(gYart1, 9Y2r+2))
That is,
(e — a5 — ag — sag — sa10)|d(gTap+1, gTok+2) + d(gY2r+1, 9Yor-r2)]
= (a1 +ag + az + ag + sag + saio)[d(grar, gTok+1) + d(gy2r, GYort1)]-
Since r(as + ag) + sr(ag + aig) < 1 by hypothesis, e — (a5 + ag) — s(ag + a1g) is invertible
and so the above relation implies that

d(9Tok11, 9Tort2) + A(GY2rt1, 9Yor+2) = hld(92or, gTort1) + d(gyar, 9Y2r+1)]
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where h = (e — a5 — ag — sag — sayo) " (ay + as +az + a4 + sag + sayp). Similarly we have
d(9Tor+2, 9Tak43) + d(9Y2k+2, 9Y2r+3) = h[d(9Top+1, 9Tart2) + d(9Y2r+1, 9Y2r+2))-

Therefore

d(97y, gTns1) + A(GYns GYns1) = R[d(gTn_1, 920) + d(gYn-1, 9Yn)]
=< h2d(g2n—2, 9Tn-1) + A(GYn-2, GYn-1)]

PN

h"[d(gxo, g21) + d(gyo, gy1)]
By hypothesis and Lemma 2.18, we have
r(h) < r((e—as— ag — sag — salo)_l)r(al + ag + az + a4 + sag + sayg)

r(a1 + ag + az + ag) + sr(ag + aqp) - 1
1—r(a5—|—a6)—sr(ag+a10) S

< <1

which means that e — h is invertible, (e — h)™t = 322, A" and ||h"|] = 0 as n — oo.
Now if 0, = d(9xn, gTni1) + d(gYn, gYn+1), then the above relation implies

5n j hén—l j tc j hn(s(]
For m > n, we have

d(g‘rnagwm) + d(.gymgym) j S[d<gxmgxn+1) + d(.gxn—i-lagxm)]

d(9Yn+1, dym)]

2

+  s[d(gYn, gyn+1) +
j Sd(gxm ganrl) + s (ganrla gxn+2) + Szd(anJr% gxm)
+

+ 8d(9Yn, GYni1) + 5°A(GYn11, GYni2) + S2A(GYnt2; GYm)

=
< 80, + 32(5n+1 4o ST,
j S(hn -+ Sh,nJrl 4+ 4 Sm*nflhmfl)(so
= sh"[e+sh+ (sh)*> +--- 4 (sh)™ "]
= sh"(D_(sh)")do
=0

= (e—sh) 'sh™
since r(sh) < 1 and P is closed. Since r(h) < 1, ||h"|| = 0 as n — oo and so

I(e = sh)~*sh"doll < [|(e — sh)~*s||[[2"[[|do]l — ©.
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Thus for any ¢ € A with 6§ < ¢, there exists N € N such that for any m > n > N, we
have

A(gn, 9m) + d(gyn, gym) =< (e — h)"'sh" < c.
Thus {d(gxn, 9Tm) + d(gYn, gym)} is a c-sequence in P. Since

0 = d(92n, 97m), A(GYn, 9Ym) = d(9Tn, gTm) + d(GYn, gYm),

we note that {d(gz,, gx.,)} and {d(gyn, gym)} are c-sequences and so Cauchy sequence
in X. Since X is complete, there exists z € X and y € X such that gz, — gz and
9Yn — gy as n — 0.

Now we show that gz = S(z,y) and gy = S(y,x). Then

d(gz,S(z,y)) = sd(gz, grops2) + sd(grars2, S(z,y))
= sd(gx, gropre) + sd(T(Togt1, Y2k+1), S(T,y))
and
sd(T(op+1, Yor41), S(w,y)) = sard(9Tor+1, 97) + sazd(9y2k+1, 9Y)
sazd(T (Tar+1, Yak+1); 9T2k+1)
5a4d(T (Yor+1, Tok+1)s GY2k+1)
sasd(S(x,y), gx) + sagd(S(y, x), gy)
sard(T(Tar+1, Yor+1), 97) + sasd(TYar+1, T2r+1), 9Y)

+ o+ o+ o+ o+

= sa1d(gTart1, 97) + sasd(gYak+1, 9Y)
9Tok+2, 9Tokt1) + Sa4d(gYori2, Yort1)
sasd(S(x,y), gz) + sacd(S(y, ), gy)
sard(gzor+2, 9) + sasd(gyzn+2, 9Y)

sasd

+ + + o+

(
(
(
(
(
sagd(S(,y), grark+1) + sa10d(S(y, ), gyor+1)
(
(
(
(
(

sagd(S(x,y), 9rar+1) + 5a10d(S(y, T), gYar+1)-
Since d(S(z,y), grors+1) = sd(S(z,y), gr) + sd(gzx, grar+1) and

d(S(y, x), gyort1) = sd(S(y,x), gy) + sd(gy, gYor+1),

taking n — oo, we have

d(gz, S(z,y)) =< sasd(S(z,y),9x) + sagd(S(y, x), gy)
+ sfagd(S(z,y), gr) + s*sad(S(y, 1), gy). (3.5)
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Also since

d(gy,S(y,x)) = sd(gy, gyar+2) + sd(gyars2, S(y, )
= sd(gy, 9y2k+2) + sd(T(kaH, 9$2k+1)7 S(% w))

by the given contractive condition and the similar calculation, we have

d(gy, S(y,z)) = sasd(S(y,x), 9y) + saed(S(z,y), gx)
+  s%agd(S(y, ), gy) + s?saed(S(z,y), gz). (3.6)

Adding both inequalities, we have
d(gz, S(z,y)) +d(gy, S(y, x) = (sas+ sag+ s*ag + s°a10)[d(S (. y), gx) + d(S(y, x), gy)].
Since
r(sas + sag + s*ag + s*aig) < sr(as + ag) + sr(ag + ayp) < 1,

by Lemma 2.18, we obtain

d(gz, S(x,y)) + d(gy, S(y,x)) = 0

and so gr = S(x,y),9y = S(y,x). Similarly we obtain that gr = T'(z,y) and gy =
T(y,x). Therefore (z,y) is a common coupled coincidence point of S, T and g.

In order to prove the uniqueness, let (z’,3') € X x X be another common coupled
coincidence point of S, T and g. Then by the given contractive condition,

d(gz,g2') = d(S(z,y), T(2",y))
= ad(gzr, 92') + axd(gy. gy') + aszd(S(z, y), gz)
+ aad(S(y,2), 9y) + asd(T (2", y), g2") + asd(T(y', '), gy")
+ ard(S(z,y), 92") + asd(S(y, ), gy')

(T(«"y), gz) + d(T (Y, 2"), gy)

(

sd(

+ aod

= wd(gz, g2') + axd(gy, gy') + azd(gz, g2')

+ 9y, 9y') + agd(g’, g) + arod(gy’, gy)
which implies that
d(gr,g2') = (a1 + a7+ ag)d(gz, gv') + (az + as + aio)d(gy, gy'). (3.7)
Similarly we have
d(gy.gy’) = (a1 + a7+ ag)d(gy, gy') + (a2 + as + aio)d(gz, gz'). (3.8)
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Adding both inequalities, we have

d(gz,gz’) +d(gy, gy') = (a1 +ag + a7 + as + ag + ayo)[d(gz, gz’) + d(gy, gy')]
< Zaz + Zaz (9, 92") + d(gy, 9v')]

Since

Zaﬁ—ZaZ ) < r( Zai)+r(a7+a8)+r(a9+am) <1

=1
by hyphothesis, by Lemma 2.18, we have

d(gz, g2') + d(gy, gy') = 0.
Therefore gr = g2’ and gy = gy/'.

Now, let gz = uw. Then we have u = gz = S(x,z) = T'(z,x). By weak compatibility
of S,T and ¢, we have

gu = g(gz) = g(S(z,)) = S(gz, gr) = S(u, u),
gu = g(gr) = g(T(z,x)) = T(gz, gz) = T(u,u).

Then (gu, gu) is a coupled point of coincidence of S,7T and g. Consequently gu = gx.
Therefore u = gu = S(u,u) = T(u,u). Hence (u,u) is unique common coupled fixed
point of S, T and g. O

The above Theorem 3.2 improve Theorem 2.1 of Song [12] by giving the weak radius
condition (3.2), that is, Theorem 3.2 implies Theorem 2.1 of Song [12] . But the converse
is not valid.

Corollary 3.3. Let (X, d) be a complete cone b-metric space over Banach algebra A with
the coefficient s > 1 and the underlying solid cone P. Suppose that S : X x X — X,

g : X — X are mappings satisfying the contractive condition

d(S(z,y), S(u,v)) = ad(ge, gu) + azd(gy, gv)
+ azd(S(z,y), gr) + asd(S(y, v), gy)
+ asd(S(u,v), gu) + agd(S(v,u), gv)
+ ard(S(x,y), gu) + asd(S(y, ©), gv)
+ agd(S(u,v), gz) + arod(S(v, u), gy),
for all z,y,u,v € X, where a; € P commute fori=1,2,--- 10 and

4

sr(> " a;) + sr(as + ag) + r(ar + as) + (s* + s)r(ag + ayp) < 1.
=1
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If S(X xX) C g(X) and g(X) is a complete subspace of X, then S and g have a common
coupled coincidence point in X.

Also, if S and g are weakly compatible, then S and g have a unique coupled fixed point.

Proof. Tt follows from Theorem 3.2 by taking S = T. OJ

The above Corollary improve Corollary 2.2 of Song [12].

Corollary 3.4. Let (X, d) be a complete cone b-metric space over Banach algebra A with
the coefficient s > 1 and the underlying solid cone P. Suppose that S, T : X x X — X

are mappings satisfying the condition

d(S(z,y), T(u,v)) = ayd(x,u)+ ad(y,v)
azd(S(z,y), ) + asd(S(y, x), y)
asd(T (u,v),u) + agd(T(v,u),v)
ard(S(x,y),u) + asd(S(y, v), v)
agd(T (u,v),z) + ajpd(T(v,u),y),

+ + 4+ +

for all x,y,u,v € X, where a; € P commute fori=1,2,---,10 and

A
sr(> " a;) + sr(as + ag) + r(ar + ag) + (s* + s)r(ag + ayp) < 1.
=1

Then S and T have a coupled fixed point in X.
Proof. 1t follows from Theorem 3.2 by taking g = [ the identity mapping. O
The above Corollary improve Corollary 2.2 of Song [12]

Corollary 3.5. Let (X,d) be a complete cone metric space over Banach algebra A with
the underlying solid cone P. Suppose that S,T : X x X — X, g: X — X are mappings

satisfying the condition

d(S(z,y), T(u,v)) = ad(gz,gu

+ o+ 4+ o+
K
/\/\/%/-\/\
S



for all z,y,u,v € X, where a; € P commute fori=1,2,--- 10 and
4

Z a;) +r(as + ag) + r(ar + ag) + 2r(ag + ajp) < 1.
i=1

If S(X x X), T(X x X) C g(X) and g(X) is a complete subspace of X, then S,T and
g have a common coupled coincidence point in X, that s, there exist x,y € X such that

gr = S(z,y) =T(z,y) and gy = S(y,z) = T(y, z).
Also, if S, T and g are weakly compatible, then S, T and g have a unique coupled fized

point.

Proof. Tt follows from Theorem 3.2 by taking s = 1. OJ

The above Corollary improve Corollary 2.3 of Song [12].

Corollary 3.6. Let (X,d) be a complete metric space. Suppose that S,T : X x X — X
and g : X — X are mappings satisfying the condition
d(S(z,y), T(u,v)) = ad(gz, gu) + axd(gy, gv)
d S x,y ,gl‘) + CL4d(S(y, l’), gy)
» gu + @6d<T(v7 u)7 gU)
,Y), ,9v)
+ d T u,v),gr + alOd(T(U7U)>gy)

+ + +
/\/-\/%/\/-\
S~

)

)
u,v), gu)

), gu) + asd(S(y, x), gv

), 9z)

for all x,y,u,v € X, where a; € P commute fori=1,2,--- 10 and

8
ZCLZ‘ + 2((19 + alo) < 1.

i=1
If S(X x X), T(X x X) C g(X) and g(X) is a complete subspace of X, then S,T and
g have a common coupled coincidence point in X, that s, there exist x,y € X such that

gr = S(z,y) = T(x,y) and gy = S(y,x) = T(y, x).
Also, if S, T and g are weakly compatible, then S, T and g have a unique coupled fized

point.
Proof. 1t follows from Theorem 3.2 by noting that d is a metric space with A =R. [

The above Corollary improve Corollary 2.4 of Song [12].

Corollary 3.7. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Let S,T : X x X — X and
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g: X — X be mappings satisfying

d(S(z,y), T(u,v)) = ard(gr,gu) + azd(gy, gv)

forall x,y,u,v € X, where ai,as € P commute and r(a; +as) < % IfS(X x X), T(X x
X) C g(X) and g(X) is a complete subspace of X, then S,T and g have a coupled
coincidence point, that is, there exist v,y € X such that gr = S(x,y) = T(x,y) and

gy =Sy, ) =T(y, ).
Also, if S, T and g are weakly compatible, then S,T and g have a unique coupled fixed
point.

Proof. 1t follows from Theorem 3.2 by taking a;, = 6 (i = 3,4,---,10). OJ

The above Corollary improve Corollary 2.5 of Song [12].

Corollary 3.8. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Let S, T : X x X — X and
g : X — X be mappings satisfying
d(S(z,y), T(u,v)) = kid(gz, gu) + kad(gy, gv)
+  k3d(S(z,y), gx) + kad(T(u,v), gu)
+ ksd(S(z,y), gu) + ked(T(u,v), gz)

for all x,y,u,v € X, where k; € P commute fori=1,2,--- 6 and
sr(ky + ko + k3) + sr(ky) + r(ks) + (s> + s)r(ks) < 1.

IfS(X x X), T(X x X) C g(X) and g(X) is a complete subspace of X, then S, T and g
have a coupled coincidence point, that is, there exist x,y € X such that gx = S(x,y) =
T(xz,y) and gy = S(y,z) = T(y,x). Also, if S,T and g are weakly compatible, then S, T

and g have a unique coupled fixed point.

Proof. Tt follows from Theorem 3.2 by taking k1 = aq, ks = as, ks = as, ky = as, ks = ar,

ke = ag and a4 = ag = ag = a9 = 6. O

The above Corollary is a generalization of the main result obtained by Song [12] and
Yang ([19], [20]).

Corollary 3.9. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Let S,T : X x X — X be
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two mappings satisfying
d(S(%,y),T(U,U)) = k1d<l‘,u) + kZd(yav)
+  k3d(S(z,y), x) + kad(T(u,v),u)
+ ksd(S(x,y),u) + ked(T(u,v), x)

for all x,y,u,v € X, where k; € P commute fori=1,2,--- ,6 and
ST(]fl + ko + k?g) + S’/’(k’4) + T(l{?5) + (82 + S)T(kﬁ) < 1.
Then S, T have a common coupled fixed point.

Proof. 1t follows from Corollary 3.8 by taking g = 1. O

Corollary 3.10. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Let S, T : X x X — X and
g : X — X be mappings satisfying

d(S(z,y), T(u,v)) =2 ad(gz, gu) + axd(gy, gv)
+ a3ld(S(x,y), gx) + d(T(u,v), gu)]
+ aq4ld(S(x,y), gu) + d(T(u,v), gx)]

for all x,y,u,v € X, where ay,as,as,ay € P commute and either
(1) sr(ay + ag + as) + sr(ag) + (s* + s+ 1)r(ay) < 1

or
(2) sr(ay + ag) + (s + 1)r(as + saq) < 1.
If S(X x X), T(X x X) C g(X) and g(X) is a complete subspace of X, then S, T and g
have a coupled coincidence point, that is, there exist x,y € X such that gx = S(z,y) =
T(xz,y) and gy = S(y,x) = T(y, x).
Also, if S, T and g are weakly compatible, then S, T and g have a unique coupled fixed

point.

Proof. Assume that (1) holds. It follows from Theorem 3.2 by taking az = a5, ay = ag
and a4 = ag = ag = a0 =0

Assume that (2) holds. Let zg,yo be two arbitrary elements in X. Since S(X x X) C
g(X), we can choose z1,y; € X such that gz; = S(xg,y0) and gy1 = S(vo,z0). Again
noting 7'(X x X) C ¢g(X), we can choose x2,y» € X such that gze = T(xy,y;) and
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gy2 = T(y1,x1). Continuing this process, we construct two sequences {z,} and {y,} in
X such that

9Ton+1 = S(Sﬁ'zn, Z/2n)79y2n+1 = S(lem $2n), 9Ton42 = T($2n+17y2n+1)

and gyant2 = T (Yan+1, Tany1)-
For each n € N, by the given conditions, we have

d(gx2n+1, 9Tant2) = d(S(@2m, Y2n), T(T2041, Y2n11))
= a1d(gran, gTons1) + a2d(gYan, gYant1)
+  a3(d(9ant1, 9T2n) + d(gT2n+2, gT20+1))
+ as(d(gTani1, gTont1) + d(gT2n12, gTan))-
Since d(gzan+2, 9Ton) =X $A(9Ton+2, 9Tant1) + SA(9Ton+1, GTan),
(e — ag — saq)d(gTani1, 9Tonta) = (a1 + az + saq)d(gTan, gTans1)
+  a2d(9Y2n, gYant1)- (3.9)
Similarly, we get
(e = az — sas)d(gyant1, 9Y2n+2) = (a1 + az + sas)d(gyzn, 9Y2ni1)
+  aod(gron, gToni1). (3.10)

By the given condition, we have r(a3 + sas) < 1 and so by Lemma 2.18, e — ag — say is

invertible. Let
A= (e —as — sas) Hay + ag + az + say).
From the inequalities (3.9) and (3.10), we obtain that
d(g22n+1, 9T2n+2) + d(9Y2ni1, 9Y2nt2) 2 Ald(922n, 92041) + d(gY2n, gy2n+1)].  (3.11)
On the other hand, for every n € N, we have
d(S(xzn, an), T(I2n717 y2n71>>
ald(ngnv ngn—l) + a2d(gy2nv gy?n—l)

d(g$2n+17 gw?n)

A

+

a3(d(gw2n+17 ngn) + d(gx2n> gx2n71>>
+  as(d(922n+1, 9%an—1) + d(gTon, gTon)),

which implies that

(6 —as — $a4)d(9$2m 9$2n+1) = (al + as + Sa4)d(9$2m ngnfl)
+ a2d(gy2n7 ngn—l» (312>
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By the similar arguments as above, we can get
(e — az — sas)d(gyan, gyan+1) = (a1 + az + sas)d(gy2n, gyan-1)
+  asd(gran, gron_1). (3.13)
Adding the inequalities (3.12) and (3.13), we get
d(9T2n, 9Ton+1) + d(9Y2n, GYan+1) = A(d(gT2n, gT20-1)
+  d(9Y2n, 9Y2n-1))- (3.14)
Then the inequality (3.11) together with (3.14) implies that

d(9T2n+1, 9Ton+2) + A(GY2nt1s 9Yonta) = ANd(gon, gTont1) + d(gY2n, GYon+i1))
=< N(d(gTam, 9Tan-1) + d(GYom> Gyon—1))

PN

N2 (d(gzo, g1) + d(gyo, gyn))-

Let {wn}zo:() = (g$079$1,g$2, o ) and {Zn}zozo = (gyOagylanga T ) Then for n € N7
we have

d(Wny Wnt1) + d(2n, Zni1) = A (d(wo, wr) + d(20, 21)). (3.15)
We need only to consider the following two cases:
Case 1: d(wg,wq) + d(z0,z1) = 0. This case yields that wy = wy and zy = z;. By the
formula (3.15), we get that wy = w,, and zy = z, for each n € N. Hence
gro = gr1 = S(20,%0) and gyo = gy1 = S(yo, To).
Now we show that T'(zo, yo) = gzo and T (yo, o) = gyo. For that, we have
d(gzo, (w0, y0)) = d(S(zo,%0), T (20,%0))
= ad(gzo, gzo) + a2d(gyo, gyo) + as[d(gxo, gro) + d(T' (20, yo), g20)]
+  as(d(gzo, 9z0) + d(T (0, o), 90))-
Hence
d(gzo, T (w0, 90)) = (az+ as)d(gzo, T(20,Yo))
= (az + sas)d(gwo, T(x0, Y0))-

Since r(as + saq) < 1 by the given condition, d(gxo, T(x,y0)) = 6 by Lemma 2.18(4)
and so grg = T'(xg,yo). Similarly, we can show that gyo = T'(yo, o). Therefore we get

that (zo,yo) is a common coupled coincidence point of S, T and g.
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Case 2: d(wg,w1) + d(20, 21) # 6. Indeed let m > n, then
d(Wp, W) = s[d(We, wpy1) + d(Wpy1, W)

= Sd(w’m wn+1) + 52 [d(wn—i-la wn+2) + d(wn—i—Qa wm)]

PN

Sd(wm wn—i—l) + SQd(wn+17 wn+2) ++ Sm_nd(wm—h wm)
Similarly we have
d(znv Zm) j Sd(Zn, Zn-‘,—l) + SQd(Zn+17 Zn+2) + Sm_nd(zm—la Zm)

In order to prove the following conclusion, we firstly verify the fact that r(sA) < 1. In
fact since sr(a; + ag) + (s + 1)r(as + sas) < 1, then r(az + say) < 1 which together with
Lemma 2.18 implies that (e — ag — say) ™" exists. Then from Lemma 2.18 again,

r(sA) =sr(\) = sr((e — a3 — say) ‘(ay + ay + as + ay))

< sr(e—ag — sag) 'r(ay + ag + az + say)
< sr(ay + sag) + sr(as + say)

- 1 —r(ag + say)

< 1

By (3.15) and the fact of r(sA) < 1, we have
AWy, W) + d(20, 2m) =< 8A (e — sA) " (d(wo, w1) + d(20, 21)).

Since r(A) < 1 <1, by Lemma 2.18(2) and Lemma 2.19, ||A"|| — 0 as n — oo and so
{A"} is a c-sequence. Since (e — s\)~! € P, for each ¢ € P with § < ¢, we can find a
sufficiently large natural number £ € N such that

sA"(e — s\) " (d(wo, wy) + d(z0,21)) < ¢,
which gives, for all n > k,
AWy, W) + d( 2, 2m) < c.

So {w,} and {z,} are Cauchy sequences in g(X). As g(X) is complete, there exist x,y
in X such that w, = gz, — gz and 2, = gy, — gy as n — oo. These give that

9Zon+1 — 92, 9Ton — g2, 9Yon+1 — gY and 9Yon — gy

as n — 0o.
Now we prove that S(x,y) = T(x,y) = gx and S(y,z) = T(y,x) = gy. Clearly,

d(S(‘Tv y)? gl’) = S[d(S(.I, y)? gx2n+2) + d<gx2n+27 gI)] (316>
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So the given conditions yield that

d(S(2,y), groms2) = d(S(2,y), T(Ton41, Yon41))
= md(gr, gronta) + azd(9y; 9Yan+1)
+ a3(d(S(z,y), 9v) + d(gz2n+2, gT20+41))
+ as(d(S(z,y), 9van11) + d(g22n 12, 97)).
Then the formula (3.16) turns to

(e — saz — s%ag)d(S(z,y), gv) = (sa; + s’az + s*as)d(grons1, 97)
+  (se + s%as + say)d(gx, gTonyo) + sa2d(gy, gYani1)-

2

Since (s+ 1)r(as + say) < 1, we have sr(as + say) < 1 and so e — sag — s*ay is invertible.

Thus
d(S(z,y), gr) 2 Md(gT2nt2, 92) + Aod(9, gTon+1) + A3d(g9Yy, gYant1)

where
M = (e—sas — sPay) ' (se + sPas + say),
Ay = (e—sas —s*ay) ' (sa; + s%as + s%ay),
A3 = (e— saz — s*ay) 'sas.

Since gron 1o — g, gTopt1 — g and gys,+1 — gy as n — oo, by Lemma 2.19,

{d(ngn-i-?vgx)}? {d(ngg:EZn-‘rl)} and {d(gyagyZn-i-l)}

are c-sequences. Since \j, Ay, A\3 € P,

{Md(gzanio, 92)}, {Mod(gz, grons1)} and {Xsd(gy, gyoni1)}

are c-sequences by Lemma 2.19. Thus for ¢ > 6 there is Ny € N such that

c ¢ ¢
Md(gTony2, g2) <K 3 Xod(gTant1, gr) <K 3 and  A3d(gyant2, 9y) <K 3

for all n > Ny. So d(S(x,y),g9z) < ¢, that is, S(z,y) = gz. By the similar arguments
as above and the following inequality

d(gz, T(z,y)) = sld(gz, grons1) + d(g22041, T(,y))]
= Sd(gl’, g$2n+l) + Sd(S('IQna y2n)7 T(.T, y))a

we get T'(z,y) = gz. Hence S(z,y) = T'(z,y) = gx. Similarly we can get S(y,x) =
T(y,z) = gy. Therefore (x,y) is a common coupled coincidence point of S,7 and g. 0O
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Remark 3.11. The above Corollary implies that there is a difference between the radius
condition (1) obtained from Theorem 3.2 and the radius condition (2) obtained from the

direct proof

Corollary 3.12. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Let S, T : X x X — X and
g: X — X be mappings satisfying
d(S(z,y), T(u,v)) = kid(gr, gu) + kad(gy, gv)
+ k3d<5<y7 I)7 gI) + ]{Z4d(T(U, U), gU)
+ k}5d(5(y, {L'), gU) + kﬁd(T(Ua U), gy)
for all x,y,u,v € X, where k; € P commute fori=1,2,--- ,6 and
sr(ky + ko + k) + sr(ky) 4+ 7(ks) + (% + s)r(ks) < 1.

If S(X x X), T(X x X) C g(X) and g(X) is a complete subspace of X, then S, T and g
have a coupled coincidence point, that is, there exist x,y € X such that gr = S(x,y) =
T(xz,y) and gy = S(y,z) = T(y,x). Also, if S,T and g are weakly compatible, then S, T

and g have a unique coupled fixed point.

Proof. Tt follows from Theorem 3.2 by taking k1 = a1, ko = as, ks = a4, k4 = ag, k5 = as,
kIGZCLlO anda3:a5:a7:a9:9.
O

Corollary 3.13. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Let S, T : X x X — X and
g : X — X be mappings satisfying
d(S(z,y), T(u,v)) = kid(gz, gu) + kad(gy, gv)

+ kS [d(S(y, JI), gy) + d(T(Uv u)7 g?})]

+ ]{,‘4[d(5(y, .Z'), g'U) + d(T(Ua U), gy)]
for all x,y,u,v € X, where k; € P commute fori=1,2,3,4 and

s1(ky + ko + k3) + sr(ks) + (s> + s+ 1)r(ky) < 1.

IfS(X x X), T(X x X) C g(X) and g(X) is a complete subspace of X, then S, T and g
have a coupled coincidence point, that is, there exist x,y € X such that gx = S(x,y) =
T(x,y) and gy = S(y,z) = T(y,x).
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Also, if S, T and g are weakly compatible, then S, T and g have a unique coupled fized
point.

Proof. 1t follows from Theorem 3.2 by taking ki1 = a1, ko = as, k3 = a4y = ag, ky = ag =

aloanda3:a5:a7:a9:6’ O

Corollary 3.14. Let (X,d) be a complete cone b-metric space over Banach algebra A

with the coefficient s > 1 and the underlying solid cone P. Let S, T : X x X — X and
g: X — X be mappings satisfying

d(S(z,y), T(u,0)) = kid(gz, gu) + kad(gy, gv)

ksld(S(x,y), gz) + d(S(y, x), gy)]

k4 [d + d(T<U7 U), g'U)]

[ d(T'(v, u), gy)]

for all z,y,u,v € X, where k; € P commute fori=1,2,--- .6 and

I

+ o+ o+ o+

(S(z,y), gz

(T'(u, v), gu)
(S(z,y), gu) +
kld(T'(u,v), gz) +

,gx

sr(ky + kg + 2k3) + 2sr(ky) + 2r(ks) + 2(s* + s)r(ks) < 1

If S(X x X), T(X x X) C g(X) and g(X) is a complete subspace of X, then S, T and g
have a coupled coincidence point, that is, there exist x,y € X such that gx = S(z,y) =
T(z,y) and gy = S(y,x) = T(y,x).

Also, if S, T and g are weakly compatible, then S, T and g have a unique coupled fixed
point.

Proof. 1t follows from Theorem 3.2 by taking ki = a1, ko = as, k3 = a3 = a4, ky = a5 =

ag, k5 = a7y = ag, and kG = Qg = a10-
U

Corollary 3.15. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Let S : X x X — X and
g: X — X be mappings satisfying
d(S(z,y), S(u,v)) = kid(gz, gu) + kad(gy, gv)
+  ksd(S(z,y), gx) + kad(S(u,v), gu)
+ ksd(S(x,y), gu) + ked(S(u,v), gx)
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for all x,y,u,v € X, where k; € P commute fori=1,2,---,6 and
s1(ky + ko + k3) + sr(ky) +1(ks) + (s> + s)r(ks) < 1.

If S(X x X), T(X x X) C g(X) and g(X) is a complete subspace of X, then S and g
have a coupled coincidence point.

Also, if S and g are weakly compatible, then S and g have a unique coupled fixed point.

Proof. Tt follows from Corollary 3.8 by taking S = T. U

Remark 3.16. (1) Taking S = T in Corollary 3.4 — 3.14, we obtain several correspond-
ing results.
(2) Taking s = 1 in Corollary 3.6 — 3.14, we obtain several corresponding results.
(3) Corollary 3.12- 3.15 are generalizations of results obtained by Song [12] and Yang
([19], [20]).

Example 3.17. Let A = R? and define a norm on A by ||(z1,22)| = |z1| + |22 for
x = (x1,23) € A. Define the multiplication in A by

($1>$2)(y17y2) = (mlylanyZ)-

Put P = {z = (z1,22) € A : 21,29 > 0}. Then P is a normal cone and A is a real
Banach algebra with unit e = (1,1). Let X = [0, 00). Define a mapping d : X x X — A
by d(z,y) = (Jx—y|* |z —y|?) for each z,y € X. Then (X, d) is a complete cone b-metric
space over Banach algebra with the coefficient s = 2. But it is not a cone metric space
over Banach algebra since it does not satisfy the triangle inequality.

Consider the mappings S : X x X — X and g : X — X defined by

sin
S(ay) =+ Y

and g(x) = 3.

Then S(X x X) C g(X) = X. Let a; € P be defined with

2 2 1 1 1 1
a = (§7 §)a a9 = (TS, E), az = (m7 m%
1 1 1 1 1 1
asy = (@7 @)7 as = (574, 574), ag = (%’ £)7
= Gk =) o =g o= Gygs)
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Then, by definition of spectral radius,

3,487 109

ran + a2+ a5+ as) 11 7m0 "ot as) = 5o
25 169

r(a; +ag) = 56’ r(ag + ajp) = = 140"

and so
4
sr(Y " a;) + sr(as + ag) + r(ar + ag) + (s* + s)r(ag + ayp) = 0.9680 < 1.
i=1

By careful calculations, it is easy to verify that for any z,y, u,v € X, S and ¢ satisfy the
contractive condition of Theorem 3.2. Thus by Theorem 3.2, S and g have a coupled
coincidence point in a complete cone b-metric space X over Banach algebra A = R2.
Since S(0,0) = g0 =0, (0,0) is the common coupled coincidence point of S and g.

Example 3.18. Let A =R, P =[0,00) and X = [0,00) or [0, 1]. Defined: X x X — P
by d(z,y) = |z — y|?>. Then (X,d) is a complete cone b-metric space over A = R with
the coefficient s = 2. Let

_x+3y

S(‘Iay)_ 9 ) g:ZX and ay =

2
-9
Then r(a)) = &,7(az) = 2 and so r(a1) + r(az) = & < 5 = 1. By Corollary 3.7, S has

a unique coupled fixed point (0, 0).

@7 a2
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4. Coupled fixed point results for three self-maps

Many researchers proved the existences of coupled coincidence point and coupled
fixed point for two self-mappings f,h: X — X in a cone metric space (X, d) satisfying
the contractive conditions with at most six terms of (4.3)([1], [2], [3], [4], [10], [15],
etc). Recently many researchers proved the existences of coupled coincidence point and
coupled fixed point for three self-mappings f,h, g : X — X in a cone metric space (X, d)
over Banach algebra satisfying the contractive conditions with at most six terms of (4.3)(
6], [8], [14], etc).

In this section, by applying Theorem 3.2(not giving direct proof), we shall prove some
common coupled coincidence point results and coupled fixed point results for three self-
mappings f, h, g : X — X satisfying the generalized contractive condition with ten terms
in a cone b-metric space (X, d) over Banach algebra without assumption of normality.
Our main results generalize the results of Yang([19], [20]), and Song [12] by giving the
weak radius condition (4.2),

Theorem 4.1. Let (X, d) be a complete cone b-metric space over Banach algebra A with
the coefficient s > 1 and the underlying solid cone P. Suppose f,h,g: X — X are three

mappings satisfying the contractive condition

d(fe,hu) = aid(gz, gu) + axd(gy, gv)

+ agd(ffE, gl’) + Cl4d(fy, gy)
+ asd(hu, gu) + agd(hv, gv) (4.1)
+ a7d(f$a gu) + Clgd(fy, g?))
+  agd(hu, gr) + aod(hv, gy),
for all x,y,u,v € X, where a; € P commute fori=1,2,---,10 and
sr(D_ a;) + sr(as + ag) + r(ar + as) + (s* + s)r(ag + aro) < 1. (4.2)

i=1

If f(X),h(X) C g(X) and g(X) is a complete subspace of X, then f,h and g have a
common coupled coincidence point in X, that is, there exist x € X such that gr = fr =
hx.

Also, if f,h and g are weakly compatible, then f,h and g have a unique coupled fized

point.

29



Proof. Let f,h : X — X be mappings satisfying the hypotheses. Define the mapping
S, T: X xX —= X by

S(z,y) = fz, T(v,y)=hr, xyeX.

From (4.1), we get

d(S(z,y), T(u,v)) = ad(ge, gu) + axd(gy, gv)
+ asd(S(x,y), gx) + aad(S(y, v), gy)
+ asd(T(u,v), gu) + agd(T(v,u), gv)
+ a7zd(S(z,y), gu) + asd(S(y, ), gv)
+  agd(T(u,v), gz) + ar0d(T(v,u), gy),

for all z,y,u,v € X. Thus the contractive condition (3.1) is satisfied.

On the other hand, from the definition of S, 7', we have S(X x X) = f(X) C ¢g(X) and
T(X x X)=h(X) Cg(X). Also, g(X) is a complete subspace of (X, d). Now, applying
Theorem 3.1, we obtain that S, T and g have a coupled coincidence point in X, that is,
there exists (z,y) € X x X such that g = S(x,y) = T(z,y) and gy = S(y,x) = T'(y, ).
From the definition of S and 7T, this implies that gr = fx = hx, that is, x is a common
coincidence point of f,h and g.

If f,h and g are weakly compatible, then S,T and g are weakly compatible. By
Theorem 3.2, S, T and g have a unique common coupled fixed point and so f,h and g
have a unique common coupled fixed point. O

Corollary 4.2. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Suppose f,g : X — X are
two mappings satisfying the contractive condition
d(fz, fu) = ad(gz, gu) + axd(gy, gv)

a3d(fx7 g.ZC) + &4d<
asd( fu, gu) + asd(fv, gv)
a7d(f$7 gU) + a8d<fy7 gU)

d(fu, gz) + arod(fv, gy),

fy.9v)

+ o+

_|_

for all x,y,u,v € X, where a; € P commute fori=1,2,--- 10 and

4
r(> " a;) + sr(as + ag) + r(ar + as) + (s° + s)r(ag + ayp) < 1.
i=1
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If f(X) C g(X) and g(X) is a complete subspace of X, then f and g have a common
coupled coincidence point.

Proof. The proof follows by taking A = f in Theorem 4.1. O

Corollary 4.3. Let (X,d) be a complete cone b-metric space over Banach algebra A
and let P be a solid cone in A. Suppose f,h: X — X are two mappings satisfying the
contractive condition
d(fr,hu) =X apd(z,u) + ad(y,v)
a3d f{]ﬁ, x) + a4d(fy, y)
asd(hu, u) + agd(hv, v)
azd(fx,u) + agd(fy,v
agd(hu, x) + arod(hv, y),

(
(

+ + + +

for all x,y,u,v € X, where a; € P commute fori=1,2,---,10 and
sr(° a;) + sr(as + ag) + r(ar + as) + (s° + s)r(ag + ay) < 1.
i=1

If f(X),h(X) C g(X) and g(X) is a complete subspace of X, then f,h and g have a
common coupled coincidence point in X, that is, there exist v € X such that gv = fx =
hx.

Also, if f,h and g are weakly compatible, then f,h and g have a unique coupled fixed
point.

Proof. The proof follows by taking g = I in Theorem 4.1. 0

Corollary 4.4. Let (X,d) be a complete cone metric space over Banach algebra A with
the underlying solid cone P. Suppose f,g,h : X — X are three mappings satisfying the
contractive condition

d(fz,hu) = ad(gx, gu) + axd(gy, gv)
agd(fz, gx) + asd(fy, gy)
asd(hu, gu) + agd(hv, gv)
ard(fx, gu) + asd(fy, gv)
agd(hu, gx) + arod(hv, gy),

+ o+ o+ o+
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for all z,y,u,v € X, where a; € P commute forv=1,2,--- ,10 and
4

T(Z a;) + r(as + ag) + r(ar + ag) + 2r(ag + ajp) < 1.
i=1

If f(X),h(X) C g(X) and g(X) is a complete subspace of X, then f,h and g have a
common coupled coincidence point, that is, there exist x € X such that gv = fx = hx.

Also, if f,h and g are weakly compatible, then f, h and g have a unique coupled fixed
point.

Proof. The proof follows by taking s = 1 in Theorem 4.1. OJ

Corollary 4.5. Let (X,d) be a complete metric space. Suppose f,g,h : X — X are

three mappings satisfying the contractive condition

d(fx,hu) =2 ard(gz, gu) + axd(gy, gv)
asd(fx, gx) + asd(fy, gy)
asd(hu, gu) + agd(hv, gv)
azd(fx, gu) + asd(fy, gv)
agd(hu, gx) + ayd(hv, gy),

+ o+ o+

+

for all z,y,u,v € X, where a; € P commute fori=1,2,--- 10 and

8
Zai + 2(@9 -+ &10) < 1.

i=1

If f(X),h(X) C g(X) and g(X) is a complete subspace of X, then f,h and g have a

common coupled coincidence point, that is, there exist v € X such that gr = fx = hx.
Also, if f,h and g are weakly compatible, then f,h and g have a unique coupled fized

point.

Proof. The proof follows by taking A = R in Corollary 4.4. U

The following Corollary is a generalization of Theorem 2.1 of Liu et al [8] or Theorem
3.1 of Xu et al [14].

Corollary 4.6. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Suppose f,g,h: X x X — X

are three mappings satisfying the contractive condition
d(fr,hy) = kd(gz,gy)
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Jor all x,y € X, where k € P and r(k) < L. If f(X),h(X) C g(X) and g(X) is a
complete subspace of X, then f,h and g have a common coupled coincidence point, that
18, there exist x € X such that gr = fxr = hx.

Also, if f,h and g are weakly compatible, then f,h and g have a unique coupled fixed
point.

Proof. The proof follows by taking ay = k,as = a3 = -+ = a;90 = 0 in Theorem 4.1. [

The following Corollary is a generalization of Theorem 2.3 of Liu et al [8] or Theorem
3.3 of Xu et al [14].

Corollary 4.7. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Suppose f,g,h: X — X are

three mappings satisfying the contractive condition

d(fz,hy) = kld(fz,gz) + d(hy, gy)]
for all x,y € X, where k € P and r(k) < Qis If f(X),h(X) C g(X) and g(X) is a

complete subspace of X, then f,h and g have a common coupled coincidence point.

Also, if f,h and g are weakly compatible, then f,h and g have a unique coupled fixed

point.
Proof. The proof follows by taking a3 = a4 = k,a; = as = a5 = -+ = a19 = 0, in
Theorem 4.1. O

The following Corollary is a generalization of Theorem 2.2 of Liu et al [8] or Theorem
3.2 of Xu et al [14].

Corollary 4.8. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Suppose f,g,h: X — X are

three mappings satisfying the contractive condition

d(fr,hy) = kld(fz,9y) + d(hy, go)]
for allz,y € X, where k € P and (s* + s+ 1)r(k) < 1. If f(X),h(X) C g(X) and g(X)

15 a complete subspace of X, then f,h and g have a common coupled coincidence point,
that is, there exist v € X such that gxr = fx = hx.

Also, if f,h and g are weakly compatible, then f, h and g have a unique coupled fixed
point.

Proof. The proof follows by taking a; = ag = k,a1 = a3 = a3 = a4 = a5 = ag = ag =
a0 = 6 in Theorem 4.1. O
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Corollary 4.9. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Suppose f : X — X and

g: X — X are two mappings satisfying the contractive condition

d(fz, fu) = kd(gz, gu) + ked(gy, gv)
+ ksd(fz, gu) + ked(fu, gx)

for all x,y,u,v € X, where a; € P commute fori=1,2,--- 6 and

sr(> ki) + sr(ka) 4+ r(ks) + (s> + s)r(ke) < 1.

i=1
If f(X) C g(X) and g(X) is a complete subspace of X, then f and g have a common
coupled coincidence point.

Also, if f and g are weakly compatible, then f and g have a unique coupled fixed point.

Proof. The proof follows by taking h = f, k1 = a1,ky = as, k3 = a3, ky = as, ks =

a7, kg = ag and ay = ag = ag = a9 = 6 in Theorem 4.1. O

Corollary 4.10. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Suppose f,g,h: X — Xare

three mappings satisfying the contractive condition

d(fr,hu) = kid(gz, gu) + kod(gy, gv)
+ ksd(fy, gy) + kad(hv, gv) (4.3)
+  ksd(fy, gv) + ked(hv, gy),

for all x,y,u,v € X, where a; € P commute fori=1,2,---,6 and

sr(> ki) + sr(ka) 4+ r(ks) + (s> + s)r(ke) < 1.

i=1

If f(X),h(X) C g(X) and g(X) is a complete subspace of X, then f,h and g have a

common coupled coincidence point in X, that is, there exist x € X such that gr = fr =
hx.

Also, if f,h and g are weakly compatible, then f, h and g have a unique coupled fixed

point.

Proof. The proof follows by taking k1 = a1, ks = a9, ks = a4, ky = ag, ks = ag, ke = aqg

and a3 = a5 = a7y = ag = 0 in Theorem 4.1. ]
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Corollary 4.11. Let (X,d) be a complete cone b-metric space over Banach algebra A
with the coefficient s > 1 and the underlying solid cone P. Suppose f,g,h: X — X are
three mappings satisfying the contractive condition
d(fr,hu) = ad(gz, gu) + azd(gy, gv) + as(d(fz, gz) + d(hu, gu))

for all x,y,u,v € X, where a; € P commute for i =1,2,3,4 and either

(1) sr(ay + ag + as) + sr(az) + (s* + s+ 1)r(ay) < 1
or

(2) sr(ay + az) + (s + 1)r(as + saq) < 1.
If f(X),h(X) C g(X) and g(X) is a complete subspace of X, then f,h and g have a
common coupled coincidence point, that is, there exist x € X such that gv = fx = hx.

Also, if f,h and g are weakly compatible, then f, h and g have a unique coupled fixed

point.

Proof. 1t follows from Corollary 3.10 and Theorem 4.1. U

Remark 4.12. Taking h = f in Corollary 4.3 — 4.11, we obtain several corresponding

results.
Remark 4.13. Taking s = 1 in Corollary 4.6 — 4.11, we obtain several correspond-

ing results on a complete cone b-metric space (X, d) over Banach algebra A with the

underlying solid cone P.
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5. Applications

In this section, we shall apply the obtained conclusions to deal with the existence and
uniqueness of solution for some equations. First of all, we refer to the following coupled

equations:

(5.1)

where F,G : R? = R are two mappings.

Theorem 5.1. If there exists 0 < L < % such that for all the pairs (x1.y1), (T2, y2) € R?,

it satises that

|F(x1,91) — F22,92) + 11 — 22| < \/Z|351 — 29|

G(z1,51) — G(z2,52) + 1 — y2| < VL|y1 — ua.
Then the coupled equation (5.1) has a unique common solution in RZ.

Proof. Let A = R? with the norm ||(uy, ug)|| = |u1] + Juz| and the multiplication by

wv = (uy, ug)(vy, v2) = (Urv1, UgV2).

Let P = {u = (u1,uz) € A:up,ug > 0}. It is clear that P is a normal cone and A is a
Banach algebra with a unit e = (1,1). Put X = R? and define a mappingd : X x X — A
by

d((1,1), (22,92)) = (|21 — w2, [y1 — 12]).

It is easy to see that (X, d) is a complete cone b-metric space over Banach algebra A
with the coefficient s = 2, but (X, d) is not a complete cone metric space.
Now define the mappings S,7 : X — X by

S(z,y) = (x,y), T(xv,y) = (F(x,y) +2,G(z,9) +y).
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Then

d(T(x1,51), T(22,92)) = d((F(21,51) + 21, G(21,91) + 31),
(F(w2,y2) + 2, G(22,92) + 12))
= (IF(z1,31) = F(22,92) + 71 — 2%,
G(z1,91) — G2, 92) + 1 — 1o/*)
< (Lo = xof?, Llys — )
= (L, L)(|lz1 — w2, ly1 — )
= (L, L)d(S(z1,91), S(x2,92)).
Since
(L, DY 1™ = (|, LV = (L + L)Y =2 L — L < ;

as n — oo, we have r((L, L)) < . Now choose a1 = (L,L),as = az = -+ = ajg = b,
then all conditions of Theorem 4.1 or Corollary 4.6 are satisfied. Hence, by Theorem 4.1
or Corollary 4.6, S and T have a unique common fixed point in X. In other words, the
coupled equation (5.1) has a unique common solution in R2. O

Let X = R? and define a mapping d : X x X — A =R? by

d((z1,41), (22, 42)) = (|21 = 22, [y1 = w2]).

Then (X, d) is clearly a complete cone b-metric space over Banach algebra A = R? with
the coefficient s = 1, and so (X, d) is a complete cone metric space over Banach algebra
A=R2%

Using this cone metric(not cone b-metric with s # 1) and the similar proof of Theorem

5.1, Huang and Radenovic proved the following Theorem:

Theorem 5.2. ([7]) If there exists 0 < L < 1 such that for all the pairs (x1,y1), (22, y2) €
R2, it satises that

|F(z1,11) — F(x2,y2) + 21 — 22| < L|zg — 24

|G (21, 91) — G(22,2) + 31 — y2| < Llyr — v

Then the coupled equation (5.1) has a unique common solution in R?.

Secondly, we shall study the existence of solution to a class of system of nonlinear
integral equations. We consider the following system of integral equations
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{ x(t) = [! f(s,2(s))ds, (5.2)

where t € [a,b] and f : [a,b] x R — R is a continuous function.

By applying our results, we shall prove the following theorem again.

Theorem 5.3. ([7]) Let Ly[a,b] = {x = x(t) : [* |z(t)|P dt < oo} (0 < p < 1). For
(5.2), assume that the following hypotheses hold:

(i) if f(s,2(s)) = z(s) for all s € [a,b], then
f(s,/:x(w)dw) = /as fw, z(w))dw

for all s € [a,b).
(ii) if there exists a constant M € (0,21_%] such that the partial derivative f, of f
with respect to y exists and |f,(z,y)| < M for all the pairs (x,y) € [a,b] x R.

Then the integral equation (5.2) has a unique common solution in Lya, b].

Proof. Let A = R? with the norm ||(u1, ve)|| = |u1| + |ug| and the multiplication by
uv = (ug, ug)(v1, v2) = (U171, UTV2 + UgVY).
Let P = {u = (u1,u2) € A : ug,us > 0}. It is clear that P is a normal cone and A is

a Banach algebra with a unit e = (1,0). Let X = L,[a,b]. We endow X with the cone

b-metric
atwg) = (1 1o6) ~ wPasts. [ 1e(0) ~ (o)} )

for all z,y € X. It is clear that (X,d) is a complete cone b-metric space over Banach
algebra A with the coefficient s = 2571, Define the mappings S, 7T : X — X by

Sa(t) = /at:c(s)ds, Tat) = /at F(s,2(s))ds
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for all ¢ € [a,b]. Then the existence of a solution to (5.2) is equivalent to the existence
of common fixed point of S and T'. Indeed,

are ) = ({1 sts.otonas - [ ssutpasfary
(1 rtswtnas = [ sptsnasfar)

= ({1 rtsato) = rstotas]

(11600 = st o] )

- (M{ L1 o66) = oas ar) e ][ 1) = weonasf )
- ( ([ 1520) - Sutepa)? { [ 15att >|pdt};>

= 0)d(Sz, Sy).

‘@\'—‘

Because

(M, 0)"|| = = H(M” 0)|* =M — M < 2% (n — o)
which means r((M,0) < 2175, Now choose a; = (M,0) and a3 = a3 = -+- = kyg = 0.
Note that by (i), it is easy to see that the mappings S and T are weakly compatible.

Therefore, all conditions of Theorem 4.1 are satisfied. As a result, S and 7" have a unique
common fixed point z* € X. That is, x* is the unique common solution of the system
of integral equation (5.2). O
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