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Summary

This paper, as the application of orthogonal nonholonomic frames, gives the some results

with respect to its. In particular, it have the some properties of curvature of nonholonomic congruence, geodesic

nonholonomic congruence and condition that nonholonomic congruence be normal on the n-dimensional

Riemannian manifold.

1. Introduction

The concept of the nonholonomic frames intro-
duced by V. Hlavaty 1957 with a set of 4 linearly
independent basic null vectors and know that used it
successfully as a tool to develop the algebra of the
unifled field theory in the space-time X 4.

In our previous paper Chun, K.T. & Hyun, J.O.
1976 and Hyun, J.O. 1976, we introduced the con-
cept of the general nonholonomic frames and ortho-
gonal nonholonomic frames to an n-dimensional
Riemannian space V,, and constructed the characteni-
stic orthogonal nonholonomic frames of V, deter-
mined by a symmetric tensor a,,, composed of n dif-
ferent ecigenvectors of a,,, and to derive its particular
properties.

The purpose of the present paper, as the applica-
tion of orthogonal nonholonomic frames, is to find
the some results for the geodesic congruence and
condition that a congruence be nomal on the n-
dimensional Riemannian manifold.

2. Prelimiary Results

In our present section, for our further discussion,

results obtained in our previous paper Chung, K.T. &
Hyun, J.O. 1976 and Hyun, J.O. 1976 will be intro-
duced without proof.

Let A, be the fundamental metric tensor and let
g” (i=1,2,-+n) be a set of n linearly independent
unit vectors, when

21 k. A=

and there is a unique reciprocal set of n linearly

independent covariant vector e\ (i=1,2,n), satis-
s

tying

i ; ;
o = ¢ A=Y

Within the vectors €” and %A a nonholonomic frame
of V, defined in the following way; If T:::: are holon-
omic components of a tensor density of weight p,

then its nonholonomic component are defined by
(23)  Tii=AsTiné et A¥ Det(@n.
From (2.2) and (2.3)a,

23 Ti =AP T e &
s
The nonholonomic frame in J, constructed by the
unit vectors f'. (i=1,2,"*>n) tangent to the n congru-

ences of an orthogonal ennuple, will be termed an
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orthogonal nonholonomic frame of V.
Theorem (2.1). We have

(2'4)3' qv = ell hl'f R, £k= 'e hiiha o
+
N S
(2~4)b h.‘,'= 5.’,‘, h”=5",'€: = eY, él fk.
Theorem (2.2). The tensors h,,, h* and §, may

be expressed in terms of ¢, as follows;
j

(2.5)
hu=2 e e
I3 1] L]

-

=) e e
'- 1] t 9

And let ¢* be unit cigenvectors determined by a

$
symmetric covariant tensors a,,. Then they satisfy,

(2.6) (an -Mh, ) e=0,(M: scalar)
{ L] f

" def

W = An o

(2.7)

(’)a = (,-gu af.

Ay

(p= 2,3, )-

Lemma (2.3). Every eigenvector e* of a,, is also
L}

w (D=2:3,00)
Theorem (2.4). The nonholonomic components of

an eigenvector of the tensor Pa

@
a,, are

2.8) Pi,= Ml

or a;i=M} b4
£

Theorem (2.5). The tensor a,, may be cxpressed

in terms of f‘, as follows;

(29) @3 =Y M’e, e. (p=1.2,").
L
3. Curvature of Nonholonomic Congruence and
Geodesic Nonholonemic Congruences

Let e be the unit tangents to the » congruences of
m orth‘ogonal ennuple in Riemannian manifold. Sup-
pose, the derived vector of ¢ in the direction of ¢ has
components 5 08" and the projection of this vector

on ¢ is a scalar invariant, denoted by ¥ i %0 that
i

(8.1) Hm= enuet €

LY
Since the derived vector of e for any direction is
i
orthogonal to €, we have

Lemma (3.1). The nonholonomic invariants

(3.2) Hjx =0, for all values of j.k.

Proof. From (2.2) and (2.4)b, if i #j, then g,\e.‘
i
=0 o
e,, et e, e =0
(3.3) it i i
multiplying by i“ and summing with respect to from

1 to 1, we obtain

(34) € e €'t el e'=0.1.e
[ i 7 i k

(3.5)  Him+ Hjm=0.

Put i = j, we obtain the result.

Theorem (3.2). If we expressed the derived vector
of e for the direction e in terms of the orthogonal
nonholonomxc components in the direction of the n
congruences, then

(36) ¢ Ve=Zum ¢

Proof. By mecans of (2.4)a, (2.4)b and (3.1),

lel'k 6 = Z €r,ue’ € é-hl'i hd= e'\olle
B i s 7 i &

Let p, be the first curvature vector of a curve of
the congruence, whose unit tangent is ¢, then it is
wellknown results that p; is the derived of € in its
own direction. Consider the first curvature k of the
vector p; with respect to an orthogonal nonholono-
mic frame of the Riemannian manifold, we have

Theorem (3.3). Necessary and sufficient condi-
tions that the curves of the congruence, whose unit
tangent is e, be geodesics are expressed by the equa-

tions with respect to nonholonomic frame

(3;7) ;= 0,(i= 1,2, s m).

Proof. By using the (3.6),

=e\/e=2 Ky €
b jvlgi‘,f‘
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Hence

k’=z (¥Hj)2 = Z (H:5)? .

4. Condition that a Nonholonomic Congruence be
Normal

Let ¢t be the unit tangent to the congruence consider.
In order that the congruence may be normal to a
family of hypersufaces, there exist a function whose
gradiant at each point has the direction of ¢.
Hence ¥, =ct, (c: constant).

Lemma (4.1). The given congruence be normal if
and only if

tA(‘nu ‘tvw)"' ‘,(tvol\'lk.’)"' tv(th,u 'tun )

= 0 (2,p,v =1,2y""ym),

Proof. By **,

4.1 at. _ at, oL, ot.

N AL LR G LI
at, _at,

+ . (H" - az.)—"O.

Suppose the congruence is one of an orthogonal
ennuple. Let it be taken as that whose unit tangent

is €, then we have
1]

Theorem (4.2). The nonholonomic congrucnce e

1
of an orthogonal ennuple be normal if and only if
(42) xiﬁ = J(IQ" (]’k= L2, - n-1),

Proof. From (4.1)replacing ¢ by,
H

e sy = Cuyu u s =Ea,
(43) (@ st e (e -en)

te(enn-e.,.)=0,
s H L

Multiplying both sides of (4.3) by e’ e (k=
j

1,2,...,n-1), since ¢ and ¢ are orthogonal to ¢,
i & i

e.(e,...e* e'-¢,,,
H ; 3

f ik ; ; f)=0.

By (3.1)
€x(Hie; ~Hije)= 0.
s
Since it must hold for all values § and vice versa.
We have (4.2).
Theorem (4.3). Necessary and sufficient condi-

tions that all the nonholonomic congruences of an

orthognal ennuple normal are expressed by
Hig=0 (i, j,k=1,2, s m;inj<h).
Proof. By means of (3.5) and (4.2),

J(‘b:x‘ﬁ: -J(’-“= -J(,;,:JQ,,=J(‘.,= 'J(lb .
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