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Abstract 

In the modern intelligent life, data is everywhere, it is necessary to collect the data and extract useful part 

for analysis. To collect and extract useful data, the Internet of Things (IoT) technology is important, it is 

able to emerge paradigm that manages billions of devices, gateways, sensors, and actuators connected to 

the Internet, and support intelligent services based on huge context data. The IoT technology has obtained 

great development over the last few years and is increasingly influencing various industrial development, 

the IoT infrastructures and systems have been deployed to various important area, frequently used for 

building smart environment, such as smart cities and smart homes. Clouds are also wildly used for huge 

data repository and Internet services in various fields. Besides, building the connection between IoT devices 

and cloud is very useful and convenient.  

In this paper, we present the CoT architecture based on IoT and Cloud using IETF CoAP and OCF 

IoTivity. And we design and implement five CoT architectures based on the combine of IoT and cloud for 

connectivity between IoT Networks and cloud. There are five different architectures which are able to 

collect massive sensing data from IoT devices and then upload the data to cloud for the further analysis.  

This paper present first CoT architecture using IETF CoAP for interworking local Cloud and IoT 

platforms. This architecture connects IoT devices and IoT platforms, and interconnets IoT platform and 

Local Cloud for collecting huge sensing data. We design and implement the first CoT architecture based 

on agent for interworking local Cloud and IoT Networks. We use Hadoop Distributed File System (HDFS) 

for local Cloud.  IoT platform is able to upload sensing data to HDFS using IETF CoAP. 

Next, we introduce the second CoT architecture based on agent for interworking local Cloud and IoT 

Networks. This architecture connects IoT devices and local Cloud based on agent directly. And we design 

and implement the second CoT architecture based on agent for interworking local Cloud and IoT Networks. 
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We use HDFS for local Cloud. There is an agent that is able to get sensing data from IoT devices and upload 

the data to HDFS using IETF CoAP.  

And, we describe the third CoT architecture using MQTT for interworking global Clouds and IoT 

networks. And we design and implement the second CoT architecture using AWS, Azure, and Google 

Cloud used as global cloud. The CoT architecture communicates between global Clouds and IoT networks 

using MQTT protocol and store the sensing data. And we compare IoT services based on global Clouds for 

huge context acquisition in large scale IoT networks. The comparison helps users to choose easily IoT 

service based on Cloud. Hence, it is necessary to collect the context data easily and extract useful part for 

information analysis and usage in Cloud based on IoT. 

Forth, we propose the CoT architecture for global cloud and IoT networks based on proxy. The proxy is 

able to get sensing data from IoT networks and send to store in cloud (AWS IoT, Azure IoT Hub, and 

Google Cloud IoT Core) using OCF IoTivity and MQTT protocol. After some experiments we also compare 

the IoT cloud services of AWS, Azure, and Google Cloud Platform.  

Finally, we present the fifth CoT architecture based on IETF CoAP for vehicle monitoring service. And 

the administer controls and monitors own vehicles, and uploads vehicle state to cloud. Other clients make 

able to monitor vehicles states and get vehicle state from cloud. 
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1. Introduction 

The Internet-of-Things (IoT), or more prosaically Machine-to-Machine (M2M), has received significant 

attention lately from both industry and academia as an emerging paradigm that manages billions of devices, 

gateways, sensors, and actuators connected to the Internet [1]. There is a paper [2] present an overall view 

of interworking architectures, which enables exposure of various underlying network services for M2M 

applications running on top of the service layer, such as device triggering, device location, device 

management, etc. And there is another paper [3] present an introduction of standardized interworking 

interfaces and procedures based on oneM2M global standards, and tests them through use cases involving 

multiple IoT service platforms. The interworking involves smart city applications/services running on 

multiple IoT service layer platforms interoperating with each other. The Internet of Things (IoT) technology 

has obtained great development over the last few years and is increasingly influencing various industrial 

development [4]. Recently, encouraged by the likes of Ericsson and Cisco with estimates of 50 billion 

Internet connected devices by 2020 [5], it is really necessary to learn the interworking between IoT Cloud 

and IoT Devices. There is a paper [6] present a data storage framework not only enabling efficient storing 

of massive IoT data, but also integrating both structured and unstructured data. And there is another paper 

[7] present recent developments in commercial IoT frameworks and furthermore, identify trends in the 

current design of frameworks for the Internet of Things; enabling massively connected cyber physical 

systems. 

Internet of Things (IoT) infrastructures and systems have been deployed to various important area, 

frequently used for building smart environment, such as smart cities and smart homes [8]. Smart home is 

able to automatically sense the changes of home situations, dynamically response corresponding reactions 

and autonomously help its residents to make more comfortable lives [9]. For a smart home, there could be 

an IoT-based monitoring system using a tri-level context making model for context-aware services [10], 

there could be a device-level protection augmented with network-level security solutions to monitor 
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network activity and detect suspicious behavior [11]. The smart environment makes people’s lives faster 

and more convenient. 

IoT services has the constraint of IoT devices in a large-scale network. Be-cause IoT devices has the 

limited computing resources, memory capacity, energy, and communication bandwidth. Many of these 

issues could be resolved by employing the Cloud-assisted Internet of Things as it offers large-scaled and 

on-demand networked computing resources to manage, store, process and share huge IoT data. It is an issue 

that how to deal with the large amount of information generated by the intelligent environment. Cloud 

computing is a good choice. Many researchers have already presented some survey of cloud compo-ting, 

analyzed the key concepts and architecture [12] or introduced the cloud ser-vices of the IT companies [13]. 

Some researchers analyzed the authenticator-based data integrity verification techniques on cloud and IoT 

data [14]. The paper [15] presents an approach to the development of Smart Home applications by in-

targeting Internet of Things (IoT) with Web services and Cloud computing, their approach focuses on 

Arduino platform, Zigbee technology, JSON data format, and cloud services.  

The work presented in [16] presents a novel multilayered vehicular data cloud platform including an 

intelligent parking cloud service and a vehicular data mining cloud service by using cloud computing and 

IoT technologies. Some researchers developed a systematic comparator of the performance and cost of 

cloud providers called “CloudCmp” [17], which is able to help customers pick a cloud that fits their needs. 

In addition to the smart cities and smart homes, it is also useful and meaningful to develop smart cars, 

there are already some developers combined IoT and vehicles. Some developers developed an IoT system 

to allow the monitoring and control of parameters of the users’ vehicles [18], Or a system which is able to 

provide a low-cost means of monitoring a vehicle’s performance and tracking by communicating the 

obtained data to a mobile device via Bluetooth [19]. Some other developers focused on providing automatic 

and efficient electric vehicles charging management system by exploiting the benefits of IoT technology in 

offering the ubiquitous perception abilities and a real-time interactive view of the physical world by various 

sensors and radio devices [20]. Some developers paid more attention to detail and proposed a flexible 



5 

 

infrastructure for dynamic power control of electric vehicle battery chargers, the infrastructure dynamically 

adjusts the electric vehicle battery charger current, according to the power demand of the home wherein the 

vehicle is plugged [21]. To remote monitoring vehicles, it is able to use a communication service system 

for vehicle remote monitoring based on the Netty pattern, which is improved on the basis of the traditional 

Reactor model, the SEDA mode to handle the event, and from protocol analysis model, shared data 

synchronization and thread pool to optimize the design [22]. It is also to use a distributed system for remote 

monitoring of vehicle diagnostics and geographical position, which is achieved by using on-board 

microcomputer system, called on-board smart box (OBSB), general packet radio service (GPRS) and a 

remote server [23]. Or use a portable road side vehicle monitoring system for vehicle classification, and 

speed measurement [24]. Or use a remote monitoring system for lithium battery of electric vehicle to 

improve the real time monitoring ability and safe operation of the electric vehicle lithium battery, save the 

cost of battery [25]. 

Recently, more and more developers begin to combine IoT and cloud, some researchers referred it as 

Cloud of Things (CoT) and propose some key issues along with their respective potential solutions [26]. 

Some other researchers focused on the implementation of the underlying infrastructure at the basis of the 

CoT. An ad-hoc architecture and some preliminary background of this challenging view are provided and 

discussed, identifying guidelines and future directions [27].  

CoT is able to be used for the build of smart cities, solve the issue that different IoT ecosystems are not 

able to communicate between them by browse the semantic annotation of the sensors in the cloud, and 

innovative services can be implemented and considered by bridging Clouds and IoT [28], or like ClouT 

project, which is able to make citizens aware of city resources and helping them to use and care them by 

mean of smart IoT services in the Cloud [29],  

For CoT communication, it is able to use smart gateway [30], some gateways enable a lightweight and 

dense deployment of services, they are able to manage semantic-like things and at the same time to act as 

an end-point for the presentation of data to users [31]. And for CoT security, is able to use secure trusted 
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things as a service to reduce majority of the challenges in CoT environment, the main focus is on encryption 

mechanism with less overhead besides a trust model to enable real time decision making authentic [32].  

Figure 1 shows the conceptual model of the whole design for the connectivity between IoT Networks 

and Cloud presented in this paper. There are four different CoT architectures. The first CoT architecture is 

for Hadoop and IoT platforms, IoT platform is able to upload sensing data files to Hadoop Distributed File 

System (HDFS). Hadoop is able to connect many sensor platforms. And each IoT platform is able to connect 

many Sensor Middlewares, each Sensor Middleware is able to connect many sensors. IoT platform provide 

sensor information and sensing data storage service. Sensor Middlewares get sensing data from sensors and 

save the data into database via the service provided by Sensor Platform. Then the agents will request sensing 

data and sensor information from IoT platform and upload the data to Hadoop. 

IoT Platform 1

IoT Middleware 2 IoT Middleware nIoT Middleware 1

Device 
2

Device 
1

Device 
n

Device 
2

Device 
1

Device 
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Local Cloud 1
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Device 
2

Device 
1
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n

Client 1 Client 2

Local Cloud n

Device 
2

Device 
1
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n

Client n

 

Figure 1. Conceptual model of CoT architecture based on Proxy using IETF CoAP and OCF IoTivity 

The second CoT architecture is for Hadoop and IoT Networks, there is an agent that is able to get sensing 

data from IoT devices and upload the data to Hadoop Distributed File System (HDFS) using CoAP protocol. 

Hadoop is able to connect many agents; each agent is able to connect many IoT devices and each IoT device 
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is able to connect many sensors. IoT Device will get sensing data from sensors and send to the agent, and 

agents will upload sensing data to Hadoop. 

The third CoT architecture is for global cloud and IoT networks, AWS, Azure, and Google Cloud is used 

as global cloud and is able to communicate with IoT networks using MQTT protocol and store the sensing 

data. The IoT devices are exactly the same, each of them is able to publish message to the topic of IoT 

cloud (AWS IoT, Azure IoT Hub, and Google Cloud IoT Core) and store the sensing data to cloud. We 

have also compared and analyzed the performance of three IoT cloud services based on the process and 

results of the experiment.  

The fourth CoT architecture is for global cloud and IoT networks based on proxy using OCF IoTivity 

and MQTT protocol, the proxy is able to get sensing data from IoT networks and then publish the data as 

messages to the topic in IoT cloud (AWS IoT, Azure IoT Hub, and Google Cloud IoT Core). After some 

experiments we also compared the IoT cloud service of AWS, Azure, and Google Cloud Platform.  

The fifth CoT architecture is for vehicle monitoring and control service, the client is able to monitor 

vehicles, control vehicles, and get vehicle state from cloud. 
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2. Related Work 

2.1 Cloud (Hadoop, Azure, AWS, Google Cloud) 

 

Figure 2. AWS cloud architecture 

Amazon Web Services (AWS) [33] is a secure cloud services platform of Amazon.com, offering compute 

power, database storage, content delivery and other functionality to help businesses scale and grow. Explore 

how millions of customers are currently leveraging AWS cloud products and solutions to build 

sophisticated applications with increased flexibility, scalability and reliability. Figure 2 shows the AWS 

cloud architecture. Many developers choose cloud services of AWS. And in order to make a better choice 

of cloud services, some developers study and present the characterization of AWS, which is useful for 

developers aiming at entrusting AWS to deploy their contents [34]. Many other developers focused on the 

SaaS data protection, they present a real use case of home healthcare SaaS application deployed on AWS, 
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they also study the challenges needed to add cryptography and key management capabilities to the standard 

AWS Web/database offer so to enable SaaS data protection [35]. 

Microsoft Azure [36] is a growing collection of integrated cloud services that developers and IT 

professionals use to build, deploy, and manage applications through our global network of datacenters. 

Figure 3 shows the main Azure cloud services architecture. Many developers choose cloud services of 

Azure. Some developers formulate and evaluate production-feasible methods to develop idleness profiles 

for customer databases by using Azure SQL Database telemetry across multiple data centers [37]. It is also 

able to build up a system by combining the Open Plant Communication Universal Architecture and the 

Microsoft Azure Internet-of-Things Hub [38]. In this paper, we also collect the data by sending messages 

to Azure IoT Hub. 

 

Figure 3. Main cloud service architecture of Azure 

Google Cloud Platform [39], offered by Google, provides a set of management tools and a series of 

modular cloud services including computing, data storage, data analytics and machine learning. Figure 4 

shows the Google Cloud Platform services architecture. Many developers choose cloud services of Google 

Cloud Platform. Some developers use Datastore APIs from Google App Engine (GAE) to interface to 

different open source distributed database technologies, so the APIs are able to be used by web applications 

and services without modification [40]. Some other developers present an approach to workload 
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Applications Data
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classification and its application to the Google Cloud Backend [41]. During our simulation experiments, 

we used the Cloud IoT Core service of Google Cloud Platform. 

Machine Learning
Cloud Machine Learning 
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Intelligence
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Cloud Dataprep Cloud Pub/Sub Genomics Google Data Studio

Cloud IoT Core

Networking

Virtual Private Cloud 
(VPC) Cloud Load Balancing Cloud CDN Cloud Interconnect

Cloud DNS

Storage and Databases

Cloud Storage Cloud SQL Cloud Bigtable Cloud Spanner

Cloud Datastore Persistent Disk Data Transfer

Compute

Compute Engine App Engine Container Engine Cloud Functions

 

Figure 4. Google Cloud services architecture 

Hadoop as an open source project of the Apache foundation is the most representative product for the 

cloud computing research and application. The Hadoop’s distributed framework provides developers with 

a base architecture for distributed systems. The Hadoop users can develop distributed applications without 

understanding the underlying details of the distributed system and make full use of the cluster storage 

resources, network resources and computing resources. The core design of Hadoop is MapReduce and 

Hadoop Distributed File System (HDFS) [42]. Figure 5 shows the architecture of Hadoop. Hadoop frame 
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includes four modules: MapReduce, HDFS, YARN and Common Utilities. Hadoop MapReduce is YARN-

based system for parallel processing of large data sets. Hadoop Distributed File System (HDFS) is a 

distributed file system that provides high-throughput access to application data. Hadoop YARN is a 

framework for job scheduling and cluster resource management. Hadoop Common Utilities are Java 

libraries and utilities required by other Hadoop modules. These libraries provide filesystem and OS level 

abstractions and contains the necessary Java files and scripts required to start Hadoop. 

Hadoop

MapReduce
(Distributed Computation)

HDFS
(Distributed Storage)

YARN Framework

Common Utilities

 

Figure 5. Hadoop architecture. 

HDFS is a highly fault-tolerant system, suitable for deployment in cheap machines. HDFS can provide 

high throughput access data and it is very suitable for large-scale data sets. HDFS has a high fault-tolerance 

characteristic, and is designed for deployment on low-cost hardware. It provides high throughput to access 

the application data, suitable for those with large data set applications. HDFS is a distributed file 

management system for massive data storage. In this system, we use HDFS to store the sensor data files, 

and we manage the files by calling Hadoop commands in Java Application [43]. 
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2.2 IoT Platforms 

The JNU Indoor IoT system is an old project in our lab, which consist of nine modules. Figure 6 shows 

the conceptual model of the JNU Indoor IoT System. GIS Platform provides geography information service 

to App Client. Actuator Platform provides actuators’ information and actuators’ state to App Client. 

Actuator Middleware connect between Actuator Emulator and Actuator Platform. Actuator Emulator 

simulate actuators and the state. Sensor Platform provide sensing data and sensors’ information to other 

modules. Sensor Middleware connect between Sensor and Sensor Platform. Sensors collect sensing data 

and send them to Sensor Middleware. App Server provides services and object information to App Client. 

App Client show the results to the users via services supported by other modules. 

App Client

App  Server

Actuator 
Platform Sensor PlatformGIS Platform

Actuator 
Middleware

Sensor 
Middleware

SensorActuator 
Emulator

 

Figure 6. The conceptual model of the JNU Indoor IoT system 
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2.3 IoT Protocol 

REST (Representational State Transfer) [44] is an architectural style, which is often used in the 

development of web services. REST is a popular building style for cloud-based APIs. A RESTful API 

means web services used REST architecture. REST architecture involves reading a designated web page 

that contains an XML file, which describes and includes the needed content. REST typically runs over 

HTTP (Hypertext Transfer Protocol) and is often used in mobile applications, social networking web sites, 

mashup tools and automated business processes. REST use a limited number of operations (GET, POST, 

PUT and DELETE) to enhance the interactions between clients and services. And it is flexible because of 

assigning resources their own URIs (Universal Resource Identifiers). 

CoAP (Constrained Application Protocol) [45] is a software protocol intended to be used in very simple 

electronics devices, allowing them to communicate interactively over the Internet. It is particularly targeted 

for small, low-power sensors, switches, valves and similar components that need to be controlled or 

supervised remotely, through standard Internet networks. CoAP is an application layer protocol that is 

intended for use in resource-constrained internet devices, such as WSN nodes. CoAP is designed to easily 

translate to HTTP for simplified integration with the web, while also meeting specialized requirements such 

as multicast support, very low overhead, and simplicity. Multicast, low overhead, and simplicity are 

extremely important for Internet of Things (IoT) and Machine-to-Machine (M2M) devices, which tend to 

be deeply embedded and have much less memory and power supply than traditional internet devices have. 

IoTivity [46] is an open source software framework enabling seamless device-to-device connectivity to 

address the emerging needs of the Internet of Things. The IoTivity is sponsored by the OCF (Open 

Connectivity Foundation) who is developing a standard specification and certification program to enable 

the Internet of Things. This open specification is determined to unlock the massive opportunity in the IoT 

market, accelerate industry innovation and help developers and companies create solutions. The goal of 

IoTivity is to develop an open source software framework that can seamlessly connect billions of devices 
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to the future of the Internet world, regardless of operating system and network protocols. One of the most 

important parts for activating the Internet ecosystem is how can small and medium-sized companies 

manufacturing various things add an Internet connection function to their products and provide an 

environment that can easily provide them with smartphone apps or services. IoTivity is a framework for 

satisfying these requirements, ensuring interoperability between high-quality Internet devices and 

developing high-speed internet products. It is also expanding the range of open source hardware (e.g. 

Raspberry Pie, Edison) and software platforms (e.g. Android, iOS, Windows, Linux, etc.) Currently, 

IoTivity supports Ubuntu, Tizen and Android, and iOS will be supported in the future. The open source 

hardware platform now supports Arduino and Edison, and will continue to expand its supported hardware 

platforms. Basically, IoTivity is an open source technology for Internet middleware based on OIC standards. 

Framework APIs
Common Object Model

Profiles

Consumer Enterprise Industrial Automotive Education Health

Framework

Discovery Data Transmission Device Management Data management

 

Figure 7. Figure 2.6 OCF IoTivity architecture 

Figure 7 shows the conceptual architecture of IoTivity that consists of three layers. Transports layer 

supports the existing protocols such as Bluetooth, Wi-Fi, Zigbee, etc. Profile layer stands for each vertical 

field of object Internet applications such as smart home, smart factory, eHealth, etc. A framework layer 

supports functions such as resource discovery, data transfer, device management, and data management. In 

the case of the transport layer, new technologies can be continuously extended, and even with these 

extensions, the application layer of the profile layer can be executed without modification, with the support 

of the framework layer. For reference, the license policy follows Apache 2.0 and is operated by the Linux 
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Foundation. IoTivity is based on a resource-based RESTful architecture model, thus representing all things 

as resources and providing CRUDN (Create, Read, Update, Delete and Notify) operations. In addition, it is 

designed based on CoAP (Constrained Application Protocol) without a daemon, so it is easy to support 

low-end and low-power devices. 

MQTT [47] is a machine-to-machine (M2M)/"Internet of Things" connectivity protocol. It was designed 

as an extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote 

locations where a small code footprint is required and/or network bandwidth is at a premium. For example, 

it has been used in sensors communicating to a broker via satellite link, over occasional dial-up connections 

with healthcare providers, and in a range of home automation and small device scenarios. It is also ideal 

for mobile applications because of its small size, low power usage, minimized data packets, and efficient 

distribution of information to one or many receivers. 
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3. CoT Architecture for Hadoop and IoT 

Platform Using IETF CoAP 
 

3.1 CoT Design for Interworking between Hadoop and IoT 

Platform 

Recently, CoT technology has obtained great development over the last few years and is increasingly 

influencing various industrial development. Figure 8 shows the interworking architecture between Hadoop 

and Sensor Platform. As shown in the figure, each Sensor Platform connects with Hadoop. And each sensor 

platform can connect many sensor middleware, each sensor middleware can connect many sensors. IoT 

platform provide sensor information and sensing data storage service. Sensor middleware get sensing data 

from sensors and save the data into database via the service provided by sensor platform. Then IoT platform 

will request sensing data and sensor information and upload the data to local IoT cloud in multiple sensor 

networks. 

Local Cloud (Hadoop)

IoT  Platform_1 IoT  Platform_n

Database_1

Sensor 
Middleware_1

Sensor 
Middleware_n

S1 Sn S1 Sn

Sensor 
Middleware_1

Sensor 
Middleware_n

Database_n

S1 Sn S1 Sn

... ...

... ... ... ...
 

Figure 8. Interworking architecture between IoT platform and local Cloud (Hadoop) 
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Figure 9 shows the implement architecture for Hadoop and IoT platform. Sensor Middleware will get 

sensing data from Sensor and save sensing data into database via the service provided by Sensor Platform. 

There is a RESTful API in Sensor Platform, the communication between IoT platform and Sensor 

Middleware based on this API and used HTTP protocol. Sensor connect to Sensor Middleware by serial 

port. The communication between HDFS Agent and IoT platform also based on the RESTful API.  There 

is a HTTP Client in HDFS Agent. HTTP Client will get sensing data and sensor information from IoT 

platform via the RESTful API. And Data Uploader in HDFS Agent is able to receive the sensing data from 

HTTP Client, convert the sensing data to files (txt, csv), and upload the files to Hadoop Distributed File 

System (HDFS) in Hadoop framework. Client will control the process start or stop and show users the 

sensing results.   

HDFS Agent

Data Uploader

HTTP Client

Client

Hadoop Framework

HDFS
(Hadoop Distributed File System)

Data.txt

Sensor Platform

Sensor Middleware

Sensor (Temperature)

HTTP

HTTP

Serial Port

DB Agent

 

Figure 9. Implement architecture for Hadoop and IoT Platform 
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    Figure 10 shows the detail design for HDFS Agent. In HDFS Agent. There is a HTTP Client and a Data 

Uploader. HTTP Client is able to request sensing data from HTTP Server in Sensor Platform, Data Uploader 

is able to upload sensing data file to HDFS. In HTTP Client, there are Data Transmitter, Data Parser and 

Data Receiver. Data Receiver is able to receive sensing data from HTTP Server, Data Parser is able to 

convert sensing data to sensing data files, Data Transmitter is able to push the sensing data files to Data 

Uploader. When HDFS Agent get sensing data from Sensor Platform, Data Receiver in HTTP Client will 

receive data first and send to Data Parser, then Data Parser will send to Data Transmitter, and Data 

Transmitter will send data to Data Uploader and Client. 

HDFS IoT Agent

HTTP Client

Data Receiver

Data Parser

Data Transmitter

Data Uploader

Sensor Platform

HDFS

Client

Sensing Data

 

Figure 10. Detail design for HDFS Agent. 

Figure 11 shows the detail design for Sensor Platform. Service Interface provides access interface to 

outside service. The main services offered by Sensor Web module are Sensor Web Content Service, Sensor 
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Web Provider Service and Sensor-Web Sensing Service. Sensor Web Content Service is used for 

middleware configuration Management and Sensor Information Management. Sensor Web Provider is 

utilized for Sensor Searches, Sensor Information supply and Sensing Data supply. Sensor Web Sensing 

Service is used for Sensor State management and as Sensing Data receiver.  
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Figure 11. Detail design for Sensor Platform. 

    Figure 12 shows the detail design for Sensor Middleware. Sensor middleware take a role in collecting 

sensing data sent by sensor then sending and saving Sensor Platform. Configurator request sensor 

information (ID, Type) from Sensor Platform, and also verify pertinent IP address and Platform access 

privileges. Sensing Driver takes various sensors’ sensing data format information and parse processing 

through received sensing data. Port Monitoring take a role in monitoring state of the port connected with 
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middleware. Sensing Data Receiver accesses sensing data sent from sensor node and saves at memory 

through sensing data Parser. Sensing Data Transporter read Memory-saved sensing data and send to Sensor 

Platform. 

Sensor Middleware

Sensor Platform Sensor

Middleware Configuration Manager

Sensing Manager

Port Manager

Sensing Data Receiver

Sensing Data Parser
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Figure 12. Detail design for Sensor Middleware. 

    Figure 13 shows the sensor which connect to Sensor Middleware via Serial Port. 

 

Figure 13. Temperature sensor connect with Sensor Middleware 
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Figure 14 shows the sequence diagram for the interworking between Hadoop and IoT Platform. Client 

send start request to Data Uploader and request sensing data from Data Uploader. Data Uploader sends 

request message to HTTP Client, HTTP Client sends request message to sensor Platform, IoT platform 

sends request message to Sensor Middleware, Sensor Middleware sends request to Sensor and Sensor will 

return sensing data to Sensor Middleware. Sensor Middleware will return sensing data to Sensor Platform, 

IoT platform will save sensing data into database and return sensing data to HTTP Client. HTTP Client will 

return sensing data to Data Uploader. Data Uploader will return sensing data to Client, make a data file (txt, 

csv) and uploads file to HDFS. Finally, Client will send stop request to Data Uploader, all process will stop. 

 

Figure 14. Sequence diagram of this system for the interworking between Hadoop and IoT Platform 
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3.2 Experiments and Results of CoT Architecture for Hadoop and 

IoT Platform 

Table 1 shows the development environment for the IoT Platform 

Components Version 

Operating System Windows 10 

Microsoft Visual Studio 2015 

Microsoft SQL Server 2016 

Table 1. IoT Platform development environment. 

Table 2 shows the development environment for HDFS Agent. 

Components Version 

Operating System Windows 10 

Java JRE 1.8 

Spring Tool Suite 3.8.4 

Table 2. HDFS agent development environment. 

Table 3 shows the configuration environment for Hadoop. 

Components Version 

Operating System Windows 10 

Java JRE 1.8 

Hadoop 2.7.3 

Sprint Tool Suite 3.8.4 

Table 3. Hadoop configuration environment. 
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To run the whole system, we need to run IoT platform firstly, the result shows in figure 15. “Service 

State Viewer” shows the state of services. “Time Now” shows the current time. The first “Run Time” shows 

the running time of Provider Service and “Provider Service” shows the state of Provider Service (start or 

stop). The second “Run Time” shows the running time of Content Service and “Content Service” shows 

the state of Content Service (start or stop). “Node Count” shows the number of sensors. “Provider Service 

Control” has two buttons to control Provider Service and Sensing Service start or stop. “Content Service 

Control” has two buttons to control Content Service start or stop. “Service Load Viewer” shows the control 

history and click “Clear Control History” button will clear the control history. 

 

Figure 15. IoT platform implementation result. 

Then we need to run Sensor Middleware, the result shows in figure 16. "Sensing Data" shows the sensor 

information and sensing data. Users can choose a sensor in "Sensor ID" and the first textbox will show the 

information of the choose sensor. User can also choose the serial port for temperature sensor, humidity 

sensor and illumination sensor on the right. Click "Start" button to start the connection and send sensing 

data to IoT platform to save data into Database. Click “Stop” button to stop the connection. The second 

textbox will show the sensing data. 
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Finally, we need to run Client, the result shows in figure 17. We need to choose a sensor in the combo 

box, if the sensor is not in using, we cannot click the “start” button to start working. After we choose a 

sensor, the sensor information text area will show the information of this sensor. Click “start” button will 

get sensing data through Sensor Platform, make data files and upload files to HDFS. Click “Stop” button 

will stop all the process. 

 

Figure 16. Sensor Middleware implementation result. 

 

Figure 17. Client implementation result. 
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After finish running the whole system, we can check the files storage situation in our local file system, 

like the figure 18 shows. 

And we can also check the files storage situation in Hadoop Distributed File System, like the figure 19 

shows. 

 

Figure 18. Sensing file list in local file system. 
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Figure 19. Sensing file list in Hadoop Distributed File System. 

In file list, each file’s name is current time of sensing data. And the content is a string split by commas 

including sensing time and sensing data. Figure 20 shows the sensing data on 17:49:03, May 19, 2017. 

 

Figure 20. A file of the sensing list in HDFS. 
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4. CoT Architecture for Hadoop and IoT 

Networks Based on Agent Using IETF CoAP 
 

4.1 CoT Design for Interworking between Hadoop and IoT 

Networks 

Recently, it is increasing to research the interworking between Cloud and IoT Devices. Figure 21 shows 

the interworking conceptual model of Hadoop and IoT Networks. As shown in the figure, Hadoop is able 

to connect many agents, each agent can connect many IoT devices and each IoT device can connect many 

sensors. IoT Device will get sensing data from sensors and send to the agent, and agents will upload sensing 

data to Local Cloud. 

Agent_1 Agent_n

IoT 
Network_1

IoT 
Network_n

IoT 
Network_1

IoT 
Network_n... ...

Local Cloud (Hadoop)

...

 

Figure 21. Conceptual model of the architecture for Hadoop and IoT Networks 

Figure 22 shows the interworking layer of Hadoop and IoT Networks. We will connect a temperature 

sensor to Edison Board, and develop a CoAP Server in Edison Board which can get sensing data from 

sensor and provide data to CoAP Client. And we will develop a HDFS Agent, which consist of two parts: 
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Data Uploader and CoAP Client. Data Uploader is able to receive the sensing data from CoAP Client, 

convert these data to files (txt, csv) and upload files to Hadoop Distributed File System. 

Hadoop

HDFS IoT Agent

HDFS
(Hadoop Distributed File System)

Edison Board

Sensor
 

Figure 22. Interworking layer of Hadoop and IoT Networks 

HDFS IoT Agent

Data Uploader
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CoAP

CoAP Server

 

Figure 23. Implement architecture for Hadoop and IoT device 
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Figure 23 shows the implement architecture of for Hadoop and IoT device. There is a CoAP Server in 

Edison Board, which can get sending data from sensor and send to CoAP Client in HDFS Agent when 

CoAP Client sends request. Data Uploader in HDFS Agent is able to receive the sensing data, make data 

files (txt, csv) and upload the file to Hadoop Distributed File System (HDFS) in Hadoop framework. And 

Client will control the process start or stop and show users the sensing results. 

Figure 24 shows the design for HDFS IoT Agent. In HDFS IoT Agent. There is a CoAP Client and a Data 

Uploader. In CoAP Client, there are Data Transmitter, Data Parser and Data Receiver. When HDFS IoT 

Agent get sensing data from Edison Board, Data Receiver in CoAP Client will receive data first and send 

to Data Parser, then Data Parser will send to Data Transmitter, and Data Transmitter will send data to Data 

Uploader and Client. 

HDFS IoT Agent

CoAP Client

Data Receiver

Data Parser

Data Transmitter

Data Uploader

Edison Board

HDFS

Client

Sensing Data

 

Figure 24. The design for HDFS IoT Agent. 

Figure 25 shows the sequence diagram for the interworking between Hadoop and IoT device. Client send 

start request to Data Uploader and request sensing data from Data Uploader. Data Uploader sends request 
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message to CoAP Client, CoAP Client sends request message to CoAP Server, and CoAP Server requests 

sensing data from sensor. After getting sensing data from sensor, CoAP Server will return sensing data to 

CoAP Client, CoAP Client will return sensing data to Data Uploader, Data Uploader will return sensing 

data to Client. And Data Uploader will make a sensing data file (txt, csv) and upload the file to HDFS 

(Hadoop Distributed File System). Finally, Client send stop request to Data Uploader, all process will stop. 

 

Figure 25. Sequence diagram for the interworking between Hadoop and IoT device 
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4.2 Experiments and Results of CoT Architecture for Hadoop and 

IoT Networks 

Table 4 shows the development environment for CoAP Server in Edison Board. 

Components Version 

Operating System Windows 10 

Edison Board (Yocto) 20160606 

Intel System Studio IoT Edison 2016.4.012 

Table 4. CoAP Server development environment. 

    Table 5 shows the development environment for HDFS Agent. 

Components Version 

Operating System Windows 10 

Java JRE 1.8 

Spring Tool Suite 3.8.4 

Table 5. HDFS Agent development environment. 

    Table 6 shows the configuration environment for Hadoop. 

Components Version 

Operating System Windows 10 

Java JRE 1.8 

Hadoop 2.7.3 

Sprint Tool Suite 3.8.4 

Table 6. Hadoop configuration environment. 

Figure 26 shows the Edison Board and temperature sensor. 
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Figure 26. Edison Board and temperature sensor. 

Figure 27 shows the CoAP Server implementation result. CoAP Server is run in Edison Board using C 

language and Intel System Studio IoT Edison, each time CoAP Client sends a request, CoAP Server will 

return and print out real-time temperature data. 

 

Figure 27. CoAP Server implementation result. 
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    Figure 28 shows the Client implementation result. Click “Start” will get sensing data from CoAP Server 

in Edison Board and make data files to upload to Hadoop Distributed File System. Click “Stop” button will 

stop all the process. 

 

Figure 28. Client implementation result. 

After finish running the whole system, we can check the files storage situation in our local file system, 

like the figure 29 shows. 

 

Figure 29. Sensing file list in local file system. 
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And we can also check the files storage situation in Hadoop Distributed File System, like the figure 30 

shows. 

 

Figure 30. Sensing file list in Hadoop Distributed File System. 

In file list, each file’s name is current time of sensing data. And the content is a string split by a comma 

including sensing time and sensing data. Figure 31 shows the temperature is 17.70ºC on 6:59:44, May 20, 

2017. 

 

Figure 31. A file of the sensing list in HDFS. 
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5. CoT Architecture for Global Cloud and IoT 

Networks Using MQTT 
 

5.1 CoT Design for Interworking between Global Cloud and IoT 

Networks 

Recently, Clouds are wildly used for huge data repository and Internet services in various fields. And 

IoT networks collect a context data and support the monitor-ing and control services using thing 

virtualization. We will build the connection be-tween IoT and cloud, it is very useful, and supports 

intelligent services based on huge context data. This paper presents the comparison analysis of IoT services 

based on Clouds for huge context acquisition in large scale IoT networks. And, we develop AWS, Azure, 

and Google cloud based on IoT. And compare the IoT service of AWS, Azure, and Google Cloud by 

sending sensing data messages from IoT devices.  
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(Temperature, 

Pressure)

Hardware: Raspberry Pi 3 Model B

OS: Raspbian (Linux system based on 
Debian)

SDK: AWS IoT Device SDK (python)

MQTT Client

Amazon Web Service

AWS IoT

Amazon Web Service

Mobile Hub

Client

MQTT

HTTP

DHT11 Sensor
(Temperature, 

Humidity)

 

Figure 32. The configuration for the connection between IoT device and AWS 
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Figure 32 shows the detail architecture for the connection between IoT device and AWS. We used 

Raspberry Pi 3 Model B with Raspbian system as IoT device, we also used DHT11 Sensor (Temperature, 

Humidity) and used BMP280 Sensor (Temperature, Pressure). We installed AWS IoT Device SDK with 

python, and the device-to-cloud messages are send based on MQTT protocol. The MQTT messages in AWS 

cannot store automatically, so before the device publish message to the topic in AWS, we will create the 

message item in NoSQL Database of AWS Mobile Hub to store the sensing messages. Client is able to get 

message item from NoSQL Database of AWS Mobile Hub. 

Hardware: Raspberry Pi 3 Model B

OS: Raspbian (Linux system based on 
Debian)

SDK: Node.js (javascript)

MQTT Client

Azure IoT Hub

Storage Account

Client
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Figure 33. The configuration for the connection between IoT device and Azure IoT Hub 

Figure 33 shows the detail architecture for the connection between IoT device and Azure IoT Hub. We 

used Raspberry Pi 3 Model B with Raspbian system as IoT device, we also used DHT11 Sensor 

(Temperature, Humidity) and used BMP280 Sensor (Temperature, Pressure). We installed Azure IoT Hub 

SDK with JavaScript, and the device-to-cloud messages are sent based on MQTT protocol. After the 
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messages published to the topic of Azure, the messages will be stored in the Blobs of Storage Account of 

Azure, and Client is able to get message files from Blobs of Azure. 
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MQTT Client
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Figure 34. The configuration for the connection between IoT device and Google Cloud 

Figure 34 shows the detail architecture for the connection to Google Cloud IoT Core. We used Raspberry 

Pi 3 Model B with Raspbian system as an IoT device, we also used DHT11 Sensor (Temperature, Humidity) 

and used BMP280 Sensor (Temperature, Pressure). We installed Google Cloud SDK with python, and the 

device-to-cloud messages are sent based on MQTT protocol. The messages published to topic in Google 

Cloud will disappear after several days, so if we want to store the messages, we need to use Google Cloud 

Datastore. When we publish the message to the topic in Google Cloud, we also create a message entity in 

Google Cloud Datastore. Client is able to pull message from subscriptions in Google Cloud, if the message 

has been disappeared, Client is able to get message entity from Google Cloud Datastore. 
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5.2 Experiments and Results of CoT Architecture for Global 

Cloud and IoT Networks 

Table 7 shows the simulation experiment environment of the CoT architecture for Global cloud and IoT 

Networks. In each Raspberry Pi, we use Raspbian for IoT device and the cloud SDKs. For the SDK, we 

used AWS IoT Device SDK with python, Azure SDK with JavaScript, and Google Cloud SDK with python. 

All of the communication method is MQTT protocol, we used Python 2 to compile the code and added 

DHT11 driver library and Paho MQTT Client library. And for our experiment, we considered the published 

message on AWS are able to showed more directly, the published message on Azure need to be download, 

and the published message on Google Cloud should show by the shell command. 

 AWS Azure Google Cloud 

IoT device Raspbian Raspbian Raspbian 

SDK 

AWS IoT 

Device SDK 

(python) 

Node.js 

(JavaScript) 

Google Cloud 

SDK 

(python) 

Software Python 2 Python 2 Python 2 

Libraries 

DHT11 driver, 

Paho MQTT 

Client 

DHT11 driver, 

Paho MQTT 

Client 

DHT11 driver, 

Paho MQTT 

Client 

Webpage 

Result 
More directly Download 

Shell 

command 

Table 7. Experiment environment of the CoT architecture for Global cloud and IoT Networks 

Table 8 shows the development environment of mobile client. We used Android Studio 3.0.1, Android 

SDK 27, AWS Java SDK 1.11.293, Azure IoT SDK 1.7.23, Google Cloud PubSub 0.45.0, Google Cloud 

Storage 1.26.0, and Google Cloud Datastore 1.31.0. 
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Components Version 

Android Studio 3.0.1 

Android SDK 27 

AWS Android SDK 2.6 

Azure IoT SDK 1.7.23 

Google Cloud PubSub 0.45.0 

Google Cloud Storage 1.26.0 

Google Cloud Datastore 1.31.0 

Table 8. Development environment of mobile client 

Figure 35 shows the IoT device and sensors we used in the CoT architecture for Global cloud and IoT 

Networks. We used Raspberry Pi 3 Model B with Raspbian system as IoT devices, which shows in figure 

(a). We also used DHT11 Sensor (Temperature, Humidity) like figure (b) and BME280 Sensor 

(Temperature, Humidity, Pressure) like figure (c).  

 

Figure 35. IoT device and sensors used in the CoT architecture for Global cloud and IoT Networks 

Figure 36 shows the AWS IoT webpage, it’s able to create a MQTT client and enter the same topic, 

which is able to show the published messages. Figure 37 shows one of the published messages, the format 

of this message is JSON. 



40 

 

 

Figure 36. Published messages in topic of AWS 

 

Figure 37. Context messaged published in AWS IoT topic 

Figure 38 shows the successful connections with AWS, When the connections become stable, the 

message publish speed is 0.25/s, the maximum speed is 0.25/s, the minimum speed is 0/s. 
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Figure 38. The successful connections with AWS 

Figure 39 shows the data stored in NoSQL database of AWS Mobile Hub. The name of the table is 

finaltest-mobilehub-887317787-messages, the primary sort key is the date, each item includes date, 

temperature value, and pressure value. For example, as shown in figure, there is an item shows information 

include date (2018-05-31-07:11), pressure value (975.37616), and temperature value (23.746326). 

 

Figure 39. Data stored in AWS NoSQL database 



42 

 

Figure 40 shows the received message file in Azure, it’s not able to show messages directly, we need to 

download the message file. In the figure, there is the Blob service of the storage we created, it is able to 

find the messages folder. 

 

Figure 40. Developed results in Azure IoT Hub 

Figure 41 shows the downloaded message file from Azure, it is able to find the sensing data in the file. 

For example, as shown in the figure, there is the information include the message ID, the correlation ID, 

the device ID, Time (2018-02-09-11:59:41), the temperature value (24.16173), and the pressure value 

(807.6015). 

 

Figure 41. Context message download from Azure IoT Hub 

Figure 42 shows the sum messages delivered to storage endpoints of Azure. When the connections 

become stable, the message publish speed is 0.55/s, the maximum speed is 0.55/s, the minimum speed is 

0/s. 
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Figure 42. Sum messages delivered to storage endpoints of Azure 

Figure 43 shows the received messages on Google Cloud Platform, we need google cloud shell command 

to check the message. And as shown in the figure, it is able to find the information include the message ID, 

the device ID, the device registry ID, the device registry location, the project ID, the temperature value 

(23.377046585083008), and the pressure value (983.5136108398438). (The detailed message shows in 

figure 44) 

 

Figure 43. Context message published in Google Cloud topic 

 

Figure 44. Context message published in Google Cloud topic (detail) 
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Figure 45 shows the publish message operations to the topic in Google Cloud Platform. When the 

connections become stable, the message publish speed is 0.81/s, the maximum speed is 0.95/s, the minimum 

speed is 0/s. 

 

Figure 45. The publish message operations to the topic in Google Cloud Platform 

 

Figure 46. Data stored in Google Cloud Datastore 
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Figure 46 shows the data stored in Google Cloud Datastore. Messages stored there as entities, the kind 

of the data is “messages”, each entity’s name is the date, and the entity includes date, temperature value, 

and pressure value. For example, as shown in figure, there is an entity shows information include date 

(2018-06-01-13:05), pressure value (979.9617), and temperature value (27.898651). 

 
IoT service 
based on 
Cloud_A 

IoT service 
based on 
Cloud_B 

IoT service 
based on 
Cloud_C 

Communication 
Method 

MQTT MQTT MQTT 

Received Messages  

(1 minute) 
15 31 50 

Publish Speed 0.25/s 0.55/s 0.81/s 

Table 9. Comparison result of IoT service based on Clouds 

Table 9 shows the comparison result of IoT service based on Clouds in our experiments. For our last 

experiment (during 1 minute), there are 15 messages published to the topic of Cloud_A, 31 messages 

published to the topic of Cloud_B, and 50 messages published to the topic of Cloud_C. After many 

experiments, we considered the message publish speed of Cloud_A is 0.25/s, the message publish speed of 

Cloud_B is 0.55/s, the message publish speed of Cloud_C is 0.81/s. 

Figure 47 shows the tested mobile client of Google Cloud, which is able to pull messages from 

subscriptions. After click the “Get Message” button, the client is able to pull message from a Google Cloud 

subscription. For example, as shown in the figure, the client pulled a message include the date (2018-06-

04-12:23), pressure value (976.4971923928125), and temperature value (24.289932250976562). 

Figure 48 shows the tested mobile client of Google Cloud, which is able to get message entities from 

Google Cloud Datastore. After click the “Get Message” button, the client is able get an entity from Google 

Cloud Datastore. For example, as shown in the figure, the client pulled a message include the date (2018-

06-01-13:05), pressure value (979.9617), and temperature value (27.898651). 
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Figure 47. Google Cloud Mobile Client connect with Google Cloud IoT Core 

 

Figure 48. Google Cloud Mobile Client connect with Google Cloud Datastore 
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Figure 49. The mobile client of Microsoft Azure 

 

Figure 50. The mobile client of AWS 
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Figure 49 shows the tested mobile client of Microsoft Azure, after click the “Get Message” button, the 

client is able to get message from the storage account of Azure. For Example, as shown in the figure, the 

client got a message include the date (2018-06-01-13:50). temperature value (27.673187), and pressure 

value (979.8434). 

Figure 50 shows the tested mobile client of AWS, after click the “Get Message” button, the client is able 

to get message from the NoSQL Database of AWS Mobile Hub. For Example, as shown in the figure, the 

client got a message include the date (2018-05-31-07:17), pressure value (975.3861), and temperature value 

(23.777096). 
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6. CoT Architecture for Global Cloud and IoT 

Networks Based on Proxy Using OCF IoTivity 

and MQTT 
 

6.1 CoT Design for Interworking between Global Cloud and IoT 

Networks Based on Proxy 

Recently, we is really necessary to study the interworking between Cloud and IoT Devices. Figure 51 

shows the conceptual model of the architecture for Global Cloud and IoT Networks based on Proxy. The 

proxy is able to get sensing data from IoT Networks based on IoTivity, and publish or store sensing data 

message to cloud using MQTT or HTTP protocol. Then Client is able to get the sensing data message from 

cloud using MQTT or HTTP protocol. 

Proxy

IoT Network_nIoT Network_1 IoT Network_2

IoTivity

IoTivity IoTivity

Cloud

MQTT

Client

HTTPMQTT

 

Figure 51. Conceptual model of the architecture for Global Cloud and IoT Networks based on Proxy 
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Figure 52 shows the configuration of IoT Devices, Sensor Connector is able to get sensing data from 

sensors via the sensor drivers in Libraries. OCF IoTivity Server is able to make sensing data resource and 

response sensing data when IoTivity Client requests. 

Figure 53 shows the configuration of Proxy. OCF IoTivity Client is able to send request to IoTivity 

Server, when IoTivity Server response sensing data, Data Buffering will get the sensing data and put the 

data to Message Conversion. Message Conversion is able to convert the sensing data to message and push 

the message to MQTT Client. MQTT Client is able to publish this message to the topic in cloud. 

IoT Device

OS

IoT Network

Sensor Connector Libraries

OCF IoTivity Server

 

Figure 52. IoT Devices configuration 

Proxy

IoT Network

MQTT Client OCF IoTivity Client

OS

Data BufferingMessage Conversion

 

Figure 53. Proxy configuration 
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    Figure 54 shows the sequence diagram of the architecture for Global Cloud and IoT Networks based on 

Proxy. When the proxy is running, IoTivity Client in Proxy will send request to IoTivity Server in IoT 

Device, and IoTivity Server will get sensing data from sensors and return the sensing data to IoTivity Client, 

IoTivity Client will put the sensing data to MQTT Client. MQTT Client will publish the sensing data to the 

topic in cloud as a message. At last, when the client pull message from a subscription of cloud, the cloud 

will return message to the client. 

Cloud MQTT Client SensorIoTivity Client IoTivity Server

Request sensing data
Request sensing data
Return sensing data

Return sensing data

Sensing data

Publish data to topic as message

Proxy IoT Device

Client

Pull messge
message

Figure 54. Sequence diagram of the architecture for Global Cloud and IoT Networks based on Proxy 

Figure 55 shows the configuration architecture for the connection between IoT network and AWS based 

on Proxy. We used one Raspberry Pi 3 Model B with Android Things system as Proxy, several other 

Raspberry Pi 3 Model B boards with Android Things system as IoT devices, and we also used BMP280 

Sensor (Temperature, Pressure) to get sensing data. IoT devices get sensing data from BMP280 sensors and 

respond sensing data when the proxy request. Proxy is able to get sensing data from IoT devices based on 

IoTivity, and publish sensing data messages to the topic in AWS IoT using MQTT protocol. The MQTT 

messages in AWS cannot store automatically, so before the device publish message to the topic in AWS, 

we will create the message item in NoSQL Database of AWS Mobile Hub to store the sensing messages. 

And then Client is able to get message item from NoSQL Database of AWS Mobile Hub. 
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Figure 55. The configuration for the connection between IoT network and AWS based on Proxy 

Figure 56 shows the configuration architecture for the connection between IoT network and Azure IoT 

Hub based on Proxy. We used one Raspberry Pi 3 Model B with Android Things system as Proxy, several 

other Raspberry Pi 3 Model B boards with Android Things system as IoT devices, and we also used 

BMP280 Sensor (Temperature, Pressure) to get sensing data. IoT devices get sensing data from BMP280 

sensors and respond sensing data when the proxy request. Proxy is able to get sensing data from IoT devices 

based on IoTivity, and publish sensing data messages to the topic in Azure IoT Hub using MQTT protocol. 

After the messages published to the topic of Azure, the messages will be stored in the Blobs of Storage 

Account of Azure, and Client is able to get message files from Blobs of Azure. 
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Figure 56. The configuration for the connection between IoT network and Azure IoT Hub based on Proxy 

Figure 57 shows the configuration architecture for the connection between IoT network and Google 

Cloud based on Proxy. We used one Raspberry Pi 3 Model B with Android Things system as Proxy, several 

other Raspberry Pi 3 Model B boards with Android Things system as IoT devices, and we also used 

BMP280 Sensor (Temperature, Pressure) to get sensing data. IoT devices get sensing data from BMP280 

sensors and respond sensing data when the proxy request. Proxy is able to get sensing data from IoT devices 

based on IoTivity, and publish sensing data messages to the topic in Google Cloud IoT Core using MQTT 

protocol. The messages published to topic in Google Cloud will disappear after several days, so if we want 

to store the messages, we need to use Google Cloud Datastore. When we publish the message to the topic 

in Google Cloud, we also create a message entity in Google Cloud Datastore. Client is able to pull message 
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from subscriptions in Google Cloud, if the message has been disappeared, Client is able to get message 

entity from Google Cloud Datastore. 

Google Cloud

IoT Core

MQTT Client

IoTivity Client

 Android Things

Hardware: Raspberry Pi 3 Model B

IoTivity Server

Android Things

Hardware: Raspberry Pi 3 Model B

IoTivity Server

Android Things

Hardware: Raspberry Pi 3 Model B

Sensor Sensor

IoTivity IoTivity

IoTivity Server

Android Things
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Google Cloud
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Client

MQTT

HTTPMQTT

 

Figure 57. The configuration for the connection between IoT network and Google Cloud based on Proxy 
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6.2 Experiments and Results of CoT Architecture for Global 

Cloud and IoT Networks Based on Proxy 

Table 10 shows the configuration environment of IoT Device. The Android Things system we used is 

version 0.6.1, and we also used Android SDK 26, Java 1.8, IoTivity 1.2.1, Google Bmx280 Sensor Driver 

0.4. 

Components Version 

Android Things 0.6.1 

Android SDK 26 

Java 1.8 

IoTivity 1.2.1 

Bmx280 Sensor Driver 0.4 

Table 10. Configuration environment of IoT Device 

Table 11 shows the configuration environment of Proxy. Compare with the other boards, we add cloud 

SDKs instead of the Bmx 280 sensor driver, include Microsoft Azure IoT SDK 1.6.0, AWS Android SDK 

2.6.11, Google Cloud Platform SDK 1.22.0. 

Components Version 

Android Things 0.6.1 

Android SDK 26 

Java 1.8 

IoTivity 1.2.1 

Microsoft Azure IoT SDK 1.6.0 

AWS Android SDK 2.6.11 

Google Cloud Platform SDK 1.22.0 

Table 11. Configuration environment of Proxy 
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Table 12 shows the development environment of mobile clients based on Proxy. We used Android Studio 

3.0.1, Android SDK 27, AWS Java SDK 1.11.293, Azure IoT SDK 1.7.23, Google Cloud PubSub 0.45.0, 

Google Cloud Storage 1.26.0, and Google Cloud Datastore 1.31.0. 

Components Version 

Android Studio 3.0.1 

Android SDK 27 

AWS Java SDK 1.11.293 

Azure IoT SDK 1.7.23 

Google Cloud PubSub 0.45.0 

Google Cloud Storage 1.26.0 

Google Cloud Datastore 1.31.0 

Table 12. Development environment of mobile clients based on Proxy 

    Figure 58 shows the IoT devices we used in architecture for Global Cloud and IoT Networks based on 

Proxy. We installed Android Things in Raspberry Pies, and we used BMP280 pressure and temperature 

sensor. Figure (a) shows the proxy board, figure (b) shows the normal Android Things boards, and figure 

(c) shows the BMP280 sensor we used. 

 

Figure 58. IoT devices used in architecture for Global Cloud and IoT Networks based on Proxy 
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    Figure 59 shows the connection information of AWS in code of Proxy. The information includes 

customer specific endpoint, Cognito pool ID, AWS IoT policy name, region, key store name, key store 

password and certificate ID. 

 

Figure 59. Connection information of AWS based on Proxy 

    Figure 60 shows the result (sensing data) of cloud (AWS). the message has published successfully. And 

as shown in the figure, the message include date (2018-02-09-11:24:35), temperature value (24.37198), and 

pressure value (807.8578). 

 

Figure 60. Results of cloud (AWS) based on Proxy 

    Figure 61 shows the successful connections in 1 hour with AWS based on Proxy, When the connections 

become stable, the message publish speed is 0.1/s, the minimum speed is 0/s, the maximum speed is 0.1/s. 
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Figure 61. The successful connections in 1 hour with AWS based on Proxy 

Figure 62 shows the data stored in AWS NoSQL database based on Proxy. The name of the table is 

finaltest-mobilehub-887317787-messages, the primary sort key is the date, each item includes date, 

temperature value, and pressure value. For example, as shown in figure, there is an item shows information 

include date (2018-06-01-13:53), pressure value (979.73376), and temperature value (28.216324). 

 

Figure 62. Data stored in AWS NoSQL database based on Proxy 
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    Figure 63 shows the connection information of Azure in code of Proxy. The information includes 

connection string (primary key) and device ID. 

 

Figure 63. Connection information of Azure based on Proxy 

    Figure 64 shows the received messages in Azure based on Proxy, it’s not able to show messages directly, 

we need to download the message file. Figure (a) is the Blob service of the storage we created, it is able to 

find the messages folder, and figure (b) shows when we click the messages file, it’s able to click the 

“Download” button to download the messages file. 

 

Figure 64. Received message file in Azure based on Proxy 
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    Figure 65 shows the downloaded sensing data file based on Proxy, the message has published 

successfully. And as shown in the figure, the message include date (2018-02-09-11:59:41), temperature 

value (24.16173), and pressure value (807.6015). 

 

Figure 65. Result file of Azure based on Proxy 

    Figure 66 shows the sum messages delivered to storage endpoints of Azure based on Proxy. When the 

connections become stable, the message publish speed is 0.04/s, the minimum speed is 0/s, the maximum 

speed is 0.04/s. 

 

Figure 66. Sum messages delivered to storage endpoints of Azure based on Proxy 

    Figure 67 shows the connection information of Google Cloud Platform in code of Proxy. The information 

includes default bridge hostname, default bridge port, project ID, Registry ID, Device ID, region, topic 

format, client ID format and broker URL format. 
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Figure 67. Connection information of Google Cloud Platform based on Proxy 

 

Figure 68. Published message in topic of Google Cloud based on Proxy 

    Figure 68 shows the result in Google Cloud Platform based on Proxy, the message has published 

successfully. We need shell command to pull the message from a subscription, and as shown in figure, there 

is a message include device ID, device registry ID, device registry location, project ID, temperature value, 

and pressure value.  

Figure 69 shows the publish request count of Pub/Sub topic in Google Cloud Platform based on Proxy. 

When the connections become stable, the message publish speed is 0.033/s, the minimum speed is 0/s, the 

maximum speed is 0.1/s. 
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Figure 69. The publish request count of Pub/Sub topic in Google Cloud Platform based on Proxy 

 

Figure 70. Data stored in Google cloud Datastore based on Proxy 

Figure 70 shows the data stored in Google cloud Datastore based on Proxy. Messages stored there as 

entities, the kind of the data is “messages”, each entity’s name is the date, and the entity includes date, 

temperature value, and pressure value. For example, as shown in figure, there is an entity shows information 

include date (2018-06-04-12:03), pressure value (976.3289), and temperature value (27.140238). 
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Figure 71. The mobile client of Google Cloud for Google Cloud IoT Core based on Proxy 

Figure 71 shows the tested mobile client of Google Cloud for Google Cloud IoT Core based on Proxy, 

which is able to pull messages from subscriptions. After click the “Get Message” button, the client is able 

to pull message from a Google Cloud subscription. For example, as shown in the figure, the client pulled a 

message include the date (2018-05-27-06:23), pressure value (953.4248820797152), and temperature value 

(27.241511379901467). 

Figure 72 shows the tested mobile client of Google Cloud for Google Cloud Datastore based on Proxy, 

which is able to get message entities from Google Cloud Datastore. After click the “Get Message” button, 

the client is able get an entity from Google Cloud Datastore. For example, as shown in the figure, the client 

pulled a message include the date (2018-06-04-12:03), pressure value (976.3289), and temperature value 

(27.140238). 
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Figure 72. The mobile client of Google Cloud for Google Cloud Datastore based on Proxy 

Figure 73 shows the tested mobile client of Microsoft Azure based on Proxy, after click the “Get Message” 

button, the client is able to get message from the storage account of Azure. For Example, as shown in the 

figure, the client got a message include the date (2018-06-04-12:07). temperature value (27.375973), and 

pressure value (811.42267). 

Figure 74 shows the tested mobile client of AWS based on Proxy, after click the “Get Message” button, 

the client is able to get message from the NoSQL Database of AWS Mobile Hub. For Example, as shown 

in the figure, the client got a message include the date (2018-16-01-13:48), pressure value (979.7905), and 

temperature value (27.908895). 
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Figure 73. The mobile client of Microsoft Azure based on Proxy 

 

Figure 74. The mobile client of AWS based on Proxy 
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7. CoT Architecture for Vehicle Monitoring and 

Control Service Based on Proxy Using OCF 

IoTivity and MQTT 
 

7.1 CoT Design for Vehicle Monitoring and Control Service 

Based on Proxy 

Electric vehicles have been used more and more wildly. In this paper, we present the mobile control 

service of electric vehicles based on CoV architecture, which is able to provide users monitor service and 

control service, and upload vehicle states to cloud. 

Proxy

Administer Client

Cloud

Azure Google CloudAmazon Web Service

Electric Vehicles

Electric Vehicle_1 Electric Vehicle_2 Electric Vehicle_n

User Client

 

Figure 75. Conceptual model of CoT architecture for vehicle monitoring and control service 
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Figure 75 shows the conceptual model of CoT architecture for vehicle monitoring and control service. 

The proxy is able to get vehicle state from electric vehicles and upload the state information to cloud (AWS, 

Azure, Google Cloud), the clients are able to get vehicle state information from cloud and show the state to 

users. The vehicle state information include battery state (present), door state (lock or unlock), trunk state 

(lock or unlock), audio state (turn on or turn off), head lights state (turn on or turn off), interior light state 

((turn on or turn off)), alarm state ((turn on or turn off)), and the engine state (start or stop). The administer 

client is able to control electric vehicles, include lock or unlock the doors, lock or unlock the trunk, turn on 

or turn off the audio, turn on or turn off the head lights, turn on or turn off the interior light, turn on or turn 

of the alarm, and start or stop the engine.  

Mobile ClientElectric Vehicle

Energy and Battery Module

Trunk Module

Interior Light Module

Security Alarm Module

Network Module

Head Light Module

GPS Module

Engine Module

Doors Module

Audio Module

CoAP 
Server

CoAP 
Client

Main Page

Control Page

Settings Page

State Page

Cloud Client 
Page

 

Figure 76. The design of the vehicle CoT architecture 

Figure 76 shows the design of the vehicle CoT architecture. The system consists of two parts: Vehicle 

Emulator and App Client. In Vehicle Emulator, there are ten modules include energy and Battery Module, 

Trunk Module, Interior Light Module, Security Module, Network Module, Audio Module, Head Light 

Module, GPS Module, Engine Module, and Doors Module, there is also a CoAP Server in vehicle Emulator. 

Energy and Battery Module is able to check the state of the battery. Audio Module is able to turn on/off the 

audio. Trunk Module is able to lock/unlock the trunk. Head Light Module is able to turn on/off the head 

light. Interior Light Module is able to turn on/off the interior light. GPS Module is able to turn on/off the 
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GPS. Security Alarm Module is able to start/stop the security service (security alarm). Engine Module is 

able to start/stop the engine. Network Module is able to set up the network settings and turn on/off network 

connection. Doors Module is able to lock/unlock the doors. CoAP Server is able to get the request from 

Client and respond accordingly. In App Client, there are four modules include Main Page Module, Control 

Page Module, Settings Page Module, and State Page Module, there is also a CoAP Client in App Client. 

The main page is able to show all functions of this app (Control, Settings, State). The control page is able 

to control the Vehicle Emulator. The settings page is able to let users set the IP address of the Vehicle 

Emulator. The state page is able to show the battery state of the Vehicle Emulator. CoAP Client is able to 

send request to control Vehicle Emulator or get battery state from Vehicle Emulator. 

Electric vehicleMobile Client

Get Battery state

Battery state

Cloud

Control Vehicle

Save state

Get state

Vehicle state

 

Figure 77. The sequence diagram for monitoring electric vehicle 

Figure 77 shows the sequence diagram for monitoring electric vehicle. When Mobile Client send “get 

battery state” request to Vehicle Emulator, Vehicle Emulator will return battery state to App Client. After 

the client controls the vehicles, it is able to upload the vehicle state to cloud. When the client request vehicle 

state from cloud, the cloud is able to return the state of vehicles. 

Figure 78 shows the sequence diagram for controlling electric vehicle. When App Client send “start/stop 

engine” request to Vehicle Emulator, Vehicle Emulator will start/stop engine and return true/false to App 
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Client. When App Client send “turn on/off audio” request to Vehicle Emulator, Vehicle Emulator will turn 

on/off the audio and return true/false to App Client. When App Client send “lock/unlock doors” request to 

Vehicle Emulator, Vehicle Emulator will lock/unlock the doors and return true/false to App Client. When 

App Client send “lock/unlock trunk” request to Vehicle Emulator, Vehicle Emulator will lock/unlock the 

trunk and return true/false to App Client. When App Client send “turn on/off head light” request to Vehicle 

Emulator, Vehicle Emulator will turn on/off the head light and return true/false to App Client. When App 

Client send “turn on/off interior light” request to Vehicle Emulator, Vehicle Emulator will turn on/off the 

interior light and return true/false to App Client. When App Client send “turn on/off alarm” request to 

Vehicle Emulator, Vehicle Emulator will turn on/off the alarm and return true/false to App Client. When 

App Client send “turn on/off GPS” request to Vehicle Emulator, Vehicle Emulator will turn on/off GPS 

and return true/false to App Client. 

 

Figure 78. The sequence diagram for controlling electric vehicle 
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7.2 Experiments and Results of CoT Architecture for Vehicle 

Monitoring and Control Service Based on Proxy 

    Table 13 shows the development environment of vehicle emulator. 

Component Version 

Windows OS 10 

Visual Studio 2015 

CoAP.NET v4.0.30319 

Table 13. Development environment of IoT Vehicle System 

Table 14 shows the development environment of mobile client. 

Component Version 

Android Studio 3.0.1 

Android SDK 27 

org.eclipse.californium 2.0 

AWS Android SDK 2.6 

Azure IoT SDK 1.7.23 

Google Cloud Datastore 1.31.0 

Table 14. Development environment of mobile client 

Figure 79 shows the implement design of CoT architecture for vehicle monitoring and control service. 

There is one app that include the user client part, administer client part, and proxy part. This app is able to 

monitor the vehicle emulator, control the vehicle emulator, upload the state of vehicle emulator to cloud, 

and get the state of vehicle emulator from cloud. 
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Figure 79. Implement design of CoT architecture for vehicle monitoring and control service 

Figure 80 shows the implementation result of Vehicle Emulator. Figure (a) shows the initial state, figure 

(b) shows the state that all modules have been opened. 

 

Figure 80. Implementation results of vehicle Emulator 
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Figure 81 shows the implementation result for monitoring part of mobile client. Figure (a) shows the 

main page, there are four buttons in the main page, which is able to visit the control page, the monitor mage, 

the setting page, and the cloud client page. Figure (b) shows the state page, which is able to show the battery 

state of Vehicle Emulator. 

 

Figure 81. Implementation results for monitoring part of mobile client 

 

Figure 82. Implementation results for controlling part of mobile client 
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Figure 82 shows the implementation result for controlling part of mobile client. Figure (a) shows the 

setting page, which is able to let users input the IP address of Vehicle Emulator. Figure (b) shows the control 

page, there are eight buttons to control different modules include engine, audio player, doors, trunk, head 

lights, interior light, alarm, and GPS. Under the control buttons, there are three buttons which are able to 

upload current vehicle state to cloud (AWS, Azure, Google Cloud Platform). 

    Figure 83 shows how to start the network (CoAP) connection. Click the image in figure (a) is able to 

start the connection, and the figure will change as figure (b) (the color of the internet icon will change from 

blue to green). 

 

Figure 83. The way to start the network connection 

    Figure 84 shows how to control the engine. Click the stand button and then click the start button will 

start the engine, click the stop button will stop the engine. Figure (a) shows the engine-start state, figure (b) 

shows the engine-stop state. 

 

Figure 84. The way to control the engine 

    Figure 85 shows how to control the audio player. Click the small icon will start the player, click the icon 

again will stop the player. Figure (a) shows the player-on state, figure (b) shows the player-off state. 
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Figure 85. The way to control the audio player 

    Figure 86 shows how to control the head lights. Move the marker to “ON” will turn on the head lights, 

move the marker to “OFF” will turn off the head lights. Figure (a) shows the lights-on state, figure (b) 

shows the lights-off state.  

 

Figure 86. The way to control the head lights 

    Figure 87 shows how to control the interior light. Move the marker to “ON” will turn on the interior light, 

move the marker to “OFF” will turn off the interior light. Figure (a) shows the light-on state, figure (b) 

shows the light-off state.  

 

Figure 87. The way to control the interior light 
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    Figure 88 shows how to control the doors. Move the marker to “LOCK” will lock the doors and the lock 

icon will turn to locked, move the marker to “UNLOCK” will unlock the doors and the lock icon will turn 

to unlocked. Figure (a) shows the doors-lock state, figure (b) shows the doors-unlock state.  

 

Figure 88. The way to control the doors 

    Figure 89 shows how to control the trunk. Move the marker to “LOCK” will lock the trunk and the trunk 

icon will turn to locked, move the marker to “UNLOCK” will unlock the trunk and the trunk icon will turn 

to unlocked. Figure (a) shows the trunk -lock state, figure (b) shows the trunk -unlock state.  

 

Figure 89. The way to control the trunk 

 

Figure 90. The way to control the security alarm 
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Figure 90 shows how to control the security alarm. Move the marker to “ON” will turn on the alarm, 

move the marker to “OFF” will turn off the alarm. Figure (a) shows the alarm-on state, figure (b) shows the 

alarm-off state.     

Figure 91 shows how to control the GPS. Move the marker to “ON” will turn on the GPS, move the 

marker to “OFF” will turn off the GPS. Figure (a) shows the GPS-on state, figure (b) shows the GPS-off 

state.  

 

Figure 91. The way to control the GPS 

After controlling the vehicles, the clients are able to upload current vehicle state to clouds (AWS, Azure, 

Google Cloud Platform). Figure 92 shows the stored state in the NoSQL Database of AWS Mobile Hub. 

For example, on the date “2018-06-23-02:08”, on the vehicle “vehicle-1”, the audio was off, the doors were 

locked, the engine was stop, the head lights were on, the interior light was on, the trunk was locked, the 

alarm was on, and the GPS was on. 

Figure 93 shows the stored state in Azure Storage Account. For example, on the date “2018-06-23-04:56”, 

on the vehicle “vehicle-1”, the engine was stop, the audio was off, the door was unlocked, the trunk was 

unlocked, the head lights were off, the interior light was off, the alarm was off, the GPS was off. 

Figure 94 shows the stored state in Google Cloud Datastore. For example, on the date “2018-06-23-

04:23”, on the vehicle, the alarm was off, the audio was on, the doors were unlocked, the engine was start, 

the GPS was off, the headlight was on, the interior light was on, the trunk was unlocked. 
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Figure 92. The stored vehicle state in AWS NoSQL Database 

 

Figure 93. The stored vehicle state file in Azure Storage Account 

 

Figure 94. The stored vehicle state in Google Cloud Datastore 

When users want to get vehicle state from cloud, they are able to enter the Cloud Client page from the 

main page. There are three buttons, which are able to get vehicle state from AWS, Azure, and Google Cloud 

Platform. Figure 95 shows the vehicle state got from AWS, on the date “2018-06-23-02:10”, on the vehicle, 
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the engine was stop, the audio was on, the door was unlocked, the trunk was unlocked, the head lights were 

on, the interior light was on, the alarm was on, the GPS was on. 

 

Figure 95. The vehicle state of AWS in mobile client 

 

Figure 96. The vehicle state of Azure in mobile client 
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Figure 96 shows the vehicle state got from Azure, on the date “2018-06-23-05:00”, on the vehicle, the 

engine was stop, the audio was off, the door was locked, the trunk was locked, the head lights were off, the 

interior light was on, the alarm was off, the GPS was off. 

Figure 97 shows the vehicle state got from Google Cloud Platform. On the date “2018-06-23-04:08”, on 

the vehicle, the engine was stop, the audio was off, the alarm was off, the door was unlocked, the trunk was 

unlocked, the head lights were off, the interior light was off, the GPS was off. 

 

Figure 97. The vehicle state of Google Cloud in mobile client 
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8. Conclusion 

This paper presented the design and implementation of CoT architecture based on proxy using IETF 

CoAP and OCF IoTivity for connectivity between IoT Networks and cloud, there are five different 

architectures which are able to collect massive sensing data from IoT devices and then upload the data to 

cloud for the further analysis. The first CoT architecture is for Hadoop and IoT platforms, IoT platform is 

able to upload sensing data files to Hadoop Distributed File System (HDFS). The second CoT architecture 

is for Hadoop and IoT Networks, there is an agent that is able to get sensing data from IoT devices and 

upload the data to HDFS using CoAP protocol. The third CoT architecture is for global cloud and IoT 

networks, AWS, Azure, and Google Cloud is used as global cloud and is able to communicate with IoT 

networks using MQTT protocol and store the sensing data. The fourth CoT architecture is for global cloud 

and IoT networks based on proxy, the proxy is able to get sensing data from IoT networks and send to store 

in cloud (AWS IoT, Azure IoT Hub, and Google Cloud IoT Core) using OCF IoTivity and MQTT protocol. 

After some experiments we also compared the IoT cloud services of AWS, Azure, and Google Cloud 

Platform. The fifth CoT architecture is for vehicle monitoring and control service, the client is able to 

monitor vehicles, control vehicles, and get vehicle state from cloud. During the design and implement of 

these architectures, we had more understanding about IoT services based on Clouds. In the future, we aim 

to make comparison by adding more IoT devices and develop a more complicated comparison system. 
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