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Abstract

In the modern intelligent life, data is everywhere, it is necessary to collect the data and extract useful part
for analysis. To collect and extract useful data, the Internet of Things (IoT) technology is important, it is
able to emerge paradigm that manages billions of devices, gateways, sensors, and actuators connected to
the Internet, and support intelligent services based on huge context data. The IoT technology has obtained
great development over the last few years and is increasingly influencing various industrial development,
the IoT infrastructures and systems have been deployed to various important area, frequently used for
building smart environment, such as smart cities and smart homes. Clouds are also wildly used for huge
data repository and Internet services in various fields. Besides, building the connection between loT devices

and cloud is very useful and convenient.

In this paper, we present the CoT architecture based on IoT and Cloud using IETF CoAP and OCF
IoTivity. And we design and implement five CoT architectures based on the combine of [oT and cloud for
connectivity between IoT Networks and cloud. There are five different architectures which are able to

collect massive sensing data from loT devices and then upload the data to cloud for the further analysis.

This paper present first CoT architecture using IETF CoAP for interworking local Cloud and IoT
platforms. This architecture connects IoT devices and IoT platforms, and interconnets IoT platform and
Local Cloud for collecting huge sensing data. We design and implement the first CoT architecture based
on agent for interworking local Cloud and IoT Networks. We use Hadoop Distributed File System (HDFS)

for local Cloud. IoT platform is able to upload sensing data to HDFS using IETF CoAP.

Next, we introduce the second CoT architecture based on agent for interworking local Cloud and IoT
Networks. This architecture connects [oT devices and local Cloud based on agent directly. And we design

and implement the second CoT architecture based on agent for interworking local Cloud and IoT Networks.



We use HDFS for local Cloud. There is an agent that is able to get sensing data from IoT devices and upload

the data to HDFS using IETF CoAP.

And, we describe the third CoT architecture using MQTT for interworking global Clouds and IoT
networks. And we design and implement the second CoT architecture using AWS, Azure, and Google
Cloud used as global cloud. The CoT architecture communicates between global Clouds and IoT networks
using MQTT protocol and store the sensing data. And we compare loT services based on global Clouds for
huge context acquisition in large scale IoT networks. The comparison helps users to choose easily loT
service based on Cloud. Hence, it is necessary to collect the context data easily and extract useful part for

information analysis and usage in Cloud based on IoT.

Forth, we propose the CoT architecture for global cloud and IoT networks based on proxy. The proxy is
able to get sensing data from IoT networks and send to store in cloud (AWS IoT, Azure IoT Hub, and
Google Cloud IoT Core) using OCF loTivity and MQTT protocol. After some experiments we also compare

the IoT cloud services of AWS, Azure, and Google Cloud Platform.

Finally, we present the fifth CoT architecture based on IETF CoAP for vehicle monitoring service. And
the administer controls and monitors own vehicles, and uploads vehicle state to cloud. Other clients make

able to monitor vehicles states and get vehicle state from cloud.



1. Introduction

The Internet-of-Things (IoT), or more prosaically Machine-to-Machine (M2M), has received significant
attention lately from both industry and academia as an emerging paradigm that manages billions of devices,
gateways, sensors, and actuators connected to the Internet [1]. There is a paper [2] present an overall view
of interworking architectures, which enables exposure of various underlying network services for M2M
applications running on top of the service layer, such as device triggering, device location, device
management, etc. And there is another paper [3] present an introduction of standardized interworking
interfaces and procedures based on oneM2M global standards, and tests them through use cases involving
multiple IoT service platforms. The interworking involves smart city applications/services running on
multiple IoT service layer platforms interoperating with each other. The Internet of Things (IoT) technology
has obtained great development over the last few years and is increasingly influencing various industrial
development [4]. Recently, encouraged by the likes of Ericsson and Cisco with estimates of 50 billion
Internet connected devices by 2020 [5], it is really necessary to learn the interworking between IoT Cloud
and IoT Devices. There is a paper [6] present a data storage framework not only enabling efficient storing
of massive loT data, but also integrating both structured and unstructured data. And there is another paper
[7] present recent developments in commercial IoT frameworks and furthermore, identify trends in the
current design of frameworks for the Internet of Things; enabling massively connected cyber physical

systems.

Internet of Things (IoT) infrastructures and systems have been deployed to various important area,
frequently used for building smart environment, such as smart cities and smart homes [8]. Smart home is
able to automatically sense the changes of home situations, dynamically response corresponding reactions
and autonomously help its residents to make more comfortable lives [9]. For a smart home, there could be
an loT-based monitoring system using a tri-level context making model for context-aware services [10],

there could be a device-level protection augmented with network-level security solutions to monitor



network activity and detect suspicious behavior [11]. The smart environment makes people’s lives faster

and more convenient.

IoT services has the constraint of IoT devices in a large-scale network. Be-cause IoT devices has the
limited computing resources, memory capacity, energy, and communication bandwidth. Many of these
issues could be resolved by employing the Cloud-assisted Internet of Things as it offers large-scaled and
on-demand networked computing resources to manage, store, process and share huge IoT data. It is an issue
that how to deal with the large amount of information generated by the intelligent environment. Cloud
computing is a good choice. Many researchers have already presented some survey of cloud compo-ting,
analyzed the key concepts and architecture [12] or introduced the cloud ser-vices of the IT companies [13].
Some researchers analyzed the authenticator-based data integrity verification techniques on cloud and IoT
data [14]. The paper [15] presents an approach to the development of Smart Home applications by in-
targeting Internet of Things (IoT) with Web services and Cloud computing, their approach focuses on

Arduino platform, Zigbee technology, JSON data format, and cloud services.

The work presented in [16] presents a novel multilayered vehicular data cloud platform including an
intelligent parking cloud service and a vehicular data mining cloud service by using cloud computing and
IoT technologies. Some researchers developed a systematic comparator of the performance and cost of

cloud providers called “CloudCmp” [17], which is able to help customers pick a cloud that fits their needs.

In addition to the smart cities and smart homes, it is also useful and meaningful to develop smart cars,
there are already some developers combined IoT and vehicles. Some developers developed an IoT system
to allow the monitoring and control of parameters of the users’ vehicles [18], Or a system which is able to
provide a low-cost means of monitoring a vehicle’s performance and tracking by communicating the
obtained data to a mobile device via Bluetooth [19]. Some other developers focused on providing automatic
and efficient electric vehicles charging management system by exploiting the benefits of IoT technology in
offering the ubiquitous perception abilities and a real-time interactive view of the physical world by various

sensors and radio devices [20]. Some developers paid more attention to detail and proposed a flexible
4



infrastructure for dynamic power control of electric vehicle battery chargers, the infrastructure dynamically
adjusts the electric vehicle battery charger current, according to the power demand of the home wherein the
vehicle is plugged [21]. To remote monitoring vehicles, it is able to use a communication service system
for vehicle remote monitoring based on the Netty pattern, which is improved on the basis of the traditional
Reactor model, the SEDA mode to handle the event, and from protocol analysis model, shared data
synchronization and thread pool to optimize the design [22]. It is also to use a distributed system for remote
monitoring of vehicle diagnostics and geographical position, which is achieved by using on-board
microcomputer system, called on-board smart box (OBSB), general packet radio service (GPRS) and a
remote server [23]. Or use a portable road side vehicle monitoring system for vehicle classification, and
speed measurement [24]. Or use a remote monitoring system for lithium battery of electric vehicle to
improve the real time monitoring ability and safe operation of the electric vehicle lithium battery, save the

cost of battery [25].

Recently, more and more developers begin to combine IoT and cloud, some researchers referred it as
Cloud of Things (CoT) and propose some key issues along with their respective potential solutions [26].
Some other researchers focused on the implementation of the underlying infrastructure at the basis of the
CoT. An ad-hoc architecture and some preliminary background of this challenging view are provided and

discussed, identifying guidelines and future directions [27].

CoT is able to be used for the build of smart cities, solve the issue that different IoT ecosystems are not
able to communicate between them by browse the semantic annotation of the sensors in the cloud, and
innovative services can be implemented and considered by bridging Clouds and IoT [28], or like ClouT
project, which is able to make citizens aware of city resources and helping them to use and care them by

mean of smart [oT services in the Cloud [29],

For CoT communication, it is able to use smart gateway [30], some gateways enable a lightweight and
dense deployment of services, they are able to manage semantic-like things and at the same time to act as

an end-point for the presentation of data to users [31]. And for CoT security, is able to use secure trusted
5



things as a service to reduce majority of the challenges in CoT environment, the main focus is on encryption

mechanism with less overhead besides a trust model to enable real time decision making authentic [32].

Figure 1 shows the conceptual model of the whole design for the connectivity between IoT Networks
and Cloud presented in this paper. There are four different CoT architectures. The first CoT architecture is
for Hadoop and IoT platforms, IoT platform is able to upload sensing data files to Hadoop Distributed File
System (HDFS). Hadoop is able to connect many sensor platforms. And each IoT platform is able to connect
many Sensor Middlewares, each Sensor Middleware is able to connect many sensors. [oT platform provide
sensor information and sensing data storage service. Sensor Middlewares get sensing data from sensors and
save the data into database via the service provided by Sensor Platform. Then the agents will request sensing

data and sensor information from loT platform and upload the data to Hadoop.

Client 1 Client 2 Client n
Global Cloud
Local CI;ud 1 Local Cloud n
h /
loT Platform 1 < > loT Platform n
A%\L
loT Middleware 1 loT Middleware 2 loT Middleware n

A 4
Device Device Device Device Device Device Device
1 2 1 2 n 1 2

Figure 1. Conceptual model of CoT architecture based on Proxy using IETF CoAP and OCF IoTivity

The second CoT architecture is for Hadoop and loT Networks, there is an agent that is able to get sensing
data from [oT devices and upload the data to Hadoop Distributed File System (HDFS) using CoAP protocol.

Hadoop is able to connect many agents; each agent is able to connect many IoT devices and each IoT device



is able to connect many sensors. loT Device will get sensing data from sensors and send to the agent, and

agents will upload sensing data to Hadoop.

The third CoT architecture is for global cloud and IoT networks, AWS, Azure, and Google Cloud is used
as global cloud and is able to communicate with [oT networks using MQTT protocol and store the sensing
data. The IoT devices are exactly the same, each of them is able to publish message to the topic of IoT
cloud (AWS IoT, Azure IoT Hub, and Google Cloud IoT Core) and store the sensing data to cloud. We
have also compared and analyzed the performance of three [oT cloud services based on the process and

results of the experiment.

The fourth CoT architecture is for global cloud and IoT networks based on proxy using OCF loTivity
and MQTT protocol, the proxy is able to get sensing data from IoT networks and then publish the data as
messages to the topic in IoT cloud (AWS IoT, Azure IoT Hub, and Google Cloud IoT Core). After some

experiments we also compared the [oT cloud service of AWS, Azure, and Google Cloud Platform.

The fifth CoT architecture is for vehicle monitoring and control service, the client is able to monitor

vehicles, control vehicles, and get vehicle state from cloud.



2. Related Work

2.1 Cloud (Hadoop, Azure, AWS, Google Cloud)

Your Application

Management & Administration

Tools Web Interface Libraries and SDKs

) . . Command Line Interface
AWS Visual Studio Toolkit Management Console .NET/Java etc.

Cross Service Features

Deployment and Automation
AWS Elastic Beanstalk, CloudFormation
AWS Data Pipiline

Auth, Authorization, Federation Monitoring
AWS IAM, MFA Amazon CloudWatch

Application Platform Services

App Services Transfer
Amazon SNS Import Export Parallel Processing Content Delivery Search
Amazon SWF VM Import Amazon Elastic MapReduce Amazon CloudFront || Amazon CloudSearch
Amazon SES Storage Gateway
Foundation Services
Storage Network Database Compute
Amaxon S3 Amazon VPC Amazon RDS, Amazon EC2
Amazon EBS EIV, DirectConnect RedShift DynamoDB Auto Scalin
Amazon Glacler Amazon Route 53 Amazon ElastiCache e
AWS Global Physical Infrastructure
Geographical Regions Avaliability Zones Edge Locaitons

Figure 2. AWS cloud architecture

Amazon Web Services (AWS) [33] is a secure cloud services platform of Amazon.com, offering compute
power, database storage, content delivery and other functionality to help businesses scale and grow. Explore
how millions of customers are currently leveraging AWS cloud products and solutions to build
sophisticated applications with increased flexibility, scalability and reliability. Figure 2 shows the AWS
cloud architecture. Many developers choose cloud services of AWS. And in order to make a better choice
of cloud services, some developers study and present the characterization of AWS, which is useful for
developers aiming at entrusting AWS to deploy their contents [34]. Many other developers focused on the

SaaS data protection, they present a real use case of home healthcare SaaS application deployed on AWS,



they also study the challenges needed to add cryptography and key management capabilities to the standard

AWS Web/database offer so to enable SaaS data protection [35].

Microsoft Azure [36] is a growing collection of integrated cloud services that developers and IT
professionals use to build, deploy, and manage applications through our global network of datacenters.
Figure 3 shows the main Azure cloud services architecture. Many developers choose cloud services of
Azure. Some developers formulate and evaluate production-feasible methods to develop idleness profiles
for customer databases by using Azure SQL Database telemetry across multiple data centers [37]. It is also
able to build up a system by combining the Open Plant Communication Universal Architecture and the
Microsoft Azure Internet-of-Things Hub [38]. In this paper, we also collect the data by sending messages

to Azure IoT Hub.

Azure Cloud Services
(Platform as a Service)

Managed by Users

Applications Data

Managed by Microsoft

Runtime Middleware
0/S Virtualization
Servers Storage Networking

Figure 3. Main cloud service architecture of Azure

Google Cloud Platform [39], offered by Google, provides a set of management tools and a series of
modular cloud services including computing, data storage, data analytics and machine learning. Figure 4
shows the Google Cloud Platform services architecture. Many developers choose cloud services of Google
Cloud Platform. Some developers use Datastore APIs from Google App Engine (GAE) to interface to
different open source distributed database technologies, so the APIs are able to be used by web applications

and services without modification [40]. Some other developers present an approach to workload
9



classification and its application to the Google Cloud Backend [41]. During our simulation experiments,

we used the Cloud IoT Core service of Google Cloud Platform.

Compute

Compute Engine App Engine Container Engine Cloud Functions

Storage and Databases

Cloud Storage Cloud SQL Cloud Bigtable Cloud Spanner
Cloud Datastore Persistent Disk Data Transfer
Networking
il F(’\r/ll\)/gt)e Cloud Cloud Load Balancing Cloud CDN Cloud Interconnect
Cloud DNS
Big Data and loT

BigQuery Cloud Dataflow Cloud Dataproc Cloud Datalab

Cloud Dataprep Cloud Pub/Sub Genomics Google Data Studio

Cloud IoT Core

Machine Learning

Cloud Machl'ne Learning Cloud Jobs API Cloud Natural Language Cloud Speech API
Engine API
Cloud Translation API Cloud Vision API| C|OUd. plitieo
Intelligence

Figure 4. Google Cloud services architecture

Hadoop as an open source project of the Apache foundation is the most representative product for the
cloud computing research and application. The Hadoop’s distributed framework provides developers with
a base architecture for distributed systems. The Hadoop users can develop distributed applications without
understanding the underlying details of the distributed system and make full use of the cluster storage
resources, network resources and computing resources. The core design of Hadoop is MapReduce and

Hadoop Distributed File System (HDFS) [42]. Figure 5 shows the architecture of Hadoop. Hadoop frame

10



includes four modules: MapReduce, HDFS, YARN and Common Utilities. Hadoop MapReduce is YARN-
based system for parallel processing of large data sets. Hadoop Distributed File System (HDFS) is a
distributed file system that provides high-throughput access to application data. Hadoop YARN is a
framework for job scheduling and cluster resource management. Hadoop Common Utilities are Java
libraries and utilities required by other Hadoop modules. These libraries provide filesystem and OS level

abstractions and contains the necessary Java files and scripts required to start Hadoop.

Hadoop

MapReduce
(Distributed Computation)

HDFS
(Distributed Storage)

YARN Framework

Common Utilities

Figure 5. Hadoop architecture.

HDFS is a highly fault-tolerant system, suitable for deployment in cheap machines. HDFS can provide
high throughput access data and it is very suitable for large-scale data sets. HDFS has a high fault-tolerance
characteristic, and is designed for deployment on low-cost hardware. It provides high throughput to access
the application data, suitable for those with large data set applications. HDFS is a distributed file
management system for massive data storage. In this system, we use HDFS to store the sensor data files,

and we manage the files by calling Hadoop commands in Java Application [43].

11



2.2 10T Platforms

The JNU Indoor IoT system is an old project in our lab, which consist of nine modules. Figure 6 shows
the conceptual model of the INU Indoor IoT System. GIS Platform provides geography information service
to App Client. Actuator Platform provides actuators’ information and actuators’ state to App Client.
Actuator Middleware connect between Actuator Emulator and Actuator Platform. Actuator Emulator
simulate actuators and the state. Sensor Platform provide sensing data and sensors’ information to other
modules. Sensor Middleware connect between Sensor and Sensor Platform. Sensors collect sensing data
and send them to Sensor Middleware. App Server provides services and object information to App Client.

App Client show the results to the users via services supported by other modules.

App Client
v
App Server
¥ v v
e 1ator GIS Platform Sensor Platform
Platform
v v
Actuator Sensor
Middleware Middleware
v v
Actuator
Sensor
Emulator

Figure 6. The conceptual model of the JNU Indoor IoT system
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2.3 IoT Protocol

REST (Representational State Transfer) [44] is an architectural style, which is often used in the
development of web services. REST is a popular building style for cloud-based APIs. A RESTful API
means web services used REST architecture. REST architecture involves reading a designated web page
that contains an XML file, which describes and includes the needed content. REST typically runs over
HTTP (Hypertext Transfer Protocol) and is often used in mobile applications, social networking web sites,
mashup tools and automated business processes. REST use a limited number of operations (GET, POST,
PUT and DELETE) to enhance the interactions between clients and services. And it is flexible because of

assigning resources their own URIs (Universal Resource Identifiers).

CoAP (Constrained Application Protocol) [45] is a software protocol intended to be used in very simple
electronics devices, allowing them to communicate interactively over the Internet. It is particularly targeted
for small, low-power sensors, switches, valves and similar components that need to be controlled or
supervised remotely, through standard Internet networks. CoAP is an application layer protocol that is
intended for use in resource-constrained internet devices, such as WSN nodes. CoAP is designed to easily
translate to HTTP for simplified integration with the web, while also meeting specialized requirements such
as multicast support, very low overhead, and simplicity. Multicast, low overhead, and simplicity are
extremely important for Internet of Things (IoT) and Machine-to-Machine (M2M) devices, which tend to

be deeply embedded and have much less memory and power supply than traditional internet devices have.

IoTivity [46] is an open source software framework enabling seamless device-to-device connectivity to
address the emerging needs of the Internet of Things. The IoTivity is sponsored by the OCF (Open
Connectivity Foundation) who is developing a standard specification and certification program to enable
the Internet of Things. This open specification is determined to unlock the massive opportunity in the loT
market, accelerate industry innovation and help developers and companies create solutions. The goal of

IoTivity is to develop an open source software framework that can seamlessly connect billions of devices
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to the future of the Internet world, regardless of operating system and network protocols. One of the most
important parts for activating the Internet ecosystem is how can small and medium-sized companies
manufacturing various things add an Internet connection function to their products and provide an
environment that can easily provide them with smartphone apps or services. [oTivity is a framework for
satisfying these requirements, ensuring interoperability between high-quality Internet devices and
developing high-speed internet products. It is also expanding the range of open source hardware (e.g.
Raspberry Pie, Edison) and software platforms (e.g. Android, iOS, Windows, Linux, etc.) Currently,
IoTivity supports Ubuntu, Tizen and Android, and iOS will be supported in the future. The open source
hardware platform now supports Arduino and Edison, and will continue to expand its supported hardware

platforms. Basically, loTivity is an open source technology for Internet middleware based on OIC standards.

Framework APIs
Common Object Model

Profiles

Consumer Enterprise Industrial Automotive Education Health

Framework

Discovery Data Transmission Device Management Data management

Figure 7. Figure 2.6 OCF loTivity architecture

Figure 7 shows the conceptual architecture of IoTivity that consists of three layers. Transports layer
supports the existing protocols such as Bluetooth, Wi-Fi, Zigbee, etc. Profile layer stands for each vertical
field of object Internet applications such as smart home, smart factory, eHealth, etc. A framework layer
supports functions such as resource discovery, data transfer, device management, and data management. In
the case of the transport layer, new technologies can be continuously extended, and even with these
extensions, the application layer of the profile layer can be executed without modification, with the support

of the framework layer. For reference, the license policy follows Apache 2.0 and is operated by the Linux
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Foundation. loTivity is based on a resource-based RESTful architecture model, thus representing all things
as resources and providing CRUDN (Create, Read, Update, Delete and Notify) operations. In addition, it is
designed based on CoAP (Constrained Application Protocol) without a daemon, so it is easy to support

low-end and low-power devices.

MQTT [47] is a machine-to-machine (M2M)/"Internet of Things" connectivity protocol. It was designed
as an extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote
locations where a small code footprint is required and/or network bandwidth is at a premium. For example,
it has been used in sensors communicating to a broker via satellite link, over occasional dial-up connections
with healthcare providers, and in a range of home automation and small device scenarios. It is also ideal
for mobile applications because of its small size, low power usage, minimized data packets, and efficient

distribution of information to one or many receivers.
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3. CoT Architecture for Hadoop and IoT
Platform Using IETF CoAP

3.1 CoT Design for Interworking between Hadoop and IoT

Platform

Recently, CoT technology has obtained great development over the last few years and is increasingly
influencing various industrial development. Figure 8 shows the interworking architecture between Hadoop
and Sensor Platform. As shown in the figure, each Sensor Platform connects with Hadoop. And each sensor
platform can connect many sensor middleware, each sensor middleware can connect many sensors. loT
platform provide sensor information and sensing data storage service. Sensor middleware get sensing data
from sensors and save the data into database via the service provided by sensor platform. Then IoT platform

will request sensing data and sensor information and upload the data to local IoT cloud in multiple sensor

networks.

Local Cloud (Hadoop)

T

loT Platform_1

| Database_1 I

/\

Sensor
Middleware_1

Sensor
Middleware_n

loT Platform_n

| Database_n I

/\

Sensor
Middleware_1

Sensor
Middleware_n

500 00 DO

Figure 8. Interworking architecture between IoT platform and local Cloud (Hadoop)
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Figure 9 shows the implement architecture for Hadoop and IoT platform. Sensor Middleware will get
sensing data from Sensor and save sensing data into database via the service provided by Sensor Platform.
There is a RESTful API in Sensor Platform, the communication between IoT platform and Sensor
Middleware based on this API and used HTTP protocol. Sensor connect to Sensor Middleware by serial
port. The communication between HDFS Agent and IoT platform also based on the RESTful API. There
is a HTTP Client in HDFS Agent. HTTP Client will get sensing data and sensor information from IoT
platform via the RESTful API. And Data Uploader in HDFS Agent is able to receive the sensing data from
HTTP Client, convert the sensing data to files (txt, csv), and upload the files to Hadoop Distributed File
System (HDFS) in Hadoop framework. Client will control the process start or stop and show users the

sensing results.

- Client

Hadoop Framework

DB Agent

Data.txt

DFS

Hadoop Distributed File System

HDFS|Agent

Data Uploader

HTTP Client

HTTP

A 4

Sensor Platform

HTTP

A 4

Sensor Middleware

Serial Port

A 4

Sensor (Temperature)

Figure 9. Implement architecture for Hadoop and IoT Platform
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Figure 10 shows the detail design for HDFS Agent. In HDFS Agent. There is a HTTP Client and a Data
Uploader. HTTP Client is able to request sensing data from HTTP Server in Sensor Platform, Data Uploader
is able to upload sensing data file to HDFS. In HTTP Client, there are Data Transmitter, Data Parser and
Data Receiver. Data Receiver is able to receive sensing data from HTTP Server, Data Parser is able to
convert sensing data to sensing data files, Data Transmitter is able to push the sensing data files to Data
Uploader. When HDFS Agent get sensing data from Sensor Platform, Data Receiver in HTTP Client will
receive data first and send to Data Parser, then Data Parser will send to Data Transmitter, and Data

Transmitter will send data to Data Uploader and Client.

— Client

HDFS

A

HDFS IgT Agent

Data Uploader

A

HTTP|Client

Data Transmitter

T

Data Parser

T

Data Receiver

A

Sensing Data

Sensor Platform

Figure 10. Detail design for HDFS Agent.

Figure 11 shows the detail design for Sensor Platform. Service Interface provides access interface to

outside service. The main services offered by Sensor Web module are Sensor Web Content Service, Sensor
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Web Provider Service and Sensor-Web Sensing Service. Sensor Web Content Service is used for
middleware configuration Management and Sensor Information Management. Sensor Web Provider is

utilized for Sensor Searches, Sensor Information supply and Sensing Data supply. Sensor Web Sensing

Service is used for Sensor State management and as Sensing Data receiver.

Sensor State
Manager

Sensing Data Supply

Sensor Middleware HDFS Agent
HTTP HTTP
JSON Format JSON Format
Sensor Platform
Service State Viewer
——— i —
Service Control ¥ ¥
Sensor Web Sensor Web Sensor Web
Sensing Service Content Service Provider
Control Control Service Control
y
Service Interface 2
Sensor Web Sensor Web Sensor. Web
. ) ) Provider
Sensing Service Content Service .
Service
Interface Interface
Interface
4 k L
Sensing Service Content Service Provider Service
Configure Manager
Sensor Info Supply
y

Sensor Info Manager

Sensing Data
Receiver

Sensor Database

-

Figure 11. Detail design for Sensor Platform.

Figure 12 shows the detail design for Sensor Middleware. Sensor middleware take a role in collecting

sensing data sent by sensor then sending and saving Sensor Platform. Configurator request sensor

information (ID, Type) from Sensor Platform, and also verify pertinent IP address and Platform access

privileges. Sensing Driver takes various sensors’ sensing data format information and parse processing

through received sensing data. Port Monitoring take a role in monitoring state of the port connected with
19



middleware. Sensing Data Receiver accesses sensing data sent from sensor node and saves at memory

through sensing data Parser. Sensing Data Transporter read Memory-saved sensing data and send to Sensor

Platform.
Sensor Platform Sensor
HTTP HTTP
JSON Format JSON Format A 4
Serial Port

Sensor Middleware

Viewer
I
Middleware Configuration Manager Port Manager
T [
Configurator ‘ Port Monitoring

| Sensing Driver ‘
7y

Sensing Manager

Sensing Data Receiver }:

Sensing Data Parser

A

Sensing Data Transporter

"

Memory

Figure 12. Detail design for Sensor Middleware.

Figure 13 shows the sensor which connect to Sensor Middleware via Serial Port.

Figure 13. Temperature sensor connect with Sensor Middleware
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Figure 14 shows the sequence diagram for the interworking between Hadoop and loT Platform. Client
send start request to Data Uploader and request sensing data from Data Uploader. Data Uploader sends
request message to HTTP Client, HTTP Client sends request message to sensor Platform, IoT platform
sends request message to Sensor Middleware, Sensor Middleware sends request to Sensor and Sensor will
return sensing data to Sensor Middleware. Sensor Middleware will return sensing data to Sensor Platform,
IoT platform will save sensing data into database and return sensing data to HTTP Client. HTTP Client will
return sensing data to Data Uploader. Data Uploader will return sensing data to Client, make a data file (txt,

csv) and uploads file to HDFS. Finally, Client will send stop request to Data Uploader, all process will stop.

Hadoop HDFS Agent loT System
: Data ] Sensor Service Sensor
Client HDFS HTTP Client A ) Sensor
Uploader Provider Middleware
| T T I T T T
' start >l | | | |
| L | | | | |
i Request sensing datar—————>; | | | |
| | FRequest sensing data>f | | |
: : : :—Request sensing dataﬁI : :
| | | | —Request sensing data=> |
| | | | | | |
| | | | | F—Request sensing data>1
: : : : : k& -Return sensing data- .JI
| | | | |< -Return sensing data- T |
| | | | | |
| | | | U | |
| | | | Save sensing data | |
| | | | | |
: : : %(— ‘Return sensing data— —: : {
: : Ik—Return sensing data JI : : {
€ =i Return sensing data+ — — — — — - | | | |
| | | | | |
| | 'l_] . | | | |
| | Make data file | | | |
I I e I I I I
| | | | | | |
| [&<—Upload filem—— | | | |
: > | | | 1
\

Figure 14. Sequence diagram of this system for the interworking between Hadoop and IoT Platform
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3.2 Experiments and Results of CoT Architecture for Hadoop and

IoT Platform

Table 1 shows the development environment for the loT Platform

Components Version
Operating System Windows 10
Microsoft Visual Studio 2015
Microsoft SQL Server 2016

Table 1. IoT Platform development environment.

Table 2 shows the development environment for HDFS Agent.

Components Version
Operating System Windows 10
Java JRE 1.8
Spring Tool Suite 3.8.4

Table 2. HDFS agent development environment.

Table 3 shows the configuration environment for Hadoop.

Components Version
Operating System Windows 10
Java JRE 1.8
Hadoop 2.73
Sprint Tool Suite 3.84

Table 3. Hadoop configuration environment.
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To run the whole system, we need to run IoT platform firstly, the result shows in figure 15. “Service
State Viewer” shows the state of services. “Time Now” shows the current time. The first “Run Time” shows
the running time of Provider Service and “Provider Service” shows the state of Provider Service (start or
stop). The second “Run Time” shows the running time of Content Service and “Content Service” shows
the state of Content Service (start or stop). “Node Count” shows the number of sensors. “Provider Service
Control” has two buttons to control Provider Service and Sensing Service start or stop. “Content Service
Control” has two buttons to control Content Service start or stop. “Service Load Viewer” shows the control

history and click “Clear Control History” button will clear the control history.

Service State Viewer E} g @ e Load Viewer

Tirne Now: 5/19/2017 5:4737 PM [5-19 16:41:500 // Provide Service Start!
[2017-05-19 16:41:50] // Sensing Service Start!

Run Time: [00 01:05:47]
[2017-05-19 16:41:50] // Content Service Start!

Provider Service: Service Start
Run Tirme: [00 01:05:47]
Content Service: Service Start

Mode Count: 71

Provider Service Control

Service Start Service Stop

Content Service Control

Service Start Service Stop Clear Control Histroy

Figure 15. IoT platform implementation result.

Then we need to run Sensor Middleware, the result shows in figure 16. "Sensing Data" shows the sensor
information and sensing data. Users can choose a sensor in "Sensor ID" and the first textbox will show the
information of the choose sensor. User can also choose the serial port for temperature sensor, humidity
sensor and illumination sensor on the right. Click "Start" button to start the connection and send sensing
data to IoT platform to save data into Database. Click “Stop” button to stop the connection. The second

textbox will show the sensing data.
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Finally, we need to run Client, the result shows in figure 17. We need to choose a sensor in the combo
box, if the sensor is not in using, we cannot click the “start” button to start working. After we choose a
sensor, the sensor information text area will show the information of this sensor. Click “start” button will
get sensing data through Sensor Platform, make data files and upload files to HDFS. Click “Stop” button

will stop all the process.

Sensing Data

Sensor [D: SDO00oT Temperature

Sensor Name:SensorQl POk EONG i
Sensor Code:21

Sensor Category. Humidity

[Temperature Sensor]
[Humidity Sensor] Port: COoM3 ~
[Light Sensor] )

Nluminalion
Port: COM3 W

#4Time:5/19/2017 5:47:56 FM
TMP:27.97

HUM:40.09803

LUX:1560.059

Stop

Figure 16. Sensor Middleware implementation result.

| HOFS Agent - o X | HOFS Agent - o X | HEFS Agent - o X

Choose Sensor: SDO0002 o Choase Sensor: SDooo0] .= Chease Sensor: 5000001 |-

Sensot I0; SO00

Sensot I0; SO Sensot I0; S
Sensof Information:  [Sensor Name: Sensord2 Sensor Information:  [Ssnsor Mame Sensor Information:  [Sensor Mam 1
Sensor Explain Temp Sensor Explain Sensor Expl

| ostant. | | stop ’ stop_|

Sensing Data: Sensing Data Sensing Data

Figure 17. Client implementation result.
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After finish running the whole system, we can check the files storage situation in our local file system,

like the figure 18 shows.

And we can also check the files storage situation in Hadoop Distributed File System, like the figure 19

shows.

| & =|s {TTP = O ,.
Home Share View v o
= v » ThisPC » Local Disk (%) » SensingFiles HTTP v | O Search SensingFiles HTTP »
Mame Date modified Type Size
#F Quick access
2017-05-19-17-48-03. bt Text Document 1KB
B Desktop * _
2017-05-19-17-49-05.bet Text Document 1KB
W Dotk # 2017-05-19-17-49-08.6¢t Text Document 1KB
Dotainents: o 2017-05-19-17-49- 10t Text Document 1KB
[&=] Pictures + 2017-05-19-17-48-13 bt Text Document 1KB
G_Actuatorweb_Ser 2017-05-19-17-49-15.bt Text Document 1KB
G Sl Servii 2017-05-19-17-49- 17t 5/19/20175:43PM  Text Document 1KB
HDFSAgentHttp 1= 2017-05-19-17-48- 206t 5/18/2017 3:49 PM Text Document 1 KB
B 2017-05-19-18-07-30.bxt 5/ Text Document 1KE
SensingFiles HTTP 5 i
2017-05-19-18-07-33 bt 5/ Text Document 1KB
& Onelrive 2017-05-19-18-07-35.0xt Text Document 1KE
2017-05-19-18-07-38.bt Text Document 1KB
[ This PC _
g 2017-05-19-18-07-40bet Text Document 1KB
B Desktop 2017-05-19-18-07-42.bxt Text Document 1KB
Documents 2017-05-19-18-07-45.bt Text Document 1 KB
; Downloads 2017-05-19-18-07-47 bt 5/19/2017 6:07 PM Text Document 1 KB
Jg Music 2017-05-19-18-07-49 bt 5/19/2017 &07 PM Text Document 1KE
=] Pictures 2017-05-19-18-07-52. bt Text Document 1 KB
n Videos 2017-05-19-18-07-54 bt Text Document 1KB
] 2017-05-19-18-07-57 bt Text Document 1KE
. Local Disk (C)
2017-05-19-18-07-59.bdt Text Document 1KB
o LOCRIERK D) ] 2017-05-19-18-08-026t Text Document 1K8
o Network 2017-05-19-18-08-04 bt 5/ Text Docurment 1KB
§ 2017-05-19-18-08-07 bt 5/ Text Document 1 KB
*4 Homegroup 2017-05-19-18-08-09 bt Text Document 1KB
2017-05-19-18-08- 12t 5/ Text Document 1KB
5] 2017-05-19-18-08-15.0¢t 5/ Text Document 1KB
B 2017-05-18-18-08-17 bt 5/ Text Document 1KB
28 iterns

Figure 18. Sensing file list in local file system.
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[ Project Explorer &2 meEl ) e
~ =] DFS Locations A~
~ MW HDFS Location
v = (1)

w [= SensingFiles_ HTTP (27)
2017-05-19-17-49-03.&xt (136.0 b, r1)
2017-05-19-17-49-05.6¢t (136.0 b, r1)
2017-05-19-17-49-08.b¢t (136.0 b, r1)
2017-05-19-17-49-10.t¢t (136.0 b, r1)
2017-05-19-17-49-13.0xt (137.0 b, r1)
2017-05-19-17-49-15.6t (137.0 b, r1}
2017-05-19-17-49-17.6xt (137.0 b, r1)
2017-05-19-17-49-20.txt (136.0 b, r1)
2017-05-19-18-07-33.0¢t (137.0 b, r1)
2017-05-19-18-07-35.6¢t (137.0 b, r1)
2017-05-19-18-07-38.bt (137.0 b, r1)
2017-05-19-18-07-40.6¢ (137.0 b, r1)
2017-05-19-18-07-42.t (137.0 b, r1)
] 2017-05-19-18-07-45.tt (137.0 b, r1)
2017-05-19-18-07-47.b¢t (137.0 b, r1)
2017-05-19-18-07-49.6¢t (137.0 b, r1)
2017-05-19-18-07-52.txt (137.0 b, r1)
2017-05-19-18-07-54.6¢t (137.0 b, r1)
2017-05-19-18-07-57.bt (137.0 b, r1)
2017-05-19-18-07-59.0¢t (137.0 b, r1)
2017-05-19-18-08-02.txt (137.0 b, r1)
2017-05-19-18-08-04.6¢t (137.0 b, r1)
2017-05-19-18-08-07.b¢t (137.0 b, r1)
2017-05-19-18-08-09.6¢ (137.0 b, r1)
2017-05-19-18-08-12.¢t (137.0 b, r1)
2017-05-19-18-08-15.6¢t (137.0 b, r1)
2017-05-19-18-08-17.b¢t (137.0 b, r1)

Figure 19. Sensing file list in Hadoop Distributed File System.

In file list, each file’s name is current time of sensing data. And the content is a string split by commas

including sensing time and sensing data. Figure 20 shows the sensing data on 17:49:03, May 19, 2017.

[l hdfs://localhost:9000¢SensingFiles HTTP/2017-05-19-17-40-03.tet 5%
ibatE)KDatE(1495183?43%&!—69%)KJTEmpEraturE)l,6?)Luminance)4284,EESJHumidityJSG,51@4—4;LongitudEJb,GJLatitudEJb,GJAltutudE,b,b,SpEEd)b,ﬁ

2

Figure 20. A file of the sensing list in HDFS.
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4. CoT Architecture for Hadoop and IoT
Networks Based on Agent Using IETF CoAP

4.1 CoT Design for Interworking between Hadoop and IoT

Networks

Recently, it is increasing to research the interworking between Cloud and loT Devices. Figure 21 shows
the interworking conceptual model of Hadoop and IoT Networks. As shown in the figure, Hadoop is able
to connect many agents, each agent can connect many IoT devices and each IoT device can connect many
sensors. [oT Device will get sensing data from sensors and send to the agent, and agents will upload sensing

data to Local Cloud.

Local Cloud (Hadoop)

/\

Agent_1 vee Agent_n
loT loT loT loT
Network_1 ooe Network_n Network_1 o Network_n

Figure 21. Conceptual model of the architecture for Hadoop and IoT Networks

Figure 22 shows the interworking layer of Hadoop and IoT Networks. We will connect a temperature
sensor to Edison Board, and develop a CoAP Server in Edison Board which can get sensing data from

sensor and provide data to CoAP Client. And we will develop a HDFS Agent, which consist of two parts:
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Data Uploader and CoAP Client. Data Uploader is able to receive the sensing data from CoAP Client,

convert these data to files (txt, csv) and upload files to Hadoop Distributed File System.

Hadoop

amm
y
N

HDFS

Hadoop Distributed File System

4

HDFS loT Agent

4

Edison Board

l

Sensor

Figure 22. Interworking layer of Hadoop and IoT Networks

- Client

Hadoop Framework

(Hadoop Distributed File System

HDFS IqT Agent

Data Uploader

CoAP Client

CoAP

A 4
Edison Board

CoAP Server

l

Sensor

Figure 23. Implement architecture for Hadoop and IoT device
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Figure 23 shows the implement architecture of for Hadoop and IoT device. There is a CoAP Server in
Edison Board, which can get sending data from sensor and send to CoAP Client in HDFS Agent when
CoAP Client sends request. Data Uploader in HDFS Agent is able to receive the sensing data, make data
files (txt, csv) and upload the file to Hadoop Distributed File System (HDFS) in Hadoop framework. And

Client will control the process start or stop and show users the sensing results.

Figure 24 shows the design for HDFS IoT Agent. In HDFS IoT Agent. There is a CoAP Client and a Data
Uploader. In CoAP Client, there are Data Transmitter, Data Parser and Data Receiver. When HDFS IoT
Agent get sensing data from Edison Board, Data Receiver in CoAP Client will receive data first and send
to Data Parser, then Data Parser will send to Data Transmitter, and Data Transmitter will send data to Data

Uploader and Client.

—> Client

HDFS

h

HDFS IqT Agent

Data Uploader

h

CoAP|Client

‘ Data Transmitter ‘

T

’ Data Parser ‘

T

’ Data Receiver ‘

Y

Sensing Data

Edison Board

Figure 24. The design for HDFS IoT Agent.

Figure 25 shows the sequence diagram for the interworking between Hadoop and IoT device. Client send

start request to Data Uploader and request sensing data from Data Uploader. Data Uploader sends request
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message to CoAP Client, CoAP Client sends request message to CoAP Server, and CoAP Server requests
sensing data from sensor. After getting sensing data from sensor, CoAP Server will return sensing data to
CoAP Client, CoAP Client will return sensing data to Data Uploader, Data Uploader will return sensing
data to Client. And Data Uploader will make a sensing data file (txt, csv) and upload the file to HDFS

(Hadoop Distributed File System). Finally, Client send stop request to Data Uploader, all process will stop.

Hadoop . HDFS Agent . Edison Board
5 Data _
Client HDFS CoAP Client CoAP Server Sensor
Uploader
T
Start: - »!

T I

| |
equest selnsrng data—%: :

| | —Request sensing data |

|

|

|

|

|

Request sersing data%1I
—Request sensing data—x
é —Return sensing data— —

_

= Return|sensing data—
|

|
|
|
|
|
|
|
l :{—Retum sensing data-

1
= “Return sensing data- — - — — — -
| |

|
: Make data file
|

e
[

h 4

._____________|__A____|_3|z____

I
I
|
|

I I

I I

| |

| I

| | |

: lLf Upload file :

I Stop: |

I I I

| | |

I I I

Figure 25. Sequence diagram for the interworking between Hadoop and IoT device
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4.2 Experiments and Results of CoT Architecture for Hadoop and

IoT Networks

Table 4 shows the development environment for CoAP Server in Edison Board.

Components Version
Operating System Windows 10
Edison Board (Yocto) 20160606
Intel System Studio IoT Edison 2016.4.012

Table 4. CoAP Server development environment.

Table 5 shows the development environment for HDFS Agent.

Components Version
Operating System Windows 10
Java JRE 1.8
Spring Tool Suite 3.8.4

Table 5. HDFS Agent development environment.

Table 6 shows the configuration environment for Hadoop.

Components Version
Operating System Windows 10
Java JRE 1.8
Hadoop 2.73
Sprint Tool Suite 3.84

Table 6. Hadoop configuration environment.

Figure 26 shows the Edison Board and temperature sensor.
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Figure 26. Edison Board and temperature sensor.

Figure 27 shows the CoAP Server implementation result. CoAP Server is run in Edison Board using C

language and Intel System Studio [oT Edison, each time CoAP Client sends a request, CoAP Server will

return and print out real-time temperature data.

%3 p,

roblems

T = " Ty g . .
Tasks ‘B Console £2° | [T Properties ' loT Sensor Support

EdisenCoapServer [Intel @ 0T C/C++ Remote Application] C\Users\songai\workspace_iot\EdisonCoapServer\Debug!EdisonCoapServer (5/20/17, 5:35 AM)

root@edison:
/home/root>

root@edison:
root@edison:
27
87
87
.25
.51
25
.51
.70
.05
.83
84
94
.83
.60
27
.16

17
28
26
27
27
17
27
1T
is
27
27
27
27
28
28
28

~% echo $PWD'>'

~%
~% chmod 755 /tmp/EdisonCoapServer;/tmp/EdisonCoapServer ;exit

Figure 27. CoAP Server implementation result.
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Figure 28 shows the Client implementation result. Click “Start” will get sensing data from CoAP Server

in Edison Board and make data files to upload to Hadoop Distributed File System. Click “Stop” button will

stop all the process.

|£| HDFS Agent - CoAP

Temperature :

Temperature :

|£| HDFS Agent - CoAP =; [m]

[2017-05-20-06-21-17,18.05
12017-05-20-06-21-56,27.83
2017-05-20-06-22-26 27 94
2017-05-20-06-22-65 27 94
2017-05-20-06-23-25 27 .83
12017-05-20-06-23-55,28.60
12017-05-20-06-24-27 28.27
i201%05-20-06-24-5728.16

tart Stop |

After finish running the whole system, we can check the files storage situation in our local file system,

Figure 28. Client implementation result.

like the figure 29 shows.
| [Z1 || = | SensingFiles_CoAP - ] X
Home Share View e
« v » ThisPC » Local Disk (D) » SensingFiles CoAP v Search SensingFiles_CoAP p)
o) Name Date modified Type Size
3 Quick access _
[E] 2017-05-20-06-05-44.txt Text Document 1ke
[ Desktop #+ =
5] 2017-05-20-06-21-17.6t Text Document KB
+ Dolinlaads’ 5] 2017-05-20-06-21-56.0xt Text Document G
[ Documents & [E) 2017-05-20-06-22-26.6¢ Text Document 1KB
& Pictures  # 5] 2017-05-20-06-22-55.6¢ Text Document 1Ke
Android Things [E] 2017-05-20-06-23-25.4xt Text Document 1K8
G:Sansarweb, S [E] 2017-05-20-06-23-55.xt Text Document KB
A —— [E] 2017-05-20-06-24-27.6¢t Text Document 1K8
[E] 2017-05-20-06-24-57:¢t Text Document ke

SensingFiles HT
#& OneDrive

[ This PC

I Desktop

[ Documents
& Downloads
D Music

[&] Pictures

B videos

‘i Local Disk (C:)

Faral Pick (DA
Gitems

Figure 29. Sensing file list in local file system.
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And we can also check the files storage situation in Hadoop Distributed File System, like the figure 30

shows.

[P Project Explorer 52 He=iled = o
v = DFS Locations
v % HDFS Location
v B @)
= input (0]
v (= SensingFiles_CoAP (9)
= 2017-03-20-06-03-44. bt ]
= 2017-05-20-06-21-17.txt (26.0 b, r1)
=| 2017-05-20-06-21-56.txt (26.0 b, r1)
)
]

26,0 b, rl

| 2017-053-20-06-22-26.0¢t (26.0 b, r
2017-05-20-06-22-55.tct (26.0 b, r1
2017-053-20-06-23-25.6¢t (26.0 b, r1)

2017-05-20-06-23-35.txt (26.0 b, r1)
= 2017-05-20-06-24-27.tct (26.0 b, r1)
= 2017-05-20-06-24-57.tet (260 b, r1)
(= SensingFiles HTTP (27}

o
[} [

Figure 30. Sensing file list in Hadoop Distributed File System.

In file list, each file’s name is current time of sensing data. And the content is a string split by a comma

including sensing time and sensing data. Figure 31 shows the temperature is 17.70°C on 6:59:44, May 20,

2017.

[E) hdfs:/flocalhost:9000/SensingFiles_CoAP/2017-05-20-06-05-44.txt 3
1 hﬂl? -B5-28-86-85-44,17.78

“

Figure 31. A file of the sensing list in HDFS.
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5. CoT Architecture for Global Cloud and IoT
Networks Using MQTT

5.1 CoT Design for Interworking between Global Cloud and IoT

Networks

Recently, Clouds are wildly used for huge data repository and Internet services in various fields. And
IoT networks collect a context data and support the monitor-ing and control services using thing
virtualization. We will build the connection be-tween IoT and cloud, it is very useful, and supports
intelligent services based on huge context data. This paper presents the comparison analysis of [oT services
based on Clouds for huge context acquisition in large scale loT networks. And, we develop AWS, Azure,
and Google cloud based on IoT. And compare the [oT service of AWS, Azure, and Google Cloud by

sending sensing data messages from loT devices.

Client

T—HTT

Amazon Web Service

Amazon Web Service

AWS loT Mobile Hub

MQrT 1

MQTT Client

SDK: AWS |oT Device SDK (python)

OS: Raspbian (Linux system based on
Debian)

Hardware: Raspberry Pi 3 Model B

——

BMP280 Sensor DHT11 Sensor
(Temperature, (Temperature,
Pressure) Humidity)

Figure 32. The configuration for the connection between IoT device and AWS
35



Figure 32 shows the detail architecture for the connection between IoT device and AWS. We used
Raspberry Pi 3 Model B with Raspbian system as IoT device, we also used DHT11 Sensor (Temperature,
Humidity) and used BMP280 Sensor (Temperature, Pressure). We installed AWS IoT Device SDK with
python, and the device-to-cloud messages are send based on MQTT protocol. The MQTT messages in AWS
cannot store automatically, so before the device publish message to the topic in AWS, we will create the
message item in NoSQL Database of AWS Mobile Hub to store the sensing messages. Client is able to get

message item from NoSQL Database of AWS Mobile Hub.

Azure 10T Hub

Storage Account

MmaQrT
v

MQTT Client

SDK: Node.js (javascript)

OS: Raspbian (Linux system based on
Debian)

Hardware: Raspberry Pi 3 Model B

——

BMP280 Sensor DHT11 Sensor
(Temperature, (Temperature,
Pressure) Humidity)

Figure 33. The configuration for the connection between IoT device and Azure IoT Hub

Figure 33 shows the detail architecture for the connection between I[oT device and Azure IoT Hub. We
used Raspberry Pi 3 Model B with Raspbian system as IoT device, we also used DHT11 Sensor
(Temperature, Humidity) and used BMP280 Sensor (Temperature, Pressure). We installed Azure IoT Hub

SDK with JavaScript, and the device-to-cloud messages are sent based on MQTT protocol. After the
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messages published to the topic of Azure, the messages will be stored in the Blobs of Storage Account of

Azure, and Client is able to get message files from Blobs of Azure.

Client
MQTT/HTTP—IAQTT/HTT

Google Cloud

Google Cloud

loT Core Datastore

M QTT/HTTP—*—MQTT/HTT P

MQTT Client

SDK: Google Cloud SDK (python)

OS: Raspbian (Linux system based on
Debian)

Hardware: Raspberry Pi 3 Model B

!—T—\

BMP280 Sensor DHT11 Sensor
(Temperature, (Temperature,
Pressure) Humidity)

Figure 34. The configuration for the connection between IoT device and Google Cloud

Figure 34 shows the detail architecture for the connection to Google Cloud IoT Core. We used Raspberry
Pi 3 Model B with Raspbian system as an IoT device, we also used DHT11 Sensor (Temperature, Humidity)
and used BMP280 Sensor (Temperature, Pressure). We installed Google Cloud SDK with python, and the
device-to-cloud messages are sent based on MQTT protocol. The messages published to topic in Google
Cloud will disappear after several days, so if we want to store the messages, we need to use Google Cloud
Datastore. When we publish the message to the topic in Google Cloud, we also create a message entity in
Google Cloud Datastore. Client is able to pull message from subscriptions in Google Cloud, if the message

has been disappeared, Client is able to get message entity from Google Cloud Datastore.
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5.2 Experiments and Results of CoT Architecture for Global

Cloud and IoT Networks

Table 7 shows the simulation experiment environment of the CoT architecture for Global cloud and loT
Networks. In each Raspberry Pi, we use Raspbian for loT device and the cloud SDKs. For the SDK, we
used AWS IoT Device SDK with python, Azure SDK with JavaScript, and Google Cloud SDK with python.
All of the communication method is MQTT protocol, we used Python 2 to compile the code and added
DHT11 driver library and Paho MQTT Client library. And for our experiment, we considered the published
message on AWS are able to showed more directly, the published message on Azure need to be download,

and the published message on Google Cloud should show by the shell command.

AWS Azure Google Cloud
IoT device | Raspbian Raspbian Raspbian
AWS IoT . Google Cloud
Node.js
SDK Device ~ SDK SDK
JavaScript
(python) (JavaScript) (python)
Software Python 2 Python 2 Python 2

DHTI11 driver, | DHT11 driver, | DHT11 driver,
Libraries | Paho MQTT | Paho MQTT | Paho MQTT

Client Client Client
Shell
Webpage More directly Download
Result command

Table 7. Experiment environment of the CoT architecture for Global cloud and IoT Networks

Table 8 shows the development environment of mobile client. We used Android Studio 3.0.1, Android
SDK 27, AWS Java SDK 1.11.293, Azure IoT SDK 1.7.23, Google Cloud PubSub 0.45.0, Google Cloud
Storage 1.26.0, and Google Cloud Datastore 1.31.0.
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Components Version
Android Studio 3.0.1
Android SDK 27
AWS Android SDK 2.6
Azure IoT SDK 1.7.23
Google Cloud PubSub 0.45.0
Google Cloud Storage 1.26.0
Google Cloud Datastore 1.31.0

Table 8. Development environment of mobile client

Figure 35 shows the IoT device and sensors we used in the CoT architecture for Global cloud and IoT
Networks. We used Raspberry Pi 3 Model B with Raspbian system as [oT devices, which shows in figure
(a). We also used DHT11 Sensor (Temperature, Humidity) like figure (b) and BME280 Sensor

(Temperature, Humidity, Pressure) like figure (c).

(a) Raspberry Pi (b) BMP 280 Sensor (c) DHT11 Sensor

Figure 35. IoT device and sensors used in the CoT architecture for Global cloud and IoT Networks

Figure 36 shows the AWS IoT webpage, it’s able to create a MQTT client and enter the same topic,
which is able to show the published messages. Figure 37 shows one of the published messages, the format

of this message is JSON.
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Subscriptions ‘ thing01/data Esport  Clear  Pause

Subscribe to a topic

Publish
Pubtish to a topic Specity a topic and & message to publish with 2 Qo5 of 0.
thingD1 /data Publish to topic
I thing1/data ®

thing01/data Now 25, 2017 12:23.07 PM +05900 Export Hide
“timestamp": “2817-11-35TR3:23:861°,
“temparature”: 15,

"humidity": 14

thing01/data Now 25, 2017 12;23:0% PM 40900 ‘ Export Hide
"timestamp": “2817-11-35T83:23:82I",
“temperature”: 26,
"humidity™i 15

thing01/data Now 25, 2017 12:22:58 PM +0900 Export Hide
"timestamp®: "2EI7-I1-25TR3:22:57L",

Figure 36. Published messages in topic of AWS

“tleestamp”: "I817-LL-25T@I 23 06T",
tempErature™ 1 25
“humidity™: 14

Figure 37. Context messaged published in AWS IoT topic

Figure 38 shows the successful connections with AWS, When the connections become stable, the

message publish speed is 0.25/s, the maximum speed is 0.25/s, the minimum speed is 0/s.



Messages published

185 12:00 12:05 1210 1215 12:20 1225 12:30 1235 12:40 12:45 12:50

-®- Inbound =@~ Outbound

Figure 38. The successful connections with AWS

Figure 39 shows the data stored in NoSQL database of AWS Mobile Hub. The name of the table is
finaltest-mobilehub-887317787-messages, the primary sort key is the date, each item includes date,
temperature value, and pressure value. For example, as shown in figure, there is an item shows information

include date (2018-05-31-07:11), pressure value (975.37616), and temperature value (23.746326).

Scan: [Table] finaltest-mobilehub-887317787-messages: ... Viewing 1 to 100 items )

[Table] finaltest-mobilehub-887317787-messages: userld, date

© Add filter
4

userld date pressure temperature
raspberry-1 2018-05-31-07:17 975.3861 23.777096
raspberry-1 2018-05-31-07:18 975.3786 23.720682
raspberry-1 2018-05-31-07:19 975.40607 23.720682
raspberry-1 2018-05-31-07:20 975.3562 23.638622
raspberry-1 2018-05-31-07:21 975.37854 23.76684
raspberry-1 2018-05-31-07:22 975.46857 23.674522
raspberry-1 2018-05-31-07:23 975.59595 23.469368
raspberry-1 2018-05-31-07:24 975.5835 23.664265
raspberry-1 2018-05-31-07:25 975.40594 23.895054
raspberry-1 2018-05-31-07:26 975.32837 23.930952

Figure 39. Data stored in AWS NoSQL database
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Figure 40 shows the received message file in Azure, it’s not able to show messages directly, we need to
download the message file. In the figure, there is the Blob service of the storage we created, it is able to

find the messages folder.

MymMessages Blob serwce [ Blob properties

X

b New

Dashboard
NAME

8 Al resources

NAME
NAME MOOI
& Resource groups

URL

mymessages

0
@ App services hetpz//mymessages biob core windows.net mymessages/m
- 4 124
Function A
e LAST MODIFIED
-
= sQL databases 11/24/2017, 6:50.42 PM
& Azure Cosmos DB TYPE
M virtual machines .
& 10ad bakancers SIZE
64 ¥
I Storage accounts
Virtual networks ETAG
@ Azure Active Directory
CONTENT-MDS
More services > = m™

Figure 40. Developed results in Azure IoT Hub

Figure 41 shows the downloaded message file from Azure, it is able to find the sensing data in the file.
For example, as shown in the figure, there is the information include the message ID, the correlation ID,
the device ID, Time (2018-02-09-11:59:41), the temperature value (24.16173), and the pressure value

(807.6015).

W#ne 23202 1dH48571972-efad-4c68-a0ed-Bc6T0£141707TMMEcorrelationIdi36d895h7-caTe-4f4e-8a0c-6e5e458222b9% con
nectionDeviceId@Mraspberry-pi (connectionfuthMethode=k{ "scope™: "device", "type":"3as", "igsuer": "iothub", "a
cceptingIpFilterRule™:null}8connectionDeviceGenerationId$636465184990692 747 @MenquenedT ine82018-02-09T11:59
146,13100007 AOPAER¥S~Time, 2018-02-09-11:59:41, Temperature, 24. 16173, Pressure, 807, ﬁﬂlﬂ@]{ﬁkhﬁﬁ Ksah. /1

Figure 41. Context message download from Azure IoT Hub

Figure 42 shows the sum messages delivered to storage endpoints of Azure. When the connections
become stable, the message publish speed is 0.55/s, the maximum speed is 0.55/s, the minimum speed is

0/s.
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Sum Messages delivered to storage endpoints

MESSAGES DELIVERE.

MY-HUB

463

Figure 42. Sum messages delivered to storage endpoints of Azure

Figure 43 shows the received messages on Google Cloud Platform, we need google cloud shell command
to check the message. And as shown in the figure, it is able to find the information include the message 1D,
the device ID, the device registry ID, the device registry location, the project ID, the temperature value
(23.377046585083008), and the pressure value (983.5136108398438). (The detailed message shows in

figure 44)

| mEssae | ATTRIBUTES

)}, {"tinestanp Pressure":1518184480163, "Pressure" 983,
IAYRLFLGSFE3GOhOURSEAIN NEAoRRIJCBQFER1WKIVIX L kaBIENGKI823ReCORERTFe1VYGQdoTnl 1 THB0GNt 6aHVEWhoCBUNKdneDqY s68FDZI0Y JLLIIS—I-TIdFQWl

Figure 44. Context message published in Google Cloud topic (detail)
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Figure 45 shows the publish message operations to the topic in Google Cloud Platform. When the
connections become stable, the message publish speed is 0.81/s, the maximum speed is 0.95/s, the minimum

speed is 0/s.
6:25 6:30 6:35 6:40 6:45 6:50 6:55 7PM 7:05 7:10 7:15 7:20

Publish Message Operations

0.8/s
0.6is

04is

Figure 45. The publish message operations to the topic in Google Cloud Platform

Kind

messages - F Filter entities

Name/ID date pressure temperature
name=2018-06-01-13:05 2018-06-01-13:05 979.9617 27.898651
name=2018-06-01-13:06 2018-06-01-13:06 979.9559 27.96526
name=2018-06-01-13:07 2018-06-01-13:07 979.99164 27.924267
name=2018-06-01-13:08 2018-06-01-13:08 979.99194 66294

name=2018-06-01-13:09 2018-06-01-13:09 980.0554 27.632196
name=2018-06-01-13:10 2018-06-01-13:10 979.93085 27.744925
name=2018-06-01-13:11 2018-06-01-13:11 979.9617 27.898651
name=2018-06-01-13:12 2018-06-01-13:12 979.9851 27.611694
name=2018-06-01-13:13 2018-06-01-13:13 979.96094 27.49384

name=2018-06-01-13:14 2018-06-01-13:14 979.969 27.457966

Figure 46. Data stored in Google Cloud Datastore
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Figure 46 shows the data stored in Google Cloud Datastore. Messages stored there as entities, the kind
of the data is “messages”, each entity’s name is the date, and the entity includes date, temperature value,
and pressure value. For example, as shown in figure, there is an entity shows information include date

(2018-06-01-13:05), pressure value (979.9617), and temperature value (27.898651).

IoT service | IoT service | IoT service
based on | based on | based on
Cloud_A Cloud B Cloud_C
Communication
Method MQTT MQTT MQTT
Received Messages
15 31 50
(1 minute)
Publish Speed 0.25/s 0.55/s 0.81/s

Table 9. Comparison result of IoT service based on Clouds

Table 9 shows the comparison result of IoT service based on Clouds in our experiments. For our last
experiment (during 1 minute), there are 15 messages published to the topic of Cloud A, 31 messages
published to the topic of Cloud B, and 50 messages published to the topic of Cloud C. After many
experiments, we considered the message publish speed of Cloud A is 0.25/s, the message publish speed of

Cloud B is 0.55/s, the message publish speed of Cloud Cis 0.81/s.

Figure 47 shows the tested mobile client of Google Cloud, which is able to pull messages from
subscriptions. After click the “Get Message” button, the client is able to pull message from a Google Cloud
subscription. For example, as shown in the figure, the client pulled a message include the date (2018-06-

04-12:23), pressure value (976.4971923928125), and temperature value (24.289932250976562).

Figure 48 shows the tested mobile client of Google Cloud, which is able to get message entities from
Google Cloud Datastore. After click the “Get Message” button, the client is able get an entity from Google
Cloud Datastore. For example, as shown in the figure, the client pulled a message include the date (2018-
06-01-13:05), pressure value (979.9617), and temperature value (27.898651).
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Google Cloud Platform
-l data":[{"tir
1'2018-C

24.289932250¢8

amp_lemperaiure

 Temperature
362){"t
04 ‘I"_i‘ :T

3 'Pressure
076.4971923828125}))

mestamp_F

Essure”."2078-06

Get Message

Figure 47. Google Cloud Mobile Client connect with Google Cloud IoT Core

Google Cloud Platform

Get Message

Figure 48. Google Cloud Mobile Client connect with Google Cloud Datastore
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gl Microsoft
Hl Azure

late, 201 8-06-01-13:50 temperature,
©7.673187 prassure,979.8434

Figure 49. The mobile client of Microsoft Azure

AWS

- i

_ _NENp
rEramazon

u¥ webservices

date,2018-05-31-07:17, pressure,
875 3867 temperatures 23 777096

Figure 50. The mobile client of AWS
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Figure 49 shows the tested mobile client of Microsoft Azure, after click the “Get Message” button, the
client is able to get message from the storage account of Azure. For Example, as shown in the figure, the
client got a message include the date (2018-06-01-13:50). temperature value (27.673187), and pressure

value (979.8434).

Figure 50 shows the tested mobile client of AWS, after click the “Get Message” button, the client is able
to get message from the NoSQL Database of AWS Mobile Hub. For Example, as shown in the figure, the
client got a message include the date (2018-05-31-07:17), pressure value (975.3861), and temperature value

(23.777096).
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6. CoT Architecture for Global Cloud and IoT
Networks Based on Proxy Using OCF loTivity
and MQTT

6.1 CoT Design for Interworking between Global Cloud and IoT

Networks Based on Proxy

Recently, we is really necessary to study the interworking between Cloud and IoT Devices. Figure 51
shows the conceptual model of the architecture for Global Cloud and IoT Networks based on Proxy. The
proxy is able to get sensing data from loT Networks based on loTivity, and publish or store sensing data
message to cloud using MQTT or HTTP protocol. Then Client is able to get the sensing data message from

cloud using MQTT or HTTP protocol.

MQTT
l
loTivity——» Proxy ——|oTivity
7Y
loTivity
I
loT Network_1 loT Network_2 loT Network_n

Figure 51. Conceptual model of the architecture for Global Cloud and IoT Networks based on Proxy
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Figure 52 shows the configuration of IoT Devices, Sensor Connector is able to get sensing data from
sensors via the sensor drivers in Libraries. OCF loTivity Server is able to make sensing data resource and

response sensing data when loTivity Client requests.

Figure 53 shows the configuration of Proxy. OCF loTivity Client is able to send request to IoTivity
Server, when loTivity Server response sensing data, Data Buffering will get the sensing data and put the
data to Message Conversion. Message Conversion is able to convert the sensing data to message and push

the message to MQTT Client. MQTT Client is able to publish this message to the topic in cloud.

loT Device

OCF loTivity Server

Sensor Connector Libraries

loT Network

0sS

Figure 52. IoT Devices configuration

Proxy

Message Conversion Data Buffering

MQTT Client OCF loTivity Client

loT Network

0S

Figure 53. Proxy configuration
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Figure 54 shows the sequence diagram of the architecture for Global Cloud and IoT Networks based on
Proxy. When the proxy is running, IoTivity Client in Proxy will send request to IoTivity Server in loT
Device, and loTivity Server will get sensing data from sensors and return the sensing data to loTivity Client,
IoTivity Client will put the sensing data to MQTT Client. MQTT Client will publish the sensing data to the
topic in cloud as a message. At last, when the client pull message from a subscription of cloud, the cloud

will return message to the client.

Proxy 3 loT Device

Client Cloud 3 MQTT Client loTivity Client i loTivity Server Sensor

T | T T
I | I I
I ; I I
—Request sensing data—¥ |

T

|

|

|

: : | I‘—Request sensing data—p!

1

| | < —Return sensing data— —
|

: k& —Returh sensihg data— -
|
|

|

T
I
I
|
|
I
I
I
|
I
I
|
I
[
I

:d—Sensing data—:

| | |

Publish data to topic as rinessage—: :

——Pull messge—— | | |
K— — — —message- — — — —: : :

Figure 54. Sequence diagram of the architecture for Global Cloud and IoT Networks based on Proxy

Figure 55 shows the configuration architecture for the connection between IoT network and AWS based
on Proxy. We used one Raspberry Pi 3 Model B with Android Things system as Proxy, several other
Raspberry Pi 3 Model B boards with Android Things system as IoT devices, and we also used BMP280
Sensor (Temperature, Pressure) to get sensing data. [oT devices get sensing data from BMP280 sensors and
respond sensing data when the proxy request. Proxy is able to get sensing data from IoT devices based on
IoTivity, and publish sensing data messages to the topic in AWS IoT using MQTT protocol. The MQTT
messages in AWS cannot store automatically, so before the device publish message to the topic in AWS,
we will create the message item in NoSQL Database of AWS Mobile Hub to store the sensing messages.

And then Client is able to get message item from NoSQL Database of AWS Mobile Hub.
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Amazon Web Service Amazon Web Service

AWS loT Mobile Hub

MQTT T

MQTT Client

loTivity Client
loTivity > loTivity:
Android Things

Hardware: Raspberry Pi 3 Model B

*
loTivity
loTivity Server | loTivity Server

loTivity Server

Android Things Android Things

Android Things

Hardware: Raspberry Pi 3 Model B Hardware: Raspberry Pi 3 Model B

Hardware: Raspberry Pi 3 Model B

.

Figure S5. The configuration for the connection between IoT network and AWS based on Proxy

Figure 56 shows the configuration architecture for the connection between loT network and Azure [oT
Hub based on Proxy. We used one Raspberry Pi 3 Model B with Android Things system as Proxy, several
other Raspberry Pi 3 Model B boards with Android Things system as loT devices, and we also used
BMP280 Sensor (Temperature, Pressure) to get sensing data. IoT devices get sensing data from BMP280
sensors and respond sensing data when the proxy request. Proxy is able to get sensing data from IoT devices
based on loTivity, and publish sensing data messages to the topic in Azure loT Hub using MQTT protocol.
After the messages published to the topic of Azure, the messages will be stored in the Blobs of Storage

Account of Azure, and Client is able to get message files from Blobs of Azure.
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MQTT Client
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|
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Android Things
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Android Things
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Figure 57 shows the configuration architecture for the connection between IoT network and Google

Hardware: Raspberry Pi 3 Model B

Hardware: Raspberry Pi 3 Model B

§-

Figure 56. The configuration for the connection between IoT network and Azure IoT Hub based on Proxy
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Cloud based on Proxy. We used one Raspberry Pi 3 Model B with Android Things system as Proxy, several
other Raspberry Pi 3 Model B boards with Android Things system as loT devices, and we also used
BMP280 Sensor (Temperature, Pressure) to get sensing data. IoT devices get sensing data from BMP280
sensors and respond sensing data when the proxy request. Proxy is able to get sensing data from IoT devices
based on loTivity, and publish sensing data messages to the topic in Google Cloud IoT Core using MQTT
protocol. The messages published to topic in Google Cloud will disappear after several days, so if we want
to store the messages, we need to use Google Cloud Datastore. When we publish the message to the topic

in Google Cloud, we also create a message entity in Google Cloud Datastore. Client is able to pull message




from subscriptions in Google Cloud, if the message has been disappeared, Client is able to get message

entity from Google Cloud Datastore.

.‘ Client

MQTT HTTP

Google Cloud Google Cloud

loT Core Datastore

MQTT T

MQTT Client

loTivity Client
loTivity > loTivity
Android Things

Hardware: Raspberry Pi 3 Model B

*
loTivity
loTivity Server | loTivity Server

loTivity Server

Android Things Android Things

Android Things

Hardware: Raspberry Pi 3 Model B Hardware: Raspberry Pi 3 Model B

Hardware: Raspberry Pi 3 Model B

Figure 57. The configuration for the connection between IoT network and Google Cloud based on Proxy
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6.2 Experiments and Results of CoT Architecture for Global

Cloud and IoT Networks Based on Proxy

Table 10 shows the configuration environment of [oT Device. The Android Things system we used is

version 0.6.1, and we also used Android SDK 26, Java 1.8, loTivity 1.2.1, Google Bmx280 Sensor Driver

0.4.
Components Version
Android Things 0.6.1
Android SDK 26
Java 1.8
IoTivity 1.2.1
Bmx280 Sensor Driver 0.4

Table 10. Configuration environment of IoT Device

Table 11 shows the configuration environment of Proxy. Compare with the other boards, we add cloud
SDKs instead of the Bmx 280 sensor driver, include Microsoft Azure IoT SDK 1.6.0, AWS Android SDK

2.6.11, Google Cloud Platform SDK 1.22.0.

Components Version
Android Things 0.6.1
Android SDK 26
Java 1.8
loTivity 1.2.1
Microsoft Azure IoT SDK 1.6.0
AWS Android SDK 2.6.11
Google Cloud Platform SDK 1.22.0

Table 11. Configuration environment of Proxy
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Table 12 shows the development environment of mobile clients based on Proxy. We used Android Studio
3.0.1, Android SDK 27, AWS Java SDK 1.11.293, Azure IoT SDK 1.7.23, Google Cloud PubSub 0.45.0,

Google Cloud Storage 1.26.0, and Google Cloud Datastore 1.31.0.

Components Version

Android Studio 3.0.1
Android SDK 27

AWS Java SDK 1.11.293
Azure IoT SDK 1.7.23
Google Cloud PubSub 0.45.0
Google Cloud Storage 1.26.0
Google Cloud Datastore 1.31.0

Table 12. Development environment of mobile clients based on Proxy

Figure 58 shows the IoT devices we used in architecture for Global Cloud and IoT Networks based on
Proxy. We installed Android Things in Raspberry Pies, and we used BMP280 pressure and temperature
sensor. Figure (a) shows the proxy board, figure (b) shows the normal Android Things boards, and figure

(c) shows the BMP280 sensor we used.

(a) Raspberry Pi (b) Raspberry Pi (c) BMP 280 Sensor
(Proxy) (loT Devices)

Figure 58. IoT devices used in architecture for Global Cloud and IoT Networks based on Proxy
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Figure 59 shows the connection information of AWS in code of Proxy. The information includes
customer specific endpoint, Cognito pool ID, AWS IoT policy name, region, key store name, key store

password and certificate ID.

private static f.Lnal Stnng CUSTOMER SPECTFIC ENDPOINT = "alnnptroowb3Trg.iot.us-east-21.amazonaws.com”;

~scnifo Doo For this spp. pool nesds bo b= ynapthesnticated pool witk
pool ID. For tkis spp, pool icated pool wi

AdS IoT p=rmissions.
private static final String COGNITO POOL ID = "us-east-2:4f5627c9-elbe-4563-8606-9ac24600c90";

Nam= of the ANS IoT policy to attack d opevily created certificace

pnvate atatic final String AWS IOT . DDLI:’.T NAME = Andrmd'rhmq"'

Regisn of ANS

pr:.vate stat:.c fmal F.l:qir:,':s HY | I-EEGIGH = Reqmns Us EAST It

ames af ave File an Ehe £1las -

pnvnr.e static fma_'l. Stnng KEYS‘E‘CEIE MM-E = "iot keystore";

b for the private B tka H cEore
a1 ia Priva

pz.l.\rat-e static fmal String RETS“IWIE E‘ASMRD = "password”;

i g y = . . - s
Cartificace and kay aliasas in 1 HayStors

private static final 51::1:113 EIRTIFIGAE ID = "default”;

Figure 59. Connection information of AWS based on Proxy

Figure 60 shows the result (sensing data) of cloud (AWS). the message has published successfully. And
as shown in the figure, the message include date (2018-02-09-11:24:35), temperature value (24.37198), and

pressure value (807.8578).

mytopic Feb 9, 2018 B:24:47 PM +0900

e cannot display the message as JSON, and are instead displaying it as UTF-8 String.

Time,2018-22-89-11:24:35, Temperature, 24.37198 ,Pressure,B887.8578

Figure 60. Results of cloud (AWS) based on Proxy

Figure 61 shows the successful connections in 1 hour with AWS based on Proxy, When the connections

become stable, the message publish speed is 0.1/s, the minimum speed is 0/s, the maximum speed is 0.1/s.
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Figure 61. The successful connections in 1 hour with AWS based on Proxy

Figure 62 shows the data stored in AWS NoSQL database based on Proxy. The name of the table is
finaltest-mobilehub-887317787-messages, the primary sort key is the date, each item includes date,

temperature value, and pressure value. For example, as shown in figure, there is an item shows information

include date (2018-06-01-13:53), pressure value (979.73376), and temperature value (28.216324).

Scan: [Table] finaltest-mobilehub-887317787-messages: ... { Viewing 101 to 187 items

[Table] finaltest-mobilehub-887317787-messages: userld, date

© Add filter
userld date pressure temperature
raspberry-1 2018-05-31-12:58 807.5527 24.115576 1
raspberry-1 2018-05-31-12:59 807.5709 24.136087
raspberry-1 2018-05-31-13:00 807.38806 23.987368
raspberry-1 2018-05-31-13:01 807.38806 23.992496
raspberry-1 2018-06-01-13:48 979.7905 27.908895
raspberry-1 2018-06-01-13:49 979.7643 27.796167
raspberry-1 2018-06-01-13:50 979.8434 27 67318%
raspberry-1 2018-06-01-13:51 979.7241 28.00625
raspberry-1 2018-06-01-13:52 979.8033 28.2983
raspberry-1 2018-06-01-13:53 979.73376 28.216324

Figure 62. Data stored in AWS NoSQL database based on Proxy

58



Figure 63 shows the connection information of Azure in code of Proxy. The information includes

connection string (primary key) and device ID.

private final String connString = "HostHame=my-hub.azure-devices.netDeviceld=raspherry-pi;SharediccessRey=0hd wloKS4BDET Su/ 7051 Cni051d0eGBIu0P/ r3Z6I=";
private final String deviceld = "raspberry-pi";

Figure 63. Connection information of Azure based on Proxy

Figure 64 shows the received messages in Azure based on Proxy, it’s not able to show messages directly,

we need to download the message file. Figure (a) is the Blob service of the storage we created, it is able to

find the messages folder, and figure (b) shows when we click the messages file, it’s able to click the

“Download” button to download the messages file.

Biob senvice

Blob service

HARSF

myTETsages

myTessages

Location: » e

MARLE

ry-huab

(a)

LAST MODIFIED

TYPE

CONTENT-MDS

LEASE STATUS

(b)

Figure 64. Received message file in Azure based on Proxy
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Figure 65 shows the downloaded sensing data file based on Proxy, the message has published
successfully. And as shown in the figure, the message include date (2018-02-09-11:59:41), temperature

value (24.16173), and pressure value (807.6015).

Wmes3ageIdH48571972-efad-4c68-a0ed-B8c670Ef41T07EMEcorrelationIdi36d895b7-caTe-4f4e-8a0c-6e5e458222b% con
nectionDeviceId@raspberry-pi (connectionAuthMethodeEE{ "scope™: "device", "type":"sas", "issuer":"iothub", "a
cceptingIpFilterRule™:null }8connectionDeviceGenerationId$636465184990622747 @ enquensdTime82018-02-09T11:59
:46.1310000Z REpRE¥R~Time, 2018-02-09-11:59:41, Temperature, 24.16173, Pressure, 807. Gnls[m-QEkI—‘fl'i?KSéb.../Y

Figure 65. Result file of Azure based on Proxy

Figure 66 shows the sum messages delivered to storage endpoints of Azure based on Proxy. When the

connections become stable, the message publish speed is 0.04/s, the minimum speed is 0/s, the maximum

speed is 0.04/s.
Sum Messages delivered {o storage endpomts 4 ,‘, +
'\‘lE':E-'-\':EE DELIVERE. h
30

Figure 66. Sum messages delivered to storage endpoints of Azure based on Proxy

Figure 67 shows the connection information of Google Cloud Platform in code of Proxy. The information
includes default bridge hostname, default bridge port, project ID, Registry ID, Device ID, region, topic

format, client ID format and broker URL format.
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private static final String DEFAULT_MEGE_HUSI?WE = "mgtt.googleapis.com”;
private static final short DEFAULT_E’RIWE_FORT = BEE3;

private static final String FROJECT ID = "raspberrypi-187702";

private static final String REGISRY I "my-registry-03";

private static final String DEVICE ID = "my-raspberryOL";

private static final String REGION = "asia-eastl";

L=
[}

public static final String UNUSED ACCOUNT NAME = "unused”;

private static final 3tring MOIT TOPIC FORMAT = "/devices/#s/events";

private static final 3String MOTT CLIENT ID FORMAT = "projects/®s/locations/%s/registries/#s/devices/#s";
private static final String BROKER URL FORMAT = "ssl://#s:8d";

Figure 67. Connection information of Google Cloud Platform based on Proxy

| s | ATTRIBUTES

{"dm“:[("[mescmm_'[en\uexa[ure": §3, "Temperature' Pressure”:983,5136108398438) ]} | 33979070937648 ‘ deviceld=ny-raspberry0l | (BUMOGUESVHr QwaqBEOBCEREA-RVN
UAYHLELGSFESGORoUQSEXIM NSAGRRI, kaBLENGKJEZ
| devicemmIo=3nsamsrsonasgs |

j deviceRegistry Tegistry-04

| deviceReistrylocation=asia-eastl |
‘ projectId=raspberrypi-187702 |

1 subFolder= |

Figure 68. Published message in topic of Google Cloud based on Proxy

Figure 68 shows the result in Google Cloud Platform based on Proxy, the message has published
successfully. We need shell command to pull the message from a subscription, and as shown in figure, there
is a message include device ID, device registry ID, device registry location, project ID, temperature value,

and pressure value.

Figure 69 shows the publish request count of Pub/Sub topic in Google Cloud Platform based on Proxy.
When the connections become stable, the message publish speed is 0.033/s, the minimum speed is 0/s, the

maximum speed is 0.1/s.
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Figure 69. The publish request count of Pub/Sub topic in Google Cloud Platform based on Proxy

Entities CREATE ENTITY C REFRESH
name=2018-06-04-12:03  2018-06-04-12:03 976.3289 27.140238
name=2018-06-04-12:04  2018-06-04-12:04  976.41974 27.283728
name=2018-06-04-1205  2018-06-04-12:05  811.6852 27.580952
name=2018-06-04-1206  2018-06-04-12:06  811.69745 27.591198
name=2018-06-04-12:07  2018-06-04-12:07  811.42267 27.375973
name=2018-06-04-1208  2018-06-04-12:08 810.3298 26.453457
name=2018-06-04-1209  2018-06-04-12:09  809.80475 26.022884
name=2018-06-04-12:10  2018-06-04-12:10 809.05396 . 25.387207
name=2018-06-04-1211  2018-06-04-12:11 808.96234 25.310303
name=2018-06-04-1212  2018-06-04-12:12  976.61 25.002678

Figure 70. Data stored in Google cloud Datastore based on Proxy

Figure 70 shows the data stored in Google cloud Datastore based on Proxy. Messages stored there as
entities, the kind of the data is “messages”, each entity’s name is the date, and the entity includes date,
temperature value, and pressure value. For example, as shown in figure, there is an entity shows information

include date (2018-06-04-12:03), pressure value (976.3289), and temperature value (27.140238).
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Google Cloud Platform
|

mestamp_Temperature

.23, Temperature

053.4248820797152)])

Get Message

Figure 71. The mobile client of Google Cloud for Google Cloud IoT Core based on Proxy

Figure 71 shows the tested mobile client of Google Cloud for Google Cloud IoT Core based on Proxy,
which is able to pull messages from subscriptions. After click the “Get Message” button, the client is able
to pull message from a Google Cloud subscription. For example, as shown in the figure, the client pulled a
message include the date (2018-05-27-06:23), pressure value (953.4248820797152), and temperature value

(27.241511379901467).

Figure 72 shows the tested mobile client of Google Cloud for Google Cloud Datastore based on Proxy,
which is able to get message entities from Google Cloud Datastore. After click the “Get Message” button,
the client is able get an entity from Google Cloud Datastore. For example, as shown in the figure, the client
pulled a message include the date (2018-06-04-12:03), pressure value (976.3289), and temperature value

(27.140238).
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Goodgle Cloud Platform
date, 2018-06-04-12:03 pressure

B/6.3289 temperature,27.140238

Get Message

Figure 72. The mobile client of Google Cloud for Google Cloud Datastore based on Proxy

Figure 73 shows the tested mobile client of Microsoft Azure based on Proxy, after click the “Get Message”
button, the client is able to get message from the storage account of Azure. For Example, as shown in the
figure, the client got a message include the date (2018-06-04-12:07). temperature value (27.375973), and

pressure value (811.42267).

Figure 74 shows the tested mobile client of AWS based on Proxy, after click the “Get Message” button,
the client is able to get message from the NoSQL Database of AWS Mobile Hub. For Example, as shown
in the figure, the client got a message include the date (2018-16-01-13:48), pressure value (979.7905), and

temperature value (27.908895).
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gl Microsoft
HSll Azure

date,2018-06-04-12:07 temperature,
27.375973,pressure,811.42267

Figure 73. The mobile client of Microsoft Azure based on Proxy

AWS

*ﬂf am azon

uF webservices

Hl[ 2011 8-06-01-13:48,pressure,

879,7505 temperature, 27 908895

Figure 74. The mobile client of AWS based on Proxy
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7. CoT Architecture for Vehicle Monitoring and
Control Service Based on Proxy Using OCF
IoTivity and MQTT

7.1 CoT Design for Vehicle Monitoring and Control Service

Based on Proxy

Electric vehicles have been used more and more wildly. In this paper, we present the mobile control
service of electric vehicles based on CoV architecture, which is able to provide users monitor service and

control service, and upload vehicle states to cloud.

Administer Client User Client

Amazon Web Service Google Cloud

Proxy

Electric Vehicles

Electric Vehicle_1 Electric Vehicle_n

Electric Vehicle_2

Figure 75. Conceptual model of CoT architecture for vehicle monitoring and control service
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Figure 75 shows the conceptual model of CoT architecture for vehicle monitoring and control service.
The proxy is able to get vehicle state from electric vehicles and upload the state information to cloud (AWS,
Azure, Google Cloud), the clients are able to get vehicle state information from cloud and show the state to
users. The vehicle state information include battery state (present), door state (lock or unlock), trunk state
(lock or unlock), audio state (turn on or turn off), head lights state (turn on or turn off), interior light state
((turn on or turn off)), alarm state ((turn on or turn off)), and the engine state (start or stop). The administer
client is able to control electric vehicles, include lock or unlock the doors, lock or unlock the trunk, turn on
or turn off the audio, turn on or turn off the head lights, turn on or turn off the interior light, turn on or turn

of the alarm, and start or stop the engine.

Electric Vehicle Mobile Client
Energy and Battery Module Audio Module Main Page
Trunk Module Head Light Module Control Page
Interior Light Module GPS Module Sce?c:r (:::> ((Z:I(i):npt Settings Page
Security Alarm Module Engine Module State Page
Network Module Doors Module gt d Client
Page

Figure 76. The design of the vehicle CoT architecture

Figure 76 shows the design of the vehicle CoT architecture. The system consists of two parts: Vehicle
Emulator and App Client. In Vehicle Emulator, there are ten modules include energy and Battery Module,
Trunk Module, Interior Light Module, Security Module, Network Module, Audio Module, Head Light
Module, GPS Module, Engine Module, and Doors Module, there is also a CoAP Server in vehicle Emulator.
Energy and Battery Module is able to check the state of the battery. Audio Module is able to turn on/off the
audio. Trunk Module is able to lock/unlock the trunk. Head Light Module is able to turn on/off the head

light. Interior Light Module is able to turn on/off the interior light. GPS Module is able to turn on/off the
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GPS. Security Alarm Module is able to start/stop the security service (security alarm). Engine Module is
able to start/stop the engine. Network Module is able to set up the network settings and turn on/off network
connection. Doors Module is able to lock/unlock the doors. CoAP Server is able to get the request from
Client and respond accordingly. In App Client, there are four modules include Main Page Module, Control
Page Module, Settings Page Module, and State Page Module, there is also a CoAP Client in App Client.
The main page is able to show all functions of this app (Control, Settings, State). The control page is able
to control the Vehicle Emulator. The settings page is able to let users set the IP address of the Vehicle
Emulator. The state page is able to show the battery state of the Vehicle Emulator. CoAP Client is able to

send request to control Vehicle Emulator or get battery state from Vehicle Emulator.

Cloud Mobile Client Electric vehicle
I I
| |
| |
[ Get Battery state—PI
K—————- Battery state- — — — — — — -

Save state

Get state

Figure 77. The sequence diagram for monitoring electric vehicle

Figure 77 shows the sequence diagram for monitoring electric vehicle. When Mobile Client send “get
battery state” request to Vehicle Emulator, Vehicle Emulator will return battery state to App Client. After
the client controls the vehicles, it is able to upload the vehicle state to cloud. When the client request vehicle

state from cloud, the cloud is able to return the state of vehicles.

Figure 78 shows the sequence diagram for controlling electric vehicle. When App Client send “start/stop

engine” request to Vehicle Emulator, Vehicle Emulator will start/stop engine and return true/false to App
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Client. When App Client send “turn on/off audio” request to Vehicle Emulator, Vehicle Emulator will turn
on/off the audio and return true/false to App Client. When App Client send “lock/unlock doors” request to
Vehicle Emulator, Vehicle Emulator will lock/unlock the doors and return true/false to App Client. When
App Client send “lock/unlock trunk” request to Vehicle Emulator, Vehicle Emulator will lock/unlock the
trunk and return true/false to App Client. When App Client send “turn on/off head light” request to Vehicle
Emulator, Vehicle Emulator will turn on/off the head light and return true/false to App Client. When App
Client send “turn on/off interior light” request to Vehicle Emulator, Vehicle Emulator will turn on/off the
interior light and return true/false to App Client. When App Client send “turn on/off alarm” request to
Vehicle Emulator, Vehicle Emulator will turn on/off the alarm and return true/false to App Client. When
App Client send “turn on/off GPS” request to Vehicle Emulator, Vehicle Emulator will turn on/off GPS

and return true/false to App Client.

Mobile Client Electric vehicle

I I
b start/Stop engine—————pl

|< ————————— True/FaIse——————————I
| |
I " g
——"Tum on/off audic >
K————————= True/False — — — — — — — — —

|

lk ————————— True/False — — — — — — — — — |
| |
I—Lock/UnIocktrunl\ ;'
| |

Figure 78. The sequence diagram for controlling electric vehicle
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7.2 Experiments and Results of CoT Architecture for Vehicle

Monitoring and Control Service Based on Proxy

Table 13 shows the development environment of vehicle emulator.

Component Version
Windows OS 10
Visual Studio 2015

CoAP.NET v4.0.30319

Table 13. Development environment of IoT Vehicle System

Table 14 shows the development environment of mobile client.

Component Version
Android Studio 3.0.1
Android SDK 27
org.eclipse.californium 2.0
AWS Android SDK 2.6
Azure [oT SDK 1.7.23
Google Cloud Datastore 1.31.0

Table 14. Development environment of mobile client

Figure 79 shows the implement design of CoT architecture for vehicle monitoring and control service.
There is one app that include the user client part, administer client part, and proxy part. This app is able to
monitor the vehicle emulator, control the vehicle emulator, upload the state of vehicle emulator to cloud,

and get the state of vehicle emulator from cloud.
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User Client

Amazon Web Service Google Cloud

Mobile Client

Administer Client Proxy

Vehicle Emulator

Figure 79. Implement design of CoT architecture for vehicle monitoring and control service

Figure 80 shows the implementation result of Vehicle Emulator. Figure (a) shows the initial state, figure

(b) shows the state that all modules have been opened.

# Hlectric Vehicle Control Panel

orr on o on orr on orr on

WEAD  INTERIOR WEAD INTERIOR

LIGHT LIGHT LIGHT LIGHT
stop | STAND | sagy UNLOCK LOCK  UNLOCK LOCK stop | STAND | sragy UNLOCK LOCK  UNLOCK LOCK.

TRUNK TRUNK
DOORS  TRUNK - - DOORS  TRUNK
-
SECURITY s SECURITY s

AUDIO PLAYER e @ Avooraver
NOW PLAVING...

ALARM
NOW PLAYING...

BATTERY CHARGE BATTERY CHARGE

B

'NORMAL NORMAL
PlugIn  CHARGE > . Plugln  CHARGE

LOCATION Quick LOCATION Quick
Plug-In CHARGE Plug-In CHARGE

(a) Turn off state

(b) Turn on state

Figure 80. Implementation results of vehicle Emulator
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Figure 81 shows the implementation result for monitoring part of mobile client. Figure (a) shows the
main page, there are four buttons in the main page, which is able to visit the control page, the monitor mage,
the setting page, and the cloud client page. Figure (b) shows the state page, which is able to show the battery

state of Vehicle Emulator.

ELECTRIC VEHICLE

=
B3

Cloud Client

(a) Main page (b) Battery state page

Figure 81. Implementation results for monitoring part of mobile client

ENGINE AUDIO PLAYER
STATE: STOP STATE: OFF
DOORS TRUNK
Input EV IP address
STATE: UNLOCK STATE: UNLOCK
117.17.102.48
HEAD LIGHTS INTERIOR LIGHT
SAVE STATE OFF STATE: OFF
ALARM GPS
STATE: OFF STATE: OFF
Upload State to AWS
Upload State to Google
(a) Setting page (d) Control page

Figure 82. Implementation results for controlling part of mobile client
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Figure 82 shows the implementation result for controlling part of mobile client. Figure (a) shows the
setting page, which is able to let users input the IP address of Vehicle Emulator. Figure (b) shows the control
page, there are eight buttons to control different modules include engine, audio player, doors, trunk, head
lights, interior light, alarm, and GPS. Under the control buttons, there are three buttons which are able to

upload current vehicle state to cloud (AWS, Azure, Google Cloud Platform).

Figure 83 shows how to start the network (CoAP) connection. Click the image in figure (a) is able to
start the connection, and the figure will change as figure (b) (the color of the internet icon will change from

blue to green).

2 (ehic Control Pane
(] | ‘s

ENGINE <. |} ENGINE L |

or o oF o oe on |

|

(a) Stop Internet connection (b) Start Internet connection

Figure 83. The way to start the network connection

Figure 84 shows how to control the engine. Click the stand button and then click the start button will
start the engine, click the stop button will stop the engine. Figure (a) shows the engine-start state, figure (b)

shows the engine-stop state.

oy Electric Vehicle Control Panel #y Electric Vehicle Control Panel

ENGINE

STAND I START

(a) Engine start (b) Engine stop

Figure 84. The way to control the engine

Figure 85 shows how to control the audio player. Click the small icon will start the player, click the icon

again will stop the player. Figure (a) shows the player-on state, figure (b) shows the player-off state.
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AUDIO PLAYER
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(a) Audio on

AUDIO PLAYER
\
NOW PRAYING...

Ep N

(b) Audio off

Figure 85. The way to control the audio player

Figure 86 shows how to control the head lights. Move the marker to “ON” will turn on the head lights,

move the marker to “OFF” will turn off the head lights. Figure (a) shows the lights-on state, figure (b)

shows the lights-off state.

OFF ON OFF ON

HEAD INTERIOR
LIGHT LIGHT

(a) Head lights on

OFF ON

HEAD
LIGHT

(b) Head lights off

Figure 86. The way to control the head lights

oFr on
o

INTERIOR
LIGHT

Figure 87 shows how to control the interior light. Move the marker to “ON” will turn on the interior light,

move the marker to “OFF” will turn off the interior light. Figure (a) shows the light-on state, figure (b)

shows the light-off state.

orr on
[]

INTERIOR
LIGHT

X umtoox Locx
[ ]

TRUNK

(a) Interior lights on

oFF on
]

HEAD
LIGHT

DOORS

(b) Interior lights off

Figure 87. The way to control the interior light
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Figure 88 shows how to control the doors. Move the marker to “LOCK” will lock the doors and the lock

icon will turn to locked, move the marker to “UNLOCK” will unlock the doors and the lock icon will turn

to unlocked. Figure (a) shows the doors-lock state, figure (b) shows the doors-unlock state.

HEAD N

(a) Doors locked

OFF N OFF Oon

LIGHT LIGHT

untock Locx  ff unLock Lock

DOORS TRUNK

TERIOR

orF on
[]

HEAD
LIGHT

UNLOCK LOCK

DOORS

(b) Doors unlocked

Figure 88. The way to control the doors

OFF ON
INTERIOR
LIGHT

UNLOCK LOCK

TRUNK

Figure 89 shows how to control the trunk. Move the marker to “LOCK” will lock the trunk and the trunk

icon will turn to locked, move the marker to “UNLOCK” will unlock the trunk and the trunk icon will turn

to unlocked. Figure (a) shows the trunk -lock state, figure (b) shows the trunk -unlock state.

AW
s10P __ STAND _ s1aART

(a) Trunk locked

(b) Trunk unlocked

Figure 89. The way to control the trunk

OFF ON OFF ON

[} ]
HEAD INTERIOR
LIGHT LIGHT
o o
[} [ ]
DOORS TRUNK
OFF ON OFF ON
] 0
SECURITY| GPS
ALARM
(a) Alarm on
.
Figure 90

. The way to control the security alarm
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Figure 90 shows how to control the security alarm. Move the marker to “ON” will turn on the alarm,

move the marker to “OFF” will turn off the alarm. Figure (a) shows the alarm-on state, figure (b) shows the

alarm-off state.

Figure 91 shows how to control the GPS. Move the marker to “ON” will turn on the GPS, move the

marker to “OFF” will turn off the GPS. Figure (a) shows the GPS-on state, figure (b) shows the GPS-off

state.

e e
[} [ ] [} [ |
HEAD INTERIOR HEAD INTERIOR
LIGHT LIGHT LIGHT LIGHT
e o
] ] 1 o
DOORS TRUNK DOORS TRUNK
= || B
1 1 1 1
SECURITY GPS SECURITY GPS
ALARM ALARM
(a) GPS on (b) GPS off

Figure 91. The way to control the GPS

After controlling the vehicles, the clients are able to upload current vehicle state to clouds (AWS, Azure,
Google Cloud Platform). Figure 92 shows the stored state in the NoSQL Database of AWS Mobile Hub.
For example, on the date “2018-06-23-02:08”, on the vehicle “vehicle-17, the audio was off, the doors were
locked, the engine was stop, the head lights were on, the interior light was on, the trunk was locked, the

alarm was on, and the GPS was on.

Figure 93 shows the stored state in Azure Storage Account. For example, on the date “2018-06-23-04:56",
on the vehicle “vehicle-17, the engine was stop, the audio was off, the door was unlocked, the trunk was

unlocked, the head lights were off, the interior light was off, the alarm was off, the GPS was off.

Figure 94 shows the stored state in Google Cloud Datastore. For example, on the date “2018-06-23-
04:23”, on the vehicle, the alarm was off, the audio was on, the doors were unlocked, the engine was start,

the GPS was off, the headlight was on, the interior light was on, the trunk was unlocked.
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[Table] vehicles-mobilehub-1520290369-state: userld, date

@ Add filter
userld date audio doors engine headlights interiorlight trunk alarm gps
wvehicle-1 2018-06-23-02:08 audio-off door-lock engine-stop headlight-on interiorlight-on  trunk-lock alarm-on gps-on
vehicle-1 2018-06-23-02:09 audio-on door-unlock engine-stop headlight-on interierlight-on.  trunk-lock alarm-on gps-on
vehicle-1 2018-06-23-02:10 audio-on door-unlock engine-stop headlight-on interiorfight-on  trunk-unlock alarm-on gps-on
vehicle-1 2018-06-23-02:11 audio-on door-unlock engine-stop headlight-on interiorlight-on  trunk-unlock alarm-on gps-on

Figure 92. The stored vehicle state in AWS NoSQL Database

b EEE avro.codecEBnullEflavro.schema?{"type™: "record”, "name™ : "Message™, "namespace”: "Microsoft.Azure.Devices", "fields™: [{'
name": "EnqueuedTimelUcc™, "type™:"string™}, {"name™: "Properties”, "type™: {"type™: "map"”, "values": "string™}}, {"name™: "SystemProperties
" "type":{"type":"map™, "values":"string™}}, {"name™: "Body™, "type™: ["oull", "bytes™]}] .14 =], ?82018-06-23T04
155:31.8540000 REAn-ssageIdHEefl8ed3-e5c2-4795-bb5a-2504772b8208 orrelationldH7d5986d3-718f-484f-97db-be68dbbdl4a4Sconn
ectionDeviceldl raspberry-pi (connectionAuthMethod?{"scope” :"device”, "type”:"sas", "issuer” :"iothub”, "acceptingIpFilterRule” ;nul
l}8connectionDeviceGenerationId$63646518495069274 enguenedTime82018-06-23T04:55:31,85400002ZR E¥A?2018-06-23-04:56, engine—-sto
p,audio-off, door-unlock, trunk-unlock, headlight-off,interiorlight—off, alarn—off, gps—off82018-06-23T04:55:32.2520000 AR mqt t -du
pERtru e =zageldd8efl8ed3-a5c2-4T795-bb5a-2504772b820 correlationIdHT7d5886d3-718f-484Ff-97db-beé8dbbdil4a4éconnectionD
i raspberry-pi(connectionfuthMethod?{"=cope”: "device™, "type":"2a=s", "is=uer™: "iothub™, "acceptingIpFilterRule” null YBconn
ectionbDeviceGenerationld$63646518499069274 engquenedTime82018-06-23T04:55:32.2320000 2018-06-23-04:56,engine-stop, audio
—off,door-unlock, trunk-unlock,headlight-off,interiorlight-off,alarm-off, gps—off{EENE «@N], EH ER?E2018-06-23T04:55:36.0260
3R s saqgeIdH9da?d04c—a50a-4adf-8335-26278a649b15 correlationIdHbece6e0f-4b5c-40de—-al44-5157fa8735158connectionbevic
raspberry-pi (connectionduthMethod?{"scope™: "device”, "type":"sas", "issuexr™:"iothub”, "acceptingIpFilterRule” :null}8connecti
onDeviceGenerationIdS63646518499065274 enquenedTime82018-06-23T04:55:38. 02600002 EWA?2018-06-23-04:56, engine—stop, audio-off
door—unlock, trunk-unlock,headlight-off,interiorlight—off,alarm—off, gps—-off82018-06-23T04:55:45.2300000 e =ssageIdHeS£E98
cD—89cef-—4cb3-acat-1c0dT7edfes9e| orrelationIdHa0l8TT2c-e819-4c93-82db-4rf7821beaddeSconnectionbeviceld raspberrv-pi (connectio
nauthMethod?{"scope™: "device"”, "type™:"sas", "issuer™:"iothub”, "acceptingIpFilterRule™:null}BconnectionDeviceGenerationId$63646518
lenguenedTime82018-06-23T04:55:45.23000002ZR EA?2018-06-23-04: 56, engine-stop, audio-off, door-unlock, trunk-unlock, hea
dlight-off,interiorlight-off,alarm-off, gps—off82018-06-23T04:55:52.379000 [ ez sageldHIb6T7f451-8dl6-4ed2-beb5-89ebl566b3a
orrelationIdH76d2f693-0ceb-4c38-9542-aef50e5adfi6iconnectionDeviceIdl raspberryv-pi (connectionAuthMethod?{"scope™: "device™
,"type™:™sas", "issuer™: "iothub", "acceptingIpFilterRule™:null}8connectionDeviceGenerationIdS63646518439506927 engueunedTime8201
B-06-23T04:55:52.3790000 E¥8?2018-06-23-04:56,engine-stop,audio-off, door-unlock, trunk-unlock, headlight—-off, interiorlight-off
,2larm-off, gps-offB2018-06-23T04:55:59. 2240000 GFAMEIngt ¢ -dupEEtruel A e ssage IdHE4987948-5808-46%e-97bE-75aa394 £d8ec
rrelationIdH182a785c—Thba6—4bd5-b002-d75615a60%e38connectionDeviceld raspberry-pi (connectionfuthMethod?{"scope":"device”, "type
":"sas", "jzsuer”:"iothub", "acceptingIpFilterRule™:null}B8connectionDeviceGenerationId$63646518499065274 nguenedTime82018-06-2
3TD4:55:598.2240000Z| 201B8-06-23-04:56, engine—-ston,audio-—off, door-unlock, trunk-unlock, headlight-off,interiorlight-off,alarm
-0ff, gps{ofIsm

Kind

vehicle -

Number of columns to display 50 =

Name/ID alarm audio date doors engine gps headlights interiorfight frunk

name=2018-06-23-04:08

name=2018-06-23-04:09

name=2018-06-23-04:10

name=2018-06-23-04:11

name=2018-06-23-04:23

name=2018-06-23-04:26

Figure 94. The stored vehicle state in Google Cloud Datastore

When users want to get vehicle state from cloud, they are able to enter the Cloud Client page from the
main page. There are three buttons, which are able to get vehicle state from AWS, Azure, and Google Cloud

Platform. Figure 95 shows the vehicle state got from AWS, on the date “2018-06-23-02:10”, on the vehicle,
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the engine was stop, the audio was on, the door was unlocked, the trunk was unlocked, the head lights were

on, the interior light was on, the alarm was on, the GPS was on.

EVC

Get State from Cloud

2018-06-23-02:10,engine-stop,audio-on
door-unlock trunk-unlock headlight-on,i
iterlorlight-on,alarm-on.gps-on

Get State from Google

Figure 95. The vehicle state of AWS in mobile client

EVC

Get State from Cloud

[2018-06-23-05.00,engine-stop,audio-off]
idﬁ-ur-luuk_‘-.u'*.k lock headlight-off interi|
priight-on.alarm-off.gps-off

Get State from Google

Figure 96. The vehicle state of Azure in mobile client
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Figure 96 shows the vehicle state got from Azure, on the date “2018-06-23-05:00”, on the vehicle, the
engine was stop, the audio was off, the door was locked, the trunk was locked, the head lights were off, the

interior light was on, the alarm was off, the GPS was off.

Figure 97 shows the vehicle state got from Google Cloud Platform. On the date “2018-06-23-04:08”, on
the vehicle, the engine was stop, the audio was off, the alarm was off, the door was unlocked, the trunk was

unlocked, the head lights were off, the interior light was off, the GPS was off.

EVC

Get State from Cloud

imindexes=false

aning=0, value=alarm-off},

pudio=StringValue{valueType=STRING,

excludeFromindexes=false,

bocorinael janlio paclio =8N

Get State from Google

Figure 97. The vehicle state of Google Cloud in mobile client
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8. Conclusion

This paper presented the design and implementation of CoT architecture based on proxy using IETF
CoAP and OCF loTivity for connectivity between IoT Networks and cloud, there are five different
architectures which are able to collect massive sensing data from IoT devices and then upload the data to
cloud for the further analysis. The first CoT architecture is for Hadoop and IoT platforms, IoT platform is
able to upload sensing data files to Hadoop Distributed File System (HDFS). The second CoT architecture
is for Hadoop and IoT Networks, there is an agent that is able to get sensing data from IoT devices and
upload the data to HDFS using CoAP protocol. The third CoT architecture is for global cloud and IoT
networks, AWS, Azure, and Google Cloud is used as global cloud and is able to communicate with IoT
networks using MQTT protocol and store the sensing data. The fourth CoT architecture is for global cloud
and IoT networks based on proxy, the proxy is able to get sensing data from IoT networks and send to store
in cloud (AWS IoT, Azure loT Hub, and Google Cloud IoT Core) using OCF loTivity and MQTT protocol.
After some experiments we also compared the IoT cloud services of AWS, Azure, and Google Cloud
Platform. The fifth CoT architecture is for vehicle monitoring and control service, the client is able to
monitor vehicles, control vehicles, and get vehicle state from cloud. During the design and implement of
these architectures, we had more understanding about IoT services based on Clouds. In the future, we aim

to make comparison by adding more IoT devices and develop a more complicated comparison system.
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