

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

S
ongai X

uan

2
0
1
8

A
 S

tudy of C
oT

 A
rchitecture for Interw

orking betw
een IoT

 N
etw

orks and

C
loud U

sing IE
T

F C
oA

P
 and O

C
F IoT

ivity

A Thesis

For the Degree of Master of Engineering

A Study of CoT Architecture for Interworking between IoT
Networks and Cloud Using IETF CoAP and OCF IoTivity

Songai Xuan

Department of Computer Engineering

Graduate School

Jeju National University

June 2018

Acknowledgment

First and foremost, I would like to show my deepest gratitude to my supervisor, Prof. Do-Hyeun Kim, a

respectable, responsible and resourceful scholar, who has provided me with valuable guidance in every

stage of the writing of this thesis. Without his enlightening instruction, impressive kindness and patience, I

could not have completed my thesis. His keen and vigorous academic observation enlightens me not only

in this thesis but also in my future study.

I shall extend my thanks to all the teachers in the department for their kindness and help, they provide

me with great convenience in the writing of my thesis. Then I would also like to express my gratitude to

my lab mates, I have drawn great inspiration, which is essential to the completion of my thesis. Their spirits

always guide me in the whole process of writing.

Last but not least, I would like to express my thanks to my family and my friends for their valuable

encouragement and spiritual support during my study.

June, 2018

Songai Xuan

i

Table of Contents

Abstract .. 1

1. Introduction ... 3

2. Related Work .. 8

2.1 Cloud (Hadoop, Azure, AWS, Google Cloud) .. 8

2.2 IoT Platforms .. 12

2.3 IoT Protocol ... 13

3. CoT Architecture for Hadoop and IoT Platform Using IETF CoAP... 16

3.1 CoT Design for Interworking between Hadoop and IoT Platform .. 16

3.2 Experiments and Results of CoT Architecture for Hadoop and IoT Platform 22

4. CoT Architecture for Hadoop and IoT Networks Based on Agent Using IETF CoAP 27

4.1 CoT Design for Interworking between Hadoop and IoT Networks ... 27

4.2 Experiments and Results of CoT Architecture for Hadoop and IoT Networks 31

5. CoT Architecture for Global Cloud and IoT Networks Using MQTT .. 35

5.1 CoT Design for Interworking between Global Cloud and IoT Networks 35

5.2 Experiments and Results of CoT Architecture for Global Cloud and IoT Networks 38

6. CoT Architecture for Global Cloud and IoT Networks Based on Proxy Using OCF IoTivity and

MQTT .. 49

6.1 CoT Design for Interworking between Global Cloud and IoT Networks Based on Proxy 49

ii

6.2 Experiments and Results of CoT Architecture for Global Cloud and IoT Networks Based on

Proxy .. 55

7. CoT Architecture for Vehicle Monitoring and Control Service Based on Proxy Using OCF IoTivity

and MQTT .. 66

7.1 CoT Design for Vehicle Monitoring and Control Service Based on Proxy 66

7.2 Experiments and Results of CoT Architecture for Vehicle Monitoring and Control Service

Based on Proxy .. 70

8. Conclusion ... 80

References .. 81

iii

List of Figures

Figure 1. Conceptual model of CoT architecture based on Proxy using IETF CoAP and OCF IoTivity

 .. 6

Figure 2. AWS cloud architecture ... 8

Figure 3. Main cloud service architecture of Azure... 9

Figure 4. Google Cloud services architecture ... 10

Figure 5. Hadoop architecture. .. 11

Figure 6. The conceptual model of the JNU Indoor IoT system ... 12

Figure 7. Figure 2.6 OCF IoTivity architecture ... 14

Figure 8. Interworking architecture between IoT platform and Hadoop ... 16

Figure 9. Implement architecture for Hadoop and IoT Platform .. 17

Figure 10. Detail design for HDFS Agent. .. 18

Figure 11. Detail design for Sensor Platform. .. 19

Figure 12. Detail design for Sensor Middleware. ... 20

Figure 13. Temperature sensor connect with Sensor Middleware ... 20

Figure 14. Sequence diagram of this system for the interworking between Hadoop and IoT Platform

 .. 21

Figure 15. IoT platform implementation result. .. 23

Figure 16. Sensor Middleware implementation result. .. 24

iv

Figure 17. Client implementation result. .. 24

Figure 18. Sensing file list in local file system. .. 25

Figure 19. Sensing file list in Hadoop Distributed File System. .. 26

Figure 20. A file of the sensing list in HDFS. .. 26

Figure 21. Conceptual model of the architecture for Hadoop and IoT Networks 27

Figure 22. Interworking layer of Hadoop and IoT Networks ... 28

Figure 23. Implement architecture for Hadoop and IoT device ... 28

Figure 24. The design for HDFS IoT Agent. ... 29

Figure 25. Sequence diagram for the interworking between Hadoop and IoT device 30

Figure 26. Edison Board and temperature sensor. .. 32

Figure 27. CoAP Server implementation result. .. 32

Figure 28. Client implementation result. .. 33

Figure 29. Sensing file list in local file system. .. 33

Figure 30. Sensing file list in Hadoop Distributed File System. .. 34

Figure 31. A file of the sensing list in HDFS. .. 34

Figure 32. The configuration for the connection between IoT device and AWS 35

Figure 33. The configuration for the connection between IoT device and Azure IoT Hub 36

Figure 34. The configuration for the connection between IoT device and Google Cloud 37

Figure 35. IoT device and sensors used in the CoT architecture for Global cloud and IoT Networks

 .. 39

v

Figure 36. Published messages in topic of AWS ... 40

Figure 37. Context messaged published in AWS IoT topic ... 40

Figure 38. The successful connections with AWS .. 41

Figure 39. Data stored in AWS NoSQL database .. 41

Figure 40. Developed results in Azure IoT Hub ... 42

Figure 41. Context message download from Azure IoT Hub .. 42

Figure 42. Sum messages delivered to storage endpoints of Azure .. 43

Figure 43. Context message published in Google Cloud topic .. 43

Figure 44. Context message published in Google Cloud topic (detail) ... 43

Figure 45. The publish message operations to the topic in Google Cloud Platform 44

Figure 46. Data stored in Google Cloud Datastore .. 44

Figure 47. Google Cloud Mobile Client connect with Google Cloud IoT Core 46

Figure 48. Google Cloud Mobile Client connect with Google Cloud Datastore 46

Figure 49. The mobile client of Microsoft Azure ... 47

Figure 50. The mobile client of AWS .. 47

Figure 51. Conceptual model of the architecture for Global Cloud and IoT Networks based on Proxy

 .. 49

Figure 52. IoT Devices configuration .. 50

Figure 53. Proxy configuration .. 50

vi

Figure 54. Sequence diagram of the architecture for Global Cloud and IoT Networks based on Proxy

 .. 51

Figure 55. The configuration for the connection between IoT network and AWS based on Proxy .. 52

Figure 56. The configuration for the connection between IoT network and Azure IoT Hub based on

Proxy .. 53

Figure 57. The configuration for the connection between IoT network and Google Cloud based on

Proxy .. 54

Figure 58. IoT devices used in architecture for Global Cloud and IoT Networks based on Proxy ... 56

Figure 59. Connection information of AWS based on Proxy .. 57

Figure 60. Results of cloud (AWS) based on Proxy ... 57

Figure 61. The successful connections in 1 hour with AWS based on Proxy....................................... 58

Figure 62. Data stored in AWS NoSQL database based on Proxy ... 58

Figure 63. Connection information of Azure based on Proxy .. 59

Figure 64. Received message file in Azure based on Proxy ... 59

Figure 65. Result file of Azure based on Proxy .. 60

Figure 66. Sum messages delivered to storage endpoints of Azure based on Proxy 60

Figure 67. Connection information of Google Cloud Platform based on Proxy 61

Figure 68. Published message in topic of Google Cloud based on Proxy ... 61

Figure 69. The publish request count of Pub/Sub topic in Google Cloud Platform based on Proxy 62

Figure 70. Data stored in Google cloud Datastore based on Proxy .. 62

vii

Figure 71. The mobile client of Google Cloud for Google Cloud IoT Core based on Proxy 63

Figure 72. The mobile client of Google Cloud for Google Cloud Datastore based on Proxy 64

Figure 73. The mobile client of Microsoft Azure based on Proxy .. 65

Figure 74. The mobile client of AWS based on Proxy ... 65

Figure 75. Conceptual model of CoT architecture for vehicle monitoring and control service 66

Figure 76. The design of the vehicle CoT architecture .. 67

Figure 77. The sequence diagram for monitoring electric vehicle .. 68

Figure 78. The sequence diagram for controlling electric vehicle .. 69

Figure 79. Implement design of CoT architecture for vehicle monitoring and control service 71

Figure 80. Implementation results of vehicle Emulator .. 71

Figure 81. Implementation results for monitoring part of mobile client ... 72

Figure 82. Implementation results for controlling part of mobile client.. 72

Figure 83. The way to start the network connection.. 73

Figure 84. The way to control the engine .. 73

Figure 85. The way to control the audio player.. 74

Figure 86. The way to control the head lights .. 74

Figure 87. The way to control the interior light ... 74

Figure 88. The way to control the doors ... 75

Figure 89. The way to control the trunk ... 75

Figure 90. The way to control the security alarm .. 75

viii

Figure 91. The way to control the GPS ... 76

Figure 92. The stored vehicle state in AWS NoSQL Database ... 77

Figure 93. The stored vehicle state file in Azure Storage Account ... 77

Figure 94. The stored vehicle state in Google Cloud Datastore .. 77

Figure 95. The vehicle state of AWS in mobile client .. 78

Figure 96. The vehicle state of Azure in mobile client ... 78

Figure 97. The vehicle state of Google Cloud in mobile client .. 79

ix

List of Tables

Table 1. IoT Platform development environment. ... 22

Table 2. HDFS agent development environment. .. 22

Table 3. Hadoop configuration environment. .. 22

Table 4. CoAP Server development environment. ... 31

Table 5. HDFS Agent development environment... 31

Table 6. Hadoop configuration environment. .. 31

Table 7. Experiment environment of the CoT architecture for Global cloud and IoT Networks 38

Table 8. Development environment of mobile client .. 39

Table 9. Comparison result of IoT service based on Clouds ... 45

Table 10. Configuration environment of IoT Device ... 55

Table 11. Configuration environment of Proxy ... 55

Table 12. Development environment of mobile clients based on Proxy ... 56

Table 13. Development environment of IoT Vehicle System .. 70

Table 14. Development environment of mobile client.. 70

x

Abbreviations

API Application Programming Interface

AWS Amazon Web Services

CoAP Constrained Application Protocol

CoT Cloud of Things

CRUDN Create, Read, Update, Delete and Notify

GAE Google App Engine

GPRS General Packet Radio Service

HDFS Hadoop Distributed File System

HTTP Hypertext Transfer Protocol

IoT Internet of Things

JSON JavaScript Object Notation

M2M Machine to Machine

MQTT MQ Telemetry Transport

OBSB On Board Smart Box

OCF Open Connectivity Foundation

REST Representational State Transfer

URIs Universal Resource Identifiers

1

Abstract

In the modern intelligent life, data is everywhere, it is necessary to collect the data and extract useful part

for analysis. To collect and extract useful data, the Internet of Things (IoT) technology is important, it is

able to emerge paradigm that manages billions of devices, gateways, sensors, and actuators connected to

the Internet, and support intelligent services based on huge context data. The IoT technology has obtained

great development over the last few years and is increasingly influencing various industrial development,

the IoT infrastructures and systems have been deployed to various important area, frequently used for

building smart environment, such as smart cities and smart homes. Clouds are also wildly used for huge

data repository and Internet services in various fields. Besides, building the connection between IoT devices

and cloud is very useful and convenient.

In this paper, we present the CoT architecture based on IoT and Cloud using IETF CoAP and OCF

IoTivity. And we design and implement five CoT architectures based on the combine of IoT and cloud for

connectivity between IoT Networks and cloud. There are five different architectures which are able to

collect massive sensing data from IoT devices and then upload the data to cloud for the further analysis.

This paper present first CoT architecture using IETF CoAP for interworking local Cloud and IoT

platforms. This architecture connects IoT devices and IoT platforms, and interconnets IoT platform and

Local Cloud for collecting huge sensing data. We design and implement the first CoT architecture based

on agent for interworking local Cloud and IoT Networks. We use Hadoop Distributed File System (HDFS)

for local Cloud. IoT platform is able to upload sensing data to HDFS using IETF CoAP.

Next, we introduce the second CoT architecture based on agent for interworking local Cloud and IoT

Networks. This architecture connects IoT devices and local Cloud based on agent directly. And we design

and implement the second CoT architecture based on agent for interworking local Cloud and IoT Networks.

2

We use HDFS for local Cloud. There is an agent that is able to get sensing data from IoT devices and upload

the data to HDFS using IETF CoAP.

And, we describe the third CoT architecture using MQTT for interworking global Clouds and IoT

networks. And we design and implement the second CoT architecture using AWS, Azure, and Google

Cloud used as global cloud. The CoT architecture communicates between global Clouds and IoT networks

using MQTT protocol and store the sensing data. And we compare IoT services based on global Clouds for

huge context acquisition in large scale IoT networks. The comparison helps users to choose easily IoT

service based on Cloud. Hence, it is necessary to collect the context data easily and extract useful part for

information analysis and usage in Cloud based on IoT.

Forth, we propose the CoT architecture for global cloud and IoT networks based on proxy. The proxy is

able to get sensing data from IoT networks and send to store in cloud (AWS IoT, Azure IoT Hub, and

Google Cloud IoT Core) using OCF IoTivity and MQTT protocol. After some experiments we also compare

the IoT cloud services of AWS, Azure, and Google Cloud Platform.

Finally, we present the fifth CoT architecture based on IETF CoAP for vehicle monitoring service. And

the administer controls and monitors own vehicles, and uploads vehicle state to cloud. Other clients make

able to monitor vehicles states and get vehicle state from cloud.

3

1. Introduction

The Internet-of-Things (IoT), or more prosaically Machine-to-Machine (M2M), has received significant

attention lately from both industry and academia as an emerging paradigm that manages billions of devices,

gateways, sensors, and actuators connected to the Internet [1]. There is a paper [2] present an overall view

of interworking architectures, which enables exposure of various underlying network services for M2M

applications running on top of the service layer, such as device triggering, device location, device

management, etc. And there is another paper [3] present an introduction of standardized interworking

interfaces and procedures based on oneM2M global standards, and tests them through use cases involving

multiple IoT service platforms. The interworking involves smart city applications/services running on

multiple IoT service layer platforms interoperating with each other. The Internet of Things (IoT) technology

has obtained great development over the last few years and is increasingly influencing various industrial

development [4]. Recently, encouraged by the likes of Ericsson and Cisco with estimates of 50 billion

Internet connected devices by 2020 [5], it is really necessary to learn the interworking between IoT Cloud

and IoT Devices. There is a paper [6] present a data storage framework not only enabling efficient storing

of massive IoT data, but also integrating both structured and unstructured data. And there is another paper

[7] present recent developments in commercial IoT frameworks and furthermore, identify trends in the

current design of frameworks for the Internet of Things; enabling massively connected cyber physical

systems.

Internet of Things (IoT) infrastructures and systems have been deployed to various important area,

frequently used for building smart environment, such as smart cities and smart homes [8]. Smart home is

able to automatically sense the changes of home situations, dynamically response corresponding reactions

and autonomously help its residents to make more comfortable lives [9]. For a smart home, there could be

an IoT-based monitoring system using a tri-level context making model for context-aware services [10],

there could be a device-level protection augmented with network-level security solutions to monitor

4

network activity and detect suspicious behavior [11]. The smart environment makes people’s lives faster

and more convenient.

IoT services has the constraint of IoT devices in a large-scale network. Be-cause IoT devices has the

limited computing resources, memory capacity, energy, and communication bandwidth. Many of these

issues could be resolved by employing the Cloud-assisted Internet of Things as it offers large-scaled and

on-demand networked computing resources to manage, store, process and share huge IoT data. It is an issue

that how to deal with the large amount of information generated by the intelligent environment. Cloud

computing is a good choice. Many researchers have already presented some survey of cloud compo-ting,

analyzed the key concepts and architecture [12] or introduced the cloud ser-vices of the IT companies [13].

Some researchers analyzed the authenticator-based data integrity verification techniques on cloud and IoT

data [14]. The paper [15] presents an approach to the development of Smart Home applications by in-

targeting Internet of Things (IoT) with Web services and Cloud computing, their approach focuses on

Arduino platform, Zigbee technology, JSON data format, and cloud services.

The work presented in [16] presents a novel multilayered vehicular data cloud platform including an

intelligent parking cloud service and a vehicular data mining cloud service by using cloud computing and

IoT technologies. Some researchers developed a systematic comparator of the performance and cost of

cloud providers called “CloudCmp” [17], which is able to help customers pick a cloud that fits their needs.

In addition to the smart cities and smart homes, it is also useful and meaningful to develop smart cars,

there are already some developers combined IoT and vehicles. Some developers developed an IoT system

to allow the monitoring and control of parameters of the users’ vehicles [18], Or a system which is able to

provide a low-cost means of monitoring a vehicle’s performance and tracking by communicating the

obtained data to a mobile device via Bluetooth [19]. Some other developers focused on providing automatic

and efficient electric vehicles charging management system by exploiting the benefits of IoT technology in

offering the ubiquitous perception abilities and a real-time interactive view of the physical world by various

sensors and radio devices [20]. Some developers paid more attention to detail and proposed a flexible

5

infrastructure for dynamic power control of electric vehicle battery chargers, the infrastructure dynamically

adjusts the electric vehicle battery charger current, according to the power demand of the home wherein the

vehicle is plugged [21]. To remote monitoring vehicles, it is able to use a communication service system

for vehicle remote monitoring based on the Netty pattern, which is improved on the basis of the traditional

Reactor model, the SEDA mode to handle the event, and from protocol analysis model, shared data

synchronization and thread pool to optimize the design [22]. It is also to use a distributed system for remote

monitoring of vehicle diagnostics and geographical position, which is achieved by using on-board

microcomputer system, called on-board smart box (OBSB), general packet radio service (GPRS) and a

remote server [23]. Or use a portable road side vehicle monitoring system for vehicle classification, and

speed measurement [24]. Or use a remote monitoring system for lithium battery of electric vehicle to

improve the real time monitoring ability and safe operation of the electric vehicle lithium battery, save the

cost of battery [25].

Recently, more and more developers begin to combine IoT and cloud, some researchers referred it as

Cloud of Things (CoT) and propose some key issues along with their respective potential solutions [26].

Some other researchers focused on the implementation of the underlying infrastructure at the basis of the

CoT. An ad-hoc architecture and some preliminary background of this challenging view are provided and

discussed, identifying guidelines and future directions [27].

CoT is able to be used for the build of smart cities, solve the issue that different IoT ecosystems are not

able to communicate between them by browse the semantic annotation of the sensors in the cloud, and

innovative services can be implemented and considered by bridging Clouds and IoT [28], or like ClouT

project, which is able to make citizens aware of city resources and helping them to use and care them by

mean of smart IoT services in the Cloud [29],

For CoT communication, it is able to use smart gateway [30], some gateways enable a lightweight and

dense deployment of services, they are able to manage semantic-like things and at the same time to act as

an end-point for the presentation of data to users [31]. And for CoT security, is able to use secure trusted

6

things as a service to reduce majority of the challenges in CoT environment, the main focus is on encryption

mechanism with less overhead besides a trust model to enable real time decision making authentic [32].

Figure 1 shows the conceptual model of the whole design for the connectivity between IoT Networks

and Cloud presented in this paper. There are four different CoT architectures. The first CoT architecture is

for Hadoop and IoT platforms, IoT platform is able to upload sensing data files to Hadoop Distributed File

System (HDFS). Hadoop is able to connect many sensor platforms. And each IoT platform is able to connect

many Sensor Middlewares, each Sensor Middleware is able to connect many sensors. IoT platform provide

sensor information and sensing data storage service. Sensor Middlewares get sensing data from sensors and

save the data into database via the service provided by Sensor Platform. Then the agents will request sensing

data and sensor information from IoT platform and upload the data to Hadoop.

IoT Platform 1

IoT Middleware 2 IoT Middleware nIoT Middleware 1

Device
2

Device
1

Device
n

Device
2

Device
1

Device
n

Device
2

Device
1

Device
n

IoT Platform n

Device
2

Device
1

Device
n

Local Cloud 1

Global Cloud

Device
2

Device
1

Device
n

Client 1 Client 2

Local Cloud n

Device
2

Device
1

Device
n

Client n

Figure 1. Conceptual model of CoT architecture based on Proxy using IETF CoAP and OCF IoTivity

The second CoT architecture is for Hadoop and IoT Networks, there is an agent that is able to get sensing

data from IoT devices and upload the data to Hadoop Distributed File System (HDFS) using CoAP protocol.

Hadoop is able to connect many agents; each agent is able to connect many IoT devices and each IoT device

7

is able to connect many sensors. IoT Device will get sensing data from sensors and send to the agent, and

agents will upload sensing data to Hadoop.

The third CoT architecture is for global cloud and IoT networks, AWS, Azure, and Google Cloud is used

as global cloud and is able to communicate with IoT networks using MQTT protocol and store the sensing

data. The IoT devices are exactly the same, each of them is able to publish message to the topic of IoT

cloud (AWS IoT, Azure IoT Hub, and Google Cloud IoT Core) and store the sensing data to cloud. We

have also compared and analyzed the performance of three IoT cloud services based on the process and

results of the experiment.

The fourth CoT architecture is for global cloud and IoT networks based on proxy using OCF IoTivity

and MQTT protocol, the proxy is able to get sensing data from IoT networks and then publish the data as

messages to the topic in IoT cloud (AWS IoT, Azure IoT Hub, and Google Cloud IoT Core). After some

experiments we also compared the IoT cloud service of AWS, Azure, and Google Cloud Platform.

The fifth CoT architecture is for vehicle monitoring and control service, the client is able to monitor

vehicles, control vehicles, and get vehicle state from cloud.

8

2. Related Work

2.1 Cloud (Hadoop, Azure, AWS, Google Cloud)

Figure 2. AWS cloud architecture

Amazon Web Services (AWS) [33] is a secure cloud services platform of Amazon.com, offering compute

power, database storage, content delivery and other functionality to help businesses scale and grow. Explore

how millions of customers are currently leveraging AWS cloud products and solutions to build

sophisticated applications with increased flexibility, scalability and reliability. Figure 2 shows the AWS

cloud architecture. Many developers choose cloud services of AWS. And in order to make a better choice

of cloud services, some developers study and present the characterization of AWS, which is useful for

developers aiming at entrusting AWS to deploy their contents [34]. Many other developers focused on the

SaaS data protection, they present a real use case of home healthcare SaaS application deployed on AWS,

Your Application

Management & Administration

Libraries and SDKs
.NET/Java etc.

Web Interface
Management Console

Tools
AWS Visual Studio Toolkit

Command Line Interface

Cross Service Features

Auth, Authorization, Federation
AWS IAM, MFA

Monitoring
Amazon CloudWatch

Deployment and Automation
AWS Elastic Beanstalk, CloudFormation

AWS Data Pipiline

Application Platform Services

Parallel Processing
Amazon Elastic MapReduce

Transfer
Import Export

VM Import
Storage Gateway

Content Delivery
Amazon CloudFront

App Services
Amazon SNS
Amazon SWF
Amazon SES

Search
Amazon CloudSearch

Foundation Services

Compute
Amazon EC2
Auto Scaling

Storage
Amaxon S3

Amazon EBS
Amazon Glacler

Network
Amazon VPC

ElV, DirectConnect
Amazon Route 53

Database
Amazon RDS,

RedShift DynamoDB
Amazon ElastiCache

AWS Global Physical Infrastructure

Avaliability Zones Edge LocaitonsGeographical Regions

9

they also study the challenges needed to add cryptography and key management capabilities to the standard

AWS Web/database offer so to enable SaaS data protection [35].

Microsoft Azure [36] is a growing collection of integrated cloud services that developers and IT

professionals use to build, deploy, and manage applications through our global network of datacenters.

Figure 3 shows the main Azure cloud services architecture. Many developers choose cloud services of

Azure. Some developers formulate and evaluate production-feasible methods to develop idleness profiles

for customer databases by using Azure SQL Database telemetry across multiple data centers [37]. It is also

able to build up a system by combining the Open Plant Communication Universal Architecture and the

Microsoft Azure Internet-of-Things Hub [38]. In this paper, we also collect the data by sending messages

to Azure IoT Hub.

Figure 3. Main cloud service architecture of Azure

Google Cloud Platform [39], offered by Google, provides a set of management tools and a series of

modular cloud services including computing, data storage, data analytics and machine learning. Figure 4

shows the Google Cloud Platform services architecture. Many developers choose cloud services of Google

Cloud Platform. Some developers use Datastore APIs from Google App Engine (GAE) to interface to

different open source distributed database technologies, so the APIs are able to be used by web applications

and services without modification [40]. Some other developers present an approach to workload

Azure Cloud Services
(Platform as a Service)

Managed by Users

Managed by Microsoft

Applications Data

Runtime Middleware

O/S Virtualization

Servers NetworkingStorage

10

classification and its application to the Google Cloud Backend [41]. During our simulation experiments,

we used the Cloud IoT Core service of Google Cloud Platform.

Machine Learning
Cloud Machine Learning

Engine Cloud Jobs API
Cloud Natural Language

API Cloud Speech API

Cloud Translation API Cloud Vision API Cloud Video
Intelligence

Big Data and IoT

BigQuery Cloud Dataflow Cloud Dataproc Cloud Datalab

Cloud Dataprep Cloud Pub/Sub Genomics Google Data Studio

Cloud IoT Core

Networking

Virtual Private Cloud
(VPC) Cloud Load Balancing Cloud CDN Cloud Interconnect

Cloud DNS

Storage and Databases

Cloud Storage Cloud SQL Cloud Bigtable Cloud Spanner

Cloud Datastore Persistent Disk Data Transfer

Compute

Compute Engine App Engine Container Engine Cloud Functions

Figure 4. Google Cloud services architecture

Hadoop as an open source project of the Apache foundation is the most representative product for the

cloud computing research and application. The Hadoop’s distributed framework provides developers with

a base architecture for distributed systems. The Hadoop users can develop distributed applications without

understanding the underlying details of the distributed system and make full use of the cluster storage

resources, network resources and computing resources. The core design of Hadoop is MapReduce and

Hadoop Distributed File System (HDFS) [42]. Figure 5 shows the architecture of Hadoop. Hadoop frame

11

includes four modules: MapReduce, HDFS, YARN and Common Utilities. Hadoop MapReduce is YARN-

based system for parallel processing of large data sets. Hadoop Distributed File System (HDFS) is a

distributed file system that provides high-throughput access to application data. Hadoop YARN is a

framework for job scheduling and cluster resource management. Hadoop Common Utilities are Java

libraries and utilities required by other Hadoop modules. These libraries provide filesystem and OS level

abstractions and contains the necessary Java files and scripts required to start Hadoop.

Hadoop

MapReduce
(Distributed Computation)

HDFS
(Distributed Storage)

YARN Framework

Common Utilities

Figure 5. Hadoop architecture.

HDFS is a highly fault-tolerant system, suitable for deployment in cheap machines. HDFS can provide

high throughput access data and it is very suitable for large-scale data sets. HDFS has a high fault-tolerance

characteristic, and is designed for deployment on low-cost hardware. It provides high throughput to access

the application data, suitable for those with large data set applications. HDFS is a distributed file

management system for massive data storage. In this system, we use HDFS to store the sensor data files,

and we manage the files by calling Hadoop commands in Java Application [43].

12

2.2 IoT Platforms

The JNU Indoor IoT system is an old project in our lab, which consist of nine modules. Figure 6 shows

the conceptual model of the JNU Indoor IoT System. GIS Platform provides geography information service

to App Client. Actuator Platform provides actuators’ information and actuators’ state to App Client.

Actuator Middleware connect between Actuator Emulator and Actuator Platform. Actuator Emulator

simulate actuators and the state. Sensor Platform provide sensing data and sensors’ information to other

modules. Sensor Middleware connect between Sensor and Sensor Platform. Sensors collect sensing data

and send them to Sensor Middleware. App Server provides services and object information to App Client.

App Client show the results to the users via services supported by other modules.

App Client

App Server

Actuator
Platform Sensor PlatformGIS Platform

Actuator
Middleware

Sensor
Middleware

SensorActuator
Emulator

Figure 6. The conceptual model of the JNU Indoor IoT system

13

2.3 IoT Protocol

REST (Representational State Transfer) [44] is an architectural style, which is often used in the

development of web services. REST is a popular building style for cloud-based APIs. A RESTful API

means web services used REST architecture. REST architecture involves reading a designated web page

that contains an XML file, which describes and includes the needed content. REST typically runs over

HTTP (Hypertext Transfer Protocol) and is often used in mobile applications, social networking web sites,

mashup tools and automated business processes. REST use a limited number of operations (GET, POST,

PUT and DELETE) to enhance the interactions between clients and services. And it is flexible because of

assigning resources their own URIs (Universal Resource Identifiers).

CoAP (Constrained Application Protocol) [45] is a software protocol intended to be used in very simple

electronics devices, allowing them to communicate interactively over the Internet. It is particularly targeted

for small, low-power sensors, switches, valves and similar components that need to be controlled or

supervised remotely, through standard Internet networks. CoAP is an application layer protocol that is

intended for use in resource-constrained internet devices, such as WSN nodes. CoAP is designed to easily

translate to HTTP for simplified integration with the web, while also meeting specialized requirements such

as multicast support, very low overhead, and simplicity. Multicast, low overhead, and simplicity are

extremely important for Internet of Things (IoT) and Machine-to-Machine (M2M) devices, which tend to

be deeply embedded and have much less memory and power supply than traditional internet devices have.

IoTivity [46] is an open source software framework enabling seamless device-to-device connectivity to

address the emerging needs of the Internet of Things. The IoTivity is sponsored by the OCF (Open

Connectivity Foundation) who is developing a standard specification and certification program to enable

the Internet of Things. This open specification is determined to unlock the massive opportunity in the IoT

market, accelerate industry innovation and help developers and companies create solutions. The goal of

IoTivity is to develop an open source software framework that can seamlessly connect billions of devices

14

to the future of the Internet world, regardless of operating system and network protocols. One of the most

important parts for activating the Internet ecosystem is how can small and medium-sized companies

manufacturing various things add an Internet connection function to their products and provide an

environment that can easily provide them with smartphone apps or services. IoTivity is a framework for

satisfying these requirements, ensuring interoperability between high-quality Internet devices and

developing high-speed internet products. It is also expanding the range of open source hardware (e.g.

Raspberry Pie, Edison) and software platforms (e.g. Android, iOS, Windows, Linux, etc.) Currently,

IoTivity supports Ubuntu, Tizen and Android, and iOS will be supported in the future. The open source

hardware platform now supports Arduino and Edison, and will continue to expand its supported hardware

platforms. Basically, IoTivity is an open source technology for Internet middleware based on OIC standards.

Framework APIs
Common Object Model

Profiles

Consumer Enterprise Industrial Automotive Education Health

Framework

Discovery Data Transmission Device Management Data management

Figure 7. Figure 2.6 OCF IoTivity architecture

Figure 7 shows the conceptual architecture of IoTivity that consists of three layers. Transports layer

supports the existing protocols such as Bluetooth, Wi-Fi, Zigbee, etc. Profile layer stands for each vertical

field of object Internet applications such as smart home, smart factory, eHealth, etc. A framework layer

supports functions such as resource discovery, data transfer, device management, and data management. In

the case of the transport layer, new technologies can be continuously extended, and even with these

extensions, the application layer of the profile layer can be executed without modification, with the support

of the framework layer. For reference, the license policy follows Apache 2.0 and is operated by the Linux

15

Foundation. IoTivity is based on a resource-based RESTful architecture model, thus representing all things

as resources and providing CRUDN (Create, Read, Update, Delete and Notify) operations. In addition, it is

designed based on CoAP (Constrained Application Protocol) without a daemon, so it is easy to support

low-end and low-power devices.

MQTT [47] is a machine-to-machine (M2M)/"Internet of Things" connectivity protocol. It was designed

as an extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote

locations where a small code footprint is required and/or network bandwidth is at a premium. For example,

it has been used in sensors communicating to a broker via satellite link, over occasional dial-up connections

with healthcare providers, and in a range of home automation and small device scenarios. It is also ideal

for mobile applications because of its small size, low power usage, minimized data packets, and efficient

distribution of information to one or many receivers.

16

3. CoT Architecture for Hadoop and IoT

Platform Using IETF CoAP

3.1 CoT Design for Interworking between Hadoop and IoT

Platform

Recently, CoT technology has obtained great development over the last few years and is increasingly

influencing various industrial development. Figure 8 shows the interworking architecture between Hadoop

and Sensor Platform. As shown in the figure, each Sensor Platform connects with Hadoop. And each sensor

platform can connect many sensor middleware, each sensor middleware can connect many sensors. IoT

platform provide sensor information and sensing data storage service. Sensor middleware get sensing data

from sensors and save the data into database via the service provided by sensor platform. Then IoT platform

will request sensing data and sensor information and upload the data to local IoT cloud in multiple sensor

networks.

Local Cloud (Hadoop)

IoT Platform_1 IoT Platform_n

Database_1

Sensor
Middleware_1

Sensor
Middleware_n

S1 Sn S1 Sn

Sensor
Middleware_1

Sensor
Middleware_n

Database_n

S1 Sn S1 Sn

... ...

...

Figure 8. Interworking architecture between IoT platform and local Cloud (Hadoop)

17

Figure 9 shows the implement architecture for Hadoop and IoT platform. Sensor Middleware will get

sensing data from Sensor and save sensing data into database via the service provided by Sensor Platform.

There is a RESTful API in Sensor Platform, the communication between IoT platform and Sensor

Middleware based on this API and used HTTP protocol. Sensor connect to Sensor Middleware by serial

port. The communication between HDFS Agent and IoT platform also based on the RESTful API. There

is a HTTP Client in HDFS Agent. HTTP Client will get sensing data and sensor information from IoT

platform via the RESTful API. And Data Uploader in HDFS Agent is able to receive the sensing data from

HTTP Client, convert the sensing data to files (txt, csv), and upload the files to Hadoop Distributed File

System (HDFS) in Hadoop framework. Client will control the process start or stop and show users the

sensing results.

HDFS Agent

Data Uploader

HTTP Client

Client

Hadoop Framework

HDFS
(Hadoop Distributed File System)

Data.txt

Sensor Platform

Sensor Middleware

Sensor (Temperature)

HTTP

HTTP

Serial Port

DB Agent

Figure 9. Implement architecture for Hadoop and IoT Platform

18

 Figure 10 shows the detail design for HDFS Agent. In HDFS Agent. There is a HTTP Client and a Data

Uploader. HTTP Client is able to request sensing data from HTTP Server in Sensor Platform, Data Uploader

is able to upload sensing data file to HDFS. In HTTP Client, there are Data Transmitter, Data Parser and

Data Receiver. Data Receiver is able to receive sensing data from HTTP Server, Data Parser is able to

convert sensing data to sensing data files, Data Transmitter is able to push the sensing data files to Data

Uploader. When HDFS Agent get sensing data from Sensor Platform, Data Receiver in HTTP Client will

receive data first and send to Data Parser, then Data Parser will send to Data Transmitter, and Data

Transmitter will send data to Data Uploader and Client.

HDFS IoT Agent

HTTP Client

Data Receiver

Data Parser

Data Transmitter

Data Uploader

Sensor Platform

HDFS

Client

Sensing Data

Figure 10. Detail design for HDFS Agent.

Figure 11 shows the detail design for Sensor Platform. Service Interface provides access interface to

outside service. The main services offered by Sensor Web module are Sensor Web Content Service, Sensor

19

Web Provider Service and Sensor-Web Sensing Service. Sensor Web Content Service is used for

middleware configuration Management and Sensor Information Management. Sensor Web Provider is

utilized for Sensor Searches, Sensor Information supply and Sensing Data supply. Sensor Web Sensing

Service is used for Sensor State management and as Sensing Data receiver.

Sensor Platform

Sensor Middleware HDFS Agent

Service Interface
Sensor Web

Sensing Service
Interface

Sensor Web
Content Service

Interface

Sensor Web
Provider
Service

Interface

Service Control
Sensor Web

Sensing Service
Control

Sensor Web
Content Service

Control

Sensor Web
Provider

Service Control

Sensing Service Content Service Provider Service

Sensor State
Manager

Sensing Data
Receiver

Middleware
Configure Manager

Sensor Info Manager

Sensor Searcher

Sensor Info Supply

Sensing Data Supply

Service State Viewer

Sensor Database

HTTP
JSON Format

HTTP
JSON Format

Figure 11. Detail design for Sensor Platform.

 Figure 12 shows the detail design for Sensor Middleware. Sensor middleware take a role in collecting

sensing data sent by sensor then sending and saving Sensor Platform. Configurator request sensor

information (ID, Type) from Sensor Platform, and also verify pertinent IP address and Platform access

privileges. Sensing Driver takes various sensors’ sensing data format information and parse processing

through received sensing data. Port Monitoring take a role in monitoring state of the port connected with

20

middleware. Sensing Data Receiver accesses sensing data sent from sensor node and saves at memory

through sensing data Parser. Sensing Data Transporter read Memory-saved sensing data and send to Sensor

Platform.

Sensor Middleware

Sensor Platform Sensor

Middleware Configuration Manager

Sensing Manager

Port Manager

Sensing Data Receiver

Sensing Data Parser

Port Monitoring

Viewer

HTTP
JSON Format

Memory
Sensing Data Transporter

Configurator

Sensing Driver

Serial Port

HTTP
JSON Format

Figure 12. Detail design for Sensor Middleware.

 Figure 13 shows the sensor which connect to Sensor Middleware via Serial Port.

Figure 13. Temperature sensor connect with Sensor Middleware

21

Figure 14 shows the sequence diagram for the interworking between Hadoop and IoT Platform. Client

send start request to Data Uploader and request sensing data from Data Uploader. Data Uploader sends

request message to HTTP Client, HTTP Client sends request message to sensor Platform, IoT platform

sends request message to Sensor Middleware, Sensor Middleware sends request to Sensor and Sensor will

return sensing data to Sensor Middleware. Sensor Middleware will return sensing data to Sensor Platform,

IoT platform will save sensing data into database and return sensing data to HTTP Client. HTTP Client will

return sensing data to Data Uploader. Data Uploader will return sensing data to Client, make a data file (txt,

csv) and uploads file to HDFS. Finally, Client will send stop request to Data Uploader, all process will stop.

Figure 14. Sequence diagram of this system for the interworking between Hadoop and IoT Platform

22

3.2 Experiments and Results of CoT Architecture for Hadoop and

IoT Platform

Table 1 shows the development environment for the IoT Platform

Components Version

Operating System Windows 10

Microsoft Visual Studio 2015

Microsoft SQL Server 2016

Table 1. IoT Platform development environment.

Table 2 shows the development environment for HDFS Agent.

Components Version

Operating System Windows 10

Java JRE 1.8

Spring Tool Suite 3.8.4

Table 2. HDFS agent development environment.

Table 3 shows the configuration environment for Hadoop.

Components Version

Operating System Windows 10

Java JRE 1.8

Hadoop 2.7.3

Sprint Tool Suite 3.8.4

Table 3. Hadoop configuration environment.

23

To run the whole system, we need to run IoT platform firstly, the result shows in figure 15. “Service

State Viewer” shows the state of services. “Time Now” shows the current time. The first “Run Time” shows

the running time of Provider Service and “Provider Service” shows the state of Provider Service (start or

stop). The second “Run Time” shows the running time of Content Service and “Content Service” shows

the state of Content Service (start or stop). “Node Count” shows the number of sensors. “Provider Service

Control” has two buttons to control Provider Service and Sensing Service start or stop. “Content Service

Control” has two buttons to control Content Service start or stop. “Service Load Viewer” shows the control

history and click “Clear Control History” button will clear the control history.

Figure 15. IoT platform implementation result.

Then we need to run Sensor Middleware, the result shows in figure 16. "Sensing Data" shows the sensor

information and sensing data. Users can choose a sensor in "Sensor ID" and the first textbox will show the

information of the choose sensor. User can also choose the serial port for temperature sensor, humidity

sensor and illumination sensor on the right. Click "Start" button to start the connection and send sensing

data to IoT platform to save data into Database. Click “Stop” button to stop the connection. The second

textbox will show the sensing data.

24

Finally, we need to run Client, the result shows in figure 17. We need to choose a sensor in the combo

box, if the sensor is not in using, we cannot click the “start” button to start working. After we choose a

sensor, the sensor information text area will show the information of this sensor. Click “start” button will

get sensing data through Sensor Platform, make data files and upload files to HDFS. Click “Stop” button

will stop all the process.

Figure 16. Sensor Middleware implementation result.

Figure 17. Client implementation result.

25

After finish running the whole system, we can check the files storage situation in our local file system,

like the figure 18 shows.

And we can also check the files storage situation in Hadoop Distributed File System, like the figure 19

shows.

Figure 18. Sensing file list in local file system.

26

Figure 19. Sensing file list in Hadoop Distributed File System.

In file list, each file’s name is current time of sensing data. And the content is a string split by commas

including sensing time and sensing data. Figure 20 shows the sensing data on 17:49:03, May 19, 2017.

Figure 20. A file of the sensing list in HDFS.

27

4. CoT Architecture for Hadoop and IoT

Networks Based on Agent Using IETF CoAP

4.1 CoT Design for Interworking between Hadoop and IoT

Networks

Recently, it is increasing to research the interworking between Cloud and IoT Devices. Figure 21 shows

the interworking conceptual model of Hadoop and IoT Networks. As shown in the figure, Hadoop is able

to connect many agents, each agent can connect many IoT devices and each IoT device can connect many

sensors. IoT Device will get sensing data from sensors and send to the agent, and agents will upload sensing

data to Local Cloud.

Agent_1 Agent_n

IoT
Network_1

IoT
Network_n

IoT
Network_1

IoT
Network_n... ...

Local Cloud (Hadoop)

...

Figure 21. Conceptual model of the architecture for Hadoop and IoT Networks

Figure 22 shows the interworking layer of Hadoop and IoT Networks. We will connect a temperature

sensor to Edison Board, and develop a CoAP Server in Edison Board which can get sensing data from

sensor and provide data to CoAP Client. And we will develop a HDFS Agent, which consist of two parts:

28

Data Uploader and CoAP Client. Data Uploader is able to receive the sensing data from CoAP Client,

convert these data to files (txt, csv) and upload files to Hadoop Distributed File System.

Hadoop

HDFS IoT Agent

HDFS
(Hadoop Distributed File System)

Edison Board

Sensor

Figure 22. Interworking layer of Hadoop and IoT Networks

HDFS IoT Agent

Data Uploader

CoAP Client

Client

Hadoop Framework

HDFS
(Hadoop Distributed File System)

Data.txt

Edison Board

Sensor

CoAP

CoAP Server

Figure 23. Implement architecture for Hadoop and IoT device

29

Figure 23 shows the implement architecture of for Hadoop and IoT device. There is a CoAP Server in

Edison Board, which can get sending data from sensor and send to CoAP Client in HDFS Agent when

CoAP Client sends request. Data Uploader in HDFS Agent is able to receive the sensing data, make data

files (txt, csv) and upload the file to Hadoop Distributed File System (HDFS) in Hadoop framework. And

Client will control the process start or stop and show users the sensing results.

Figure 24 shows the design for HDFS IoT Agent. In HDFS IoT Agent. There is a CoAP Client and a Data

Uploader. In CoAP Client, there are Data Transmitter, Data Parser and Data Receiver. When HDFS IoT

Agent get sensing data from Edison Board, Data Receiver in CoAP Client will receive data first and send

to Data Parser, then Data Parser will send to Data Transmitter, and Data Transmitter will send data to Data

Uploader and Client.

HDFS IoT Agent

CoAP Client

Data Receiver

Data Parser

Data Transmitter

Data Uploader

Edison Board

HDFS

Client

Sensing Data

Figure 24. The design for HDFS IoT Agent.

Figure 25 shows the sequence diagram for the interworking between Hadoop and IoT device. Client send

start request to Data Uploader and request sensing data from Data Uploader. Data Uploader sends request

30

message to CoAP Client, CoAP Client sends request message to CoAP Server, and CoAP Server requests

sensing data from sensor. After getting sensing data from sensor, CoAP Server will return sensing data to

CoAP Client, CoAP Client will return sensing data to Data Uploader, Data Uploader will return sensing

data to Client. And Data Uploader will make a sensing data file (txt, csv) and upload the file to HDFS

(Hadoop Distributed File System). Finally, Client send stop request to Data Uploader, all process will stop.

Figure 25. Sequence diagram for the interworking between Hadoop and IoT device

31

4.2 Experiments and Results of CoT Architecture for Hadoop and

IoT Networks

Table 4 shows the development environment for CoAP Server in Edison Board.

Components Version

Operating System Windows 10

Edison Board (Yocto) 20160606

Intel System Studio IoT Edison 2016.4.012

Table 4. CoAP Server development environment.

 Table 5 shows the development environment for HDFS Agent.

Components Version

Operating System Windows 10

Java JRE 1.8

Spring Tool Suite 3.8.4

Table 5. HDFS Agent development environment.

 Table 6 shows the configuration environment for Hadoop.

Components Version

Operating System Windows 10

Java JRE 1.8

Hadoop 2.7.3

Sprint Tool Suite 3.8.4

Table 6. Hadoop configuration environment.

Figure 26 shows the Edison Board and temperature sensor.

32

Figure 26. Edison Board and temperature sensor.

Figure 27 shows the CoAP Server implementation result. CoAP Server is run in Edison Board using C

language and Intel System Studio IoT Edison, each time CoAP Client sends a request, CoAP Server will

return and print out real-time temperature data.

Figure 27. CoAP Server implementation result.

33

 Figure 28 shows the Client implementation result. Click “Start” will get sensing data from CoAP Server

in Edison Board and make data files to upload to Hadoop Distributed File System. Click “Stop” button will

stop all the process.

Figure 28. Client implementation result.

After finish running the whole system, we can check the files storage situation in our local file system,

like the figure 29 shows.

Figure 29. Sensing file list in local file system.

34

And we can also check the files storage situation in Hadoop Distributed File System, like the figure 30

shows.

Figure 30. Sensing file list in Hadoop Distributed File System.

In file list, each file’s name is current time of sensing data. And the content is a string split by a comma

including sensing time and sensing data. Figure 31 shows the temperature is 17.70ºC on 6:59:44, May 20,

2017.

Figure 31. A file of the sensing list in HDFS.

35

5. CoT Architecture for Global Cloud and IoT

Networks Using MQTT

5.1 CoT Design for Interworking between Global Cloud and IoT

Networks

Recently, Clouds are wildly used for huge data repository and Internet services in various fields. And

IoT networks collect a context data and support the monitor-ing and control services using thing

virtualization. We will build the connection be-tween IoT and cloud, it is very useful, and supports

intelligent services based on huge context data. This paper presents the comparison analysis of IoT services

based on Clouds for huge context acquisition in large scale IoT networks. And, we develop AWS, Azure,

and Google cloud based on IoT. And compare the IoT service of AWS, Azure, and Google Cloud by

sending sensing data messages from IoT devices.

BMP280 Sensor
(Temperature,

Pressure)

Hardware: Raspberry Pi 3 Model B

OS: Raspbian (Linux system based on
Debian)

SDK: AWS IoT Device SDK (python)

MQTT Client

Amazon Web Service

AWS IoT

Amazon Web Service

Mobile Hub

Client

MQTT

HTTP

DHT11 Sensor
(Temperature,

Humidity)

Figure 32. The configuration for the connection between IoT device and AWS

36

Figure 32 shows the detail architecture for the connection between IoT device and AWS. We used

Raspberry Pi 3 Model B with Raspbian system as IoT device, we also used DHT11 Sensor (Temperature,

Humidity) and used BMP280 Sensor (Temperature, Pressure). We installed AWS IoT Device SDK with

python, and the device-to-cloud messages are send based on MQTT protocol. The MQTT messages in AWS

cannot store automatically, so before the device publish message to the topic in AWS, we will create the

message item in NoSQL Database of AWS Mobile Hub to store the sensing messages. Client is able to get

message item from NoSQL Database of AWS Mobile Hub.

Hardware: Raspberry Pi 3 Model B

OS: Raspbian (Linux system based on
Debian)

SDK: Node.js (javascript)

MQTT Client

Azure IoT Hub

Storage Account

Client

MQTT

HTTP

BMP280 Sensor
(Temperature,

Pressure)

DHT11 Sensor
(Temperature,

Humidity)

Figure 33. The configuration for the connection between IoT device and Azure IoT Hub

Figure 33 shows the detail architecture for the connection between IoT device and Azure IoT Hub. We

used Raspberry Pi 3 Model B with Raspbian system as IoT device, we also used DHT11 Sensor

(Temperature, Humidity) and used BMP280 Sensor (Temperature, Pressure). We installed Azure IoT Hub

SDK with JavaScript, and the device-to-cloud messages are sent based on MQTT protocol. After the

37

messages published to the topic of Azure, the messages will be stored in the Blobs of Storage Account of

Azure, and Client is able to get message files from Blobs of Azure.

Hardware: Raspberry Pi 3 Model B

OS: Raspbian (Linux system based on
Debian)

SDK: Google Cloud SDK (python)

MQTT Client

Google Cloud

IoT Core

Google Cloud

Datastore

Client

MQTT/HTTP MQTT/HTTP

MQTT/HTTP

BMP280 Sensor
(Temperature,

Pressure)

DHT11 Sensor
(Temperature,

Humidity)

MQTT/HTTP

Figure 34. The configuration for the connection between IoT device and Google Cloud

Figure 34 shows the detail architecture for the connection to Google Cloud IoT Core. We used Raspberry

Pi 3 Model B with Raspbian system as an IoT device, we also used DHT11 Sensor (Temperature, Humidity)

and used BMP280 Sensor (Temperature, Pressure). We installed Google Cloud SDK with python, and the

device-to-cloud messages are sent based on MQTT protocol. The messages published to topic in Google

Cloud will disappear after several days, so if we want to store the messages, we need to use Google Cloud

Datastore. When we publish the message to the topic in Google Cloud, we also create a message entity in

Google Cloud Datastore. Client is able to pull message from subscriptions in Google Cloud, if the message

has been disappeared, Client is able to get message entity from Google Cloud Datastore.

38

5.2 Experiments and Results of CoT Architecture for Global

Cloud and IoT Networks

Table 7 shows the simulation experiment environment of the CoT architecture for Global cloud and IoT

Networks. In each Raspberry Pi, we use Raspbian for IoT device and the cloud SDKs. For the SDK, we

used AWS IoT Device SDK with python, Azure SDK with JavaScript, and Google Cloud SDK with python.

All of the communication method is MQTT protocol, we used Python 2 to compile the code and added

DHT11 driver library and Paho MQTT Client library. And for our experiment, we considered the published

message on AWS are able to showed more directly, the published message on Azure need to be download,

and the published message on Google Cloud should show by the shell command.

 AWS Azure Google Cloud

IoT device Raspbian Raspbian Raspbian

SDK

AWS IoT

Device SDK

(python)

Node.js

(JavaScript)

Google Cloud

SDK

(python)

Software Python 2 Python 2 Python 2

Libraries

DHT11 driver,

Paho MQTT

Client

DHT11 driver,

Paho MQTT

Client

DHT11 driver,

Paho MQTT

Client

Webpage

Result
More directly Download

Shell

command

Table 7. Experiment environment of the CoT architecture for Global cloud and IoT Networks

Table 8 shows the development environment of mobile client. We used Android Studio 3.0.1, Android

SDK 27, AWS Java SDK 1.11.293, Azure IoT SDK 1.7.23, Google Cloud PubSub 0.45.0, Google Cloud

Storage 1.26.0, and Google Cloud Datastore 1.31.0.

39

Components Version

Android Studio 3.0.1

Android SDK 27

AWS Android SDK 2.6

Azure IoT SDK 1.7.23

Google Cloud PubSub 0.45.0

Google Cloud Storage 1.26.0

Google Cloud Datastore 1.31.0

Table 8. Development environment of mobile client

Figure 35 shows the IoT device and sensors we used in the CoT architecture for Global cloud and IoT

Networks. We used Raspberry Pi 3 Model B with Raspbian system as IoT devices, which shows in figure

(a). We also used DHT11 Sensor (Temperature, Humidity) like figure (b) and BME280 Sensor

(Temperature, Humidity, Pressure) like figure (c).

Figure 35. IoT device and sensors used in the CoT architecture for Global cloud and IoT Networks

Figure 36 shows the AWS IoT webpage, it’s able to create a MQTT client and enter the same topic,

which is able to show the published messages. Figure 37 shows one of the published messages, the format

of this message is JSON.

40

Figure 36. Published messages in topic of AWS

Figure 37. Context messaged published in AWS IoT topic

Figure 38 shows the successful connections with AWS, When the connections become stable, the

message publish speed is 0.25/s, the maximum speed is 0.25/s, the minimum speed is 0/s.

41

Figure 38. The successful connections with AWS

Figure 39 shows the data stored in NoSQL database of AWS Mobile Hub. The name of the table is

finaltest-mobilehub-887317787-messages, the primary sort key is the date, each item includes date,

temperature value, and pressure value. For example, as shown in figure, there is an item shows information

include date (2018-05-31-07:11), pressure value (975.37616), and temperature value (23.746326).

Figure 39. Data stored in AWS NoSQL database

42

Figure 40 shows the received message file in Azure, it’s not able to show messages directly, we need to

download the message file. In the figure, there is the Blob service of the storage we created, it is able to

find the messages folder.

Figure 40. Developed results in Azure IoT Hub

Figure 41 shows the downloaded message file from Azure, it is able to find the sensing data in the file.

For example, as shown in the figure, there is the information include the message ID, the correlation ID,

the device ID, Time (2018-02-09-11:59:41), the temperature value (24.16173), and the pressure value

(807.6015).

Figure 41. Context message download from Azure IoT Hub

Figure 42 shows the sum messages delivered to storage endpoints of Azure. When the connections

become stable, the message publish speed is 0.55/s, the maximum speed is 0.55/s, the minimum speed is

0/s.

43

Figure 42. Sum messages delivered to storage endpoints of Azure

Figure 43 shows the received messages on Google Cloud Platform, we need google cloud shell command

to check the message. And as shown in the figure, it is able to find the information include the message ID,

the device ID, the device registry ID, the device registry location, the project ID, the temperature value

(23.377046585083008), and the pressure value (983.5136108398438). (The detailed message shows in

figure 44)

Figure 43. Context message published in Google Cloud topic

Figure 44. Context message published in Google Cloud topic (detail)

44

Figure 45 shows the publish message operations to the topic in Google Cloud Platform. When the

connections become stable, the message publish speed is 0.81/s, the maximum speed is 0.95/s, the minimum

speed is 0/s.

Figure 45. The publish message operations to the topic in Google Cloud Platform

Figure 46. Data stored in Google Cloud Datastore

45

Figure 46 shows the data stored in Google Cloud Datastore. Messages stored there as entities, the kind

of the data is “messages”, each entity’s name is the date, and the entity includes date, temperature value,

and pressure value. For example, as shown in figure, there is an entity shows information include date

(2018-06-01-13:05), pressure value (979.9617), and temperature value (27.898651).

IoT service
based on
Cloud_A

IoT service
based on
Cloud_B

IoT service
based on
Cloud_C

Communication
Method

MQTT MQTT MQTT

Received Messages

(1 minute)
15 31 50

Publish Speed 0.25/s 0.55/s 0.81/s

Table 9. Comparison result of IoT service based on Clouds

Table 9 shows the comparison result of IoT service based on Clouds in our experiments. For our last

experiment (during 1 minute), there are 15 messages published to the topic of Cloud_A, 31 messages

published to the topic of Cloud_B, and 50 messages published to the topic of Cloud_C. After many

experiments, we considered the message publish speed of Cloud_A is 0.25/s, the message publish speed of

Cloud_B is 0.55/s, the message publish speed of Cloud_C is 0.81/s.

Figure 47 shows the tested mobile client of Google Cloud, which is able to pull messages from

subscriptions. After click the “Get Message” button, the client is able to pull message from a Google Cloud

subscription. For example, as shown in the figure, the client pulled a message include the date (2018-06-

04-12:23), pressure value (976.4971923928125), and temperature value (24.289932250976562).

Figure 48 shows the tested mobile client of Google Cloud, which is able to get message entities from

Google Cloud Datastore. After click the “Get Message” button, the client is able get an entity from Google

Cloud Datastore. For example, as shown in the figure, the client pulled a message include the date (2018-

06-01-13:05), pressure value (979.9617), and temperature value (27.898651).

46

Figure 47. Google Cloud Mobile Client connect with Google Cloud IoT Core

Figure 48. Google Cloud Mobile Client connect with Google Cloud Datastore

47

Figure 49. The mobile client of Microsoft Azure

Figure 50. The mobile client of AWS

48

Figure 49 shows the tested mobile client of Microsoft Azure, after click the “Get Message” button, the

client is able to get message from the storage account of Azure. For Example, as shown in the figure, the

client got a message include the date (2018-06-01-13:50). temperature value (27.673187), and pressure

value (979.8434).

Figure 50 shows the tested mobile client of AWS, after click the “Get Message” button, the client is able

to get message from the NoSQL Database of AWS Mobile Hub. For Example, as shown in the figure, the

client got a message include the date (2018-05-31-07:17), pressure value (975.3861), and temperature value

(23.777096).

49

6. CoT Architecture for Global Cloud and IoT

Networks Based on Proxy Using OCF IoTivity

and MQTT

6.1 CoT Design for Interworking between Global Cloud and IoT

Networks Based on Proxy

Recently, we is really necessary to study the interworking between Cloud and IoT Devices. Figure 51

shows the conceptual model of the architecture for Global Cloud and IoT Networks based on Proxy. The

proxy is able to get sensing data from IoT Networks based on IoTivity, and publish or store sensing data

message to cloud using MQTT or HTTP protocol. Then Client is able to get the sensing data message from

cloud using MQTT or HTTP protocol.

Proxy

IoT Network_nIoT Network_1 IoT Network_2

IoTivity

IoTivity IoTivity

Cloud

MQTT

Client

HTTPMQTT

Figure 51. Conceptual model of the architecture for Global Cloud and IoT Networks based on Proxy

50

Figure 52 shows the configuration of IoT Devices, Sensor Connector is able to get sensing data from

sensors via the sensor drivers in Libraries. OCF IoTivity Server is able to make sensing data resource and

response sensing data when IoTivity Client requests.

Figure 53 shows the configuration of Proxy. OCF IoTivity Client is able to send request to IoTivity

Server, when IoTivity Server response sensing data, Data Buffering will get the sensing data and put the

data to Message Conversion. Message Conversion is able to convert the sensing data to message and push

the message to MQTT Client. MQTT Client is able to publish this message to the topic in cloud.

IoT Device

OS

IoT Network

Sensor Connector Libraries

OCF IoTivity Server

Figure 52. IoT Devices configuration

Proxy

IoT Network

MQTT Client OCF IoTivity Client

OS

Data BufferingMessage Conversion

Figure 53. Proxy configuration

51

 Figure 54 shows the sequence diagram of the architecture for Global Cloud and IoT Networks based on

Proxy. When the proxy is running, IoTivity Client in Proxy will send request to IoTivity Server in IoT

Device, and IoTivity Server will get sensing data from sensors and return the sensing data to IoTivity Client,

IoTivity Client will put the sensing data to MQTT Client. MQTT Client will publish the sensing data to the

topic in cloud as a message. At last, when the client pull message from a subscription of cloud, the cloud

will return message to the client.

Cloud MQTT Client SensorIoTivity Client IoTivity Server

Request sensing data
Request sensing data
Return sensing data

Return sensing data

Sensing data

Publish data to topic as message

Proxy IoT Device

Client

Pull messge
message

Figure 54. Sequence diagram of the architecture for Global Cloud and IoT Networks based on Proxy

Figure 55 shows the configuration architecture for the connection between IoT network and AWS based

on Proxy. We used one Raspberry Pi 3 Model B with Android Things system as Proxy, several other

Raspberry Pi 3 Model B boards with Android Things system as IoT devices, and we also used BMP280

Sensor (Temperature, Pressure) to get sensing data. IoT devices get sensing data from BMP280 sensors and

respond sensing data when the proxy request. Proxy is able to get sensing data from IoT devices based on

IoTivity, and publish sensing data messages to the topic in AWS IoT using MQTT protocol. The MQTT

messages in AWS cannot store automatically, so before the device publish message to the topic in AWS,

we will create the message item in NoSQL Database of AWS Mobile Hub to store the sensing messages.

And then Client is able to get message item from NoSQL Database of AWS Mobile Hub.

52

Amazon Web Service

AWS IoT

MQTT Client

IoTivity Client

 Android Things

Hardware: Raspberry Pi 3 Model B

IoTivity Server

Android Things

Hardware: Raspberry Pi 3 Model B

IoTivity Server

Android Things

Hardware: Raspberry Pi 3 Model B

Sensor Sensor

IoTivity IoTivity

IoTivity Server

Android Things

Hardware: Raspberry Pi 3 Model B

Sensor

IoTivity

Amazon Web Service

Mobile Hub

Client

MQTT

HTTP

Figure 55. The configuration for the connection between IoT network and AWS based on Proxy

Figure 56 shows the configuration architecture for the connection between IoT network and Azure IoT

Hub based on Proxy. We used one Raspberry Pi 3 Model B with Android Things system as Proxy, several

other Raspberry Pi 3 Model B boards with Android Things system as IoT devices, and we also used

BMP280 Sensor (Temperature, Pressure) to get sensing data. IoT devices get sensing data from BMP280

sensors and respond sensing data when the proxy request. Proxy is able to get sensing data from IoT devices

based on IoTivity, and publish sensing data messages to the topic in Azure IoT Hub using MQTT protocol.

After the messages published to the topic of Azure, the messages will be stored in the Blobs of Storage

Account of Azure, and Client is able to get message files from Blobs of Azure.

53

Azure IoT Hub

Storage Account

MQTT Client

IoTivity Client

 Android Things

Hardware: Raspberry Pi 3 Model B

IoTivity Server

Android Things

Hardware: Raspberry Pi 3 Model B

IoTivity Server

Android Things

Hardware: Raspberry Pi 3 Model B

Sensor Sensor

IoTivity IoTivity

IoTivity Server

Android Things

Hardware: Raspberry Pi 3 Model B

Sensor

IoTivity

Client

MQTT

HTTP

Figure 56. The configuration for the connection between IoT network and Azure IoT Hub based on Proxy

Figure 57 shows the configuration architecture for the connection between IoT network and Google

Cloud based on Proxy. We used one Raspberry Pi 3 Model B with Android Things system as Proxy, several

other Raspberry Pi 3 Model B boards with Android Things system as IoT devices, and we also used

BMP280 Sensor (Temperature, Pressure) to get sensing data. IoT devices get sensing data from BMP280

sensors and respond sensing data when the proxy request. Proxy is able to get sensing data from IoT devices

based on IoTivity, and publish sensing data messages to the topic in Google Cloud IoT Core using MQTT

protocol. The messages published to topic in Google Cloud will disappear after several days, so if we want

to store the messages, we need to use Google Cloud Datastore. When we publish the message to the topic

in Google Cloud, we also create a message entity in Google Cloud Datastore. Client is able to pull message

54

from subscriptions in Google Cloud, if the message has been disappeared, Client is able to get message

entity from Google Cloud Datastore.

Google Cloud

IoT Core

MQTT Client

IoTivity Client

 Android Things

Hardware: Raspberry Pi 3 Model B

IoTivity Server

Android Things

Hardware: Raspberry Pi 3 Model B

IoTivity Server

Android Things

Hardware: Raspberry Pi 3 Model B

Sensor Sensor

IoTivity IoTivity

IoTivity Server

Android Things

Hardware: Raspberry Pi 3 Model B

Sensor

IoTivity

Google Cloud

Datastore

Client

MQTT

HTTPMQTT

Figure 57. The configuration for the connection between IoT network and Google Cloud based on Proxy

55

6.2 Experiments and Results of CoT Architecture for Global

Cloud and IoT Networks Based on Proxy

Table 10 shows the configuration environment of IoT Device. The Android Things system we used is

version 0.6.1, and we also used Android SDK 26, Java 1.8, IoTivity 1.2.1, Google Bmx280 Sensor Driver

0.4.

Components Version

Android Things 0.6.1

Android SDK 26

Java 1.8

IoTivity 1.2.1

Bmx280 Sensor Driver 0.4

Table 10. Configuration environment of IoT Device

Table 11 shows the configuration environment of Proxy. Compare with the other boards, we add cloud

SDKs instead of the Bmx 280 sensor driver, include Microsoft Azure IoT SDK 1.6.0, AWS Android SDK

2.6.11, Google Cloud Platform SDK 1.22.0.

Components Version

Android Things 0.6.1

Android SDK 26

Java 1.8

IoTivity 1.2.1

Microsoft Azure IoT SDK 1.6.0

AWS Android SDK 2.6.11

Google Cloud Platform SDK 1.22.0

Table 11. Configuration environment of Proxy

56

Table 12 shows the development environment of mobile clients based on Proxy. We used Android Studio

3.0.1, Android SDK 27, AWS Java SDK 1.11.293, Azure IoT SDK 1.7.23, Google Cloud PubSub 0.45.0,

Google Cloud Storage 1.26.0, and Google Cloud Datastore 1.31.0.

Components Version

Android Studio 3.0.1

Android SDK 27

AWS Java SDK 1.11.293

Azure IoT SDK 1.7.23

Google Cloud PubSub 0.45.0

Google Cloud Storage 1.26.0

Google Cloud Datastore 1.31.0

Table 12. Development environment of mobile clients based on Proxy

 Figure 58 shows the IoT devices we used in architecture for Global Cloud and IoT Networks based on

Proxy. We installed Android Things in Raspberry Pies, and we used BMP280 pressure and temperature

sensor. Figure (a) shows the proxy board, figure (b) shows the normal Android Things boards, and figure

(c) shows the BMP280 sensor we used.

Figure 58. IoT devices used in architecture for Global Cloud and IoT Networks based on Proxy

57

 Figure 59 shows the connection information of AWS in code of Proxy. The information includes

customer specific endpoint, Cognito pool ID, AWS IoT policy name, region, key store name, key store

password and certificate ID.

Figure 59. Connection information of AWS based on Proxy

 Figure 60 shows the result (sensing data) of cloud (AWS). the message has published successfully. And

as shown in the figure, the message include date (2018-02-09-11:24:35), temperature value (24.37198), and

pressure value (807.8578).

Figure 60. Results of cloud (AWS) based on Proxy

 Figure 61 shows the successful connections in 1 hour with AWS based on Proxy, When the connections

become stable, the message publish speed is 0.1/s, the minimum speed is 0/s, the maximum speed is 0.1/s.

58

Figure 61. The successful connections in 1 hour with AWS based on Proxy

Figure 62 shows the data stored in AWS NoSQL database based on Proxy. The name of the table is

finaltest-mobilehub-887317787-messages, the primary sort key is the date, each item includes date,

temperature value, and pressure value. For example, as shown in figure, there is an item shows information

include date (2018-06-01-13:53), pressure value (979.73376), and temperature value (28.216324).

Figure 62. Data stored in AWS NoSQL database based on Proxy

59

 Figure 63 shows the connection information of Azure in code of Proxy. The information includes

connection string (primary key) and device ID.

Figure 63. Connection information of Azure based on Proxy

 Figure 64 shows the received messages in Azure based on Proxy, it’s not able to show messages directly,

we need to download the message file. Figure (a) is the Blob service of the storage we created, it is able to

find the messages folder, and figure (b) shows when we click the messages file, it’s able to click the

“Download” button to download the messages file.

Figure 64. Received message file in Azure based on Proxy

60

 Figure 65 shows the downloaded sensing data file based on Proxy, the message has published

successfully. And as shown in the figure, the message include date (2018-02-09-11:59:41), temperature

value (24.16173), and pressure value (807.6015).

Figure 65. Result file of Azure based on Proxy

 Figure 66 shows the sum messages delivered to storage endpoints of Azure based on Proxy. When the

connections become stable, the message publish speed is 0.04/s, the minimum speed is 0/s, the maximum

speed is 0.04/s.

Figure 66. Sum messages delivered to storage endpoints of Azure based on Proxy

 Figure 67 shows the connection information of Google Cloud Platform in code of Proxy. The information

includes default bridge hostname, default bridge port, project ID, Registry ID, Device ID, region, topic

format, client ID format and broker URL format.

61

Figure 67. Connection information of Google Cloud Platform based on Proxy

Figure 68. Published message in topic of Google Cloud based on Proxy

 Figure 68 shows the result in Google Cloud Platform based on Proxy, the message has published

successfully. We need shell command to pull the message from a subscription, and as shown in figure, there

is a message include device ID, device registry ID, device registry location, project ID, temperature value,

and pressure value.

Figure 69 shows the publish request count of Pub/Sub topic in Google Cloud Platform based on Proxy.

When the connections become stable, the message publish speed is 0.033/s, the minimum speed is 0/s, the

maximum speed is 0.1/s.

62

Figure 69. The publish request count of Pub/Sub topic in Google Cloud Platform based on Proxy

Figure 70. Data stored in Google cloud Datastore based on Proxy

Figure 70 shows the data stored in Google cloud Datastore based on Proxy. Messages stored there as

entities, the kind of the data is “messages”, each entity’s name is the date, and the entity includes date,

temperature value, and pressure value. For example, as shown in figure, there is an entity shows information

include date (2018-06-04-12:03), pressure value (976.3289), and temperature value (27.140238).

63

Figure 71. The mobile client of Google Cloud for Google Cloud IoT Core based on Proxy

Figure 71 shows the tested mobile client of Google Cloud for Google Cloud IoT Core based on Proxy,

which is able to pull messages from subscriptions. After click the “Get Message” button, the client is able

to pull message from a Google Cloud subscription. For example, as shown in the figure, the client pulled a

message include the date (2018-05-27-06:23), pressure value (953.4248820797152), and temperature value

(27.241511379901467).

Figure 72 shows the tested mobile client of Google Cloud for Google Cloud Datastore based on Proxy,

which is able to get message entities from Google Cloud Datastore. After click the “Get Message” button,

the client is able get an entity from Google Cloud Datastore. For example, as shown in the figure, the client

pulled a message include the date (2018-06-04-12:03), pressure value (976.3289), and temperature value

(27.140238).

64

Figure 72. The mobile client of Google Cloud for Google Cloud Datastore based on Proxy

Figure 73 shows the tested mobile client of Microsoft Azure based on Proxy, after click the “Get Message”

button, the client is able to get message from the storage account of Azure. For Example, as shown in the

figure, the client got a message include the date (2018-06-04-12:07). temperature value (27.375973), and

pressure value (811.42267).

Figure 74 shows the tested mobile client of AWS based on Proxy, after click the “Get Message” button,

the client is able to get message from the NoSQL Database of AWS Mobile Hub. For Example, as shown

in the figure, the client got a message include the date (2018-16-01-13:48), pressure value (979.7905), and

temperature value (27.908895).

65

Figure 73. The mobile client of Microsoft Azure based on Proxy

Figure 74. The mobile client of AWS based on Proxy

66

7. CoT Architecture for Vehicle Monitoring and

Control Service Based on Proxy Using OCF

IoTivity and MQTT

7.1 CoT Design for Vehicle Monitoring and Control Service

Based on Proxy

Electric vehicles have been used more and more wildly. In this paper, we present the mobile control

service of electric vehicles based on CoV architecture, which is able to provide users monitor service and

control service, and upload vehicle states to cloud.

Proxy

Administer Client

Cloud

Azure Google CloudAmazon Web Service

Electric Vehicles

Electric Vehicle_1 Electric Vehicle_2 Electric Vehicle_n

User Client

Figure 75. Conceptual model of CoT architecture for vehicle monitoring and control service

67

Figure 75 shows the conceptual model of CoT architecture for vehicle monitoring and control service.

The proxy is able to get vehicle state from electric vehicles and upload the state information to cloud (AWS,

Azure, Google Cloud), the clients are able to get vehicle state information from cloud and show the state to

users. The vehicle state information include battery state (present), door state (lock or unlock), trunk state

(lock or unlock), audio state (turn on or turn off), head lights state (turn on or turn off), interior light state

((turn on or turn off)), alarm state ((turn on or turn off)), and the engine state (start or stop). The administer

client is able to control electric vehicles, include lock or unlock the doors, lock or unlock the trunk, turn on

or turn off the audio, turn on or turn off the head lights, turn on or turn off the interior light, turn on or turn

of the alarm, and start or stop the engine.

Mobile ClientElectric Vehicle

Energy and Battery Module

Trunk Module

Interior Light Module

Security Alarm Module

Network Module

Head Light Module

GPS Module

Engine Module

Doors Module

Audio Module

CoAP
Server

CoAP
Client

Main Page

Control Page

Settings Page

State Page

Cloud Client
Page

Figure 76. The design of the vehicle CoT architecture

Figure 76 shows the design of the vehicle CoT architecture. The system consists of two parts: Vehicle

Emulator and App Client. In Vehicle Emulator, there are ten modules include energy and Battery Module,

Trunk Module, Interior Light Module, Security Module, Network Module, Audio Module, Head Light

Module, GPS Module, Engine Module, and Doors Module, there is also a CoAP Server in vehicle Emulator.

Energy and Battery Module is able to check the state of the battery. Audio Module is able to turn on/off the

audio. Trunk Module is able to lock/unlock the trunk. Head Light Module is able to turn on/off the head

light. Interior Light Module is able to turn on/off the interior light. GPS Module is able to turn on/off the

68

GPS. Security Alarm Module is able to start/stop the security service (security alarm). Engine Module is

able to start/stop the engine. Network Module is able to set up the network settings and turn on/off network

connection. Doors Module is able to lock/unlock the doors. CoAP Server is able to get the request from

Client and respond accordingly. In App Client, there are four modules include Main Page Module, Control

Page Module, Settings Page Module, and State Page Module, there is also a CoAP Client in App Client.

The main page is able to show all functions of this app (Control, Settings, State). The control page is able

to control the Vehicle Emulator. The settings page is able to let users set the IP address of the Vehicle

Emulator. The state page is able to show the battery state of the Vehicle Emulator. CoAP Client is able to

send request to control Vehicle Emulator or get battery state from Vehicle Emulator.

Electric vehicleMobile Client

Get Battery state

Battery state

Cloud

Control Vehicle

Save state

Get state

Vehicle state

Figure 77. The sequence diagram for monitoring electric vehicle

Figure 77 shows the sequence diagram for monitoring electric vehicle. When Mobile Client send “get

battery state” request to Vehicle Emulator, Vehicle Emulator will return battery state to App Client. After

the client controls the vehicles, it is able to upload the vehicle state to cloud. When the client request vehicle

state from cloud, the cloud is able to return the state of vehicles.

Figure 78 shows the sequence diagram for controlling electric vehicle. When App Client send “start/stop

engine” request to Vehicle Emulator, Vehicle Emulator will start/stop engine and return true/false to App

69

Client. When App Client send “turn on/off audio” request to Vehicle Emulator, Vehicle Emulator will turn

on/off the audio and return true/false to App Client. When App Client send “lock/unlock doors” request to

Vehicle Emulator, Vehicle Emulator will lock/unlock the doors and return true/false to App Client. When

App Client send “lock/unlock trunk” request to Vehicle Emulator, Vehicle Emulator will lock/unlock the

trunk and return true/false to App Client. When App Client send “turn on/off head light” request to Vehicle

Emulator, Vehicle Emulator will turn on/off the head light and return true/false to App Client. When App

Client send “turn on/off interior light” request to Vehicle Emulator, Vehicle Emulator will turn on/off the

interior light and return true/false to App Client. When App Client send “turn on/off alarm” request to

Vehicle Emulator, Vehicle Emulator will turn on/off the alarm and return true/false to App Client. When

App Client send “turn on/off GPS” request to Vehicle Emulator, Vehicle Emulator will turn on/off GPS

and return true/false to App Client.

Figure 78. The sequence diagram for controlling electric vehicle

Electric vehicleMobile Client

Start/Stop engine

True/False

Turn on/off audio
True/False

Lock/Unlock doors
True/False

Lock/Unlock trunk

True/False

Turn on/off head light

True/False

Tu rn on/off interior light
True/False

Turn on/off alarm

True/False

Turn on/off GPS

True/False

70

7.2 Experiments and Results of CoT Architecture for Vehicle

Monitoring and Control Service Based on Proxy

 Table 13 shows the development environment of vehicle emulator.

Component Version

Windows OS 10

Visual Studio 2015

CoAP.NET v4.0.30319

Table 13. Development environment of IoT Vehicle System

Table 14 shows the development environment of mobile client.

Component Version

Android Studio 3.0.1

Android SDK 27

org.eclipse.californium 2.0

AWS Android SDK 2.6

Azure IoT SDK 1.7.23

Google Cloud Datastore 1.31.0

Table 14. Development environment of mobile client

Figure 79 shows the implement design of CoT architecture for vehicle monitoring and control service.

There is one app that include the user client part, administer client part, and proxy part. This app is able to

monitor the vehicle emulator, control the vehicle emulator, upload the state of vehicle emulator to cloud,

and get the state of vehicle emulator from cloud.

71

Mobile Client

Cloud

Azure Google CloudAmazon Web Service

Administer Client Proxy

Vehicle Emulator

User Client

Figure 79. Implement design of CoT architecture for vehicle monitoring and control service

Figure 80 shows the implementation result of Vehicle Emulator. Figure (a) shows the initial state, figure

(b) shows the state that all modules have been opened.

Figure 80. Implementation results of vehicle Emulator

72

Figure 81 shows the implementation result for monitoring part of mobile client. Figure (a) shows the

main page, there are four buttons in the main page, which is able to visit the control page, the monitor mage,

the setting page, and the cloud client page. Figure (b) shows the state page, which is able to show the battery

state of Vehicle Emulator.

Figure 81. Implementation results for monitoring part of mobile client

Figure 82. Implementation results for controlling part of mobile client

73

Figure 82 shows the implementation result for controlling part of mobile client. Figure (a) shows the

setting page, which is able to let users input the IP address of Vehicle Emulator. Figure (b) shows the control

page, there are eight buttons to control different modules include engine, audio player, doors, trunk, head

lights, interior light, alarm, and GPS. Under the control buttons, there are three buttons which are able to

upload current vehicle state to cloud (AWS, Azure, Google Cloud Platform).

 Figure 83 shows how to start the network (CoAP) connection. Click the image in figure (a) is able to

start the connection, and the figure will change as figure (b) (the color of the internet icon will change from

blue to green).

Figure 83. The way to start the network connection

 Figure 84 shows how to control the engine. Click the stand button and then click the start button will

start the engine, click the stop button will stop the engine. Figure (a) shows the engine-start state, figure (b)

shows the engine-stop state.

Figure 84. The way to control the engine

 Figure 85 shows how to control the audio player. Click the small icon will start the player, click the icon

again will stop the player. Figure (a) shows the player-on state, figure (b) shows the player-off state.

74

Figure 85. The way to control the audio player

 Figure 86 shows how to control the head lights. Move the marker to “ON” will turn on the head lights,

move the marker to “OFF” will turn off the head lights. Figure (a) shows the lights-on state, figure (b)

shows the lights-off state.

Figure 86. The way to control the head lights

 Figure 87 shows how to control the interior light. Move the marker to “ON” will turn on the interior light,

move the marker to “OFF” will turn off the interior light. Figure (a) shows the light-on state, figure (b)

shows the light-off state.

Figure 87. The way to control the interior light

75

 Figure 88 shows how to control the doors. Move the marker to “LOCK” will lock the doors and the lock

icon will turn to locked, move the marker to “UNLOCK” will unlock the doors and the lock icon will turn

to unlocked. Figure (a) shows the doors-lock state, figure (b) shows the doors-unlock state.

Figure 88. The way to control the doors

 Figure 89 shows how to control the trunk. Move the marker to “LOCK” will lock the trunk and the trunk

icon will turn to locked, move the marker to “UNLOCK” will unlock the trunk and the trunk icon will turn

to unlocked. Figure (a) shows the trunk -lock state, figure (b) shows the trunk -unlock state.

Figure 89. The way to control the trunk

Figure 90. The way to control the security alarm

76

Figure 90 shows how to control the security alarm. Move the marker to “ON” will turn on the alarm,

move the marker to “OFF” will turn off the alarm. Figure (a) shows the alarm-on state, figure (b) shows the

alarm-off state.

Figure 91 shows how to control the GPS. Move the marker to “ON” will turn on the GPS, move the

marker to “OFF” will turn off the GPS. Figure (a) shows the GPS-on state, figure (b) shows the GPS-off

state.

Figure 91. The way to control the GPS

After controlling the vehicles, the clients are able to upload current vehicle state to clouds (AWS, Azure,

Google Cloud Platform). Figure 92 shows the stored state in the NoSQL Database of AWS Mobile Hub.

For example, on the date “2018-06-23-02:08”, on the vehicle “vehicle-1”, the audio was off, the doors were

locked, the engine was stop, the head lights were on, the interior light was on, the trunk was locked, the

alarm was on, and the GPS was on.

Figure 93 shows the stored state in Azure Storage Account. For example, on the date “2018-06-23-04:56”,

on the vehicle “vehicle-1”, the engine was stop, the audio was off, the door was unlocked, the trunk was

unlocked, the head lights were off, the interior light was off, the alarm was off, the GPS was off.

Figure 94 shows the stored state in Google Cloud Datastore. For example, on the date “2018-06-23-

04:23”, on the vehicle, the alarm was off, the audio was on, the doors were unlocked, the engine was start,

the GPS was off, the headlight was on, the interior light was on, the trunk was unlocked.

77

Figure 92. The stored vehicle state in AWS NoSQL Database

Figure 93. The stored vehicle state file in Azure Storage Account

Figure 94. The stored vehicle state in Google Cloud Datastore

When users want to get vehicle state from cloud, they are able to enter the Cloud Client page from the

main page. There are three buttons, which are able to get vehicle state from AWS, Azure, and Google Cloud

Platform. Figure 95 shows the vehicle state got from AWS, on the date “2018-06-23-02:10”, on the vehicle,

78

the engine was stop, the audio was on, the door was unlocked, the trunk was unlocked, the head lights were

on, the interior light was on, the alarm was on, the GPS was on.

Figure 95. The vehicle state of AWS in mobile client

Figure 96. The vehicle state of Azure in mobile client

79

Figure 96 shows the vehicle state got from Azure, on the date “2018-06-23-05:00”, on the vehicle, the

engine was stop, the audio was off, the door was locked, the trunk was locked, the head lights were off, the

interior light was on, the alarm was off, the GPS was off.

Figure 97 shows the vehicle state got from Google Cloud Platform. On the date “2018-06-23-04:08”, on

the vehicle, the engine was stop, the audio was off, the alarm was off, the door was unlocked, the trunk was

unlocked, the head lights were off, the interior light was off, the GPS was off.

Figure 97. The vehicle state of Google Cloud in mobile client

80

8. Conclusion

This paper presented the design and implementation of CoT architecture based on proxy using IETF

CoAP and OCF IoTivity for connectivity between IoT Networks and cloud, there are five different

architectures which are able to collect massive sensing data from IoT devices and then upload the data to

cloud for the further analysis. The first CoT architecture is for Hadoop and IoT platforms, IoT platform is

able to upload sensing data files to Hadoop Distributed File System (HDFS). The second CoT architecture

is for Hadoop and IoT Networks, there is an agent that is able to get sensing data from IoT devices and

upload the data to HDFS using CoAP protocol. The third CoT architecture is for global cloud and IoT

networks, AWS, Azure, and Google Cloud is used as global cloud and is able to communicate with IoT

networks using MQTT protocol and store the sensing data. The fourth CoT architecture is for global cloud

and IoT networks based on proxy, the proxy is able to get sensing data from IoT networks and send to store

in cloud (AWS IoT, Azure IoT Hub, and Google Cloud IoT Core) using OCF IoTivity and MQTT protocol.

After some experiments we also compared the IoT cloud services of AWS, Azure, and Google Cloud

Platform. The fifth CoT architecture is for vehicle monitoring and control service, the client is able to

monitor vehicles, control vehicles, and get vehicle state from cloud. During the design and implement of

these architectures, we had more understanding about IoT services based on Clouds. In the future, we aim

to make comparison by adding more IoT devices and develop a more complicated comparison system.

81

References

1. J.Song, A. Kunz, M. Schmidt, and P. Szczytowski. “Connecting and managing m2m devices in the
future internet,” Mobile Networks and Applications, pp. 1–14, 2013.

2. Husain, Syed, et al. "Interworking architecture between oneM2M service layer and underlying
networks." Globecom Workshops (GC Wkshps), 2014. IEEE, 2014.

3. Kim J, Yun J, Choi S C, et al. Standard-based IoT platforms interworking: implementation,
experiences, and lessons learned[J]. IEEE Communications Magazine, 2016, 54(7): 48-54.

4. L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Comput. Netw., vol. 54, no.
15, pp. 2787–2805, 2010.

5. D. Evans, “The internet of things how the next evolution of the internet is changing everything,” White
Paper, Cisco, April 2011.

6. Jiang, Lihong, et al. "An IoT-oriented data storage framework in cloud computing platform." IEEE
Transactions on Industrial Informatics 10.2 (2014): 1443-1451.

7. Derhamy, Hasan, et al. "A survey of commercial frameworks for the Internet of Things." Emerging
Technologies & Factory Automation (ETFA), 2015 IEEE 20th Conference on. IEEE, 2015.

8. Botta, Alessio, et al. "On the integration of cloud computing and internet of things." Future internet of
things and cloud (FiCloud), 2014 international con-ference on. IEEE, 2014.

9. S. Chenishkian, “Building Smart Services for Smart Home,” in Proceedings of the IEEE 4th
International Workshop on Network Appliances, pp. 215-224, 2002.

10. Kang, Byeongkwan, et al. "IoT-based monitoring system using tri-level context making model for
smart home services." Consumer Electronics (ICCE), 2015 IEEE International Conference on. IEEE,
2015.

11. Sivaraman, Vijay, et al. "Network-level security and privacy control for smart-home IoT devices."
Wireless and Mobile Computing, Networking and Com-munications (WiMob), 2015 IEEE 11th
International Conference on. IEEE, 2015.

12. Zhang, Qi, Lu Cheng, and Raouf Boutaba. "Cloud computing: state-of-the-art and research
challenges." Journal of internet services and applications 1.1 (2010): 7-18.

13. Zhou, Minqi, et al. "Services in the cloud computing era: A survey." Universal Communication
Symposium (IUCS), 2010 4th International. IEEE, 2010.

14. Liu, Chang, et al. "External integrity verification for outsourced big data in cloud and IoT: A big
picture." Future Generation Computer Systems 49 (2015): 58-67.

15. Soliman, Moataz, et al. "Smart home: Integrating internet of things with web services and cloud
computing." Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th International
Conference on. Vol. 2. IEEE, 2013.

16. He, Wu, Gongjun Yan, and Li Da Xu. "Developing vehicular data cloud ser-vices in the IoT
environment." IEEE Transactions on Industrial Informatics 10.2 (2014): 1587-1595.

17. Li, Ang, et al. "CloudCmp: comparing public cloud providers." Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. ACM, 2010.

82

18. Afonso, José A., et al. "IoT system for anytime/anywhere monitoring and control of vehicles’
parameters." (2017).

19. Tahat, Ashraf, et al. "Android-based universal vehicle diagnostic and tracking system." Consumer
Electronics (ISCE), 2012 IEEE 16th International Symposium on. IEEE, 2012.

20. Yao, Leehter, Yu-Qiao Chen, and Wei Hong Lim. "Internet of things for electric vehicle: An improved
decentralized charging scheme." Data Science and Data Intensive Systems (DSDIS), 2015 IEEE
International Conference on. IEEE, 2015.

21. Monteiro, Vítor, et al. "A flexible infrastructure for dynamic power control of electric vehicle battery
chargers." IEEE Transactions on Vehicular Technology 65.6 (2016): 4535-4547.

22. Aazam, Mohammad, et al. "Cloud of Things: Integrating Internet of Things and cloud computing and
the issues involved." Applied Sciences and Technology (IBCAST), 2014 11th International Bhurban
Conference on. IEEE, 2014.

23. Yu, Zhang, et al. "Optimization design method of communication service system for vehicle remote
monitoring based on Netty pattern." Chinese Automation Congress (CAC), 2017. IEEE, 2017.

24. Al-Taee, Majid A., Omar B. Khader, and Nabeel A. Al-Saber. "Remote monitoring of vehicle
diagnostics and location using a smart box with Global Positioning System and General Packet Radio
Service." Computer Systems and Applications, 2007. AICCSA'07. IEEE/ACS International
Conference on. IEEE, 2007.

25. Thishone, P., and J. Samson Isaac. "Development of remote vehicle monitoring system for surveillance
applications." Innovations in Electrical, Electronics, Instrumentation and Media Technology
(ICEEIMT), 2017 International Conference on. IEEE, 2017.

26. Jun, Xu, and Liu Zhou. "Lithium battery remote monitoring system for vehicle mounted." Control And
Decision Conference (CCDC), 2017 29th Chinese. IEEE, 2017.

27. Distefano, Salvatore, Giovanni Merlino, and Antonio Puliafito. "Enabling the cloud of things."
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth International
Conference on. IEEE, 2012.

28. Petrolo, Riccardo, Valeria Loscri, and Nathalie Mitton. "Towards a smart city based on cloud of
things." Proceedings of the 2014 ACM international workshop on Wireless and mobile technologies
for smart cities. ACM, 2014.

29. Tei, Kenji, and Levent Gurgen. "ClouT: Cloud of things for empowering the citizen clout in smart
cities." Internet of Things (WF-IoT), 2014 IEEE World Forum on. IEEE, 2014.

30. Aazam, Mohammad, Pham Phuoc Hung, and Eui-Nam Huh. "Smart gateway based communication
for cloud of things." Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014
IEEE Ninth International Conference on. IEEE, 2014.

31. Petrolo, Riccardo, et al. "The design of the gateway for the cloud of things." Annals of
Telecommunications 72.1-2 (2017): 31-40.

32. Bhattasali, Tapalina, Rituparna Chaki, and Nabendu Chaki. "Secure and trusted cloud of things." India
Conference (INDICON), 2013 Annual IEEE. IEEE, 2013.

33. Amazon Web Service, aws.amazon.com

34. Bermudez, Ignacio, et al. "Exploring the cloud from passive measurements: The Amazon AWS case."
INFOCOM, 2013 Proceedings IEEE. IEEE, 2013.

83

35. Bracci, Fabio, Antonio Corradi, and Luca Foschini. "Database security management for healthcare
SaaS in the Amazon AWS Cloud." Computers and Communications (ISCC), 2012 IEEE Symposium
on. IEEE, 2012.

36. Microsoft Azure, azure.microsoft.com

37. Viswanathan, Lalitha, et al. "Predictive Provisioning: Efficiently Anticipating Usage in Azure SQL
Database." Data Engineering (ICDE), 2017 IEEE 33rd International Conference on. IEEE, 2017.

38. Forsström, Stefan, and Ulf Jennehag. "A performance and cost evaluation of combining OPC-UA and
Microsoft Azure IoT Hub into an industrial Internet-of-Things system." Global Internet of Things
Summit (GIoTS), 2017. IEEE, 2017.

39. Google Cloud Platform, cloud.google.com

40. Bunch, Chris, et al. "An evaluation of distributed datastores using the AppScale cloud platform." Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on. IEEE, 2010.

41. Mishra, Asit K., et al. "Towards characterizing cloud backend workloads: insights from Google
compute clusters." ACM SIGMETRICS Performance Evaluation Review 37.4 (2010): 34-41.

42. Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc. 2009

43. Chuck Lam. Hadoop in Action. 2010-12-22

44. https://en.wikipedia.org/wiki/Representational_state_transfer

45. http://coap.technology/

46. IoTivity, www.iotivity.org

47. MQTT, http://mqtt.org/faq

	Abstract
	1. Introduction
	2. Related Work
	2.1 Cloud (Hadoop, Azure, AWS, Google Cloud)
	2.2 IoT Platforms
	2.3 IoT Protocol

	3. CoT Architecture for Hadoop and IoT Platform Using IETF CoAP
	3.1 CoT Design for Interworking between Hadoop and IoT Platform
	3.2 Experiments and Results of CoT Architecture for Hadoop and IoT Platform

	4. CoT Architecture for Hadoop and IoT Networks Based on Agent Using IETF CoAP
	4.1 CoT Design for Interworking between Hadoop and IoT Networks
	4.2 Experiments and Results of CoT Architecture for Hadoop and IoT Networks

	5. CoT Architecture for Global Cloud and IoT Networks Using MQTT
	5.1 CoT Design for Interworking between Global Cloud and IoT Networks
	5.2 Experiments and Results of CoT Architecture for Global Cloud and IoT Networks

	6. CoT Architecture for Global Cloud and IoT Networks Based on Proxy Using OCF IoTivity and MQTT
	6.1 CoT Design for Interworking between Global Cloud and IoT Networks Based on Proxy
	6.2 Experiments and Results of CoT Architecture for Global Cloud and IoT Networks Based on Proxy

	7. CoT Architecture for Vehicle Monitoring and Control Service Based on Proxy Using OCF IoTivity and MQTT
	7.1 CoT Design for Vehicle Monitoring and Control Service Based on Proxy
	7.2 Experiments and Results of CoT Architecture for Vehicle Monitoring and Control Service Based on Proxy

	8. Conclusion
	References

<startpage>17
Abstract 1
1. Introduction 3
2. Related Work 8
 2.1 Cloud (Hadoop, Azure, AWS, Google Cloud) 8
 2.2 IoT Platforms 12
 2.3 IoT Protocol 13
3. CoT Architecture for Hadoop and IoT Platform Using IETF CoAP 16
 3.1 CoT Design for Interworking between Hadoop and IoT Platform 16
 3.2 Experiments and Results of CoT Architecture for Hadoop and IoT Platform 22
4. CoT Architecture for Hadoop and IoT Networks Based on Agent Using IETF CoAP 27
 4.1 CoT Design for Interworking between Hadoop and IoT Networks 27
 4.2 Experiments and Results of CoT Architecture for Hadoop and IoT Networks 31
5. CoT Architecture for Global Cloud and IoT Networks Using MQTT 35
 5.1 CoT Design for Interworking between Global Cloud and IoT Networks 35
 5.2 Experiments and Results of CoT Architecture for Global Cloud and IoT Networks 38
6. CoT Architecture for Global Cloud and IoT Networks Based on Proxy Using OCF IoTivity and MQTT 49
 6.1 CoT Design for Interworking between Global Cloud and IoT Networks Based on Proxy 49
 6.2 Experiments and Results of CoT Architecture for Global Cloud and IoT Networks Based on Proxy 55
7. CoT Architecture for Vehicle Monitoring and Control Service Based on Proxy Using OCF IoTivity and MQTT 66
 7.1 CoT Design for Vehicle Monitoring and Control Service Based on Proxy 66
 7.2 Experiments and Results of CoT Architecture for Vehicle Monitoring and Control Service Based on Proxy 70
8. Conclusion 80
References 81
</body>

