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Summary

Induced an almost complex structure J on M x R" s integrable, then the globally framed structure f on

M is said to be normal (Def. 2.3).

The f-structure induced on a submanifold of an almost complex manifold is equivalent to%7.f%.

1. Introduction

K. Yano 1961, 1963, 1964, 1965 have introduced
the notion of an f-structure defined by a tensor f of
type (1,1) satisfying > + f = 0. Afterward, H. Naka-
gawa, D.E. Blair, S.I. Goldberg have studied f-struc-
ture with complementary frame. The purpose of the
present paper is to introduce a manifold with an
f-structure and globally frame structure and to study
on geometry of manifold with such a structure.

In §1, we introduce the f-structure and study the
integrability condition of the structure. An almost
complex structure and almost condition structure arc
well-known examples of f-structure. The existence
of fstructure is equivalent to a reduction of the
structure group of tangent bundle to u(r) x o(n-r).

In §2, we define the globally framed structure
and we find the nommality condition N! = 0 of a
globally framed structure (f, £, 7).

In §3, we discuss the f-structure induced on a sub-
manifold of an almost complex manifold.

§1. f-structure and integrability condition.

Let there be given, in an n-dimensional differenti-
able manifold M® of class ¢*, a non-null tensor of
type (1,1) satisfying

(1,1) £ +f=0

We call such a structure an f-structure of rank r,
when the rank r of f is constant everywhere, r being
necessary even Yano, K. (1961), (1963).

If we put

(1,2) 2=-2,
then we have

(1,3) t+m=1,22=¢m?® =m,tm=me=0,

fR=U=f, fm=mf=0.

Thus the operators £ and m applied to the tangent

m=f +1

space at a point of the manifold are complementary

projection operators.

If there is given a non-null tensor field f satisfying
(1,1), then there exist complementary distributions
L and M cormresponding to the projection operators
2 and m respectively.

If the rank of f is equal to r everywhere, than L
is r-dimensional and M is (n-r)-dimensional. We cail
such a structure an f-structure of rank r.

Now, we can introduce a positive definite Rieman-
nian metric such that the vector space of L and the
vector space of M are orthogonal to each other, that
is

(1,4) h(eX, mY) = 0.

for any vector fields X and Y on M then we can
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casily the relation

(1,5)  h(X,Y) = h(€X,£Y) + h(mX, mY),
If we put
(16)  g(EX,fY) = %1h(X,¥) + b (X, fY)

+ h (mX,24Y)} .
then we have

(1,7) g(#X,mY) = 0.
from (1,2) and (1,3) we get

(1,9)  g(iX,fY) = g(X,Y) - g(mX, Y) .

Next, Let A be an eigenvalue of matrix (f) and X
the comespending cigenvector, that is fX = AX.

Transvecting 2 to the equation we get AX = -\3X,
which shows that the cigenvalues of the matrix (f)
are i, -i and 0.

We denote the multiplicities of the roots i and ~i
by p. The characteristic spaces corresponding to i
and -i by V, and V_, respectively. Then V,and V_,
are orthogonal on the vector space of L and the
characteristic space V, corresponding to the root
o is vector space of M.

Hence the tangent space TMP at each point p of
M" is complicated such that

™, =V,eV_ e V.

We take sufficiently fine open covering {U,t by
coordinate neighborhood of M® and determine
a suitable frame in every Ua' Now we take orthogonal
frame {el eereses€a€hy seenenns€9 ps€au Lt pessesns t such
that e, »eseni€y 3pan the space V, and L T
span the space V_; and €3 p+1 7€y SPan the space
V, respectively.

Then we have
(1,10)

fe, = ie, (a= 1,usp),

fepts = ~icpyas
fe2p¢h =0

We call such a frame {¢;} an adapted frame. Then
we can easily see that f and g have the following

forms with respect to an adapted frame {c;}.

(1,11)

-E 0

where E_ is the a x a-unt matrix.

We suppose now that there exists in each coordi-
nate neighborhood a coordinate system in which
an f-structure f has numerical components (1,11).

In this case, an f-structure f is said to be integrable.

We can casily prove the following
PROPOSITION 1.1. It is necessary and sufficient
for an f-structure f to be integrable that [£,f)(X,Y)=0.

where [£,f] is Nijenhuis tensor of f given by

(£ f] (X, Y) = [£X, fY] - f[£X,Y]

- f[X, fY]} + £2{X, Y].
2. Globally framed structure

Let M® be a manifold with an f-structure of rank
r. there exist n-r vector ficlds £, spanning the dis-
tribution L and its dual 1-form n, » where the indices
X, ¥, z over the range { 1,2,......,n-r}. Then we can put
(2,1) m=1n_x§, n () =9,
The summation convention being employed here

and in the sequel Therefore, for any vector ficld

X, we have
2X=f2X, mX= n,(X)E,.
from which we get
(2:2) 2 =1-n x &,
(2.9) f£, =0, 1 o0f=0,

We assume now that, in a differentiable manifold
admitting an f-structure of rank r. there exist globally
(n-r)-frame {£, } and co-frame in b
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The the set (f, £, n,) is called an f-structure with
complementary frame or globally framed structure.
Next, let M" bc a manifold with a globally framed
structure, then the manifold M" admits a positive

definite Riemannian metric’g such that
(24)  g(X.E) =n(X).

from (1,9) we have

(2,5) g (fX, fY) = g (X, Y) -n_(X) £ (Y).
for any vector fields X and Y on M.
If we put
(2,6) F(X,Y) = g(X, fY).

from (1,8) we get
(2,7) F(X,Y) = -F (Y, X).
which shows that F, | is an anti-symmetric tensor.

Next, we shall introduce an almost complex struc-
ture J on product manifold M® x M™,

Let M*(f, £, n,) and M™(f, £, 7,) be two glob-
ally framed manifolds of dimensions n,m and ranks
1,8, respectively.

For any vector field X, eTM: and ip eTM? .

We define a linear map of tangent space
T(M x I\_II)(N-)) onto itself by

(X -n_(X)E,, X +n (X)E,).

(28) J(X,X)

clearly we get
(2,9) 7=,

which shows that J is an almost complex structure.

Thus we have
PROPOSITION 2.1. Let M(f, £,,7,) and M(f, £ 7 )
be two globally framed manifolds. Then the product
manifold M x M has an almost complex structure
defined by (2,8).

Now, since R™ has a trivial globally framed
structure (f, df;,x, dt*), (t*) being the coordinate
in R"™ we can introduce an almost product structure
J on product manifold M x R"* as follows:

(2,10) J N4y x) = (X - N¥E, n (X)d/ 4

Then we have

(2,11) J=-L

Thus we have
PROPOSITION 2.2

manifold of rank r.

Let M be a globally framed
Then the product manifold
M X R™ has an almost complex structure | defined
by (2,10).

DEFINITION 2.3.
structure J on M x R™ is integrable, then the glob-

If- the induced almost complex

ally framed structure f on M is said to be normal.
Denoting by Nhji the components of the Nijenhuis
tensor [J.J] (X, Y), Nhji is given by

(212) N = g%, J%-Tiaud) - e gt - 0 gt

where ijk,....run over the range {1,2,...... 2n-r}.

Considering the Nijenhuis tensor [J, J] of J. They
computed [J, J] (X+0, Y+0), [J, J] (X+0, 0+d/,,)
and [J, J] (0+d/,, =, 0+d/,;, ), which rise the five
tensors N, N2, N%, N* N°® given by

(2,18)
NY{X,Y) = N'bc = [f, f] (X, Y)+dnx(x, Y) Ex ,
NYXY) = Ny = (Ly 1) (V) - (Ly, 7,) (X)
NXY) = N = (Lt £)(X) :
N'XU) = N, = -(LE, ) (X) :
N'(UV) = N, =Lt ¢ ,

for any vector field X and Y on M, U and V or R,
where L, denotes the Lie derivative with respect to
X, the result is that J is integrable if and only if
N! =o.

PROPOSITION 2.4. It is necessary and sufficient
for a globally framed structure (f, . n) to be
normal that the tensor N! = 0, that is

(2.14)
N'U(XY) = [£f] (X, Y)+dn_(X, V)&, = o.
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moreover we can prove that if N! = 0, then N? =N3 =
N*=NS=0.

§3. f-submanifolds in an almost complex manifold

Let W be an N-dimensional differentiable manifold
of class C* with an almost complex structure J,
that is J? = (L, T).

Let there be given an n-dimensional submanifold
V differentiably immersed in W, and denote by TP(V)
the tangent space of at a point p of V and r=dim Vl;,l.

There be given a f-submanifold V in an almost
complex space W. Then there exists a subspace Np
of TH(V) at each point of V such that

JN ) c T:l(V), ’I‘:‘(V)=NP(V) o N, .

In the tangent space Tp(W) of the enveloping space
W at a point p, there exists a subspace ﬁp such that

IN)=N,,  T,W=T(V)eN,

The subspaces Ny and Np are respectively (n-r)-
dimensional and (N-2n+r)-dimensional. Therefore,
there exist along V two fields of subspaces N, and

Np.

If we put

Nv)= U N, .

N(V) = UN_,

pev ?

Then N(V) and N(V) are vector bundles over V.
Letting N(V) and N(V) be fixed, we call the set
{V, N(V), N(V)} in an almost complex space W and
its base submanifold V be expressed in local coordi-
nates (X") in W, by parametric equiation xb =
X" (),
where (u*) is a local coordinate system in V.

If we put

Xi = a,X",

9, = B/aua.

Then X'.' are local tangent vector fields on V and
span the tangent space TP(V) of V at each point
pof V.

there exist n-r local vector fields C; and N-2n+r local
vector fields D: along V which span respectively Np

and Np at each point p of V, we put now

WD ]
.

ch = (X{,C!, D}
h
Da

Taking account of the fact that

JN,) € Ty(V),  J(N) =N,
We can put
(3,1) Xy = Bx) + fch
Jicy = -fx:
J'pg = f§Dg

where _]l;.’ are the components of the almost complex
structure J in W.
If we take account of J? = -, we find easily

(3,2) ffe = -8, + f3fy, fif: = 0, f5f2 = 0O,
fye2 = 85, fff = -6%.

which imply
f2 +f=0.

The f being tensor field of type (1,1) defined in
V by the components f; .

Thus f; is an f-structure in V which is called the
induced f-structure of the given f-surface {V, N(V),
N(V)t, There exist in V, n-r local vector fields f; and
n-r local covector fields f} .

Let there be given a symmetric linear connection

h .
l"j ; in the enveloping space W, If we put

Tty = 0eXh + XX T X™)
Then T ", define a symmetric linear connection

w in the base submanifold V, which is called the

induced connection in V, If we put
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re, = @.Cy + XIC) MG .

Then T c"y define a connection in the vector
bundle N(V) and it is called the induced connection
in N(V). We define the so-called Van der Waerden-
Bortolotti covariant derivatives along V of X:, C’;
and D: by

(3.3) yXxb=aXh+ XXy - XAT.", ,
vCh=2a.Ch + XlCy M- cir:
ch; =Dy + X{Dg I}"; - DAT % .

respectively.  Then V°X: » V cC’; and Vcl)"l belong
respectively to N, + ﬁp, T, (V) + ﬁp and T (V) + N,
at each point p of V, Thus we put

(3,4) VXp = hey *C} + h D}

K -h o xb * he,®D} ,

v.ch
V.Dg = -h%X32 - h *gCy .

where h’s are so-called second fundamental tensors of

the given f-surface V. It is easily erified that

x*4)

hep™ = hy » hcba = hbca")

If we differentiate covariantly the both sides of (3,1)

and take account of (3,3), we have

(3,5) Vefy + h %6y - h ' £} =0
v iy + h *f§ =0
Vi, +hefli=0
Vg =0 .

and

(3,6) he, £ - ho 5 = 0

he 5 Y

- h, '
hs feh i - hs f; = 0

he *ff - h fi = 0

where the covariant derivatives V £, V £, v f, and
C cf‘: are defined rcspcctivély by

Vi =8 + Tefi -TAhHf,

vi =afi + TN -4 i

v.fr

a6 + I&fy -rafr

r&f -Taf

v fi s f} +

on the other hand, the Nijenhuis tensor Nﬁh vanishes
identically, that is N h - 0, which is equivalent to the

]

condition:

(3,7)
S+ =fi(hes fe - fihx) - Hi(hes 2 - fihe ),
Sa" = flfjhe” - flfy, ‘he” ,
So' =-(h& +h EE)+ E2@mAR)
8o = -fiffh s
S, =0.
where tensor §’s are defined by

(3.8)

Sa' = No' + (VR - B

So' = £ (RE - Viff) - i (WfE - V.£)
So' = f(V.E - BVE + BUL

Sot = f5(V.5 - V.8)

Sy, = 6V.0 - V.
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N_* being the Nijenhuis tensor of the induced
fstructure f in V. The first tensor S appearing
above is nothing but the tensor S appearing in PRO-
POSITION 2.2. stated in §2. It is casily verified that
all of the tensors S’s vanishes identically if and only
if the tensor S vanishes Sasaki, S (1960), Yano,
K (1965). Now we have following;

THEOREM 3.1. For an f-submanifold of a complex
space, the following the following three conditions

are equivalent to each other;

1) V. =0,

2) VL =0and V.f; =0

fofd Ay® and hy

3)  ha' = 1AL

where A, * being a certain tensor field such that
A=A

When one of three condition is satisfied, the in-
duced f-structure f“) is integrable and Schl =0. Yano,
K (1965).
PROOF)

1) = 2)

Transvecting f to the both sides of (3,5) and
taking use of (3,2) we get

by hypothesis hs "f; - hey ft =0

he "f3fi - hoy fifl = 0
hae '8y - h fIfi = 0
heb‘ - hc‘y flf: =0 *)

Transvecting i:’ to the both sides of *) and taking use
of (3,2) we get

he*ff - h& RER = 0

ha "2 = 0

Vit =0 1)

and transvecting t: to the both sides of (3,5) and
taking use of (3,2) we get

ha " 32 - hey, fif2 = 0
he 'f;f: - hc.v 1=0

h:h y f;f: - x =0 ‘*)

Transvecting f:’ to the both sides of **) and taking
use of (3,2) we get

hoe " fiff - hés 1 = 0
-hs 2 =0
v =0

that is V. =0

from 1) and 2), 1) = 2) is proved.

2) = 3), by hypothesish.. * £ = 0
Transvecting 7 to the both sides of (8,5) and
taking use of (3,2) we get
Transvecting g to the both sides of ***)

he *fif = 0

he * (-85 + fif§) = 0

~hu® + he *f0f = 0

he * = he “8£ 4}

Transvecting g to the both sides of ***)
h. "g. g™ = h. *fifig, g~

he g g" = he *fif:

ho * = fifth. 2" g,
hee * = fifl Ao 3)
whereAo* = he *g= g -

and transvecting f'.’ to the both sides of (3,5) and
taking use of (3,2) we get
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hsy f2f: = 0

he (<88 + 7)) = 0

-h& T he fofd

Transvecting g to the both sides of ****)

h :hy Bee g.-u = fifthy g B

hey g= = fiff hey g g~
heby = f: fth :‘y Bee gu
hey = fifta,

where kzy" = hc°y B8
from 3 and 4), 2) = 3) is proved.

Hyun, J.I. (1977), Induced structure on sphere.

Busan National University.

Ishihara, S. (1965), Normal structure f satisfying
f* + f = 0, To appear in Kodai Math. Sem. Rep.

3) = 1) by hypothesis
he *f! - fififiry = 0 #)
Transvecting q to the both sides of #) and taking

use of the hypothesis
hao*fs - fifian" = 0
ha *fi - hY 8 = 0 ##)

from ##) and taking use of (3,5)

Vi = 0, 3) = 1)is proved.

This proves the theorem.

% 1) The indiccs h,i,j, = ===
2) The indices a,b,c, *s==vr-
3) The indices @,3,1 +==-mee-
4) The indices X,y,z =owseer

Tun over runge
run over range

Tun over range

Tun over range
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