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(Abstract)

Parametric operations for 2-dimensional fuzzy sets

We generalize trapezoidal fuzzy numbers on R to R? and compute the parameter
calculations between two-dimensional triangular fuzzy numbers and trapezoidal fuzzy
sets. In addition, we prove that the result for the parametric operation for two 2-
dimensional quadratic fuzzy numbers are the generalization of algebraic operations for

two quadratic fuzzy numbers on R. We give examples to support our assertions.



1 Introduction

In fuzzy set theory, various types of operations between two fuzzy sets have been de-
fined and studied. The operations of two fuzzy numbers (A, u4) and (B, up) are based
on the Zadeh’s extension principle ([15], [16], [17]). The results of extended algebraic
operations between two triangular fuzzy numbers for the four operations—addition
A(+)B, subtraction A(-)B, multiplication A(-)B and division A(/)B described in Def-
inition 2.6.—are well known ([1], [2]).

In Chapter 2, Zadeh et al. calculated many results and examples of extended alge-
braic operations between two quadratic fuzzy numbers and trapezoidal fuzzy numbers
([10)).

In Chapter 3, Yun et al. introduced a generalized triangular fuzzy set and calculated
extended algebraic operations between two generalized triangular fuzzy sets in Section
3.1 ([12]). In Section 3.2 and 3.3, Song et al. introduced the generalized quadratic and
trapezoidal fuzzy sets and calculated an extended algebraic operations between two
generalized quadratic and trapezoidal fuzzy sets, respectively (][9], [11], [12]).

In Chapter 4, Kim et al. generalized extended algebraic operations on R to R?. For
this, Zadeh defined the parametric operations for two fuzzy numbers defined on R in
Definition 2.6 and the results for parametric operations turned out to be as same as
those for the extended operations in Theorem 4.4 ([6]). Using parametric operations,
Kim et al. generalized the extended algebraic operations on R to R? in Definiton 4.8
([6]). In Section 4.1, Kim and Yun generalized the triangular fuzzy numbers on R to
R2. By defining parametric operations between two regions valued a-cuts, Kim et al.

calculated the parametric operations for two triangular fuzzy numbers defined on R?



([6]). In Section 4.2, Kim and Yun defined generalized triangular fuzzy number and
further calculated the parametric operations for two generalized 2-dimensional trian-
gular fuzzy sets defined on R? ([5]). In Section 4.3, Kang and Yun also generalized the
quadratic fuzzy numbers on R to R%. Kang et al. calculated the parametric operations
for two 2-dimensional quadratic fuzzy numbers ([2]).

Based on these results, in chapter 5, we generalize fuzzy numbers and parametric
operation. In Section 5.1, we generalize the trapezoidal fuzzy number on R to R? and
calculate the parametric operation between the two-dimensional triangular fuzzy num-
ber and the trapezoidal fuzzy set ([7]). Lastly, in Section 5.2, we prove that the results
for the parametric operations for two 2-dimensional quadratic fuzzy numbers are the
generalization of algebraic operations for two quadratic fuzzy numbers on R ([8]) and

give examples to support our assertions.



2 Preliminaries

Let X be a set. A classical subset A of X is often viewed as a characteristic function
pa from X to {0,1} such that pa(z)=1ifze A, and pa(x) =0if z ¢ A. {0,1} is called

a valuation set. The following definition is a generalization of this notion.

Definition 2.1. A fuzzy set A on X is a function from X to the interval [0,1]. The

function is called the membership function of A.

Let A be a fuzzy set on X with a membership function pa. A is completely char-
acterized by the set of pairs A = {(z,pua(x)) |z € X} elements with a zero degree of

membership are normally not listed.

Definition 2.2. A «a-cut of a fuzzy number A is defined by A, = {x e R | pa(x) > a}
if e (0,1] and Ay =cl {z eR | pa(z)>a} if a=0.
Definition 2.3. ([19]) A fuzzy set A on R is convex if

pa (Axy+ (1 =XN)x2) >min(ua(zr), pa(z2)), Ve,xzeeR, VAe[0,1].
Definition 2.4. ([19]) A convex fuzzy set A on R is called a fuzzy number if

(1) There exists exactly one x € R such that pa(z) =1,

(2) pa(x) is piecewise continuous.

Definition 2.5. ([12]) A triangular fuzzy number on R is a fuzzy number A which has

a membership function

07 r<ay, a3,
pa(z) =4 z=o , a1 <T<as,

az2—aj

a3—=T p

aa—ay’ as < x<as.

The above triangular fuzzy number is denoted by A = (a1, as,as).



Definition 2.6. ([19]) The addition, subtraction, multiplication, and division of two
fuzzy numbers are defined as

1. Addition A(+)B :

payB(2) = sup min{pa(z),up(y)}, ve A yeB.
z=x+Y

2. Subtraction A(-)B :

pa-ys(z) = sup min{pa(z),up(y)}, veAyeB.

z=x~Yy

3. Multiplication A(-)B :

payB(z) = sup min{pa(z),up(y)}, veAyeB.

Z=xYy

4. Division A(/)B :

ta()p(z) = sup min{pa(z), up(y)}, z € A yeB.

z=z/y
Remark 2.7. Let A and B be fuzzy sets. A, = [aga),aéa)] and B, = [bga),bga)] be the
a-cuts of A and B, respectively. Then the a-cuts of A(+)B, A(-)B, A(-)B and A(/)B
can be calculated as the followings.
(1) (A(+)B)a = Aa(+)Ba = [al® + () af™ 1+ b1,
(2) (A()B)a = Aa(-)Ba = [y =057, a5 =5,
(3) (AC)B)a = Aa(-)Ba = [min(aib{™, afb{, afb, ai 1),

max(a{ b al®p{ {0 {Mp{y].
(4) (A()B)a = Aa(/)Ba = [min(af® b1, 0 057, a5 o], a5 057),

max(a{™ /b, al® 6§l 15 0l 5§,

Example 2.8. ([12]) For two triangular fuzzy numbers A = (1,2,4) and B = (2,4,5),

we have



1. Addition : A(+)B = (3,6,9).
2. Subtraction : A(-)B = (-4,-2,2).

3. Multiplication :

0, r<2, 20<x,
pagp(r) =4 28538 9<pcs,
T2t 8<x <20

Note that A(-)B is not a triangular fuzzy number.

4. Division :

1
0, I’<g, QS.’I,',
pagyp(w) =1 sz=l L1
2+l 5= 2
—x+2 1
T+l Sx<2

Note that A(/)B is not a triangular fuzzy number.

Definition 2.9. ([12]) A fuzzy set A having membership function

07 r<ay, a4,

T—a1

e W <z <ay,
pa(z) =

1, az <x<as,

aQ4—T

dacag’ 33 <z <ay.

is called a trapezoidal fuzzy set.

Denotes the trapezoidal fuzzy set above A = (aq,a2,a3,a4).

Theorem 2.10. ([10]) For two trapezoidal fuzzy sets A = (ai,az2,a3,a4) and B =
(b1,b2,b3,b4), we have

1. A(+)B = (a1 + b1, as + by, as + b3, aq + by).

2. A(-)B = (a1 — by, as —bs, ag —be, ag —by).

3. A(-)B and A(/)B are not trapezoidal fuzzy sets.



Example 2.11. ([10]) Let A=(1,5,6,9) and B = (2,3,5,8) be trapezoidal fuzzy sets,

i.e.,
0, r<l1l, 9<z, 0, r<2, 8<u,
=l 1<a<h, r-2, 2<x<3,
pa(z) = and  pp(z) =
1, 5<x <6, 1, 3<x<bh,
= 6<w <9, 28 5<a<s,

we calculate exactly the above four operations using a— cuts.

Let A, and B, be the a-cuts of A and B, respectively. Put A, = [aga), a;a)]

() ()
and B, = [bga), béa)]- Since a = a14_1 and « = _QZTJ“Q, we have A, = [aga),aéa)] =

[4a+1,-3a +9]. Similarly, B, = [b{*),6{] = [a +2,-3a +8].
1. Addition : By the above facts, Aq(+)Ba = [a{™ + b, 0™ +6] = [5a+3, -6+
17]. Thus pracyp(x) = 0 on the interval [3,17]° and pacyp(2z) = 1 on the interval

[8,11]. By the routine calculation, we have

0, r<3, 17<zx,

‘TT_?’, 3<x <8,
payB(T) =

1, 8<x<1l,

=2l 11<a <17,

ie., A(+)B = (3,8,11,17).
2. Subtraction : Since A, (—)Bqy = [aga) —béa),aga) —bga)] = [Ta-"7,-4a+T7], we have

pa-ys(x) =0 on the interval [-7,7]¢ and pa-yp(x) = 1 on the interval [0,3]. By the



routine calculation, we have

0, r<-7, T<zx,

x—;7, -7T<x <0,
MA(—)B(x):

1, 0<z <3,

%*7, 3<x <,

ie., A(-)B = (-7,0,3,7).
3. Multiplication : Since Aq(-)Bq = [a{®-5{® a{.0{] = [402+90+2, 902 -510+72],

pacyB(x) =0 on the interval [2,72] and p4¢yp(z) = 1 on the interval [15,30]. By the

routine calculation, we have

0, r<2, 72<u,

=96 9 <3 < 15,
MA(-)B(ﬂU) =

1, 15 < z < 30,

vl - 30 <o < 72,

Thus A(-)B is not a trapezoidal fuzzy set.

() (@)
4. Division : Since A,(/)Bqy = [Z(l—u),z(?—)] = [Zatl —Satd
2 1

“3a+87  a+2 1, ,UA(/)B(ZU) = 0 on the

interval [%, %]C and pa¢yp(x) =1 on the interval [1,2]. By the routine calculation, we

have
1 9
0, T < 3 32 < x,
8xr—-1 1
et 5 ST<L
MA(/)B(»"U) =
1, 1<z<2,
—22+9 9
z+3 2<z< 2

Thus A(/)B is not a trapezoidal fuzzy set.

Similar to a triangular fuzzy number, the quadratic fuzzy number is defined by a

quadratic curve.



Definition 2.12. ([10]) A quadratic fuzzy number is a fuzzy number A having mem-

bership function

07 x <, 6SZE,
pa(z) =
—a(z-a)(z-B)=-alz-k)?>+1, a<z<p,

where a > 0.

The above quadratic fuzzy number is denoted by A = [a, k, (].

Theorem 2.13. ([10]) For two quadratic fuzzy numbers A = [z1,k,22] and B =
[x3,m,z4], we have
1. A(+)B = [z1 + 3,k + m,z0 + x4].
2. A(-)B =[xy — x4,k —m,x9 — x3].
3. pracys(x) = 0 on the interval [z123, 2024]¢ and payp(r) = 1 at x = km. Note
that A(-)B are not a quadratic fuzzy number.
X2

4. payp(z) = 0 on the interval [T*,22]° and pa(p(z) =1 at z = % Note that

T3

A(/)B are not a quadratic fuzzy number.

Proof. Note that

0, r<x1, 2L,
pa(z) =
—a(z-k)?+1=-a(z-21)(x-20), =1 <<,
and
0, T <T3, T4<T,
pp(x) =

“b(x-m)?2+1=-b(x-23)(x—14), z3<T<24
We calculate exactly four operations using a-cuts. Let A, = [aga),aga)] and B, =

[bga),bga)] are the a-cuts of A and B, respectively. Since a = —a(aYX) - k)2 +1 and



= —a(aga) ~ k)2 +1, we have

l-« l1-«
Ag = [a,a8] = [k - k .
[a;™,ay "] [ a + a ]

Similarly, we have

o= (08,687 = \/ m+\/1 ]

1. Addition : By the above facts,
Ao (+)Bq = [aga) b(a) ( ) b(a)]

= k+m \/1 a \/1 a, k+m+\/ _a+\/1_a].
a b

Thus pa+)s(z) = 0 on the interval [k+m—%— g k+m+ \}_ %]C = [z1+x3,x0+24]¢

and payp(z) =1 at x = k +m. Therefore

( ) 07 r <z +3, x2+x4§x,
HA(+)B\T) =
(\/-Jr\/‘)z{m (k+m)}?+1, a1 +x3<2<a2+ 14,

e, A(+)B = [z1 + x3,k + m,xo + 4]

2. Subtraction : Since

(=) Ba = [0l — 4, 0 — 4]

:[k_m_\/l—a_\/l—oz7 k_m+\/1—a+\/1—a]
a b a b

we have pa-yp(z) = 0 on the interval [k —m - (ﬁ + %),k -m+ (% + ﬁ)]e =

(21— 24,22 — 23] and pa_yp(x) =1 at = = k —m. Therefore

(z) 0, T<X1-T4, T2-T3LX,
HA(-)B\T) =
(\/—Jr\/')z{x (k m)}2+1 X1 —Ta LT <XT9— XT3,

e, A(-)B = [z1 — x4,k —m,x9 — x3].



3. Multiplication : Since

Aa()Ba = [afb(”, af”bi"]

[0 ) (e )5 0))

a
payB(z) =0 on the interval

||
—
|
-
s
N—
—
|
S —
[yl
N—
—
ol
+
S=
s
N—
3
+
S=
[y
N—
e
(o)
I
s
e
IS
w
8
[\)
K
il
(e}

and payp(r) =1 at = km. Therefore
0, T < T1x3, Torg4 < T,

pacyB(x) = %(4 —2k2%a - 2m?b — 4/abx + 2(k/a + m\/l_))\/(k\/a - mV/b)?2 + 4\/@x),

123 ST < ToT4.
4. Division : Since

(a) (a) k _ 1-« k, + 1-«
a a a
Aa(/)Ba = (1a) s (2a) = ) )
b2 bl m + l1-« l-«

pa¢ys(x) =0 on the interval

[ Vb(kv/a-1)  Vb(kva+1) ] [ g]
Va(mvb+1)" Ja(mvb-1)

:6'4, I3

and pa)p(x) =1at x= % Therefore

X X
0, T < i, m—j <z,
,U«A(/)B(x) =
a(1-bm?)z?+2v/ab(1+v/ abkm)z+b(1-ak?) T T2
(vaz+vb)? Toxy T z3”

Example 2.14. ([10]) Let A =[1,2,3] and B =[2,5,8]. Then

1. Addition :

0, r<3, 11<x,
NA(+)B(5E) =

(-T2 +1, 3<az<1l,

10



ie, A(+)B=[3,7,11].
2. Subtraction :

0, r<-7, 1<,
MA(-)B(HU) =

(@ +3)?+1, —T<a<l,

ie, A(-)B=[-7,-3,1].

3. Multiplication :

0, r<2, 24<x,

~15(6z+43-11V122+1), 2<z<24.

MA(.)B(JJ) =

4. Division :

0

“(r-1)2e-3)
(3z+1)2 8T

1
.’L'<§,

N
IN
&

MA(/)B(JL“) =

oW

11



3 Generalized fuzzy set

3.1. Generalized triangular fuzzy set
Yun et al. generalized the triangular fuzzy number. A generalized triangular fuzzy

set is symmetric and may not have value 1.

Definition 3.1. ([12]) A generalized triangular fuzzy set is a symmetric fuzzy set A

having membership function

07 r<ay, a2,
— 2 -
pa(z) =4 2@-a) al), ay < x < Utle,
as—aq 2
—2c(z-az) a;+as
az-a; ’ 2 ST <ag,

where a1,a2 e R and 0 < c< 1.

The above generalized triangular fuzzy set is denoted by A = ((a1,¢,a2)).

Theorem 3.2. ([12]) For two generalized triangular fuzzy sets A = ((a1,c¢1,a2)) and
B = ((b1,c2,b2)), if ¢1 <o and pp(x) > ¢; in [k, k2], we have the followings.

1. A(+)B = (a1 + b1, %(a1 +ag) + k1, c1, %(al +ag) + ko, ag+bo), ie., A(+)B is a
generalized trapezoidal fuzzy set.

2. A(-)B = (a1 - by, %(al +az) — ks, c1, %(a1 +az) - k1, ag—b1)), i.e., A(-)Bis a
generalized trapezoidal fuzzy set.

3. A(*)B is a fuzzy set on (a1by,azbs), but are not a generalized triangular fuzzy

set or a generalized trapezoidal fuzzy set. The membership function of A(-)B is

12



MA(-)B(CU)

0, T <aiby, aghy <,

ﬁ(—Pbl —qay +/(pb1 + qa1)? - dpg(arby — ), arby <x <arby + 1 (a1 +az)ky,

s a1b1+%(a1 +a2)k1 §x<a1b1+%(a1 +a2)k:2,

N [—=

ﬁ(pbg +qaz —/(pba + qas)? - 4pq(asbs - a;)), aiby + %(al +ag)ks < x < agby,

aAo—aq

Wherep=2—Cl and ¢ = 2>
4. A(/)B is a fuzzy set on (3, 3*), but are not a generalized triangular fuzzy set or

a generalized trapezoidal fuzzy set. The membership function of A(/)B is

a1 Q2
0, T3, Pl
2¢ica(baz—ay) ar ai+as
ca(az—aq)+ci(ba=b1)z’ b sT< 2ko

HA(/)B(l”) =

> it ST,
—2c1c2(biz—asz) 1+ao 5
ca(az—aq)+cy(ba—b1)x”’ (12;‘11 <z< (Z_l'
Example 3.3. ([12]) Let A=((2,3,8)) and B = ((1,2,5)). Then
1. Addition :
0, r<3, 13<x,
%(x—3), 3<x<%,
#A(+)B($) =
1 29 35
bR T ST
Z(z-13), 2 <x<13,
ie., A(+)B=(3,2,3,2,13).
2. Subtraction :
0, r<-3, 7T<z,
Z(x+3), -3<w<?,
payp(x) =
Lo et
I—?(x—?), %Sx<7,

13



ie., A(-)B=(-3,%,31.7).

3. Multiplication :

0, <2, 40 <,
+(-11+4/121-60(2-2)), 2<z<%,
MA(-)B(UC) =
1 45 75
2 1 ST<
+(50 - /2500 - 60(40 - 7)), 2 <z < 40.

4. Division :

2
07 T < 5 8 < Z,
102-4 2 4
heei2? 5 ST <3
NA(/)B(x) =
1 4 20
27 3ST <7,
—2(z-8) 20
foriz 0 9 ST<8

3.2. Generalized quadratic fuzzy set

Yun and Park generalized the quadratic fuzzy number. A generalized quadratic

fuzzy set is symmetric and may not have value 1.

Definition 3.4. ([11]) A fuzzy set A with a membership function

0, r<xy, T2,
pa(z) =
—a(x-21)(x—22) = —a(x —m)? +p, z1 <z <20

where 0 < a and 0 < p <1 is called a generalized quadratic fuzzy set and denoted by

[[z1,p,22]] or [[a,m,p]]+.

Theorem 3.5. ([11]) Let A = [[z1,p, x2]] = [[a, m,p]]+ and B = [[x3,q,z4]] = [[b, 7, q]]+
be generalized quadratic fuzzy sets. Suppose p < ¢ and pp(x) > p on [k, k2]. Then we

have the followings.

14



(1) A(+)B is a fuzzy set with a membership function.

0, T<x1+T3, T2+T4 < T,

fi(x), i +x3<z<m+k,
MA(+)B(90) =
D, m+k; <x<m+ ks,

fo(x), m+ko < <x9+ 14,

where
1
fi(x) = m(—abm(a +b+an+bn)—abn(am+bm+an+bn)—ab(p+q)p
+aq+b? + 2ab(am + bm + an + bn)x — ab(a + b)z* + 2ab(m +n — z) - \/g(a:))
and
1
fa(x) = m(—abm(a +b+an+bn)—abn(am+bm+an+bn)—ab(p+q)p

+a?q +b? + 2ab(am + bm + an + bn)z — ab(a + b)z* - 2ab(m +n - ) - \/g(x)),
where g(z) = ab(m +n)? + (a - b)(p - q) — 2ab(m + n)z + abx?.

(2) A(-)B is a fuzzy set with a membership function

0, T <x1—Ty4, To—T3< T,

fi(x), @ —x4 <z <M - ko,
MA(—)B(%') =
P, m—ky<xz<m-ky,

fo(x), m—-ky <z <xg-—x3,

where
1
fi(z) = m(—abm(am +bm —an—>bn) —abn(an+bn—am —bm) —ab(p +q)
+a?q +b*p + 2ab(am + bm — an - bn)x — ab*x* + 2ab(m - n - ) - \/g($))
and
1
fa(x) = m(—abm(am +bm —an—bn) —abn(an +bn —am —bm) — ab(p + q)

+a’q +b*p + 2ab(am + bm — an — bn)x — ab®z* — 2ab(m - n - z) - \/g(x)),

15



where g(z) = ab(m —n)? + (a - b)(p - q) — 2ab(m — n)z + abx?.

(3) If p=gq, A(-)B is a fuzzy set with a membership function

0, T <x1T3, ToTy LT,
MA(.)B(CU) =
f(z), z123 <2 <2224,
where
1 1
flx)= 5(—@7712 —bn® + 2p) - Vabr + ix/g(x),
and

g(x) = —am?(am? + 3bn?) — bn®(bn® + 3am?) + 2(am? + bn® — 2p)? + 8p(am? + bn’ - p)

1
8\/%.%

+ 8abmnx —

{—S(am2 +bn? - 2p)> + 8(am?* + bn? - 2p)hy () - 16h2(m)},
and where
hi(x) = am?(am? + 2bn?) + bn®(bn® + 2am?) - 6p(am? + bn® - p) — 4abmna — 2aba>
and
ho(z) = abm?n®(am? + bn? — 4p) — am?p(am? - 3p) — bnp(bn* - 3p)

- 2p% = 2abmn(am® + bn® - 2p)x + ab(am? + bn? + 2p) x>

(4) A(/)B is a fuzzy set with a membership function

Ty T
0, vk, L,
X m
fl(x)7 w_igx<Ea
pays(x) =
m m
b, k_zgz’

fo(z), r<x<??
where

1
2 — 2abx? + axt

fi(x) = b (—bz(am2 +p) + 2ab’mnx — ab(am?® + bn® + p + ¢)x*
+2a%bmna® - a2(bn2 - q)a:4 +2abx(m —nx) -/ 9(55))

16



and

el
2 — 2abx? + a2t

—b2(am2 +p)+ 2ab*mnz - ab(am2 +bn’+p+ q)xQ

fo(z) = 7

+2a*bmna® - a®(bn® - ¢)z* - 2abz(m - nx) - \/g(x)),

and where g(z) = b(am?® - p + ¢) — 2abmnz + a(bn’® + p — q) 2>

Remark 3.6. ([11]) In the case of extended multiplication, if p # ¢, the membership
function of A(-)B contains so many terms and so the explicit form was not written

down.

Example 3.7. ([11]) Let A = [[2, %,8]] and B = [[3, %, 11]]. Then we have the follow-
ings.

(1) The extended addition reduces to

0, r<b, 19<zx,

fi(z), b<x< %,
MA(+)B(9U) =

2/3, 3—32 <z < %,

fa(z), F<w<19,

where

1
A(z)= m(—357204 + 601922 — 25082% + 288(z — 12)V/10321 - 1728z + 7227

and

1
fo(z) = m(-357204 + 60192z — 2508x2 — 288(x — 12)V10321 — 17282 + 72x2).
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(2) The extended subtraction reduces to
0, r<-9, H<z,
fi(z), -9<z<=Y

MA(-)B(ﬂC) =
2/3, 0 g < 22

fa(x), %2 <x<b,

where

1
fi(z) = —m(6084 +10032z + 250822 + 288(z + 2)V/241 + 288z + 72:,;2)

and

1
folz) = _m((so&x +100322 + 250822 — 288(x + 2)V/241 + 288z + 72x2).

Example 3.8. ([11]) Let A = [[2,2,8]] and B = [[3,2,11]]. Then we have the follow-
ings.

(1) The extended multiplication reduces to

0, <6, 88<u,
HA(.)B(QJ) =
f(z), 6<x<88,
where f(2) = 75 (~553 - 242 + 41/1 + 48x).

(2) The extended division reduces to
0, x <

fi(x), % <z< %,

MA(/)B(UC) =
2/3, % <x< %,
15 8
fa(x), <x<3,
where
1

fi(z) =~

(7776 — 340202 + 577022
6561 — 2073622 + 1638422

- 537602° + 253442 + 1442(7z - 5)V1881 — 5040z + 3400x2)

18



and

1
6561 — 2073622 + 1638424

fa(z) = - (7776 — 34020z + 5770222

- 537602° + 25344x" — 1442:(7x - 5)V1881 — 5040z + 3400a;2).

3.3. Generalized trapezoidal fuzzy set
Lee and Yun generalized the trapezoidal fuzzy number. A generalized trapezoidal

fuzzy set is symmetric and may not have value 1.

Definition 3.9. ([9]) A fuzzy set A having membership function

0, xr <ay,aq <w,
M, a1 < x < ag,
ags—ay
pa(w) =
c, az < x <as,
c(as—x)
“ai—as @3 <xr<ay.

where a; € R,7=1,2,3,4 and 0 < ¢ < 1, is called a generalized trapezoidal fuzzy set and

will be denoted by A = (a1, as9,c,as,aq).

Remark 3.10. ([9]) A triangular fuzzy number A = (a1,a2,a3) is just a special case

of a generalized trapezoidal fuzzy set. In fact, (a1,a2,a3) = (a1, a2,1,a9,as).

Remark 3.11. ([9]) A generalized triangular fuzzy set is also a special case of a gen-

eralized trapezoidal fuzzy set. In fact,

al +ag al + ag
,(12)

A=((a17017a2)):(a17 5 b

Theorem 3.12. ([9]) Let A = (a1,a2,m1,as3,a4) and B = (b1, be, ma, b3, by), where

ai, b € Ri=1,2,3,4,0<mqy <mg <1 and pg(x) >my in [p,r]. Then

19



1. Addition

0, z<a1+b1,a4+b4£z,
mama(2-a1-b1) ay+by<z<ag+by+(by—by)- 21

ma(az—ar)+mi(b=by)? 1T OLS 2 S A2TOLTAO2TOL)

MA(+)B(Z) =

my, a2+bl+(bg—b1)-%S2<a3+b4—(b4—b3)-z—;,
mymso(as+bs—2) _ _ LY

2 (@a—ag) #1101 (bs—b3) ° asg + by (b4 bg) e <z<ay+by.

2. Subtraction
0, z<ay—bg,aqg — by £ 2,

mimoa(z+bi—aq)
ma(az—ai)+mq(bs—b3)’

al_b4gz<a2—(b4—(b4_b3)’nmm_;)’

NA(—)B(Z) =
mi, ag = (bs = (ba—b3) - 2) <z <ag— (by + (by —br) - 22),
ngizngs()af;lil(;jzbl)’ as - (bl + (b2 - bl) : %) <z< ayq — bl'

3. Multiplication

#A(.)B(Z)

0, z<aiby,aqby < z,

~D; +\/D2+4m;m5(by=b1)(az—a,)z
2(b2—b1)(a2—a1) ’

arb1 <z< ag(bl + (b2 —bl) . %),

my, aQ(bl-i-(bg—bl)-%)SZ<a3(b4—(b4—b3)’%)’
51— 52 4mymo(bs—bs 4—a3 ma
v +;n1(b4(-b3) o )z’ “3(54‘(54‘b3)'m_2) <z <asby,
where

D= blmg(ag - al) - alml(bg - bl),
D1 = blmg(ag - al) + alml(bg - bl),
D = agmy (by - b3) — byma(as — az),

Dy = agmq (by — b3) + byma(ayg — as).
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4. Division

a1 a4
0, Z< g prsz
mymy(baz-ay) a1 < 2 < as
_ mq(ba=bz)z+mao(az—ai)’ by = b4—(b4—b3)-:—;
MA(/)B(Z) =
[¢P) as
mi, e oy e e 1
mime(as—b:12) as <z Ga
my (ba—by)z+ma(as—az)’ b1+(b2—b1)-% = by °
Example 3.13. ([9]) For two generalized trapezoidal sets, A = (1,2, %,3,6) and B =
(2,4, 1—70,5,8), we have the followings.
0, 2<3,14< 2z,
7(2-3) 38
31 3<z< =
NA(+)B(Z) =
1 38 62
2 7 SZ<
7(14-z) 62
o <z< 14,
0, z2<-7,4<z,
—7(112), T<z< 2—77,
pa-ys(z) =
1 27 3
2 SRS
7(4-2) 3
o+ —7sz< 4,
0, 2<2,48< 2z,
_12+\2/(;1+7OZ’ 2< 2< %7
HA(.)B(Z) =
1 48 123
X T SEST
43—\/%((3)9+35z’ %3 <2< 48,
0 z<13<2
) 87 - b
7(-1+82) 1 14
3(7+152)° 8 <Z<1ID
MA(/)B(Z) =
1 4 20
2 3S4<%
7(3-2) 7
a+10s 8§ SF<3
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4 2-dimensional fuzzy sets

Yun et al. studied a fuzzy number defined on R. If A is a fuzzy number on R,
the membership functions p(x) is piecewise continuous. Byun and Yun found some
piecewise continuous function f,(¢) such that the a-cut A, of A equals to {f,(t) |t €
[0,1]} in Theorem 4.1. Using f,(t), we define parametric operations. Then Byun and
Yun had the same results in Theorem 4.4 as the extended operations.

Note that a piecewise continuous function f on [a,b] € R means that the function f

is continuous on [a,b] except on finitely many points(it may contains a or b) in [a,b].

Theorem 4.1. ([1]) Let A be a fuzzy number defined on R and A, = {x € A| pa(x) >
a} be a a-cut of A. Then for all « € [0,1], there exists a piecewise continuous function

fa(t) defined on [0, 1] such that A, = {fa(t) |t €[0,1]}.

Proof. Since A is a fuzzy number defined on R, the membership function p(x) is
piecewise continuous. Let Ay = [a,b] be the 0-cut of A. Then pa(z) is continuous on

[a,b] except on finitely many points x; < zg < --- < x,,. Note that z; and x, may be

equal to the end points a and b, respectively. Let « € [0,1] be fixed. Let aga) and aga)

be the left and right end points of A, respectively. Assume that 1 < --- < x; < aga) <

Tig1l < o < Tigm < aga) < Tiymsl < -+ < Tp. If the end points aga) and aga)(or one of

them) are equal to some z;, it can be proved similarly. Define
fa(t) = (@S = alN e+ 0™ if te[0,1]

except the points

(@)

=T () j: 1a27'“7m'
aga) _agcx)
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Then f,(t) is piecewise continuous on [0,1] and A, = {fa(t) | t € [0,1]}. In fact, if
x €Ay, pa(z)>aand x # x; (i=1,2,--,n). Thus CLYX) <z < aéa). Ifz = aga) or = aga)

Y

fa(0) = a%a) or fo(l) = aéa). If aga) <x< aéa), we have

0< - a§0¢) <1
aga) . a%a) :
Let
/= T — (Iga)
aga) _ aga) '

Then t € (0,1) and fo(t) = . Thus = € {f,(t) | t € [0,1]}. This proves that A, c

{fa(t) | t € [0,1]}. Let @ = fo(t) = (a8 = a{™)t + a{® for some t € [0,1] except

)
t = ZEL;—E‘W j =1,2,---,m. Then aga) <z < aga) and z # x; (i = 1,2,---,n). Thus
ua(x) > a and z € A,. The proof is complete. o

We call a fuzzy number A is continuous if the membership function pa(z) of A

is continuous. If A is a continuous fuzzy number, then the a-cut A, of A is a closed

interval in R.

Corollary 4.2. ([1]) Let A be a continuous fuzzy number defined on R. Then the
a-cut Ay = {x € A | pa(z) > a} becomes a closed interval [aga),aga)] on R. And
for all o € [0,1], there exists a continuous function f,(¢) defined on [0,1] such that

[a{™,a$] = {fa(t) | £ € [0,1]}.

The above corresponding function f,(t) is said to be the parametric a-function of

A. And the parametric a-function of A is denoted by fu(t) or fa(t).

Definition 4.3. ([1]) Let A and B be two continuous fuzzy numbers defined on R and

Aa, Ba, fa(t), fe(t) be the a-cuts and parametric a-functions of A and B, respec-
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tively. The parametric addition, parametric subtraction, parametric multiplication and
parametric division are fuzzy numbers which have their a-cuts as the followings.

(1) parametric addition A(+),B :

(A(+)pB)a = {fA(t) + fB(t) | e [0’ 1]}

(2) parametric subtraction A(-),B :

(A(=)pB)a = {fa(t) - f(1-t)[t€[0,1]}.

(3) parametric multiplication A(-),B :

(A()pB)a = {fa(t) - fB(t) |t €[0,1]}.

(4) parametric division A(/),B :

(A(N)pB)a ={fa(t)/fa(1-1) [t € [0,1]}.

Theorem 4.4. ([1]) Let A and B be two continuous fuzzy numbers defined on R. Then
we have the followings.

(1) A(+),B = A(+)B.

(2) A(=)pB = A(-)B.

(3) A()pB = A()B.

(4) A(/)pB = A())B.

Corollary 4.5. ([1]) Let A and B be two triangular fuzzy numbers defined on R. Then
we have the followings.

(1) A(+),B = A(+)B.

(2) A(=)pB = A(-)B.
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(3) A()pB = A()B.

(4) A(/)pB = A())B.

Theorem 4.6. ([6]) Let A be a convex fuzzy number defined on R? and A® = {(z,y) €
R? | pa(z,y) = a} be the a-set of A. Then for all a € (0,1), there exist piecewise

continuous functions f{*(¢) and f§'(¢) defined on [0, 27] such that
A ={(f(t), f5(t)) e R* |0 < t < 2}

Proof. Let a € (0,1) be fixed. Since A is a convex fuzzy number defined on R?, the

a-cut A, is convex subset in R?. Let

l=inf{z|pa(z,y) =a} and m=sup{z|pa(z,y)=a}

The upper boundary of A,, is the graph of a piecewise continuous concave function hq(x)
and the lower boundary of A, is also the graph of a piecewise continuous convex function
ha(x) defined on [I,m]. Since hi(x) is piecewise continuous, hi(x) is continuous on
[1,m] except finitely many points [ < x,, < Z,,-1 < -+ < x1 < m. Note that 21 and x,, may
equal to the end points m and [, respectively. Similarly, since ha(x) is also piecewise
continuous, ha(x) is continuous on [I,m] except finitely many points | < Zp41 < T2 <

- < Tpym < m. Note that x,,1 and x,.., may equal to the end points [ and m ,
respectively. If the end points [ and m (or one of them) equal to some x;, we can prove

the above facts similarly. Define
o 1 :
fi (t):E(m—l)(cost—1)+m, if tel0,7]

except the points

2(x; —m)

t; = cos_l( —

+ 1), i=1,2,n.
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Then f{*(t) is piecewise continuous on [0,7] and
{il<z<m|zta, i=12-n}={ft)|te[0,n], t#t;, i=1,2,-,n}.

Define

() = %(m—l)(cost— +m, i te[r 2n]

except the points

Then f{*(t) is piecewise continuous on [, 27] and
{l <xr<m | x 7& Tn+j, ] = 1,2,---,m} = {fla(t) | te [7[-?277]7 13 ?é tﬂ+ja ] = 132""7m}'

The explicit proof for piecewise continuity can be proved by the same way in the
proof of Theorem 3.2 ([1]). Focussing the construction of functions f{*(¢) and f$(¢),

we outline our proof. Define f{*(¢) and f5'(¢) by

£ = %(m—l)(cost— D+m, if te[0,2n]

and
hi(f(t)), 0<t<m,
f2(t) =
ho(f(t)), m<t<2m.
Then we have A% = {(f&(t), £(t)) e R? |0 <t < 27}. The proof is complete. o

If A is a continuous convex fuzzy number defined on R? | then the a-set A% is a

closed circular convex subset in R? .

Corollary 4.7. ([6]) Let A be a continuous convex fuzzy number defined on R? and
A% = {(z,y) e R? | pa(x,y) = a} be the a-set of A. Then for all « € (0,1), there exist

continuous functions f{*(¢) and f§'(¢) defined on [0,27] such that
A% = {(ff(t), f5(8)) e R* [0 < t < 2},
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Definition 4.8. ([6]) Let A and B be convex fuzzy numbers defined on R? and
A% = {(z,y) e R [ pa(z,y) = a} = {(f7(1). f5(1)) e R* [0 <t <27},

B = {(z,y) € R* | up(z,y) = o} = {(¢7 (1), 95 (1)) e R* | 0 <t < 2}

be the a-sets of A and B, respectively. For a € (0,1), the parametric operations de-
fined by parametric addition, parametric subtraction, parametric multiplication and
parametric division are fuzzy numbers that have their a-sets as the followings.

(1) parametric addition A(+),B :

(A)pB)* = {(T(1) + g7 (1), f5(1) + 95 (1)) e R* [0 <t < 27}
(2) parametric subtraction A(-),B :

(A()pB)* = {(za(t), ya(t)) e R*| 0 < t < 27},

where
o) —gf(t+m), if 0<t<m,
To(t) =
fe) —gf(t-m), if m<t<2m,
and
fe ) —gg(t+m), if 0<t<m,
ya(t):
() —g3(t-m), if m<t<2m

(3) parametric multiplication A(-),B :

(AC)pB)* = {(f2(1) - g7 (1), f5(1) - 95 (1)) € R* | O < t < 27},

(4) parametric division A(/),B :

(A(NpB)* = {(wa(t), ya(t)) € R? |0 < t < 2},

where

oty - T

W
S e OstEms w2

e (m<t<2m)
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and

f3'(t)
g5 (t+m)

f5 (1)

Bl-m) (m<t<2m).

ya(t) = (OStSﬂ-)a ya(t) =

For o =0 and « = 1, define
(A(x),B)" = lim (A(x),B)" and (A(%)pB)" = lim (A(+),B),

where * =+, —, - /.

4.1. 2-dimensional triangular fuzzy number

In this section, Kim and Yun defined the 2-dimensional triangular fuzzy numbers
on R? as a generalization of triangular fuzzy numbers on R. Then Kim and Yun want to
defined the parametric operations between two 2-dimensional triangular fuzzy numbers.
For that, Kim and Yun had to calculate operations between a-cuts in R%. The a-cuts
are intervals in R but in R? the a-cuts are regions, which makes the existing method of
calculations between a-cuts unusable. We interpret the existing method from a different

perspective and apply the method to the region valued a-cuts on R2.

Definition 4.9. ([6]) A fuzzy set A with a membership function

1- \/(x—aa;l)"‘ " (y—bzzu)z7 Bz — 1) + a2(y — 1) < a20?,
pa(z,y) =
0, otherwise,

where a,b > 0 is called the 2-dimensional triangular fuzzy number and denoted by
(a7 xl? b7 y1)2'
Note that pa(x,y) is a cone. The intersections of p4(x,y) and the horizontal planes

z=a (0<a<1) are ellipses. The intersections of p(x,y) and the vertical planes

y—vy1 = k(z—-x1) (keR) are symmetric triangular fuzzy numbers in those planes. If
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a = b, ellipses become circles. The a-cut A, of a 2-dimensional triangular fuzzy number
A = (a,21,b,y1)? is an interior of ellipse in an zy-plane including the boundary

Aq = {(fﬂay) e R? | 52(90 —96'1)2 + a2(y— yl)2 < a2b2(1 - 04)2}

2 2

- {(:c,y) € R? | (afl__x;)) + (b?l__y;)) < 1}.

In Remark 2.7, if A, = [aga),aga)] is the a-cut of A = (a1,a2,a3) and B, = [bY)‘),béa)]

is the a-cut of B = (by,ba,bs), then (A(+)B)a = Aa(+)Ba = [al® + (™ al® + (™).
However in a 2-dimensional case, A, (+)B, cannot be calculated by the same way since
a-cuts are not intervals but subsets of R?. For the calculation in a 2-dimensional case,

we consider the operations of a-cuts on R by using a parameter as in Definition 4.3.

Theorem 4.10. ([6]) Let A = (a1, x1, b1, y1)? and B = (ag, 22, b, y2)? be two

2-dimensional triangular fuzzy numbers. Then we have the following.

2
(1) A(+)pB = (al +ag, x1 +x2, by + b, Y1 +y2) .

(2) A(-)pB = (&1 +ag, 1 —x2, by + b2, y1 — y2)2.
(3) (A()pB)* = {(za(t),ya(t)) |0 <t <27}, where
To(t) = T129 + (z1a2 + 2201 ) (1 — @) cost + araz(1 — a)? cos® ¢,
Yo (t) = Y192 + (y1ba + y2b1 ) (1 — @) sint + bba(1 — o) sin’ .

(4) (A(/)pB)* = {(za(t),ya(t)) |0 <t <271}, where

x1+a1(1l-a)cost _y1+bi(1-a)sint

xo(t) =

Ya(l)

x9—as(l-a)cost’ _yz—bg(l—a)sint'

Thus A(+),B and A(-),B become 2-dimensional triangular fuzzy numbers, but A(-),B

and A(/),B are not 2-dimensional triangular fuzzy numbers.

Proof. Since A and B are convex fuzzy numbers defined on R?, by Theorem 4.6,
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there exists f{*(t), g (t) (4 = 1,2) such that
A% ={(z,y) e R* | pa(z,y) = o} = {(ST (1), f5' (1)) e R* |0 < t < 27},
B = {(z,y) e R?| pp(x,y) = a} = {(g7 (1), 5 (1)) e R? |0 <t < 27}
Since A = (a1,21,b1,91)? and B = (ag, 2, ba, y2)?, we have
() =z1+a1(1-a)cost, f3'(t)=y1+bi(1-a)sint,

97 (t) =x2 +az(l —a)cost, g5(t) =y2+ba(l—a)sint.
(1) Since
(@) +g7(t) =21 + 22+ (a1 +a2)(1 - @) cost,
fo(t) +95(t) =y1 +y2 + (b + b2) (1 — ) sint,

we have

2 2

(A ={e | (G50 5) (G a ) =1

Thus

2
A(-i-)pB = ((11 + a2, 1 + X9, bl +b2, Y1 +y2) .

(2) Ifo<t<m,
i) =gt (t+m) =21 — 22+ (a1 + a2)(1 - a) cost,
f[5(@)—g3(t+m)=y1 —y2+ (b1 + b2)(1 - a) sint.
In the case of m <t < 27, we have
@) —gr'(t=m) = fi'(t) g1 (¢ +7),

fo @) =gy (t—m) = f5'(t) — g5 (t+ ).
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Thus

2

T—T1+2x 2 _
(A(=)pB)* = {(x,y) €R’ ‘ ((a1 + a21)21 —204)) +((b1y+ bZ;(Jrly—Qa)) B 1}’

ie.,

2
A(-)pB = (a1 +ag, x1 -T2, by + b2, Y1 —y2) .

(3) Let (A(-)pB)* = {(za(t),ya(t)) |0 <t <27}. Since
i) =z1+a1(1 -a)cost, f5(t)=y1+b1(1l-a)sint,
97 (t) =22+ az(1 - a)cost, g5(t) =y2+bo(1l-a)sint,
we have
T (t) = fO(t) - g0 (t) = 2120 + (2102 + 2201 ) (1 — @) cost + arag(1 — a)? cos® ¢,

ya(t) = fza(t) 'gg(t) =Y1y2 t (ylbg + ygbl)(l - a) sint + b1b2(1 - a)2 Sin2 t.
(4) Let (A(/)pB)® = {(za(t),ya(t)) |0 <t <2m}. Similarly, we have

x1+a1(l—«)cost _y1+bi(1-a)sint

T (t) =

Ya(t)

2o —as(1l —a)cost’ T yo—bo(l-a)sint’

The proof is complete. O

Example 4.11. ([6]) Let A = (6, 3, 8, 5)2 and B = (4, 2, 5, 3)2. Then by Theorem
4.10, we have the following.

(1) A(+),B = (10, 5, 13, 8)2.

(2) A(-),B = (10, 1, 13, 2)*.

(3) (A()pB)* = {(za(t),ya(t)) |0 <t <27}, where

Zo(t) =6 +24(1 - a) cost +24(1 - a)? cos* ¢,
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Yo (t) = 15+ 49(1 - ) sint + 40(1 — o) sin® ¢.

(4) (A())pB)* = {(za(t),ya(t)) | 0 <t <27}, where

3+6(1-a)cost
2-4(1-a)cost’

5+8(1-a)sint
3-5(1-a)sint’

za(t) = Ya(t) =

Thus A(+),B and A(-),B become 2-dimensional triangular fuzzy numbers, but A(-),B

and A(/),B are not 2-dimensional triangular fuzzy numbers.

4.2. Generalized 2-dimensional triangular fuzzy set

Kim and Yun defined the generalized 2-dimensional triangular fuzzy numbers on
R? as a generalization of generalized triangular fuzzy numbers on R. Then Kim and
Yun want to defined the parametric operations between two generalized 2-dimensional

triangular fuzzy numbers.

Definition 4.12. ([5]) A fuzzy set A with a membership function

= L W) 2 )2 4 a2(y - yn)? < 0 B R,

a2

pa(z,y) =
0, otherwise,

where a,b >0 and 0 < h <1 is called the generalized 2-dimensional triangular fuzzy set

and denoted by ((a, z1, h, b, y1)).

Note that pa(z,y) is a cone. The intersections of 4 (x,y) and the horizontal planes
z=a (0 < a<h) are ellipses. The intersections of p4(z,y) and the vertical planes
y—vy1 = k(z-x1) (keR) are symmetric triangular fuzzy numbers in those planes. If
a = b, ellipses become circles. The a-cut A, of a generalized 2-dimensional triangular

fuzzy number A = (a,x1,h,b,y1)? is an interior of ellipse in an zy-plane including the
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boundary

Ao ={(z.) e R? |0 (2 - 21)2 + a*(y - 1) < PV (h - 0)?)
2 2

- {(x,y) e R? | (afh_—x;)) + (b?h_—y;)) < 1}.

Theorem 4.13. ([5]) Let A = ((a1, x1, h1, b1, y1))? and B = ((az, 2, ha, ba, y2))?

be two generalized 2-dimensional triangular fuzzy sets. If 0 < hy < ho < 1, then we have
the following.

(1) For 0 < v < hy, the a-set of A(+),B is

2 2

(A(+)pB)* = {(x,y) ¢ R’ ‘ (a1(h1 icc;)xi ;;Eth - a)) +(b1(h1 EJ;)ler ;23212 - a)) = 1}~

(2) For 0 < v < hy, the a-set of A(-),B is

2

T-x1+T - 2
(A(=)pB)" = {(x,y) ¢R’ ‘ (a1(h1 -a) -11- ;(22 —a)) +(bl(h1 ;yoé)y-ll- -1:2?122 - Oé)) ) 1}'

(3) (A()pB)* = {(za(t), ya(t)) | 0 <t <27}, where
CEa(t) = I1m2+(1:1a2(h2—a)+x2a1(h1—a))cost+a1a2(h1—a)(h2—a) COS2 t, O<ax< hl,

Yo (t) = y192 + (y1b2(ho — @) + y2b1 (h1 — «)) sint + biba (hy — ) (he — @) sin?t, 0<a<h.

(4) (A())pB)* ={(za(t),ya(t)) | 0 <t <27}, where

x1+a1(hy —a)cost _y1+b1(h1 - )sint

« t = - . 9
za(t) Y2 — ba(hy — ) sint

Ya (1)

) O<a<hy.
) —ag(hg—a) cost !

Proof. Since A and B are convex fuzzy sets defined on R?, by Theorem 4.6, there

exists f(t), g7 (t) (i =1,2) such that
A% = {(z,y) € R? | pa(z,y) = a} = {(f(1), f5 (1)) e R*|O<t <2m}, O<a<h
and

B = {(z,y) € R* | up(z,y) = a} = {(47(1), 95 (t)) e R* |0 <t <27}, O< < ha.
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Since A = ((al,xl,hl,bljyl))z and B = ((a2,$2,h2,b2,y2))2, we have

() =x1+a1(hy —a)cost, f5'(t)=y1+b1(h1 —a)sint, 0<a<h

and

97 (t) = xo + ag(hy — ) cost, ¢5(t) =ya+ba(he —a)sint, 0<a<hs.

(1) If 0 < v < hy, since

Ji(t) + g7 (t) = 21 + 22 + (a1(h1 — @) + az2(ha — a)) cost

and
fo(t) +g5(t) =y1 +ya + (b1 (h1 — @) + ba(ha — @) ) sint,
we have
a_ T -1 -T2 2 Y=y -2 2
(A(+),B)" = {(z,y) €R’ ‘ (a1(h1 —a) +az(hs —a)) +<bl(h1 —a) +by(he - a)) - 1}'

Furthermore, we have

P~ =) 5| (25252 ) 1)

(AG),B)" = lim (AG),B)" = {(r.9) B2 | (L0 22) (LB l2) 1),

and

(A(+)pB)* =2, hi<a<hs.

(2)If0<t<mand 0<a<hy,
i) —gi'(t+7) =21 — 22+ (a1(h1 — @) + a2(h2 — a)) cost

[ (t) = g5 (t+7) =y1 —y2 + (b1(h1 — @) + ba(hg — ) ) sint.
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In the case of m <t < 27w, we have

S(@) —gi (t=m) = f1'(t) — g7’ (t+ )

and
f3 (@) =g (t—m) = f3'(t) — gz (t +m).
Thus
o xr—x1+ X9 2 Y—Yi1+y2 2_
(A(=)pB) _{(x’y)ERz‘(al(hl—a)+a2(h2—a)) +<b1(h1—a)+b2(h2—a)) _1}.

Furthermore, we have

(A(_)pB)O - O}i_)r61+(A(—)pB)°‘ - {(I’y) R’ ‘ (;1;1:?- ;21;52)2 * (;/1}:13/-1 221222)2 - 1}’

and

(A(—)pB)a =@, hi<ac<hs.

(3) Let (A(-)pB)* = {(za(t),ya(t)) | 0 <t <2m}. Since
fi(t) =21+ a1(hy —a)cost, f3(t) =y1+bi(h1 —a)sint

and

97 (t) = 22 + az(ha — ) cost, g5 (t) = y2 + ba(ha — a)sint,

we have

za(t) = f1'(1) - g7 (1)

= 2129 + (r102(ho — @) + w201 (hy — @) cost + ajaz(hy — ) (he — @) cos’t, O<a<h
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and

Ya(t) = f5'(1) - g5 ()
= 9192 + (y1b2(ha — @) + y2by (hy — @) sint + biby(hy — @) (hg — @) sin®t, 0<a <hy.
Furthermore, we have
2o(t) = limg o+ To(t) = z122 + (z1a2hs + 29a1hy) cost + ajashihy cos® t,
Yo(t) = limao+ Ya(t) = Y1y + (y1boho + yabihy ) sint + bibyhy hy sin® ¢,
xp, (t) = limg, g+ Zo(t) = 122 + x102(h2 — h1) cost,
Yn, (1) = limgspy Ya(t) = y1y2 + y1ba(he - hy) sint,
and

(A(-)pB)a =@, hi<ac<hs.
(4) Let (A(/)pB)® = {(za(t),ya(t)) |0 <t <2m}. Similarly, we have

x1+ay(hy —«)cost ~y1+b1(h1 - )sint

xo(t) =

Ya (1)

O<a<hy.

xo —as(hg — a) cost’ _yg—bg(hg—a)sint7

Furthermore, we have

T+ a1h1 cost Y1 + blhl sint

zo(t) = O}i_)%h 2o (t) = Yyo(t) = O}i_,Ing Ya(t) =

x9 — aghy cost’ Y2 — bahgsint’

x Y1

Yo — bg(hg - hl) sint

xp, (t) = lim 24(t) = o yn, () = lim yo(t) =
a—h] a—h]

xTo — ag(hQ - hl) cost
and

(A(/)pB)* =@, hi<a<hs.

The proof is complete. a

Example 4.14. ([5]) Let A = ((6, 3, 3, 8, 5))* and B = ((4, 2, 2, 5, 3))%. Then by

Theorem 4.13, we have the following.
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(1) For 0 < e < %, the a-set of A(+),B is

(A(+),B)* = {(z.) eRQ\(_ff_—;oi )+ (%)Q 1),

(2) For 0<ar < %, the a-set of A(-),B is

2

a 3x -3 \2 3y -6
AEB) = {@)  B|(F0-) + (5500) = 1)

(3) (A()pB)* = {(za(t),ya(t)) | 0 <t <27}, where
To(t) =6+ (14— 240) cost + 4(1 - 2a) (2 - 3a) cos’t, 0<a< %,
Ya(t) =15+ (% —49a) sint +20(1 - 2a)(§ - a)sin2t, 0<a< %
(4) (A())pB)* = {(za(t),ya(t)) |0 <t < 27}, where

9+9(1-2a)cost
6 —4(2 - 3a) cost’

15+ 12(1 - 2a) sint
Ya(t) = IR
9-15(2 - 3a)sint

1

alt) = —.

za(t) <a<y
Remark 4.15. ([5]) A(+),B and A(-),B become truncated cones, A(-),B becomes a

twisted truncated cone and A(/),B becomes a more complicated type that cannot be

explained.

4.3. 2-dimensional quadratic fuzzy number
Kang and Yun defined the 2-dimensional quadratic fuzzy numbers on R? as a gen-
eralization of quadratic fuzzy numbers on R. Then Kang and Yun want to defined the

parametric operations between two 2-dimensional quadratic fuzzy numbers.

Definition 4.16. ([2]) A fuzzy set A with a membership function

1— ((:v—aagl) " (y—bgl) ), b2(x _$1)2 " a2(y —y1)2 < a2b2,
pa(z,y) =
0, otherwise,

where a,b > 0 is called the 2-dimensional quadratic fuzzy number and denoted by
[CL7 (L’l, b7 y1]2'
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Note that pa(x,y) is a cone. The intersections of p4(z,y) and the horizontal planes
z=a (0<a<1) are ellipses. The intersections of pa(x,y) and the vertical planes
y—uy1 =k(x—xz1) (keR) are symmetric quadratic fuzzy numbers in those planes. If
a = b, ellipses become circles. The a-cut A, of a 2-dimensional quadratic fuzzy number

A =[a,x1,b,y1]? is an interior of ellipse in an xy-plane including the boundary
Ao ={(2,y) e R |P(@ - 21)* + ’(y = 1n)* <’V (1 - ) }
2 2
_ R2 (z —x1) (y-v1) <1l
{@) er?| 2(1-a)  (1-a) }
Theorem 4.17. ([2]) Let A = [a1, z1, b1, v1]* and B = [ag, 22, ba, 32]* be two

2-dimensional quadratic fuzzy numbers. Then we have the following.
2

(1) A(+)pB = [al +ag, v1+T2, b +be, y1 + yz] :
2

(2) A(=)pB = [al +agz, 1 — T2, by +ba, Y1 - yz] :

(3) (A()pB)* = {(za(t),ya(t)) |0 <t <27}, where
Tao(t) = 2120 + (1102 + x2a1)MCost +araz(l—a) cos’t
and
Ya(t) = yiy2 + (y1ba + ygbl)\/Esint +b1bo(1-a) sin’t.

(4) (A())pB)* ={(za(t),ya(t)) | 0 <t <27}, where

r1+a1VvV1—«cost y1 +b1V1—asint
To —agV1—acost yg—bQ\/l—asint'

Thus A(+),B and A(-),B become 2-dimensional quadratic fuzzy numbers, but A(-),B

To(t) = and  y,(t) =

and A(/),B are not 2-dimensional quadratic fuzzy numbers.

Proof. Since A and B are convex fuzzy numbers defined on R?, by Theorem 4.6,

there exists ff(t), ¢7*(t) (i = 1,2) such that

A% ={(z,y) € R* | pa(,y) = a} = {(f{'(1), f5()) e R [ 0 < t < 2}
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and

B = {(z,y) €R* | up(z,y) = a} = {(g7 (1), 95 (1)) e R*| 0 <t < 27},

Since A = [ay,z1,b1,y1]? and B = [ag, T2, bz, y2]%, we have

() =x1+a1vV1-acost, f5(t)=y1+bV1-asint

and
gr(t) =x2 + asV'1 — acost, g5 (t) =ya + bo/1 — asint.
(1) Since
@) +g7(t) =x1 + 22 + (a1 + a2)V'1 - acost
and
f5(t) + g5 (t) = y1 +y2 + (b1 + b2)V1 — asint,
we have

($—$1—CL’2)2 (y_yl_y2)2

(A(+)B)* ={ () < B2

2

Thus A(+),B = [a1 +ag, r1+ T2, b +bg, y1 + y2] :
(2)Ifo<t<m,

@) —gi(t+7) =21 22+ (a1 +a2)V1 - acost

and

fo(t) g3 (t+m) =y1 —y2 + (by + b2)V1 - asint.

In the case of 7 <t <27, we have

S(@) = gi (t=m) = f1'(t) — g7 (t+ )
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and
f3'(t) - g3 (t—m) = f3'(t) — g3 (t + ).

Thus

(- 21 +x2)? (y—y1+y2)? _1}

(A(=)pB)* :{(xvy) R’ | (a1 +a2)2(1-a) (b1 +b2)2(1-a)

ie.,

2
A(=)pB = [(11 +az, x1 — 2, by + b2, Y1 —Z/Q] .

(3) Let (A(-)pB)™ = {(za(t),ya(t)) |0 <t <27}, Since

() =z1+a1V1—acost, f5(t) =y1 + b1V1 — asint

and
g% (t) = xa + apV/1 —accost, g5(t) =yz +boV/1 - arsint,
we have
T (t) = fE(t) - g8 (t) = mraa + (a9 + 2201)V1 — accost + ajas (1 — ) cos® ¢
and

Yo (t) = f5(t) - 95 (t) = y1y2 + (y1b2 + y2b1)V'1 — asint + byba (1 — @) sin’t.

(4) Let (A(/)pB)® = {(za(t),ya(t)) |0 <t <2m}. Similarly, we have

(t) 1 +a1V1—-acost q (1) y1 +b1V1—asint
x = an = .
“ To9 —agV/1 —«acost Yo Yo —bov/1 — asint
The proof is complete. a

Example 4.18. ([2]) Let A =[6, 3, 8, 5]> and B = [4, 2, 5, 3]*>. Then by Theorem
4.17, we have the following.
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(1) A(+),B =[10, 5, 13, 8]°.
(2) A(-),B =[10, 1, 13, 2]*.

(3) (A(1)pB)* ={(za(t),ya(t)) | 0 <t <27}, where
To(t) = 6+24V1 - acost +24(1 — o) cos® t

and

Yo (t) = 15+ 491 — asint + 40(1 - a) sin? .

(4) (A())pB)* ={(2a(t),ya(t)) [0 <t <27}, where

- (t)_3+6\/1—ozcost and (t)_5+8\/1—asint
“ 2-4/1-«cost Yo 3-5v1-asint

Thus A(+),B and A(-),B become 2-dimensional quadratic fuzzy numbers, but A(-),B

and A(/),B are not 2-dimensional quadratic fuzzy numbers.
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5 2-dimensional parametric operations

5.1. Parametric operations between 2-dimensional triangular fuzzy
number and trapezoidal fuzzy set
We generalized the trapezoidal fuzzy numbers on R to R? and calculate the para-
metric operations between 2-dimensional triangular fuzzy number and trapezoidal fuzzy

set ([7]).

Definition 5.1. ([7]) A fuzzy set B with a membership function

h — \/(90—;;1)2 + (y_bgl)Q’ h-1 < \/(90—;;1)2 + (y_b%l)Q < h,

pp(,y) =1 1, 0<\/Emm)y mn) oy,

0, otherwise,

where a,b > 0 and 1 < h is called the 2-dimensional trapezoidal fuzzy set and denoted

by B = ((a7 zy, h7 b7 yl))Q'

pup(x,y) is a truncated cone. The intersections of pp(z,y) and the horizontal planes
z=a (0<a<1l) are ellipses. The intersections of up(z,y) and the vertical planes
y—y1 =k(z—z1) (keR) are symmetric trapezoidal fuzzy sets in those planes. If a = b,
ellipses become circles. The a-cut B, of a 2-dimensional trapezoidal fuzzy number
B = ((a, z1, h, b, y1))? is the interior of an ellipse in the xy-plane including the
boundary

Bao={(2,9) € B [ V(2 =) 4 a®(y = 90)° <a®t*(h - 0)?)

2

r—-x1 \2 -
= {(z.y) e R?| (a(h_;)) +(b§/h_y;)) <1},

Note that if 0 < b < 1, ((a, 1, h, b, y1))? becomes a generalized 2-dimensional
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triangular fuzzy number and if 1 < h, ((a, z1, h, b, y1))? becomes a 2-dimensional

trapezoidal fuzzy set.

Theorem 5.2. ([7]) Let A = (a1, =1, b1, y1)? be a 2-dimensional triangular fuzzy
number and B = ((az, x2, h, ba, y2))? be a 2-dimensional trapezoidal fuzzy set. Then
we have the followings.

(1) For 0 < o < 1, the a-set of A(+),B is

2

T-T1—x 2 -y -
(A(+)pB)a:{(x’y)€R2|(al(l—a)icm(?l—a)) +(bl(1—ya)y-il-bzizib—a)) :1}'

(2) For 0 < o < 1, the a-set of A(-),B is

2

T-T1+T 2 -
(A(_)pB)a:{(x’y)ERQ‘(a1(1—a)i;_2(il—a)) +(bl(1—ya)yi;;é2—a)) :1}'

(3) For 0 < o < 1, the a-set of A(-),B is

(A()pB)* = {(za(t), ya(t)) [0 <t < 27},
where
To(t) = 2120 + (2102(h — @) + 2201 (1 — @) cost + arag(l — &) (h — ) cos* ¢,
Yo () = y1y2 + (y1ba(h — @) + y2b1 (1 — @) ) sint + byba(1 — ) (h - a) sin ¢.

(4) For 0 < o < 1, the a-set of A(/),B is

(A(N)pB)* = {(za(t),ya(t)) |0 <t <27},

where

x1+a1(1l-a)cost _y1+b1(1-a)sint

xo(t) =

Ya(t)

w9 —as(h - a)cost ’ Yy —by(h—a)sint’
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Proof. Since A and B are convex fuzzy numbers defined on R?, by Theorem 4.6,

there exists f*(t), g (t) (i =1,2) such that for 0 <a <1,
A% ={(f(1), f5' (1)) e R®0 < t < 2},
B = {(g (), 95 (1)) e R?0 <t <2}
Since A = (a1,21,b1,y1)? and B = ((ag, 22, h, bz, y2))?, we have
@) =z1+a1(1 -a)cost, f5'(t)=y1+b1(1-a)sint, 0<a<l1,
97 (t) =x2 + ag(h — ) cost, g5 (t) =y2+ba(h—a)sint, 0 <a<1.
(1) If 0 < ar < 1, since
@) +¢%(t) =21 + x2 + (a1 (1 — @) + ag(h — a)) cost,

) +95@) =y +y2+ (b1(1 - ) + ba(h — a)) sint,
we have

2

T—-T1—T 2 -y -
(A(+)pB)a:{($’y)ER2|(a1(1—a)ia2(§l—a)) +<bl(l—ya)yib;z2—a)) :1}'

Furthermore, we have

(ACBY = lim (A, B)" = {(ay) e 2 (LZET2) s (L)),

A B A o RS () )

(2) If0<t<mand 0<a<1, we have
@) -gft+7m) =21 —22+ (a1(1 - ) + az(h - a)) cost,

fo(t)—ga(t+m)=y1 —y2 + (b1 (1 - ) + ba(h —a))sint.

In the case of m <t < 27, we have
ST (@) =g (t—m) = f{'(t) — g (¢ + ),
f5#)—gy(t—m) = f5'(t) — g3 (¢ + 7).
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Thus

T—T1+T 2 - 2
(A(_)PB)QZ{(x’y)ERZ‘(a1(1—a)i;2(2—a)) +(b1(1—ya)yi223éz—a)) =1

Furthermore, we have

(Y = iy (A" = (o) €8 | (T2 (2 =1}

e[ = =

(3) Let (A(-)pB)™ = {(za(t),ya(t)) |0 <t <27}, Since

() =z1+a1(1 -a)cost, f5'(t)=y1+b1(1-a)sint,
97 (t) = o + az(h — ) cost, g5(t) =y2+ba(h—a)sint,

we have

za(t) = f1'(1) - g7 (1)

= z129 + (z102(h — @) + 2901 (1 — @) cost + ajag(l - a)(h— o) cos’t, 0<a <1,

Ya(t) = f3'(t) - g5 (t)
= 9192 + (y1b2(h — @) + y2by (1 — @) sint + byba(1 - @) (h - a)sin®t, 0<a<1.
Furthermore, we have
xo(t) = limg_o+ To(t) = 2122 + (z1a2h + 2901 ) cost + ajash cos? t,
Yo (t) = limaoo Ya(t) = Y12 + (y1bah + yob1 ) sint + by boh sin® ¢,
x1(t) = limg_1- o (t) = 2122 + 102(h — 1) cost,
y1(t) = limao1- Ya(t) = y1y2 + y1ba(h — 1) sint.

(4) Let (A(/)pB)® = {(za(t),ya(t)) |0 <t <2m}. Similarly, we have

x1+a1(l—a«)cost _y1+bi(1-a)sint

oy —by(h - a)sint’

O<ax<l.

xa(t) = ya(t)

x9 —ag(h - a)cost’
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Furthermore, we have

x1+ajcost
{L‘(](t) =,
T9 —aghcost

T1

t) =
71(t) w9 —as(h—1)cost’

The proof is complete.

Example 5.3. Let A= (2, 7, 1, 5)% and B = ((6, 4, 3

we have the following.

(1) For 0 < o < 1, the a-set of A(+),B is

(t) _ Y1 + b1 sint
% N yg—bghsint’

U
yi(t) =

Y2 —bg(h— 1)sint'

5 3 8))2. Then by Theorem 5.2,

(A(+)pB)* = {(z,9) ¢ B (

(2) For 0 < o < 1, the a-set of A(-),B is

y—-13 )2:1}.

x—11 2
o) iy

(A()pB)* ={(2,9) e R (

(3) For 0 < o < 1, the a-set of A(-),B is

-3 2 3 2
8(18—1—a)) ’ (4(?- ) =

(AC)pB)™ = {(za(t), ya(t)) | 0 <t < 27},

where

2o (t) = 28 + (80 — 50a) cost + 12(1 - a)(g - o) cos’t,

Yo (t) =40 + (% - 2304) sint +3(1 - a)(% - a) sin?t.

(4) For 0 < o < 1, the a-set of A(/),B is

(A(DpB)* = {(za(t),ya(t)) |0 <t <27},

where
7+2(1-«)cost
4—6(% - a) cost

)

xo(t) =

46
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5.2. An extension of algebraic operations for 2-dimensional quadratic
fuzzy number
By defining parametric operations between two regions valued a-cuts, we get the
parametric operations for two quadratic fuzzy numbers defined on R? in Section 4.3.
In this section, we prove that the results for the parametric operations for two 2-
dimensional quadratic fuzzy numbers are the generalization of algebraic operations for

two quadratic fuzzy numbers on R.

Theorem 5.4. Parametric operations for two 2-dimensional quadratic fuzzy numbers

are the generalization of algebraic operation for two quadratic fuzzy numbers on R

Proof. Consider two 2-dimensional quadratic fuzzy numbers A = [a1, x1, b1, 0]?
and B = [ag, 2, bz, 0]*. By Theorem 4.17,
(1) A(+)pB = [a1 + a2, x1 + T2, by + b, 0]2.
(2) A(=)pB =[a1 + a2, x1 —x2, by + b, 0]2.

(3) (A()pB)* = {(za(t),ya(t)) | 0 <t <27}, where

To(t) = 2129 + (T102 + 2201)V 1 — v cost + ajas(l — «) cos’t

and

ya(t) = blbz(l - a) Sith.

(4) (A(/)pB)* ={(za(t),ya(t)) |0 <t <27}, where

1 +a1VvV1—-acost b
To —aoV/1—ocost by

The intersections of these 2-dimensional quadratic fuzzy numbers and vertical xzz-plane

(y =0) are as follows.
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(1) A(+)pB ; Note that

($—a}1—$2 2+ Yy )2)

=1-
MA(HPB (:E7 y) ( al + ag b1 + b

If y =0 and MA(+)pB(:U,y) =0,
r=x1+22+£ (a1 +a).

Thus the intersection is the symmetric quadratic fuzzy number C on the xz-plane with

o (x1 +x2) =1 and the zero cut
C() = [1‘1 + X2 — (a1 +a2), r1+x2+ (a1 + ag)].

(2) A(-)pB ; Note that

T—T1+T2\2 Y 2
( 1 2 ))

:U'A(—)Z,B(xay) =1- ( a1 + as bl N b2

If y =0 and MA(_)pB(az,y) =0,
r=I1—T2x (a1 +a2).

Thus the intersection is the symmetric quadratic fuzzy number D on the xz-plane with

up(x1 —x2) =1 and the zero cut

Dy =[x1 — 22— (a1 +az), x1 — 22+ (a1 +a2)].
(3) A(),B ; T a =0,

xo(t) = x129 + (102 + T2071) COST + ajas cos’t.
Since

20(0) = z1x9 + X109 + X201 + a1ay and xo(7) = z1x9 — (102 + T2a1) + ajag,
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the intersection is a fuzzy number E on the xz-plane with pug(zi122) = 1 and the zero
cut

Ep = [x122 — (z102 + T201) + a1ag, T1X2 + X102 + T2a1 + a1asz].

(4) A(/)pB ; If =0,

xr1+ajcost

zo(t) = :
T9 — a9 cost
Since
1+ a1 Tr1 —al
x0(0) = and zo(m) = ——,
T — a9 T + ag

the intersection is a fuzzy number F' on the xz-plane with p F(%) =1 and the zero cut

r1—ay T1+aq
Fy= , .
To+as T —ao

On the other hand, the intersection of 2-dimensional quadratic fuzzy number A =
[a1, 21, b1, 0]% and vertical zz-plane (y = 0) is the symmetric quadratic fuzzy number

G on the zz-plane with ug(2z1) =1 and the zero cut
Go = [z1- a1, 1 +a1].

The intersection of 2-dimensional quadratic fuzzy number B = [az, @2, ba, 0]? and
vertical zz-plane (y = 0) is the symmetric quadratic fuzzy number H on the zz-plane

with ppg(x2) =1 and the zero cut
HO = [mg —ag, To+ az].

For two quadratic fuzzy numbers G and H, we had proved the following result for

Zadeh’s extension principle ([11]).
G(+)H=C, G(-)H=D, G(-)H=F and 0G(/)H =F

The proof is complete. a
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Example 5.5. Let A=[2, 9, 6, 0] and B = [4, 1, 7, 0]?. Then by Theorem 5.4, we
have the following.

(1) A(+),B = [6, 10, 13, 0]

x—1042
Hacos @) = 1= (=) +(5) )

If y =0 and MA(+)pB(x,y) =0,

r=4 or x =16.

Thus the intersection is the symmetric quadratic fuzzy number C on the xz-plane with
uc(10) =1 and the zero cut

Co = [4, 16].

(2) A(-),B =[6, 8, 13, 0]?

L 8\2 2
“A<—>ps($’y):1_((78) +(1%) )

If y =0 and MA(+)pB(m,y) =0,

r=2 or x = 14.

Thus the intersection is the symmetric quadratic fuzzy number D on the xz-plane with
pp(10) =1 and the zero cut
Dy =[2, 14].
(3) A()pB ; If =0,
zo(t) =9 + 38 cost + 8cos> t.

Since

x0(0) =55 and zo(7) = -21,
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the intersection is a fuzzy number E on the zz-plane with pg(9) =1 and the zero cut

Ey =[-21, 55].
(4) A(/)pB ; If a =0,
9+ 2cost
)= ———.
zo(t) 1-4cost

Since

11 7
20(0) = 3 and zo(7) = 5

the intersection is a fuzzy number F' on the zz-plane with pr(9) =1 and the zero cut
11
|
3 5

On the other hand, the intersection of 2-dimensional quadratic fuzzy number A =
[2, 9, 6, 0] and vertical zz-plane (y = 0) is the symmetric quadratic fuzzy number G

on the xz-plane with pug(9) =1 and the zero cut
Go = [7, 11].

The intersection of 2-dimensional quadratic fuzzy number B = [4, 1, 7, 0]? and vertical
xz-plane (y = 0) is the symmetric quadratic fuzzy number H on the zz-plane with
wr(1) =1 and the zero cut

Hy =[-3, 5].

For two quadratic fuzzy numbers G and H, we had proved the following result for

Zadeh’s extension principle ([11]),

G(+)H=C, G(-)H=D, G()H=FE and G())H = F.
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