

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

A DISSERTATION FOR THE DEGREE OF
DOCTOR OF TOURISM SCIENCE

Platform Home Sharing on Jeju Island:

An application of revealed preferences

to the sharing economy

Jacob Charles Barr

Department of Tourism Management

GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

2018. 02

- 2 -

Platform Home Sharing on Jeju Island: An
application of revealed preferences to the

sharing economy

Jacob Charles Barr

(Supervised by Professor Choi, Byoung-Kil)

A dissertation submitted in partial fulfillment of the requirement for the
degree of Doctor of Tourism Science

FEBRUARY 2018

This thesis has been examined and approved.

 2018. 02

Department of Tourism Management

GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

- 4 -

- 5 -

Acknowledgements

To my advisor, Profesor Choi, Byoung Kil: thank you for choosing me as

your student. Your trust and frank guidance throughout this process was a

something on which I could always rely.

To Professor Park, Ounjoung: thank you for supporting me, giving me the

opportunity to teach, and for countless office hours of advice.

To Jeong, Jong Hwan: thank you for editing my manuscripts again and

again.

To Caleb Botton: thank you for your encouragement, your criticism and

empathy. Most of all, thank you for the title of this dissertation.

To Candace: Меине бесте Фрейндин, меине Гелиебте - данке, дасс

Ду ес мит мир аусгехалтен хаст. Их лиебе Дир. Пайтинг!

Jacob Charles Barr

- 6 -

- 7 -

ABSTRACT

The sharing economy has been heralded as a social movement that is

transforming consumer behavior norms. The purpose of this study was to

empirically define the presence of platform home sharing on Jeju Island and

to analyze this new market within the theory of revealed preferences to see if

platform home sharing is driven by economic or social-experiential

considerations. Are platform home sharing guests on Jeju Island exhibiting

social or utilitarian consumer behavior through their purchase decisions? Web

scraping and data mining techniques were employed to obtain a reliable data

set, and multivariate regression analysis was employed to estimate the most

important determinants in platform home sharing businesses in the local

context. In order to further explore the relationships between property listing

characteristics and the number of reviews as the dependent variable,

classification and regression trees were employed to account for the

nonlinearity of the data.

The results show that platform home sharing on Jeju Island is widespread

across the entire island with heavier concentrations on the northeast side and

a thinner distribution on the south west side. Consequently, latitudinal

coordinates were more effective determinants of demand than longitudinal.

Among the 31 listing property types. “houses” which are priced below 140,000

KRW per night are more likely to be rented than any other type.

Furthermore, the host speaking additional languages to Korean is perceived as

an asset in terms of the number of reviews. English and Russian are better

determinants of demand than other foreign languages. The platform home

sharing guests are most strongly motivated by low cost and entire properties,

rather than shared spaces. Shared rooms were revealed as least preferred

among the guests with less than 10% of the total listings. Entire homes,

however, occupied more than 50% of the entire population in terms of listings

- 8 -

and 60% of the number of reviews. This shows that the new market of

platform home sharing on Jeju Island is driven by traditional economic forces

of maximizing satisfaction and minimizing cost, and not the alternative social

and or experiential collaborative consumption motivations commonly associated

with the Sharing Economy. Further inferential analyses on hosts who list

multiple properties as well as sensitivity analyses on the efficacy of

satisfaction as a determinant of demand were performed. The analysis yielded

that hosts who list multiple properties did not directly receive a higher

average number of reviews, however, they did receive a lower overall level of

satisfaction. As the presence of platform home sharing on Jeju island

continues to grow, policy makers and hoteliers would benefit from

understanding a new potential source of competition in the market for tourism

accommodation. Several implications are discussed in terms of the analyses as

well as limitations and directions for future research on platform home

sharing.

- 9 -

CONTENTS

I. INTRODUCTION..1

1. Background...1

2. Research Purpose and Methods...6

3. Research Constructs...8

II. LITERATURE REVIEW..9

1. Platform Business Model..9

1) Four main categories of innovation..10

2) Disruptive Innovation’s Essential Elements..13

3) Issues with Disruptive Innovation...14

4) Platforms..16

5) Traditional and Platform Accommodation...18

6) Three Pillars of Platforms..20

7) Platform Disruption...21

8) Moving Towards Open Innovation..25

2. Smart Tourism...27

1) Smart Tourism on Jeju...28

2) Phenomenon-based Research...30

3) User-Generated Content..33

4) Transitions of the Web...33

(1) Web 2.0..33

(2) Towards a Cooperative Web..34

(3) Web 3.0..36

3. The Sharing Economy...37

1) Motivational Factors in the Sharing Economy..37

- 10 -

2) Theories of Consumer Behavior and Revealed Preferences................44

3) Decision Trees used in Predictive Statistical Modeling.......................52

4) Airbnb on Jeju...53

5) Literature End Note..54

III. METHODOLOGY..55

1. Research Analysis..55

2. Hypothesis...56

1) Research Model...56

3. Data...57

1) Description of Data...58

4. Data Collection...64

1) Geographic Parameters..65

2) Scraping..66

(1) Configuring the Scraper...67

(2) Implementing the Scraper..69

(3) Adding a Survey and collecting information...........................70

(4) Exporting Room Information...73

5. Methods of Analysis..73

IV. ANALYSIS OF DATA...75

1. Descriptive Analysis..75

1) Hypothesis Test..83

2. Inferential Analysis..93

1) Stepwise Regression..93

2) CHIAD Regression Trees..102

3) Summary of Results..110

- 11 -

V. CONCLUSION..112

1. Conclusion...112

1) Findings...112

2) Discussion...113

(1) Satisfaction and Accommodation..114

(2) Multi-Listers...115

2. Implications...116

3. Limitations and Future Research..119

REFERENCES..122

APPENDIX A...134

APPENDIX B...143

APPENDIX C...146

APPENDIX D...149

APPENDIX E..164

APPENDIX F..184

APPENDIX G...191

- 12 -

<LIST OF TABLES>

<Table 2-1> Types of Innovation...10

<Table 2-2> Platform Home Sharing Motivations..38

<Table 3-1> Room Types...59

<Table 3-2> Bounding Box..66

<Table 3-3> Imported Modules to the Script...67

<Table 3-4> Scrapable Variables..72

<Table 4-1> All Listings...77

<Table 4-2> Sample of Listings with Review Threshold..................................79

<Table 4-3> Differences Between Population and Sample.................................81

<Table 4-4> Distribution of Shared Rooms..85

<Table 4-5> Distribution of Private Rooms..87

<Table 4-6> Distribution of Entire Homes..89

<Table 4-7> Geographic Areas of Concentrations..91

<Table 4-8> List of Property Types...94

<Table 4-9> Summary of Inferential Statistical Results...................................110

- 13 -

<LIST OF FIGURES>

<Figure 1-1> Research Constructs...8

<Figure 2-1> Theory of Disruptive Innovation..12

<Figure 2-2> Platform Model...24

<Figure 2-3> Open Innovation...26

<Figure 2-4> Model for Implementing Smart Tourism.......................................30

<Figure 2-5> Smart Tourism...32

<Figure 2-6> Theory of Revealed Preferences...48

<Figure 2-7> Weak Axiom of Revealed Preferences...48

<Figure 3-1> Research Analysis...55

<Figure 4-1> All Reviews’ Density Distribution..76

<Figure 4-2> Price Distribution of Entire Population..78

<Figure 4-3> Price Distribution of Three of More Reviews.............................80

<Figure 4-4> Distribution of Listings by Review Threshold............................82

<Figure 4-5> Distribution of Shared Rooms...86

<Figure 4-6> Distribution of Private Rooms...88

<Figure 4-7> Distribution of Entire Homes..90

<Figure 4-8> Areas with High Concentrations of Listings...............................92

<Figure 4-9> Stepwise Regression for Reviews..95

<Figure 4-10> Stepwise Regression with Satisfaction>0...................................97

<Figure 4-11> Stepwise Regression for Reviews>3...99

<Figure 4-12> Satisfaction and Host Rooms..101

<Figure 4-13> Satisfaction as a Function of Multi-Listers.............................101

<Figure 4-14> Fewer Reviews Associated with Lower Satisfaction............102

<Figure 4-15> Property Type CHIAD Tree..105

<Figure 4-16> Additional Languages CHIAD Tree..107

<Figure 4-17> Geographic Position CHIAD Tree..109

<Figure 5-1> Log Price Review Distribution..118

- 14 -

- 1 -

Ⅰ. INTRODUCTION

1. Background

"What a company owns matters less than what it can connect" - Alex

Moazed

According to the United Nations World Trade Organization (UNWTO,

2015), tourism is "a social, cultural and economic phenomenon which entails

the movement of people to counties or places outside of their usual

environment for personal business or professional purposes". Tourism in the

phenomenal context frames this research in the best way, as a situation that

is observed to exist, yet one whose explanation is in question. The form of

tourism that we experience today has changed dramatically from the

traditional forms of brick and mortar travel agencies, national airlines and

hotels of previous generations. The tourism of today may be characterized by

an information-intensive industry, highly dependent on communication

technologies and connectivity. As more and more people travel, the industry

has broadened to include alternative tourism planning, alternative tourism

experiences and most relevant to this research, alternative tourism lodging.

At certain moments in history, the confluences of technological and social

advances have paved the way for new forms of innovation which transform

traditional markets. The ‘Sharing Economy’ is one of these movements and

has taken root in the tourism, travel and hospitality industry and seen

phenomenal growth in the past five years. The term has been widely used in

numerous forms to express various nuances in exchange (e.g. collaborative

- 2 -

economy, collaborative consumption, peer-to-peer marketplaces, peer economy,

on-demand economy etc.), however, the underlying concept is a platform

approach to connect buyers and sellers, producers and consumers and to

create a community of purpose. Sociologically, theorists have postulated why

more people are choosing to participate in the ‘sharing economy’, be it for the

universal trust generated through interactions or social capital rendered by

strengthening weaker community ties (Codagnone et al., 2016; Granovetter,

1973). The trust-building aspect through mutual accountability in the sharing

economy has been one of the key drivers for its success, and makes the

sharing of one’s house to a stranger not such a foreign concept. This

unprecedented level of cooperation among consumer peers in modern society

has left regulatory bodies and competing traditional business owners in

disarray in deciding how to restrict, monitor or curtail these ‘sharing’practices.

Moreover, the various stakeholders involved are at variance in regard to the

positive or negative spillover effects for society as a whole that

micro-entrepreneurs who rent their homes may have. The erosion of

traditional labor contracts, tax base, security risks and unmitigated innovation

are all items of tensions and trade-offs in the debate surrounding home

sharing (Cohen et al., 2016; Sunil & Noah, 2015).

The terms Airbnb and Uber have largely become household names across

the world and have fueled the discourse on modern micro-entrepreneurship,

income diversification and the role of regulation (Codagnone, 2016; Foroohar,

2016). The ride sharing, pseudo-taxi company, Uber, despite regulatory

efforts, has experienced phenomenal growth in the local transportation

industry (Helft, 2017. Airbnb, famous for peer-to-peer home sharing and

vacation rentals has lodged itself in the industry as a middle class mainstay

with a market capitalization of more than $30 billion in 2017 (Tsang, 2017).

In direct comparison to major hotel industries, this is $10 billion more than

Hilton’s market cap and approximately $5 billion less than the Marriott

- 3 -

group’s market capitalization. What sets Airbnb apart, however, is how

asset-light the company has become.

The platform paradox plays well to the advantage of the tech unicorns.

Uber is the world’s most highly valued private technology company, with

Airbnb coming in second (Economist, 2017). The companies do not own

hundreds of thousands of vehicles or properties but can help leverage

individual owner’s underused assets to profitable use. Both companies benefit

from virtually zero marginal costs and have limitless scalability. The

additional cost of adding one more unit of supply to the platform is virtually

zero, and the platform can expand to the size of the market without incurring

additional costs. This asset light - profit heavy dynamic sets platforms apart

from traditional supply chain business models.

The platform is the predominant business model of the 21st century. It is a

model wherein the company does not own its supply chain, but rather

facilitates interactions between a network of third party producers to

exchange value. In most cases, it does not create the value that is being

produced. The transformative nature of the platform business model, in what

has become known as the sharing economy, is a step from the digital to the

physical world. The ‘Internet of Things’ refers not only to network interfaced

home appliances but also other physical assets such as cars and

accommodation. What Airbnb and Uber have done since 2009 is they have

taken the digital, peer-to-peer networks of the previous decade (Napster,

YouTube, Facebook etc.) and have applied them to the physical world. This

business model is not well understood in its "disruptive" capacity to

incumbent industries, especially in the tourism and hospitality industry. The

rapidly growing presence of informal tourism accommodation, or home

sharing, is an unprecedented phenomenon which lacks a set of managerial

theories and data collection methodologies to effectively monitor its

development and form cohesive policies around it, particularly from a local

- 4 -

level. This is due to the decentralized nature of supply that the platform

attracts and the difficulty of obtaining reliable data to analyze the

characteristics of this supply.

Recent research has called for academics to take a step back from

preemptively jumping to conclusions based on theoretical implications, and

rather to explore empirically driven results to see how the platform home

sharing market is developing. Before a proper assessment of the impacts of

the sharing economy is to take place, access to the platform and user data

currently held by the platform is a necessary prerequisite (Frecken, 2017).

This research contributes to the greater academic discourse by developing a

repeatable methodology to access and analyze the pertinent platform data for

policy makers to form data-driven decisions.

This research seeks to explain the new market of platform home sharing

on Jeju Island in terms of the homo economicus approach to the theory of

consumer behavior. This approach posits that consumers are primarily driven

by the economic forces of cost savings and maximizing satisfaction. This has

been the leading theoretical approach in classical economics since Adam

Smith; however, due to the lack of empirical studies, it is not yet proven to

be the predominant approach to consumer behavior in what has become

known as the ‘Sharing Economy’ or ‘collaborative consumption’, which is

allegedly driven by more experiential and social factors. In adherence with the

economic theory of revealed preferences, which states that a consumer’s

preferences are revealed by their purchasing habits, this research explores the

purchasing habits of more than 70,000 platform home sharing purchase events

on Jeju Island to determine which type of property is most frequently rented.

Jeju is the largest and southernmost inhabited island isolated off the coast

of the Korean mainland. It has an area of 1,845 square kilometers and a local

population of 610,000 residents (Adedoyin, 2017). The population, however is

Jeju growing quickly, with Jeju City’s population alone expected to surpass

- 5 -

500,000 in 2018 (Elder, 2017). Much of this growth is attributed to young

families moving from mainland Korea and a domestic rising birth rate on the

island as well as IT companies relocating to the island.

Topographically, the island is covered in volcanic cones with the dormant

Hallasan volcano occupying both the center of the island and the tallest

mountain in South Korea. Its ecological significance has been recognized by

several international agencies and granted various levels of protection and

conservation statuses including the Biosphere Reserve in 2004, the World

Natural Heritage in 2007, and the Global Geopark as well as the Rasmar

Wetlands in 2011 and 2015 respectively (Kim, 2015; Barnes, 2013). The island

has been experiencing a rapid growth of tourism since 2005, when the annual

visitors numbered 5 million. Ten years later the number of tourists visiting

the island was nearly 13 million (Adedoyin, 2017). The growth in the islands

largest economic sector has led to an increase in local jobs and GDP,

however, it has also spurred debate as to the ecological consequences and

cost of living for local residents. Therefore, the focus in 2017 seems to be

shifting from ‘how much developed’ to ‘how well developed’ and policy

makers are searching for solutions mitigate the undesirable effects of

coastline degradation and carrying capacity.

Jeju has a strong entrepreneurial sector wherein startups abound and small

business owners compete in a creative environment over growing demand. In

alignment with Jeju’s ambitions to become an international tourism

destination, an analysis of the most prolific example of a tourism and travel

platform with the widest network of domestic and international users provides

the most meaningful results. Tourism destination managers can stumble from

short-sighted policy goals when they view the accommodation value pie as

"fixed" and overly protect traditional providers, rather than seeing the

untapped potential of creating new value through home sharing.

Jeju Island has also recently experienced a boom in the number of home

- 6 -

sharing listings, with 5,568 listings as of October, 2017, in the world’s largest

platform network provider at a time when South Korea is in the process of

forming its regulatory framework regarding home sharing businesses. This

research seeks to analyze the characteristics of the supply of this platform

network on Jeju island, inform the theory of consumer behavior and provide

policymakers with the first-ever quantitative results regarding supply in a

local context.

2. Research Purpose and Methods:

Grounded in the theories of Consumer Behavior homo economicus and the

theory of Revealed Preference, this dissertation seeks to prove one hypothesis.

In forming the research hypotheses for this dissertation several underlying

objectives were addressed. First, from a Tourism Management perspective, it

was necessary to determine if platform home sharing on Jeju Island should

be regarded in terms of normative homo economicus consumer behavior, or

as a social phenomenon that has negligible presence in the local economy. In

order to ascertain this, the most popular type of platform home sharing listing

in terms of number of reviews, be it entire homes, private rooms or shared

rooms needed to be established. This is how consumer behavior preference

would be established for the platform home sharing market on Jeju Island.

Consumers who are more interested in fostering social relationships by

staying with their hosts in shared spaces would make purchase decisions

which reflect this inclination. Conversely, consumers who are pursuing lower

costs and convenience above social interaction would reveal their preferences

by purchasing entire homes. Accomplishing these research objectives and

discussing their implications is the purpose of this dissertation.

The data collection and analytical methods employed by this research have

- 7 -

seen little application in the field of Tourism Management and offer a unique

contribution to the science in terms of big data analysis. A web scraping

technique developed through the Python computer programming language was

able to obtain the data. An SQL schema developed through the open source

object-relational database management system PostgreSQL was able to

categorize the data. The open source programming language for statistical

computing, R, was able to parse the data. An open source QGIS system was

able to geographically plot the data. Finally, stepwise categorical regression

analyses through the statistical package software Stata were able to make

productive inferences from the data. This research construct and progression

of this dissertation is further illustrated in the section below.

- 8 -

3. Research Constructs

This study consists of 5 chapters. The content of each chapter and flow of

work are shown in <Figure 1-1>.

- 9 -

Ⅱ. Literature Review

Given the unprecedented growth of platform-based home sharing and lack

of reputable data collection methodologies, there have been several studies

done recently seeking to explore the motivations for using Airbnb,

participating in the Sharing Economy and its plausible impact on the

traditional hospitality industry (Guttentag, 2015; Zervas, 2016; Stors, 2015).

Each of these studies has contributed to a deeper understanding of the

dynamics behind platform innovation and consumer behavior theory, but here

has been little research in the way of direct empirical studies focusing on the

supply side of home sharing, its characteristics, distribution and statistical

trajectories. To more fully understand the rapid expansion an implications of

platform home sharing in the research, it is necessary to combine academic

insights with trends and developments identified through company reports and

news media.

Consumer behavior motivational surveys for participating in platform home

sharing have repeatedly shown that users are most strongly drawn to its

practical rather than experiential aspects (Guttentag, 2016; Gravari-Barbas and

Guinand, 2017). Users are attracted by the cost savings first, and social

interaction with the hosts second. This is succinctly juxtaposed with Airbnb’s

marketing emphasis on the social and experiential benefits of using its

platform.

1. Platform Business Model

Various studies have also approached platform home sharing from a

consumer demand perspective, attempting to frame the phenomenon in terms

- 10 -

of conventional business-to-consumer patterns of exchange (Gerwe and Silva,

2016; Yu, 2017), but have met difficulties in reconciling the spectrum of

innovation stemming from the platform with a single firm. Platform

businesses, however, do not dictate or design the innovative offerings, but

rather encourage a wide demographic of users to populate their inventories.

For this reason, the theory of disruptive innovation, although initially thought

to be readily applicable to platform home sharing, may not be best suited to

describe this new mode of economy. It is applicable, therefore, to discuss the

commonly accepted innovation typologies and select the most relevant one for

the discourse. Due to its pervasive application to emerging technologies and

consumer behavior patterns, disruptive innovation is dealt with more

extensively in this study.

1) Four main categories of innovation

According to Harvard business scholar, Greg Satell, there are four basic

types of innovation: basic research innovation, breakthrough innovation,

sustaining innovation and disruptive innovation (Satell, 2017). Each of these

types is characterized by set of strategies and applications to which

researchers may apply them appropriately.

<Table 2-1> Innovation Types

Breakthrough Innovation

Well-defined problem, poorly defined domain

Sustaining Innovation

Well-defined problem, well-defined domain

Basic Research

Poorly defined problem, poorly defined domain

Disruptive Innovation

Poorly defined problem, well-defined domain

Table 2-1 Satell, 2017

Basic research innovation always begins with the observation of some

phenomenon, and the path breaking innovations are never fully formed. It is

- 11 -

what most universities and doctoral students are engaged with - the pursuit

of more fully understanding a unique occurrence. This research pursues basic

research innovation of the phenomenon of platform home sharing on Jeju

island, for example.

Breakthrough innovation is characterized by a well-defined problem or

phenomenon that is difficult to solve or explain within a given paradigm.

Social and STEM sciences are advanced through the creation of specific

theoretical paradigms, however, the paradigms themselves can often hinder

the creation of a solution or an explanation of an issue from within the field

it arose (Kuhn, 1996). In these cases, open innovation is instrumental in

addressing a phenomenon by exposing it to diverse domains and new ways

of framing the issue. This research, for example, attempts to frame the

phenomenon of home sharing through open platform innovation. Open

innovation will be further discussed and applied to this research in

subsequent sections.

Disruptive innovation describes the phenomenon where new market entrants

are able to siphon off incumbents’customers by focusing on the bottom line,

rather than sustaining innovations which may not appeal to their widest

customer base. This research does not frame the phenomenon of house

sharing as a form of tourism accommodation on Jeju with a disruptive

innovation paradigm, but rather open innovation, given the ecosystem nature

of platforms and not the supply chain value propositions of traditional

businesses.

Finally, sustaining innovation is the most common type because the

majority of businesses are striving to get better at what they are already

doing (Satell, 2017). The goal is to improve existing products in existing

markets, therefore the problems and techniques to solve them are more

clearly defined.

- 12 -

<Figure 2-1> Theory of Disruptive Innovation

Figure 2-1 Christensen, 1995

Disruptive innovation is a business management theory published by

Christensen in 1995 which describes modes of innovation-driven growth. The

theory describes the phenomenon when a smaller company with fewer

resources is able to successfully challenge an established incumbent

(Christensen, 1995 and 2015). Specifically when incumbent firms overly focus

on improving services for their most demanding customers (and often most

profitable), they exceed the needs of some segments and ignore the needs of

others. This provides market entrants with the opportunity to gain a market

foothold by targeting those overlooked or ignored customer segments with a

product that is ‘good enough’ - frequently at a lower price. Incumbent firms

continue to pursue higher profitability and do not strategically respond to

these entrants who appeal to the lower-market, whereas the new entrants

move upmarket to provide the functionality and services that more demanding

consumers requires while at the same time maintaining their original cost

advantage. When the incumbent firm’s mainstream customers start to adopt

the entrant’s offerings in volume, disruption has occurred.

- 13 -

2) Disruptive Innovation’s Essential Elements

Disruptive innovation has four key elements to consider. First, incumbents

in a market are improving along a trajectory of sustaining innovation. This

means that companies continually strive to provide new and improved

products. These are the year-by-year improvements that all competitive

companies produce such as increased horsepower or processing chip speeds.

The trajectory is always upmarket for higher profits from more demanding

and unsatisfied customers. Second, these sustaining innovations often

overshoot customers’ needs. A company whose products are positioned on

mainstream consumers’needs will probably overshoot what most consumers

can utilize in the near future. Third, these incumbent firms possess the

capability to respond to disruptive threats. Larger incumbent firms have the

resources and the ability to respond to potentially disruptive threats, but lack

the incentive and initiative to do so. Potential disruptors avoid head-on

competition with incumbent firms and thereby often are ignored by

complacent larger companies. Fourth, and finally, incumbent firms ultimately

fail as a result of the disruption. Performance oversupply by larger firms

culminates in the possibility for simpler, more convenient and less expensive

firms and products to enter the market and crush the incumbents.

Accordingly, there are three main types of disruption that occur. First, there

is high-end disruption. This occurs when a new market entrant debuts a

product that is superior to that of the incumbent. This is exceptionally rare

as it requires vast amounts of capital to challenge incumbents head-to-head.

The second type of disruption is low-end. This occurs when an entrant

makes a product cheaper or more simple to use. This form of disruption is

more common because they require less start up capital and incumbents often

ignore them as they target their least-profitable customers. The third type of

disruption is known as ‘new market’ disruption which emerges from

- 14 -

non-consumers and usually creates a category or even industry (Christensen,

1995; Sampere, 2016).

3) Issues with Disruptive Innovation

The theory of disruptive innovation (Christensen, 1995), although fitting for

a conventional firm in the 1990’s, has some issues in regards to the way

modern platform businesses are run, and especially in regards to the operation

and management of tourism related businesses. The Economist has called

disruptive innovation "one of the most influential modern business ideas"

(Economist, 2011).

Christensen’s management theory has led academics and business leaders

alike in how to implement innovative strategies, but recently questions have

arisen regarding the effectiveness of disruptive innovation in describing and

predicting how businesses truly operate and how this theory differs

substantially from mere competition. Leading up to the most recent wave of

criticism, commentators deemed the theory so widely accepted that its

predictive power is seldom questioned (Lepore, 2014). The theory has been

used in such a variety of contexts that its genuineness is questionable. Few

studies have published confirmatory evidence for the theory in its original

context, and the lack of evidence for numerical support for disruption, as

Christensen claims, is due to the blunt measures in statistical analysis

(Christensen, 2006).

Scholars at MIT recently reviewed Christensen’s theory and found that

many of Christensen’s case study companies indeed did not exemplify the

four key elements of disruption. While it is true that many business

managers tend to ignore ‘low-end’ disruptors, not all of Christensen’s cases

have documented "sustaining innovation" practices. In 31% of the cases

presented by Christensen after reexamination did not appear to have any

- 15 -

semblance of innovative trajectory before they were supplanted by a

disruptive innovation (King, 2015). Furthermore. 78% of all the cases drawn

upon by Christensen are critically reviewed as not overshooting their

customers’needs. Even in the high tech and computer industries, overshooting

is, in actuality, arare occurrence. In regards to the third key component of

disruptive innovation, after examination it appears that 39% of the quoted

companies were, in fact, incapable or disallowed from responding effectively

to disruptive innovation. Considering the fourth and final component of

disruptive innovation, many of the companies which Christensen examined

were indeed displaced by new technologies, but not on the terms which the

theory was grounded.

One of the most glaring faults in the theory is the assumption that

incumbent firms continually overshoot their customers’needs. It is difficult to

imagine a delivery system that is "too quick", a smartphone that has "too

long" of a battery life, food that is "too healthy" or accommodation that is

"too available" or "too cheap". Christensen posits that ‘disruptive’ innovation

will always win out against ‘sustaining’innovation, however, there are too

many examples of conventional firms pursuing sustaining innovation in a

responsible manner and defeating the potentially disruptive competitor’s

technological innovation (X-Ray v.s. The MRI, 2.5 disk v.s. The 1.8)

(Bower, 1995). Furthermore, the ability to effectively respond to disruption is

not always due to cognitive management failures, as posited by Christensen,

but structural barriers. In the case with legacy airlines responding to the

emergence of low cost carriers, the incumbents would have had to

dramatically switch to a new fleet of aircraft, workers, gates and airports. In

business management, "sometimes the best response is to adapt, but not

dramatically change the business model" (Southwest Airlines, 2015). Inhibiting

factors such as legacy costs, shifting demographics and changing economies

of scale were the real disrupters which led to the demise of prolific

- 16 -

incumbents in Christensen’s research.

In forming his theory, Christensen admits that his primary business of

analysis, the disk drive, was highly unusual, "nowhere in the history of

business has there been an industry like disk drives, where changes in

technology, market structure, global scope, and vertical integration have been

so pervasive, rapid, and unrelenting." (Christensen, 1997). His research was

developed on the assumption that the model of disk drive manufacturers could

be superimposed on a macro level across nearly all industries. Christensen’s

model works well enough when product or service development is clearly

defined in a linear supply chain where value moves in one direction, from

producer to consumer, and his four aforementioned conditions are met.

However, when applied to platform businesses models such as Apple, Alibaba

or Airnbnb, the theory is want to adapt. Platforms inherently behave and

operate differently than traditional, linear businesses. As opposed to first

building and then refining a supply chain, as traditional business models do,

platforms grow networks. Platforms derive their supply from this network,

and therefore do not control or own their supply in the same way that

linear business models do. The conventional theory of disruptive innovation is

a demand-side theory of customer dependence and competitive reaction in

product markets, not a supply-side theory (Raynor, 2013). While his theory

did manifest itself well in this particular high tech and specialized industry,

less vertically integrated industries which focus heavily on the supply side as

well as the demand are more difficult to categorically place within his linear

supply chain model.

4) Platforms

In dealing with platform businesses, Christensen’s theory cannot consistently

accommodate them. Platform businesses have not one, but two distinct

- 17 -

customer groups, their supply network and their demand network. Platforms

produce very little, yet they depend on producers as their ecosystem of

supply which functionally become customers as well. As the most

authoritative source on the subject of disruptive innovation, Christensen

defines Apple as a case-in-point example of disruption due, in part, to its

innovative app ecosystem, yet disallows Uber (a large taxi-ride sharing

platform business) without considering Uber’s drivers in the same sense as

Apple’s app developers (Christensen, 2015). This is inconsistent. Disruptive

innovation must be understood in terms of platform, non-linear supply chain

businesses, as these are quickly changing how business is done, and are

arguably the most disruptive forces in global economics (Shaughnessy, 2016).

All this to say that the theory of disruptive innovation as published and

defended by Christensen is not as robust as previously thought in describing

change in modern platform businesses. Disruptive innovation as a business

theory describing platform phenomenon should not be disregarded entirely, but

rather understood and analyzed in its correct context.

"The problem with Borders [a retail bookstore chain in the United States],

was that they needed all their customers, and so when Amazon started to

siphon them off they simply couldn’t cover fixed costs" (King, 2015). This

idea of heavy fixed costs is crucial in understanding the advantage of

platform-model businesses and their ability to effectively disrupt incumbent

industries. The pattern of internet start-ups with low investments and few

required physical assets enable most any entrepreneurially-minded individual

to establish his or her own company. Additionally, platforms derive their

innovativeness from external sources, their independent supply. This form of

open innovation leads to radically different approaches to business and the

formation of ideas. Open innovation is based on the assumption that an

organization cannot just rely on its own resources, but has to engage with

partners in order to innovate (Dahlander and Gann 2010; West and Gallagher

- 18 -

2006).

5) Traditional and Platform Accommodation

According to Christensen’s theory, Apple ought to have been disrupted by

more affordable alternatives, Airbnb ought to have substantially disrupted the

hospitality industry and Uber does not qualify as an example of disruptive

innovation (Christensen, 2015; Moazed, 2016). However, this does not seem to

be the case, and the robustness of his theory in terms of platform dynamics

is in question. Apple remains highly profitable, despite new market entrants

and highly priced phones. Uber has experienced exponential growth globally,

but has not substantially affected the taxi industry. Indeed, it appears that

demand for self-employed drivers and professional taxi drives has risen

across the board, dismissing the notion of a zero sum game (Berger et al.,

2017).Finally, although Airbnb is the second most highly-valued private

technology company in the United States it does not appear to be cutting into

major hotel company profits (Yu, 2017). Theoretically, a simplified process

that services to a wider and lower-income customer base should, in time,

disrupt the market incumbent who continues to cater towards the highest

paying customer.

Hilton and Marriott both have pivoted towards an asset-light approach to

providing accommodation, with the majority of their revenue now coming

from management and franchise fees. This idea of maximizing franchises in

order to minimize liabilities in its portfolio has enabled the hotel

conglomerates to remain flexible in the face of platform competition. The

success of the brand, however, is tightly tied to the performance of its

individual franchises upholding the meticulous attention to detail that has

come to be expected from a Hilton or Marriott. This franchise business model

works well in areas of the world that have similar standards of living and

- 19 -

cultural values, but is difficult to uphold elsewhere. Airbnb, however, thrives

in its idiosyncrasies from place to place. Recent research suggests that rather

than edging into Marriott and Hilton’s margins, Airbnb is targeting a separate

market, and both industries are experienced increased demand without

destructive interference (Griswold, 2015).

As a platform home sharing business, Airbnb grew out of the collaborative

consumption movement, which described the ‘rapid explosion in traditional

methods of sharing, bartering, lending, trading, renting and swapping’ (Rick,

2013). The movement championed the internet’s ability to post information

about and rent out virtually anything that was not currently in use by the

owner, accommodation included. From its inception as a way for two flat

mates to afford rent in San Francisco by renting out their spare room in

2008, the company has grown into the single largest accommodation provider

in the world. The business model allows for free membership and free access

to listings of properties, which has led to rapid growth and market

penetration. Airbnb collects revenue from each transaction on their platform,

host and guests alike. The revenue model according to Airbnb is as follows:

"We make our money from our service fee. This service fee is what

actually goes to the site's operation, enables the platform that we provide,

and allows us to offer great customer support before, during and after travel.

We charge travelers a 6-12% service fee, depending on the total of the

reservation. The higher the total, the lower the percentage of the fee. The

reason we scale the fee is so the traveler can save money when booking

large reservations. Airbnb also charges the host a 3% fee for every booking

that is completed. This fee covers the cost of processing the guest's

payment." (Airbnb, 2017) Therefore, in order to maximize the number of

transactions the user is only prompted to make a single payment as a service

charge after the reservation has occurred. This has insured a smooth

purchase process that circulates money apart from any government

- 20 -

institutions or banks.

Traditional, linear supply chain businesses often fail not only due to a

disruptively innovative entrant, but because of internal legacy costs, external

shifting demographics and changing economies of scale. Platform businesses

typically lack these inhibiting factors and thereby have a distinct flexibly light

advantage that the fixed cost laden incumbents carry. The list of successful

platform disruptions to traditional businesses is long: Etsy, Facebook, Google,

Instagram, WeChat, Youtube etc., yet it takes an updated model to

understand the nuances at work. Understanding platforms as powerful

disrupters in a broader sense has important implications.

Disruptive innovation, as a demand-side centric theory, will never fully

comprehend the forces at work in platforms. Disruptive innovation indeed is a

function of the customers served by the business; however, in a platform

model, the supply-side are customers served by the central business.

Successful platforms generally do not stop with one service or product, but

leverage their networks in ways that traditional supply chains cannot and

create markets, value and new customers around their original core

transactions (Moazed, 2016). In this sense, platforms are not limited to a

single industry, but rather through their extensive networks can suddenly

pivot between industries and build new transactions off its existing network.

This makes large platforms extremely powerful and unpredictable entities that

must be understood, especially from the supply-side in the local context, to

fully appreciate their impact and trajectory.

6) Three Pillars of Platforms

Christensen’s concept of sustaining innovation is a point of contention when

it comes to platform thinking. The proverbial "build a better mousetrap"

cannot be so readily applied to platforms since the innovative content

- 21 -

generally comes from an uncontrollable supply; however, the platform itself

can optimize its design to better facilitate ease of exchange. The

concentration on seamless co-creation of value is a defining characteristic of

platform models and has been driven by three transformative technologies:

mobile, social and cloud.

Mobile is the set of technologies which allow platform users global access

to a network of entrepreneurs, consumers as well as platform technicians,

irrespective of location. This is much more pervasive than even the most

widely distributed franchises. Social can be understood as the effectual

working of this mobile technology to connect and people and industries across

space. It also manifests itself in identity creation of users on the platform.

Finally, cloud is server architecture that houses the entire process so that

access of information is not contingent on access of a device. Platform users

usually connect via mobile devices to participate in the social network which

is hosted by cloud technologies.

Building off the three components of platform architecture, successful

platforms tend to have high degrees of connection, gravity and flow

(Boncheck, 2013). Connection being how easily others can join a platform to

share and transact business. Gravity being how well a platform attracts

participants, consumers and producers alike. Flow being how well the

platform facilitates co-creation of value. When these three factors function

fluidly, a platform generally performs well and a malfunctioning or suboptimal

functioning platform can often be diagnosed with a faulty component.

7) Platform Disruption

The distinction at hand is between ‘product’ and ‘platform’. In short, a

product is a platform that is used for one or very few products, and a

platform is structure upon which variations for many products are built

- 22 -

(Sampere, 2016). As was the framework for product-disruption, so it is with

platform-disruption; there are three main types: high-end, low-end and

new-market. It is more than a semantic difference in discussing product

versus platform types; it is a matter of function and purpose. Product type

disruptions are challenging enough for incumbents and industries to react to,

and platform type disruptions are even more so. The difficulty lies within the

broad network nature of platforms. The massive number of people that a

successful platform attracts makes regulating them difficult, and even if a

platform may be stopped (such as Napster), once the concept is already

abroad t is only a matter of time until another entrant adopts it and more

legally commercializes it. Therefore, it is imperative that academics and

practitioners alike more fully appreciate the shift from product to platform

type disruptions.

One of the key tenets of platforms is their wide-reaching networks. A

platform with a smaller network of users and producers cannot to a greater

extent affect consumer behavior, however, platforms which have reached a

critical mass of users can attract a multitude of third party companies from

adjunct industries and generate multiple streams of revenue (Zhu, 2016). In

aproduct business model, firms create value by developing differentiated

products for specific customer needs, and they capture value by charging

money for those items. In a platform business model, firms create value

primarily by connecting users and third parties, and they capture value by

charging fees for access to the platform.

Jeju Island is no exception to the pervasive reach of platform disruption,

and seeds have already been planted in one of the island’s economic

mainstays - tourism accommodation. The case-in-point for this research will

be the penetration and impact of Airbnb, a global home-sharing platform, on

Jeju. The 2008 California startup is heralded as the most well-funded travel

startup in the world, with a market capitalization of over $31 billion, more

- 23 -

than Hilton and Hyatt combined (Bensinger, 2017). Airbnb as a platform for

home sharing and alternative tourism accommodation is an ideal example of

platform disruption at work, and is ripe for analysis.

In summary of a recent report on the impact of Airbnb on the traditional

hotel industry, global business data analytics company, STR, concluded that

"Airbnb is here and it’s here to stay. The hotel industry has to look at it as

a new way for the traveling public to spend their lodging dollars. It’s worth

studying them very carefully in your specific submarkets and understanding

what the competition in your submarket is like, and understanding that not

every unit is necessarily competitive." (Freitag, 2017). An in-depth analysis of

the characteristics and trends of Airbnb on Jeju is pertinent research.

In the case of Airbnb, the company can be most closely associated with the

third type of platform disruption, new-market. This means that it has

popularized and socially charged a new category of business, home sharing,

built the network to leverage it and enabled a whole new population of people

to derive supplementary income from it. The company brought a shift in

emphasis in the tourism accommodation industry from meeting specific

customer needs - as traditional accommodation providers do, to encourage

mass-market adoption to maximize the number of interactions, thus

strengthening their product differentiation and networks, from which they

derive their actual value. This is what is known as the ‘network effect’of

connecting as many users as possible to third party providers (Sundararajan,

2003). The value model for Airbnb is simple. Homeowners derive value from

a large enough population of demand customers on Airbnb (the renters).

These travelers visiting the area have the potential to give homeowners a

consistent flow of business. The renters derive value only when there is

enough supply on the network over a wide array of cities, and in each city

enough supply to provide several options. When the network obtains enough

users (both renters and homeowners), value is created to match

- 24 -

accommodation availability with the demand customer’s location, budget and

time. As the network grows, so does its value and its attractiveness for more

users to join. Renters see value in the abundance of homeowners and

homeowners see value in the abundance of renters.

<Figure 2-2> Platform Model

Figure 2-2 Author’s Illustration

The network effect of Airbnb is part of its three-pronged competitive

strategy, which is comparable to most all successful platform businesses:

creation of new sources of supply, creation of new user behaviors on the

demand side, and architecting a strong curation system (Choudary, 2016).

This research primarily focuses on the first prong, the analysis of this new

source of accommodation supply in a local context.

As Airbnb continues to grow, it seems to be changing and broadening its

users’expectations from traditional, product-oriented service expectations of

hotels, to customizable experience-oriented expectations of home sharing. This

ability to gauge and bend its users’expectations is what will make the

company resilient to disruption itself. Airbnb does not seem to directly

compete with hotels, and it insists that it never has (Whiteman, 2014).

- 25 -

8) Moving Towards Open Innovation

In the recent past, industry data collection was a highly secretive affair

without industrial espionage being as closely guarded against as political

espionage (Satell, 2003). Today, however, the industry data culture is

beginning to change and open innovation initiatives are being seen as a way

to remain competitive in an increasingly diverse business ecosystem. Henry

Chesbrough, a California Berkley professor of Business, developed several

ways businesses stand to benefit from an open innovation approach

(Chesbrough, 2003). Accordingly, open innovation is of particular relevance to

this research in three ways. First, open innovation promotes full disclosure of

business data and data-driven techniques to. Second, it prescribes an

interdisciplinary approach to analyze a current phenomenon in the field.

Thirdly, open innovation encourages the establishment of an open API

platform, rather than a brand. In regards to the first way, this research

strives to make home sharing data on Jeju island publicly available and the

techniques on how other tourism science researchers may procure their own

data. In regards to the second way, this research uses a wide variety of

advanced GIS, Big Data, statistical and computer programing methodologies

as well as more traditional Tourism Management theories to reach its

conclusions. The interdisciplinary approach insures broader insights into this

current business phenomenon. In regards to the third way, the co-creation of

value by a wide variety of suppliers to an infinitely diverse consumer base

through a platform marketplace is what drives home sharing, and is what

deserves attentive research. The tenacity to succeed today seems to be not in

closely guarding proprietary assets, but in leveraging them correctly. In the

future, the accessibility of Big Data in a consumer-oriented format is what

will drive businesses forward and inspire more innovative approaches to

further the firm’s purpose.

- 26 -

<Figure 2-3> Open Innovation

Figure 2-3 Chesbrough, 2003

Closed Innovation largely characterized the first era of industrial innovation,

where corporate intellectual property boundaries defined the dispersion of

thought and the creative commons. Ideas tended to flow unidirectionally from

office inception to market deployment with little to no external proofing. In

Open Innovation, ideas generated from within a firm are likely to have

external influences, beta stages in test markets and university critiques before

they are market deployed. This dispersion of innovation and crowdsourcing

creativity enables unprecedented approaches, perspectives and solutions to

contemporary issues. The enabling factor for this type of innovation, however,

resides in the ability for extra-firm actors to collect and analyze internal firm

data, something that can be more readily accessible across a platform

business model.

In order to alleviate the increasing pressure of accommodation

infrastructure, some smart cities are looking to open innovation to more

efficiently manage services and improve the local quality of life for residents

- 27 -

(Peek, 2014). The local hackathons or app building competitions are

encouraging civic entrepreneurs to develop services that improve the quality

of life with the aim of creating sustainable business models.

2. Smart Tourism

Smart Tourism is an associated buzzword which, in recent years, has

gained much attention in the tourism and leisure studies. The phrase in and

of itself raises some controversial rhetoric, such as what the implied

alternative of ‘smart’ tourism may be; however, the sentiment addresses a

growing trend in tourism destinations. Public and private tourism destination

marketing organizations have begun to rely more heavily on emerging forms

of Internet Communication Technologies (ICT) which allow for massive

amounts of data to be transformed into new value propositions (Gretzel et al.,

2015). This research seeks to inform the growing body of literature in Smart

Tourism, in how innovative approaches to Big Data can yield bright insights

to an otherwise cloaked home sharing industry.

Aside from the implicit derogatory terminology, one of the conundrums with

"Smart Tourism" is that it does not refer to any particular breakthrough

technology, but rather an approach to interconnection and synchronization of

communication technologies to yield new perspectives (Hoejer and Wangel,

2015). In other words, Smart Tourism is more software than hardware. The

‘smart’ aspect implies integrating and sharing data, using complex analyses,

modeling and visualization techniques to make more informed operational and

policy decisions. This research seeks to access otherwise obfuscated data and

develop cross-disciplinary forms of analysis to open more educated policy

discussions in the sphere of home sharing. Cities which have already begun

these discussions based on innovative techniques have been labeled ‘smart

cities’and have been able to achieve higher resource optimization, fairer

- 28 -

governance, sustainability and quality of life by further integrating digital and

physical infrastructures (Gretzel etal., 2016). This term has even been applied

to entire economies characterized by this phenomenal approach.

Smart tourism has manifested itself in various forms in different world

regions. Across the European tourism landscape it has made its appearance in

end-user applications, promoting the use of enriched tourism experiences

combined with existing databases. In Australia the concentration has been on

smart governance and open data. Whereas in Asia, smart tourism generally is

most apparent in building technological infrastructure that supports this

variety (Hwang, 2015). In this respect, the availability of open data has been

a point of contention amongst researchers, local governments and platform

businesses. The debate on whether or not a platform business engaged in

tourism accommodation is obligated to release its user data is still being

discussed (Airbnb, 2016c). Many inroads to smart tourism in the form of

periodic data collection, management techniques and cross-over applications of

geospatial technologies are just beginning to take root on the local level. At

the time of writing, smart tourism is an emerging trend, a phenomenon. In

the near future, however, due to the ubiquity of smartphones, mobile internet

and the way modern society functions, the semantics of ‘smart’ will simply

turn into ‘tourism’.

1) Smart Tourism on Jeju

Jeju Island has become the forerunner for open innovation and smart

tourism in South Korea. One of the regional development initiatives of the

former South Korean president, Park Geun-hye, was to transform Jeju Island

into a world standard for smart tourism and renewable energy by combining

information and communication technologies with smart grid energy systems.

(Yonghap, 2016). The initiative includes provisions for the “Jeju Creative

- 29 -

Economy Innovation Center” and is purposed for fostering information and

communication startups as well as commercializing smart-grid energy. Smart

tourism, however, has had less of an impact on the island than the

Innovation Center or former President Park have envisioned. Moving away

from printed brochures and information desks, the Creative Economy initiative

is focused on digitalizing Jeju’s tourism content and fostering a smart

network of guesthouses, communal working spaces and cultural exchanges

(Southcott, 2015). In comparison to world-class IT hubs such as Google,

Facebook and Amazon, however, Jeju lacks a globalized workforce. Therefore

one of the initial challenges remains to provide realtime digital content to

international tourists and make information about the island’s attractions more

accessible to an international audience in a platform approach (Shin, 2017).

A conceptual platform model for how to leverage the open data and digital

content of tourism activities on the island is illustrated below <Figure 2-4>.

The model is aimed at managing information systems using geographic

location-based parameters to guide tourists in making intelligent decisions and

encouraging transactions with local residents (Adedoyin, 2017). This model,

however, requires the underlying raw data to be available for app developers

and local governments alike in order to pass the value to the consumer. The

benefit therein is the potential to create a more informed consumer base and

foster local entrepreneurship among small and medium-sized enterprises. Also,

it can serve to help the local tourism sector to transition from domestic mass

tourism to more foreign independent travelers and strengthen a new platform

ecosystem in which IT startups can jointly produce value with local

community residents through big data analysis.

- 30 -

<Figure 2-4> Model for Implementing Smart Tourism

2) Phenomenon-based Research

Phenomenon-based research has a mixed reception in academia. On the one

hand, phenomenon-based research is ground-breaking in its scope and

innovative in its techniques. It first takes current, real world issues into

consideration and then applies a single or even set of theories to inform that

reality. On the other hand, the absence of strong theoretical underpinnings

from the outset open the issue for easy criticism from the wider academic

community. As with any topical critique, however, the question of inevitability

must be posed. That is, will a cursory dismissal of a topic make it a

non-issue? Or will the practice of home sharing as a business continue to

grow and affect local tourism-dependent economies irrespective of if academia

investigates it? On grounds that a pervasive issue does not have a

ready-made, stale theory to address it, make the issue all the more pressing

to research.

In order to appropriately theorize a phenomenon, research that accurately

captures, describes, documents and conceptualizes a current phenomenon must

Figure 2-4 Author’s Illustration

- 31 -

first take place. Furthermore, research which focuses too strongly on theory

may even "prevent the rich reporting of details about interesting phenomena

for which no theory yet exists" (Von Krogh et al., 2012) It is this

researcher’s intent to develop a technique which can insightfully inform a real

world phenomenon in the Tourism Management field, and not an incremental

adaptation of a well-tried theory-and-methods study. Recently there has been

a call for such phenomenon-based research in academic business and

management journals. (Doh, 2015). There has been a perceptible dearth of

research which focuses on specific events, trends, business evolutions and

transformations. Included in this is the growing power of "Big Data" to track,

monitor and influence a whole range of tourism related businesses. The

sharing economy, as represented by Airbnb and Uber and others, is a prime

example of a contemporary phenomenon that provokes research-worthy

questions regarding contingency work forces, disruptive innovation and

international business theories.

However, before describing the phenomenon of home sharing as alternative

tourism accommodation and delving directly into an in-depth case study, it

is necessary to first frame the discussion by way of delineation. What is

‘Smart Tourism’, how is it distinct from other forms of tourism and how

does it apply to home sharing?

Smart Tourism may best be understood as a logical progression from

e-tourism, which itself stemmed from traditional tourism. The groundwork

was already laid with the technological innovations of the 1990’s which

positioned the tertiary industry into a heavily information and communication

dependent service sector. Global distribution and reservation systems, online

ticketing and travel review websites all formed what became known as

e-Tourism (Werthner and Ricci, 2004).

A succinctly operational definition of Smart Tourism is a convergence of

Smart Experiences, Smart Business Ecosystems and Smart Destinations all

- 32 -

fed by big data which has been collected, exchanged and processed (Gretzel

at al., 2016). Smart Tourism is differentiated from its predecessor, e-Tourism,

by relying more on big data than information, by fostering an ecosystem

rather than a value chain and intermediaries, and finally by operating chiefly

in the experience travel phase (Staab and Werner, 2002), rather than the pre-

& post-travel phases.

<Figure 2-5> Smart Tourism

Figure 2-5 Gretzel et al., 2016

This research is primarily focused on the business ecosystem component of

Smart Tourism and how platform businesses such as Airbnb in tourism home

sharing facilitate a complex ecosystem of supply that manifests itself in a

local economy.

As tourism destination cities continue to synchronize their infrastructure to

provide more sustainable solutions to growing tourism demand, regionally

collected data becomes all the more important for optimal policy-making

decisions. Despite the globalized trends and characteristics of international

tourism, the sharpest impacts are felt on the local level, where tourism takes

place. That is why data collected at the local and regional level is most

important for policy makers and business owners. Open Data-driven mobile

applications are proving instrumental in providing major tourism destination

residents as well as visitors with real-time information on accommodation

vacancies, visitor attraction carrying capacities and even available parking

- 33 -

statistics for given areas (Deleneuville, 2016). This data is periodically

collected, processed and trended in an automatically to provide useful

information for consumers of tourist products, not just commercial analytics.

The consumer, or end-user, orientation of big data applications are one of the

hallmark evolutions of Smart Tourism. To this end, the content generated by

users of these platforms, both in terms of reviews and purchasing behavior,

is what yields insights into market trends and fosters a more informed

consumer base.

3. User-Generated Content

One of the key aspects concerning platform thinking is that of

‘user-generated content’or UGC. Internet startup companies are often thought

of as those who are in the business of creating technologies. More accurately,

however, they ought be thought of as those who are in the business of

leveraging technologies. Most successful internet startups are not the original

innovators of the particular strain of technology from which they derive their

value, but rather they have found a way to leverage that technology in a

new, or more effective way. The underlying common characteristic in

virtually every successful internet startup today is how it leverages its UGC.

4. Transitions of the Web

1) Web 2.0

The Web 2.0, a term popularized by Tim O’Reilly (O’Reilly, 2005), is a

semantic shift in how internet users interact with web content. It represents

a transition from static to participatory content, from a traditional supply

chain to a platform supply network and businesses that understand this shift

- 34 -

are best positioned to succeed in modern commerce. Web 2.0 is the network

as platform, spanning all connected devices - mobile or not; Web 2.0

applications are those that make the most of the intrinsic advantages of that

platform and encourage an "architecture of participation," going beyond the

page metaphor of Web 1.0 to deliver rich user experience. A whole

terminology exists to describe the Web 2.0 dynamic including crowdsourcing,

collaborative consumption, sharing economy etc.; however, it is most

important to keep in mind the value created by user participation and how

the company leverages this.

In this sense, in the era of Web 2.0 there has been a shift in how

customers are to be considered. They are no longer merely sources of

company revenue, but sources of labor; that is, the user is one who does

work. Value creation is then outsourced to an external ecosystem where

users participate as both consumers and producers and the company captures

this interaction as new value. The particular platform is what hosts or

enables this field of interaction and facilitates the exchange of business

between consumers and producers. Wikipedia, for example, enables users to

create and expand a base of knowledge that is vetted and consumed by other

users. Airbnb facilitates commerce and communication between hosts and

travelers. Flickr allows photographers to showcase their work and discuss

photo production with others. These all point to the central platform business

model of connecting consumer and producer roles, rather than producing value

alone.

2) Towards a Cooperative Web

Due to the globalization of modern communication and e-commerce, web

scraping, as a way to better understand market conditions, has become a

ubiquitous practice that has been utilized by researchers across virtually all

- 35 -

fields, and is becoming more pervasive in Tourism and Hospitality

Management as well. Online User Generated Content (UGC) has become the

hallmark of the Web 2.0. Some researchers would further delineate the

difference into a series of Web revolutions starting from the era of Web 1.0

(Fuchs et al., 2010). The first era of the Web was largely characterized by

cognitive processes (including emotional ones) of humans obtaining

information from a computer. The second era of the Web, Web 2.0, was

largely characterized by communicative processes being inter-human

interaction. These are and were often computer mediated processes. The

current stage society is entering may be referred to as the cooperative Web,

or the Web 3.0. The cooperative Web 3.0 era may be defined as one where

humans and computers work in concert to make more informed decisions, and

where human-to-human interactions culminate in more meaningful

relationships.

The ‘social’aspect of Web 2.0 (social software, social media, social

networking etc.) is perhaps misleading and not indicative of the strong

community ties one semantically might ascribe to social relationships. That

people merely interact with one another, or that technology can facilitate a

form of interaction, does not say anything to the quality of that interaction.

What distinguishes Web 1.0 from Web 2.0 is the increased interaction

between individuals, spurred by new technologies. This largely serves an

individual to gain attention in a more social setting. Thus the communicative

aspect of Web 2.0 serves greater cognition, rather than the cognitive aspect

of Web 1.0 serving to deepen communication of the so-called Web 2.0. The

community aspect of Web 2.0 is limited to weaker ties that need not thicken

the more interaction occurs. The sense of community remains decidedly

interactive and not integrative.

Steve Case, founder of AOL and entrepreneurial evangelist also wrote of

this perceptible shift in the leveraging of network relationships in his book

- 36 -

entitled Third Wave (Case, 2016). His argument details how in the first

wave, congruent with the process of the Web 1.0, established the internet

communication technologies and solidified the infrastructure into our society.

The second wave leveraged the Internet’s networking effect through

companies such as Google, Facebook and Amazon. Finally, the third wave

society is currently entering is characterized by a rethinking of traditional

relationships between companies, governments and citizens. One where

ordinary people are empowered through the Internet and associated network

technologies to leverage their own creative potential and substantiate more

meaningful communities.

3) Web 3.0

Web 3.0 has begun to branch away from the more superficial "communities

of interest" and "communities of practice" of the Web 2.0 where members

individual actors gather to pursue a common interest and is creating

"communities of action" (Fuchs et. al., 2010) where online communication

often results offline action. Among numerous other examples, this is the case

of Airbnb, where the communicative Web 2.0 aspect of guests engaging

online with hosts and other users results in the cooperative Web 3.0 aspects

of genuine and often in-person interactions and economic exchange between

the interested parties.

Thus, in this ‘third wave’of the Web local governments are beginning to

view platform ventures not as threats to the local economy, but as tangible

opportunities for lower cost solutions to social issues. Additionally, venture

platforms are beginning to regard local governments not as barriers to

scalability, but as collaborators in the process of cocreation across a wide

variety of sectors previously thought to be under the domain of government

bodies, such as creating more affordable tourism accommodation that

- 37 -

distributes tourism gains more equally through the local economy

(Kokalitcheva, 2016; Airbnb, 2016). Such open innovation is only made

possible, however, if the source data is made available and the

platform-based transactions are understood in their proper context.

3. The Sharing Economy

The sharing economy can be understood in the Web 3.0 sense as a wider

community of action. Though the term ‘sharing’ often engenders notions of

gifts, favors and other non-monetary transactions, many peer-to-peer

platforms in the sharing economy explicitly involve monetary negotiated

exchanges. This, however, does not discount the sharing services based on

monetary exchange since the core notion is a matchmaking service and not

charity. Some researchers have even concluded that the monetary aspect in

the peer-to-peer exchanges of the sharing economy not only do not weaken

the intrinsic motivations for participation, but can actually strengthen them

and act as a gateway for further interaction (Lampinen, 2016).

Participants in the sharing economy have decided to collaborate in sharing

or renting goods and services without a formal legally binding framework,

and largely without government intervention or authorization. These

collaborative consumers arrange short term exchanges among peers to match

physical haves with needs through online platforms, often in a local context.

This has sometimes resulted in confrontations with local and national

governments in regards to the legality of such exchanges (Ting, 2016).

1) Motivational Factors in the Sharing Economy

The question as to why people choose to participate in the sharing

- 38 -

economy has been debated since its inception; however, apart from

motivational surveys, there has been little empirical evidence to suggest

possible answers. Studies on Airbnb have led to two possible explanations:

idealistic motives including the peer-to-peer authentic contact in an

accommodation experience, and the other include economic benefits enjoyed by

the hosts and the guests. Some have ascribed the consumer’s desire for social

interaction as the main impetus for growth in platform home sharing

(Gansky, 2010; Ikkala and Lampinen, 2015). While others have described it as

a way to creatively and progressively connect people (Rothkopf, 2014) and

yielding a "taste of the authentic neighborhood life" (Tuttle, 2015).

Guttentag (2016) in his seminal work, explored the issue of motivation for

tourists to use the platform home sharing service Airbnb. Through a survey

wherein 844 respondents answered questions on motivation, he found that

users primarily use the platform because it serves as a low-cost substitute to

traditional hotels. Users are motivated by the platform’s practical benefits of

convenient location, low-costs and household amenities, rather than the

platform’s socially engaging, environmentally conscientious or community

strengthening factors. His research did not dispute the veracity of users’

ulterior motives for using the platform’s services, but therein identified five

types of platform home sharing guests.

<Table 2-2> Platform Home Sharing Motivation

Motivational Type Characteristics
Money Savers Choose Airbnb because it is affordable
Home Seekers Interested in household amenities and space

Collaborative Consumers Motivated by philosophy and social interaction
Pragmatic Novelty Seekers Interested in novel accommodation types
Interactive Novelty Seekers Interested in interaction with hosts and locals

Table 3-2 Guttentag 2016

- 39 -

Furthermore, Guttentag’s research detailed that 61% of the respondents

considered Airbnb to be a suitable substitute for budget to midrange hotels,

70% stayed in "entire homes"rather than shared spaces, and 26% said that

staying with the platform led them to increase the length of their trip.

Satisfaction levels of "satisfied" or "very satisfied" accounted for 89% of all

respondents, confirming a positive skew in Airbnb’s trip satisfaction rating

system (Zervas, 2016).

The results from the motivation survey reveal a contrast to Airbnb’s

marketing efforts, which have focused on the platform’s social and

experiential aspects (Shead, 2016). Guests revealed a preference in the survey

to save money first, and to rent entire homes rather than sharing the home

with the host.

Brian Chesky, CEO and founder of Airbnb, in an interview inquiring how

the company is planning to expand said, "We look to our community and try

to figure out what’s already popular there for cues as to where to go next."

(Tsotsis, 2011). Accordingly, the social sharing aspect of the platform ought

to be deemphasized, and the relative cost-savings for value should be at the

fore. Shared spaces being generally more economic notwithstanding, survey

participants valued their own private space more highly than shared spaces.

The question remaining is, apart from motivation surveys, how to measure

the consumer behavior of platform home sharing guests. Ultimately,

consumers vote with their feet.

Sharing is not a new concept. Giving someone a ride (Uber), having a

guest in your spare room (Airbnb), running errands for someone (Task

Rabbit), participating in a dinner club (Grub Club) –all of these are not

revolutionary concepts. What is new, in the "sharing economy," is that you

are not helping a friend for free; you are providing these services to a

stranger for money (Sundararajan, 2016). Sharing is commonly conceptualized

as a sort of social exchange where no profit occurs, and the actors generally

- 40 -

engage in the exchanges based on reciprocity. Sharing is common among

family members, tribes, close communities and people of similar religious

organizations who share a common identity (Eckhardt and Bardhi, 2015). Also,

it generally does not require mediation between parties. The concept

essentially results in a reduction of property rights, where both sides agree to

occupy or utilize the same object. If the two principle parties have no

common identity, require an intermediate actor and exchange money for

services or products, the common conception of sharing is obfuscated. In this

scenario, the exchange appears to be utilitarian, rather than social in nature.

In the case of platform home sharing, the proof in this would be to discover

the most popular type of rented property to determine whether social or

utilitarian motives dominated the consumer’s behavior.

This question has implications not only for academic theorists, but also the

sharing economy companies themselves. Airbnb, the most widely used

platform home sharing service, has recently rebranded itself to highlight

‘people, places, love and community’ (McRae, 2016). Other socioeconomic

theorists have also begun to laud the sharing economy for strengthening

social ties, increasing trust and sentiments of reciprocity (Botsman, 2017), but

they run the risk of overestimating the scope and purpose of this access

economy by not testing their theories on empirical results beyond motivation

survey techniques. If sharing economy consumers exhibited behavior that

showed they were seeking interaction with people, community building and

love, then the rebranding, marketing campaigns and social theorizing would

merit deep discussion. The platforms themselves should not misinterpret their

consumers’ actions. Platform companies seeking sustainable business practices

in an ever more competitive environment ought to recognize whether their

customers are most interested in social interaction and community, or if they

are simply seeking to make savvy purchase decisions in order to maximize

convenience and minimize cost.

- 41 -

As the industry standard in platform home sharing, Airbnb has led the way

how academic theorists have begun to conceptualize the practice of renting

one’s own house or property to strangers on a short-term basis. Augmenting

the basic function of acting as an intermediary between buyers and sellers,

Airbnb has transformed its image into a global hospitality brand (Carr, 2014).

In pursuit if this, the company has become focused on emitting a sense of

"belonging" in its self-branding, even beyond its core function of renting

homes. This has evolved into a whole range of experiential activity functions

that hosts may post onto the platform and the emblem which the company

hopes to become the "universal symbol of sharing" (Kessler, 2014).

This may, however, mislead those who in researching the new "sharing

economy" seek to understand its innovativeness, which may lie not in its

propensity for its user base to altruistically open their doors to strangers, but

in its leveraging of utilize Web 3.0 technologies to dramatically reduce

transaction costs (Furchtgott-Roth, 2016). In actuality, true sharing seldom

happens among strangers, and policies to enforce sharing seldom result in

positive economic conditions. If society functioned in a manner that personal

assets were to be shared with strangers, assets would quickly lose their

intrinsic exclusive value and incentives to accrue more would diminish. It is

hypothesized that, apart from the rhetoric, a platform home sharing host does

not wish to "share" his or her home except to the extent that the guest pays

for it. The difference then may be the reduction of transaction costs made

possible by Internet technologies. Twenty years prior, if a home owner was

keen on renting out a part of his home on a short-term basis, the time and

energy expended finding a customer may have made the value proposition

untenable. Due to the recent innovations in platforms and match making

services, the transaction costs of finding customers and hosts has virtually

reduced to zero marginal cost. Oliver Williamson and Ronald Coase, Noel

Prize laureate economists, both theorized that one of the greatest inhibitors to

- 42 -

efficient market outcomes were high transaction costs (Williamson, 1979,

Coase, 1937). In this sense, the platform reduces the transaction costs of

sharing (renting) one’s home. This appears to be more of a classic example

of more efficient rent seeking behavior than a manifestation of the "universal

symbol of sharing".

Furthermore, apart from the sharing economy rhetoric and academic

discourse potentially being misleading, the implications for labor, tourism and

policy are wide. The areas which are effectively targeted by the sharing

economy are, as some would argue (Das, 2017), inherently inefficient. Over

time, the hotel and taxi industry have evolved to server narrower interests of

higher paying customers, which leaves room for new low-market entrants to

succeed in providing the most basic services for the majority of the market

at a lower cost. This is textbook disruption theory. The workers (i.e. hosts

and drivers) in the sharing economy are purported to primarily use the

platforms to supplement their income (Bellin, 2017), but as contractual

workers they are not medically or sustainably employed. A robust sharing

economy is then potentially exploitive in that the pricing structure often

requires a depressed economy, where abundant laborers are available (Reich,

2016). Other might argue that this form of free contractual economics has a

net positive effect on the economy, freeing up employment from corporate

intermediaries, and creating more social capital as well. Optimistic advocates

of the sharing economy purport a more social utopian dynamic of the sharing

economy.

"The sharing economy is not business but a social movement, transforming

relationships between people in a new form of internet intimacy and

humanitarianism. It builds trust and creates inherently more democratic

communities. Customers are not getting cheap services, but being helped by

new, interesting friends. Providers are engaged in rich and diverse work,

gaining valuable independence and flexibility taking advantage of a reduction

- 43 -

in entry barriers to sources of work" (Das, 2017).

The initial web-driven initiatives of social travel such as Couch Surfing

were centered on altruistic and adventurous motivations of offering people a

chance to stay in your house, and sharing travel experiences (Oksam, 2015).

This Goldilocksian concept of strangers sleeping in your bed has been taken

to its logical end wherein modern networked hospitality businesses have

transformed platform home sharing into a highly lucrative, for-profit

enterprise. Classifying Airbnb as social sharing platform may lead to

erroneous conclusions and diffuse one’s ability to understand the economic

effect of the company. When discussing the sharing economy and the

companies operating under this umbrella term, it seems to be popular to focus

on the ‘sharing’ so much that the ‘economy’ is all but forgotten.

The cooperative and social aspects of Airbnb resulting in real world

exchanges do merit in-depth studies in the field of Tourism and Hospitality

Management. Moreover, however, empirically data-driven studies, such as this

research, are purposed to inform the theories and assumptions which

academics are seeking to apply to the movement. Moving on from the simpler

semantics of user-generated accommodation reviews, content analyses and

frequency word clouds, this research seeks to apply big data tools and

adaptive web scraping techniques to obtain actual information based on

purchasing decisions and business environments. Not based on statistical

inferences derived from a limited number of opinionated surveys, this research

provides a first application of original empirical data covering an entire

population. Furthermore, the techniques developed in this research are seldom

utilized in the academia of Tourism and Hospitality Management; however,

the field is ripe for their application.

The Theory of Planned Behavior clearly states that the best indicator of a

person’s actions is his or her intention (Ajzen, 2005). Many contemporary

tourism studies have gone on to measure and redefine the theoretical

- 44 -

attributes comprising consumer behavioral, normative and control beliefs

through numerous Likert scale surveys in order to inform an industry as to

plausible consumer behavior. Notwithstanding the veracity and dubious

real-world application of such techniques (Amitage, 2010), this research has

sought to inform a more direct hypothesis grounded in the theories of

consumer behavior and revealed preferences. Namely, that the best indicator

of consumer preference is consumer purchasing habits (Wong, 2006).

2. Theories of Consumer Behavior and Revealed Preferences

The theory of consumer behavior is a multi-faceted, fundamental theory of

micro economics which posits that a consumer a consumer attempts to

allocate his or her limited income among available goods and services as to

maximize his or her satisfaction. The particular strain of consumer behavior

theory that this research focuses on is known as the homo economicus

(economic man) approach, and assumes that consumers are highly rational

and able to intelligently engage in economic transactions in a manner that is

beneficial and of self-interest (Tyagi, 2004). The term homo economicus was

first used in the late 19th century in regards to a person who was most

inclined to maximize his utility whilst expending minimum effort (Persky,

1995). This theory further assumes that these rational consumer actors are

knowledgeable of alternative options in their purchasing decisions and are

aware of the advantages and disadvantages of each option (Kahle and Close,

2006).

The central question in exploring the issue of homo economicus is if

human sociality plays a part in his economic behavior, or is it more strictly

his individuality and pursuit of self-interest and pleasure. Adam Smith’s

pioneering work, The Wealth of Nations, describes this discourse in terms of

- 45 -

the individual while his Theory of Social Sentiments frames it from his

sociality (Smith, 1976a; Smith, 1976b). Other renowned economists have

reached differing opinions as to this question as well. Gaeter and Fehr were

critical of framing economic consumer behavior from a purest perspective

commenting that "a sizable portion of economic actors act on considerations

of reciprocity." (Fehr et al., 2000). Whereas Ostrom warns that past policy

initiatives intended to encourage collective action and strengthen community

sentiments of reciprocity, trust, fairness and cooperation may have been

misdirected given the rational egoist’s (homo economicus) proclivity to

maximize his own utility (Ostrom, 2000). In his opinion, this central tendency

for man to consistently seek his own individual good may result in in more

authentic cooperative behavior rather than a policy-oriented one. Regardless of

one’s personal persuasion as to the generic nature of man, it is important that

with any socio-economic activity to get the core concepts correct. This

reality is best informed by data rather than rhetoric.

The most prevalent model for this consumer decision making process was

called the ‘Utility Theory’ wherein consumers are purported to make their

decisions based on the expected outcomes of their choices (Loudon et al.,

1993). The utility theory originally focused on the sole act of purchase as

the manifestation of self-interest seeking behavior. Since the early work of

economists Nicholas Bernoulli, John von Neumann and Oskar Morgenstern,

the theory of consumer behavior has since expanded to include a wide range

of additional consumption activities such as: need recognition, information

search, evaluation of alternatives, building of purchasing intention,

consumption, disposal in addition to the act of purchasing (Bray, 2007;

Zinkhan, 1992). New methodologies, paradigmatic approaches to examining the

consumer purchasing process and a rich spectrum of literature have developed

around the subject of consumer behavior. While this research acknowledges

the progress across the numerous discernable stages the theory of consumer

- 46 -

behavior has undergone in the past century, it harkens back to a fundamental

stage of the process, namely the fact of purchase under the homo economicus

typological approach.

As a producer homo economicus generally attempts to maximize his profit,

and as a consumer his utility. At his core, he is "a being who inevitably

does that by which he may obtain the greatest amount of necessaries,

conveniences and luxuries, with the smallest quantity of labor and physical

self-denial with which they may be obtained." (Mill, 1874). Though the term

did not originate with the 18th century economists Adam Smith and David

Ricardo, it is often associated with their philosophies. The famous line from

the Wealth of Nations, "It is not from the benevolence of the butcher, the

brewer, or the baker that we expect our dinner, but from their regard to their

own interest" (Smith, 1776) further illustrates the nature and proclivity of

homo economicus.

Building off of the theory of consumer behavior homo economicus, Paul

Samuelson’s theory of revealed preferences postulated that a consumer’s

preference is best shown through the consumer’s purchasing habits

(Samuelson, 1938). Existing theories of consumer demand were based on the

laws of diminishing rates of marginal substitution which operate on the

assumption that consumers make consumptions decisions in pursuit of

maximizing their utility. While this assumption of utility maximization was

not in question, the accurate derivation of utility function was seen as

problematic (Wong, 2006). Samuelson attempted to free consumer behavior

from any traces of utility, that is from the underlying utility functions which

cannot be measured with great certainty due to their subjective nature. In

lieu of utility, observing the consumer’s behavior was a suitable alternative

for revealed preference.

Renowned economist Hals Varian (2012) succinctly explains the theory of

revealed preference in the following two-dimensional manner. Assume there

- 47 -

are two goods, good A and good B in a budget set C. If it be observed that

good B is chosen over good A, then good B is directly revealed preferred to

good A. Revealed preference theory is a means to reconcile demand theories

with utility functions by replacing utility with observations of consumer

spending. A further detailed description of the theory can be represented both

graphically and in mathematical notation.

A two-dimensional example of the theory is as follows:

Budget set is defined for two goods and determined by prices

income m, then let bundle a be and b be . This

situation would typically be represented arithmetically by the inequality

. Assuming strongly monotonic preferences, one only need to

consider bundles that graphically are located on the budget line, i.e. where

and . If, in this situation, it is observed that

is chosen over , we can conclude that is (directly revealed

preferred to , which can be summarized as the binary relation

or equivalently .

Additionally, the theory of revealed preference is underpinned by the Weak

Axiom of Revealed Preference (WARP). In order to make sure that the

consumer is consistent with his or her preferences, the WARP criterion must

first be satisfied. The WARP says that when the consumer’s preferences

remain the same, there is no budget set, or circumstances, wherein the

consumer prefers b over a, if he or she has first chosen a over b when both

are affordable. It is such that he or she will never choose b over a as long

as prices remain constant. Formally:

- 48 -

<Figure 2-6> Theory of Revealed Preferences

where and are arbitrary bundles and is the set of bundles

chosen in budget set B, given preference relation .

Alternatively, if a is chosen over b in budget set B where both a and b are

feasible bundles, but b is chosen over a when the consumer faces some other

budget set B’, then a is not a feasible bundle in budget set B’. This

equivalent statement of WARP can formally and more generally be expressed

as

<Figure 2-6> Weak Axiom of Revealed Preferences (WARP)

In application to this research, the theory of revealed preference may be

understood in terms of the platform home sharing listing types (entire homes,

private rooms, shared rooms) which are more frequently chosen over others.

In other words, if entire homes are more frequently rented over private or

shared rooms, then it can be said entire homes, without the host present, are

revealed preferred to the shared spaces. This would show the consumer

behavior of platform home sharing to be consistent with homo economicus in

that the privacy afforded from renting an entire property optimizes the

consumer’s preference to luxury and self-seeking pleasure, given the

affordable alternative to rent shared spaces. The social and experiential

aspects gained from renting shared spaces would therefore not be as strong

- 49 -

factors in the consumer’s purchasing behavior.

When more than two goods are available, the theory of revealed preferences

accommodates them in a multi-dimensional model with an assumption of

transitivity. Namely if A is preferred over B, and B is preferred over C, then

A is indirectly revealed preferred over C. The preference for A is ultimate if

it can be shown that given the choice between A and B, a consumer will

choose B, and given the choice between B and C, the consumer will choose

B. ‘A’ therefore maximizes the consumer’s utility in the given budget

constraint. In terms of majorities, the first statement:

A > B > C

indicates a simple majority, where ‘A’ may possess less than half of the

total preference, but more than any other single good. An absolute majority

must fulfill an additional prerequisite, namely:

B + C < A

This indicates that ‘A’ possesses more than 50% of the total preference.

The philosophical propositions in the growing literature on the peer-to-peer

transactions in sharing economy are such that buyers and sellers may choose

to cooperate due to ulterior motives, that "the currency of the new economy

is trust" (Botsman, 2017). Although factors of efficiency, environmental

protection, community development and trust-building are derivative values of

platform home sharing, the vehicle by which the majority of all transactions

take place may be rudimentary consumer behavior after all. This research

seeks to contribute to the growing body of literature on the sharing economy

by framing the consumer behavior primarily in terms of conventional

self-seeking, utility maximizing purchases rather than the benevolence of the

butcher.It is important to correctly categorize this form of economic activity

in an appropriate theoretical framework in order to not misrepresent its

presence in a local context or misinterpret its impact.

When a potential platform home sharing consumer starts to make a

- 50 -

purchasing decision, he or she selects the desired locale on the platform’s

user interface, enters in the dates of his or her stay and then browses the

available results returned by the server. If a particular locale has a strong

presence of platform home sharing listings, there are numerous alternative

options to choose from and therefore by browsing the returned results, the

consumer is knowledgeable of alternative options to his or her purchasing

decision. The criticism against homo economicus, that modern consumers do

not have sufficient knowledge of all the available options in order to make

rational purchase decisions may have credibility from a philosophically macro

perspective; however, in regards to information seeking on the platform,

consumers are presented with adequate alternative lodging options to optimize

their purchase decisions.

The ability to measure and analyze consumer behavior and preferences on

the platform is possible only through a compilation of customized web

scraping techniques that can compile purchasing data, sophisticated structured

query language and geographic information systems.

In an attempt to more deeply understand the sharing economy and all of its

derivative forms, the European Union commissioned a report in 2016 to

systematically review 430 secondary sources covering the various typologies,

rhetoric and idiosyncrasies of peer-to-peer markets (Codagnone and Martens,

2016). After thorough analysis, the conclusion reached was there was not

sufficient empirical evidence to develop implications for employment or

regulations. There is a gap in the empirical research concerning the scope of

home sharing, its pricing and market penetration.

The contrary argument to unregulated home sharing is that the

peer-to-peer transactions have an unfair advantage to traditional

business-to-consumer due to the lack of regulatory restrictions enjoyed by

peer-to-peer markets, as well as the consumer protection

business-to-consumer markets have to afford. Given the lack of empirical

- 51 -

evidence owing to the difficulty of obtaining reliable data, there are no

unambiguous answers in this discourse. As peer-to-peer transactions continue

to increase and many sharing economy platforms begin to become household

names, the need for robust data collection methodologies and empirical studies

becomes all the more relevant to research.

Theoretical implications of the sharing economy abound in recent research,

speaking into the plausible sustainability of such practices (Heinrichs, 2013),

framing the issue in an economic-historical framework (Frenken, 2017), and

disruptive potential to traditional lodging businesses (Zervas, 2016); however,

there is a lack of direct empirical studies showing the impact home sharing

has made in given local economies. Theoretical ponderings on the possible

implications of home sharing, studies on user motivations for participating in

the sharing economy, demographic surveys on consumer behavior and

alternative approaches to the collaborative economy are all useful in the

continuing discourse, yet the underlying question to be asked is how deeply

entrenched is home sharing in a specific economy. Without this fact firmly

established, the practicality of subsequent studies is debatable.

In order to perform proper impact studies and theoretical evaluations, first a

reliable data set must be collected. Subsequently, an analysis of the data can

be performed. To this end, data mining decision maps and Classification and

Regression Trees (CART) are useful in interpreting and applying the data

set(Sutton, 2004). Data mining and web scraping generally yield results with

a wide spectrum of variables from which regression analyses can be wrought.

Web scraping is a method whereby researchers can recursively search

websites and extract data pertinent to their research goals. Because such data

is generally not readily available in built data sets as secondary data, web

scraping enables a researcher to compile primary data from current industry

trends. Given the wide variety of the data, non-linear assumptions are critical

in making sense of a data set as a whole. Linear regression models can also

- 52 -

be rendered, but with a more selected criterion of variables. Regression trees

have been used in Tourism Management to forecast tourism demand

(Cankurt, 2016), in establishing relationships between an abundance of

environmental relationships (Lehmann et al., 2002), and general tourism

marketing strategies (Crouch, 1992).

3. Decision Trees used in Predictive Statistical Modeling

In forming a regression tree analysis to interpret the results of web

scraping in creating primary data and data mining that predicts the value of

a dependent variable based on the values of multiple independent variables,

classification trees and regression trees are instrumental. Classification and

regression trees are machine-learning methodologies for constructing

prediction models from big data. Classification trees are employed when the

target variable is categorical and the decision tree is used to identify which

class the variable should be appropriated. Alternatively, regression decision

trees are employed where the target variable is continuous and the tree can

be used to predict its value (Loh, 2011). Regression and classification both

deal with a prediction of a variable y in response to a set of predictor

variables x. In this research, both categorical and regression trees were

employed to analyze the results of the web scraping.

Classification and regression trees have three major tasks: how to partition

the data at each step, how to determine when to stop partitioning the data,

and how to predict the target variable in each partition (Loh, 2008).These

steps and their nodal thresholds are detailed in the data analysis of this

research. A Chi-squared Automatic Interaction Detector (CHIAD), originally

proposed by Kass (1980), is one of the oldest and most thoroughly used

decision tree and was therefore employed for this research. The advantage of

- 53 -

a CHIAD tree is that it will accommodate multiple branches attaching to a

single root node in order to make more complicated statements. This method

has been particularly popular in researching market segmentations and is now

being applied to larger data sets in tourism research since it is restricted by

its sample size criteria (Perez, 2016 Chung et al., 2004 Kim et al., 2011 do

Valle et al., 2012). Due its complex nature in comparison to conventional

ANOVA and MANOVA forms of multivariate regression analysis (McCarty

and Hastak, 2007), CHIAD has seldom been used in tourism studies, despite

its strengths in classifying tourism behavior into appropriate categories (Chen,

2003 Chung et al., 2004 Diaz-Perez et al., 2005).

It is worth mentioning some of the strengths of a CHIAD analysis in

determining tourism accommodation characteristics of demand. First,

Chi-Square is a form non-parametric statistic. This means that the

independent variables do not have to fit a normal distribution and can rely on

ordinal and categorical data rather than continuous variable exclusively.

Despite this, continuous variables can be chosen as criterion variables,

allowing CHIAD to handle a diverse data set. Finally, CHIAD can help

researchers establish a set of criterion variables according to the objectives of

the researcher (Perez, 2016). This is instrumental in describing effective

predictors of a dependent variable such as number of reviews of a particular

type of accommodation.

4. Airbnb on Jeju

The leading platform home sharing company in the world, Airbnb, has a

strong presence and well-established presence on Jeju Island. As the

country’s premiere tourism destination, Jeju island government has begun to

work with the platform to create a “world-class tourism destination” (Airbnb

Citizen Korea, 2017). According to the platform, there are more than 4,000

- 54 -

active listings and nearly 200,000 travelers stayed in platform home sharing

accommodation over the past year (2016-2017). This research seeks to

explore more deeply the characteristics of these listings and the travelers

consumption patterns through an open data analysis.

The Jeju provincial government has become the third province to endorse

Airbnb in South Korea, after Gangwon Province and Chungnam Province.

The national decision on platform home sharing, as well as Seoul’s

government, however, remains ambiguous and could have far-reaching

implications for regional development once it has been made.

5. Literature End Note

Much research has already been done on the demand-side of Airbnb,

qualitatively analyzing consumer motivation for using the platform and

aspects of the rising demand for it (Guttentag, 2016; Roberts, 2016; Yuija,

2015; Finley, 2013), but little research has been done to quantitatively analyze

the supply-side of the home-sharing unicorn. The supply-side of platform

businesses is particularly relevant in understanding its impact. This difficulty

is largely due to the difficulty of obtaining reliable and holistic data from

Airbnb, which has chosen not to disclose its hosts’information and resists

attempts to extract data from its servers. Therefore, there are few studies in

the field of Hospitality and Tourism Management which have deeply analyzed

the overall distribution and characteristics of Airbnb in a specifically bounded

area (Zervas, 2016).

By simply using the company’s website, one can glean only a limited scope

of market penetration of Airbnb, and risks severely underestimating its impact

and therefore implications for local policy makers and businesses to consider.

The following section describes the data the research was able to scrape

from the platform.

- 55 -

Ⅲ. METHODOLOGY

1. Research Analysis

In order to understand the presence of platform home sharing on Jeju

Island and the behavior exhibited by consumers of platform home sharing,

this research applied an interdisciplinary approach of computer science,

database management and economic theory to obtain and analyze data. The

data was periodically collected over 7 months in order to establish price

regularity. Specifically, this research sought to analyse which type of listing,

be it a shared space with the host or an entirely separate dwelling, was most

frequently purchased, thereby revealing the consumers’ preference. The

analysis of research is further illustrated in the following <Figure 3-1>.

<Figure 3-1> Research Analysis

- 56 -

2. Hypothesis

Based on the literature review, the following hypothesis is applied to

platform home sharing on Jeju Island.

Platform home sharing consumers’ preferences on Jeju Island will be revealed

as an absolute majority of entire homes rather than shared spaces.

1) Research Model

The research hypothesis may be formally illustrated through a series of

inequalities showing assumptions and statements:

if A > B > C (revealed preference)

then A > C (transitivity assumption)

Hypothesis B + C < A (absolute majority of ‘A’)

‘A’ represents entire home listings. ‘B’ represents private room listings. ‘C’

represents shared room spaces. Room listings are categorically ranked in the

analysis in terms of number of reviews as an indicator for how often they

are purchased. Therefore, if the sum number of reviews of private rooms and

shared rooms is less than the aggregate number of reviews for entire homes,

entire homes are categorically observed to have an absolute majority of

reviews and thereby consumer preference for entire homes is revealed. Private

rooms and shared rooms are both categorically shared spaces, because the

guest stays with the host present in the dwelling.

This hypothesis is starkly juxtaposed with the philosophical rhetoric and

general academic discourse of the sharing economy, which tend to emphasize

the social and experiential aspects of exchange while deemphasizing the basic

economic forces driving the phenomenon. The Theory of Revealed Preferences

is employed to test this hypothesis, namely, if consumers exhibit the

proclivity to purchase one bundle of goods over another, assuming the

- 57 -

affordability and availability of both bundles, they can be said to prefer the

first and are more highly motivated by its value propositions. The consumer

behavior to purchase entire homes over shared spaces would reveal that

platform home sharing guests are motivated by notions of privacy, space and

cost rather than sociocultural exchange and communal living. Moreover, given

a ternary distribution of listing types, a particular category of listing

possessing an absolute majority of preference rather than a simple majority,

is a stronger indicator of consumer behavior.

3. Data

Consumer behavior is commonly measured by motivation-based surveys on

a limited sample to make inferences of a population. This research proposes

an alternative to measuring consumer behavior in regards to platform home

sharing by examining consumer purchases, in alignment with the theory of

revealed preferences.

In order to paint a clearer picture of the scope and implications of platform

home sharing on Jeju Island from the supply-side in the local context,

alternative methods of data collection from conventional surveys were

employed. Web scraping is a technique by which a researcher can design a

computer script to systematically contact a website to collect and store

specific data. This is in order to establish an open primary data set from

which further research may be done and policies may be formed.

For this research, Python 3.5 was used to design a tool that periodically

scrape Airbnb’s servers in order to obtain the necessary data for analysis.

This included the overall satisfaction of the listing, the room type, the

property type, the guest capacity of the listing, the number of reviews a

listing has received, the host identification number attached to the listing, the

room identification number associated with the listing, the precise geographic

- 58 -

location of the listing and the price per night of the listing. With this

information trended over time, a foundation for further analysis can be

established. The description of each data variable is detailed below.

1) Description of Data

(1) Overall Satisfaction

One of the metrics that is publically available and calculable from Airbnb’s

listings is the reported overall level of satisfaction guests who stay at a

particular listing. A guest’s level of satisfaction is determined by the guest

after the stay experience and is factored into the previous guests’reported

overall levels of satisfaction. The total satisfaction metric that the guest

reports on is divided by Airbnb into six categories: accuracy, communication,

cleanliness, location, check-in and value (Airbnb, 2017). Each of these

categories is evaluated on a 5-point likert scale with 1 being the lowest and

5 being the highest level of satisfaction. The user who booked the

accommodation is solely responsible for completing the satisfaction review,

not each individual guest who stayed there. The "overall satisfaction"is

calculated by averaging the six categories of satisfaction. For the purposes of

this research, only listings with three or more reviews were considered for

analysis in order to mitigate the risk of skewed results based on

extraordinary circumstances.

Airbnb markets itself as a "trusted community marketplace"(Airbnb, 2017)

whose mission is to match travelers with local hosts. Featuring the individual

reviews as well as reciprocal levels of satisfaction shows much platform

transparency and is crucial to how the system is based on mutual trust

between strangers. Satisfaction levels, however, tend to be positively skewed

when compared with traditional tourism accommodation providers’ ratings. In

arecent study of more than 600,000 listings, nearly 95% of all user-generated

- 59 -

reviews were higher than 4.5 out of 5 stars. Overall levels of satisfaction

play an important role in ranking and user selection in the platform’s

ecosystem, so the positively skewed perceptions may feed into a higher mean.

(2) Room Type

The platform delineates its listings into three basic categories: shared

rooms, private rooms and entire homes. The listing property is further divided

into a number of types, which will be detailed below (Airbnb, 2017)

<Table 3-1> Room Types

Shared Room Guests share the entire space with
you or others and don't have a
private room to themselves.

Private Room Guests share some common areas
with you, like the kitchen, living
room, or bathroom, but they have
their own private room for sleeping.

Entire Home Guests rent the entire unit and don't
have to share the space with you or
with anyone else.

Shared rooms tend to result in a more intimate experience with the host

and other travelers. They are often the least expensive listing types.

Dormitory-style guest houses as well as floor sleeping arrangement in a

studio apartment are common ‘shared rooms’. Private rooms on the other

hand are more suitable for couples and are the archetype of Airbnb’s

message. Some interaction with the host is expected, but privacy boundaries

exist for both parties as well. Finally there is the possibility to rent the

entire home. This listing type is generally most expensive and has the widest

variety of property types, including some more eclectic listings such as igloos,

treehouses, castles and private islands. For the most part, however, ‘entire

homes’feature whole apartments or single-family homes.

- 60 -

(3) Property Type

In addition to the basic three room types, there are a plethora of property

types to choose from. Property types are the particular variety of

accommodation that is being listed for rent, including but not limited to:

apartments, bed and breakfasts, boutiques, bungalows, cabins, chalets,

condominiums, dormitories, guest suites, guest houses, hostels, houses, huts,

in-laws, lofts, pensions, serviced apartments, tents, timeshares, townhouses,

treehouses, vacation homes, villas and ‘other’types. *At the time of writing,

the express search filter and exhaustive list of available property types has

been disabled by the platform; however, the data is still available through the

API of the platform’s server and the URL text of a particular listing. The

aforementioned property types are limited to those which the author

encountered in this research.

(4) Capacity

The carrying capacity of a listing is determined by the host. This figure

represents how many guests may potentially stay in a given listing. Listings

are not necessarily always filled to capacity, but are generally not over the

stated capacity. This figure is therefore not synonymous with occupancy, but

could be used to gauge the potential impact Airbnb listings may have on a

locality. Shared rooms tend to have lower capacities in the range of one or

two guests while entire properties may have up to 16 guests stay in them. If

the ‘extra fee per additional guest’ feature is included in a listing, the number

- 61 -

of guests may potentially exceed the maximum capacity of the listing

(Airbnb, 2016). This presents potential safety issues regarding occupancy as

well as noise complaints for particularly large parties.

(5) Reviews

How many times a particular listing has been rented may be represented in

the number of reviews it has. After a guest has completed his or her stay

and completed the satisfaction survey, commented on the experience and the

host has commented on the guest’s behavior, the platform tags an additional

‘review’ to the listing’s description. This is an important factor in how

prevalent a particular listing appears while searching a locality for

availabilities on the platform. A listing that has at least one review is much

more likely to be rented than a listing that has none. Moreover, although

many listings have zero reviews and are therefore excluded in several forms

of analysis, they are not entirely disregarded because they show a more

holistic market penetration of a locality even if they have not been rented.

(6) Host Identification

Every host on the platform has a unique identification number associated

with their account. In order to be approved as a suitable host on the Airbnb

platform, the host must take a photo of a government issued identification

document (passport, driver’s license etc.) as well as a picture of themselves.

The self photo must then be matched with the government issued

identification document photo for the host to be considered "verified"(Airbnb,

2017). Host identification is an important metric when discussing the legality

of hosts listing multiple properties on the platform to establish unofficial

accommodation businesses. Municipal governments in Scotland, Canada and

- 62 -

the United States have recently begun to limit the number of properties an

individual may legally rent out without living in them (Hamada, 2017). One

area of consideration, however, remains the host’s ability to create multiple

identities on the platform from which he or she manage multiple listings and

not arouse suspicion from regulatory authorities. Nevertheless, host

identification as a variable remains a unique way to monitor the prevalence of

multiple property listers.

(7) Room Identification

Each individual listing on Airbnb has its own unique room identification

number. Although a host identification number may have multiple room

identification numbers associated with it, the room identification number is a

singular occurrence. A common metric in estimated the total number of

listings of a locality, the room identification number embedded in the URL

(e.g. "https://www.airbnb.com/rooms/4789513") the numbers following ‘rooms’

constitute the room identification) allows researchers to monitor the

fluctuation of the platform over a period of time. Room identification also

ensures that a listing is not double counted in analytics. Other aspects of the

listing may change such as the number of guests it can accommodate, its

price and satisfaction, but the room identification for the property is a

constant.

(8) Latitudinal and Longitudinal Coordinates

In addition to specific host and room identification numbers, this research

was able to obtain the particular latitudinal and longitudinal coordinates for

each listing. These coordinates place the research in real space and offer a

wide range of practical implications. First, the researcher was able to plot the

- 63 -

coordinates into a geographic information system (GIS) interface to more

easily represent and analyze the spatial distribution of the platform across a

locality. This is especially pertinent to multi-layered GIS interfaces against

which municipal jurisdictions can be conjoined with listings’ locations. Perhaps

even more useful, however, is the coordinates allow researchers to monitor

the growth of the platform in particular locations. In order to protect the

privacy of the host, the specific coordinates are within a hundred meters of

the actual property’s location. This margin of error is narrow enough for the

purposes of this research, which is to measure the growth and prevalence of

the platform on a more macro perspective.

(9) Price

Price is one of the most dynamic variables of the dataset. Prices are

displayed in Korean won and are represented as the cost per night to rent

the property. The price per night per listing may fluctuate if the host

changes his or her price model, or if the host is using some automated

revenue management service (Airdna, 2017). Additional fees such as cleaning,

service and extra costs per additional guest are not reflected in the price

figure scraped from the listing.

In comparison with traditional accommodation, Airbnb listings tend to be

priced more competitively for a similar or even greater value proposition.

This may be due to lower overhead costs and capital investments that

Airbnb hosts need to expend in order to start their businesses. Moreover,

Airbnb hosts are generally not subjected to the same scrutiny of permits,

taxes and regulations that traditional accommodation providers are, and this

may be reflected in the lower price per night.

- 64 -

4. Data Collection

In order to get a more accurate picture of the scope and scale of Airbnb on

Jeju, the data described above was collected each week. The schedule for

data collection covering the whole of Jeju island was every six days, shifting

back one day of the week in each successive survey.

Data collection schedule: n-1

For example, if a survey is run on Saturday, May 20th, the next survey

was conducted on Friday, May 26th. This ensured an unbiased data

collection, taking into account the data and prices available on any given day

of the week. The web scraping technique utilized in this research works, in

essence, by taking a snapshot of the targeted information identified by the

API on a website and cataloguing it, iterating the process thousands of times.

If the data were collected on the same day of the week, biased booking

trends and prices will inevitably skew the results. This n - 1 method ensured

a more random as well as thorough data sampling to account for any

potential price elasticity of supply.

This data collection methodology is based off of a robust scraping

technique designed by Dr. Tom Slee (Slee, 2016), which the researcher

programmed specifically for Jeju Island. The accuracy in terms of total

listings of such technique is consistently within 10 percent of the parametric

data held by Airbnb (Slee, 2016; Airbnb, 2015). After collecting the data

through the Python-designed scraper, and designating it to a local server, the

data was queried and structured using PostgreSQL 9.6, a powerful

object-relational database management server.

- 65 -

1) Geographic Parameters

Jeju Island is an ideal area for this web scraping technique. Due to its

insular nature, the geographic boundaries are clearly defined and therefore

there is little ambiguity in delineating the search area. Located approximately

140 kilometers south from the Korean mainland, Jeju Island is easily bounded

by four longitudinal and latitudinal points.

A Bounding Box of Jeju Island:

N 33°34'09"N 33°11'39"E 126°09'36"E 126°58'28“

In comparison to other locales, Jeju Island is well suited for this boundary

box technique because its borders do not conjoin with neighboring cities and

a simple rectangle can capture its entire market. Boundaries for cities are

often uncertain, and without publically available GIS interfaces, determining

the precise metropolitan area of a locale is difficult. The outlying Chuja

islands, although technically part of the Jeju provincial area, are excluded

from this boundary box due to the substantially increased area needed to be

searched. Furthermore, at the time of writing there were no listings on the

Chuja islands.

The web scraping technique employed in this research is first bound by a

specific geographic area. Jeju was bounded by the parameters above through

the following code.

- 66 -

<Table 3-2> Bounding Box

UPDATE search_area
SET bb_n_lat = NN.NNN,
bb_s_lat = NN.NNN,
bb_e_lng = NN.NNN,
bb_w_lng = NN.NNN
WHERE search_area_id = NNN

The bounding box defines the search area for the script, which recursively

searches the parameters by breaking the larger area down into smaller

rectangles at different zoom levels searching for listings. Like many internet

startups today, Airbnb relies on Google Maps’ API to host its map features

and run its searches. Therefore, a bounding box derived from Google

Maps’interface sufficed for this research. The researcher programmed the

zoom function to execute 8 times, narrowing rectangular area under

examination to listings until additional new listings were not found. This

insured that no listings in the entire bounding box were missed during a

single scraping instance.

2) Scraping

The scraping script, henceforth known by its functional name "airbnb.py"

was configured to recursively run within the specified geographic parameters.

To facilitate the scraping function, several open source, prepackaged program

modules and tools were imported into the configuration file, airbnb.config:

- 67 -

<Table 3-3> Imported Modules to the Script

Logging

Psycopg2 and Psycopg2.errorcodes

Os

Configparser

Sys

datetime

(1) Configuring the scraper

Each program’s role in the scraping process will be briefly described.

Logging is a highly flexible and functional program whose purpose is to

assist any Python module in logging application messages an integrating

them with third-party modules and libraries (Python Documentation, 2017a).

In airbnb.config, logging allowed error messages and key functions to be

saved and recalled by the researcher. This was instrumental in developing a

working application which interfaced with Airbnb’s hidden API. Logging

allows researchers to see the tracebacks and error messages when a portion

of their script does not execute properly.

Psycopg2 is the second edition of the most popular PostgreSQL adapter for

Python and allows efficient interoperability between Python modules and

PostgreSQL. This is known as a wrapper and enables the researcher to write

and read code in Python while accessing third-party databases (such as

Airbnb and PostgreSQL) without necessarily knowing the specific language or

terminology of the third-party script (Python Documentation, 2017b). Given

the scope of the research and ability of the researcher, such wrappers were

instrumental in facilitating timely data collection. Psycopg2.errorcodes allowed

the researcher to further diagnose faulty code and parameters by referencing

a compendium of error messages and tracing back the malfunction script.

- 68 -

Importing osis a convenient way for programmers to access the operating

system of the computer they are running a script on, and can designate or

manipulate file paths where data can be stored (Python Documentation,

2017c). For simpler interoperability, this researcher chose to run all scripts on

a Linux operating system, thereby forgoing the need to import additional

wrappers. The purpose of os for this research was to change the file path

directory in storing the scraped data directly onto the computer, rather than

on cloud. Oswas instrumental in creating folders, and changing working

directories when interacting with various Python modules. Additionally, os

facilitated standard time operations so that the researcher could more

effectively track intercode operations.

Configparser module was imported to apply the researcher’s personal

configuration settings (geographic parameters, price levels, zoom functions

etc.) to the airbnb.py module.

Sys is short for "system" and is used to access stored variables and

functions through command line arguments. It is a standard operating module

in most scripts. Functionally this module was used to retrieve the scraped

data from a stdout (standard out) into a comma-separated values, or ‘csv’ file

for analysis. Additionally, this module allowed the airbnb.py module to make

changes and deposit data in the PostgreSQL program.

Finally, datetime module was imported to interface with the logging module

in order to chronicle the exact time and date the data was scraped, and when

it was last updated.

In configuring the scraper, the researcher had to keep in mind the potential

for Airbnb to perceive a distributed denial-of-service (DDoS) attack. This

occurs when Airbnb’s servers receive too many requests in rapid succession

and the allocated bandwidth cannot accommodate such high traffic. This can

cause Airbnb’s servers to fail, which, among other things, would terminate

the scraping session. The inherent nature of web scraping is such that it

- 69 -

copies webpage data far faster than a human can; however, Airbnb’s listing

pages are designed for human user interface and such rapid requests are

easily differentiated from ordinary human queries. Therefore, in order to avoid

an Internet Protocol (IP) address ban from Airbnb, and to not overload the

Airbnb servers with requests, this researcher implemented a "sleep"function

between requests, allowing the web scraper to pause for 2 seconds between

each URL scrape. For further information regarding the configuration files,

see the Configuration section in the appendix.

(2) Implementing the scraper

In addition to the aforementioned modules, the scraper itself, airbnb.py,

imported: argparse, requests, lxml and webbrowser modules.

Argparse is a user-friendly module used to write command-line interfaces

which are defined within the program itself (Python Documentation, 2017d).

Since airbnb.py references many internally sourced arguments and code,

argparse was instrumental in calling those self-defined arguments. For

example, the config, survey and listing code are all self-coded arguments and

not part of Python’s distributed libraries. Argparse module generated error

and help messages to assist in implementing the scraper.

Requests is a Python module colloquially known as "http for humans"

(Python Documentation, 2017e). Hypertext Transfer Protocol (http) is an

application protocol for distributed, collaborative and hypermedia information

systems and is the foundation for the Worldwide Web (Fielding et al., 1999).

Functionally, HTTP serves as a request-response protocol in the client-server

communication exchange model. In this model, a client application sends a

request to a server, which in turn sends a response in the form of HTML

files among other content. HTTP is designed for work on behalf of a user to

facilitate intermediary communication between client (that is web application)

and server and is primarily machine-to-machine communication. The nature

- 70 -

of this research, however, required human-to-machine communication in order

to effectively mine information from servers. Therefore requests was imported

to allow simpler application protocol interface (API) communication between

the researcher and Airbnb’s servers, making the HTTP request more obvious

to the researcher and decoding responses from the server in more intelligible

language.

Requests is the most commonly used library, or a collection of

pre-configured selection of routines, functions and operations that a program

can use (Python Documentation, 2013), for communicating with servers and

extracting information from websites, such as Airbnb URLs. Lxml was used

in conjunction with requests to parse the HTML structure of any given

listing’s web page and extract the necessary data for this research.

Finally, the webbrowser module was imported to the airbnb.py script.

Webbrowser provided a useful interface to display Web-based documents,

such as the tabulated room listing information on Airbnb’s individual listing

pages. Individual listing’s URLs were accessed through webbrowser and

subsequently scrapped for information using lxml and requests.

(3) Adding a Survey and Collecting Room Data

Following the connection test, some internal functions were executed to add

a new survey shell to the scraper to populate. This entailed adding a survey

identification number, which followed consecutively from the previous survey.

Structured Query Language (SQL) was instrumental in rendering the survey

functions into intelligible matrices. In total, 30 surveys with the identical Jeju

Island bounding box were run.

The airbnb.py’s survey function is coded with the possibility of searching

by neighborhood, zip code, city or bounding box; however, due to the

geographic isolation of Jeju Island, the additional add survey functionality was

- 71 -

not necessary to implement. For further information regarding the

multifunctionality of adding survey instances, see Appendix - Airbnb.py, code

lines 135-281.

After establishing a survey for airbnb.py to populate, the scraper continued

to harvest listing information from Airbnb. The module webbrowser opened a

browser to a predefined URL containing thefirst listing within the search

parameters. Airbnb URLs are generic in nature particular listing information

is accessible by inputting the 7-digit ‘room_id’ after "rooms/" (e.g.

https://www.airbnb.com/rooms/#######).

From the bounding box specified URL, which references a unique listing,

airbnb_listing.py then collected the room pertinent data. A note of

consideration is appropriate here. Airbnb_listing.py is able to take a snapshot

of the information at a specific moment in time, and only represents the data

as it was displayed at the moment it was scraped. The host may change the

listing’s price, availability or carrying capacity thereafter; however, over

multiple surveys, according to the central limit theorem, the surveyresults for

a particular listing should converge to an accurate representation of the

current home sharing situation on the island. Each listing was scraped more

than thirty times, so the sample size was ample enough even on the level of

individual listings.

Among the scrapable elements on an individual listing’s page, the following

were designated to be stored in config.airbnb.py. The elements listed below

were derived from a self-defined function "self.(element) = None", self

referring to the data listed in the particular URL and the element to the API

variable on the page as determined by the HTML of the page. If information

matching the API variable was found, "None" was replaced with the

appropriate float, integer or string.

- 72 -

<Table 3-4> Scrapable Variables

Table of variables

self.room_id = room_id self.bathrooms = None

self.host_id = None self.price = None

self.room_type = room_type self.deleted = None

self.country = None self.minstay = None

self.city = None self.latitude = None

self.neighborhood = None self.longitude = None

self.address = None self.survey_id = survey_id

self.reviews = None self.coworker_hosted = None

self.overall_satisfaction = None self.extra_host_languages = None

self.accommodates = None self.name = None

self.bedrooms = None self.property_type = None

Due to the liberal nature of Web 2.0, platform-based ecosystems and user

discretion, a host is entitled to post as little or as much information about his

or her listing as seen fit. Therefore, not all the above listed variables were

populated with data, and the research was limited to the least common

denominator of information present across all listings, as referenced in the

Description of Data section. If the threshold for values was not reached for a

particular listing, it was discarded from consideration. See lines 92-96 in

appendix airbnb_listing.py for further information regarding this culling

process. In order to mitigate the risk of double counting listing information,

should the survey ever fail to complete or was truncated short of completion,

the each value was stored and checked with a boolean "True" if the listing is

previously saved in the database or "False" is the listing value already

existed. This rollback feature insured data collection integrity.

For each listing, the following information was stored in an SQL relational

- 73 -

database, referring to a particular room_id and their associated values:

host_id, room_type, country, city, neighborhood, address, reviews,

overall_satisfaction, accommodates, bedrooms, bathrooms, price, deleted,

minstay, latitude, longitude, survey_id, coworker_hosted, extra_host_languages,

name, property_type, currency, rate_type.

(4) Exporting Room Information

After an initial survey, the information was exported and stored in an SQL

file. The data was stored on a private server database, under two layers of

encryption to prevent external tampering. The scraped variables were

accessed through an SQL schema, or collection of database objects associated

with the database username. Based on the ‘True’ booleans from the requested

data in a given listing, tables were generated, with additional columns added

as necessary to accommodate multiple variables. For example, if the host

claimed to speak additional languages other than Korean, the code <add

column extra_host_languages character varying(255)> facilitated the creation

of an additional column to display this.

In creating these tables for each survey, much attention was paid to

appropriating the correct information into the designated column. An initial

"check: room table has no room_id column" was performed to establish a

unique room row. In standard cross tabulation form, the row information was

designated to room instances, while the columns were present variables in a

particular listing.

For further information regarding these processes, the reader may refer to

the appendices located at the end of this document.

- 74 -

5. Methods of Analysis

In order to analyze the data through descriptive statistics, this research

employed the statistics program R version 3.4.2. Through R, the raw data

was compiled and common statistics such as mean, median, standard

deviations and percentages were derived and used in further analysis. This

information may be found in the results section of this research. Furthermore,

using Stata version 13, this research employed a wide range of inferential and

regression analyses to derive meaningful results from the data. In order to

accommodate the numerous variables and fit the data in a regression model,

a stepwise regression method was selected.

- 75 -

Ⅳ. ANALYSIS OF DATA

1. Descriptive Analysis

After appropriately populating the dataset obtained through recursive web

scrapes, the following results were observed.

The total number platform home sharing listings amounted to 5,566 on Jeju

Island. Of these, 2,981 had three reviews or more. The mere presence of 5,566

listings on Jeju may overestimate its presence on the island, therefore it is

appropriate to keep in mind the listings which have generated income in

addition to the total number of listings.

Of the total number of listings of the population, 2,825 were entire homes,

2,112 were private rooms within a property and 629 were listed as shared

rooms. The abnormal distribution of reviews and their densities is shown on

the opposite side <Figure 4-1>. This reflects the propensity for newer

listings in a growing market and further highlights the phenomenal nature of

platform home sharing.

- 76 -

Figure 4-1 All Reviews’ Density Distribution

- 77 -

<Table 4-1> All Listings

Entire population (5,568 listings)
Price (KRW) No. of Reviews Satisfaction (out of 5) Accommodates

Min 10,500 0 0 1
1st Quarter 51,350 0 0 2
Median 78,190 3 4.0 4
3rd Quarter 123,700 13 5.0 6
Max 1,021,619 216 5.0 16
Mean 100,484.50 12.45 2.526 4.6

<Figure 4-2> Price Distribution of Entire Population on Opposite Side

The most popular property, an ‘entire home’ listing, had a total of 216

reviews and 50% of all the listings were priced between 10,500 and 78,190

KRW per night. The average price night was slightly higher than the median,

at 100,484 KRW per night, revealing a right-tailed skew toward the higher

end of the market and more luxurious accommodations. The highest priced

property was listed as 1,021,691 KRW per night and accommodated 2 people,

although the average number of accommodation was 4.6 guests. The

satisfaction metric warrants some interpretation, given that mean and median

are quite different. Overall satisfaction among the listings with fewer than

three reviews is defaulted to zero (overall satisfaction is an average function

of three reviews), and since nearly half of all the listings (2,587) have fewer

than three reviews this skews the results to the left in the total population

mean satisfaction of 2.5/5. This is starkly juxtaposed with the median of 4/5.

- 78 -

- 79 -

<Table 4-2> Sample of Listings with Review Threshold

Listings with 3 or more reviews (2,981 listings)
Price (KRW) No. of Reviews Satisfaction (out of 5) Accommodates

Min 11,714 3 0 1
1st Quarter 47,848 5 4.5 2
Median 72,356 12 5 4
3rd Quarter 117,870 29 5 6
Max 995,650 216 5 16
Mean 92,515 22.77 4.72 4.5

<Figure 4-3> Price Distribution of Listings with 3 or More Reviews on

Opposite Side

The median number of reviews was three. This is a logical boundary to

analyze the listings which have had an impactful presence on the island

(Slee, 2017). Additionally, in order to calculate an overall satisfaction metric of

a given listings, a minimum of three reviews was taken as a threshold to

mitigate potentially biased reviews. Of the 2,981 listings which had three

reviews or more 1,615 were listed as entire homes. Private rooms accounted

for 1,096 listings and 270 shared rooms were listed with three or more

reviews.

By eliminating 2,587 listings with under three reviews, one is able to see a

clearer picture of the properties which are being booked on the island. The

median and mean prices decrease slightly from the entire population, whereas

the minimum price slightly increases. Unsurprisingly, the most dynamic

statistic comparing the total population with the ‘three reviews and above’

listings is in regards to the reviews. In the latter, the mean number of

reviews was 22.7 and in the former, this came to roughly half that, at 12.4

reviews. If one measures by median, the statistic in the latter is four times

greater than the entire population.

- 80 -

- 81 -

From the recursive web scraping, it was possible to determine not only the

number and characteristics of the platform home sharing listings, but also

how many of the hosts listed multiple properties. By subtracting the entire

sample from the number of unique host instances, it can be seen that over

half of all the listings belong to hosts with multiple listings (3,334).

<Table 4-3> Difference Between Population and Sample

<Figure 4-4> Distribution of Listings by Review Threshold on Opposite

Side

Room type
Entire population

(5,568)

Unique Hosts

(2,234)

Listings with 3 or

more reviews (2,981)

Total reviews

(69,321)
Shared room 629 (11.31%) 299 270 (9.06%) 4,257
Private room 2112 (37.95%) 865 1,096 (36.76%) 23,635
Entire home 2825 (50.74%) 1,476 1,615 (54.18%) 41,429

- 82 -

- 83 -

1) Hypothesis test

The research hypothesis stated:

Platform home sharing consumers’ preferences on Jeju Island will be revealed

as an absolute majority of entire homes rather than shared spaces.

if A > B > C (revealed preference)

then A > C (transitivity assumption)

Hypothesis B + C < A (absolute majority of ‘A’)

According to the data, entire homes categorically possess 60% (41,429

reviews) of the total number of reviews. This is greater than >50% threshold

required to constitute an absolute majority in preference. Therefore, the

hypothesis is adopted. Formally, this proof may be illustrated in terms of

percentages of the total number of reviews by the following inequalities:

60% (entire homes) > 34% (private rooms) > 6% (shared rooms)

60% (entire homes) > 6% (shared rooms)

34% (private rooms) + 6% (shared rooms) < 60% (entire homes)

Platform home sharing consumers reveal their absolute majority preference

for entire homes over shared dwellings. This preference is further accentuated

by the observation that entire homes have the highest mean price value of

122,398 KRW per night <Table 4-6> compared with the mean values of

private rooms and shared rooms, 64,723 KRW <Table 4-5> 26,529 KRW

<Table 4-4> respectively. The price notwithstanding, platform home sharing

consumers are more highly motivated by amenities of privacy and larger

spaces as afforded by entire home listings.

From a population standpoint, half of all listings are entire homes, and if

one assumes the three reviews and above threshold, the proportion of entire

- 84 -

homes increases by 4%. It is notable that although the overall proportion of

the total listings do not significantly change by adopting the three reviews

and more threshold, the relative number of shared room visits decreases.

- 85 -

<Table 4-4> Distribution of Shared Rooms (Sample)

<Figure 4-5> Distribution of Shared Rooms with 3 or More Reviews on

Opposite Side

With 270 total listings having three reviews or more, shared rooms occupy

less than 10% of the population. The mean and median prices for shared

rooms are rather similar, revealing an even distribution across the mean. This

notwithstanding, the max price for a shared room on Jeju is an outlier of

174,532 KRW. In the first quarter of the listings, the prices range from

approximately 11,000 – 19,000 KRW per night for a shared room. This is

makes sense when compared to private rooms, which are in a higher price

bracket. Over half of the shared room listings are priced below 20,000 KRW,

and 75% are priced under 25,000 KRW per night. Satisfaction as a metric is

still positively skewed in this case. This is the most affordable listing type

on average.

Shared rooms with 3 or more listings (270 listings)

Price (KRW)
No. of Reviews

(4,062)
Satisfaction (out of 5) Accommodates

Min 11,714 3 3 1
1st Quarter 19,035 4 4.5 4
Median 22,256 8 4.5 4
3rd Quarter 26,648 17 5 6
Max 174,532 144 5 16
Mean 26,590 15.04 4.656 5.5

- 86 -

- 87 -

<Table 4-5> Distribution of Private Rooms (Sample)

<Figure 4-6> Distribution of Private Rooms with 3 or More Reviews on

Opposite Side

Private rooms are shared in the same dwelling as the host, however, as the

name implies, they are separate sleeping chambers. Since they still entail

interaction with the host, they are considered shared spaces for analytical

purposes. In terms of number of reviews, the distribution density and volume

is quite similar to that of the shared rooms. Some metrics do standout,

nonetheless. In comparison with the shared rooms, the private rooms

accommodate fewer guests and generally cost more. With an average of

accommodating 2.6 fewer guests per listing than shared rooms, the private

rooms seem to be targeting couples. Also, the median and the mean prices

are within 10,000 KRW of each other, showing a relatively even distribution

across the mean. Three quarters of the private rooms are priced under 80,000

KRW per night, and the mean is considerably less than shared rooms at

64,723 KRW per night. The satisfaction rating is ever problematic by

showing a high propensity to positive skewedness.

Private rooms with 3 or more listings (1096 listings)
Price

(KRW)

No. of reviews

(23,048 total)

Satisfaction

(out of 5)
Accommodates

Min 15,171 3 3 1
1st Quarter 40,846 5 4.5 2
Median 57,184 12 4.75 2
3rd Quarter 80,525 26 5 4
Max 339,605 165 5 16
Mean 64,723 21.03 4.69 2.9

- 88 -

- 89 -

<Table 4-6> Distribution of Entire Homes (Sample)

Entire homes with 3 or more reviews (1615 listings)
Price

(KRW)

No. of reviews

(40,762 total)

Satisfaction

(out of 5)
Accommodates

Min 15,171 3 0 1
1st Quarter 70,022 6 4.5 4
Median 102,698 13 5 4
3rd Quarter 154,619 33 5 6
Max 995,650 216 5 16
Mean 122,398 25.24 4.75 5.4

<Figure 4-7> Distribution of Entire Homes with 3 or More Reviews on

Opposite Side

The entire home listings are the most prevalent and most highly visited on

the island. In comparison to the shared spaces listings, the entire homes are

highly differentiated. In terms of prices, about half of the listings with three

reviews are over are under 100,000 KRW per night and about 75% are priced

below 150,000 KRW per night. The price difference in the third quarter of the

distribution is highly skewed due to the higher end properties which

command a higher price. The most expensive listing on Jeju Island is an

entire home listing, accommodating up to four guests and has four reviews,

priced at 995,650 KRW per night. In terms of how many guests the entire

home listings accommodate, the average of 5.4 guests per listing is slightly

higher than the median of four guests. The number of listings

notwithstanding, although they are more than the shared rooms and private

rooms combined, the reviews metric is where the entire home listings stand

out. With an average of 25.42 reviews and 40,762 total reviews, the entire

home listings are clearly the most popular type of platform home sharing

listing on Jeju Island. The satisfaction metric is also the highest when

considering entire home listings. Although this metric is consistently inflated

across all listings, in the entire home category it appears slightly higher at

4.75/5.

- 90 -

- 91 -

<Table 4-7> Geographic Areas of Concentration

Concentration Total Reviews Entire homes Private rooms Shared rooms

1. Jeju City 8641 232 316 115

2. Hamdeok 3417 138 73 35

3. Bonggae 1558 73 58 7

4. Seongsan 10312 362 284 104

5. Pyoseon 5207 180 139 38

6. Seogwipo 8892 250 270 81

7. Jungmun 3379 166 104 20

8. GEC 1391 62 19 0

9. Sanbangsan 1618 48 54 7

10. Hallim 4968 303 135 38

11. Aewol 5486 254 206 27

12. Susan 1561 109 51 7

<Figure 4-8> Areas with high Concentrations of listings on Opposite Side

Finally, a brief analysis of the geographic areas of listings concentration

yielded a few insights. Twelve geographic areas of high listing concentration

were selected to determine which areas were most frequented and to give

more consumer behavior data in more localized geographic contexts. The

twelve areas do not cover the entire island, but were visually selected based

on higher concentrations of platform home sharing listings.

The area surrounding Seongsan on the eastern coast is the most highly

concentrated area, followed by Seogwipo and Jeju City. Inland the

concentrated areas quickly disperse and the western part of the island

remains relatively desolate of listings.

- 92 -

- 93 -

2. Inferential Analysis

From the descriptive statistics above it is apparent that entire homes are

the most popular type of platform home sharing listing on Jeju Island. In

order to further understand the intricacies of the associated variables made

available from the web scraping, linear and non-linear regression analytical

techniques were applied to yield inferential statistical results. The results are

entirely data driven, without subjective bias to reveal trends and

interdependencies among the variables.

1) Stepwise Regression Analysis

First, in order to explore the relationships between property characteristics

and the number of reviews the researcher started with a stepwise multiple

regression of the number of the number of reviews on all other variables.

The majority of them are statistically significant predictors of the number of

reviews (p-value<0.1).

Among the various platform home sharing listings here were 31 different

property types available on Jeju Island. Each of the property types was coded

as a variable "prop_type#" and may be seen in the chart below.

- 94 -

<Table 4-8> List of Property Types

Property Type Variable Property Description
prop_type1 Apartment
prop_type2 Bed & Breakfast
prop_type3 Boutique Hotel
prop_type4 Bungalow
prop_type5 Cabin
prop_type6 Camper/RV
prop_type7 Castle
prop_type8 Chalet
prop_type9 Condominium
prop_type10 Dorm
prop_type11 Earth House
prop_type12 Guest Suite
prop_type13 Guesthouse
prop_type14 Hostel
prop_type15 House
prop_type16 Hut
prop_type17 Igloo
prop_type18 In-Law
prop_type19 Loft
prop_type20 Nature Lodge
prop_type21 Other
prop_type22 Pension
prop_type23 Pension (Korean)
prop_type24 Serviced Apartment
prop_type25 Tent
prop_type26 Timeshare
prop_type27 Townhouse
prop_type28 Treehouse
prop_type29 Vacation Home
prop_type30 Villa
prop_type31 Yurt

When it came to the host speaking additional languages after Korean, the

following languages were associated with an increase in number of reviews:

English, Russian, Indonesian and French. Apartment (property type 1), was

used as a reference category and only house (property type 15) slightly

outperformed it in number of reviews.

- 95 -

<Figure 4-9> Stepwise Regression Output for Reviews

stepwise, pr(0.1) pe(0.05) : regress reviews accommodates price latitude longitude
en es zh ja ru id bn de fr hi it room_type2 room_type3 prop_type2 prop_type3
prop_type4 prop_type5 prop_type6 prop_type7 prop_type8 prop_type9 prop_type10
prop_type11 prop_type12 prop_type13 prop_type14 prop_type15 prop_type16
prop_type17 prop_type18 prop_type19 prop_type20 prop_type21 prop_type22
prop_type23 prop_type24 prop_type25 prop_type26 prop_type27 prop_type28
prop_type29 prop_type30 prop_type31
 Source SS df MS Number of obs 5,568
-------------+---------------------------------- F(26, 5541) 25.18
 Model 308090.526 26 11849.6356 Prob > F 0.0000
 Residual 2607277.49 5,541 470.542771 R-squared 0.1057
-------------+---------------------------------- Adj R-squared 0.1015
 Total 2915368.02 5,567 523.687447 Root MSE 21.692

--
 reviews | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------+--
 prop_type19 4.423079 2.646537 1.67 0.095 -.7651723 9.61133
 price -.0000479 4.06e-06 -11.82 0.000 -.0000559 -.00004
 latitude 7.624782 2.783987 2.74 0.006 2.167077 13.08249
 prop_type29 -8.977324 2.972862 -3.02 0.003 -14.8053 -3.149348
 en 9.308498 .68837 13.52 0.000 7.959023 10.65797
 es -6.412797 3.234521 -1.98 0.047 -12.75373 -.0718683
 zh -4.152603 1.129772 -3.68 0.000 -6.367399 -1.937806
 prop_type11 -13.2964 3.548487 -3.75 0.000 -20.25282 -6.339971
 ru 11.96615 3.934528 3.04 0.002 4.252932 19.67937
 id 19.24357 6.858835 2.81 0.005 5.797567 32.68958
 prop_type23 -7.386523 1.090559 -6.77 0.000 -9.524446 -5.248599
 de 15.35112 5.034286 -3.05 0.002 -25.22029 -5.481945
 fr 4.988075 2.946131 1.69 0.090 -.7874965 10.76365
 prop_type27 -9.118331 1.850278 -4.93 0.000 -12.7456 -5.491061
 prop_type18 -4.714467 2.585234 -1.82 0.068 -9.78254 .3536054
 room_type2 -5.587133 .7103761 -7.87 0.000 -6.979749 -4.194517
 room_type3 -11.33203 1.111872 -10.19 0.000 -13.51173 -9.152321
 prop_type13 -5.318245 1.223459 -4.35 0.000 -7.716704 -2.919787
 prop_type3 -6.701705 2.237382 -3.00 0.003 -11.08785 -2.315558
 prop_type14 -7.146288 2.364807 -3.02 0.003 -11.78224 -2.510338
 prop_type5 -10.67633 2.564267 -4.16 0.000 -15.7033 -5.64936
 prop_type12 -10.13792 4.665059 -2.17 0.030 -19.28327 -.9925775
 prop_type15 1.299005 .7761311 1.67 0.094 -.2225162 2.820527
 prop_type20 -12.62915 6.400683 -1.97 0.049 -25.177 -.0812999
 prop_type9 -6.006711 2.108586 -2.85 0.004 -10.14037 -1.873055
 prop_type30 -2.666075 1.541765 -1.73 0.084 -5.688538 .3563883
 cons -234.7387 92.98033 -2.52 0.012 -417.0166 -52.46074
--

- 96 -

The first regression included all platform home sharing listings in the

analysis. After the first regression, overall satisfaction as added as an

additional predictor to control for the quality of guests’ experience. The

results marginally changed, and some of the negative coefficients in the first

regression may be affected by the perceived quality of the guest’s stay.

However, due to the previously explained skewed nature of satisfaction as a

metric, this may not be a reliable predictor in the regression.

- 97 -

<Figure 4-10> Stepwise Regression Output for Reviews with Satisfaction>0

stepwise, pr(0.1) pe(0.05) : regress reviews overall_satisfaction accommodates price
latitude longitude en es zh ja ru id bn de fr hi it room_type2 room_type3 prop_type2
prop_type3 prop_type4 prop_type5 prop_type6 prop_type7 prop_type8 prop_type9
prop_type10 prop_type11 prop_type12 prop_type13 prop_type14 prop_type15 prop_type16
prop_type17 prop_type18 prop_type19 prop_type20 prop_type21 prop_type22 prop_type23
prop_type24 prop_type25 prop_type26 prop_type27 prop_type28 prop_type29 prop_type30
prop_type31 if overall_satisfaction>0

 Source | SS df MS Number of obs 2,980
------------+---------------------------------- F(19, 2960) 20.07
 Model 254494.435 19 13394.4439 Prob > F 0.0000
 Residual 1975929.48 2,960 667.543742 R-squared 0.1141
------------+---------------------------------- Adj R-squared 0.1084
 Total 2230423.91 2,979 748.715647 Root MSE 25.837

 reviews Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------------------+---
overall_satisfaction 9.105673 1.399659 6.51 0.000 6.361271 11.85008
prop_type3 -12.66133 3.496722 -3.62 0.000 -19.51758 -5.805077
price -.0000665 7.77e-06 -8.56 0.000 -.0000817 -.0000513
latitude 9.763724 4.55079 2.15 0.032 .840691 18.68676
prop_type14 -12.60063 3.947139 -3.19 0.001 -20.34005 -4.861217
en 9.59419 1.046703 9.17 0.000 7.541851 11.64653
prop_type11 -22.78714 5.85636 -3.89 0.000 -34.27009 -11.30419
zh -7.270575 1.646025 -4.42 0.000 -10.49804 -4.043106
prop_type30 -4.521318 2.357268 -1.92 0.055 -9.143368 .1007319
ru 11.5957 5.872827 1.97 0.048 .0804574 23.11093
prop_type13 -6.462819 2.113058 -3.06 0.002 -10.60603 -2.319607
prop_type27 -8.865737 3.613702 -2.45 0.014 -15.95136 -1.780115
prop_type5 -11.83393 4.542692 -2.61 0.009 -20.74109 -2.926779
prop_type21 8.411798 2.340519 3.59 0.000 3.822589 13.00101
prop_type23 -10.38028 1.79992 -5.77 0.000 -13.9095 -6.851058
prop_type29 -15.56624 5.98413 -2.60 0.009 -27.29972 -3.832761
room_type2 -7.053129 1.129625 -6.24 0.000 -9.26806 -4.838199
room_type3 -15.35555 1.95184 -7.87 0.000 -19.18265 -11.52845
prop_type9 -9.310061 3.339402 -2.79 0.005 -15.85785 -2.762277
cons -336.9983 152.3848 -2.21 0.027 -635.7892 -38.20741
--

- 98 -

Some of the additional languages including Spanish, German and Chinese

are seen as to have negative effects on the number of reviews. This may be

due to visitor expectations of fluency from the host speaking in the purported

language, and the host not being able to communicate effectively with the

guest.

The second regression was designed to be more selective due to the

abundance of listings with zero reviews (1,549 listings) and a metric of zero

satisfaction (2,589 listings). Overall satisfaction is an average of three

reviews’ satisfaction. Therefore, the listings with zero overall satisfaction and

fewer than three reviews were culled and the regression analysis was

performed once again.

- 99 -

<Figure 4-11> Stepwise Regression Output for 3+ Reviews

stepwise, pr(0.1) pe(0.05) : regress reviews overall_satisfaction accommodates price
latitude longitude en es zh ja ru id bn de fr hi it room_type2 room_type3 prop_type2
prop_type3 prop_type4 prop_type5 prop_type6 prop_type7 prop_type8 prop_type9
prop_type10 prop_type11 prop_type12 prop_type13 prop_type14 prop_type15 prop_type16
prop_type17 prop_type18 prop_type19 prop_type20 prop_type21 prop_type22 prop_type23
prop_type24 prop_type25 prop_type26 prop_type27 prop_type28 prop_type29 prop_type30
prop_type31 if overall_satisfaction>0&reviews>=3

 Source SS df MS Number of obs 2,980
------------+---------------------------------- F(19, 2960) 20.07
 Model 254494.435 19 13394.4439 Prob > F 0.0000
 Residual 1975929.48 2,960 667.543742 R-squared 0.1141
------------+---------------------------------- Adj R-squared 0.1084
 Total 2230423.91 2,979 748.715647 Root MSE 25.837

 reviews | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------------+---
overall_satisfaction 9.105673 1.399659 6.51 0.000 6.361271 11.85008
prop_type3 -12.66133 3.496722 -3.62 0.000 -19.51758 -5.805077
price -.0000665 7.77e-06 -8.56 0.000 -.0000817 -.0000513
latitude 9.763724 4.55079 2.15 0.032 .840691 18.68676
prop_type14 -12.60063 3.947139 -3.19 0.001 -20.34005 -4.861217
en 9.59419 1.046703 9.17 0.000 7.541851 11.64653
prop_type11 -22.78714 5.85636 -3.89 0.000 -34.27009 -11.30419
zh -7.270575 1.646025 -4.42 0.000 -10.49804 -4.043106
prop_type30 -4.521318 2.357268 -1.92 0.055 -9.143368 .1007319
ru 11.5957 5.872827 1.97 0.048 .0804574 23.11093
prop_type13 -6.462819 2.113058 -3.06 0.002 -10.60603 -2.319607
prop_type27 -8.865737 3.613702 -2.45 0.014 -15.95136 -1.780115
prop_type5 -11.83393 4.542692 -2.61 0.009 -20.74109 -2.926779
prop_type21 8.411798 2.340519 3.59 0.000 3.822589 13.00101
prop_type23 -10.38028 1.79992 -5.77 0.000 -13.9095 -6.851058
prop_type29 -15.56624 5.98413 -2.60 0.009 -27.29972 -3.832761
room_type2 -7.053129 1.129625 -6.24 0.000 -9.26806 -4.838199
room_type3 -15.35555 1.95184 -7.87 0.000 -19.18265 -11.52845
prop_type9 -9.310061 3.339402 -2.79 0.005 -15.85785 -2.762277
cons -336.9983 152.3848 -2.21 0.027 -635.7892 -38.20741

- 100 -

The results are substantially the same as the previous regression with the

notable difference in satisfaction having a more positive coefficient effect on

the number of reviews.

When considering all the variables in a large model such as the one shown

above, the r-squared value, or goodness of fit, is quite low at approximately

11%. Nonetheless, it can be seen that hosts who speak Russian, English, are

latitudinally positioned on the northern part of the island and have high levels

of satisfaction from previous guests are predicted to have a higher number of

reviews.

One of the concerns with platform home sharing from a policy standpoint is

the growing tendency for single hosts to list multiple properties and act as

small hotel chains. Therefore, this research tested to see if hosts with

multiple listings had an effect on the number of reviews for each listing

corresponding to their host_id. Two dummy variables were created indicating

how many properties were offered by the host (host_rooms) and the

corresponding binary indicator (host_mult=1 if host_rooms>1). After analysis,

however, it was revealed to have no significant impact on the number of

reviews when other variables were controlled for.

The same test was performed again testing for levels of satisfaction to see

if hosts with multiple listings received lower levels satisfaction, operating

under the assumption that a single host may not give as much attention to

multiple listings.

- 101 -

<Figure 4-12> Satisfaction and Host Rooms

With each additional property corresponding to the host, the overall

satisfaction decreased by, on average, 0.01 points out of 5. The decrease in

satisfaction is statistically significant at p<0.01.

<Figure 4-13> Satisfaction as a Function of Multi-Listers

reg overall_satisfaction host_rooms if overall_satisfaction>0

 Source SS df MS Number of obs 2,980
--- F(1, 2978) 109.31
 Model 12.8128507 1 12.8128507 Prob > F 0.0000
 Residual 349.065924 2,978 .117214884 R-squared 0.0354
--- Adj R-squared 0.0351
 Total 361.878775 2,979 .121476595 Root MSE 0.34237

--
overall_sa~n Coef. Std. Err. t P>|t| [95% Conf. Interval]

 host_rooms -.0106755 .0010211 -10.46 0.000 -.0126776 -.0086734
 cons 4.777478 .008406 568.34 0.000 4.760996 4.79396
--

As shown in previously built regressions, lower levels of satisfaction are

- 102 -

associated with fewer reviews. This is further illustrated by the locally

weighted regression plot below, supporting the hypothesis that multiple listers

tend to receive lower levels of satisfaction from guests.

<Figure 4-14> Lower Satisfaction Associated with Fewer Reviews

2) CHIAD Regression Trees

Linear regression analysis has its limitations in that it is difficult to

account for the potential nonlinearity of the geographic location’s impact on

the dependent variable. That is why regression trees were used as well.

These account for the nonlinearity of the data, as well as the existence of

certain interactions among variables that have a combined effect on the

number of reviews. More specifically, they split explanatory variables

automatically in such a way that provides the highest differentiation of the

- 103 -

number of reviews across the resulting segments. The results obtained from

these regression trees generally agree with the results of the linear regression

analyses, but also give some specific, actionable results based on the

combinations of variables.

The CHIAD tree sets up a predictive analysis based on a criterion variable

associated with the rest of the variables and configures the segmentation, or

splitting, as a result from the dependency demonstrated from the most

significant chi-squares (Perez, 2016). The number of resulting independent

variables is a factor of how significant the Chi-square test is and can lead to

slimmer or more “branchy” trees. The most significant factor is the always

the first node of classification. A node (or branch) terminates when where is

no significant relationship between the independent and dependent variables.

Three CHIAD trees were constructed, each specializing on a different

attribute of the listing data. Although each tree yielded similar conclusions,

that entire homes in “house”-type properties which are moderately priced

result in the highest number of reviews, a deeper analysis of each tree will

articulate unique nuances apparent in the data.

In the first tree <Figure 4-14> the focus was given to exploring the effect

that hosts who listed multiple properties had on the number of reviews.

Although this variable was not the strongest determinant of number of

reviews with all other variables considered, node 17 shows that hosts with

fewer than 3.5 listings have the third highest predicted number of reviews of

27.2. The highest predicted number of reviews in this tree is observed when

property type is “house”, room type is “entire home” and the price does not

exceed 61,269 KRW per night (mean number of reviews=50.65). The lowest

average number of reviews in this tree had a predicted number of reviews of

2.18. It was observed for objects of a type other than entire home/apt, where

none of the extra languages are spoken by the host, where the price exceeds

81,943 and the property can accommodate more than three guests.

- 104 -

<Figure 4-15> Property Type CHIAD Tree on opposite page

- 105 -

- 106 -

Additionally, a sensitivity analysis was performed to deduce what “other

languages” means in context. First of all, it ought be noted that English is

most prevalent language aside from Korean. Other languages are less

important in terms of number of reviews, however, it can be seen from this

tree that Japanese achieves the statistical threshold to increase the popularity

of node 20 <Figure 14-5>. When considering Japanese into the analysis, the

third highest predicted number of reviews of 29.6 is achieved (node 34).

These are properties wherein the host speaks Japanese, the listing is

categorized as a bed and breakfast, and the latitude is approximate with 33.5

degrees north. While the average number of reviews is 12.45, it is 18.75

when the host speaks extra languages (extra host lang: none=0) – 18.5, while

only 9.35, when no other languages are spoken. This reveals a tendency for

guests to favor hosts who speak additional languages, and may imply an

internationally sourced customer base. In further analysis of this CHIAD tree,

it may be seen that house-type properties which are the entire home and not

shared spaces, with a price less than or equal to 61,268 KRW per night and

where the host speaks multiple languages have the highest predicted number

of reviews: 50.65. This is significantly cheaper than comparable value at a

five-star hotel.

<Figure 4-16> Additional Languages Sensitivity Analysis on following page

- 107 -

- 108 -

Finally, an isolated geographic analysis, when only longitude, latitude and

property type were included in the regression was conducted. As seen in the

CHIAD tree <Figure 4-16>, comparatively longitude does not play as much

of a role in predicting the number of reviews as latitude. The highest

predicted value was centered around City Hall, or about 33.5 degrees north

and 126.527 degrees east. Node 20 corresponds to this area with 29.4

predicted reviews on average. The lowest predicted number of reviews may

be seen in node 25, with 2.75 reviews on average. These properties have a

longitude of approximately 126.78 and are shared rooms in the Bonggae

bounded area (see Table 4-7). For further information, <Figure 4-16>

provides more detailed information.

<Figure 4-17> Geographic Position CHIAD Tree on following page

- 109 -

- 110 -

3) Summary of Results

The six main results from the regression analysis may be summarized in

the following manner.

<Table 4-9> Summary of Inferential Results

1. Latitude is more important than longitude: the higher the latitude the larger number of

reviews.

2. Knowing English and Russian are perceived to be assets.

3. Entire home type listings which are houses are the most popular type of accommodation

with the highest number of reviews

4. Earth houses are the least popular types of property (lowest coefficient indicating fewer

reviews compared with apartments)

5. Multiple listings ascribed to a single host does not significantly affect the listings’

number of reviews, but it does affect the level of satisfaction.

6. Price and number of accommodates are negative factors.

First result: Within the predefined geographic bounding box encompassing

Jeju Island, latitude plays a more significant role than longitude in the

dispersion of platform home sharing listings. The majority of the listings are

located in the northern part of the island; therefore, a higher latitudinal

coordinate means more listings and by extension reviews.

Second result: English is the most commonly spoken international language.

A possible explanation for Russian being useful, however, is that while most

foreign tourists speak some English, Russian tourists generally prefer if the

host speaks Russian and, therefore, it is useful to know some Russian to be

able to host tourists from Russian speaking countries.

Third result: In accord with the descriptive statistics, listings which are

entire homes and categorized as houses receive, on average, the highest

number of reviews and therefore are considered the most popular. This

supports the research hypothesis that platform home sharing guests are less

motivated by the social and experiential aspects of the practice, and more

motivated by the pragmatic and economic aspects of the accommodation

offerings.

- 111 -

Fourth result: Earth houses, or clay brick houses, on Jeju Island are

comparatively less popular than conventional houses. Of the 42 “Earth

Houses” listed on Jeju, 31 are entire homes and 11 are private rooms.

Regardless, this shows consumer preference to choose houses above shared

spaces.

Fifth result: The rising trend for hosts to use platform home sharing as a

small business is an area of concern for policy makers. Although being a

multiple lister does not seem to affect the number of reviews a listing

receives, it does marginally decrease the overall satisfaction of each listing. A

possible explanation may be that hosts managing multiple listings cannot

appropriate sufficient time and energy to properly tend to all of them.

Sixth result: Listings which have higher levels of accommodation tend to

have fewer reviews. Additionally, listings which are priced higher tend to

have fewer reviews. Platform home sharing guests seem to not want to share

a space with many others, and are motivated by lower prices.

- 112 -

Ⅴ. CONCLUSION

1. Conclusion

1) Findings

Starting from a discussion on the emergence of platform home sharing on

Jeju Island as a significant and new form of unregulated tourism

accommodation, this research traced the literature review of the sharing

economy at large and platform home sharing in particular. The lack of

empirical studies in this field has resulted in an ambiguous discourse as to

what motivates consumers and suppliers to participate in this new economy.

While some researchers have posited that consumers are primarily motivated

by experiential, social or even environmental notions, this research

hypothesized that suppliers are primarily exhibiting rent-seeking behavior and

consumers exhibit utility-maximizing behavior by preferring entire homes to

any shared space. The test of such a fundamental hypothesis was made

possible only by obtaining consumer purchase data and supply characteristics

through a robust methodology of web scraping and data mining techniques.

The data analysis revealed that the majority of platform home sharing hosts

supply entire properties. The majority of consumers on Jeju Island likewise

rent entire properties which are categorized as “houses”, are competitively

priced below 144,000 KRW per night and are not shared spaces with the

host. These properties afford the guest more space and amenities than a hotel

at a lower price. The consumer behavior on Jeju Island reveals that this is

the digital expansion of the market economy. Therefore, this facet of the

sharing economy should be clearly distinguished from what is commonly

- 113 -

known as “sharing”.

The descriptive analysis proved the research hypothesis that entire homes

would possess an absolute majority of preference in terms of the total

number of reviews; formally, B + C < A. This reaffirms the tendency for

platform home sharing consumers to maximize their utility through amenities

such as privacy and space above social interaction and cost reduction.

The analysis further revealed that English and Russian languages were

prime assets in describing a listing and Japanese was a secondary asset.

Finally, the research showed that hosts who operate multiple listings have an

aggregate lower level of satisfaction than hosts who have a single listing.

2) Discussion

The Sharing Economy has matured into a real source of income for many

residents of Jeju Island through platform home sharing. On a deeper level,

whether or not this new source of income is disrupting traditional

accommodation providers is left to be seen and merits further discussion and

research. This increasingly relevant sector of the economy must be reliably

measured and enter policy makers’ decision frameworks in considering future

tourism development on the island.

That the results show that platform home sharing consumers on Jeju Island

are more likely to rent a listing that maximizes their utility at a lower price,

rather than engaging in social interaction and forming communities is a novel

discovery. This consumer behavior in line with the centuries old homo

economicus paradigm portends utilitarian consumption over brand loyalty and

exclusivity to a given platform company. The fact that the platform Airbnb

provided this purchase opportunity should not be overly scrutinized, as

consumers and suppliers can easily switch platforms should more favorable

conditions present themselves. In an access economy, the consumers seem to

- 114 -

be less interested in trying to identify which brand or platform is more

“them” and more interested in the best economic value. Most marketing

practices are based on the linear supply chain model of building a community

around a brand and capitalizing on consumers then being able to appreciate a

shared identity with their peers with products and services that identify who

they are. Platform home sharing consumers, however, appear to not be

primarily seeking social value out of renting spaces from strangers. Framing

the discussion in terms of community and social exchange may be misleading

for policy makers and academics alike, because these are not the benefits that

consumers expect to receive be participating in this economy.

Alternatively, the practice of platform home sharing in particular and the

sharing economy in general could adopt different names which more

accurately depict their character. The sharing economy is too often depicted

as an altruistic endeavor, wherein the “sharing” aspect is emphasized and the

“economy” aspect is laid to the side. The business models are entirely

for-profit and the consumer behavior is consistent with homo economicus,

therefore the compassionate and goodwill-natured semantics associated with

“sharing” may have larger consequences in framing the issue and public

perception. The term “platform economy” (JPMorgan and Chase, 2016) may

be better suited to address the growing trend; it does not carry any

sentiments with it nor skew consumers’ perceptions of the businesses under

the term.

(1) Satisfaction and Accommodation

On the subject of satisfaction, from the results reveal a universal positive

skewedness across all listing types. This has been the case from earlier

studies on platform home sharing reviews (Zervas, 2015; Overgoor, 2012), and

the consensus is that the host as well as the guest benefit mutually from

giving and receiving highly satisfactory reviews. The host receives a higher

- 115 -

ranking on the platform if he or she consistently receives high satisfaction,

and the guests are accepted by more hosts if they have high reviews from

previous stays. The vicious cycle of peer-to-peer inflated vetting has become

more entrenched, so that on Airbnb every stay is ‘above average’.

According to the mean level of guests each listing type can accommodate,

it is worth highlighting that on average entire homes accommodate fewer

guests than shared rooms. This may be due to the tendency for shared

rooms listings to operate as dormitory guest houses and fit as many guests

as possible.

The primary data made available from the web scraping methodology is

limited, but one may also estimate revenue for an area that was generated

through platform home sharing. Based on the number of reviews as a proxy

for the relative number of visits, one can calculate how much a given listing

has earned. While this is not exact enough for absolute values, it is useful

for comparative analyses for whole cities or larger neighborhoods to

determine which areas are earning more money from platform home sharing.

If the ratio of reviews to visits is kept constant, this may be a valuable tool

for policy makers to measure the efficacy of platform home sharing in

geographically bounded areas.

(2) Multi-listers

After recognizing the profit seeking, economic utility maximizing

characteristics of platform home sharing on Jeju, one of the concerns policy

makers may have with it is the tendency for individual hosts to proactively

rent out multiple properties, effectively becoming a small hotel chain.

Although the data analysis revealed through linear regression that being a

multi-lister does not affect the demand of a particular listing, the legal

implications of running a potentially untaxed business are still present. One

policy suggestion may be to limit the listing ration to one listing per host.

- 116 -

As of October, 2017, approximately half of the listings on Jeju Island were

allocated to multi-listers.

The theory of disruptive innovation needs to be updated to include forms

platform disruption in a consistent manner. Furthermore, platform home

sharing has not yet been proven through empirical studies to disrupt the

incumbent hotel industry. These studies need to be performed in local

contexts to determine if disruption occurs. Platforms derive their effectiveness

and disruptive potential from the scale and scope of their customer networks;

both producers and consumers and both must be considered in tandem when

analyzing their propensity to disrupt. Too often disruptive innovation studies

focus entirely on the demand and forget the supply.

2. Implications

This research contributes to the field of Tourism Management in a number

of unique ways. First, in terms of theory, it grounds platform home sharing

as an economic endeavor, and not social or experiential endeavor. This had

not yet been definitively demonstrated due to the lack of user data and

purchasing behavior. Second, it develops and introduces a unique way to

collect data on an otherwise inaccessible sector of the tourism accommodation

economy. Third, it provides not only an application of regression and

classification tree analyses, but also further develops the theoretical discourse

of such techniques in the Tourism and Hospitality sector. Fourth, it

introduces an empirically, data-driven study based on theory of revealed

preferences to analyze an increasingly relevant actor in Jeju Island’s tourism

sector. This research can contribute to the constructive policy development of

Jeju’s municipal government as it determines how best to address platform

home sharing. It also provides hotel industry professionals market applications

in how to better understand a potential source of local competition.

- 117 -

Pragmatically, this research opens up new avenues of research and

application for tourism practitioners, academics and policymakers to assess

regulatory measures and further integrate community structures through open

data. Now that researchers can conceptually and empirically assess the

various impacts of platform home sharing in terms of market penetration and

consumer behavior, it is possible to evaluate the responses to a variety of

regulatory measures implemented by local, national, supra-national institutions

as well as the platforms themselves. One key aspect of the current platform

home sharing market to keep in mind is that the market is still growing and

should continued to be monitored as it becomes more of a mainstay in

tourism accommodation. As seen in <Figure 5-1> the price and relative

number of reviews for platform home sharing on Jeju are still low, with

prices converging around 60,000 KRW per night and very few reviews. As

the market grows in scope and use, the data may segment into more

discernably different groups.

Local economies are complex systems, made up of energy systems, food

systems, sociocultural systems and housing systems among others. In a way,

they are a system of systems. As the tourism continues to grow, the local

systems more strongly affected by tourism business converge more closely in

the local economy (Cohen et al., 2017). This has created challenges on the

local government level when more and more citizens are engaging in

entrepreneurial activities to diversify household income and leverage

underutilized assets, such as spare rooms. Renowned urbanist, Richard

Florida, has demonstrated that cities which manage to keep their residents by

mitigating emigration are more likely to survive in the future than those

which do not (Chesbrough, 2003). This entails encouraging an active

technology scene, supporting tolerance for diversity and retaining

entrepreneurial talent. The collaborative economic phenomenon embodied in

platform home sharing on the local economic level is well-positioned to fulfill

- 118 -

these three ideals.

<Figure 5-1> Log Price-Review Distribution

- 119 -

In previous confrontations with Airbnb, lawmakers have tried to curtail the

extent to which hosts may rent their properties, or place specific registration

requirements on active hosts (Wachsmuth, 2017). These attempts, however,

have been met by opposition from an energized home sharing community and

ultimately failed. This is what has become known as Travis’ Law, named

after Travis Kalanick, the former CEO of Uber, which states that if a product

appears so superior to the status quo in a society where the government

must be responsive to the people, the people will defend and demand its right

to exist (Isaacson, 2017). As of the time of writing, the local Jeju government

is favorably disposed to cooperatively working with the platform to develop

Jeju’s tourism sector; however, additional transparency in the platform’s

dynamics and access to open data may change its perception by policy

makers.

Hotel incumbents have largely ignored new market entrants when they are

not perceived as a real threat to profits. Then, as the new entrant begins to

expand its network of users, policy makers and incumbents tend to dismiss

and make little of the entrant. Eventually, the actually scale and shifting

paradigm in demand becomes apparent and rash measures are applied to curb

its growth. However, once the network has reached a critical mass of users,

it tends to succeed despite localized limitations.

3. Limitations and Future Research

All studies have their limitations, and this is no exception. The

methodology developed in this research could have more meaningful impact if

it were scaled to a larger geographic area and comparative analyses of

Korean centers such as Busan and Seoul were carried out. Jeju Island was

an ideal testing ground for this research given its geographic isolation,

- 120 -

tourism dependent economy and abundant supply of accommodation. The fact

that platform home sharing has garnered such a reception on the island

despite the abundant supply of traditional tourism accommodation serves as

evidence for its consumer appeal.

In the future, Jeju policy makers should adopt a method to periodically

collect and analyze data on the platform home sharing market. As the market

continues to grow, the need to monitor the economic activity becomes more

pertinent. This research proposes one methodology to accomplish this, but a

more automated system could be developed with further research.

Additionally, this methodology primarily focuses on the characteristics of

supply, however, market segmentation studies of demand and demographic

surveys could provide a deeper understanding of the forces at work in

platform home sharing.

This research methodology could be applied in the following areas in

further studies:

Measure the potential impact of platform home sharing on local hotels. This

would require hotel occupancy and revenue data in located in areas which

have particularly high concentrations of listings.

Determine the efficacy of platform home sharing in alleviating the strain on

accommodation providers during large scale international events. This was the

original purpose of Airbnb from its inception and would make an interesting

study covering the period of the 2018 Olympic Games.

Analyze neighborhood gentrification effects of platform home sharing and

increasing rents due to platform home sharing. Some of the undesired

spillover effects of concentrated platform home sharing are potentially

outpricing local residents and dividing neighborhoods into richer and poorer

sides. Recent studies have revealed that a heavy platform home sharing in

certain neighborhoods may lead to increased rent prices and gentrification

(Lee, 2016; Wachsmuth, 2017). This research provides the first step in

- 121 -

approaching a deeper analysis on the subject.

Compare the growth of platform home sharing and characteristics of supply

across other free tourism economic zones in South Korea such as Busan and

Gangwon province. These areas have been granted relaxed regulations and

provided legal status for home sharing (Yoon, 2016). As the Republic of

Korea decides whether and how to share its market with newcomers from

mobile or online platforms (Joongan Ilbo, 2016), this research would provide

local administrative organizations more insight into how to make those

decisions.

This is not an exhaustive list of possible continuing research, but rather

applications of the data collection techniques developed in this study and

implications for the relationships derived from them. Further relationships

among the variables derived from this data collection methodology may also

be tested through iterations of regression trees in continuing research.

As the presence of platform home sharing continues to grow on Jeju Island,

and in the international tourism industry at large, Schopenhauer’s famous

words are worth remembering (Hassert, 1913):

“Ein jedes Problem durchläuft bis zu seiner Anerkennung drei Stufen: In

der ersten erscheint es lächerlich, in der zweiten wird es bekämpft und in der

dritten gilt es als selbstverständlich”. - Arthur Schopenhauer

Government bureaus and hoteliers alike need to understand the scope and

implications of a growing sharing economy. The platform wave can longer be

considered a negligible phenomenon, its presence occupies an ever-greater

portion commerce in local economies. It changes the way consumers make

purchases, but not why they make them. Policy makers should be aware of

the small business and individual entrepreneurial investments into this sector

in order to mitigate ineffectual responses to its growth.

- 122 -

REFERENCES

Adedoyin, F. (2017). Smart Tourism vis Digital Governance: A Case for Jeju

Volcanic Island and Lava Tubes. Journal of Tourism, Hospitality and Sports 31.

Airbnb. (2017, October 21). What does the room type of a listing mean? Airbnb

Help Articles. Retrieved from https://goo.gl/9r4cWx

Airbnb a. (2015, February 25). Paris Leads the World on Home Sharing. Airbnb

Public Policy. Retrieved from https://goo.gl/jBu1MY

Airbnb a. (2016, April 21). Korean Government Partners with Airbnb to

Supercharge Rural Economy. Airbnb Citizen. Retrieved from

https://goo.gl/AMFfHc

Airbnb b. (2017, October 21). Why do I have to complete a verification process to

host an experience? Airbnb Help Articles. Retrieved from https://goo.gl/z2sydw

Airbnb c. (2016, September 1). Airbnb Law Enforcement Transparency Report.

Airbnb Citizen. Retrieved from https://goo.gl/eLLhzR

Airbnb d. (2017, October 21). How it works. Airbnb Help Articles. Retrieved from

https://goo.gl/pZGerQ

Airbnb Citizen Korea. (2017). Airbnb Partners with Jeju Provincial Government

Partners to Promote Tourism. Airbnb Citizen. Retrieved from

https://goo.gl/u3Q8Ru

Airdna. (2017). Market Minder. Retrieved from https://goo.gl/Rd7JuJ

Armitage, C. & Conner, M. (2010). Efficacy of the Theory of Planned Behaviour: A

Meta-Analytic Review. British Journal of Social Psychology, 40, 471–499.

https://goo.gl/yki4UL

Azjen, I. (2005). Attitudes, Personality and Behavior. McGraw-Hill International.

Barnes, P. (2013, April 8). Rasmar Recognizes Jeju’s Watery Riches. The Jeju

Weekly. News and Travel.

- 123 -

Beaudry, C. (2009). Who’s right, Marshall or Jacobs? The localization versus

urbanization debate. Research Policy, 38(2), 318–337.

Bellin, H. (2017). Some Managerial Thinking About the Sharing Economy.

Marketing Channel Insights 24(1). 97-99.

Bensinger, G. (2017, March 9). Airbnb valued at $31 billion after new funding

round. Wall Street Journal. Retrieved from https://goo.gl/FQ5wCK

Berger et al., (2017). Uber drivers of disruption. Oxford Martin School. January

2017. 1-11. Retrieved from https://goo.gl/j1ZBCF

Boncheck, M. & Choudray, S. P. (2013). Three elements of a successful platform.

Harvard Business Review. Retrieved from https://goo.gl/UMWjfp

Botsman, R. (2017). Thinking. Retrieved from https://goo.gl/iVEckV

Botsman, R. (2013). The sharing economy lacks a shared definition. Fast Company.

November 21, 2013. Retrieved from https://goo.gl/PSK1Mz

Bower, J.L. (1995). Disruptive Technologies: Catching the Wave. Harvard Business

Review. January and February, 1995.

Bower, J.L. and Christensen, C.M. (1995, January-February). Disruptive

technologies: Catching the wave. Harvard Business Review 73 (1), 51.

Cankurt, S. (2016). Proceedings from Intelligent Systems (IS): IEEE 8th

International Conference. Retrieved from https://goo.gl/zbZDJu

Bray, J. (2007). Consumer behavior theory: Approaches and models. Bournemouth

University Press. Poole, United Kingdom.

Carr, (2014). Airbnb unveils a major rebranding effort that paves the way for

sharing more than homes. Fast Company. July 16, 2014. Retrieved from

https://goo.gl/ydeqKd

Case, S. (2016). The third wave: An entrepreneur's vision of the future. New

York: Simon and Schuster.

Chen, J. (2003). Market segmentation by tourists' sentiments. Annals of Tourism

Research, 30(1), 178–193

Chesbrough, H. W. (2003). Open innovation: The new imperative for creating and

- 124 -

profiting from technology. Boston, Mass: Harvard Business School Press.

Choudary, S. (2016). Pipelines, Platforms, and the New Rules of Strategy. Harvard

Business Review. April 2016.

Christensen, C. M. (1997). The Innovator’s Dilemma. New York: Harper Business

Christensen. C. M. (2006). The ongoing process of building a theory of disruption.

Journal of Product Innovation Management 23 (1), 39-55.

Christensen, C. M., McDonald, R., & Raynor, M. E. (2015). What is disruptive

innovation? Harvard Business Review. December, 2015.

Chung, S.Y. Oh, S.S. Kim, S.Y. Han. (2004). Three representative market

segmentation methodologies for hotel guest room customers. Tourism

Management 25 (4) (2004), 429–444

Coase, R. H. (1937). The nature of the firm. Economica 4 (16), 386-405.

Codagnone, C. & Martens, B. (2016). Scoping the sharing economy: Origins,

definitions, impact, and regulatory issues. Joint Research Centre of the European

Commission Working Paper. Retrieved from https://goo.gl/o67ocK

Cohen et al. (2017). The City as a Lab: Open Innovation Meets the Collaborative

Economy. California Management Review 59 (1) 5-13.

Crouch, G. (1992). Marketing international tourism to Australia: A regression

analysis. Tourism Management 13(2), 196-208.

Dahlander, L. Gann, D. (2010). How open is innovation? Research Policy 39(6),

699-709

Das, S. (2017, February 12). The sharing economy creates a Dickensian world for

workers—it masks a dark problem in the labour market. Independent. Retrieved

from https://goo.gl/WUSu5w

do Valle, P. Pintassilgo, A. Matias, F. André. (2012). Tourist attitude towards an

accommodation tax earmarket for environmental protection: A survey in Algarve.

Tourism Management, 33 (2012), 1408–1416

Doh. (2015, October). From the editor: Why we need phenomenon-based research

in international business. Journal of World Business 50, 609-611.

- 125 -

Deleneuville, M. (2016). Le “smart tourism,” une aubaine pour les start-up de la

smart city. Journal du Net. Retrieved from https://goo.gl/Sh7kfF

Deleneuville, M. (2017). Open data: les transporteurs craigngent pout leurs secret

industriels. Journal du Net. April 3, 2017. Retrieved from https://goo.gl/rg7yyh

Eckhardt, G. M. & Bardhi, F. (2015, January 28). The sharing economy isn’t about

sharing at all. The Harvard Business Review. Retrieved from

https://goo.gl/sUfgVv

The Economist. (2017, May 27). Among private tech firms, Airbnb has pursued a

distinct strategy. Retrieved from https://goo.gl/uCjN2y

The Economist. (2011, June 30). Aiming high. Retrieved from https://goo.gl/xeqMh6

Elder, D. (2017, October 18). Population of Jeju-si expected to surpass half a

million next year. The Jeju Weekly. Retrieved from https://goo.gl/AC7wZS

Fehr, E. & Gächter, S. (2000). Fairness and retaliation: The economics of

reciprocity. Journal of Economic Perspectives 14 (3), 158-181.

Fielding, R. T., Gettys, J., Mogul, Jeffrey C.; Nielsen, Henrik Frystyk; Masinter,

Larry; Leach, Paul J.; Berners-Lee, Tim (June 1999). Hypertext Transfer Protocol

– HTTP/1.1. IETF. The Internet Society. RFC 2616.

Foroohar, R. (2016). How the gig economy could save capitalism. Time. Retrieved

from https://goo.gl/6gjrxS

Frenken, K. (2017). Putting the sharing economy into perspective. Environmental

Innovation and Societal Transitions 23. 3-10

Fuchs C., Hofkirchner W., Schafranek M., Raffl C., Sandoval M., & Bichler R.

(2010). Theoretical foundations of the web: Cognition, communication, and

co-operation. Towards an understanding of web 1.0, 2.0, 3.0. Future Internet 2

(1), 41-59.

Furchtgott-Roth, H. (2016). The myth of ‘sharing’ in a sharing economy. Forbes.

Retrieved from https://goo.gl/umEcfa

Finley, K. (2013). Trust in the sharing economy: An exploratory study. University

of Warwick Press. Master’s Dissertation. Retrieved from https://goo.gl/WZwPkp

- 126 -

Freitag, J. 2017. Airbnb & Hotel Performance: Ana analysis of proprietary data in

13 global markets. Smith Travel Research. https://goo.gl/fEXyFj

Furr, N. and Zhu, F. (2016, April). Products to platforms making the leap. Harvard

Business Review. Retrieved from https://goo.gl/1Dg31a

Gansky, L. (2010). The Mesh: Why the future is sharing. New York: Penguin

Group.

Gerwe, O. & Silva, R. (2016). Business model innovation and substitution: Effect of

Airbnb entry on the hotel industry. Working paper. Retrieved from

https://goo.gl/N6WUMV

Granovetter, M. S. (1973, May). The strength of weak ties. American Journal of

Sociology 78 (6), 1360-1380.

Gravari-Barbas, M. & Guinand, S. (2017). Tourism and gentrification in

contemporary metropolises: International perspectives. Oxford: Routledge.

Gretzel, U., Koo, C., Sigala, M., & Xiangm C. (2015). Smart tourism: Foundations

and developments. Electronic Markets 25.

Guttentag, D. (2016). Why tourists choose Airbnb: A motivation-based

segmentation study underpinned by innovation concepts (Doctoral dissertation).

UWSpace Waterloo’s Institutional Repository. Retrieved from

https://goo.gl/DdD1uX

Ikkala, T. & Lampinen, A. (2015). Monetizing network hospitality: hospitality and

sociability in the context of Airbnb. Proceedings of the 18th ACM Conference on

Computer Supported Cooperative Work & Social Computing, ACM, Vancouver,

1033-44.

Isaacson, W. (2017, June 19). How Uber and Airbnb became poster children for the

disruption economy. New York Times. Retrieved from https://goo.gl/89SvB2

Hamada, R. (2017, August 17). Concern as Airbnb properties “snowball” across

Scotland. The Ferret. Retrieved from https://goo.gl/qc1SaL

Hambrick, D. (2007). Upper Echelons Theory: an update. The Academy of

Management Review 32(2). 334-343.

- 127 -

Hassert, K. (1913). Allgemeine Verkehrsgeographie. Berlin

Helft, M. (2017, September 21). How IoT is making workplaces more efficient.

Forbes. Retrieved from https://goo.gl/kCr9Ms

Heinrichs, H. (2013). Sharing Economy: A potential new pathway to sustainability.

GAIA 22(4). 228-231

Höjer, M., & Wangel, J. (2015). Smart Sustainable Cities: Definition and

Challenges. In L. M. Hilty & B. Aebischer (Eds.), ICT Innovations for

Sustainability, Advances in Intelligent Systems and Computing 333–344 New

York: Springer.

Hwang, J., Park, H. Y., & Hunter,W. C. (2015). Constructivism in smart tourism

research: Seoul destination image. Asia Pacific Journal of Information Systems 25

(1), 163–178.

Moazed, A. Johnson, D. (2016, February 27). Why Clayton Christensen is wrong

about Uber and disruptive innovation. Retrieved from https://goo.gl/3eFSQU

Moazed, A. (2016). Modern Monopolies: What it takes to dominate the 21st

Century Economy. St. Martin’s Press. New York.

Joongang Ilbo. (2016, February 19). We need the sharing economy. Korea

JoongAng Daily. Retrieved from https://goo.gl/PavAjm

Kahle L. R. & Close, A. (2006). Consumer behavior knowledge for effective sports

and event marketing. New York: Taylor & Francis.

Kessler, Andy. (2014, January 14). Brian Chesky: The Sharing Economy and its

enemies. The Wall Street Journal.

JPMorgan and Chase. (2016). The online platform economy: Has growth peaked?

Retrieved from https://goo.gl/DtTwx6

Kass, G. (1980). An Exploratory Technique for Investigating Large Quantities of

Categorical Data. Journal of the Royal Statistical Society. Series C (Applied

Statistics). Vol. 29, No. 2 (1980), 119-127

Kim, D.J. Timothy, J. Hwang (2011). Understanding Japanese tourists' shopping

preferences using the decision tree analysis method. Tourism Management, 32 (3)

- 128 -

(2011), 544–554

Kim, H. (2015). Percieved Destination Personality Based on Visitors’ Experience: A

Case Study of Jeju Island. Tourism Travel and Research Association: Advancing

Tourism Research Globally. 2015 TTRA International Conference.

King, A. A. & Baartartogtokh, B. (2015, September 15). How useful is the theory

of disruptive innovation? MIT Sloan Management Review. Retrieved from

https://goo.gl/qC6TPy

Kokalitcheva, K. (2016, August 6). How Airbnb is preparing for the Rio Olympics.

Fortune. Retrieved from https://goo.gl/QXNbxE

Kuhn, T. S. (1996). The structure of scientific revolutions. Chicago, IL: University

of Chicago Press.

Lampinen, A. (2016). Why we need to examine multiple social network sites.

Communication and the Public 1 (4). 489-493

Lee, D. (2016). How Airbnb short-term rentals exacerbate Los Angeles’s affordable

housing crisis: Analysis and policy recommendations. Harvard Law and Policy

Review 229.

Leathwick, J. R., Lehmann, A., & McCoverton, J. (2002). GRASP: Generalized

regression analysis and spatial prediction. Ecological Modelling 157 (2-3),

189-207.

Lepore, J. (2014, June 23). The disruption machine: What the gospel of innovation

gets wrong. New Yorker. Retrieved from https://goo.gl/N3dxkG

Saunders, A. (2014, September 29). Is disruptive innovation dead? Management

Today. Retrieved from https://goo.gl/fVm1Ha

Loudon, D. L., et al., (1993). Consumer behavior concepts and applications. 4th ed.:

McGraw Hill.

Loh, W. Y. (2011). Classification and regression trees. WIREs: Data Mining and

Knowledge Discovery 1, 14-23.

Loh, W. Y. (2008). Classification and regression tree models. In Ruggeri, Kennet,

and Faltin (Eds), Encyclopedia of Statistics in Quality and Reliability (315-323).

- 129 -

New Jersey: Wiley.

McCarty, J; Hastak, M. (2007). Segmentation approaches in data-mining: A

comparison of RFM, CHAID, and logistic regression. Journal of Business

Research, 60 (2007), 656–662

McRae, H. (2016, September 14). A lack of jobs isn’t the issue in the UK – it’s

the quality of them. The Independent. Retrieved from https://goo.gl/yZqKDM

Mill, J. S. (1836, October). On the definition of political economy, and on the

method of investigation proper to it. Library of Economics and Liberty. England

Mill, J.S. (1874). Essays on Some Unsettled Questions of Political Economy, 2nd

ed. London: Longmans, Green, Reader & Dyer.

Oksam, J. (2015). Airbnb: The future of networked hospitality businesses. Journal

of Tourism Futures 2 (1), 22-42.

O’Reilly, T. (2005). What is Web 2.0. In H. M. Donelan, K. Kear, & M. Ramage

(Eds.). Online communication and collaboration: A reader. Routledge. New York.

Ostrom, E. (2000). Collective action and the evolution of social norms. Journal of

Economic Perspectives 14 (3), 137-158.

Overgoor, J., Potts, C., & Wulczyn, E. (2012). Trust propagation with mixed-effects

models. Stanford University Working Paper. Retrieved from

https://goo.gl/1UwgYG

Peek, G. (2014). City in Transition: Urban Open Innovation Environments as a

Radical Innovation. Rotterdam University Press. Retrieved from

https://goo.gl/1UwgYG

Perez, F; Bethencourt-Cejas, M. (2016). CHAID algorithm as an appropriate

analytical method for tourism market segmentation. Journal of Destination and

Marketing Management Volume 5(3), 275-282.

Perez, 2005. F.M. Díaz-Pérez, M. Bethencourt-Cejas, J.A. Álvarez-González. The

segmentation of Canary island tourism markets by expenditure: Implication for

tourism policy Tourism Management, 26 (6) (2005), 961–964

Persky, J. (1995). The ethology of Homo economicus. The Journal of Economic

- 130 -

Perspectives 9 (2), 221-231.

Python Documentation. (2013). Retrieved from https://goo.gl/VfRaUG

Python Documentation. (2017a). Retrieved from https://goo.gl/i3Ef5P

Python Documentation. (2017b). Retrieved from https://goo.gl/7vswLM

Python Documentation. (2017c). Retrieved from https://goo.gl/K2oR1d

Python Documentation. (2017d). Retrieved from https://goo.gl/DkdK1g

Python Documentation. (2017e). Retrieved from https://goo.gl/QiMQnr

Raynor, M. (2013). Three rules for making a company truly great. Harvard

Business Review. April, 2013.

Reich, R. (2015, February 2). The share-the-scraps economy. Retrieved from

https://goo.gl/pwUceT

Rick, T. (2013, July 26). Will collaborative consumption disrupt traditional business

models. Retrieved from https://goo.gl/95oPzT

Roucha, R. (2015). On the ethics of web scraping. Retrieved from

https://goo.gl/7auibd

Vazquez Sampere, J. P. (2016, April 8). Why platform disruption is so much bigger

than product disruption. Harvard Business Review. Retrieved from

https://goo.gl/mYxLpb

Sameulson, P. (1938). A note on the pure theory of consumer’s behavior.

Economica 5 (17), 61-71.

Satell, G. (2017, June 21). The 4 types of innovation and the problems they solve.

Harvard Business Review. Retrieved from https://goo.gl/r2hC2g

Satell, G. (2013, June 26). 4 ways open innovation can drive your business

forward. Digital Toronto. Retrieved from https://goo.gl/b6Z8HG

Shaughnessy, H. (2016). Platform wave disruption: A new theory of disruption and

the eclipse of American power. New York.

Shead, S. (2016). Airbnb is looking at ways of increasing the amount of interaction

between hosts and guests. Business Insider. Retrieved from https://goo.gl/os8BcH

Slee, T. (2016). Airbnb data collection methodology and accuracy. Retrieved from

- 131 -

https://goo.gl/s3wpZ9

Slee, T. (2017). What’s Yours is Mine. OR Publications. Ontario.

Smith, A. (1776). The wealth of nations, Books I-III. New York: Penguin Classics,

1986, page 119

Southcott, D. (2015, September 10). Smart Support for Jeju Entrepreneurs. Jeju

Weekly. Community

Staab, S., & Werthner, H. (2002, November-December). Intelligent systems for

tourism. IEEE Intelligent Systems, 53–55.

Stors, N. (2016). Motives for using Airbnb in metropolitan tourism – why do

people sleep in the bed of a stranger?. Regions - The voice of the membership.

299. 17-19.

Sundararajan, A. (2003). Network Effects. New York University Publications.

Retrieved from https://goo.gl/FB2LQt

Sundararajan, Arun. (2016). The Sharing Economy: The End of Employment and

the Rise of Crowd-Based Capitalism. Boston.

Sunil, J., & Noah, Z. (2015). Policymaking for the Sharing Economy: Beyond

Whack-A-Mole. Toronto: Mowat Centre, University of Toronto. Retrieved from:

https://goo.gl/G4M9sj (20-5-2015)

Sutton, C. (2004). Classification and Regression Trees, Bagging, and Boosting.

Handbook of Statistics 24. 303-329.

Ting, D. (2017). Retrieved from https://goo.gl/gc5zPB

Ting, D. (2016). Retrieved from https://goo.gl/WUajm7

Tsang, A. (2017). Retrieved from https://goo.gl/wwgEWN

Tsotsis, A. (2011). Retrieved from https://goo.gl/8UAg4T

Tuttle, B. (2015, July 9). Marriott’s CEO just made a pretty good sales pitch for

Airbnb? Money.com, Retrieved from https://goo.gl/WcZP2U

Tyagi, C. and Kumar, A. (2004). Consumer behavior. Atlantic Publishers, US

UNWTO (2015). Understanding Tourism: Basic Glossary. Accessed online (May 25,

2015) at https://goo.gl/cCiL88

- 132 -

Roberts, H. (2016, November 11). Analysts say that Airbnb is hurting hotels more

than predicted. Business Insider Deutschland. Retrieved from

https://goo.gl/SL75DC

Rothkopf, E. (2014). CCTP-725: remix and dialogic culture. Georgetown University

Press. Retrieved from https://goo.gl/F28D2Q

Varian, H. (2012). Revealed preference and its applications. The Economic Journal

122(560). p 332-338

Wachsmuth, D. (2017). Airbnb and the Rent Gap: gentrification through the sharing

economy. McGill University Press. Retrieved from https://goo.gl/RUx6g7

Werthner and Ricci. (2004). E-Commerce and Tourism. Communications of the

ACM 47(12). p 101-105.

West, J. Gallagher, S. (2006). Challenges of open innovation: the paradox of firm

investment and open source software. R&D Management 36(3). 319-331.

Whiteman, M. (2014, June 30). The Sharing Economy Isn’t Really a Disruption at

All. Aspen Institute College. Retrieved from https://goo.gl/LrddoM

Williamson, O. (1979). Transaction-Cost Economics: The governance of contractual

relations. Journal of Law and Economics 22(2). p 233-261

Wong, S. (2006). Foundations of Paul Samuelson’s Revealed Preference Theory.

Routledge. Boston.

Yonghap, P. (2016, June 26). Park Vows to Make Jeju and Island of

Smart-Tourism and Energy Self-sufficiency. Yonghap News Agency. National

Politics and Diplomacy

Yoon, J. Y. (2016, February 10). Government will ease rules to nurture sharing

economy. Korea Times. Retrieved from https://goo.gl/esnzS8

Yu, H. (2017, February 16). Marriott and Hilton Stay Ahead of the Sharing

Economy, Proving thar Airbnb is not the Uber of Hotels. Forbes. Retrieved

from https://goo.gl/bSxnbG

Yuija, C. (2015, July). Why people choose Airbnb over hotel. Paper presented at

82nd Annual TOSOK International Conference. Pyeongchang, South Korea.

- 133 -

Zervas, G. (2016). The Rise of the Sharing Economy: Estimating the Impact of

Airbnb on the Hotel Industry. Boston University Press. Retrieved from

https://goo.gl/rVbeaL

Zervas, G. (2015). A first look at Online Reputation on Airbnb, Where Every Stay

os Above Average. Social Science Research. Retrieved from

https://goo.gl/F7wu6a

Zinkhan, G. M. (1992). Human nature and models of consumer decision making.

Journal of Advertising 21 (4), ii

- 134 -

APPENDIX A

Platform Home Sharing Scraping Tool “airbnb.py”

This tool is the which functionally retrieves the data from Airbnb’s listing pages.

==
Airbnb web site scraper, for analysis of Airbnb listings
Tom Slee, 2013--2017.
#
function naming conventions:
ws_get = get from web site
db_get = get from database
db_add = add to the database
#
function name conventions:
add = add to database
display = open a browser and show
list = get from database and print
print = get from web site and print
==
import logging
import argparse
import sys
import time
import requests
from lxml import html
from datetime import datetime
import psycopg2
import psycopg2.errorcodes
import webbrowser
from airbnb_config import ABConfig
from airbnb_survey import ABSurvey, ABSurveyByBoundingBox
from airbnb_survey import ABSurveyByNeighborhood, ABSurveyByZipcode
from airbnb_listing import ABListing
import airbnb_ws

==
CONSTANTS
==

logger = logging.getLogger()

def list_search_area_info(config, search_area):
try:
conn = config.connect()
cur = conn.cursor()
cur.execute("""

select search_area_id
from search_area where name=%s
""", (search_area,))

- 135 -

result_set = cur.fetchall()
cur.close()
count = len(result_set)
if count == 1:
print("\nThere is one search area called",

str(search_area),
"in the database.")

elif count > 1:
print("\nThere are", str(count),

"cities called", str(search_area),
"in the database.")

elif count < 1:
print("\nThere are no cities called",

str(search_area),
"in the database.")

sys.exit()
sql_neighborhood = """select count(*) from neighborhood
where search_area_id = %s"""
sql_search_area = """select count(*) from search_area
where search_area_id = %s"""
for result in result_set:
search_area_id = result[0]
cur = conn.cursor()
cur.execute(sql_neighborhood, (search_area_id,))
count = cur.fetchone()[0]
cur.close()
print("\t" + str(count) + " neighborhoods.")
cur = conn.cursor()
cur.execute(sql_search_area, (search_area_id,))
count = cur.fetchone()[0]
cur.close()
print("\t" + str(count) + " Airbnb cities.")

except psycopg2.Error as pge:
logger.error(pge.pgerror)
logger.error("Error code " + pge.pgcode)
logger.error("Diagnostics " + pge.diag.message_primary)
cur.close()
conn.rollback()
raise

except Exception:
logger.error("Failed to list search area info")
raise

def list_surveys(config):
try:
conn = config.connect()
cur = conn.cursor()
cur.execute("""
select survey_id, to_char(survey_date, 'YYYY-Mon-DD'),

survey_description, search_area_id, status
from survey
where survey_date is not null

- 136 -

and status is not null
and survey_description is not null
order by survey_id asc""")

result_set = cur.fetchall()
if len(result_set) > 0:
template = "| {0:3} | {1:>12} | {2:>50} | {3:3} | {4:3} |"
print(template.format("ID", "Date", "Description", "SA", "status"))
for survey in result_set:
(survey_id, survey_date, desc, sa_id, status) = survey
print(template.format(survey_id, survey_date, desc, sa_id, status))

except Exception:
logger.error("Cannot list surveys.")
raise

def db_ping(config):
try:
conn = config.connect()
if conn is not None:
print("Connection test succeeded")

else:
print("Connection test failed")

except Exception:
logger.exception("Connection test failed")

def db_add_survey(config, search_area):
try:
conn = config.connect()
cur = conn.cursor()
Add an entry into the survey table, and get the survey_id
sql = """
insert into survey (survey_description, search_area_id)
select (name || ' (' || current_date || ')') as survey_description,
search_area_id
from search_area
where name = %s
returning survey_id"""
cur.execute(sql, (search_area,))
survey_id = cur.fetchone()[0]

Get and print the survey entry
cur.execute("""select survey_id, survey_date,
survey_description, search_area_id
from survey where survey_id = %s""", (survey_id,))
(survey_id,
survey_date,
survey_description,
search_area_id) = cur.fetchone()
conn.commit()
cur.close()
print("\nSurvey added:\n" +

"\n\tsurvey_id=" + str(survey_id) +

- 137 -

"\n\tsurvey_date=" + str(survey_date) +
"\n\tsurvey_description=" + survey_description +
"\n\tsearch_area_id=" + str(search_area_id))

except Exception:
logger.error("Failed to add survey for " + search_area)
raise

def db_get_room_to_fill(config, survey_id):
for attempt in range(config.MAX_CONNECTION_ATTEMPTS):
try:
conn = config.connect()
cur = conn.cursor()
if survey_id == 0: # no survey specified
sql = """
select room_id, survey_id
from room
where deleted is null
order by random()
limit 1
"""

cur.execute(sql)
else:
sql = """
select room_id, survey_id
from room
where deleted is null
and survey_id = %s
order by random()
limit 1
"""

cur.execute(sql, (survey_id,))
(room_id, survey_id) = cur.fetchone()
listing = ABListing(config, room_id, survey_id)
cur.close()
conn.commit()
return listing

except TypeError:
logger.info("Finishing: no unfilled rooms in database --")
conn.rollback()
del (config.connection)
return None

except Exception:
logger.exception("Error retrieving room to fill from db")
conn.rollback()
del (config.connection)

return None

def ws_get_city_info(config, city, flag):
try:
url = config.URL_SEARCH_ROOT + city
response = airbnb_ws.ws_request_with_repeats(config, url)

- 138 -

if response is None:
return False

tree = html.fromstring(response.text)
try:
citylist = tree.xpath(
"//input[@name='location']/@value")

neighborhoods = tree.xpath(
"//input[contains(@id, 'filter-option-neighborhoods')]/@value")

if flag == config.FLAGS_PRINT:
print("\n", citylist[0])
print("Neighborhoods:")
for neighborhood in neighborhoods:
print("\t", neighborhood)

elif flag == config.FLAGS_ADD:
if len(citylist) > 0:
conn = config.connect()
cur = conn.cursor()
check if it exists
sql_check = """
select name
from search_area
where name = %s"""

cur.execute(sql_check, (citylist[0],))
if cur.fetchone() is not None:
logger.info("City already exists: " + citylist[0])
return

sql_search_area = """insert
into search_area (name)
values (%s)"""

cur.execute(sql_search_area, (citylist[0],))
city_id = cur.lastrowid
sql_identity = """select
currval('search_area_search_area_id_seq')
"""
cur.execute(sql_identity, ())
search_area_id = cur.fetchone()[0]
sql_city = """insert

into city (name, search_area_id)
values (%s,%s)"""

cur.execute(sql_city, (city, search_area_id,))
logger.info("Added city " + city)
logger.debug(str(len(neighborhoods)) + " neighborhoods")

if len(neighborhoods) > 0:
sql_neighborhood = """
insert into neighborhood(name, search_area_id)
values(%s, %s)
"""

for neighborhood in neighborhoods:
cur.execute(sql_neighborhood, (neighborhood,

search_area_id,))
logger.info("Added neighborhood " + neighborhood)

else:
logger.info("No neighborhoods found for " + city)

- 139 -

conn.commit()
except UnicodeEncodeError:
if sys.version_info >= (3,):
logger.info(s.encode('utf8').decode(sys.stdout.encoding))
else:
logger.info(s.encode('utf8'))
unhandled at the moment
pass

except Exception:
logger.error("Error collecting city and neighborhood information")
raise

except Exception:
logger.error("Error getting city info from website")
raise

def display_room(config, room_id):
webbrowser.open(config.URL_ROOM_ROOT + str(room_id))

def display_host(config, host_id):
webbrowser.open(config.URL_HOST_ROOT + str(host_id))

def fill_loop_by_room(config, survey_id):
"""
Master routine for looping over rooms (after a search)
to fill in the properties.
"""
room_count = 0
while room_count < config.FILL_MAX_ROOM_COUNT:
try:
if len(config.HTTP_PROXY_LIST) == 0:
logger.info(
"No proxies left: re-initialize after {0} seconds".format(
config.RE_INIT_SLEEP_TIME))

time.sleep(config.RE_INIT_SLEEP_TIME) # be nice
config = ABConfig()

room_count += 1
listing = db_get_room_to_fill(config, survey_id)
if listing is None:
return None

else:
if listing.ws_get_room_info(config.FLAGS_ADD):
pass

else: # Airbnb now seems to return nothing if a room has gone
listing.save_as_deleted()

except AttributeError:
logger.error("Attribute error: marking room as deleted.")
listing.save_as_deleted()

except Exception as e:
logger.error("Error in fill_loop_by_room:" + str(type(e)))
raise

- 140 -

def parse_args():
"""
Read and parse command-line arguments
"""
parser = argparse.ArgumentParser(
description='Manage a database of Airbnb listings.',
usage='%(prog)s [options]')

parser.add_argument("-v", "--verbose",
action="store_true", default=False,
help="""write verbose (debug) output to the log file""")

parser.add_argument("-c", "--config_file",
metavar="config_file", action="store", default=None,
help="""explicitly set configuration file, instead of
using the default <username>.config""")

Only one argument!
group = parser.add_mutually_exclusive_group()
group.add_argument('-asa', '--addsearcharea',

metavar='search_area', action='store', default=False,
help="""get and save the name and neighborhoods
for search area (city)""")

group.add_argument('-asv', '--addsurvey',
metavar='search_area', type=str,
help="""add a survey entry to the database,
for search_area""")

group.add_argument('-dbp', '--dbping',
action='store_true', default=False,
help='Test the database connection')

group.add_argument('-dh', '--displayhost',
metavar='host_id', type=int,
help='display web page for host_id in browser')

group.add_argument('-dr', '--displayroom',
metavar='room_id', type=int,
help='display web page for room_id in browser')

group.add_argument('-f', '--fill', nargs='?',
metavar='survey_id', type=int, const=0,
help='fill details for rooms collected with -s')

group.add_argument('-lsa', '--listsearcharea',
metavar='search_area', type=str,
help="""list information about this search area
from the database""")

group.add_argument('-lr', '--listroom',
metavar='room_id', type=int,
help='list information about room_id from the database')

group.add_argument('-ls', '--listsurveys',
action='store_true', default=False,
help='list the surveys in the database')

group.add_argument('-psa', '--printsearcharea',
metavar='search_area', action='store', default=False,
help="""print the name and neighborhoods for
search area (city) from the Airbnb web site""")

group.add_argument('-pr', '--printroom',
metavar='room_id', type=int,

- 141 -

help="""print room_id information
from the Airbnb web site""")

group.add_argument('-ps', '--printsearch',
metavar='survey_id', type=int,
help="""print first page of search information
for survey from the Airbnb web site""")

group.add_argument('-psn', '--printsearch_by_neighborhood',
metavar='survey_id', type=int,
help="""print first page of search information
for survey from the Airbnb web site,
by neighborhood""")

group.add_argument('-psz', '--printsearch_by_zipcode',
metavar='survey_id', type=int,
help="""print first page of search information
for survey from the Airbnb web site,
by zipcode""")

group.add_argument('-psb', '--printsearch_by_bounding_box',
metavar='survey_id', type=int,
help="""print first page of search information
for survey from the Airbnb web site,
by bounding_box""")

group.add_argument('-s', '--search',
metavar='survey_id', type=int,
help='search for rooms using survey survey_id')

group.add_argument('-sn', '--search_by_neighborhood',
metavar='survey_id', type=int,
help='search for rooms using survey survey_id')

group.add_argument('-sb', '--search_by_bounding_box',
metavar='survey_id', type=int,
help="""search for rooms using survey survey_id,
by bounding box
""")

group.add_argument('-sz', '--search_by_zipcode',
metavar='survey_id', type=int,
help="""search for rooms using survey_id,
by zipcode""")

group.add_argument('-V', '--version',
action='version',
version='%(prog)s, version ' +
str(SCRIPT_VERSION_NUMBER))

group.add_argument('-?', action='help')

args = parser.parse_args()
return (parser, args)

def main():
(parser, args) = parse_args()
ab_config = ABConfig(args)
try:
if args.search:
survey = ABSurveyByNeighborhood(ab_config, args.search)
survey.search(ab_config.FLAGS_ADD)

elif args.search_by_neighborhood:

- 142 -

survey = ABSurveyByNeighborhood(ab_config, args.search_by_neighborhood)
survey.search(ab_config.FLAGS_ADD)

elif args.search_by_zipcode:
survey = ABSurveyByZipcode(ab_config, args.search_by_zipcode)
survey.search(ab_config.FLAGS_ADD)

elif args.search_by_bounding_box:
survey = ABSurveyByBoundingBox(ab_config, args.search_by_bounding_box)
survey.search(ab_config.FLAGS_ADD)

elif args.fill is not None:
fill_loop_by_room(ab_config, args.fill)

elif args.addsearcharea:
ws_get_city_info(ab_config, args.addsearcharea, ab_config.FLAGS_ADD)

elif args.addsurvey:
db_add_survey(ab_config, args.addsurvey)

elif args.dbping:
db_ping(ab_config)

elif args.displayhost:
display_host(ab_config, args.displayhost)

elif args.displayroom:
display_room(ab_config, args.displayroom)

elif args.listsearcharea:
list_search_area_info(ab_config, args.listsearcharea)

elif args.listroom:
listing = ABListing(ab_config, args.listroom, None)
listing.print_from_db()

elif args.listsurveys:
list_surveys(ab_config)

elif args.printsearcharea:
ws_get_city_info(ab_config, args.printsearcharea, ab_config.FLAGS_PRINT)

elif args.printroom:
listing = ABListing(ab_config, args.printroom, None)
listing.ws_get_room_info(ab_config.FLAGS_PRINT)

elif args.printsearch:
survey = ABSurveyByNeighborhood(ab_config, args.printsearch)
survey.search(ab_config.FLAGS_PRINT)

elif args.printsearch_by_neighborhood:
survey = ABSurveyByNeighborhood(ab_config, args.printsearch_by_neighborhood)
survey.search(ab_config.FLAGS_PRINT)

elif args.printsearch_by_bounding_box:
survey = ABSurveyByBoundingBox(ab_config, args.printsearch_by_bounding_box)
survey.search(ab_config.FLAGS_PRINT)

elif args.printsearch_by_zipcode:
survey = ABSurveyByZipcode(ab_config, args.printsearch_by_zipcode)
survey.search(ab_config.FLAGS_PRINT)

else:
parser.print_help()

except (SystemExit, KeyboardInterrupt):
sys.exit()

except Exception:
logger.exception("Top level exception handler: quitting.")
sys.exit(0)

if __name__ == "__main__": main()

- 143 -

APPENDIX B

Platform Home Sharing Scraper Configuration Tool “airbnb_config.py”

This tool is programmed to configure the web scraper located in appendix A. It uses several

third-party modules to effectively call functions.

==
Airbnb Configuration module, for use in web scraping and analytics
==
import logging
import psycopg2
import psycopg2.errorcodes
import os
import configparser
import sys
from datetime import datetime

logger = logging.getLogger()
logger.info("Logger got")

class ABConfig():

def __init__(self, args=None):
""" Read the configuration file <username>.config to set up the run
"""
self.config_file = None
self.log_level = logging.INFO
if args is not None:
self.config_file=args.config_file
try:
if args.verbose:
self.log_level = logging.DEBUG

else:
self.log_level = logging.INFO

except:
self.log_level = logging.INFO

self.connection = None
self.FLAGS_ADD = 1
self.FLAGS_PRINT = 9
self.FLAGS_INSERT_REPLACE = True
self.FLAGS_INSERT_NO_REPLACE = False
self.URL_ROOT = "https://www.airbnb.com/"
self.URL_ROOM_ROOT = self.URL_ROOT + "rooms/"
self.URL_HOST_ROOT = self.URL_ROOT + "users/show/"
self.URL_SEARCH_ROOT = self.URL_ROOT + "s/"
self.URL_API_SEARCH_ROOT = self.URL_ROOT + "search/search_results"
self.SEARCH_AREA_GLOBAL = "UNKNOWN" # special case: sample listings globally
self.SEARCH_RECTANGLE_EDGE_BLUR = 0.1
self.SEARCH_BY_NEIGHBORHOOD = 'neighborhood' # default
self.SEARCH_BY_ZIPCODE = 'zipcode'
self.SEARCH_BY_BOUNDING_BOX = 'bounding box'

- 144 -

self.SEARCH_LISTINGS_ON_FULL_PAGE = 18
self.HTTP_PROXY_LIST = []
self.HTTP_PROXY_LIST_COMPLETE = []

try:
config = configparser.ConfigParser()

if self.config_file is None:
look for username.config on both Windows (USERNAME) and Linux (USER)
if os.name == "nt":
username = os.environ['USERNAME']

else:
username = os.environ['USER']

self.config_file = username + ".config"
logging.info("Reading configuration file " + self.config_file)
if not os.path.isfile(self.config_file):
logging.error("Configuration file " + self.config_file + " not found.")
sys.exit()

config.read(self.config_file)

database
try:
self.DB_HOST = config["DATABASE"]["db_host"] if ("db_host" in

config["DATABASE"]) else None
self.DB_PORT = config["DATABASE"]["db_port"]
self.DB_NAME = config["DATABASE"]["db_name"]
self.DB_USER = config["DATABASE"]["db_user"]
self.DB_PASSWORD = config["DATABASE"]["db_password"]

except Exception:
logger.error("Incomplete database information in " + config_file + ": cannot

continue.")
sys.exit()

network
try:
self.HTTP_PROXY_LIST = config["NETWORK"]["proxy_list"].split(",")
self.HTTP_PROXY_LIST = [x.strip() for x in self.HTTP_PROXY_LIST]

except Exception:
logger.warning("No proxy_list in " + config_file + ": not using proxies")
self.HTTP_PROXY_LIST = []

self.HTTP_PROXY_LIST_COMPLETE = list(self.HTTP_PROXY_LIST)
logging.info("Complete proxy list has {p}

proxies".format(p=len(self.HTTP_PROXY_LIST_COMPLETE)))
try:
self.USER_AGENT_LIST = config["NETWORK"]["user_agent_list"].split(",,")
self.USER_AGENT_LIST = [x.strip() for x in self.USER_AGENT_LIST]
self.USER_AGENT_LIST = [x.strip('"') for x in self.USER_AGENT_LIST]

except Exception:
logger.info("No user agent list in " + username +

".config: not using user agents")
self.USER_AGENT_LIST = []

self.MAX_CONNECTION_ATTEMPTS = \
int(config["NETWORK"]["max_connection_attempts"])

self.REQUEST_SLEEP = float(config["NETWORK"]["request_sleep"])

- 145 -

self.HTTP_TIMEOUT = float(config["NETWORK"]["http_timeout"])

survey
self.FILL_MAX_ROOM_COUNT = int(config["SURVEY"]["fill_max_room_count"])
self.ROOM_ID_UPPER_BOUND = int(config["SURVEY"]["room_id_upper_bound"])
self.SEARCH_MAX_PAGES = int(config["SURVEY"]["search_max_pages"])
self.SEARCH_MAX_GUESTS = int(config["SURVEY"]["search_max_guests"])
self.SEARCH_MAX_RECTANGLE_ZOOM = int(
config["SURVEY"]["search_max_rectangle_zoom"])

self.RE_INIT_SLEEP_TIME = float(config["SURVEY"]["re_init_sleep_time"])

except Exception:
logger.exception("Failed to read config file properly")
raise

def connect(self):
get a database connection
""" Return a connection to the database"""
try:
if (not hasattr(self, "connection") or
self.connection is None or self.connection.closed != 0):
cattr = dict(
user=self.DB_USER,
password=self.DB_PASSWORD,
database=self.DB_NAME

)
if self.DB_HOST is not None:
cattr.update(dict(

host=self.DB_HOST,
port=self.DB_PORT,
))

self.connection = psycopg2.connect(**cattr)
self.connection.set_client_encoding('UTF8')

return self.connection
except psycopg2.OperationalError as pgoe:
logger.error(pgoe.message)
raise

except Exception:
logger.error("Failed to connect to database.")
raise

- 146 -

APPENDIX C

Platform Home Sharing Website Requests “airbnb_ws.py”

This tool imports key m,odules to handle requests from Airbnb’s website.

import logging
import sys
import random
import time
import requests
from airbnb_config import ABConfig

Set up logging
logger = logging.getLogger(__name__)

def ws_request_with_repeats(config, url, params=None):
Return None on failure
for attempt_id in range(config.MAX_CONNECTION_ATTEMPTS):

try:
response = ws_request(config, url, attempt_id, params)
if response is None:
continue

elif response.status_code == requests.codes.ok:
return response

except (SystemExit, KeyboardInterrupt):
raise

except AttributeError:
logger.exception("AttributeError retrieving page")

except Exception as ex:
logger.error("Failed to retrieve web page " + url)
logger.exception("Exception retrieving page: " + str(type(ex)))
Failed

return None

def ws_request(config, url, attempt_id, params=None):
"""
Individual web request: returns a response object or None on failure
"""
try:

wait
sleep_time = config.REQUEST_SLEEP * random.random()
logger.debug("sleeping " + str(sleep_time)[:7] + " seconds...")
time.sleep(sleep_time) # be nice

timeout = config.HTTP_TIMEOUT

If a list of user agent strings is supplied, use it
if len(config.USER_AGENT_LIST) > 0:

- 147 -

user_agent = random.choice(config.USER_AGENT_LIST)
headers = {"User-Agent": user_agent}

else:
headers = {'User-Agent': 'Mozilla/5.0'}

If there is a list of proxies supplied, use it
http_proxy = None
logger.debug("Using " + str(len(config.HTTP_PROXY_LIST)) + " proxies.")
if len(config.HTTP_PROXY_LIST) > 0:
http_proxy = random.choice(config.HTTP_PROXY_LIST)
proxies = {
'http': http_proxy,
'https': http_proxy,

}
logger.debug("Requesting page through proxy " + http_proxy)

else:
proxies = None

Now make the request
response = requests.get(url, params, timeout=timeout,

headers=headers, proxies=proxies)
if response.status_code == 503:
if http_proxy:
logger.warning("HTTP 503 error from web site: IP address {a} blocked"

.format(a=http_proxy))
if len(config.HTTP_PROXY_LIST) > 0:

randomly remove the proxy from the list, with probability 50%
if random.choice([True, False]):
config.HTTP_PROXY_LIST.remove(http_proxy)
logger.warning(
"Removing {http_proxy} from proxy list; {n} of {p} remain."
.format(http_proxy=http_proxy,

n=len(config.HTTP_PROXY_LIST),
p=len(config.HTTP_PROXY_LIST_COMPLETE)))

else:
logger.warning(
"Not removing {http_proxy} from proxy list this time; still {n} of

{p}."
.format(http_proxy=http_proxy,

n=len(config.HTTP_PROXY_LIST),
p=len(config.HTTP_PROXY_LIST_COMPLETE)))

if len(config.HTTP_PROXY_LIST) == 0:
fill proxy list again, wait a long time, then restart
logger.warning("No proxies remain. Resetting proxy list and waiting {m}

minutes."
.format(m=(config.RE_INIT_SLEEP_TIME / 60.0)))

config.HTTP_PROXY_LIST =
list(config.HTTP_PROXY_LIST_COMPLETE)

time.sleep(config.RE_INIT_SLEEP_TIME)
config.REQUEST_SLEEP += 1.0
logger.warning("Adding one second to request sleep time. Now {s}"
.format(s=config.REQUEST_SLEEP))

else:

- 148 -

logger.warning("HTTP 503 error from web site: IP address blocked. Waiting
{m} minutes."

.format(m=(config.RE_INIT_SLEEP_TIME / 60.0)))
time.sleep(config.RE_INIT_SLEEP_TIME)
config.REQUEST_SLEEP += 1.0

return response
except (SystemExit, KeyboardInterrupt):

raise
except requests.exceptions.ConnectionError:

For requests error and exceptions, see
http://docs.python-requests.org/en/latest/user/quickstart/
errors-and-exceptions
logger.warning("Network request exception {a}: connectionError".format(a=attempt_id))
return None

except requests.exceptions.HTTPError:
logger.error("Network request exception {a}: invalid HTTP

response".format(a=attempt_id))
return None

except requests.exceptions.Timeout:
logger.warning("Network request exception {a}: timeout".format(a=attempt_id))
return None

except requests.exceptions.TooManyRedirects:
logger.error("Network request exception {a}: too many redirects".format(a=attempt_id))
return None

except requests.exceptions.RequestException:
logger.error("Network request exception {a}: unidentified requests".format(a=attempt_id))
return None

except Exception as e:
logger.exception("Network request exception: type " + type(e).__name__)
return None

- 149 -

APPENDIX D

Platform Home Sharing Listing Scraping Tool “airbnb_listing.py”

This tool is designed to populate the fields of a single Airbnb listing, or room_id.

import logging
import re
from lxml import html
import psycopg2
import json
import airbnb_ws

logger = logging.getLogger()

class ABListing():
"""
ABListing represents an Airbnb room_id, as captured at a moment in time.
room_id, survey_id is the primary key.
Occasionally, a survey_id = None will happen, but for retrieving data
straight from the web site, and not stored in the database.
"""
def __init__(self, config, room_id, survey_id, room_type=None):

self.config = config
self.room_id = room_id
self.host_id = None
self.room_type = room_type
self.country = None
self.city = None
self.neighborhood = None
self.address = None
self.reviews = None
self.overall_satisfaction = None
self.accommodates = None
self.bedrooms = None
self.bathrooms = None
self.price = None
self.deleted = None
self.minstay = None
self.latitude = None
self.longitude = None
self.survey_id = survey_id
extra fields added from search json:
coworker_hosted (bool)
self.coworker_hosted = None
extra_host_languages (list)
self.extra_host_languages = None
name (str)
self.name = None
property_type (str)
self.property_type = None
currency (str)

- 150 -

self.currency = None
rate_type (str) - "nightly" or other?
self.rate_type = None
""" """

def status_check(self):
status = True # OK
if sufficient of the values are None or don't exist, the room
entry was not properly parsed and we may as well throw the whole
thing away.
unassigned_values = {key: value

for key, value in vars(self).items()
if not key.startswith('__') and
not callable(key) and
value is None
}

if len(unassigned_values) > 9: # just a value indicating deleted
logger.info("Room " + str(self.room_id) + ": marked deleted")
status = False # probably deleted
self.deleted = 1

else:
for key, val in unassigned_values.items():
if (key == "overall_satisfaction" and "reviews" not in

unassigned_values):
if val is None and self.reviews > 2:
logger.debug("Room " + str(self.room_id) + ": No value for " + key)

elif val is None:
logger.debug("Room " + str(self.room_id) + ": No value for " + key)

return status

def get_columns(self):

columns = [attr for attr in dir(self) if not
callable(attr) and not attr.startswith("__")]
columns = ("room_id", "host_id", "room_type", "country",

"city", "neighborhood", "address", "reviews",
"overall_satisfaction", "accommodates", "bedrooms",
"bathrooms", "price", "deleted", "minstay",
"latitude", "longitude", "survey_id", "last_modified",)

return columns

def save_as_deleted(self):
try:
logger.debug("Marking room deleted: " + str(self.room_id))
if self.survey_id is None:
return

conn = self.config.connect()
sql = """
update room
set deleted = 1, last_modified = now()::timestamp
where room_id = %s
and survey_id = %s

"""

- 151 -

cur = conn.cursor()
cur.execute(sql, (self.room_id, self.survey_id))
cur.close()
conn.commit()

except Exception:
logger.error("Failed to save room as deleted")
raise

def save(self, insert_replace_flag):
"""
Save a listing in the database. Delegates to lower-level methods
to do the actual database operations.
Return values:
True: listing is saved in the database
False: listing already existed

"""
try:
rowcount = -1
if self.deleted == 1:
self.save_as_deleted()

else:
if insert_replace_flag == self.config.FLAGS_INSERT_REPLACE:

rowcount = self.__update()
if (rowcount == 0 or

insert_replace_flag == self.config.FLAGS_INSERT_NO_REPLACE):
try:
self.__insert()
return True

except psycopg2.IntegrityError:
logger.debug("Room " + str(self.room_id) + ": already collected")
return False

except psycopg2.OperationalError:
connection closed
logger.error("Operational error (connection closed): resuming")
del(self.config.connection)

except psycopg2.DatabaseError as de:
self.config.connection.conn.rollback()
logger.erro(psycopg2.errorcodes.lookup(de.pgcode[:2]))
logger.error("Database error: resuming")
del(self.config.connection)

except psycopg2.InterfaceError:
connection closed
logger.error("Interface error: resuming")
del(self.config.connection)

except psycopg2.Error as pge:
database error: rollback operations and resume
self.config.connection.conn.rollback()
logger.error("Database error: " + str(self.room_id))
logger.error("Diagnostics " + pge.diag.message_primary)
del(self.config.connection)

except (KeyboardInterrupt, SystemExit):
raise

except UnicodeEncodeError as uee:

- 152 -

logger.error("UnicodeEncodeError Exception at " +
str(uee.object[uee.start:uee.end]))

raise
except ValueError:
logger.error("ValueError for room_id = " + str(self.room_id))

except AttributeError:
logger.error("AttributeError")
raise

except Exception:
self.config.connection.rollback()
logger.error("Exception saving room")
raise

def print_from_web_site(self):
""" What is says """
try:
print_string = "Room info:"
print_string += "\n\troom_id:\t" + str(self.room_id)
print_string += "\n\tsurvey_id:\t" + str(self.survey_id)
print_string += "\n\thost_id:\t" + str(self.host_id)
print_string += "\n\troom_type:\t" + str(self.room_type)
print_string += "\n\tcountry:\t" + str(self.country)
print_string += "\n\tcity:\t\t" + str(self.city)
print_string += "\n\tneighborhood:\t" + str(self.neighborhood)
print_string += "\n\taddress:\t" + str(self.address)
print_string += "\n\treviews:\t" + str(self.reviews)
print_string += "\n\toverall_satisfaction:\t"
print_string += str(self.overall_satisfaction)
print_string += "\n\taccommodates:\t" + str(self.accommodates)
print_string += "\n\tbedrooms:\t" + str(self.bedrooms)
print_string += "\n\tbathrooms:\t" + str(self.bathrooms)
print_string += "\n\tprice:\t\t" + str(self.price)
print_string += "\n\tdeleted:\t" + str(self.deleted)
print_string += "\n\tlatitude:\t" + str(self.latitude)
print_string += "\n\tlongitude:\t" + str(self.longitude)
print_string += "\n\tminstay:\t" + str(self.minstay)
print_string += "\n\tcoworker_hosted:\t" + str(self.coworker_hosted)
print_string += "\n\tlanguages:\t" + str(self.extra_host_languages)
print_string += "\n\tproperty_type:\t" + str(self.property_type)
print(print_string)

except Exception:
raise

def print_from_db(self):
""" What it says """
try:
columns = self.get_columns()
sql = "select room_id"
for column in columns[1:]:
sql += ", " + column

sql += " from room where room_id = %s"
conn = self.config.connect()
cur = conn.cursor()

- 153 -

cur.execute(sql, (self.room_id,))
result_set = cur.fetchall()
if len(result_set) > 0:
for result in result_set:

i = 0
print("Room information: ")
for column in columns:
print("\t", column, "=", str(result[i]))
i += 1

return True
else:
print("\nNo room", str(self.room_id), "in the database.\n")
return False

cur.close()
except Exception:
raise

def ws_get_room_info(self, flag):
""" Get the room properties from the web site """
try:
initialization
logger.info("-" * 70)
logger.info("Room " + str(self.room_id) +

": getting from Airbnb web site")
room_url = self.config.URL_ROOM_ROOT + str(self.room_id)
response = airbnb_ws.ws_request_with_repeats(self.config, room_url)
if response is not None:
page = response.text
tree = html.fromstring(page)
self.__get_room_info_from_tree(tree, flag)
return True

else:
return False

except (KeyboardInterrupt, SystemExit):
raise

except Exception as ex:
logger.exception("Room " + str(self.room_id) +

": failed to retrieve from web site.")
logger.error("Exception: " + str(type(ex)))
raise

def __insert(self):
""" Insert a room into the database. Raise an error if it fails """
try:
logger.debug("Values: ")
logger.debug("\troom_id: {}".format(self.room_id))
logger.debug("\thost_id: {}".format(self.host_id))
conn = self.config.connect()
cur = conn.cursor()
sql = """
insert into room (

room_id, host_id, room_type, country, city,
neighborhood, address, reviews, overall_satisfaction,

- 154 -

accommodates, bedrooms, bathrooms, price, deleted,
minstay, latitude, longitude, survey_id,
coworker_hosted, extra_host_languages, name,
property_type, currency, rate_type

)
"""

sql += """
values (%s, %s, %s, %s, %s, %s, %s, %s, %s,
%s, %s, %s, %s, %s, %s, %s, %s, %s,
%s, %s, %s, %s, %s, %s
)"""

insert_args = (
self.room_id, self.host_id, self.room_type, self.country,
self.city, self.neighborhood, self.address, self.reviews,
self.overall_satisfaction, self.accommodates, self.bedrooms,
self.bathrooms, self.price, self.deleted, self.minstay,
self.latitude, self.longitude, self.survey_id,
self.coworker_hosted, self.extra_host_languages, self.name,
self.property_type, self.currency, self.rate_type
)

cur.execute(sql, insert_args)
cur.close()
conn.commit()
logger.debug("Room " + str(self.room_id) + ": inserted")
logger.debug("(lat, long) = ({lat:+.5f}, {lng:+.5f})".format(lat=self.latitude,

lng=self.longitude))
except psycopg2.IntegrityError:
logger.info("Room " + str(self.room_id) + ": insert failed")
conn.rollback()
cur.close()
raise

except:
conn.rollback()
raise

def __update(self):
""" Update a room in the database. Raise an error if it fails.
Return number of rows affected."""
try:
rowcount = 0
conn = self.config.connect()
cur = conn.cursor()
logger.debug("Updating...")
sql = """
update room
set host_id = %s, room_type = %s,

country = %s, city = %s, neighborhood = %s,
address = %s, reviews = %s, overall_satisfaction = %s,
accommodates = %s, bedrooms = %s, bathrooms = %s,
price = %s, deleted = %s, last_modified = now()::timestamp,
minstay = %s, latitude = %s, longitude = %s,
coworker_hosted = %s, extra_host_languages = %s, name = %s,

- 155 -

property_type = %s, currency = %s, rate_type = %s
where room_id = %s
and survey_id = %s"""

update_args = (
self.host_id, self.room_type,
self.country, self.city, self.neighborhood,
self.address, self.reviews, self.overall_satisfaction,
self.accommodates, self.bedrooms, self.bathrooms,
self.price, self.deleted,
self.minstay, self.latitude,
self.longitude,
self.coworker_hosted, self.extra_host_languages, self.name,
self.property_type, self.currency, self.rate_type,
self.room_id,
self.survey_id,
)

logger.debug("Executing...")
cur.execute(sql, update_args)
rowcount = cur.rowcount
logger.debug("Closing...")
cur.close()
conn.commit()
logger.info("Room " + str(self.room_id) +

": updated (" + str(rowcount) + ")")
return rowcount

except:
may want to handle connection close errors
logger.warning("Exception in __update: raising")
raise

def __get_country(self, tree):
try:
temp = tree.xpath(
"//meta[contains(@property,'airbedandbreakfast:country')]"
"/@content"
)

if len(temp) > 0:
self.country = temp[0]

except:
raise

def __get_city(self, tree):
try:
temp = tree.xpath(
"//meta[contains(@property,'airbedandbreakfast:city')]"
"/@content"
)

if len(temp) > 0:
self.city = temp[0]

except:
raise

def __get_rating(self, tree):

- 156 -

try:
2016-04-10
s = tree.xpath("//meta[@id='_bootstrap-listing']/@content")
temp = tree.xpath(
"//meta[contains(@property,'airbedandbreakfast:rating')]"
"/@content"
)

if s is not None:
j = json.loads(s[0])
self.overall_satisfaction = j["listing"]["star_rating"]

elif len(temp) > 0:
self.overall_satisfaction = temp[0]

except IndexError:
return

except:
raise

def __get_latitude(self, tree):
try:
temp = tree.xpath("//meta"

"[contains(@property,"
"'airbedandbreakfast:location:latitude')]"
"/@content")

if len(temp) > 0:
self.latitude = temp[0]

except:
raise

def __get_longitude(self, tree):
try:
temp = tree.xpath(
"//meta"
"[contains(@property,'airbedandbreakfast:location:longitude')]"
"/@content")

if len(temp) > 0:
self.longitude = temp[0]

except:
raise

def __get_host_id(self, tree):
try:
2016-04-10
s = tree.xpath("//meta[@id='_bootstrap-listing']/@content")
temp = tree.xpath(
"//div[@id='host-profile']"
"//a[contains(@href,'/users/show')]"
"/@href"

)
if s is not None:
j = json.loads(s[0])
self.host_id = j["listing"]["user"]["id"]
return

elif len(temp) > 0:

- 157 -

host_id_element = temp[0]
host_id_offset = len('/users/show/')
self.host_id = int(host_id_element[host_id_offset:])

else:
temp = tree.xpath(

"//div[@id='user']"
"//a[contains(@href,'/users/show')]"
"/@href")

if len(temp) > 0:
host_id_element = temp[0]
host_id_offset = len('/users/show/')
self.host_id = int(host_id_element[host_id_offset:])

except IndexError:
return

except:
raise

def __get_room_type(self, tree):
try:
-- room type --
new page format 2015-09-30?
temp = tree.xpath(
"//div[@class='col-md-6']"
"/div/span[text()[contains(.,'Room type:')]]"
"/../strong/text()"
)

if len(temp) > 0:
self.room_type = temp[0].strip()

else:
new page format 2014-12-26
temp_entire = tree.xpath(

"//div[@id='summary']"
"//i[contains(concat(' ', @class, ' '),"
" ' icon-entire-place ')]"
)

if len(temp_entire) > 0:
self.room_type = "Entire home/apt"

temp_private = tree.xpath(
"//div[@id='summary']"
"//i[contains(concat(' ', @class, ' '),"
" ' icon-private-room ')]"
)

if len(temp_private) > 0:
self.room_type = "Private room"

temp_shared = tree.xpath(
"//div[@id='summary']"
"//i[contains(concat(' ', @class, ' '),"
" ' icon-shared-room ')]"
)

if len(temp_shared) > 0:
self.room_type = "Shared room"

except:
raise

- 158 -

def __get_neighborhood(self, tree):
try:
temp2 = tree.xpath(
"//div[contains(@class,'rich-toggle')]/@data-address"
)

temp1 = tree.xpath("//table[@id='description_details']"
"//td[text()[contains(.,'Neighborhood:')]]"
"/following-sibling::td/descendant::text()")

if len(temp2) > 0:
temp = temp2[0].strip()
self.neighborhood = temp[temp.find("(")+1:temp.find(")")]

elif len(temp1) > 0:
self.neighborhood = temp1[0].strip()

if self.neighborhood is not None:
self.neighborhood = self.neighborhood[:50]

except:
raise

def __get_address(self, tree):
try:
temp = tree.xpath(
"//div[contains(@class,'rich-toggle')]/@data-address"
)

if len(temp) > 0:
temp = temp[0].strip()
self.address = temp[:temp.find(",")]

else:
try old page match
temp = tree.xpath(

"//span[@id='display-address']"
"/@data-location"
)

if len(temp) > 0:
self.address = temp[0]

except:
raise

def __get_reviews(self, tree):
try:
2016-04-10
s = tree.xpath("//meta[@id='_bootstrap-listing']/@content")
2015-10-02
temp2 = tree.xpath(
"//div[@class='___iso-state___p3summarybundlejs']"
"/@data-state"
)

if s is not None:
j = json.loads(s[0])
self.reviews = \

j["listing"]["review_details_interface"]["review_count"]
elif len(temp2) == 1:
summary = json.loads(temp2[0])

- 159 -

self.reviews = summary["visibleReviewCount"]
elif len(temp2) == 0:
temp = tree.xpath(

"//div[@id='room']/div[@id='reviews']//h4/text()")
if len(temp) > 0:

self.reviews = temp[0].strip()
self.reviews = str(self.reviews).split('+')[0]
self.reviews = str(self.reviews).split(' ')[0].strip()

if self.reviews == "No":
self.reviews = 0

else:
try old page match
temp = tree.xpath(

"//span[@itemprop='reviewCount']/text()"
)

if len(temp) > 0:
self.reviews = temp[0]

if self.reviews is not None:
self.reviews = int(self.reviews)

except IndexError:
return

except Exception as e:
logger.exception(e)
self.reviews = None

def __get_accommodates(self, tree):
try:
2016-04-10
s = tree.xpath("//meta[@id='_bootstrap-listing']/@content")
temp = tree.xpath(
"//div[@class='col-md-6']"
"/div/span[text()[contains(.,'Accommodates:')]]"
"/../strong/text()"
)

if s is not None:
j = json.loads(s[0])
self.accommodates = j["listing"]["person_capacity"]
return

elif len(temp) > 0:
self.accommodates = temp[0].strip()

else:
temp = tree.xpath(

"//div[@class='col-md-6']"
"/div[text()[contains(.,'Accommodates:')]]"
"/strong/text()"
)

if len(temp) > 0:
self.accommodates = temp[0].strip()

else:
temp = tree.xpath(
"//div[@class='col-md-6']"
"//div[text()[contains(.,'Accommodates:')]]"
"/strong/text()"

- 160 -

)
if len(temp) > 0:
self.accommodates = temp[0].strip()

if type(self.accommodates) == str:
self.accommodates = self.accommodates.split('+')[0]
self.accommodates = self.accommodates.split(' ')[0]

self.accommodates = int(self.accommodates)
except:
self.accommodates = None

def __get_bedrooms(self, tree):
try:
temp = tree.xpath(
"//div[@class='col-md-6']"
"/div/span[text()[contains(.,'Bedrooms:')]]"
"/../strong/text()"
)

if len(temp) > 0:
self.bedrooms = temp[0].strip()

else:
temp = tree.xpath(

"//div[@class='col-md-6']"
"/div[text()[contains(.,'Bedrooms:')]]"
"/strong/text()"
)

if len(temp) > 0:
self.bedrooms = temp[0].strip()

if self.bedrooms:
self.bedrooms = self.bedrooms.split('+')[0]
self.bedrooms = self.bedrooms.split(' ')[0]

self.bedrooms = float(self.bedrooms)
except:
self.bedrooms = None

def __get_bathrooms(self, tree):
try:
temp = tree.xpath(
"//div[@class='col-md-6']"
"/div/span[text()[contains(.,'Bathrooms:')]]"
"/../strong/text()"
)

if len(temp) > 0:
self.bathrooms = temp[0].strip()

else:
temp = tree.xpath(

"//div[@class='col-md-6']"
"/div/span[text()[contains(.,'Bathrooms:')]]"
"/../strong/text()"
)

if len(temp) > 0:
self.bathrooms = temp[0].strip()

if self.bathrooms:
self.bathrooms = self.bathrooms.split('+')[0]

- 161 -

self.bathrooms = self.bathrooms.split(' ')[0]
self.bathrooms = float(self.bathrooms)

except:
self.bathrooms = None

def __get_minstay(self, tree):
try:
-- minimum stay --
temp3 = tree.xpath(
"//div[contains(@class,'col-md-6')"
"and text()[contains(.,'minimum stay')]]"
"/strong/text()"
)

temp2 = tree.xpath(
"//div[@id='details-column']"
"//div[contains(text(),'Minimum Stay:')]"
"/strong/text()"
)

temp1 = tree.xpath(
"//table[@id='description_details']"
"//td[text()[contains(.,'Minimum Stay:')]]"
"/following-sibling::td/descendant::text()"
)

if len(temp3) > 0:
self.minstay = temp3[0].strip()

elif len(temp2) > 0:
self.minstay = temp2[0].strip()

elif len(temp1) > 0:
self.minstay = temp1[0].strip()

if self.minstay is not None:
self.minstay = self.minstay.split('+')[0]
self.minstay = self.minstay.split(' ')[0]

self.minstay = int(self.minstay)
except:
self.minstay = None

def __get_price(self, tree):
try:
temp2 = tree.xpath(
"//meta[@itemprop='price']/@content"
)

temp1 = tree.xpath(
"//div[@id='price_amount']/text()"
)

if len(temp2) > 0:
self.price = temp2[0]

elif len(temp1) > 0:
self.price = temp1[0][1:]
non_decimal = re.compile(r'[^\d.]+')
self.price = non_decimal.sub('', self.price)

Now find out if it's per night or per month
(see if the per_night div is hidden)
per_month = tree.xpath(

- 162 -

"//div[@class='js-per-night book-it__payment-period hide']")
if per_month:
self.price = int(int(self.price) / 30)

self.price = int(self.price)
except:
self.price = None

def __get_room_info_from_tree(self, tree, flag):
try:
Some of these items do not appear on every page (eg,
ratings, bathrooms), and so their absence is marked with
logger.info. Others should be present for every room (eg,
latitude, room_type, host_id) and so are marked with a
warning. Items coded in <meta
property="airbedandbreakfast:*> elements -- country --

self.__get_country(tree)
self.__get_city(tree)
self.__get_rating(tree)
self.__get_latitude(tree)
self.__get_longitude(tree)
self.__get_host_id(tree)
self.__get_room_type(tree)
self.__get_neighborhood(tree)
self.__get_address(tree)
self.__get_reviews(tree)
self.__get_accommodates(tree)
self.__get_bedrooms(tree)
self.__get_bathrooms(tree)
self.__get_minstay(tree)
self.__get_price(tree)
self.deleted = 0

NOT FILLING HERE, but maybe should? have to write helper methods:
coworker_hosted, extra_host_languages, name,
property_type, currency, rate_type

self.status_check()

if flag == self.config.FLAGS_ADD:
self.save(self.config.FLAGS_INSERT_REPLACE)

elif flag == self.config.FLAGS_PRINT:
self.print_from_web_site()

return True
except (KeyboardInterrupt, SystemExit):
raise

except IndexError:
logger.exception("Web page has unexpected structure.")
raise

except UnicodeEncodeError as uee:
logger.exception("UnicodeEncodeError Exception at " +

str(uee.object[uee.start:uee.end]))
raise

- 163 -

except AttributeError:
logger.exception("AttributeError")
raise

except TypeError:
logger.exception("TypeError parsing web page.")
raise

except Exception:
logger.exception("Error parsing web page.")
raise

- 164 -

APPENDIX E

Platform Home Sharing Survey Tool “airbnb_survey.py”

This tool organizes how surveys are run, whether by bounding box as in this research or

through zip code areas or neighborhoods. It gathers the listing information within the

designated search areas.

==
- bounding box (-sb)
==
import logging
import sys
import random
import psycopg2
from datetime import date
from airbnb_listing import ABListing
import airbnb_ws

logger = logging.getLogger()

class ABSurvey():

def __init__(self, config, survey_id):
self.config = config
self.survey_id = survey_id
self.search_area_id = None
self.search_area_name = None
self.set_search_area()
self.room_types = ["Private room", "Entire home/apt", "Shared room"]

Set up logging
logger.setLevel(config.log_level)
create a file handler
logfile = "survey_{survey_id}.log".format(survey_id=self.survey_id)
filelog_handler = logging.FileHandler(logfile, encoding="utf-8")
filelog_formatter = logging.Formatter('%(asctime)-15s %(levelname)-8s%(message)s')
filelog_handler.setFormatter(filelog_formatter)
create a console handler
console_handler = logging.StreamHandler()
console_handler.setLevel(config.log_level)
ch_formatter = logging.Formatter('%(levelname)-8s%(message)s')
console_handler.setFormatter(ch_formatter)

logging: set log file name, format, and level
logger.addHandler(filelog_handler)
logger.addHandler(console_handler)

Suppress informational logging from requests module
logging.getLogger("requests").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logger.propagate = False

- 165 -

def set_search_area(self):
try:
conn = self.config.connect()
cur = conn.cursor()
cur.execute("""
select sa.search_area_id, sa.name
from search_area sa join survey s
on sa.search_area_id = s.search_area_id
where s.survey_id = %s""", (self.survey_id,))

(self.search_area_id, self.search_area_name) = cur.fetchone()
cur.close()

except (KeyboardInterrupt, SystemExit):
cur.close()
raise

except Exception:
cur.close()
logger.error("No search area for survey_id " + str(self.survey_id))
raise

def update_survey_entry(self, search_by):
try:
survey_info = (date.today(),

search_by,
self.survey_id,)

sql = """
update survey
set survey_date = %s, survey_method = %s
where survey_id = %s
"""
conn = self.config.connect()
cur = conn.cursor()
cur.execute(sql, survey_info)
return True

except psycopg2.Error as pge:
logger.error(pge.pgerror)
cur.close()
conn.rollback()
return False

def listing_from_search_page_json(self, result, room_id, room_type):
try:
listing = ABListing(self.config, room_id, self.survey_id, room_type)
listing
json_listing = result["listing"]
listing.host_id = json_listing["primary_host"]["id"] if "primary_host" in json_listing

else None
listing.address = json_listing["public_address"] if "public_address" in json_listing

else None
listing.reviews = json_listing["reviews_count"] if "reviews_count" in json_listing else

None
listing.overall_satisfaction = json_listing["star_rating"] if "star_rating" in json_listing

else None

- 166 -

listing.accommodates = json_listing["person_capacity"] if "person_capacity" in
json_listing else None

listing.bedrooms = json_listing["bedrooms"] if "bedrooms" in json_listing else None
listing.latitude = json_listing["lat"] if "lat" in json_listing else None
listing.longitude = json_listing["lng"] if "lng" in json_listing else None
listing.coworker_hosted = json_listing["coworker_hosted"] if "coworker_hosted" in

json_listing else None
listing.extra_host_languages = json_listing["extra_host_languages"] \
if "extra_host_languages" in json_listing else None

listing.name = json_listing["name"] if "name" in json_listing else None
listing.property_type = json_listing["property_type"] if "property_type" in json_listing

else None
pricing
json_pricing = result["pricing_quote"]
listing.price = json_pricing["rate"]["amount"] if "rate" in json_pricing else None
listing.currency = json_pricing["rate"]["currency"] if "rate" in json_pricing else None
listing.rate_type = json_pricing["rate_type"] if "rate_type" in json_pricing else None
return listing

except:
logger.exception("Error in survey.listing_from_search_page_json: returning None")
sys.exit(-1)
return None

def log_progress(self, room_type, neighborhood_id,
guests, page_number, has_rooms):

""" Add an entry to the survey_progress_log table to record the fact
that a page has been visited.
This does not apply to search by bounding box, but does apply to both
neighborhood and zipcode searches, which is why it is in ABSurvey.
"""
try:
page_info = (self.survey_id, room_type, neighborhood_id,

guests, page_number, has_rooms)
logger.debug("Search page: " + str(page_info))
sql = """
insert into survey_progress_log
(survey_id, room_type, neighborhood_id,
guests, page_number, has_rooms)
values (%s, %s, %s, %s, %s, %s)
"""
conn = self.config.connect()
cur = conn.cursor()
cur.execute(sql, page_info)
cur.close()
conn.commit()
logger.debug("Logging survey search page for neighborhood " +

str(neighborhood_id))
return True

except psycopg2.Error as pge:
logger.error(pge.pgerror)
cur.close()
conn.rollback()
return False

- 167 -

except Exception:
logger.error("Save survey search page failed")
return False

def fini(self):
""" Wrap up a survey: correcting status and survey_date
"""
try:
logger.info("Finishing survey {survey_id}, for {search_area_name}".format(
survey_id=self.survey_id, search_area_name=self.search_area_name

))
sql_update = """
update survey
set survey_date = (
select min(last_modified)
from room
where room.survey_id = survey.survey_id
), status = 1
where survey_id = %s
"""
conn = self.config.connect()
cur = conn.cursor()
cur.execute(sql_update, (self.survey_id,))
cur.close()
conn.commit()
return True

except:
logger.exception("Survey fini failed")
return False

def page_has_been_retrieved(self, room_type, neighborhood_or_zipcode,
guests, page_number, search_by):

"""
Used with neighborhood and zipcode logging (see method above).
Returns 1 if the page has been retrieved previously and has rooms
Returns 0 if the page has been retrieved previously and has no rooms
Returns -1 if the page has not been retrieved previously
"""
conn = self.config.connect()
cur = conn.cursor()
has_rooms = 0
try:
if search_by == self.config.SEARCH_BY_NEIGHBORHOOD:
neighborhood = neighborhood_or_zipcode
TODO: Currently fails when there are no neighborhoods
if neighborhood is None:

has_rooms = -1
else:

params = (self.survey_id, room_type, neighborhood, guests,
page_number,)

logger.debug("Params: " + str(params))
sql = """
select spl.has_rooms

- 168 -

from survey_progress_log spl
join neighborhood nb
on spl.neighborhood_id = nb.neighborhood_id
where survey_id = %s
and room_type = %s
and nb.name = %s
and guests = %s
and page_number = %s"""
cur.execute(sql, params)
has_rooms = cur.fetchone()[0]
logger.debug("has_rooms = " + str(has_rooms) +

" for neighborhood " + neighborhood)
else: # SEARCH_BY_ZIPCODE
zipcode = int(neighborhood_or_zipcode)
params = (self.survey_id, room_type, zipcode, guests, page_number,)
logger.debug(params)
sql = """

select spl.has_rooms
from survey_progress_log spl
where survey_id = %s
and room_type = %s
and neighborhood_id = %s
and guests = %s
and page_number = %s"""

cur.execute(sql, params)
has_rooms = cur.fetchone()[0]
logger.debug("has_rooms = " + str(has_rooms) +

" for zipcode " + str(zipcode))
except Exception:
has_rooms = -1
logger.debug("Page has not been retrieved previously")

finally:
cur.close()
return has_rooms

class ABSurveyByBoundingBox(ABSurvey):
"""
Subclass of Survey that carries out a survey by a quadtree of bounding
boxes: recursively searching rectangles.
"""

def __init__(self, config, survey_id):
super().__init__(config, survey_id)
self.get_logged_progress()
self.get_bounding_box()

def get_logged_progress(self):
try:
sql = """
select room_type, guests, price_min, price_max,
quadtree_node, median_node

- 169 -

from survey_progress_log_bb
where survey_id = %s
"""
conn = self.config.connect()
cur = conn.cursor()
cur.execute(sql, (self.survey_id,))
row = cur.fetchone()
cur.close()
conn.commit()
if row is None:
logger.info("No progress logged for survey {}".format(self.survey_id))
self.logged_progress = None

else:
logged_progress = {}
logged_progress["room_type"] = row[0]
logged_progress["guests"] = row[1]
logged_progress["price_range"] = [row[2], row[3]]
logged_progress["quadtree"] = eval(row[4])
logged_progress["median"] = eval(row[5])
logger.info("""Retrieved logged progress: {rt}, {g} guests, price

{pmin}-{pmax}""".
format(rt = logged_progress["room_type"],

g=logged_progress["guests"],
pmin=logged_progress["price_range"][0],
pmax=logged_progress["price_range"][1]))

logger.info("\tquadtree node {quadtree}"
.format(quadtree=repr(logged_progress["quadtree"])))

logger.info("\tmedian node {median}"
.format(median=repr(logged_progress["median"])))

self.logged_progress = logged_progress
except Exception:
logger.exception("Exception in get_progress: setting logged progress to None")
self.logged_progress = None

def get_bounding_box(self):
try:
Get the bounding box
conn = self.config.connect()
cur = conn.cursor()
cur.execute("""

select bb_n_lat, bb_e_lng, bb_s_lat, bb_w_lng
from search_area sa join survey s
on sa.search_area_id = s.search_area_id
where s.survey_id = %s""", (self.survey_id,))

result comes back as a tuple. We want it mutable later, so
convert to a list [n_lat, e_lng, s_lat, w_lng]
self.bounding_box = list(cur.fetchone())
cur.close()
Validate the bounding box
if None in self.bounding_box:
logger.error("Invalid bounding box: contains 'None'")
return

if self.bounding_box[0] <= self.bounding_box[2]:

- 170 -

logger.error("Invalid bounding box: n_lat must be > s_lat")
return

if self.bounding_box[1] <= self.bounding_box[3]:
logger.error("Invalid bounding box: e_lng must be > w_lng")
return

logger.info("Bounding box: " + str(self.bounding_box))
except Exception:
logger.exception("Exception in set_bounding_box")
self.bounding_box = None

def search(self, flag):
"""
Initialize bounding box search.
A bounding box is a rectangle around a city, specified in the
search_area table. The loop goes to quadrants of the bounding box
rectangle and, if new listings are found, breaks that rectangle
into four quadrants and tries again, recursively.
The rectangles, including the bounding box, are represented by
[n_lat, e_lng, s_lat, w_lng], because Airbnb uses the SW and NE
corners of the box.
"""
try:
logger.info("=" * 70)
logger.info("Survey {survey_id}, for {search_area_name}".format(
survey_id=self.survey_id, search_area_name=self.search_area_name

))
ABSurvey.update_survey_entry(self, self.config.SEARCH_BY_BOUNDING_BOX)
logger.info("Searching by bounding box, max_zoom={max_zoom}"

.format(max_zoom=self.config.SEARCH_MAX_RECTANGLE_ZOOM))
Initialize search parameters
quadtree_node holds the quadtree: each rectangle is
divided into 00 | 01 | 10 | 11, and the next level down adds
on another rectangle.
price_increments = [0, 40, 60, 80, 100, 120,

140, 180, 200, 300, 500,
700, 1000, 1500, 50000]

max_price = {"Private room": 500,
"Entire home/apt": 100000,
"Shared room": 500}

set starting point
guests_start = 1
quadtree_node = [] # list of [0,0] etc coordinates
median_node = [] # median lat, long to define optimal quadrants
room_types_start_index = 0
price_start_index = 0
set starting point (for survey being resumed)
if self.logged_progress is not None:
room_types_start_index =

self.room_types.index(self.logged_progress["room_type"])
guests_start = self.logged_progress["guests"]
price_start_index = price_increments.index(self.logged_progress["price_range"][0])
logger.info("""Restarting survey {survey_id} at {room_type}, {guests} guests,

price={price}"""

- 171 -

. f o r m a t (s u r v e y _ i d = s e l f . s u r v e y _ i d ,
room_type=self.room_types[room_types_start_index],

guests=guests_start, price=price_increments[price_start_index]))
Starting point set: loop over room types
for room_type in self.room_types[room_types_start_index:]:
if room_type in ("Private room", "Shared room"):

max_guests = 4
else:

max_guests = self.config.SEARCH_MAX_GUESTS
loop over guests
for guests in range(guests_start, max_guests):

loop over price ranges
for i in range(price_start_index, len(price_increments) - 1):
price_range = [price_increments[i], price_increments[i+1]]
if price_range[1] > max_price[room_type]:
continue

self.recurse_quadtree(
room_type, guests, price_range, quadtree_node,
median_node, flag)

reset starting price
price_start_index = 0

reset the starting point so that (in the event of a resumed
survey) the next room type gets all guest counts.
guests_start = 1

self.fini()
except (SystemExit, KeyboardInterrupt):
raise

except Exception:
logger.exception("Error")

def recurse_quadtree(self, room_type, guests, price_range, quadtree_node,
median_node, flag):

"""
Recursive function to search for listings inside a rectangle.
The actual search calls are done in search_node, and
this method prints output and sets up new rectangles, if necessary,
for another round of searching.

To match Airbnb's use of SW and NE corners, quadrants are divided
like this:

[0,1] (NW) | [0,0] (NE)

[1,1] (SW) | [1,0] (SE)

The quadrants are searched in the order [0,0], [0,1], [1,0], [1,1]
"""
try:
if self.subtree_previously_completed(quadtree_node):
go to the next subtree
#TODO: use the same technique as the loop, below
if quadtree_node[-1] == [0,0]:

quadtree_node[-1] = [0,1]

- 172 -

elif quadtree_node[-1] == [0,1]:
quadtree_node[-1] = [1,0]

elif quadtree_node[-1] == [1,0]:
quadtree_node[-1] = [1,1]

elif quadtree_node[-1] == [1,1]:
del quadtree_node[-1]

return

Only search this node if it has not been previously searched
if (self.logged_progress is None or
len(quadtree_node) >= len(self.logged_progress["quadtree"])):
(new_rooms, page_count, median_leaf) = self.search_node(room_type, guests,

price_range,
quadtree_node,
median_node, flag)

we are off and searching: set logged_progress to None so
future guests, prices etc don't get truncated
self.logged_progress = None

else:
median_leaf = self.logged_progress["median"][-1]
logger.debug("Node previously searched:

{quadtree}".format(quadtree=quadtree_node))
if the logged_progress has more depth, recurse
if len(self.logged_progress["quadtree"]) >= len(quadtree_node):

page_count = self.config.SEARCH_MAX_PAGES
The max zoom is set in config, but decrease it by one for each guest
so that high guest counts don't zoom in (which turns out to generate
very few new rooms but take a lot of time)
zoomable = len(quadtree_node) < max(1,

(self.config.SEARCH_MAX_RECTANGLE_ZOOM - 2 * (guests - 1)))
zoomable = len(quadtree_node) < self.config.SEARCH_MAX_RECTANGLE_ZOOM
If (new_rooms > 0 or page_count == self.config.SEARCH_MAX_PAGES) and

zoomable:
zoom in if the search returned a full set of SEARCH_MAX_PAGES pages even
if no rooms were new, as there may still be new rooms that show up at
higher zoom levels.
if page_count == self.config.SEARCH_MAX_PAGES and zoomable:
append a node to the quadtree for a new level
quadtree_node.append([0,0])
median_node.append(median_leaf)
for int_leaf in range(4):

append a node to the quadtree for a new level
quadtree_leaf = [int(i)

for i in str(bin(int_leaf))[2:].zfill(2)]
quadtree_node[-1] = quadtree_leaf
new_rooms = self.recurse_quadtree(room_type, guests, price_range,

quadtree_node, median_node, flag)
the search of the quadtree below this node is complete:
remove the leaf element from the tree and return to go up a level
del quadtree_node[-1]
del median_node[-1]

logger.debug("Returning from recurse_quadtree for {}".format(quadtree_node))
if flag == self.config.FLAGS_PRINT:

- 173 -

for FLAGS_PRINT, fetch one page and print it
sys.exit(0)

except (SystemExit, KeyboardInterrupt):
raise

except TypeError as te:
logger.exception("TypeError in recurse_quadtree")
logger.error(te.args)
raise

except:
logger.exception("Error in recurse_quadtree")
raise

def search_node(self, room_type, guests, price_range, quadtree_node,
median_node, flag):

"""
rectangle is (n_lat, e_lng, s_lat, w_lng)
returns number of *new* rooms and number of pages tested

"""
try:
logger.info("-" * 70)
rectangle = self.get_rectangle_from_quadtree_node(quadtree_node, median_node)
logger.info(
("Searching rectangle: {room_type}, guests = {guests}, "
"prices in [{p1}, {p2}], zoom factor = {z}")
.format(room_type=room_type, guests=guests,

p1=price_range[0], p2=price_range[1], z=len(quadtree_node))
)
logger.debug("quadtree_node =

{quadtree_node}".format(quadtree_node=str(quadtree_node)))
logger.debug("Rectangle: N={n:+.5f}, E={e:+.5f}, S={s:+.5f}, W={w:+.5f}".format(
n=rectangle[0], e=rectangle[1], s=rectangle[2], w=rectangle[3])

)
new_rooms = 0
room_total = 0
median_lists are collected from results on each page and used to
calculate the median values, which will be used to divide the
volume into optimal "quadrants".
median_lists = {}
median_lists["latitude"] = []
median_lists["longitude"] = []
for page_number in range(1, self.config.SEARCH_MAX_PAGES + 1):
room_count = 0
set up the parameters for the request
params = {}
params["guests"] = str(guests)
params["page"] = str(page_number)
params["source"] = "filter"
params["room_types[]"] = room_type
params["sw_lat"] = str(rectangle[2])
params["sw_lng"] = str(rectangle[3])
params["ne_lat"] = str(rectangle[0])
params["ne_lng"] = str(rectangle[1])
params["search_by_map"] = str(True)

- 174 -

params["price_min"] = str(price_range[0])
params["price_max"] = str(price_range[1])
make the http request
response = airbnb_ws.ws_request_with_repeats(self.config,

self.config.URL_API_SEARCH_ROOT, params)
process the response
if response is None:

logger.warning("No response received from request despite multiple
attempts: {p}"

.format(p=params))
continue

json = response.json()
for result in json["results_json"]["search_results"]:

room_id = int(result["listing"]["id"])
if room_id is not None:
room_count += 1
room_total += 1
listing = self.listing_from_search_page_json(result, room_id, room_type)
median_lists["latitude"].append(listing.latitude)
median_lists["longitude"].append(listing.longitude)
if listing is None:
continue

if listing.host_id is not None:
listing.deleted = 0
if flag == self.config.FLAGS_ADD:

if listing.save(self.config.FLAGS_INSERT_NO_REPLACE):
new_rooms += 1

elif flag == self.config.FLAGS_PRINT:
print(room_type, listing.room_id)

Log page-level results
logger.info("Page {page_number:02d} returned {room_count:02d} listings"

.format(page_number=page_number, room_count=room_count))
if flag == self.config.FLAGS_PRINT:

for FLAGS_PRINT, fetch one page and print it
sys.exit(0)

if room_count < self.config.SEARCH_LISTINGS_ON_FULL_PAGE:
If a full page of listings is not returned by Airbnb,
this branch of the search is complete.
logger.debug("Final page of listings for this search")
break

Log rectangle-level results
logger.info(("Results: {page_count} pages, {new_rooms} new rooms, "
"{room_type}, {g} guests, prices in [{p1}, {p2}]").format(

room_type=room_type, g=str(guests),
p1=str(price_range[0]),
p2=str(price_range[1]),
new_rooms=str(new_rooms),
page_count=str(page_number)))

if len(median_node) == 0:
median_leaf = "[]"

else:
median_leaf = median_node[-1]

logger.info("Results: rect = {median_leaf}, node = {quadtree_node}"

- 175 -

.format(quadtree_node=str(quadtree_node), median_leaf=str(median_leaf)))
calculate medians
if room_count > 0:
median_lat = sorted(median_lists["latitude"])[int(len(median_lists["latitude"])/2)]
median_lng =

sorted(median_lists["longitude"])[int(len(median_lists["longitude"])/2)]
median_leaf = [median_lat, median_lng]

else:
values not needed, but we need to fill in an item anyway
median_leaf = [0, 0]

log progress
self.log_progress(room_type, guests, price_range[0],

price_range[1], quadtree_node, median_node)
return (new_rooms, page_number, median_leaf)

except UnicodeEncodeError:
logger.error("UnicodeEncodeError: set PYTHONIOENCODING=utf-8")
if sys.version_info >= (3,):
logger.info(s.encode('utf8').decode(sys.stdout.encoding))
else:
logger.info(s.encode('utf8'))
unhandled at the moment

except Exception:
logger.exception("Exception in get_search_page_info_rectangle")
raise

def get_rectangle_from_quadtree_node(self, quadtree_node, median_node):
try:
rectangle = self.bounding_box[0:4]
for node, medians in zip(quadtree_node, median_node):
logger.debug("Quadtrees: {q}".format(q=node))
logger.debug("Medians: {m}".format(m=medians))
[n_lat, e_lng, s_lat, w_lng] = rectangle
blur = abs(n_lat - s_lat) * self.config.SEARCH_RECTANGLE_EDGE_BLUR
find the mindpoints of the rectangle
mid_lat = (n_lat + s_lat)/2.0
mid_lng = (e_lng + w_lng)/2.0
mid_lat = medians[0]
mid_lng = medians[1]
overlap quadrants to ensure coverage at high zoom levels
Airbnb max zoom (18) is about 0.004 on a side.
rectangle = []
if node==[0,0]: # NE

rectangle = [n_lat + blur, e_lng + blur, mid_lat - blur, mid_lng - blur]
elif node==[0,1]: # NW

rectangle = [n_lat + blur, mid_lng + blur, mid_lat - blur, w_lng - blur]
elif node==[1,0]: # SE

rectangle = [mid_lat + blur, e_lng + blur, s_lat - blur, mid_lng - blur]
elif node==[1,1]: # SW

rectangle = [mid_lat + blur, mid_lng + blur, s_lat - blur, w_lng - blur]
logger.debug("Rectangle calculated: {rect}".format(rect=rectangle))
return rectangle

except:
logger.exception("Exception in get_rectangle_from_quadtree_node")

- 176 -

return None

def subtree_previously_completed(self, quadtree_node):
Return if the child subtree of this node was completed
in a previous survey
subtree_previously_completed = False
if len(quadtree_node) > 0 and self.logged_progress is not None:
s_this_quadrant = ''.join(str(quadtree_node[i][j])

for j in range(0,2)
for i in range(0,len(quadtree_node)))

s_logged_progress = ''.join(str(self.logged_progress["quadtree"][i][j])
for j in range(0,2)
for i in range(0,len(quadtree_node)))

if int(s_this_quadrant) < int(s_logged_progress):
subtree_previously_completed = True
logger.debug("Subtree previously completed:

{quadtree}".format(quadtree=quadtree_node))
return subtree_previously_completed

def log_progress(self, room_type, guests, price_min, price_max,
quadtree_node, median_node):

try:
This upsert statement requires PostgreSQL 9.5
Convert the quadrant to a string with repr() before storing it
sql = """
insert into survey_progress_log_bb
(survey_id, room_type, guests, price_min, price_max, quadtree_node,
median_node)
values
(%s, %s, %s, %s, %s, %s, %s)
on conflict ON CONSTRAINT survey_progress_log_bb_pkey
do update
set room_type = %s
, guests = %s
, price_min = %s
, price_max = %s
, quadtree_node = %s
, median_node = %s
, last_modified = now()

where survey_progress_log_bb.survey_id = %s
"""
conn = self.config.connect()
cur = conn.cursor()
cur.execute(sql, (self.survey_id, room_type,
guests, price_min, price_max, repr(quadtree_node),
repr(median_node),
room_type, guests, price_min, price_max,
repr(quadtree_node), repr(median_node),
self.survey_id))

cur.close()
conn.commit()
logger.debug("Progress logged")

- 177 -

return True
except Exception as e:
logger.warning("""Progress not logged: survey not affected, but

resume will not be available if survey is truncated.""")
logger.exception("Exception in log_progress: {e}".format(e=type(e)))
conn.close()
return False

class ABSurveyByNeighborhood(ABSurvey):
"""
Subclass of Survey that carries out a survey by looping over
the neighborhoods as defined on the Airbnb web site.
"""

def search(self, flag):
logger.info("=" * 70)
logger.info("Survey {survey_id}, for {search_area_name}".format(
survey_id=self.survey_id, search_area_name=self.search_area_name

))
ABSurvey.update_survey_entry(self, self.config.SEARCH_BY_NEIGHBORHOOD)
if self.search_area_name == self.config.SEARCH_AREA_GLOBAL:
"Special case": global search
self.__global_search()

else:
logger.info("Searching by neighborhood")
neighborhoods = self.get_neighborhoods_from_search_area()
for some cities (eg Havana) the neighborhood information
is incomplete, and an additional search with no
neighborhood is useful
neighborhoods = neighborhoods + [None]
for room_type in self.room_types:
logger.debug(

"Searching for %(rt)s by neighborhood",
{"rt": room_type})

if len(neighborhoods) > 0:
self.__search_loop_neighborhoods(neighborhoods,

room_type, flag)
else:

self.__search_neighborhood(None, room_type, flag)
self.fini()

def __search_loop_neighborhoods(self, neighborhoods, room_type, flag):
"""Loop over neighborhoods in a city. No return."""
try:
for neighborhood in neighborhoods:
self.__search_neighborhood(neighborhood, room_type, flag)

except Exception:
raise

def __search_neighborhood(self, neighborhood, room_type, flag):
try:

- 178 -

if room_type in ("Private room", "Shared room"):
max_guests = 4

else:
max_guests = self.config.SEARCH_MAX_GUESTS

for guests in range(1, max_guests):
logger.debug("Searching for %(g)i guests", {"g": guests})
for page_number in range(1, self.config.SEARCH_MAX_PAGES + 1):

if flag != self.config.FLAGS_PRINT:
count = self.page_has_been_retrieved(
room_type, neighborhood, guests, page_number,
self.config.SEARCH_BY_NEIGHBORHOOD)

if count == 1:
logger.info(

"\t...search page has been visited previously")
continue

elif count == 0:
logger.info(

"\t...search page has been visited previously")
break

else:
pass

room_count = self.__search_neighborhood_page(
room_type, neighborhood, guests, page_number, flag)

logger.info(("{room_type} ({g} guests): neighborhood {neighborhood}: "
"{room_count} rooms, {page_number} pages").format(
room_type=room_type, g=str(guests),
neighborhood=neighborhood,
room_count=room_count,
page_number=str(page_number)))

if flag == self.config.FLAGS_PRINT:
for FLAGS_PRINT, fetch one page and print it
sys.exit(0)

if room_count < self.config.SEARCH_LISTINGS_ON_FULL_PAGE:
logger.debug("Final page of listings for this search")
break

except Exception:
raise

def __search_neighborhood_page(self, room_type, neighborhood, guests, page_number, flag):
try:
logger.info("-" * 70)
logger.info(room_type + ", " +
str(neighborhood) + ", " +
str(guests) + " guests, " +
"page " + str(page_number))

new_rooms = 0
room_count = 0
params = {}
params["page"] = str(page_number)
params["source"] = "filter"
params["location"] = self.search_area_name
params["room_types[]"] = room_type
params["neighborhoods[]"] = neighborhood

- 179 -

response = airbnb_ws.ws_request_with_repeats(self.config,
self.config.URL_API_SEARCH_ROOT, params)

json = response.json()
for result in json["results_json"]["search_results"]:
room_id = int(result["listing"]["id"])
if room_id is not None:

room_count += 1
listing = self.listing_from_search_page_json(result, room_id, room_type)
if listing is None:
continue

if listing.host_id is not None:
listing.deleted = 0
if flag == self.config.FLAGS_ADD:
if listing.save(self.config.FLAGS_INSERT_NO_REPLACE):

new_rooms += 1
elif flag == self.config.FLAGS_PRINT:
print(room_type, listing.room_id)

if room_count > 0:
has_rooms = 1

else:
has_rooms = 0

if flag == self.config.FLAGS_ADD:
neighborhood_id = self.get_neighborhood_id(neighborhood)
self.log_progress(room_type, neighborhood_id,

guests, page_number, has_rooms)
return room_count

except UnicodeEncodeError:
logger.error("UnicodeEncodeError: set PYTHONIOENCODING=utf-8")
if sys.version_info >= (3,):
logger.info(s.encode('utf8').decode(sys.stdout.encoding))
else:
logger.info(s.encode('utf8'))
unhandled at the moment

except Exception:
raise

def get_neighborhood_id(self, neighborhood):
try:
sql = """
select neighborhood_id
from neighborhood nb,
search_area sa,
survey s

where nb.search_area_id = sa.search_area_id
and sa.search_area_id = s.search_area_id
and s.survey_id = %s
and nb.name = %s
"""
conn = self.config.connect()
cur = conn.cursor()
cur.execute(sql, (self.survey_id, neighborhood,))
neighborhood_id = cur.fetchone()[0]
cur.close()

- 180 -

conn.commit()
cur = conn.cursor()
cur.execute(sql, (self.survey_id, neighborhood,))
neighborhood_id = cur.fetchone()[0]
cur.close()
conn.commit()
return neighborhood_id

except psycopg2.Error:
raise

except Exception:
return None

def get_neighborhoods_from_search_area(self):
try:
conn = self.config.connect()
cur = conn.cursor()
cur.execute("""
select name
from neighborhood
where search_area_id = %s
order by name""", (self.search_area_id,))

neighborhoods = []
while True:
row = cur.fetchone()
if row is None:

break
neighborhoods.append(row[0])

cur.close()
return neighborhoods

except Exception:
logger.error("Failed to retrieve neighborhoods from " +

str(search_area_id))
raise

class ABSurveyByZipcode(ABSurvey):
"""
Subclass of Survey that carries out a survey by looping over
zipcodes as defined in a separate table
"""

def search(self, flag):
logger.info("=" * 70)
logger.info("Survey {survey_id}, for {search_area_name}".format(
survey_id=self.survey_id, search_area_name=self.search_area_name

))
ABSurvey.update_survey_entry(self, self.config.SEARCH_BY_ZIPCODE)
logger.info("Searching by zipcode")
zipcodes = self.get_zipcodes_from_search_area()
for room_type in self.room_types:
try:
i = 0

- 181 -

for zipcode in zipcodes:
i += 1
self.__search_zipcode(str(zipcode), room_type, self.survey_id,

flag, self.search_area_name)
except Exception:
raise

self.fini()

def __search_zipcode(self, zipcode, room_type, survey_id,
flag, search_area_name):

try:
if room_type in ("Private room", "Shared room"):
max_guests = 4

else:
max_guests = self.config.SEARCH_MAX_GUESTS

for guests in range(1, max_guests):
logger.debug("Searching for %(g)i guests", {"g": guests})
for page_number in range(1, self.config.SEARCH_MAX_PAGES + 1):

if flag != self.config.FLAGS_PRINT:
this efficiency check can be implemented later
count = self.page_has_been_retrieved(
room_type, str(zipcode),
guests, page_number, self.config.SEARCH_BY_ZIPCODE)

if count == 1:
logger.info(

"\t...search page has been visited previously")
continue

elif count == 0:
logger.info(

"\t...search page has been visited previously")
break

else:
logger.debug("\t...visiting search page")

room_count = self.get_search_page_info_zipcode(
room_type, zipcode, guests, page_number, flag)

if flag == self.config.FLAGS_PRINT:
for FLAGS_PRINT, fetch one page and print it
sys.exit(0)

if room_count < self.config.SEARCH_LISTINGS_ON_FULL_PAGE:
logger.debug("Final page of listings for this search")
break

except Exception:
raise

def get_zipcodes_from_search_area(self):
try:
conn = self.config.connect()
cur = conn.cursor()
Query from the manually-prepared zipcode table
cur.execute("""
select zipcode
from zipcode z, search_area sa
where sa.search_area_id = %s

- 182 -

and z.search_area_id = sa.search_area_id
""", (self.search_area_id,))
zipcodes = []
while True:
row = cur.fetchone()
if row is None:

break
zipcodes.append(row[0])

cur.close()
return zipcodes

except Exception:
logger.error("Failed to retrieve zipcodes for search_area" +

str(self.search_area_id))
raise

def get_search_page_info_zipcode(self, room_type,
zipcode, guests, page_number, flag):

try:
logger.info("-" * 70)
logger.info(room_type + ", zipcode " + str(zipcode) + ", " +

str(guests) + " guests, " + "page " + str(page_number))
room_count = 0
new_rooms = 0
params = {}
params["guests"] = str(guests)
params["page"] = str(page_number)
params["source"] = "filter"
params["location"] = zipcode
params["room_types[]"] = room_type
response = airbnb_ws.ws_request_with_repeats(self.config,

self.config.URL_API_SEARCH_ROOT, params)
json = response.json()
for result in json["results_json"]["search_results"]:
room_id = int(result["listing"]["id"])
if room_id is not None:

room_count += 1
listing = self.listing_from_search_page_json(result, room_id, room_type)
if listing is None:
continue

if listing.host_id is not None:
listing.deleted = 0
if flag == self.config.FLAGS_ADD:
if listing.save(self.config.FLAGS_INSERT_NO_REPLACE):

new_rooms += 1
elif flag == self.config.FLAGS_PRINT:
print(room_type, listing.room_id)

if room_count > 0:
has_rooms = 1

else:
has_rooms = 0

if flag == self.config.FLAGS_ADD:
self.log_progress(room_type, zipcode,

guests, page_number, has_rooms)

- 183 -

else:
logger.info("No rooms found")

return room_count
except UnicodeEncodeError:
logger.error(
"UnicodeEncodeError: you may want to set PYTHONIOENCODING=utf-8")

if sys.version_info >= (3,):
logger.info(s.encode('utf8').decode(sys.stdout.encoding))
else:
logger.info(s.encode('utf8'))
unhandled at the moment

except Exception as e:
logger.error("Exception type: " + type(e).__name__)
raise

def ABSurveyGlobal(ABSurvey):
"""
Special search to randomly choose rooms from a range rather than to
look at specific areas of the world.
"""

def search(self, flag, search_by):
logger.info("-" * 70)
logger.info("Survey {survey_id}, for {search_area_name}".format(
survey_id=self.survey_id, search_area_name=self.search_area_name

))
ABSurvey.update_survey_entry(self, self.config.SEARCH_AREA_GLOBAL)
room_count = 0
while room_count < self.config.FILL_MAX_ROOM_COUNT:
try:
get a random candidate room_id
room_id = random.randint(0, self.config.ROOM_ID_UPPER_BOUND)
listing = ABListing(self.config, room_id, self.survey_id)
if room_id is None:

break
else:

if listing.ws_get_room_info(self.config.FLAGS_ADD):
room_count += 1

except AttributeError:
logger.error(

"Attribute error: marking room as deleted.")
listing.save_as_deleted()

except Exception as ex:
logger.exception("Error in search:" + str(type(ex)))
raise

self.fini()

- 184 -

APPENDIX F

Platform Home Sharing Survey Exporting Tool “export_spreadsheet.py”

This tool deposits the information gathered into a designated folder.

import psycopg2 as pg
import pandas as pd
import argparse
import datetime as dt
import logging
from airbnb_config import ABConfig

LOG_LEVEL = logging.INFO
Set up logging
LOG_FORMAT = '%(levelname)-8s%(message)s'
logging.basicConfig(format=LOG_FORMAT, level=LOG_LEVEL)
DEFAULT_START_DATE = '2013-05-02'

def survey_df(ab_config, city, start_date):
sql_survey_ids = """

select survey_id, survey_date, comment
from survey s, search_area sa
where s.search_area_id = sa.search_area_id
and sa.name = %(city)s
and s.survey_date > '{start_date}'
and s.status = 1
order by survey_id

""".format(start_date=start_date)
conn = ab_config.connect()
df = pd.read_sql(sql_survey_ids, conn,

params={"city": city})
conn.close()
return(df)

def city_view_name(ab_config, city):
sql_abbrev = """
select abbreviation from search_area
where name = %s
"""
conn = ab_config.connect()
cur = conn.cursor()
cur.execute(sql_abbrev, (city,))
city_view_name = 'listing_' + cur.fetchall()[0][0]
cur.close()
return city_view_name

def total_listings(ab_config, city_view):
sql = """select s.survey_id "Survey",
survey_date "Date", count(*) "Listings"

- 185 -

from {city_view} r join survey s
on r.survey_id = s.survey_id
group by 1, 2
order by 1
""".format(city_view=city_view)
conn = ab_config.connect()
df = pd.read_sql(sql, conn)
conn.close()
return df

def by_room_type(ab_config, city_view):
sql = """select s.survey_id "Survey",
survey_date "Date", room_type "Room Type",
count(*) "Listings", sum(reviews) "Reviews",
sum(reviews * price) "Relative Income"
from {city_view} r join survey s
on r.survey_id = s.survey_id
where room_type is not null
group by 1, 2, 3
order by 1
""".format(city_view=city_view)
conn = ab_config.connect()
df = pd.read_sql(sql, conn)
conn.close()
return df.pivot(index="Date", columns="Room Type")

def by_host_type(ab_config, city_view):
sql = """
select survey_id "Survey",

survey_date "Date",
case when listings_for_host = 1
then 'Single' else 'Multi'
end "Host Type",
sum(hosts) "Hosts", sum(listings) "Listings", sum(reviews) "Reviews"

from (
select survey_id, survey_date,
listings_for_host, count(*) hosts,
sum(listings_for_host) listings, sum(reviews) reviews
from (
select s.survey_id survey_id, survey_date,
host_id, count(*) listings_for_host,
sum(reviews) reviews
from {city_view} r join survey s
on r.survey_id = s.survey_id
group by s.survey_id, survey_date, host_id
) T1

group by 1, 2, 3
) T2
group by 1, 2, 3
""".format(city_view=city_view)
conn = ab_config.connect()

- 186 -

df = pd.read_sql(sql, conn)
conn.close()
df = df.pivot(index="Date", columns="Host Type")
df.set_index(["Date"], drop=False, inplace=True)
return df

def by_neighborhood(ab_config, city_view):
sql = """select

s.survey_id, survey_date "Date", neighborhood "Neighborhood",
count(*) "Listings", sum(reviews) "Reviews"

from {city_view} r join survey s
on r.survey_id = s.survey_id
group by 1, 2, 3
""".format(city_view=city_view)
conn = ab_config.connect()
df = pd.read_sql(sql, conn)
conn.close()
df = df.pivot(index="Date", columns="Neighborhood")
df.set_index(["Date"], drop=False, inplace=True)
return df

def export_city_summary(ab_config, city, project, start_date):
logging.info(" ---- Exporting summary spreadsheet" +

" for " + city +
" using project " + project)

city_bar = city.replace(" ", "_").lower()
today = dt.date.today().isoformat()
xlsxfile = ("./{project}/slee_{project}_{city_bar}_summary_{today}.xlsx"

).format(project=project, city_bar=city_bar, today=today)
writer = pd.ExcelWriter(xlsxfile, engine="xlsxwriter")
df = survey_df(ab_config, city, start_date)
city_view = city_view_name(ab_config, city)
logging.info("Total listings...")
df = total_listings(ab_config, city_view)
df.to_excel(writer, sheet_name="Total Listings", index=False)
logging.info("Listings by room type...")
df = by_room_type(ab_config, city_view)
df["Listings"].to_excel(writer,

sheet_name="Listings by room type", index=True)
df["Reviews"].to_excel(writer,

sheet_name="Reviews by room type", index=True)
logging.info("Listings by host type...")
df = by_host_type(ab_config, city_view)
df["Hosts"].to_excel(writer,

sheet_name="Hosts by host type", index=True)
df["Listings"].to_excel(writer,

sheet_name="Listings by host type", index=True)
df["Reviews"].to_excel(writer,

sheet_name="Reviews by host type", index=True)
logging.info("Listings by neighborhood...")
df = by_neighborhood(ab_config, city_view)

- 187 -

df["Listings"].to_excel(writer,
sheet_name="Listings by Neighborhood", index=True)

df["Reviews"].to_excel(writer,
sheet_name="Reviews by Neighborhood", index=True)

logging.info("Saving " + xlsxfile)
writer.save()

def export_city_data(ab_config, city, project, format, start_date):
logging.info(" ---- Exporting " + format +

" for " + city +
" using project " + project)

df = survey_df(ab_config, city, start_date)
survey_ids = df["survey_id"].tolist()
survey_dates = df["survey_date"].tolist()
logging.info(" ---- Surveys: " + ', '.join(str(id) for id in survey_ids))
conn = ab_config.connect()

survey_ids = [11,]
if project == "gis":

city_view = city_view_name(ab_config, city)
sql = """
select room_id, host_id, room_type,
borough, neighborhood,
reviews, overall_satisfaction,
accommodates, bedrooms, bathrooms,
price, minstay,
latitude, longitude,
last_modified as collected

from {city_view}
where survey_id = %(survey_id)s
order by room_id
""".format(city_view=city_view)

elif project == "hvs":
sql = """
select room_id, host_id, room_type,
borough, neighborhood,
reviews, overall_satisfaction,
accommodates, bedrooms, bathrooms,
price, minstay,
latitude, longitude,
last_modified as collected

from hvs.listing
where survey_id = %(survey_id)s
order by room_id
"""

else:
sql = """
select room_id, host_id, room_type,
city, neighborhood,
reviews, overall_satisfaction,
accommodates, bedrooms, bathrooms,

- 188 -

price, minstay,
latitude, longitude,
last_modified as collected

from survey_room(%(survey_id)s)
order by room_id
"""

city_bar = city.replace(" ", "_").lower()
if format == "csv":

for survey_id, survey_date in \
zip(survey_ids, survey_dates):

csvfile = ("./{project}/ts_{city_bar}_{survey_date}.csv").format(
project=project, city_bar=city_bar,
survey_date=str(survey_date))

csvfile = csvfile.lower()
df = pd.read_sql(sql, conn,

index_col="room_id",
params={"survey_id": survey_id.item()}
)

logging.info("CSV export: survey " +
str(survey_id) + " to " + csvfile)

df.to_csv(csvfile)
default encoding is 'utf-8' on Python 3

else:
today = dt.date.today().isoformat()
xlsxfile = ("./{project}/slee_{project}_{city_bar}_{today}.xlsx"

).format(project=project, city_bar=city_bar, today=today)
writer = pd.ExcelWriter(xlsxfile, engine="xlsxwriter")
logging.info("Spreadsheet name: " + xlsxfile)
read surveys
for survey_id, survey_date in \

zip(survey_ids, survey_dates):
logging.info("Survey " + str(survey_id) + " for " + city)
df = pd.read_sql(sql, conn,

index_col="room_id",
params={"survey_id": survey_id.item()}
)

if len(df) > 0:
logging.info("Survey " + str(survey_id) +

": to Excel worksheet")
df.to_excel(writer, sheet_name=str(survey_date))

else:
logging.info("Survey " + str(survey_id) +

" not in production project: ignoring")

neighborhood summaries
if project == "gis":
sql = "select to_char(survey_date, 'YYYY-MM-DD') as survey_date,"
sql += " neighborhood, count(*) as listings from"
sql += " " + city_view + " li,"
sql += " survey s"
sql += " where li.survey_id = s.survey_id"
sql += " and s.survey_date > %(start_date)s"

- 189 -

sql += " group by survey_date, neighborhood order by 3 desc"
try:
df = pd.read_sql(sql, conn, params={"start_date": start_date})
if len(df.index) > 0:

logging.info("Exporting listings for " + city)
dfnb = df.pivot(index='neighborhood', columns='survey_date',

values='listings')
dfnb.fillna(0)
dfnb.to_excel(writer, sheet_name="Listings by neighborhood")

except pg.InternalError:
Miami has no neighborhoods
pass

except pd.io.sql.DatabaseError:
Miami has no neighborhoods
pass

sql = "select to_char(survey_date, 'YYYY-MM-DD') as survey_date,"
sql += " neighborhood, sum(reviews) as visits from"
sql += " " + city_view + " li,"
sql += " survey s"
sql += " where li.survey_id = s.survey_id"
sql += " and s.survey_date > %(start_date)s"
sql += " group by survey_date, neighborhood order by 3 desc"
try:
df = pd.read_sql(sql, conn, params={"start_date": start_date})
if len(df.index) > 0:
logging.info("Exporting visits for " + city)
dfnb = df.pivot(index='neighborhood', columns='survey_date',

values='visits')
dfnb.fillna(0)
dfnb.to_excel(writer, sheet_name="Visits by neighborhood")

except pg.InternalError:
Miami has no neighborhoods
pass

except pd.io.sql.DatabaseError:
pass

logging.info("Saving " + xlsxfile)
writer.save()

def main():
parser = \

argparse.ArgumentParser(
description="Create a spreadsheet of surveys from a city")

parser.add_argument("-cfg", "--config_file",
metavar="config_file", action="store", default=None,
help="""explicitly set configuration file, instead of
using the default <username>.config""")

parser.add_argument('-c', '--city',
metavar='city', action='store',
help="""set the city""")

parser.add_argument('-p', '--project',

- 190 -

metavar='project', action='store', default="public",
help="""the project determines the table or view: public
for room, gis for listing_city, default public""")

parser.add_argument('-f', '--format',
metavar='format', action='store', default="xlsx",
help="""output format (xlsx or csv), default xlsx""")

parser.add_argument('-s', '--summary',
action='store_true', default=False,
help="create a summary spreadsheet instead of raw data")

parser.add_argument('-sd', '--start_date',
metavar="start_date", action='store',
default=DEFAULT_START_DATE,
help="create a summary spreadsheet instead of raw data")

args = parser.parse_args()
ab_config = ABConfig(args)

if args.city:
if args.summary:
export_city_summary(ab_config, args.city, args.project.lower(),

args.start_date)
else:
export_city_data(ab_config, args.city, args.project.lower(),

args.format, args.start_date)
else:

parser.print_help()

if __name__ == "__main__":
main()

- 191 -

APPENDIX G

Platform Home Sharing Survey Schema Management Tool “schema_update.py”

This tool customizes the relationships among the collection of databases compiled through the

scraping and implemented in the survey.

import logging
import re
from lxml import html
import psycopg2
import json
import airbnb_ws

logger = logging.getLogger()

class ABListing():
"""
ABListing represents an Airbnb room_id, as captured at a moment in time.
room_id, survey_id is the primary key.
Occasionally, a survey_id = None will happen, but for retrieving data
straight from the web site, and not stored in the database.
"""
def __init__(self, config, room_id, survey_id, room_type=None):

self.config = config
self.room_id = room_id
self.host_id = None
self.room_type = room_type
self.country = None
self.city = None
self.neighborhood = None
self.address = None
self.reviews = None
self.overall_satisfaction = None
self.accommodates = None
self.bedrooms = None
self.bathrooms = None
self.price = None
self.deleted = None
self.minstay = None
self.latitude = None
self.longitude = None
self.survey_id = survey_id
extra fields added from search json:
coworker_hosted (bool)
self.coworker_hosted = None
extra_host_languages (list)
self.extra_host_languages = None
name (str)
self.name = None

- 192 -

property_type (str)
self.property_type = None
currency (str)
self.currency = None
rate_type (str) - "nightly" or other?
self.rate_type = None
""" """

def status_check(self):
status = True # OK
if sufficient of the values are None or don't exist, the room
entry was not properly parsed and we may as well throw the whole
thing away.
unassigned_values = {key: value

for key, value in vars(self).items()
if not key.startswith('__') and
not callable(key) and
value is None
}

if len(unassigned_values) > 9: # just a value indicating deleted
logger.info("Room " + str(self.room_id) + ": marked deleted")
status = False # probably deleted
self.deleted = 1

else:
for key, val in unassigned_values.items():
if (key == "overall_satisfaction" and "reviews" not in

unassigned_values):
if val is None and self.reviews > 2:
logger.debug("Room " + str(self.room_id) + ": No value for " + key)

elif val is None:
logger.debug("Room " + str(self.room_id) + ": No value for " + key)

return status

def get_columns(self):
"""
Hack: callable(attr) includes methods with (self) as argument.
Need to find a way to avoid these.
This hack does also provide the proper order, which matters
"""
columns = [attr for attr in dir(self) if not
callable(attr) and not attr.startswith("__")]
columns = ("room_id", "host_id", "room_type", "country",

"city", "neighborhood", "address", "reviews",
"overall_satisfaction", "accommodates", "bedrooms",
"bathrooms", "price", "deleted", "minstay",
"latitude", "longitude", "survey_id", "last_modified",)

return columns

def save_as_deleted(self):
try:
logger.debug("Marking room deleted: " + str(self.room_id))
if self.survey_id is None:
return

- 193 -

conn = self.config.connect()
sql = """
update room
set deleted = 1, last_modified = now()::timestamp
where room_id = %s
and survey_id = %s

"""
cur = conn.cursor()
cur.execute(sql, (self.room_id, self.survey_id))
cur.close()
conn.commit()

except Exception:
logger.error("Failed to save room as deleted")
raise

def save(self, insert_replace_flag):
"""
Save a listing in the database. Delegates to lower-level methods
to do the actual database operations.
Return values:
True: listing is saved in the database
False: listing already existed

"""
try:
rowcount = -1
if self.deleted == 1:
self.save_as_deleted()

else:
if insert_replace_flag == self.config.FLAGS_INSERT_REPLACE:

rowcount = self.__update()
if (rowcount == 0 or

insert_replace_flag == self.config.FLAGS_INSERT_NO_REPLACE):
try:
self.__insert()
return True

except psycopg2.IntegrityError:
logger.debug("Room " + str(self.room_id) + ": already collected")
return False

except psycopg2.OperationalError:
connection closed
logger.error("Operational error (connection closed): resuming")
del(self.config.connection)

except psycopg2.DatabaseError as de:
self.config.connection.conn.rollback()
logger.erro(psycopg2.errorcodes.lookup(de.pgcode[:2]))
logger.error("Database error: resuming")
del(self.config.connection)

except psycopg2.InterfaceError:
connection closed
logger.error("Interface error: resuming")
del(self.config.connection)

except psycopg2.Error as pge:
database error: rollback operations and resume

- 194 -

self.config.connection.conn.rollback()
logger.error("Database error: " + str(self.room_id))
logger.error("Diagnostics " + pge.diag.message_primary)
del(self.config.connection)

except (KeyboardInterrupt, SystemExit):
raise

except UnicodeEncodeError as uee:
logger.error("UnicodeEncodeError Exception at " +

str(uee.object[uee.start:uee.end]))
raise

except ValueError:
logger.error("ValueError for room_id = " + str(self.room_id))

except AttributeError:
logger.error("AttributeError")
raise

except Exception:
self.config.connection.rollback()
logger.error("Exception saving room")
raise

def print_from_web_site(self):
""" What is says """
try:
print_string = "Room info:"
print_string += "\n\troom_id:\t" + str(self.room_id)
print_string += "\n\tsurvey_id:\t" + str(self.survey_id)
print_string += "\n\thost_id:\t" + str(self.host_id)
print_string += "\n\troom_type:\t" + str(self.room_type)
print_string += "\n\tcountry:\t" + str(self.country)
print_string += "\n\tcity:\t\t" + str(self.city)
print_string += "\n\tneighborhood:\t" + str(self.neighborhood)
print_string += "\n\taddress:\t" + str(self.address)
print_string += "\n\treviews:\t" + str(self.reviews)
print_string += "\n\toverall_satisfaction:\t"
print_string += str(self.overall_satisfaction)
print_string += "\n\taccommodates:\t" + str(self.accommodates)
print_string += "\n\tbedrooms:\t" + str(self.bedrooms)
print_string += "\n\tbathrooms:\t" + str(self.bathrooms)
print_string += "\n\tprice:\t\t" + str(self.price)
print_string += "\n\tdeleted:\t" + str(self.deleted)
print_string += "\n\tlatitude:\t" + str(self.latitude)
print_string += "\n\tlongitude:\t" + str(self.longitude)
print_string += "\n\tminstay:\t" + str(self.minstay)
print_string += "\n\tcoworker_hosted:\t" + str(self.coworker_hosted)
print_string += "\n\tlanguages:\t" + str(self.extra_host_languages)
print_string += "\n\tproperty_type:\t" + str(self.property_type)
print(print_string)

except Exception:
raise

def print_from_db(self):
""" What it says """
try:

- 195 -

columns = self.get_columns()
sql = "select room_id"
for column in columns[1:]:
sql += ", " + column

sql += " from room where room_id = %s"
conn = self.config.connect()
cur = conn.cursor()
cur.execute(sql, (self.room_id,))
result_set = cur.fetchall()
if len(result_set) > 0:
for result in result_set:

i = 0
print("Room information: ")
for column in columns:
print("\t", column, "=", str(result[i]))
i += 1

return True
else:
print("\nNo room", str(self.room_id), "in the database.\n")
return False

cur.close()
except Exception:
raise

def ws_get_room_info(self, flag):
""" Get the room properties from the web site """
try:
initialization
logger.info("-" * 70)
logger.info("Room " + str(self.room_id) +

": getting from Airbnb web site")
room_url = self.config.URL_ROOM_ROOT + str(self.room_id)
response = airbnb_ws.ws_request_with_repeats(self.config, room_url)
if response is not None:
page = response.text
tree = html.fromstring(page)
self.__get_room_info_from_tree(tree, flag)
return True

else:
return False

except (KeyboardInterrupt, SystemExit):
raise

except Exception as ex:
logger.exception("Room " + str(self.room_id) +

": failed to retrieve from web site.")
logger.error("Exception: " + str(type(ex)))
raise

def __insert(self):
""" Insert a room into the database. Raise an error if it fails """
try:
logger.debug("Values: ")
logger.debug("\troom_id: {}".format(self.room_id))

- 196 -

logger.debug("\thost_id: {}".format(self.host_id))
conn = self.config.connect()
cur = conn.cursor()
sql = """
insert into room (

room_id, host_id, room_type, country, city,
neighborhood, address, reviews, overall_satisfaction,
accommodates, bedrooms, bathrooms, price, deleted,
minstay, latitude, longitude, survey_id,
coworker_hosted, extra_host_languages, name,
property_type, currency, rate_type

)
"""

sql += """
values (%s, %s, %s, %s, %s, %s, %s, %s, %s,
%s, %s, %s, %s, %s, %s, %s, %s, %s,
%s, %s, %s, %s, %s, %s
)"""

insert_args = (
self.room_id, self.host_id, self.room_type, self.country,
self.city, self.neighborhood, self.address, self.reviews,
self.overall_satisfaction, self.accommodates, self.bedrooms,
self.bathrooms, self.price, self.deleted, self.minstay,
self.latitude, self.longitude, self.survey_id,
self.coworker_hosted, self.extra_host_languages, self.name,
self.property_type, self.currency, self.rate_type
)

cur.execute(sql, insert_args)
cur.close()
conn.commit()
logger.debug("Room " + str(self.room_id) + ": inserted")
logger.debug("(lat, long) = ({lat:+.5f}, {lng:+.5f})".format(lat=self.latitude,

lng=self.longitude))
except psycopg2.IntegrityError:
logger.info("Room " + str(self.room_id) + ": insert failed")
conn.rollback()
cur.close()
raise

except:
conn.rollback()
raise

def __update(self):
""" Update a room in the database. Raise an error if it fails.
Return number of rows affected."""
try:
rowcount = 0
conn = self.config.connect()
cur = conn.cursor()
logger.debug("Updating...")
sql = """
update room

- 197 -

set host_id = %s, room_type = %s,
country = %s, city = %s, neighborhood = %s,
address = %s, reviews = %s, overall_satisfaction = %s,
accommodates = %s, bedrooms = %s, bathrooms = %s,
price = %s, deleted = %s, last_modified = now()::timestamp,
minstay = %s, latitude = %s, longitude = %s,
coworker_hosted = %s, extra_host_languages = %s, name = %s,
property_type = %s, currency = %s, rate_type = %s

where room_id = %s
and survey_id = %s"""

update_args = (
self.host_id, self.room_type,
self.country, self.city, self.neighborhood,
self.address, self.reviews, self.overall_satisfaction,
self.accommodates, self.bedrooms, self.bathrooms,
self.price, self.deleted,
self.minstay, self.latitude,
self.longitude,
self.coworker_hosted, self.extra_host_languages, self.name,
self.property_type, self.currency, self.rate_type,
self.room_id,
self.survey_id,
)

logger.debug("Executing...")
cur.execute(sql, update_args)
rowcount = cur.rowcount
logger.debug("Closing...")
cur.close()
conn.commit()
logger.info("Room " + str(self.room_id) +

": updated (" + str(rowcount) + ")")
return rowcount

except:
may want to handle connection close errors
logger.warning("Exception in __update: raising")
raise

def __get_country(self, tree):
try:
temp = tree.xpath(
"//meta[contains(@property,'airbedandbreakfast:country')]"
"/@content"
)

if len(temp) > 0:
self.country = temp[0]

except:
raise

def __get_city(self, tree):
try:
temp = tree.xpath(
"//meta[contains(@property,'airbedandbreakfast:city')]"
"/@content"

- 198 -

)
if len(temp) > 0:
self.city = temp[0]

except:
raise

def __get_rating(self, tree):
try:
2016-04-10
s = tree.xpath("//meta[@id='_bootstrap-listing']/@content")
temp = tree.xpath(
"//meta[contains(@property,'airbedandbreakfast:rating')]"
"/@content"
)

if s is not None:
j = json.loads(s[0])
self.overall_satisfaction = j["listing"]["star_rating"]

elif len(temp) > 0:
self.overall_satisfaction = temp[0]

except IndexError:
return

except:
raise

def __get_latitude(self, tree):
try:
temp = tree.xpath("//meta"

"[contains(@property,"
"'airbedandbreakfast:location:latitude')]"
"/@content")

if len(temp) > 0:
self.latitude = temp[0]

except:
raise

def __get_longitude(self, tree):
try:
temp = tree.xpath(
"//meta"
"[contains(@property,'airbedandbreakfast:location:longitude')]"
"/@content")

if len(temp) > 0:
self.longitude = temp[0]

except:
raise

def __get_host_id(self, tree):
try:
2016-04-10
s = tree.xpath("//meta[@id='_bootstrap-listing']/@content")
temp = tree.xpath(
"//div[@id='host-profile']"
"//a[contains(@href,'/users/show')]"

- 199 -

"/@href"
)
if s is not None:
j = json.loads(s[0])
self.host_id = j["listing"]["user"]["id"]
return

elif len(temp) > 0:
host_id_element = temp[0]
host_id_offset = len('/users/show/')
self.host_id = int(host_id_element[host_id_offset:])

else:
temp = tree.xpath(

"//div[@id='user']"
"//a[contains(@href,'/users/show')]"
"/@href")

if len(temp) > 0:
host_id_element = temp[0]
host_id_offset = len('/users/show/')
self.host_id = int(host_id_element[host_id_offset:])

except IndexError:
return

except:
raise

def __get_room_type(self, tree):
try:
-- room type --
new page format 2015-09-30?
temp = tree.xpath(
"//div[@class='col-md-6']"
"/div/span[text()[contains(.,'Room type:')]]"
"/../strong/text()"
)

if len(temp) > 0:
self.room_type = temp[0].strip()

else:
new page format 2014-12-26
temp_entire = tree.xpath(

"//div[@id='summary']"
"//i[contains(concat(' ', @class, ' '),"
" ' icon-entire-place ')]"
)

if len(temp_entire) > 0:
self.room_type = "Entire home/apt"

temp_private = tree.xpath(
"//div[@id='summary']"
"//i[contains(concat(' ', @class, ' '),"
" ' icon-private-room ')]"
)

if len(temp_private) > 0:
self.room_type = "Private room"

temp_shared = tree.xpath(
"//div[@id='summary']"

- 200 -

"//i[contains(concat(' ', @class, ' '),"
" ' icon-shared-room ')]"
)

if len(temp_shared) > 0:
self.room_type = "Shared room"

except:
raise

def __get_neighborhood(self, tree):
try:
temp2 = tree.xpath(
"//div[contains(@class,'rich-toggle')]/@data-address"
)

temp1 = tree.xpath("//table[@id='description_details']"
"//td[text()[contains(.,'Neighborhood:')]]"
"/following-sibling::td/descendant::text()")

if len(temp2) > 0:
temp = temp2[0].strip()
self.neighborhood = temp[temp.find("(")+1:temp.find(")")]

elif len(temp1) > 0:
self.neighborhood = temp1[0].strip()

if self.neighborhood is not None:
self.neighborhood = self.neighborhood[:50]

except:
raise

def __get_address(self, tree):
try:
temp = tree.xpath(
"//div[contains(@class,'rich-toggle')]/@data-address"
)

if len(temp) > 0:
temp = temp[0].strip()
self.address = temp[:temp.find(",")]

else:
try old page match
temp = tree.xpath(

"//span[@id='display-address']"
"/@data-location"
)

if len(temp) > 0:
self.address = temp[0]

except:
raise

def __get_reviews(self, tree):
try:
2016-04-10
s = tree.xpath("//meta[@id='_bootstrap-listing']/@content")
2015-10-02
temp2 = tree.xpath(
"//div[@class='___iso-state___p3summarybundlejs']"
"/@data-state"

- 201 -

)
if s is not None:
j = json.loads(s[0])
self.reviews = \

j["listing"]["review_details_interface"]["review_count"]
elif len(temp2) == 1:
summary = json.loads(temp2[0])
self.reviews = summary["visibleReviewCount"]

elif len(temp2) == 0:
temp = tree.xpath(

"//div[@id='room']/div[@id='reviews']//h4/text()")
if len(temp) > 0:

self.reviews = temp[0].strip()
self.reviews = str(self.reviews).split('+')[0]
self.reviews = str(self.reviews).split(' ')[0].strip()

if self.reviews == "No":
self.reviews = 0

else:
try old page match
temp = tree.xpath(

"//span[@itemprop='reviewCount']/text()"
)

if len(temp) > 0:
self.reviews = temp[0]

if self.reviews is not None:
self.reviews = int(self.reviews)

except IndexError:
return

except Exception as e:
logger.exception(e)
self.reviews = None

def __get_accommodates(self, tree):
try:
2016-04-10
s = tree.xpath("//meta[@id='_bootstrap-listing']/@content")
temp = tree.xpath(
"//div[@class='col-md-6']"
"/div/span[text()[contains(.,'Accommodates:')]]"
"/../strong/text()"
)

if s is not None:
j = json.loads(s[0])
self.accommodates = j["listing"]["person_capacity"]
return

elif len(temp) > 0:
self.accommodates = temp[0].strip()

else:
temp = tree.xpath(

"//div[@class='col-md-6']"
"/div[text()[contains(.,'Accommodates:')]]"
"/strong/text()"
)

- 202 -

if len(temp) > 0:
self.accommodates = temp[0].strip()

else:
temp = tree.xpath(
"//div[@class='col-md-6']"
"//div[text()[contains(.,'Accommodates:')]]"
"/strong/text()"

)
if len(temp) > 0:
self.accommodates = temp[0].strip()

if type(self.accommodates) == str:
self.accommodates = self.accommodates.split('+')[0]
self.accommodates = self.accommodates.split(' ')[0]

self.accommodates = int(self.accommodates)
except:
self.accommodates = None

def __get_bedrooms(self, tree):
try:
temp = tree.xpath(
"//div[@class='col-md-6']"
"/div/span[text()[contains(.,'Bedrooms:')]]"
"/../strong/text()"
)

if len(temp) > 0:
self.bedrooms = temp[0].strip()

else:
temp = tree.xpath(

"//div[@class='col-md-6']"
"/div[text()[contains(.,'Bedrooms:')]]"
"/strong/text()"
)

if len(temp) > 0:
self.bedrooms = temp[0].strip()

if self.bedrooms:
self.bedrooms = self.bedrooms.split('+')[0]
self.bedrooms = self.bedrooms.split(' ')[0]

self.bedrooms = float(self.bedrooms)
except:
self.bedrooms = None

def __get_bathrooms(self, tree):
try:
temp = tree.xpath(
"//div[@class='col-md-6']"
"/div/span[text()[contains(.,'Bathrooms:')]]"
"/../strong/text()"
)

if len(temp) > 0:
self.bathrooms = temp[0].strip()

else:
temp = tree.xpath(

"//div[@class='col-md-6']"

- 203 -

"/div/span[text()[contains(.,'Bathrooms:')]]"
"/../strong/text()"
)

if len(temp) > 0:
self.bathrooms = temp[0].strip()

if self.bathrooms:
self.bathrooms = self.bathrooms.split('+')[0]
self.bathrooms = self.bathrooms.split(' ')[0]

self.bathrooms = float(self.bathrooms)
except:
self.bathrooms = None

def __get_minstay(self, tree):
try:
-- minimum stay --
temp3 = tree.xpath(
"//div[contains(@class,'col-md-6')"
"and text()[contains(.,'minimum stay')]]"
"/strong/text()"
)

temp2 = tree.xpath(
"//div[@id='details-column']"
"//div[contains(text(),'Minimum Stay:')]"
"/strong/text()"
)

temp1 = tree.xpath(
"//table[@id='description_details']"
"//td[text()[contains(.,'Minimum Stay:')]]"
"/following-sibling::td/descendant::text()"
)

if len(temp3) > 0:
self.minstay = temp3[0].strip()

elif len(temp2) > 0:
self.minstay = temp2[0].strip()

elif len(temp1) > 0:
self.minstay = temp1[0].strip()

if self.minstay is not None:
self.minstay = self.minstay.split('+')[0]
self.minstay = self.minstay.split(' ')[0]

self.minstay = int(self.minstay)
except:
self.minstay = None

def __get_price(self, tree):
try:
temp2 = tree.xpath(
"//meta[@itemprop='price']/@content"
)

temp1 = tree.xpath(
"//div[@id='price_amount']/text()"
)

if len(temp2) > 0:
self.price = temp2[0]

- 204 -

elif len(temp1) > 0:
self.price = temp1[0][1:]
non_decimal = re.compile(r'[^\d.]+')
self.price = non_decimal.sub('', self.price)

Now find out if it's per night or per month
(see if the per_night div is hidden)
per_month = tree.xpath(
"//div[@class='js-per-night book-it__payment-period hide']")

if per_month:
self.price = int(int(self.price) / 30)

self.price = int(self.price)
except:
self.price = None

def __get_room_info_from_tree(self, tree, flag):
try:
Some of these items do not appear on every page (eg,
ratings, bathrooms), and so their absence is marked with
logger.info. Others should be present for every room (eg,
latitude, room_type, host_id) and so are marked with a
warning. Items coded in <meta
property="airbedandbreakfast:*> elements -- country --

self.__get_country(tree)
self.__get_city(tree)
self.__get_rating(tree)
self.__get_latitude(tree)
self.__get_longitude(tree)
self.__get_host_id(tree)
self.__get_room_type(tree)
self.__get_neighborhood(tree)
self.__get_address(tree)
self.__get_reviews(tree)
self.__get_accommodates(tree)
self.__get_bedrooms(tree)
self.__get_bathrooms(tree)
self.__get_minstay(tree)
self.__get_price(tree)
self.deleted = 0

NOT FILLING HERE, but maybe should? have to write helper methods:
coworker_hosted, extra_host_languages, name,
property_type, currency, rate_type

self.status_check()

if flag == self.config.FLAGS_ADD:
self.save(self.config.FLAGS_INSERT_REPLACE)

elif flag == self.config.FLAGS_PRINT:
self.print_from_web_site()

return True
except (KeyboardInterrupt, SystemExit):
raise

- 205 -

except IndexError:
logger.exception("Web page has unexpected structure.")
raise

except UnicodeEncodeError as uee:
logger.exception("UnicodeEncodeError Exception at " +

str(uee.object[uee.start:uee.end]))
raise

except AttributeError:
logger.exception("AttributeError")
raise

except TypeError:
logger.exception("TypeError parsing web page.")
raise

except Exception:
logger.exception("Error parsing web page.")
raise

	I. INTRODUCTION
	1. Background
	2. Research Purpose and Methods
	3. Research Constructs
	II. LITERATURE REVIEW
	1. Platform Business Model
	1) Four main categories of innovation
	2) Disruptive Innovation’s Essential Elements
	3) Issues with Disruptive Innovation
	4) Platforms
	5) Traditional and Platform Accommodation
	6) Three Pillars of Platforms
	7) Platform Disruption
	8) Moving Towards Open Innovation

	2. Smart Tourism
	1) Smart Tourism on Jeju
	2) Phenomenon-based Research
	3) User-Generated Content
	4) Transitions of the Web
	(1) Web 2.0
	(2) Towards a Cooperative Web
	(3) Web 3.0

	3. The Sharing Economy
	1) Motivational Factors in the Sharing Economy
	2) Theories of Consumer Behavior and Revealed Preferences
	3) Decision Trees used in Predictive Statistical Modeling
	4) Airbnb on Jeju
	5) Literature End Note

	III. METHODOLOGY
	1. Research Analysis
	2. Hypothesis
	1) Research Model

	3. Data
	1) Description of Data

	4. Data Collection
	1) Geographic Parameters
	2) Scraping
	(1) Configuring the Scraper
	(2) Implementing the Scraper
	(3) Adding a Survey and collecting information
	(4) Exporting Room Information

	5. Methods of Analysis

	IV. ANALYSIS OF DATA
	1. Descriptive Analysis
	1) Hypothesis Test

	2. Inferential Analysis
	1) Stepwise Regression
	2) CHIAD Regression Trees
	3) Summary of Results

	V. CONCLUSION
	1. Conclusion
	1) Findings
	2) Discussion
	(1) Satisfaction and Accommodation
	(2) Multi-Listers

	2. Implications
	3. Limitations and Future Research

	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F
	APPENDIX G

<startpage>16
I. INTRODUCTION 1
 1. Background 1
 2. Research Purpose and Methods 6
 3. Research Constructs 8
 II. LITERATURE REVIEW 9
 1. Platform Business Model 9
 1) Four main categories of innovation 10
 2) Disruptive Innovation’s Essential Elements 13
 3) Issues with Disruptive Innovation 14
 4) Platforms 16
 5) Traditional and Platform Accommodation 18
 6) Three Pillars of Platforms 20
 7) Platform Disruption 21
 8) Moving Towards Open Innovation 25
 2. Smart Tourism 27
 1) Smart Tourism on Jeju 28
 2) Phenomenon-based Research 30
 3) User-Generated Content 33
 4) Transitions of the Web 33
 (1) Web 2.0 33
 (2) Towards a Cooperative Web 34
 (3) Web 3.0 36
 3. The Sharing Economy 37
 1) Motivational Factors in the Sharing Economy 37
 2) Theories of Consumer Behavior and Revealed Preferences 44
 3) Decision Trees used in Predictive Statistical Modeling 52
 4) Airbnb on Jeju 53
 5) Literature End Note 54
III. METHODOLOGY 55
 1. Research Analysis 55
 2. Hypothesis 56
 1) Research Model 56
 3. Data 57
 1) Description of Data 58
 4. Data Collection 64
 1) Geographic Parameters 65
 2) Scraping 66
 (1) Configuring the Scraper 67
 (2) Implementing the Scraper 69
 (3) Adding a Survey and collecting information 70
 (4) Exporting Room Information 73
 5. Methods of Analysis 73
IV. ANALYSIS OF DATA 75
 1. Descriptive Analysis 75
 1) Hypothesis Test 83
 2. Inferential Analysis 93
 1) Stepwise Regression 93
 2) CHIAD Regression Trees 102
 3) Summary of Results 110
V. CONCLUSION 112
 1. Conclusion 112
 1) Findings 112
 2) Discussion 113
 (1) Satisfaction and Accommodation 114
 (2) Multi-Listers 115
 2. Implications 116
 3. Limitations and Future Research 119
REFERENCES 122
APPENDIX A 134
APPENDIX B 143
APPENDIX C 146
APPENDIX D 149
APPENDIX E 164
APPENDIX F 184
APPENDIX G 191
</body>

