
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

 

 

 

博士學位論文 

 

 

 

 

 

Statistical-dynamical typhoon intensity predictions 

 in the western North Pacific  

based on track pattern clustering, decision tree 

 and ocean coupling predictors 

 

 

 

 

 

 

 

 

濟州大學校 大學院 

 

海洋氣象學 協同科程  

 

金 成 勳 

 

 

2017年 8月 

 



 

 

태풍 진로 패턴 군집분류 및 

 의사결정나무, 해양접합 예측인자 기반 

북서태평양 통계-역학적 태풍강도예측 

 

 

지도교수 문 일 주 

 

김 성 훈 

 

 

이 논문을 이학 박사학위 논문으로 제출함 

 

2017年 6月 

 

 

김성훈의 이학 박사학위 논문을 인준함 

 

심사위원장 _________________ 

위 원 _________________ 

위 원 _________________ 

위 원 _________________ 

위 원 _________________ 

제주대학교 대학원 
2017年 6月 



 

 

Statistical-dynamical typhoon intensity predictions in 

the western North Pacific based on track pattern 

clustering, decision tree and ocean coupling predictors 

 

 

Sung-Hun Kim 

(Supervised by professor Il-Ju Moon) 

 

 

A thesis submitted in partial fulfillment of the requirement for the degree of Doctor of science.  

 

 

2017. 6. 

 

 

 

This thesis has been examined and approved. 

 

 

 

Interdisciplinary Postgraduate Program 

in Marine Meteorology 

 

GRADUATE SCHOOL 

JEJU NATIONAL UNIVERSITY 

  



 

 

Contents 

 

List of tables ······································································································ ⅰ 

List of figures ····································································································· ⅱ 

Abstract ············································································································· ⅴ 

 

1. Introduction ······················································································1 

2. Data and method ················································································8 

  2.1. Data ···························································································8 

  2.2. Clustering method ···········································································9 

  2.3. Characteristics of classified clusters ···················································· 13 

2.4. Benefits of Cluster Analysis ····························································· 17 

2.5. Decision tree algorithm ·································································· 19 

2.6. Resampling and oversampling technique ·············································· 21 

3. Statistical-dynamical typhoon intensity prediction scheme ·························· 22 

  3.1. Static and synoptic potential predictors ················································ 22 

  3.2. DAT-based potential predictors ························································· 30 

3.3. Effects of using clustering and DAT-based predictors ······························ 33 

3.4. Comparisons of model performance ··················································· 37 

 



 

 

4. Classification model for determining type of LMI····································· 47 

  4.1. Prediction error of WNCP ······························································· 47 

4.2. Optimal min-leaf size ····································································· 53 

4.3. Governing rules of classification model ··············································· 56 

5. Summary and conclusions ·································································· 59 

6. References ······················································································ 63 



i 

 

List of tables 

 

Table 1. Mean maximum wind speed (knot) of TCs for five clusters at each lead time. Boldface 

and boldface with asterisk represent that the differences in mean value between each cluster and 

all TCs are statistically significant at the 95% and 99% confidence level (two-tailed t-test), 

respectively ································································································ 15 

Table 2. Same as in Table 1, but for the change in mean maximum wind speed (knot). ········· 16 

Table 3. Comparisons of standard deviations (𝜎𝑊𝑁𝑃) of predictand (intensity change) using the 

mean value for the entire sample (i.e., non-clustering cases) with those (𝜎𝑐) using the mean of 

each cluster at each lead time. The reduction rates of  𝜎𝐶 relative to 𝜎𝑊𝑁𝑃 are indicated in 

parentheses. ································································································ 18 

Table 4. List of six static potential predictors used in the present model. ························· 23 

Table 5. List of eleven synoptic potential predictors used in the present model. ················· 25 

Table 6. List of three DAT-based potential predictors used in the model. ························· 30 

Table 7. Experimental designs for investigating the effect of using clustering and DAT-based 

predictors. The open circle and the cross indicate the method applied and not applied, 

respectively. ······························································································· 33 

Table 8. Number of A70 and B70 during 2004-2013, 2014-2016 and 2004-2016. ··············· 51 

Table 9. List of potential variables included in the present model and its correlation coefficient 

with life time maximum intensity. ······································································ 52 

Table 10. Descriptions and accuracies of the rules derived from developed decision tree. ······ 58 

Table 11. Confusion matrix from the developed decision tree in training period. ················ 58 

Table 12. Same as table 11, but test period. ··························································· 58 



ii 

 

List of figures  

 

Fig. 1. (a) Tracks of typhoon Faxai (2014; red line) and Phanfone (2014; green line) along with 

the mean track for cluster 2 (thick black line), individual track for cluster 2 (blue lines) and 

individual track for WNP (gray lines). ···································································6 

Fig. 2. Results of individual intensity predictions from CSTIPS-DAT for typhoon (a) Phanfone 

(2014) and (b) Faxai (2014). Thick black line is observation (RSMC best track data) and colored 

lines are individual CSTIPS-DAT predictions. The numbers above x axis denote the assigned 

cluster number. ······························································································ 7 

Fig. 3. Value of four scalar validity measures according to number of clusters. (a) Partition coefficient, 

(b) partition index, (c) Xie and Beni’s index and (d) alternative Dunn index. ··························· 12 

Fig. 4. Spatial distributions of climatological vertical wind shear in ms-1 (dashed lines) (a), sea 

surface temperatures in °C (dashed lines) (b) and MPI in kt (c) for typhoon season (JJASON) in 

the western North Pacific. Black curves represent the mean track of five clusters. ·············· 14 

Fig. 5. The correlation coefficients between 6 static predictors (a, iWIND; b, DVMX; c, LON; d, 

LAT; e, MOV; f, LAND) and the change in TC intensity for five clusters and non-clustering 

case using all TCs at each forecast time. ······························································· 24 

Fig. 6. Same as in Fig 5, but for 11 synoptic predictors (a, SST; b, MPI; c, POT; d, OHC; e, 

RHHI; f, RHLO; g, SH200; h, SH500; i, T200; j, U200; k, RV850). ······························ 29 

Fig. 7. The comparison of the correlation coefficients between three thermodynamical predictors 

(a, DAT; b, POT; c, MPI) and the 24-h changes in TC intensity for three groups classified by 

initial maximum wind speed (iWIND). Open pentagrams represent the location of maximum 

value for the three groups. ··············································································· 31 

Fig. 8. Correlation coefficients between the various depth-averaged temperatures (SST, DAT30, 

DAT60, DAT90, and DAT120) and TC intensity change for five clusters (a, C1; b, C2; c, C3; d, 

C4; e, C5) , non-clustering case using all TCs (f) at each lead time. ······························· 32 



iii 

 

Fig. 9. Pie charts representing the ratio of the final selected predictors for (a) STIPS-SST, (b) 

STIPS-DAT, (c) CSTIPS-SST, and (d) CSTIPS-DAT. Predictor 1 represents the first selected 

predictor with the highest correlation coefficients with predictand (intensity change). Predictor 2 

represents the second selected predictor in the regression equation. Colors indicate the type of 

predictor (i.e., static is green, synoptic is orange, DAT-based is blue, and others are gray). If 

only one predictor is selected, it is marked as blank in Predictor 2. ································ 34 

Fig. 10. Same as in Fig. 9, but for five clusters of CSTIPS-DAT (a, C1; b, C2; c, C3; d, C4; e, 

C5). ········································································································· 36 

Fig. 11. Comparisons of mean absolute errors (MAEs) of the maximum intensity (kt) for five 

clusters (a, C1; b, C2; c, C3; d, C4; e, C5) and non-clustering cases using all TCs (f) at each lead 

time during the training period (2004-2012). For five clusters (a–e), two results from CSTIPS-

DAT and CSTIPS-SST are compared. For non-clustering case (f), the results from all 

experiments in Table 6 are compared.·································································· 38 

Fig. 12. Same as in Fig 11, but for the R-square (variance explained). ···························· 39 

Fig. 13. Schematic of real-time prediction procedure using the CSTIPS-DAT. ·················· 40 

Fig. 14. Comparisons of MAEs (a, b), Bias (b, e), and R-square (c, f) for the real-time TC 

intensity prediction in 2013 (a–c) and 2014 (d–e). Here, the results from all experiments in 

Table 6 are compared. ···················································································· 41 

Fig. 15. The reduction rates in MAEs of STIPS-DAT, CSTIPS-SST, and CSTIPS-DAT relative 

to the control experiment (STIPS-SST) for 2013 (a) and 2014 (b). ································ 43 

Fig. 16. (a) Tracks (colored lines) of Typhoon Pewa (2013), Fitow (2013), Pabuk (2013), Faxai 

(2014), Kalmaegi (2014) and Phanfone (2014) along with the mean track for five clusters (thick 

black lines). (b) Temporal evolution of membership coefficient for six TCs. ····················· 44 

Fig. 17. Results of individual intensity predictions from CSTIPS-DAT for Typhoon (a) Pewa 

(2013), (b) Fitow (2013), (c) Pabuk (2013), (d) Faxai (2014), (e) Kalmaegi (2014) and (f) 

Phanfone (2014). Thick line is observation (RSMC best track data) and gray lines are individual 



iv 

 

CSTIPS-DAT predictions. The numbers above x axis denote the assigned cluster number. ···· 45 

Fig. 18. Comparisons of MAE between results of various operational dynamical models (HWRF, 

UMR, JGSM and GFS) and the present model (CSTIPS-DAT) for (a) 2013 and (b) 2014.····· 46 

Fig. 19.  Distributions of life time maximum intensity. PDFs are calculated using 2004-2016 

TCs which belong to (a) Western North Pacific and (b) Western North Central Pacific. The blue 

line indicates the smoothed PDF. ······································································· 48 

Fig. 20.  Comparison of (a) mean absolute errors (MAEs) of maximum intensity and (b) 

intensity bias for classified two groups (red: A70, blue: B70) and all TCs (black) in Western 

North Central Pacific at each lead time during the 2013-2014. ····································· 49 

Fig. 21. Comparison of the intensity change in 48-h PDFs for classified two groups (red: A70, 

blue: B70). The thick lines indicate smoothed PDF. ················································· 50 

Fig. 22. Comparison of the skill scores (black: Accuracy, red: POD, gray: FAR) and number of 

node (blue line) at each min-leaf size. ·································································· 54 

Fig. 23. Distributions of cross-validation loss according to min-leaf size. The k-fold cross-

validation method is used. ··············································································· 55 

Fig. 24. The decision tree for life time maximum intensity classification constructed from C2. 

The numbers in parenthesis indicate the total data points and the number of hit samples. ······ 57 

Fig. 25. The comparison of the correlation coefficients between DAT variables and LMI. The 

black line is non-classified TCs, the red is TCs in rule 4 and the blue line is TCs in rule 1, 2 and 

3. Open pentagrams represent the location of maximum value for the three groups. ············ 62 

 

 

 

 



v 

 

Abstract 

 

A statistical-dynamical model for predicting tropical cyclone (TC) intensity has been developed 

using a track-pattern clustering (TPC) method and ocean-coupled potential predictors. Based on the 

fuzzy c-means clustering method, TC tracks during 2004-2012 in the western North Pacific (WNP) 

were categorized into five clusters and their unique characteristics were investigated. The predictive 

model uses multiple linear regressions, where the predictand or the dependent variable is the change 

in maximum wind speed relative to initial time. To consider TC-ocean coupling effect due to TC 

induced vertical mixing and resultant surface cooling, we also developed new potential predictors for 

maximum potential intensity (MPI) and intensification potential (POT) using depth-averaged 

temperature (DAT) instead of sea surface temperature (SST). All together, we used six static, 11 

synoptic, and three DAT-based potential predictors. 

 Results from a series of experiments for the training period of 2004 - 2012 showed that the use of 

TPC and the DAT-based predictors improved TC intensity predictions remarkably. The model was 

tested on predictions of TC intensity for 2013 and 2014 which are not used in the training samples. 

Relative to the non-clustering approach, the TPC and DAT-based predictors reduced the prediction 

errors up to 10~28% at most lead time. The present model is also compared with four operational 

dynamical forecast models. At short leads (up to 24 hours) the present model has the smallest mean 

absolute errors. After 24-hour lead times, the present model still shows a good skill comparable to the 

best operational model. 

 The developed model which uses TPC and DAT-based predictors, CSTIPS-DAT, led to a 

significant improvement in intensity prediction of TC, but it still showed relatively large errors in a 

specific cluster, in which strongly-developing TCs and non-developing TCs coexist, particularly in the 

central WNP where environmental conditions are the most favorable for TC intensification. In order 
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to improve the prediction skill of CSTIPS-DAT, here we employed a decision tree algorithm which is 

most popular classification method, to classify the type of TCs in early stage, based on whether they 

will develop to a strong intensity (maximum wind speed of 70 kt) during their lifetime or not. For the 

binary classification, a decision tree with four leaf nodes was built using the Classification And 

Regression Tree (CART) algorithm. According to the discovered rules from the trained tree, DAT, 

latitude, and DAT-based MPI were major factors in determining the two types. The decision tree has 

classification accuracy of 92.5% for training period, and of 80.5% for test period. The fact that DAT 

and DAT-based MPI are selected in the decision tree implies that TC-induced vertical mixing process 

and pre-existing ocean thermal structures along the track play a major role in determining type of TCs. 

The present results finally suggest that the TC intensity prediction skill of CSTIPS-DAT can be 

further improved by establishing independent statistical models for the classified groups.  

 

 

 

 

 

 

 

 

Keywords: statistical-dynamical model, tropical cyclone, intensity prediction, fuzzy c-means 

clustering, depth-averaged temperature, multiple linear regressions, decision tree. 
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1. Introduction 

A tropical cyclone (TC) accompanied by strong winds, storm surges, high waves, and 

flooding is among the most dangerous natural hazards, and poses a great threat to a global 

population of almost a billion people (Peduzzi et al., 2012). Accurate predictions of TC 

tracks and intensities are required in order to reduce TC damage. Over the last quarter of a 

century, TC track forecasts have been steadily improving, while storm intensity prediction 

remains a big challenge (Knaff et al., 2005) because TC intensification involves highly 

complex interactions between the atmosphere, ocean, and structure of the storm (Rappaport 

et al., 2012), which make accurate predictions difficult. With substantial improvement in 

computational power, high-resolution dynamical modeling has become a useful tool for 

predicting TC tracks and intensities. For intensity predictions, however, traditional statistical 

approaches (Jarvinen and Neumann, 1979; Knaff et al., 2003) are still widely used in 

practice, which provide consistent and basic information. 

DeMaria and Kaplan (1994) developed a Statistical Hurricane Intensity Prediction 

Scheme (SHIPS) combining statistical models and dynamical models. SHIPS, based on a 

multi-regression technique, uses predictors estimated from a dynamical forecast model as 

well as climatological and persistence predictors. The SHIPS has been used for hurricane 

intensity guidance in the North Atlantic (NA) and eastern North Pacific (ENP) at the 

National Hurricane Center (NHC) (DeMaria and Kaplan, 1994a; DeMaria and Kaplan, 1999; 

DeMaria et al., 2005). For the western North Pacific (WNP), the SHIPS-based Statistical 

Typhoon Intensity Prediction Scheme has been used at the Joint Typhoon Warning Center 

(JTWC) (Knaff et al., 2005). Until recently, most statistical-dynamical models use regression 

equations, where same predictors are used at each lead time based on the assumption that TC 

intensity is controlled by the same environmental predictors without taking TC tracks into 
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account. Recent studies, however, indicate that environmental predictors related to TC 

activity are strongly dependent on TC track patterns.  

Camargo et al. (2007a, 2007b) developed a TC track clustering technique based on a 

regression mixture model and showed that each cluster has a unique correlation with sea 

surface temperature (SST) and large scale atmospheric circulation patterns. Chu and Zhao 

(2011) also developed a mixture Gaussian model to cluster TC tracks over the Weste

rn North Pacific into several types and investigated long-term changes of TC attribute

s (e.g., frequency, lifespan) for each type. Kim et al. (2011) classified the WNP TCs 

using a fuzzy c-means clustering method (FCM) and showed that large-scale environment 

predictors influence TCs in different ways depending on each cluster. Chu et al. (2010) also 

used FCM-based classification of TCs in the vicinity of Taiwan to investigate relations 

between the TC passage frequency and the environment of individual TC tracks and 

developed a statistical model for predicting the seasonal TC frequency for each cluster using 

a Bayesian regression scheme. Also based on track patterns, Kim et al. (2012) developed 

a statistical-dynamical model for predictions of seasonal TC activity, which predicts the 

spatial distribution of TC track density using the correlation between the seasonal TC 

frequency and the environmental predictors calculated from the dynamical prediction model. 

These studies strongly suggested that the relationship between TC and environmental factors 

depends on the TC track patterns and showed that clustering methods can improve the 

statistical TC predictions. Note that most of the clustering-based studies have focused on 

predictions of TC frequency and track density, and less on TC intensity.  

It is well known that the cooling of the upper ocean by TC-induced mixing is one of the 

factors influencing TC intensity (Mainelli-Huber, 2000; Shay et al., 2000; Lin et al., 2008 & 

2009; Moon and Kwon, 2012). Price (2009) suggested that depth-averaged temperature 

(DAT) is a better indicator for TC intensity change than the widely-used Ocean Heat Content 
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(OHC) index. This is because that DAT considers the TC-induced cooling effect and 

realistically characterizes the ocean contribution to TC intensity. Lin et al. (2013) also argued 

that DAT is a better index than sea surface temperatures (SST) in estimating the Maximum 

Potential Intensity (MPI), which is an upper bound of TC intensity widely used as a key 

predictor. Therefore, it would be interesting to examine the effect of the use of DAT on 

statistical predictions of TC intensity since no such attempt has been made in the literature. 

Particularly, it is worthwhile to explore the role of DAT in classified TC groups since the 

strength of the cooling effect depends on the ocean subsurface thermal structure, as well as 

various factors such as the storm translation speed, size, and intensity, which are connected 

to TC tracks. 

The first aim of the present study, therefore, is to develop a Statistical Typhoon Intensity 

Prediction Scheme for the western North Pacific using a track pattern clustering method and 

DAT-based potential predictors. This new scheme is then used to investigate how much 

the clustering and the ocean coupling effect may contribute to the improvement of TC 

intensity predictions. To test the performance of our new scheme, a series of experiment 

were conducted to predict the intensity of WNP TCs for the training period (2004-2012) and 

the real-time prediction period (2013 and 2014).  

A statistical-dynamical model that predicts the intensity of TC has shown a great 

performance comparable to dynamical models (e.g., Knaff et al., 2005; Kaplan et al., 2010; 

Gao and Chiu, 2012). We have also demonstrated that the present new statistical-dynamical 

model, CSTIPS-DAT, using clustering technique and predictors based on DAT for the WNP 

has led to a significant improvement in the prediction of TC intensity in the Korea 

Meteorological Administration (KMA) since 2015. However, the CSTIPS-DAT has a 

relatively large error for specific clusters, particularly for C2 cluster, which contains most 

TCs in the Western North Central Pacific (WNCP) that spend their lifetime in the tropic 
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where the environmental factors are favorable for TC development (Fig. 1). The C2 cluster is 

characterized by the strongest mean intensity, noticeable intensification and the wide 

spectrum of intensity which lead large variance of predictand. Therefore, the intensity 

prediction in this cluster shows relatively good performance for TCs with strong intensity 

which similar to the mean intensity of the cluster, but poor performance for non-developing 

TCs deviating from the mean intensity. For example, Typhoon Phanfone (2014), which was 

developed strongly to the maximum wind speed of 100 kt, was well predicted by CSTIPS-

DAT at most prediction time, while Typhoon Faxai (2014), which was not developed to 

strong intensity, showed a large discrepancy between prediction and observation due to the 

overestimation (see Fig. 1 and Fig 2). These results suggest that if we can classify the type of 

TCs in the early stage, based on whether they will develop high intensity during their 

lifetime or not, and establish independent statistical models for the classified groups, the TC 

intensity prediction skill will be improved. Particularly for the clusters that have a bimodal 

distribution in TC intensity, in which many TCs are deviated from mean distribution of TC 

intensity.  

Recently, several studies have noted that the global distribution of lifetime maximum 

intensity (LMI) of TCs is bimodal (Maganello et al., 2012; Kossin et al., 2013; Zhao et al., 

2009; Lee et al., 2016). Knowing what causes the bimodal distribution in LMI is critical to 

develop the classification skill determining the TC type in early TC stage. However it has no 

consensus on the causes and mechanisms related to the occurrence of the bimodal 

distribution. Torn and Snyder (2012) argued that an artificially low number of category 3 

hurricanes in the Atlantic may be caused by low resolution of Dvorak technique at category 3 

intensities. Soloviev et al (2014) explained the bimodal distribution of LMI using the ratio of 

surface exchange coefficients Ck/Cd as a function of wind speed with a local maximum 

around 115 kt, in which the local maxima would be favorable for rapid intensification (RI), 
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leading to increase number of TCs in the second high-intensity peak. Lee et al. (2016, 

hereafter; LEE16) reported that the bimodality of the LMI distribution is related to the RI, 

reflecting two types of TCs: those that undergo RI during their lifetime (RI TCs) and those 

that do not (non-RI TCs). These types of TCs have an own unimodal distribution of LMI, the 

peak is around 120 kt for RI TCs and 45 kt for non-RI TCs, respectively. This bimodal 

characteristic in LMI distribution hampers accurate TC intensity prediction of statistical 

models due to an increase of variance of the predictand. Therefore, a successful classification 

of bimodal components from the LMI distribution may contribute to improving the 

performance of statistical intensity model. 

In recent years, a decision tree approach, which is one of classification algorithms, has 

been widely employed to investigate the mechanism of TC development (Li et al., 2009; 

Zhang et al., 2013, 2015; Gao et al., 2016). Li et al (2009) employed the decision tree to 

discover the collective contributions to Atlantic hurricanes using sea surface temperature, 

water vapor, vertical wind shear, and zonal stretching deformation. Zhang et al. (2013) 

applied the decision tree to split the binary classification which becomes intensifying or 

weakening in 24 hours. The developed decision tree uses only three variables but shows a 

remarkable prediction accuracy of 90.2%. Zhang et al. (2015) investigated the classification 

of developing and non-developing tropical disturbances to tropical storm in the WNP using 

the decision tree approach. The developed classification model conducted with six rules, and 

it has a classification accuracy of 81.7 % for training and hindcast accuracy of 84.6%. Gao et 

al. (2016) used the decision tree to develop the RI prediction model which classifies RI event 

and non-RI event. They showed that the pre-storm ocean coupling potential intensity index, 

which uses DAT instead of sea surface temperature for the calculation of maximum potential 

intensity (MPI), led an improvement of RI classification accuracy about 6% in test period. 

All of these previous studies suggest that a decision tree approach can be applied to classify 
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the bimodal distribution of LMI even though this has never been attempted. 

The second aim of the present study is to build a decision tree for classifying the type of 

TCs in the early stage depending on whether or not TCs will reach a certain high intensity 

during their lifetime. This classification will contribute to improvement of statistical 

intensity prediction model as well as a better understanding of the bimodal characteristic in 

the LMI distribution of TCs in the current climate, ultimately proving clues to the causes of 

the bimodality.  

Section 2 provides a description of the dataset and the clustering and classification 

method. Section 3 describes the overall results of developed statistical-dynamical intensity 

prediction model. Section 4 describes the LMI type classification model. Summary and 

conclusion is in Section 5.  

 

Fig. 1. (a) Tracks of typhoon Faxai (2014; red line) and Phanfone (2014; green line) along with the 

mean track for cluster 2 (thick black line), individual track for cluster 2 (blue lines) and individual 

track for WNP (gray lines). 
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Fig. 2. Results of individual intensity predictions from CSTIPS-DAT for typhoon (a) Phanfone (2014) 

and (b) Faxai (2014). Thick black line is observation (RSMC best track data) and colored lines are 

individual CSTIPS-DAT predictions. The numbers above x axis denote the assigned cluster number. 
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2. Data and method 

2.1. Data  

The present Statistical Typhoon Intensity Prediction Scheme (hereafter, STIPS) is trained 

with TC data at 6-hr interval for the period of 2004 – 2012 (203 TCs) and tested 

independently with TCs in 2013 and 2014 for real-time prediction.  

The TC data for the training and test periods were obtained from the best track data 

provided by the Regional Specialized Meteorological Center (RSMC) in Tokyo and the 

operational 5-day track prediction results from the Korea Meteorological Administration 

(KMA). The decision tree is trained with WNCP TCs for the period of 2004–2013 and 

validated independently with TCs for 2014–2016. The 6-hourly location and maximum wind 

speed of the TCs are obtained from the best track data produced by RSMC Tokyo.  

Oceanic potential predictors were calculated using 3-dimensional ocean data derived 

from the Hybrid Coordinate Ocean Model (HyCOM) + Navy Coupled Ocean Data 

Assimilation (NCODA) Global Analysis (GLBa0.08) provided by the U. S. Naval Research 

Laboratory (NRL). HyCOM is a global ocean circulation model, which uses a Mercator 

projection and a hybrid coordinate system combining isopycnic, a terrain-following (sigma 

layers), and z-level coordinates (Bleck, 2002).  The horizontal resolution of the model is 

1/12°, which covers the global range between 78°S and 47°N. Atmospheric potential 

predictors were calculated using Global Forecast System (GFS) analysis data with 1 × 1 

degree horizontal resolution and at 6-hour intervals provided by the National Centers for 

Environmental Prediction (NCEP).  

In the present STIPS, the TC intensity was defined as maximum wind speed, the 

intensity change is predicted from the initial forecast time. For predictor selection, we used a 
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regressions approach that considers all possible subsets of independent variables and selects 

the variable subsets with a significant correlation at the 95% confidence level.  We used the 

forward selection which is the most common screening procedure in selecting a good set of 

predictors from a pool of potential predictors. To avoid multicollinearity, potential predictors 

are carefully selected so that they are not significantly correlated with each other (Aczel, 

1989; Fitzpatrick, 1997). During the combined regression process, if the sign of each 

individual regression coefficient for independent predictors is changed, it is removed from 

the candidates. If the regression fitting using a combination of predictors is worse compared 

with an individual predictor, the single best predictor is selected for the parsimonious reason. 

 

2.2. Clustering method 

 The cluster classification technique is one of multivariate statistical techniques to 

identify similar object groups in multidimensional space. In other words, based on the 

statistical similarity between the objects constituting the entire, the objects at a close distance 

are classified into the same group, and the other objects are included in another group. 

Bezdek (1981) proposed a fuzzy c-mean clustering (FCM) algorithm to improve Hard c-

Means clustering (HCM). FCM is a data classification algorithm that classifies each data 

point according to degree of belonging to each cluster. The number of sample N, is divided 

into C fuzzy groups, and the center of the cluster is searched in each group where the 

objective function of non-similarity measurement is minimum. 

An important difference between FCM and HCM is that the FCM uses a fuzzy partition 

which a given data point can belong to several groups with a degree of membership between 

0 and 1. The sum of degrees of membership is always 1. The objective function for FCM is 

defined by Dunn (1973) as follows. 
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J = ∑ ∑ (𝑢𝑖𝑘)𝑚𝑁
𝑘=1 ‖𝑋𝑘 − 𝑉𝑖‖2𝐶

𝑖=1   (1) 

𝐷𝑖𝑘 = ‖𝑋𝑘 − 𝑉𝑖‖2  (2) 

Here, 𝑢𝑖𝑘 indicates how close the k-th data (𝑋𝑘) is from the center of the i-th cluster. The 

𝑢𝑖𝑘 has a value of 0-1 according to 𝐷𝑖𝑘. Thus, the higher membership coefficient indicates a 

strong association between the i-th cluster and the k-th data. This is the main difference that 

distinguishes FCM from K-means clustering method. And m is a weighting index indicating 

the influence of the degree of fuzzy membership function. That is, if the value of m is set to a 

small value, more weight is given to data located closer to the center of the cluster. The 

cluster center vector (𝑉𝑖) of the FCM is defined as the weighted average of all data and the 

membership coefficient. The FCM has a big advantage when it classifies data with unclear 

boundaries such as track data. 

To cluster and classify TC tracks a fuzzy c-means clustering method (FCM, Bezdek, 

1981) was used, a useful tool for the analysis of TC tracks (Kim et al., 2011). The fuzzy 

clustering is an extension of the k-mean clustering method. This algorithm allows objects to 

belong to several clusters with different degrees of membership. For clustering, 5-day TC 

tracks are used rather than the entire track of TC lifetime since the present STIPS is set to 

predict a total of 5 days. The dissimilarity between two tracks is defined as the Euclidean 

norm of the difference of two vectors which contain the latitudes and longitudes for each TC 

track.  

Determining the optimal number of clusters is the most important process in the cluster 

analysis. The optimal number of clusters is difficult to determine due to the interpolation 

problem depending on the shape and size of the data distribution. Previous studies have 

determined it by calculating and comparing several indices. Partition Coefficient (PC) is an 

index representing the degree of redundancy between the clusters, and it is difficult to 
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directly relate to some properties of the data itself. It represents the optimal number of 

clusters when PC shows the maximum value. Next, Partition Index (SC) is the ratio of the 

closeness of the individuals in the cluster to the degree of separation. SC is useful when 

comparing different partitions with the same number of clusters, and a lower SC shows 

better partitions. The Xie and Beni`s index (XB) represents the ratio of the total and the 

variation of each cluster, and the Alternative Dunn's Index (ADI) represents the ratio of the 

minimum distance to the other clustering points to the maximum distance in the cluster. As 

two indices is lower, it means that a good classification. 

 Figure 3 shows the optimal cluster decision indices according to the number of clusters. 

PCs tend to decrease as the number of clusters increases. Considering PC only, the optimal 

number of clusters is two, but other indexes also tend to decrease with increasing clusters. 

Therefore, we need to find a suitable trade-off point to reflect all of these characteristics. 

ADI was similar to PC, but SC and XB were different locally. SC showed a very small 

reduction rate between five to six and XB showed a local minimum at five. In this study, the 

number of clusters is determined to be five according to the above results. 
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Fig. 3. Value of four scalar validity measures according to number of clusters. (a) Partition coefficient, 

(b) partition index, (c) Xie and Beni’s index and (d) alternative Dunn index. 
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2.3. Characteristics of classified clusters 

In this subsection, we examine the characteristics of the five clusters, C1 to C5, 

classified by the FCM. The largest cluster among the five clusters is C3 (23.6%). The TCs in 

C3 make landfall over Japan or the Korean Peninsula (Fig. 4, solid line). C1 is the second 

largest cluster (23.2%) and includes many TCs heading westward toward Hainan Island in 

China after passing through the Philippines. C4 (21.3%) includes TCs that land over Taiwan 

and Eastern China coasts. TCs in C2 (18.5%) mostly head northwestward from the eastern 

Philippines Sea. Type C5 has the lowest frequency of occurrence (13.4%) and its TCs pass 

mainly over the Kuroshio extension, farther away from the East Asian coast. 

Each cluster exhibits distinctive features in mean maximum intensity (Table 1) and the 

mean intensity change (Table 2). TCs in C1 reside mainly in the South China Sea, where the 

upper ocean heat content is relatively lower than other tropical regions, and TCs are mostly 

likely to make landfall over Hainan Island and Guangdong. C1, along with C5, shows the 

lowest mean intensity (Table 1) and a distinct weakening tendency (Table 2) over the 

prediction lead time. TCs in C2 spend their lifetime in the tropic where vertical wind shear 

(VWS) is weak (Fig. 4a) and SST is high (Fig. 4b), which are favorable conditions for TC 

development, resulting in the strongest mean intensity and noticeable TC intensification 

compared with the other clusters. Many TCs in C2 subsequently evolve into TCs in C3 (26%) 

and C4 (37%), respectively. Most TCs in C3 experience the largest weakening stage as 

forecast leads increase mainly due to low SST and strong VWS along the track (Fig. 4a and 

4b) and they finally make landfall over the Korea peninsula and Japan. Most TCs in C4 

initially have relatively strong intensity (table 1), but rapidly weaken after landfall in Taiwan 

and eastern China. C5 passes over the eastern ocean of Japan where VWS is strong and SST 

is low, leading to significant weakening in the intensity. 
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Fig. 4. Spatial distributions of climatological vertical wind shear in ms-1 (dashed lines) (a), sea surface 

temperatures in °C (dashed lines) (b) and MPI in kt (c) for typhoon season (JJASON) in the western 

North Pacific. Black curves represent the mean track of five clusters.   
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Also note that in Table 1, the difference in mean values between each cluster type and 

the non-clustering cases is overwhelmingly significant at the 5% test level (two-tailed t-test). 

Considering all five lead times and five clusters, 22 out of 25 type-lead show statistical 

significance. These differences become even more pronounced when the change in 

maximum wind speed is considered (Table 2). Except for one event (C4 at lead 24 hours), all 

other 24 type-lead exhibit statistical significance. Based on this simple comparison, it is 

beneficial to cluster TC tracks in a natural way to reduce variability in TC intensity change.   

 

Table 1. Mean maximum wind speed (knot) of TCs for five clusters at each lead time. Boldface and 

boldface with asterisk represent that the differences in mean value between each cluster and all TCs 

are statistically significant at the 95% and 99% confidence level (two-tailed t-test), respectively.  

 

 

Forecast 

time (h) 

Cluster 

C1 C2 C3 C4 C5 All TCs 

24 58.1* 69.9* 68.5* 67.0* 57.5* 64.4 

48 59.4* 79.1* 67.2 68.0 57.9* 67.0 

72 58.6* 83.4* 63.9* 66.3 57.4* 67.7 

96 57.5* 81.6* 59.8* 62.2* 57.5* 66.9 

120 54.9* 77.0* 53.5* 57.3* 59.7 64.9 
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Table 2. Same as in Table 1, but for the change in mean maximum wind speed (knot).   

 

  

Forecast 

time (h) 

Cluster 

C1 C2 C3 C4 C5 All TCs 

24 0.1* 12.2* -2.2* 0.6 -1.6* 1.5 

48 -0.1* 21.1* -4.8* 0.7 -2.4* 3.1 

72 -1.8* 25.1* -7.5* -0.9* -4.6* 3.8 

96 -4.5* 23.3* -10.3* -4.3* -7.3* 3.3 

120 -6.7* 18.3* -13.4* -10.2* -9.7* 2.1 



１７ 

 

2.4. Benefits of Cluster Analysis  

As seen in Tables 1 and 2, the classified clusters show distinctive characteristics in terms 

of the mean intensity and tendency of intensity change. To quantitatively evaluate the effect 

of the use of clustering, we compared the standard deviations (SD) of each cluster before and 

after clustering at each lead time (Table 3), i.e. each cluster’s SD from the entire sample 

mean (𝜎𝑊𝑁𝑃) and from the respective cluster’s mean (𝜎𝑐).  

𝜎𝑊𝑁𝑃 = (
∑(𝑋𝑐−�̅�𝑊𝑁𝑃)2

𝑛𝑐
)

1

2
  (3) 

𝜎𝑐 = (
∑(𝑋𝑐−�̅�𝑐)2

𝑛𝑐
)

1

2
  (4) 

Here, 𝑋𝑐 refers to the intensity change (i.e., predictand) of an individual storm; �̅�𝑐 is the 

mean intensity change for each cluster; �̅�𝑊𝑁𝑃 is the mean intensity change for the entire 

sample; and 𝑛𝐶  the number of samples for each cluster. The comparison of 𝜎𝑐 and 𝜎𝑊𝑁𝑃 

reveals that clustering reduces the variability of the predictand (i.e., intensity change) with 

reduction rates ranging from 0.1% to as high as 21.0% (brackets in Table 3). The largest 

reduction (21%) was observed at 24-h and 72-h lead times in C2. The significant reduction 

of SD suggests that the clustering-based STIPS can reduce uncertainty in intensity change 

prediction and thus improve the TC intensity prediction skill. The clustering effects on real 

TC predictions will be discussed in Section 3. 
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Table 3. Comparisons of standard deviations (𝜎𝑊𝑁𝑃) of predictand (intensity change) using the mean 

value for the entire sample (i.e., non-clustering cases) with those (𝜎𝑐) using the mean of each cluster 

at each lead time. The reduction rates of  𝜎𝐶 relative to 𝜎𝑊𝑁𝑃 are indicated in parentheses.  

Forecast 

time (h) 
 

Cluster 

C1 C2 C3 C4 C5 All TCs 

24 

𝜎𝑊𝑁𝑃 15.9 17.4 14.5 16.8 12.0 15.6 

𝜎𝐶 15.8 13.7 14.0 16.8 11.6 14.8 

 

 

(0.4%) 

 

(21.0%) 

 

(3.3%) 

 

(0.1%) 

 

(3.3%) 

 

(5.3%) 

 

48 

𝜎𝑊𝑁𝑃 22.6 29.3 22.5 25.1 17.5 24.2 

𝜎𝐶 22.4 23.2 21.1 25.0 16.7 22.3 

 

 

(1.0%) 

 

(20.8%) 

 

(6.3%) 

 

(0.4%) 

 

(5.0%) 

 

(7.9%) 

 

72 

𝜎𝑊𝑁𝑃 25.5 34.7 25.9 28.6 21.6 28.5 

𝜎𝐶 24.9 27.4 23.4 28.3 19.9 25.6 

 

 

(2.3%) 

 

(21.1%) 

 

(9.8%) 

 

(1.2%) 

 

(7.6%) 

 

(10.5%) 

 

96 

𝜎𝑊𝑁𝑃 29.0 34.6 28.3 28.0 23.7 30.2 

𝜎𝐶 27.9 28.3 24.8 27.0 21.3 26.8 

 

 

(3.5%) 

 

(18.2%) 

 

(12.3%) 

 

(3.6%) 

 

(10.2%) 

 

(11.5%) 

 

120 

𝜎𝑊𝑁𝑃 31.4 32.7 30.7 26.8 23.9 30.6 

𝜎𝐶 30.2 28.3 26.6 23.8 20.9 27.1 

 

 

(3.8%) 

 

(13.2%) 

 

(13.4%) 

 

(11.0%) 

 

(12.3%) 

 

(11.3%) 
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2.5. Decision tree algorithm 

The analysis of climate information on TCs has socio-economic implications and 

scientific significance because it leads to a better understanding of the typhoon activities and 

related mechanisms (Bengtsson et al., 1996; Emanuel, 2005; Webster et al., 2005). However 

the volume of the data related to the TCs is huge and varied, and it has increased 

significantly in recent years, which seems to outstrip the amount of data that can be handled 

by traditional analytical methods (Zhang et al., 2013). Data mining is the process of finding 

useful information form the huge and varied database, by automatically or semi-

automatically analyzing data from various perspectives (Berry and Linoff, 1997).  

Decision tree which one of the most frequently used algorithms, is known as data mining 

methods for finding rules, patterns, and knowledge from archived databases for decision-

making (Quinlan, 1993). Decision tree is easier to understand and explain the results and can 

be used directly in decision making. 

The Classification And Regression Tree (CART) is one of the analysis algorithms of the 

decision tree. It is easy to interpret the generated rules and has the advantage that both 

continuous and categorical variables can be used, and it provides a post-pruning strategy to 

prevent overfitting problem after the decision tree is developed. CART which measures 

impurity using Gini Index, is an algorithm based on binary split that has only two child 

nodes from the parent node. Gini index is described as below. 

 

𝐺 = ∑ ∑ 𝑃(𝑖)𝑃(𝑗)𝑖≠𝑗
𝑐
𝑗=1      (5) 

where P(i) is the probability that one entity in each node belongs to the i-th category of 
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the target variable, c is the number of categories of target variables, respectively. P (i) P (j) is 

the probability of misclassification that an entity extracted from the i-th category of the 

target variable belongs to the j-th category of the target variable. The Gini index, which is 

the sum of the probability of misclassification, is one of the measures of impurity or 

diversity in each node and can be expressed as follows. 

G = ∑ 𝑃(𝑗)(1 − 𝑃(𝑗))𝑐
𝑗=1 = 1 − ∑ 𝑃(𝑗)2𝑐

𝑗=1 = 1 − ∑ (
𝑛𝑗

𝑛
)2𝑐

𝑗=1     (6) 

where n is the number of observations included in the node and 𝑛𝑖 is the number of 

observations belonging to the i-th category of the target variable. The Gini index is a 

probability that two elements randomly extracted from n-elements belong to different groups, 

and it with two categories of target variables can be expressed as follows. 

G = 2P(1)P(2) = 2(
𝑛1

𝑛
)(

𝑛2

𝑛
)    (7) 

The CART algorithm selects the best predictor for reducing the Gini index and the 

optimal separation of the variable as a child node. The reduction of the Gini index is 

calculated as follows. 

∆G = G − (
𝑛𝐿

𝑛
) 𝐺𝐿 − (

𝑛𝑅

𝑛
) 𝐺𝑅     (8) 

where n is the number of observations in the parent node, and 𝑛𝑅 and 𝑛𝐿 are the 

number of observations in the child node, respectively. The CART algorithm divides the 

node in order that the child node has the smallest degree of impurity, and repeats this process 

to construct a decision tree. 
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2.6. Resampling and oversampling technique 

The k-fold cross validation is one of the most popular resampling techniques used to 

increase the statistical reliability of model performance measurements. The k-fold cross 

validation method is defined as follows. First, the entire sample is divided into k equal-sized 

subsamples. One sub-sample is used as the validation data for the test of the model, and the 

remaining k-1 sub-samples are used as the training data. This process is repeated k-times 

until all subsamples are used exactly once for the validation data. The results from each step 

of the process are averaged to form an evaluation index, which can be used to perform 

verification. The advantage of this method is that all observations are used for both training 

and validation, and each observation is used for validation exactly once. In this study, we use 

the 10-fold cross validation method. 

A classification model was developed using an imbalanced database that is likely to be a 

biased model that yields results with a higher classification in the training data. In this study, 

the synthetic minority oversampling technique (SMOTE; Chawla, 2003), the most widely 

used resampling technique, was used to avoid this problem. 
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3. Statistical-dynamical typhoon intensity prediction scheme 

3.1. Static and synoptic potential predictors 

The present STIPS uses various potential static and synoptic predictors, which have 

been widely used in many statistical TC intensity prediction models (Elsberry et al., 1975; 

Jarvinen and Neumann, 1979). In this study, six potential static predictors are used for the 

model development (Table 4): initial maximum wind speed (iWIND), intensity changes 

within 12 hours (DVMX), longitude (LON) and latitude (LAT) of TC center, storm 

translation speed (MOV), and the ratio of land within the TC core (LAND). They are 

mostly obtained from the TC best track information. The potential synoptic predictors, or, 

environmental predictors, are estimated from the prediction results of the dynamical model. 

The present model uses 11 potential synoptic predictors (Table 5): sea surface temperatures 

(SST), maximum potential intensity (MPI), intensification potential (POT), ocean heat 

contents (OHC), relative humidity of upper and lower layer (RHHI, RHLO), vertical wind 

shears of upper and lower layers (SH200, SH500), 200-hPa air temperature (T200), 200-hPa 

zonal wind (U200), and 850-hPa relative vorticity (RV850). The value averaged within 200-

km radius from the storm center is used to estimate the oceanic predictors such as OHC, SST, 

MPI, and POT. For atmospheric predictors such as RHHI, RHLO, SH200, SH500, T200, 

and U200, they are estimated between 200 and 800 km from the storm center. For R

V850, it is averaged within 1000-km radius from the storm center. 

iWIND is the most important predictor in the static predictor pool and has a strong 

negative correlation with the intensity change for all leads and all five clusters (Fig. 5a). 

DeMaria and Kaplan (1994a) noted that strong storms have less potential for further 

intensification because their intensities are already closer to MPI. DVMX represents the 

persistence of intensity change (Fig. 5b), which exhibits the highest correlation with intensity 
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change in 6-h forecast time for most clusters (i.e., C3 to C5), consistent with the results of 

Knaff et al. (2005). The relationship between TC locations (longitude and latitude) and 

intensity change is dependent on the track types (Figs. 5c and 5d). TCs that move eastward 

after recurving (e.g., C5 in Fig. 5c) tend to weaken due to low SST and high westerly wind 

shear encountered (Fig. 4). Specifically, the intensification rate of C1 and C4 which are 

affected by land as TCs move to the west shows a strong positive correlation with LON (Fig. 

5c). For LAT, an overall negative correlation with intensity change is dominant (Fig. 5d) 

since TCs, on average, become weaker when they move northwards due to unfavorable 

environmental conditions to TC development at higher latitudes.  

 

Table 4. List of six static potential predictors used in the present model.  

Predictor Description 

iWIND  initial maximum wind speed (MWS) (kt) 

DVMX 12-h change in intensity 

LON Longitude 

LAT Latitude 

MOV  storm translational speed (m/s) 

LAND Ratio of landmass within 200 km from center 
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Fig. 5. The correlation coefficients between 6 static predictors (a, iWIND; b, DVMX; c, LON; d, LAT; 

e, MOV; f, LAND) and the change in TC intensity for five clusters and non-clustering case using all 

TCs at each forecast time.  

 

MOV is known to be an important factor for TC-ocean interaction (Lin et al., 2008, 

2009). Slow moving TCs tend to cause a large cold wake which could limit TC 

intensification. This relationship is only found in C1, where most TCs move slower and 

experience large cooling effect due to shallow-ocean mixed layer of the South China Sea. 

For the other clusters (particularly for C3 and C5), a negative correlation between MOV and 

the intensity change is shown clearly. As TCs encountered mid-latitude jet stream (C3 and 

C5), MOV tend to increases but the TC intensity weakens due to strong wind shear and land 

effects (Fig. 5e). 

LAND is defined as the ratio of landmass within radius of 200 km from the TC center. 

When TCs approach land, relatively dry and cold air mass flows into the outer circulation of 
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the TCs and the friction over land increases, leading to TC weakening. Therefore, LAND 

and intensity changes are negatively correlated in most of the clusters except the non-landing 

clusters (C2 and C5 in Fig. 1.2f). The highest negative correlation is found in C4 in which 

most TCs with relatively strong intensity rapidly weaken during the landfall period over the 

mountainous Taiwan and the huge landmass of the eastern China (Fig. 5f). 

 

Table 5. List of eleven synoptic potential predictors used in the present model.  

 

 

Predictor Description 

SST  Area-averaged (0 km to 200 km) sea surface temperature  

MPI  
Area-averaged (0 km to 200 km) maximum potential intensity 

based on empirical equation  

POT  MPI minus iWIND  

OHC  Area-averaged (0 km to 200 km) ocean heat contents  

RHHI  
Area-averaged (200 km to 800 km) relative humidity 500 – 300 

hPa  

RHLO  
Area-averaged (200 km to 800 km) relative humidity 850 – 700 

hPa  

SH200 
Area-averaged (200 km to 800km) 200 hPa to 850 hPa vertical 

wind shear  

SH500 
Area-averaged (200 km to 800 km) 500 hPa to 850 hPa vertical 

wind shear  

T200 Area-averaged (200 km to 800 km) air temperature at 200 hPa  

U200 Area-averaged (200 km to 800 km) zonal wind at 200 hPa  

RV850 Area-averaged (0 km to 1000 km) relative vorticity at 850 hPa  
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Now let’s turn our attention to the potential synoptic predictors (Table 5). MPI is the 

upper bound of TC intensity given the atmospheric vertical profile and pre-cyclone SST 

(Emanuel, 1988). The MPI is empirically estimated according to DeMaria and Kaplan 

(1994a): An exponential function is derived by fitting the scatter plot between SST and TC 

maximum intensity. Here, the SST is extracted from the HyCOM-NCODA data for the 

period of 2004 - 2014 and averaged within a 200-km radius from the center of each TC. The 

final regression coefficients (Equation 9 below) are determined using only the upper 95th 

percentile values of SST at each 0.5 °C temperature interval. 

MPI = A + BeC(SST−T0),  (9) 

where A = 39.91 knots; B= 96.0 knots; C=0.1837 ℃−1; and 𝑇0 = 30.0 °C. In Fig. 6b, MPI 

is highly correlated with TC intensity change for C3 as the MPI gradient is large along the 

TC tracks (Fig. 4c), but weakly correlated for C1 and C4 the influence of land (Fig. 6b). This 

pattern in MPI is very similar to that of SST (Fig. 6a). 

POT is the TC potential future intensity changes (DeMaria and Kaplan, 1994b), defined 

as the difference between MPI and maximum wind at the initial time. 

POT = MPI − iWIND   (10) 

It is reported that POT is the most important predictor in the SHIPS (DeMaria and Kaplan, 

1994a and DeMaria and Kaplan, 1999). Indeed, our analysis also shows that POT has the 

highest correlations with predictand for lead times after 24 hours and this high correlation 

is maintained for all five clusters (Fig. 6c).  

OHC is an oceanic predictor representing the upper ocean thermal structure, expressed 

as an integral of calories of seawater with temperature above 26 °C (Leipper and Volgenau, 
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1972) 

OHC = 𝐶𝑝𝜌 ∫ (𝑇 − 26)𝑑𝑧
𝑑26

0
 , (11) 

where 𝐶𝑝 is the sea water specific heat capacity; 𝜌 is the water density; d26 is the 26 °C 

isothermal depth; and T is the ocean temperature at a specific depth. Lin et al. (2009) 

suggested that warm eddies and ocean currents could make a critical contribution to rapid 

intensification of TCs. These warm features are characterized by high OHC and can 

effectively mitigate TC-induced negative feedback due to sea surface cooling. Analysis 

reveals that OHC is highly correlated with predictand in most clusters except C1 where the 

mixed layer is very shallow (Fig. 6d).  

Relative humidity is known to affect convective buoyancy, which is a direct source of TC 

energy (Wu et al., 2012; Bogner et al., 2000; Knaff et al., 2005). In this study, the relative 

humidity was divided into RHLO and RHHI based on Knaff et al. (2005). RHLO (RHHI) is 

calculated in atmospheric layer from 850 hPa to 700 hPa (500 hPa to 300 hPa), within an 

annulus of 200-800 km radius (donut shape) from the center of the TC. Knaff et al (2005) 

reported that RHHI is statistically important at all forecast lead times, but RHLO is not. 

However, our results for C2 reveal that both RHHI and RHLO have a moderate positive 

correlation with intensity change (Figs. 6e and f). This result is an example of how a 

previously unrecognized predictor could be potentially useful for a particular cluster. 

Many studies have shown that VWS is an important predictor for TC intensity change 

(Jone, 2000; DeMaria, 1996; Wang and Holland, 1996; Frank and Ritchie, 2001; Corbosiero 

and Molinari, 2002). The VWS is defined by the magnitude of the vector difference between 

the two different layers, 200–850 hPa (SH200) and 500–850 hPa (SH500): 

SH200 = √(𝑈200 − 𝑈850)2 + (𝑉200 − 𝑉850)2 (12) 
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SH500 = √(𝑈500 − 𝑈850)2 + (𝑉500 − 𝑉850)2, (13) 

where 𝑈200(𝑉200) is 200-hPa zonal (meridional) wind; 𝑈500(𝑉500) is the 500-hPa zonal 

(meridional) wind; and 𝑈850(𝑉850) is the 850-hPa zonal (meridional) wind. Strong VWS 

disrupts the organized deep convection, which inhibits TC intensification. The wind-related 

predictors such as VWS (Figs. 6g and h), RV850 (Fig. 6k), and U200 (Fig. 6j) are highly 

correlated with the intensity change for C3 in which many TCs pass through the subtropical 

region where the VWS is strong (Fig. 4a). In contrast, a low correlation is found in C1 

because the mean motion of TCs moves straight towards the northwest, where there is almost 

no vertical shear gradient. 
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Fig. 6. Same as in Fig 5, but for 11 synoptic predictors (a, SST; b, MPI; c, POT; d, OHC; e, RHHI; f, 

RHLO; g, SH200; h, SH500; i, T200; j, U200; k, RV850).  
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3.2. DAT-based potential predictors 

TC-induced vertical mixing is affected by various factors such as TC intensity, storm 

translation speed, Coriolis parameter, and upper ocean structure. The depth of the vertical 

mixing is known to be typically 60 to 100 m in major tropical cyclones (Price, 2009). In this 

study, when considering the effect of the TC-induced vertical mixing on the intensity 

predictions, new MPIs and POTs are additionally calculated using DATs based on various 

mixing depths from surface to 120 m (10-m interval) instead of using the SST (Table 6). 

As the storm intensity increases, DAT using deeper mixing depths is more correlated 

with TC intensity changes (Lin et al., 2008). To investigate the relation between TC intensity 

and mixing depth, we classified TCs into three groups according to iWIND (less than 50 

knots, 50–80 knots, and over 80 knots) and examined the variations of correlation 

coefficients between thermodynamic predictors and 24-hours intensity changes as a function 

of different mixing depths (Fig. 7). It is shown that initial TCs that are stronger generally 

tend to have higher correlations with the three thermodynamic predictors for deeper mixing 

depths.  

 

Table 6. List of three DAT-based potential predictors used in the model. 

Predictor Description 

DAT10–DAT120 
Ocean temperatures averaged from the surface down to various depth 

(10-120 m, 10-m interval) 

MPI10–MPI120 Maximum potential intensity using DAT10–DAT120 

POT10–POT120 POT  using MPI10–MPI120 



３１ 

 

 

Fig. 7. The comparison of the correlation coefficients between three thermodynamical predictors (a, 

DAT; b, POT; c, MPI) and the 24-h changes in TC intensity for three groups classified by initial 

maximum wind speed (iWIND). Open pentagrams represent the location of maximum value for the 

three groups. 

 

It is interesting to ask whether this feature is also shown when TC tracks are clustered. 

Figure 8 present the correlation coefficients between the DAT-based predictors and TC 

intensity change for five track types and non-clustering cases at various lead times. C1 and 

C5, with relatively weak intensity (see Table 1), have the highest correlation coefficients up 

to 72 hours leads when mixing depths are shallow. C4 with strong intensity has the highest 

correlations when mixing depths are deep (Fig. 8). For C2, this relationship is not clear since 

the differences of the DATs for varying mixing depths are small in the tropics. The result 

suggests that the inclusion of the DAT-based predictors combined with cluster analysis might 

further improve the prediction skill of STIPS because the predictors consider realistic 

interactions of the TC with the ocean that vary depending on clusters. 
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Fig. 8. Correlation coefficients between the various depth-averaged temperatures (SST, DAT30, 

DAT60, DAT90, and DAT120) and TC intensity change for five clusters (a, C1; b, C2; c, C3; d, C4; e, 

C5) , non-clustering case using all TCs (f) at each lead time. 
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3.3 Effects of using clustering and DAT-based predictors  

To investigate further the effect of using clustering and DAT-based predictors on 

statistical-dynamical TC intensity predictions, four sets of experiments were conducted for 

the training period (Table 7): a run without the use of both clustering and DAT-based 

predictors (hereafter referred to as the STIPS-SST), a run using clustering only (CSTIPS-

SST), a run using DAT-based predictors only (STIPS-DAT) and a run using both clustering 

and DAT-based predictors (CSTIPS-DAT). We first examined the predictors selected for each 

experiment (Fig. 9). For non-clustered models, multiple regression equations are developed 

for each prediction time, yielding a total of twenty equations (120-h prediction, 6-h inter

val). However, clustered models have one-hundred equations because five clusters are also 

considered. Given the large number of equations, we present the ratio of selected final 

predictors for each model. Here, it should be noted that the present multiple regression 

model allows the combination of up to five predictors, but only one or two predictors were 

finally selected due to multi-collinearity issues. Figure 9 shows the ratio of the final selected 

predictors for each set of experiments. The first predictor selected from the screening pr

ocedure for each prediction time is termed "predictor 1", and the second one is termed 

"predictor 2". 

Table 7. Experimental designs for investigating the effect of using clustering and DAT-based 

predictors. The open circle and the cross indicate the method applied and not applied, respectively. 

Model Clustering DAT-based predictor 

STIPS-SST × × 

STIPS-DAT × ○ 

CSTIPS-SST ○ × 

CSTIPS-DAT ○ ○ 
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Fig. 9. Pie charts representing the ratio of the final selected predictors for (a) STIPS-SST, (b) STIPS-

DAT, (c) CSTIPS-SST, and (d) CSTIPS-DAT. Predictor 1 represents the first selected predictor with 

the highest correlation coefficients with predictand (intensity change). Predictor 2 represents the 

second selected predictor in the regression equation. Colors indicate the type of predictor (i.e., static is 

green, synoptic is orange, DAT-based is blue, and others are gray). If only one predictor is selected, it 

is marked as blank in Predictor 2. 

 

The most frequently selected predictor was POT (including DAT-based POT) for all 

experiments. Particularly, for STIPS-DAT, POT was selected 95% of the time as the first 

predictor 1. iWIND, SST, MPI, and OHC, which had high correlations with intensity change 

(Fig. 5a), were much less selected compared to POT for most experiments. This is because, 

when POT was selected, the aforementioned four other predictors were excluded due to their 

high correlations with POT. DVMX had a particularly good performance in the short-term 

prediction (Fig. 5b) and this intensity-change predictor is commonly selected as the fir

st and second predictors for two non-clustering experiments (Fig. 9a and 9b). LAND 
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was also one of the main predictors selected in all four experiments. In addition, LON, 

OHC, RHLO, and T200 are important second predictors. The number of selected predictors 

for STIPS-SST and CSTIPS-DAT was similar to each other (Fig. 9a and 9d).  

The types of selected predictors for each cluster reflect unique characteristics of the 

clusters such as the tendency of mean TC intensity (or the changes), landfalls, upper-ocean 

thermal structure, and TC-induced mixing depth. For example, for C1 POTs using relatively 

shallow DAT (POT, POT10, POT20, POT30, and POT50 with depth ranging from 0 to 50 m) 

and LAND were chosen as major predictors (Fig. 10a). This is due to the fact that many 

cases of C1 experience a rapid weakening due to landfall and inadequate ocean thermal 

conditions with a thin mixed layer, leading to a shallow vertical mixing caused by TCs. In 

C2, a large percentage of the selected predictors for predictor 1 were the single POT-type 

predictor (95%). This arises as most TCs in C2 spend their lifetime in the tropical open 

ocean where oceanic thermal conditions are the most important factors. In this case, land 

effect and static predictors are minor. C3, characterized by strong weakening tendencies with 

leads (Table 2), showed that T200 was the most dominant in predictor 2. This is possible 

because many TCs in C3 travel to the north and are influenced by a large gradient of T200 

along the track. Many TCs in C4 make landfall over the East Asian region (The eastern coast 

of China and Taiwan), and LON and LAND were selected as major predictors. Lastly, for 

C5, in which most TCs typically decayed over the cold open ocean, POTs with DATs of 

relatively shallow to medium depth (20 to 80 m) were important predictors. Since TCs in C5 

pass through the open ocean where a large gradient of wind shear along the mean track of 

TC exists (Fig. 4a), vertical wind shear (SH200 & SH500) was also selected. The 

performance of four models will be presented in the following section. 
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Fig. 10. Same as in Fig. 9, but for five clusters of CSTIPS-DAT (a, C1; b, C2; c, C3; d, C4; e, C5). 
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3. 4 Comparisons of model performance 

In statistical models, the relationship between the predictand and predictors is first 

established during the training period. This relationship is then applied to an independent 

dataset. This relationship will then be used to determine the performance of real-time 

predictions, which is independent of the testing sample. Figures 11 and 12 compare the 

prediction skills among CSTIPS-DAT, CSTIPS-SST, STIPS-DAT, and STIPS-SST for the 

training period. The forecast errors between the CSTIPS-SST and CSTIPS-DAT at vari

ous leads are small for all clusters (Figs. 11a-c). The comparisons reveal that CSTIPS-

DAT, which used both clustering and DAT-based predictors, generally outperformed the 

other three models. A close examination shows that the most significant improvement was 

made by applying clustering approach (CSTIPS-SST vs. STIPS-SST, and CSTIPS-DAT vs. 

STIPS-DAT in Fig. 11f). At 72-h lead time, the improvement is most remarkable; the mean 

absolute errors (MAEs) are reduced by 3.6 knot (25% improvement) and 1.9 knot (15%) for 

CSTIPS-SST and CSTIPS-DAT, respectively, compared to non-clustering settings. A similar 

tendency is also found in the results of R-square (Fig. 12f). The overall improvement in the 

CSTIP-DAT model is due to the enhanced improvement in some individual clusters. In 

particular, C5 showed the best prediction skills among the five clusters, most significantly 

contributing to the model improvement (Fig. 12e). We found that the performance of each 

cluster is related to the magnitude of  𝜎𝐶 (Table 3). That is, smaller 𝜎𝐶 leads to more 

skillful predictions. This reaffirms that the clustering approach reduces the variability of 

predictand, which ultimately results in the improvement of TC intensity prediction. 
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Fig. 11. Comparisons of mean absolute errors (MAEs) of the maximum intensity (kt) for five clusters 

(a, C1; b, C2; c, C3; d, C4; e, C5) and non-clustering cases using all TCs (f) at each lead time during 

the training period (2004-2012). For five clusters (a–e), two results from CSTIPS-DAT and CSTIPS-

SST are compared. For non-clustering case (f), the results from all experiments in Table 1.6 are 

compared. 

 

The impacts of DAT-based predictors on TC intensity prediction can be realized by 

comparing STIPS-DAT with STIPS-SST, and CSTIPS-DAT with CSTIPS-SST (Fig. 11f and 

12f). The effect of DAT-based predictors is not large as that of clustering, but they still 

further improved the performance. The largest improvement (14%) in MAE was found in the 

comparison with non-clustering experiments (STIPS-DAT and STIPS-SST in Fig. 11f) at 

lead times between 48 h and 96 h. 
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Fig. 12. Same as in Fig 11, but for the R-squared (variance explained). 

 

The model developed during the training period is tested with real-time predictions for 

two years of 2013 and 2014. Figure 13 illustrates the schematics of the real-time prediction 

systems. The systems were implemented through the following procedure: first, obtaining 

the 5-day track forecast information and atmospheric and oceanic conditions at each forecast 

lead time from KMA; second, calculating various static, synoptic and DAT-based predictors 

and membership coefficients for each TC; third, determining belong to one of the five 

clusters with the membership degrees; and fourth, using the statistical model to produce the 

5-day intensity prediction. 

The next question is how well the models developed in this study perform for an 
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independent data set? A comparison of MAE, bias, and R-square among the four models 

shows that the CSTIPS-DAT model outperformed the others at most lead times (Fig. 14) and 

the contribution of clustering to the improved performance was the largest, similar to the 

results of the model training. However, the overall mean MAEs for all real-time predictions 

(Fig. 14a and 14b) were a little larger (about 1.5 knots) than those for the training periods, 

possibly due to the inaccuracy in real-time track predictions (Knaff et al., 2005) and the fact 

that the model parameters were fit for the training period, not during the independent period.   

 

 

Fig. 13. Schematic of real-time prediction procedure using the CSTIPS-DAT. 
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Fig. 14. Comparisons of MAEs (a, b), Bias (b, e), and R-square (c, f) for the real-time TC intensity 

prediction in 2013 (a–c) and 2014 (d–e). Here, the results from all experiments in Table 6 are 

compared. 

 

To quantify the effects of the use of clustering and DAT-based predictors, the reduction 

rates in MAE (i.e., RE) were computed for STIPS-DAT, CSTIPS-SST, and CSTIPS-DAT 

relative to the control experiment (STIPS-SST):  

RE =
100 (𝐸−𝐸𝑆𝑇𝐼𝑃𝑆−𝑠𝑠𝑡)

𝐸𝑆𝑇𝐼𝑃𝑆−𝑠𝑠𝑡
,  (14) 

where E is the MAE for each model, and 𝐸𝑆𝑇𝐼𝑃𝑆−𝑠𝑠𝑡 is the MAE of STIPS-SST. Results 

indicate that the use of clustering was the main contributor to the reduction in MAE (red and 

black solid lines in Fig. 15). For clustered models, large reductions about 20-25% were noted 
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between 48-h and 96-h lead time for both years. However, the improvement disappeared 

after 96-h lead time, particularly for 2014. This seems to be related to the lack of statistical 

confidence due to insufficient sample size after 96 h. 

To examine the results of individual prediction in each cluster, we selected six typhoons 

of Pewa (2013), Fitow (2013), Pabuk (2013), Faxai (2014), Kalmaegi (2014) and Phanfone 

(2014) and analyzed their tracks (Fig. 16a), membership coefficients (Fig. 16b), and intensity 

prediction results of the CSTIPS-DAT model (Fig. 17). Here, the membership coefficient is 

an index indicating the similarity of the individual TC track (colored lines in Fig. 16a) to the 

mean track of the membership cluster (black lines in Fig. 16a), i.e. a larger membership 

coefficient implies a higher similarity of a particular TC track to its respective mean tr

ack. The cluster number assigned at each prediction time (6-hr interval) is given at the 

bottom of Fig. 17. For example, Typhoon Phanfone started as C2 in the beginning, but its 

membership gradually changed to C3 with its northward movement (Fig. 17f). The 

comparison of predicted intensities (thin lines in Fig. 17) with the RSMC best-track data 

(thick lines) presents an overall good performance for Fitow, Pabuk, Kalmaegi and Phanfone. 

For Typhoons Pewa and Faxai, however, the predicted intensities were largely overestimated. 

We found that the inaccurate predictions of these two typhoons are associated with their low 

membership coefficients (see Fig. 16b). In fact, Pewa and Faxai belonged to C5 and C2, 

respectively, but their tracks were far from the mean track of its respective cluster (Fig. 16a). 

The result suggests that an increase of number of clusters might allow more accurate 

predictions if enough samples were available. It also reconfirms the potential of cluster-

analysis of track patterns to improve statistical TC intensity prediction skills. 

It is also interesting to compare the CSTIPS-DAT model with the latest operational 

dynamical models such as Hurricane Weather Research and Forecast (HWRF), Regional 
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Unified Model (UMR) of the Korean Meteorological Agency, Japan Meteorological Agency 

Global Spectral Model (JGSM), and the U.S. Global Forecast System (GFS). As shown in 

Fig. 18, for lead times up to 24 hours, the CSTIPS-DAT model shows smallest MAEs with 

prediction errors less than 12 knots relative to operational dynamical models for both 2013 

and 2014. After 24-h leads, the CSTIPS-DAT model shows a remarkably good skill and is 

comparable with GFS, which has the lowest MAE among the other three operational models. 

 

 

 

 

Fig. 15. The reduction rates in MAEs of STIPS-DAT, CSTIPS-SST, and CSTIPS-DAT relative to the 

control experiment (STIPS-SST) for 2013 (a) and 2014 (b). 
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Fig. 16. (a) Tracks (colored lines) of Typhoon Pewa (2013), Fitow (2013), Pabuk (2013), Faxai 

(2014), Kalmaegi (2014) and Phanfone (2014) along with the mean track for five clusters (thick black 

lines). (b) Temporal evolution of membership coefficient for six TCs. 
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Fig. 17. Results of individual intensity predictions from CSTIPS-DAT for Typhoon (a) Pewa (2013), 

(b) Fitow (2013), (c) Pabuk (2013), (d) Faxai (2014), (e) Kalmaegi (2014) and (f) Phanfone (2014). 

Thick line is observation (RSMC best track data) and gray lines are individual CSTIPS-DAT 

predictions. The numbers above x axis denote the assigned cluster number. 
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Fig. 18. Comparisons of MAE between results of various operational dynamical models (HWRF, 

UMR, JGSM and GFS) and the present model (CSTIPS-DAT) for (a) 2013 and (b) 2014. 
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4. Classification model for determining type of LMI  

4.1 Prediction error of WNCP 

LMI is an integrated statistic of TC intensification and represents the basic properties of 

TC climatology among the various criteria of measuring TC intensity (Emanuel, 2000; 

Kossin et al., 2014;Park et al., 2014; Moon et al., 2015). The distribution of LMI for the 

WNP in the period of 2004 - 2016 has two local maxima around 50 kt and 100 kt, and a local 

minimum at 70kt (Fig. 19a). This bimodal distribution in the probability density function 

(PDF) for LMI also found in the WNCP (Fig. 19b), but the second peak in PDF is much 

larger than the first peak compared to the WNP. In this study, TCs in the WNCP (i.e., cluster 

C2) were classified into two groups for training of model based on the local minimum of 

LMI distribution: TCs with the LMI of above 70 kt (A70) and TCs below 70kt (B70). 

A comparison of the MAE and bias of intensity prediction between A70 and B70 reveals 

that B70 has a larger MAE than A70 after 72-h lead times (Fig. 20a), in which the pattern of 

B70 is very similar to that of bias (Fig. 20b, blue). This implies that the bias correction of 

B70, i.e., the correction of overestimation, can lead to the reduction of MAE. It is also 

important that the tendency of underestimation (i.e., negative bias) for A70 can be corrected 

by separating TCs into two groups and establishing independent statistical model for each 

group since the bias of A70 is caused by the shift of the mean values to weak LMI due to the 

inclusion of overestimating B70. 
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Fig. 19.  Distributions of life time maximum intensity. PDFs are calculated using 2004-2016 TCs 

which belong to (a) Western North Pacific and (b) Western North Central Pacific. The blue line 

indicates the smoothed PDF.  

 

 

The unique characteristics of the two groups were also found in the distribution of 

intensity change (Fig 21). The mean change in intensity within 48-hours was 20.7±24.9 kt 

for A70 (representing strongly-developing TCs) and 0.7±13 kt for B70 (non-developing 

TCs), in which the difference between the two was statistically significant. Therefore, if TCs 

in the WNCP are classified into two groups according to their LMI and the prediction model 

is separately developed for the classified group, it is expected that the variance of the 

intensity change can be reduced, leading to improving the intensity prediction skill of TCs.  
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Fig. 20.  Comparison of (a) mean absolute errors (MAEs) of maximum intensity and (b) intensity 

bias for classified two groups (red: A70, blue: B70) and all TCs (black) in Western North Central 

Pacific at each lead time during the 2013-2014.  
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Fig. 21. Comparison of the intensity change in 48-h PDFs for classified two groups (red: A70, blue: 

B70). The thick lines indicate smoothed PDF. 

 

As shown in Table 8, there are a total of 86 A70 cases and 27 B70 for the period 2004-

2016. There are 26 A70 cases and 10 B70 cases in the period 2014-2016. The decision tree is 

trained by data in 2004-2013, and data in 2014-2016 are used for test. We used SMOTE to 

increase the number of samples in B70, to solve the problem of imbalance in the training 

data set. After the A70 and B70 are identified, we calculate the values for each variable. 

Table 9 describes the 16 types potential variables included to build the decision tree for 

classification of two types of LMI. The variables include 4 static variables and 12 synoptic 
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variables. Such variables are similar to those used to develop CSTIPS-DAT in NTC, but 

exclude intensification potential (POT; MPI minus initial intensity) -based variables. The 

POT-based variables, which were most important factors in CSTIPS-DAT, are similar to 

MPI-based variables at the beginning of TC because TCs initial intensity is close to constant 

as 30-40kt. Therefore, only MPI was included on behalf of the above two.  

The variables were obtained by averaging the values up to 3.25 days after the genesis, 

which is the sum of LMI-reaching time (1.7 days) and its one standard deviation (1.55 days). 

The size of averaging area is following CSTIPS-DAT. 

DATs and DAT-based MPIs have the highest correlation with LMI among all variables 

(Table 9). Ocean heat contents (OHC), which is widely used as a representative value of the 

upper ocean thermal condition, also showed a high correlation coefficient but it was lower 

than some DATs. This result is consistent with Price (2009), which claims that OHC and 

DATs contain similar information in sufficiently deep-ocean but DATs have more realistic 

information than OHC. 

 

Table 8. Number of A70 and B70 during 2004-2013, 2014-2016 and 2004-2016. 

Period A70 B70 Total 

2004-2013 60 17 77 

2014-2016 26 10 36 

2004-2016 86 27 113 
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Table 9. List of potential variables included in the present model and its correlation 

coefficient with life time maximum intensity. 

Variable Description r 

JDAY Absolute value of Julian day – 248  -0.27 

LAT Latitude of typhoon location  -0.33 

LON Longitude of typhoon location 0.07 

SPD Storm moving speed -0.23 

D200 Area-averaged (0 km to 1000 km) divergence at 200hPa 0.05 

RV500 Area-averaged (0 km to 1000 km) relative vorticity at 500 hPa 0.16 

RV850 Area-averaged (0 km to 1000 km) relative vorticity at 850 hPa 0.04 

U200 Area-averaged (200 km to 800 km) zonal wind at 200 hPa -0.28 

T200 Area-averaged (200 km to 800 km) air temperature at 200 hPa -0.39 

RHHI Area-averaged (200 km to 800 km) relative humidity 500 – 300 

hPa 

0.32 

RHLO Area-averaged (200 km to 800 km) relative humidity 850 – 700 

hPa 

0.29 

SH200 Area-averaged (200 km to 800km) 200 hPa to 850 hPa vertical 

wind shear 

-0.17 

SH500 Area-averaged (200 km to 800 km) 500 hPa to 850 hPa vertical 

wind shear 

-0.32 

OHC Area-averaged (0 km to 200 km) ocean heat contents 0.52 

DAT - DAT120 Ocean temperatures averaged from the surface down to the 

various depth (10-120 m, 10-m interval) 

0.48 - 0.54 

MPI - MPI120 Maximum potential intensity using DAT - DAT120 0.47 - 0.56 
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4.2 Optimal min-leaf size 

The Confusion Matrix can be used to calculate verification measures such as Probability 

of Detection (POD), False Alarm Rate (FAR) and accuracy (ACC). POD is the ratio of the 

correct forecasts of event to the actual number of event while FAR is the ratio of incorrect 

forecasts to the total number of event forecasts. The POD, the FAR and the ACC values are 

calculated as follow. 

POD =
𝑇𝑃

𝑇𝑃+𝑇𝑁
       (15) 

FAR =
𝐹𝑃

𝐹𝑃+𝑇𝑃
       (16) 

ACC =
𝑇𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
       (17) 

where TP is the true positives, TN is the true negatives, FP is the false positives, and FN 

is the false negatives. 

Figure 22 shows the classification performance of the decision-tree in training period as 

a function of the min-leaf-size parameter, which stops splitting when the number of samples 

in a leaf gets below the specified size. The decision trees showed the highest ACC and POD 

in min-leaf size in 1, and these values decreased with increasing min-leaf size. FAR showed 

a distribution of 0~12% according to min-leaf size, and there was no significant trend with 

min-leaf size. 
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Fig. 22. Comparison of the skill scores (black: Accuracy, red: POD, gray: FAR) and number of node 

(blue line) at each min-leaf size. 

 

The smaller the min-leaf size, the better the performance, however increasing nodes due 

to min-leaf size reduction makes complicated decision tree, which may lead the over-fitting. 

Statistical predictions should train the model to make reliable predictions of the test data. In 

over-fitting, trained model describes noise instead of the underlying relationship. Excessively 

over-fitted model has poor performance in the real-time prediction, as it overreacts to minor 

fluctuations in training data. Therefore, to avoid this prediction instability problem, the 

optimal min-leaf size should be determined through cross-validation loss comparison. The k-

fold cross-validation loss is obtained by averaging k-times of verification performance such 

as misclassification, it can be expressed follow. 
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Fig. 23. Distributions of cross-validation loss according to min-leaf size. The k-fold cross-validation 

method is used. 

 

CV =  
1

𝑘
∑ 𝑀𝑆𝐸𝑖

𝑘
𝑖=1      (18) 

where MSE is mean squared error. Figure 23 indicates the comparison of k-fold cross-

validation loss according to min-leaf size. Overall, the cross-validation loss in our analysis, 

tended to increase as the min leaf size increased. The loss was the smallest at minleaf size 1-

2, followed by local minima at 6 and 8. However, decision trees with minleaf size of 1-2 

show nine and seven nodes (fairly complex structure), respectively, whereas with minleaf 

size of 6 and 8, show three and two nodes, respectively (blue line in Fig 22). In this study, we 

set the min-leaf size to 6, in which the structure of the decision tree is relatively simple and 

the cross-validation loss is small. 



５６ 

 

4.3 Governing rules of classification model 

The trained decision tree includes three nodes with four rules (Fig. 24). Table 10 lists 

four rules governing decision tree. Rule 1 shows that a TC in a low MPI20 environment is 

difficult to develop with strong intensity. MPI is the most important predictor in previous 

developed statistical intensity prediction skills (Knaff et al., 2005; Kaplan et al., 2010; Gao 

and Chiu, 2012). In the rule 1, shallow DAT-based MPI is selected as classification factor, 

and many weak TCs were classified based on this rule. The weak TCs cannot interact with 

deep-ocean, thus the shallow DAT-based MPI should be a good criteria for classifying the 

weak TCs. 

Rule 2 states that if MPI20 ≥ 114 kt, and LAT ≥ 22.1ºN, then the LMI will below 70 kt, 

suggesting that a TC in subtropics will not develop to strong intensity even if it is in high 

MPI20 environment. TCs with high LAT travel mainly to the north, or occurrence at 

relatively high latitude. Because the meridional gradient of VWS is large in this region, TC 

can be suppressed with northward moving.  

Rule 3 states that If MPI20 ≥ 114 kt, LAT < 22.1ºN, and DAT100 < 26.3℃, then the 

LMI will below 70 kt. High MPI20 and low LAT are both favorable for TC intensity, 

whereas the TC is difficult to develop with strong intensity if DAT100 is lower than 26. 3℃. 

Previous studies suggested that 100 m is typical depth of vertical mixing by strong TC, thus 

DAT100 is the realistic value to represent the sea surface thermal condition under the TC 

(Price, 2009; Balaguru et al., 2015). If DAT100 is lower than 26.3℃, which is close value 

known as the dew point air-temperature of the tropic, the TC is difficult to develop for strong 

intensity because the heat flux has a negative sign. 
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Fig. 24. The decision tree for life time maximum intensity classification constructed from C2. The 

numbers in parenthesis indicate the total data points and the number of hit samples 

 

Rule 4 states that If MPI20 ≥ 114 kt, LAT < 22.1ºN, and DAT100 ≥ 26.3℃, then the 

LMI will exceed 70 kt. This rule is the only rule for A70, and it has an accuracy of 94.4%. 

This rule indicates that TC generally develops with strong intensity when all three conditions 

are satisfied. 

 To evaluate the accuracy of this decision tree in classifying A70 and B70, both training 

and test period are conducted. The decision tree shows a classification accuracy of 92.5% in 

the training (Table 11), and the accuracy of the test is 80.5%. The confusion matrix of the test 

period in Table 12 indicates that 24 out of 26 A70 TCs are correctly classified and 5 out of 29 

classified A70 TCs are actually B70 TCs; thus, the POD is 92.3% and the FAR is only 17.2%. 
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Table 10. Descriptions and accuracies of the rules derived from developed decision tree. 

Rule NO. Description Accuracy 

1 If MPI20 < 114 kt, then the LMI will below 70 kt.  45/51 = 88.2% 

2 If MPI20 ≥ 114 kt, and LAT ≥ 22.1ºN, then the LMI will below 70 

kt. 

8/9 = 88.9% 

3 If MPI20 ≥ 114 kt, LAT < 22.1ºN, and DAT100 < 26.3℃, then the 

LMI will below 70 kt. 

4/6 = 66.7% 

4 If MPI20 ≥ 114 kt, LAT < 22.1ºN, and DAT100 ≥ 26.3℃, then the 

LMI will exceed 70 kt. 

51/54 = 94.4% 

 

 

Table 11. Confusion matrix from the developed decision tree in training period. 

  Model 

  A70 B70 

Observed A70 51 9 

 B70 3 57 

 

 

Table 12. Same as table 11, but test period. 

  Model 

  A70 B70 

Observed A70 24 2 

 B70 5 5 
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5. Summary and conclusions   

A statistical-dynamical typhoon intensity prediction model in the WNP was developed 

using track-pattern clustering and DAT-based potential predictors. In this model system 

(CSTIPS-DAT), TCs were classified into five clusters based on the fuzzy c-means clustering 

method and the distinctive characteristics of each cluster were examined. The present model 

uses six static, 11 synoptic potential predictors as well as three new DAT-based ocean-

coupling predictors that consider TC-induced vertical mixing effect.  

To investigate the effect of using clustering and DAT-based predictors in TC intensity 

prediction, four experiments were conducted for the training period of 2004-2012 and real-

time predictions in 2013 and 2014. Our results suggest the use of clustering remarkably 

reduced the MAE relative to the non-clustered experiments in both training and real-time 

experiments, about 25% (72-h lead time; CSTIPS-SST) and 20-25% (24-96-h; clustered 

models), respectively. We found that the classified clusters had unique characteristics in 

terms of the tendency of intensity change, which reduced the variability (𝜎𝐶) of predictand 

and ultimately led to the improvement of TC intensity prediction. The effect of DAT-based 

predictors was not significant as much as that of clustering, but still further improved the 

performance. By using both clustering and DAT-based predictors, various sets of predictors 

could be skillfully selected depending on each cluster and its unique characteristics related to 

mean TC intensity, landfalls, upper-ocean thermal structure, and TC-induced mixing depth 

along the TC tracks. The test performance of the present model for 2013 and 2014 was more 

skillful than operational dynamical models up to 24-h leads. After 24 hours, the CSTIPS-

DAT model still shows skill comparable with or more superior to the operational dynamical 

models. The present model showed its limitations in the improvement, particularly after 96-h 

lead time. This seems to be related to over-fitting due to insufficient sample size. Also, the 
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performance of the present model was not good enough for TCs with low membership 

coefficients, indicating the low similarity of the individual TC tracks to the mean tracks of 

their respective membership clusters. This implies that an increase of the number of clusters 

might be needed to allow higher membership coefficients and consequently more accurate 

prediction results. If the sample size increases in the future as more TC data are collected, the 

problem of over-fitting and low membership coefficients is expected to be improved. 

The WNCP distribution of LMI for the period 2004-2016 has two local maxima around 

50 kt (small peak) and 100 kt (large peak), and a local minima at 70kt. Based on this bimodal 

distribution of LMI, we have classified TCs in the WNCP into two groups TCs with the LMI 

of above 70 kt (A70) and TCs below 70kt (B70). Analysis reveals that B70 has a larger MAE 

than A70 after 72-h lead times mostly due to a significant overestimation in B70. These 

results suggest that if we can correct the bias of B70 through the binary classification of TCs 

in the WNCP according to their LMI and develop the independent prediction model for the 

classified groups, it can contribute to reducing the variance of the intensity change, 

ultimately leading to improvement of the TC intensity prediction.  

In this study, in order to improve the prediction skill of CSTIPS-DAT and better 

understanding of LMI bimodality, we employed the decision tree algorithm that classifies the 

type of TCs in the early stage depending on whether or not TCs will intensify to the LMI of 

above 70 kt during their lifetime. The present decision tree is developed using the CART 

algorithm and consists of four leaf nodes. MPI20, LAT and DAT100 are selected to classify 

A70 and B70, in which the splitting values of the three variables are 114 kt for MPI20, 

22.1ºN for LAT and 26.3℃ for DAT100. The decision tree has classification accuracy of 

92.5% for training period, and of 80.5% for test period. 
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Lee16 reported that lifetime of TCs is important in determining their LMI. The lifetime 

of TCs is largely influenced by the track that determines whether or not it make landfall. 

However, TCs in the WNCP are mostly independent from the lifetime, because they stay 

mainly in the tropical open ocean. MPI20, LAT, and DAT100, which were selected as 

classification criteria in the present decision tree, are independent of lifetime and they are 

factors related to the development of TC. This supports Lee16's claim that the bimodality in 

LMI distribution can be better explained by the magnitude of the intensity change than the 

lifetime of the TCs. 

 It is also important fact that DAT100 has been selected as an important classification 

criterion of LMI. Correlation coefficients of DATs before classification for LMI showed the 

maximum value at DAT50 (Fig 25). However, TCs classified by rule 4 (i.e. strongly-

developing TCs of A70) had the highest correlation at DAT100. Price (2009) proposed the 

DAT100 as the ocean factor which reflected the TC-induced surface cooling by Saffir-

Simpson category 3 TCs (96-113 kts). Interestingly, this category belongs to the second peak 

of the LMI distribution (Fig. 19b) and about 40% of the TCs in the WNCP belong to this 

category. On the other hand, the TCs classified by the other rules (i.e., non-developing TCs 

of B70) has a very low correlation at most DATs (Fig 25 blue line). These results suggest that 

pre-existing ocean thermal structures along the track is an important factor to determine the 

LMI for strongly-developing TCs whereas not for non-developing TCs. In this regard, it is 

necessary to develop an individual model according to the two classified groups since it will 

allow taking into account the environmental factors varying depending on the intensity of 

TCs. 

   Understanding the distribution of LMI is crucial to improve the prediction skill of TC 

intensity. In this study, the rules discovered in the tree suggest that the upper-ocean 
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subsurface structure and the vertical mixing process play an important role to determine the 

LMI in TCs, and provide a clue to explain the causes of the bimodal distribution of LMI. 

However, the present findings are far from the fully understanding of the causes of the 

bimodal distribution. Further research using more advanced approaches such as deep-

learning technique are guaranteed to solve the problem in the future. 

 

 

 

Fig. 25. The comparison of the correlation coefficients between DAT variables and LMI. The black 

line is non-classified TCs, the red is TCs in rule 4 and the blue line is TCs in rule 1, 2 and 3. Open 

pentagrams represent the location of maximum value for the three groups. 
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