

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

A thesis
For the Degree of Doctor of Philosophy

Service-oriented Resource Orchestration – A Resource
Allocation Approach

Afaq Muhammad

Department of Computer Engineering

GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

August, 2017

Dedicated to
my dearest parents, loving brothers and sisters, beloved wife, and lovely son.

ii

ACKNOWLEDGMENTS

First and foremost, my humble praise and gratitude to Allah Almighty; the most gracious,

the most merciful, for showering His endless blessings on me throughout my life. Many

blessings and salutations on Prophet Muhammad (PBUH) who taught and emphasized the

importance of learning and seeking knowledge.

I am extremely grateful to my supervisor Prof. Wang-Cheol Song for his continuous

guidance, suggestions, and constant interaction throughout my PhD studies at Jeju National

University. I would like to extend my sincere gratitude towards my Korean language teachers,

Prof. Gwon-Jin Choi, Madam Anna Young, Madam Kyeongok Song, Jong, Madam Cho Yeon

Ha, Madam Lee Hyo Suk, Madam Kwak Min Jong, Sir Sa Sang Heong, Madam Jang Kyung Mi,

Madam Hee Soon Lee, Madam Yina Yoon, and Madam Bak Yoon for their tireless hard work,

dedication, devotion, and inspiration during my one year stay at Inha University.

I offer my humble gratitude to Prof. Khi-Jung Ahn, Prof. Yung-Cheol Byun, Prof. Chan-

Jung Park (Department of Computer Education), and Prof. Gyung-Leen Park (Dept. of Computer

Science and Statistics) for their valuable suggestions and extremely important comments during

the process of my thesis evaluation. I would like to thank all the professors and teachers for their

contributions throughout the program.

I am grateful to National Institute for International Education (NIIED), Ministry of

Education, South Korea for awarding me the Korean Government Scholarship to pursue such an

exciting program in two universities. Sincere thanks to all the KGSP coordinators of Inha

University and Jeju National University especially Madam Junghyo Lee, Madam Ji Hyojung,

Madam Hanna Baek, Madam Ji-Yon Song, and Madam Heekyoung Kwon.

I would like to acknowledge the company, cooperation, and help of my friends and

colleagues during the tenure of the study. I offer special thanks to Dr. Safdar Ali, Dr. Ghayas Ud

Din Siddiqi, Dr. Ahmar Rashid, Dr. Shafqat Ur Rehman, Sham Ur Rehman, Mohammad Kawsar

Manik, Ibrahim Hashlamon, Fasihullah Khan, Muhammad Tahir Abbas, Hafiz Mutee Ur

Rehman, and Mr. Waqar Kiyani for their enormous help and support.

I offer my special gratitude to Mufti Asim Khan Ashrafi who has been very kind and

supportive to me in all circumstances since the beginning of my stay in South Korea. He has

been a constant source of guidance in many religious matters that I faced during my stay. I

greatly value the time I spent with him.

I owe a debt of special thanks to Zubair Amjad for his cordial cooperation during many

occasional light and dark moments of research that I shared with him. His encouragement,

determination in helping me, kindness, and care allowed me to finish this journey. We joined

iii

Network Convergence Lab on the same day and shared many great moments together along the

way. I would also like to offer special thanks to Muqeet Rehman Mughal who has always been

my true well-wisher. This journey would have never been easy without his prayers and support.

An honorable mention goes to my dearest parents, loving brothers and sisters, and all the

family members. I am forever indebted to my mother and father for their unconditional love and

endless prayers. No words can actually describe their everlasting love to me. I owe a lot to them;

they encouraged and helped me at every walk of my life. Their unwavering faith and confidence

in my abilities always motivated me.

Last but certainly not least, I wish to thank my beloved wife Zari for her love, for sharing

the ups and downs, and for her faith in me. My deepest love and respect to her for her

tremendous patience, constant moral support, and endless prayers, which were invaluable in

completing this journey. Special mention goes to my innocent, joyful and lovely son Hashir in

whose company I forget all my worries.

Afaq Muhammad

June 2017

iv

Service-oriented Resource Orchestration – A Resource

Allocation Approach

Afaq Muhammad

Supervisor: Prof. Wang-Cheol Song

ABSTRACT

This thesis is primarily concerned with three main topics in cloud platforms using

OpenStack as a case study: allocation of resources to meet the demands of a service requested by

remote end-user, migration of virtual machines (VMs) instances to offload the overloaded

compute nodes, and monitoring of utilized resources. The overall framework architecture

consists of three subsystems: 1) An orchestrator that enables to automate resource management

and provisioning in OpenStack, 2) sFlow-based subsystem to monitor resource performance

counters of OpenStack compute nodes, and 3) A resource utilization-based subsystem for

dynamic VM migration in OpenStack.

The proposed orchestrator manages and provisions resources by: 1) exploiting application

program interfaces (APIs) provided by the cloud provider in order to control/manage/allocate

storage and compute resources; 2) interacting with software-defined networking (SDN)

controller to get the details of the available resources, and instructing the changes/rules to

manage the network based on the cloud service requirements. For resource allocation, an

algorithm is proposed, which allocates resources on the basis of unutilized resources in a pool of

virtual machines. An algorithm has been taken into account for comparison with the proposed

resource allocation algorithm. The experiment results show that the considered algorithm is

outperformed by the proposed algorithm. Furthermore, a monitoring system has been

v

implemented, which collects and stores samples of the performance counters related to

infrastructural resources, such as CPU performance, memory faults, and network performance.

A framework is proposed for dynamic VM migration in a cloud computing platform. The

framework implements the proposed overload detection, VM selection, and VM allocation

algorithms for dynamic VM migration in clouds. With the help of experiments, it is shown that

the proposed algorithms outperform the algorithms that are considered for the purpose of

evaluation.

vi

CONTENTS

I. Introduction ...1

1.1 Resrouce Orchestration ..3

1.2 VM Migration ..5

1.3 Monitoring of Utilized Resources ..6

1.4 Research Problems and Objectives ...7

1.5 Thesis Organization ...9

II. Related Work ... 11

2.1 Cloud Computing .. 11

 2.1.1 Cloud Computing Methodologies ... 13

 2.1.2 The Cloud Architecture .. 15

 2.1.3 Cloud Services ... 19

 2.1.4 Cloud Applications... 21

2.2 Cloud Resource Orchestration .. 23

2.3 Monitoring of Infrastrcutural Resources ... 25

vii

 2.3.1 Existing Monitoring Frameworks ... 27

2.4 Dynamic VM Migration... 28

III. Overview of OpenStack and its Deployment .. 32

3.1 Introduction ... 32

3.2 Keystone .. 34

 3.2.1 Architecture ... 35

3.3 Nova .. 36

 3.3.1 Architecture ... 36

3.4 Neutron.. 38

 3.4.1 Architecture ... 39

3.5 OpenStack Deployment ... 40

 3.5.1 OpenStack-ONOS Integration .. 42

 3.5.2 Visualization of OpenStack Deployment in ONOS GUI 43

IV. Resource Orchestration Framework and its Major Components 45

4.1 Proposed Architecture .. 45

4.2 Service Abstraction Model ... 46

 4.2.1 Service Abstraction Communicator .. 48

4.3 The Orchestrator .. 49

 4.3.1 Network Resource Communicator .. 51

 4.3.1 Cloud Resource Communicator .. 52

4.4 sFlow-based Monitoring System .. 55

4.5 Implementation of Proposed Resource Orchestration Framework 57

 4.5.1 Performance Analysis of Proposed MRMC Algorithm 58

V. A Framework for Resource Utilization-based Migration of VMs in Cloud 62

5.1 System Model .. 64

 5.1.1 Stats Aggregator ... 65

 5.1.2 Stats Database .. 66

viii

 5.1.3 Migration Manager... 66

 5.1.4 Algorithm Repository ... 66

5.2 Proposed Structure and Algorithms .. 67

 5.2.1 Overload Detection Algorithm ... 68

 5.2.1 VM Selection Algorithm .. 70

 5.2.1.1 VM Selection Critera ... 72

 5.2.1 VM Allocation Algorithm .. 73

5.3 Experiment and Results ... 74

VI. Conclusions .. 81

Bibliography .. 84

ix

List of Figures

Figure 1.1: The thesis organization .. 10

Figure 2.1: Basic cloud computing architecture ... 16

Figure 2.2: Layered architecture for a customized cloud service .. 17

Figure 2.3: Cloud applications ... 22

Figure 3.1: OpenStack conceptual architecture .. 34

Figure 3.2: Keystone architecture .. 35

Figure 3.3: Nova architecture .. 38

Figure 3.4: Neutron architecture .. 40

Figure 3.5: Cloud computing platform-based testbed ... 41

Figure 3.6: OpenStack-ONOS integration ... 42

Figure 3.7: Visualization of OpenStack deployment in ONOS GUI ... 44

Figure 4.1: Proposed orchestration framework .. 46

Figure 4.2: The service abstraction model ... 47

Figure 4.3: Service abstraction communication module ... 49

Figure 4.4: Network resource communicator module... 52

Figure 4.5: Cloud resource communicator module... 54

Figure 4.6: sFlow host structure .. 55

Figure 4.7: Architecture of sFlow monitoring system .. 56

Figure 4.8: Exchange of messages between different modules for VM creation 58

x

Figure 4.9: Performance analysis of MRMC for minimum occupied RAM 60

Figure 4.10: Performance analysis of MRMC for minimum CPU utilization 61

Figure 5.1: The proposed VM migration process ... 64

Figure 5.2: Proposed system model ... 65

Figure 5.3: Exhange of messages between components for VM instance migration 68

Figure 5.4: Performance analysis of proposed overload detection algorithm 76

Figure 5.5: Performance analysis of the proposed minRmaxC-based VM selection algorithm ... 78

Figure 5.6: Minimum migration time versus RAM assigned to VMs ... 79

Figure 5.7: Performance analysis of the proposed VM allocation algorithm............................... 80

xi

List of Tables

Table I: Performance counters ... 26

Table II: Monitor information from OpenNebula monitoring framework 27

1

Chapter 1

Introduction

Cloud computing signifies a transition from computing as an owned product, to computing as a

service that is provided to consumers over the internet through large-scale datacenters/clouds.

This shift has a major effect on the ways that software is obtained, deployed and developed. This

is similar to the effect of changing from mainframes to PCs. Clouds were primarily used by

technology start-ups such as Dropbox [1] and Twitter [2] as they provided an adaptable and

comparatively inexpensive infrastructure layer, on top of which corporations could install their

systems. Recently, more developed enterprises have shown an interest in cloud computing owing

to its possible advantages, which include reliability, scalability, ease of deployment and cost-

effectiveness [3].

2

On top of cloud platforms [4], services can be created, managed, and scaled on-demand.

Novel orchestration algorithms and efficient virtualization techniques enable optimal and flexible

usage of underlying resources. Along with storage resources and virtual compute, basic

networking is also provided in order to connect the VMs [5]. However, with a rapid increase in

the number and variety of workloads and applications moving to the cloud, cloud service

providers have extended their offerings to include various services beyond basic storage,

volumes, virtual servers, and network connectivity. Recent commercial cloud platforms support

creation of virtual networks with access controls [6], various server types, and different storage

models [7, 8].

Furthermore, cloud computing platforms such as IBM’s Blue Cloud [9], Microsoft’s Azure

[10], and Amazon’s EC2 [11] host various distributed applications. Service Level Agreement

(SLA) of these services is a major issue for determining service providers’ profit and user loyalty

[12], but SLA requirements are not easy to be satisfied because of the high variations of Internet

characteristics and workloads. Deploying new storage elements and new servers are costly

choice that may result in high system management costs and low server utilization. Migration of

VMs across PMs has the ability to improve service SLA compliance by reducing resource

contention.

More importantly, cloud computing makes it possible to provision infrastructure, platform,

or software as a utility to users. The technology that lies under the aforementioned cloud

computing models is virtualization [13]. It enables sharing of infrastructural resources of servers,

such as cores, processing I/O, and memory. However, the performance of an application running

on cloud hosts may be significantly affected by varying service and infrastructural loads [14]. It

3

leads to the requirement of building a framework that allows monitoring of infrastructural

resources.

1.1. Resource Orchestration

In the context of cloud computing, resource management is the process of allocating storage,

compute, networking, and (indirectly) energy resources to a group of applications, in a way that

offers to mutually satisfy the performance requirements of the applications, the users of the cloud

resources and the infrastructure providers. The requirements of the providers revolve around

effective and efficient resource utilization within the restrictions of SLAs with the cloud users.

Effective resource utilization is usually attained through virtualization technologies, which

enable statistical pooling of resources across applications and customers. The aims of the cloud

users are influenced by the application performance, their availability, and scaling of available

resources as a result of varying application demands [15].

Virtualization is one of the main technologies that enables cloud computing environments

and that is utilized by cloud resource management processes. It refers to the process of creating

an emulation of software or a hardware environment that appears to a user as a complete

occurrence of that environment. Usually, virtualization software is utilized in cloud

environments to create virtual storage disks, emulated computing servers (VMs), and sometimes

to create virtual networks. In the context of resource management, virtualization enables to

support the dynamic sharing of data center infrastructure between cloud hosted applications [16].

From a virtual network infrastructure perspective, the evolution of the SDN [17] paradigm

provides seamless integration of application provisioning in the cloud with the network by means

of automation and programmable interfaces [18]. With cloud applications requiring more

command over the network, SDNs are naturally appropriate, whether in public or private

4

infrastructure as a service (IaaS) [19] or platform as a service (PaaS) [20] clouds. Several SDN

solutions have been suggested for establishing virtual networks in multi-tenant clouds based on

standard protocols such as using overlay networks and encapsulation (e.g., as discussed in [21,

22]), OpenFlow (e.g., as presented in [23]), and commercial solutions such as [24].

There are not only several advantages of the SDN-based cloud networking solutions (e.g.,

in terms of performance, flexibility, or scalability), but they also show support for particular

models of cloud network orchestration, or specific types of network environments. For example,

in case of overlay virtualization, policies and network tunnels are handled virtual switches

located in hypervisors at the edge of the data center. This is a suitable solution for large-scale

scenarios where only logical isolation and multi-tenancy is required, but it does not support fine-

grained supervision over network routes to attain aims such as quality of service (QoS) or fast

failover. OpenFlow offers this required level of fine-grained control by means of its

programmable interface for packet forwarding and handling in virtual and physical switches [18].

In this thesis, an orchestration framework for resource management and provisioning is

proposed, which enables to automate resource management and provisioning for users across

clouds and network by: 1) exploiting APIs provided by the cloud provider in order to

control/manage/allocate storage and compute resources; 2) interacting with SDN controller to get

the details of the available resources, and instructing the changes/rules to manage the network

based on the cloud service requirements. For resource allocation, a proposed algorithm allocates

resources on the basis of unutilized resources in a pool of virtual machines. Furthermore, a

service abstraction model is used, which is delivered to the orchestrator for provisioning the

resources systematically and dynamically based on the requirements of the requests generated by

remote end-user [106, 107].

5

1.2. VM Migration

Recently, the power consumption of cloud computing has increased, which is dependent upon

the resource usage, especially the CPU usage. The problem of power consumption encouraged

numerous researchers all over the world to study the power consumption of CPU [25], network

[26], etc. Whereas other researchers focus on the consolidation of VM to reduce the number of

active PMs to decrease the power consumption, but majority of these researchers did not study

the adverse effects on performance to ensure a viable service to clients. The cloud computing

suppliers introduce the cloud service in a couple of ways: a) assured service class (reserves the

physical resource for VM demand), and b) best effort class (shares the cloud platform and

guarantees the effort) [27]. The cloud providers provide assured service class more importance

by preserving the physical resource for clients' instance. Even though the delivery and

performance of services are assured, but still service with more security and high QoS is

expensive. On the other hand, the second choice warranties the effort in distributing cloud

platform among cloud clients. Therefore, such kind of service attains lesser cost than the first

option. However, cloud computing in terms of SLA and QoS still experiences major challenges

about the availability, performance, economic costs, and power consumption for the cloud

operators. Thus, service providers need to strictly cope with the physical resource to assure a

facility of high QoS without violating SLA. In IaaS, the fully loaded physical machine or

aggressive consolidation of VMs on the same PM is the origin of SLA violation. Hence, a fit

methodology is needed by the cloud providers to achieve the resource in a vibrant way as to

warranty QoS for the clients. Thus, we consider that mostly common process which originates an

overloaded machine is a destructive consolidation that can be eluded by making live migration at

an appropriate time, as along with taking into account the cost of migration.

6

The main challenge is that which VM should be transferred and where the transferred

machine should be located. Most studies focus on resource utilization to make decision for

migration action [28, 29], but in this case migration action may result in performance

degradation if not handled properly during the migration process. Different VMs have different

workload characteristics and configurations [30] that lead to different migration costs.

In this thesis, a framework is proposed for dynamic VM migration in a cloud platform. The

framework implements the proposed overload detection, VM selection, and VM allocation

algorithms for dynamic VM migration. Furthermore, with the help of experiments, it is shown

that the proposed algorithms outperform the algorithms that are considered for the purpose of

evaluation [104, 105].

1.3. Monitoring of Utilized Resources

Various service models of the cloud can be monitored. Since platform and software cloud

computing models like PaaS and software as a service (SaaS) respectively are a result of the

abstractions built over the IaaS model, it becomes essential to monitor infrastructural resources

in the first step in order to monitor at the platform or application level. There is no way that a

software’s (application’s) performance can be guaranteed unless performance guarantees at the

level of infrastructural resources like CPU, I/O Devices, and Memory are not given [31].

Both Cloud provider and clients (which could be Service providers in case of PaaS Clouds, or

end users) are the beneficiaries of resource monitoring. Cloud providers have to monitor the

current status of allocated resources in order to handle future requests from their users efficiently

and to keep an eye on malicious users by identifying anomalous usage behavior [32]. Monitoring

is also beneficial to the end-users since it helps them to analyze their resource requirements, and

ensure that they get the requested amount of resources they are paying for. Also, it enables them

7

to know when to request for more resources, when to relinquish any underutilized resources, and

what proportion of various physical resources are appropriate for the kind of applications they

are running.

In this thesis, the monitoring of hosts in a cloud platform is conducted by implementing a

new sFlow-based monitoring system that is not only tailored to the requirements of the cloud

platform, but can also provide real-time visibility. It is carried out by deploying open-source

Host sFlow agents with a Graphite collector which offers a complete, highly scalable monitoring

solution. It periodically fetches sFlow metrics and other statistics from sFlow agents, and stores

them in time-series format in Whisper RRD database, which can then be used for further analysis

[101, 102, 103].

1.4. Research Problems and Objectives

This thesis tackles the research challenges in three broad areas of cloud computing. More

precisely, the following research problems are investigated:

 How to abstract service requirements. It is required to abstract the service

requirements, so that the orchestrator can easily understand the requirement of the

requested services and provision/maintain the performance of networks to support the

services.

 How to allocate resources. A module is required to allocate resources in the form of

VMs in order to meet the requirements of the requested applications/services, which are

requested by remote end-users.

 How to manage cloud and network resources. It should be made possible to automate

resource management and provisioning for users across clouds and networks.

8

 How to monitor hosts in a cloud platform. A mechanism is required to monitor cloud

and network infrastructure resources of a host in a cloud computing platform.

 Where to store the monitored statistics. An internal database server has to be deployed

in order to store the monitored statistics retrieved from a host, which can then be used

when allocating resources to a requested service.

 When to initiate VM migration. A decision has to be made on an appropriate time for

migrating VMs from an overloaded host to avoid performance degradation.

 Which VMs to select for migration. Once an overloaded host is detected, it is

necessary to select those VMs which are utilizing most of the resources, and place them

on efficient hosts. The issue is to select the VMs to migrate from a pool of VMs.

 How to choose the destination host for migration of VMs. Selecting the most efficient

host for the VMs selected for migration is another concern that impacts the performance

of the VM migration process.

To overcome the challenges associated with the above research problems, the following

objectives have been outlined:

 Examine, classify, and analyze the research in the area of resource allocation, monitoring,

and VM migration to grasp the existing approaches and techniques.

 Deploy a physical testbed based on OpenStack to address the above issues in a cloud

platform.

 Design a service abstraction communicator to deliver the abstracted service requirements

to the orchestrator.

 Develop an algorithm to select the most efficient VMs for allocation.

9

 Design a mechanism to monitor the infrastructural resources of a host, and then store

them in internal database server.

 Design and implement algorithms to detect an overload host, select VMs to migrate, and

place them on the most efficient host.

1.5. Thesis Organization

The core chapters of this thesis are structured as shown in Figure 1.1. They are organized as

follows:

 Chapter 2 presents an overview of the related and previous literature on resource

allocation in cloud computing, monitoring of resources in clouds, and VM migration.

 Chapter 3 provides an overview of OpenStack, some of its core components, and its

deployment on a physical testbed.

 Chapter 4 proposes an orchestrator that enables to automate resource management and

provisioning for users across clouds and networks. The comparison of the performance

analysis of the proposed algorithm for resource allocation with the random resource

allocation scheme is performed. Moreover, the mechanism adopted for the monitoring of

infrastructural resources of a host in the cloud computing platform is presented in this

chapter.

 Chapter 5 proposes a framework for dynamic VM migration in OpenStack clouds. The

framework implements the proposed overload detection, VM selection, and VM

10

allocation algorithms for dynamic VM migration in OpenStack. Furthermore, with the

help of experiments, it is shown that the proposed algorithms outperform the algorithms

that are considered for the purpose of evaluation.

 Chapter 6 concludes the thesis with a summary of the work in this research, discussion of

possible future research directions, and final remarks.

Figure 1.1: The thesis organization

11

Chapter 2

Related Work

Since the work in this research mostly revolves around a cloud computing platform, it is

important to first discuss some major concepts in cloud computing. The discussion is then

extended to summarize the related work already done in the area of orchestration of resources,

their monitoring, and the migration of VMs. This chapter shows a direction on how to reduce or

avoid the limitations of the existing mechanisms.

2.1. Cloud Computing

Cloud computing, with the groundbreaking potential of turning computing into a fifth utility,

after gas, electricity, water, and telephony, has the potential to alter the face of Information

Technology (IT), especially the features of service management and service-rendition. Though

12

there are numerous ways of describing the phenomenon of Cloud Computing, we chose the one

proposed by NIST (National Institute of Standards and Technology). According to NIST, Cloud

Computing is defined as "A model for enabling convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., net works, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction" [33]. Lightly speaking, Cloud computing signifies a novel way to

organize computing technology to provide users the ability to store information, access, share

and work on using the Internet [34]. The cloud itself is a net-work of data centers, each poised of

several thousands of computers working together with the ability to perform the functions of

software on a business or personal computer by providing users access to influential platforms,

applications, and services distributed over the Internet. It is in spirit a set of network enabled

services that is capable of providing inexpensive, customized and scalable computing

infrastructures on demand, which could be retrieved in a pervasive and simple way by a variety

of geographically isolated users. The Cloud also guarantees application based QoS assurance to

its users. Thus, Cloud Computing provides the customers with large pools of resources in a clear

way along with a mechanism for handling the resources so that a user can access it universally

and without experiencing needless performance overhead. The best way to describe Cloud

Computing would be to term it as "Everything as a Service" abbreviated as XaaS [35]. Below,

the key features of Cloud Computing are summed up:

 Agility – assists in quick and low-cost re-provisioning of assets.

 Location Independence – resources can be retrieved from anywhere and everywhere.

 Multi-Tenancy – resources are distributed amongst an enormous pool of users.

 Reliability – reliable availability of resources and computation.

13

 Scalability – vibrant provisioning of data aids in eluding various bottleneck scenarios.

 Maintenance – users (organizations/companies) have less work in terms of resource

management and upgrades, which in the new model will be controlled by service

providers of Cloud Computing.

However, Cloud Computing doesn't infer that it contains only a single cloud. The term

"Cloud" represents the Internet, which in itself is a network of networks. Also, not all types of

remote computing are Cloud Computing. On the contrary, Cloud Computing is nothing but

services presented by providers who might have their own systems in place. [36]

2.1.1. Cloud Computing Methodologies

Cloud computing is based on two main technologies – (i) Service Oriented Architecture and (ii)

Virtualization.

i. Service Oriented Architecture (SOA): Since the model of Cloud computing distinguishes

all tasks accomplished as a "Service" rendered to users, it is said to follow the SOA. This

architecture includes a flexible set of design principles used during the phases of system

integration and growth. The deployment of a SOA-based architecture will deliver a

loosely-integrated set of services that can be used within multiple business dominions.

The supporting technologies in SOA allow services to be composed, discovered, and

implemented. For instance, when an end-user desires to complete a particular task, a

service can be employed to determine the necessary resources for the task. This will be

tracked by a composition service which will propose the road-map to deliver the desired

quality and functionality of service to the end-user. [37, 38]

14

ii. Virtualization: The idea of virtualization is to relieve the user from the burden of resource

installation and purchases. The Cloud brings the resources to the users. Virtualization

may refer to Hardware, Memory, Storage, Software, Data and Network [39].

Virtualization has become an essential ingredient for almost every Cloud; the most

certain reasons being the ease of encapsulation and abstraction. Amongst the other vital

reasons for which the Clouds incline to approve virtualization are:

 Server and application consolidation – as many applications can be run on the

identical server resources can be applied more efficiently.

 Configurability – as the resource necessities for various applications could vary

considerably, (some require higher computation capability, some need large

storage) virtualization is the only clarification for customized configuration and

accumulation of resources which are not realizable at the hardware level.

 Increased application availability – virtualization allows rapid recovery from

unintended outages as simulated environments can be backed up and migrated

with no disruption in services.

 Improved responsiveness – maintenance, monitoring and resource provisioning

can be programmed, and common resources can be reused and cached. [40]

In addition, these benefits of virtualization tend to facilitate the Cloud to meet stringent

SLA requirements in a business setting which otherwise cannot be easily achieved in a cost-

effective manner. Without virtualization, systems have to be over provisioned to handle peak

load and hence waste valuable resources during idle periods.

15

2.1.2. The Cloud Architecture

Geared with the knowledge of Virtualization and SOA, we now take a look at the complete

Cloud architecture. From the end user's viewpoint, Figure 2.1 represents a basic Cloud

Computing architecture including multiple components. Cloud architecture closely resembles the

UNIX viewpoint of involving many components which work together over worldwide interfaces

[34]. Recall that the Cloud computing model represents a Service oriented mechanism of

dispatching and managing resources. Before we enquire the real architecture of Cloud computing

it will be useful to inspect the possible characteristics that will be necessary to understand such a

system. It is common understanding that the architectural necessities of the Cloud will differ

depending on the use for which the Cloud is being applied. For example, social networking

applications like Orkut and Facebook will have a very dissimilar set of constraints, requirements,

and deliverables from the architecture in comparison to, say, a distant patient health monitoring

application. However, some common architectural features can still be recognized. For example,

(i) the system should be scalable with the ability to comprise thousands to perhaps tens of

thousands of members. (ii) It should be able to operate between numerous service needs and

effectively share resources between its users. (iii) The system should be easy to upgrade and

maintain, preserving user transparency during these practices. (iv) As defined previously,

handling resources like servers and storage devices almost, thereby forming a virtual

organization is extremely crucial.

16

Figure 2.1: Basic cloud computing architecture

To diminish the problem of designing modified Cloud architecture for each application and

also to rationalize the architecture design process of the Cloud, researchers resorted to the age

old concept of a comprehensive "Layered approach" [41]. As with the standard 7-layer OSI

model of data networks [42], the layered model in Cloud computing functions the same general

purpose. Depending on the service requisite of an application, these layers are scuffled to

produce a customized architecture. The layered architecture follows the standard of SOA which

forms the primary Cloud computing model. The components of a basic layered architecture are

illustrated in the Figure 2.2, below [43], namely the Client, its mandatory Services, the Storage

requirement, the Applications run by the Client, the Platform to run these applications, and lastly

the Infrastructure needed to back the Client's computing requirements. We dedicate a few

sentences on each mentioned component below.

17

Figure 2.2: Layered architecture for a customized cloud service

Clients: the Clients of a Cloud include computer software and computer hardware that

relies on the computational competence of the Cloud for application delivery. Examples include

mobile devices, computers, browsers and operating systems.

Services: this refers to the different service prototypes made available by the Cloud. These

services include IaaS, SaaS, and PaaS. This layer acts as a distributer between the user and the

enormous amount of resources available to the user. A resource comprises of "solutions, services,

and products that are supplied and consumed in real time over the Internet" [43], e.g. Search

Engines and location services.

Application: the Cloud allows user activity tracking and resource management from central

locations rather than at individual customer's site, allowing customers to access applications

distantly through the Internet. Cloud application services provide software as a service over the

18

Internet, eradicating the need to install and run the application on the computer of client, thereby

simplifying support and maintenance at the customer's end e.g. Peer-to-Peer computing and Web

Application.

Platform: it enables distribution of applications without the complexity and cost of

managing and buying the basic software and hardware layers. This layer supplies a solution stack

and a computing platform as a service, often using Cloud infrastructure and supporting Cloud

applications e.g. Web Application Frameworks such as Web Housing and Ruby on Rails.

Storage: the storage layer contains computer software and computer hardware products

that are explicitly designed for the storage of Cloud services. Computer hardware includes

enormous data centers that are used for resource sharing e.g. Nirvanix SDN (Storage Delivery

Network) and Amazon SImpleDB.

Infrastructure: this layer supplies computer infrastructure, normally a platform

virtualization environment as a service. It contains management of virtual resources as well.

Rather than buying software, servers, data center space, customers instead buy those resources as

a fully subcontracted service. e.g. Database services and Network Attached Storage.

The main benefit of such a layered architecture is the simplicity with which they can be

altered to suit a specific service. The way in which these components interrelate leads to various

architectural styles. The two basic architectural styles on which most of the services are based

are:

 Outside-In: This architectural style is intrinsically a top-down design highlighting the

functionality of the components. Applying this style leads to an improved architectural

19

layering with several functionalities. It in- fuses more viability allowing better

interoperation and integration of components.

 Inside-Out: This architectural style is intrinsically a bottom-up design which takes an

infrastructural perspective of the components. This style is more inclined towards

application than services. [44]

It is to be highlighted that integrating new functionalities in a pre-existing architectural

system is done in an incremental fashion. The ease of converting an existing architecture into

another depends on the integration, difficulty of the architecture and the functionalities of the

components. The vast landscape of the services and their increasing difficulty has led to

application of groundbreaking architectural styles and several mix architectures. [45, 44]

2.1.3. Cloud Services

The Cloud can deliver us with numerous service models and services. They comprise PaaS, SaaS,

DaaS ([Development, Database, Desktop] as a Service), IaaS, HaaS (Hardware as a Service),

FaaS (Framework as a Service), BaaS (Business as a Service), and OaaS (Organization as a

Service) amongst others [35]. Nevertheless, Cloud Computing products can be generally

categorized into three main Services (IaaS, PaaS, and SaaS) which are concisely described below:

Infrastructure-as-a-Service (IaaS): This service supplies hardware related services such as

virtual servers and storage on a pay-as-you-go basis. The main benefit of IaaS is the usage of

modern technology at all times with respect to computer infrastructure which permits users to

attain quicker service. Organizations can utilize IaaS to rapidly form novel versions of

applications without experiencing needless purchase and configuration delay. On-demand

scaling through use-based billing and resource virtualization makes IaaS capable enough for any

20

sort of businesses. The main companies already supplying IaaS are Amazon [46, 47], Rackspace,

GoGrid, AT&T and IBM. [48]

Platform-as-a-Service (PaaS): PaaS offerings may contain services for application

development, application design, deployment, testing, and hosting as well as application services

like web service integration and marshalling, team collaboration, scalability, security, persistence,

storage, state management, application instrumentation, application versioning and developer

community facilitation. These services may be provisioned as a combined solution over the web,

providing an ongoing managed higher-level software infrastructure for developing specific

classes of applications and services. The platform comprises the use of core computing resources,

usually billed similar to IaaS products, while the infrastructure is vague away below the platform.

Foremost companies providing PaaS are Google's AppEngine [49], Microsoft Azure, and

Force.com etc. [50, 43, 44]

Software-as-a-Service (SaaS): Delivers explicit already developed applications as partially

or fully remote services. Occasionally it is in the form of web-based applications and other times

it contains of typical non-remote applications with Internet-based storage. It allows an operator

to use the provider's application using a thin client interface. Operators can acquire a software

application hosted by the Cloud seller on pay- per-use basis [51]. It is a multi-tenant platform.

The creator in this field has been Salesforce.com presenting online Customer Relationship

Management (CRM) space. Other examples are Microsoft's hotmail, Google docs, online email

suppliers such as Google's Gmail and Microsoft’s online form of office called BPOS (Business

Productivity Online Standard Suite). [52,50,43,44]

21

2.1.4. Cloud Applications

Cloud Applications are not only developed with a business viewpoint but also take into account

events concerned with sharing and socializing information. This data may be as simple as testing

news headlines or more delicate in nature, like medical information or searches for health. Thus

Cloud Computing is often a superior choice than local servers managing such applications.

Virtualization is the core foundation of Cloud Computing, thus it is completely enabled

with virtual appliances. A virtual appliance is an application that has all its components hustled

and rationalized with the operating system [34]. The main benefit of a Cloud Computing

application is that the provider can run numerous occurrences of an application with least labor

and expenditure. A Cloud service provider needs to expect a few problems before initiating its

application in the Cloud computing environment. Keeping in mind the problems an application

must be designed to tolerate failure, scale easily and include management tools [53]. These

issues are conferred as follows:

 Scale: Application in a Cloud environment needs to have maximum scalabilities and to

guarantee this; one should begin developing the application in the easiest ways avoiding

difficult design patterns and improvements. The next step would be to divide the

functions of an application and join them lightly. The most vital step in confirming on

demand scalability of an application is sharding, which can be designated as splitting up

the system into numerous minor groups instead of scaling the solo system up so as to

serve all users.

 Failures: Any application due to one or the other reason is guaranteed to face failure. To

bear failures, an application must function in an asynchronous fashion and one should

spread the load across many clusters so that the impact of failure gets scattered. The best

22

method to bear failures would be to test the application for all types of failure

circumstances, and also operators should be conscious about the real cost sustained if an

application faces any kind of failure.

 Management Tools: Having a suitable management tool aids in programming the

application configuration and updates, thereby decreasing management overhead. The

management system helps in not just reducing economic expenses but also leading to

improved usage of resources. The most problematic and expensive problem that can be

held with a proper management tool is inconsistency [54]. This helps in bringing an

application that can boast of reliable performance.

Figure 2.3: Cloud applications

Applications in Cloud Computing have been planned keeping in mind the numerous types

of facilities offered by it. Cloud Computing has impacted people's awareness of applications over

the Internet. The applications of Cloud computing are rationalized with each and every field of

23

sciences. In Figure 2.3 we have emphasized a few areas in which Cloud Computing has shown

great prospect for developing various applications that have nurtured the growth of enterprises

and businesses.

These applications can be classified into broad areas such as security, health industry,

military applications, platforms and software usages, datacenters and storage, applications with

high performance computing resources, and the growing need for virtual environments. [45, 55]

2.2. Cloud Resource Orchestration

Cloud resource orchestration [56] involves the design, management, manipulation and

withdrawing of cloud resources, i.e., storage, compute, and network, to apprehend customer

needs, while conforming to operational aims of the cloud service suppliers at the same time. We

argue that cloud instrumentation is highly complex. First, as many new proposals [57, 58, 59, 60,

61] have uttered, cloud management is intrinsically complex due to the heterogeneity, scale,

concurrent user services and infrastructure, that share a common set of physical resources.

Second, arrangements of various resource types interact with each other e.g. the locations of

VMs have an effect on storage placement, which in turn affect bandwidth consumption within

and outside to a data center. Third, cloud resources have to be organized in a fashion that not

only comprehends provider operational objectives, but also assures that the customer SLAs can

be regularly met as runtime conditions change.

Resource management in cloud system is dissimilar from the customary network systems

and the characteristics of the operators, cloud’s services, and architecture yields some necessities

in resource management which should be sensibly addressed [62, 63, 64].

 Resource Provisioning: Cloud providers should use robust resource management methods

in cloud environment which competently deal with the problem of VM placement and

24

VM provisioning. It is vital to have clear explanation for how to match tasks to available

VMs.

 Scalability: Cloud providers should use flexible mechanisms to vigorously scale up and

down resources on request in terms of VMs. A cloud customer needs to access the

resources on-demand. The cloud system may scale up to extra available resources when

the system is undergoing high user demand and it may later scale down when the user

demand reduces. A scalable cloud system also checks the futile VMs and turns them off

if they are futile for more than a definite time. Increasing the workload on existing

resources is called scaling in and increasing the workload by adding resources on demand

is called scaling out. A flexible cloud system adopts these scaling methods to increase the

system’s utilization.

 Load balancing: Cloud providers should use vigorous load balancing algorithms that can

intensely control the sudden changes in workload and provide improved results in diverse

and dynamic environments. The applied load balancing algorithms should also inhibit

unsuitable utilization of the resources in the cloud system; under-utilization results in

waste of energy and resources and over-utilization leads to slower response times of the

applications. To tackle this problem, migration of VMs is one solution that is called as

autonomic management of resources in cloud.

 Availability: The system becomes inaccessible due to causes such as load fluctuations,

software or hardware failures, long waiting time of jobs, etc. The customary method to

deliver high availability is providing additional idle resources to be used in case of

failures which can result in wasting resources. Dynamic approaches are required in cloud

25

systems to repeatedly sense any failure and shift the tasks to the accessible resources in a

short time.

 Overheads: Workloads to be managed on virtualized cloud platforms may be network I/O

intensive or CPU intensive. The in-depth understanding of these network bandwidth and

overheads as a limitation is essential for effective resource management in the cloud. All

in all, the orchestration process is complex and potentially error prone if performed

manually, and motivates the need for better management tools that enable us to automate

part or all of the decision process.

Recently, the cloud computing resource allocation algorithm and model have been widely

studied. Among several resource allocation strategies, [4] proposed a virtual resource

management model that allocates resources by means of the division and resource reserve

strategy, while guaranteeing the effectiveness for the users to consume the virtual resources. In

[3], authors proposed a virtual resource allocation mechanism based on utility, but the authors

only considered one dimension as the CPU. In this thesis, the problem of virtual cloud resource

allocation has been addressed by expanding it two dimensions, i.e., CPU and memory.

2.3. Monitoring of Infrastructural Resources

APIs are offered by modern operating systems to report the utilization about the computing

resources from the kernel. By calling these APIs, operating systems also provide a various

computing resource utilization utilities to help administrators understand the current states of the

system [65]. The service systems are measured by Quality Attributes [66] like performance,

availability, interoperability, security, and modifiability that are derived business goals. There

are several different ways to express the performance quality attribute, including throughput,

26

response time, or constraints on resource utilization [67]. The most concerned performance

counters that are collected periodically by resource utilization utilities from VMs are shown in

Table I.

27

2.3.1. Existing Monitoring Frameworks

There are various open-source cloud computing tools and resources available, some of them with

an inbuilt monitoring capability. For example, Eucalyptus [68] implements IaaS private cloud,

which can be accessed via an API compatible with Amazon S3 and Amazon EC2 [69]. The

monitoring service offered by Eucalyptus enables the guest virtual machines to be integrated

with other cloud computing tools like Ganglia and Nagios.

OpenNebula [70] consists of a monitoring subsystem which is able to monitor the exclusive

data transmitted/received, available memory, and CPU utilization of the created virtual machine

with the help of configured hypervisor drivers. Table II shows the samples from OpenNebula for

a particular VM. Net TX and RX shows total number of bytes transferred and received

respectively.

Despite the capabilities of Eucalyptus, and OpenNebula, collectd forms the basis of a

lightweight monitoring agent which supports high resolution probing and a wide variety of

metrics. collectd is also able to probe at different layers, e.g. at the OS, middleware, and the

application layers, and thus can support both low-level and high-level monitoring. It can also be

28

customized with the help of plug-ins, which allows the addition of more application-specific

probes [71].

Although Eucalyptus is an open source product for building AWS compatible private

clouds, it does not support multicloud infrastructure. OpenNebula does have a support for multi-

cloud infrastructure, but does not provide auto-scaling [72]. With this increasing cloud

complexity, efforts needed for management and monitoring of cloud infrastructures need to be

multiplied. The size and scalability of clouds when compared to traditional infrastructure

involves more advanced monitoring systems that have to be more scalable, effective and fast.

Technically, this would mean that there is a demand for real-time reporting of performance

measurements while monitoring cloud resources and applications. Therefore, cloud monitoring

systems need to be advanced and customized to the diversity, scalability, and high dynamic

cloud environments. One such attempt is presented in this thesis.

2.4. Dynamic VM Migration

One of the early works [73], which focuses on dynamic VM migration, was implemented to

offload an overloaded physical machine. Although, the model designed for the optimization of

the dynamic VM allocation has considered the cost of VM migration, the authors did not

implement any algorithm for deciding when it was vital to perform the VM allocation

optimization. The designed model was invoked periodically to adjust the VM allocation, which

needs a supplementary performance any necessary demand for optimization operation.

OpenStack, one of the well-known cloud platforms for both public and private clouds, was

announced in 2010 [74]. Among several existing sub-projects, OpenSack Nova [75] is the core

project of OpenStack, which provides IaaS on demand. An instance/VM can be launched by

means of OpenStack Nova on the efficient compute node, which meets the customer’s

29

requirements. Although, OpenStack supports live migration technique, the administrator has to

manually intervene within the appropriate time to migrate a VM instance from one compute node

to another. This feature of OpenStack is useful whenever a compute node, where many VM

instances are running, needs to redistribute or maintain load. However, the necessary

requirement for conducting a dynamic live migration, which guarantees the QoS and SLA, is the

VM migration decision taken at a suitable time. This lack of dynamic VM migration leads to

search for an appropriate method to monitor and measure the load in order to migrate VMs to

efficient compute nodes. This method should be adaptable with the resource usage requirement

of on demand up/down scaling. In addition, recent virtualization techniques do not provide

enough performance isolation among the VMs [76]. The contention for physical resources

among VMs leads to different performance impact level among the VMs.

A dynamic resource placement for OpenStack has been implemented in [77], which is

based on a protocol to interact between peer servers. The operation was periodically performed,

and the peer servers were chosen randomly without any requirement to exchange their state.

Furthermore, performance degradation of migration operation was not taken into account.

In [78], authors proposed a technique for placement of VMs when the SLA of hosted

applications was violated. With the same technique, authors in [79] examined the performance of

VM placement decision by automating the response time which was described in the SLAs. This

technique needed more time for VM placement and the duration of SLA violation was increased.

In [80], authors have used the threshold based on the utilization of resources such as network

bandwidth, RAM, and CPU to decide when to migrate VM(s) from an overloaded PM to an

efficient one. In [81], authors handled resource placement based on the response duration of QoS

conditions at the server and the cluster level by implementing control loops. In [82], a remaining

30

utilization-aware (RUA) algorithm has been proposed for VM allocation. In this work, the

overloaded PM is first detected by means of the proposed algorithm, and then the migration for

some VMs is conducted.

Authors in [83] proposed a system for managing resources of virtualized data centers by

means of local and global policies. The system on the local level was responsible for

implementing the power handling strategies for a guest host, whereas the global policies were

responsible for managing the consolidation of VMs. However, the QoS requirements were not

taken into account by the global policies.

In [84], authors proposed an algorithm for dynamic VM migration based on time-series

analysis, and predicting of the resource demand. In [85], the authors devised the issue of VM

placement as stochastic optimization issue with a constraint on the host overload probability,

considering multiple resource constraints. A disadvantage of all the aforementioned approaches

is that they are centralized, i.e., a single algorithm running on the master host (controller node in

OpenStack) limits the global view of an overall system to enhance the VM instance placement.

Furthermore, by the use of such a centralized approach, the scalability of the system is limited

with an increase in the number of physical machines (compute nodes in OpenStack).

In order to determine the time to invoke the migration of VMs from a host, a heuristic for

setting a utilization threshold was first proposed in [16]. The main idea of their heuristic was to

set a utilization threshold based on the CPU utilization. In this thesis, the same approach is

followed, but the host is detected to be overloaded if the mean of the last n CPU utilization

quantifications is greater than the pre-defined threshold value.

After determining an overloaded host, the next step is to select the VM(s) to migrate from

one host to another. The three VM selection policies used in this thesis are given as follows:

31

 Minimum Migration Time (MMT): According to this policy, the VM that is selected to

migrate requires minimum amount of time to complete migration, compared to other

VMs allocated to the host.

 Random Choice (RC): This policy randomly selects VMs to migrate.

 Maximum Utilization (MU): Based on this policy, [3] selected VMs which are required

to be migrated in such a manner that VMs with highest CPU utilization, compared to

other VMs, are considered first.

The VM placement problem is handled by mapping VMs to the most efficient hosts. In the

last couple of years, there has been tremendous interest in this area and several algorithms have

been proposed for VM placement. Most works focus on the CPU utilization as the most

important resource and characterize hosts in terms of their CPU capacity and VMs in terms of

their CPU load [1-5, 7, 8, 10, 20, 25]. In [X], authors use the First Fit (FF) algorithm which

checks all the hosts and finds the suitable host where the CPU utilization is the minimum. On the

other hand, some works make the problem multi-dimensional by also taking into account some

other resource types such as I/O and memory [6, 9, 17, 18, 28]. In this thesis, the latter approach

has been followed by considering RAM as well as CPU when determining efficient compute

nodes for VM placement.

More precisely, in this work, an approach has been proposed and implemented in a real

environment for the well-known cloud computing software called OpenStack. In this approach,

every compute node sends RAM and CPU utilization statistics of each VM instance that is

deployed on this compute node. Based on these statistics, the algorithms running on the control

node detect an overloaded VM instance, select it, and place it on an efficient compute node.

32

Chapter 3

Overview of OpenStack and its

Deployment

3.1. Introduction

OpenStack is an open source cloud operating system that is contained with numerous open

source sub-projects that control large pools of networking resources, storage and compute

throughout a datacenter, all managed through a dashboard that gives administrators control while

enabling their users to provide resources through a web interface. These services are provided in

order to develop an Infrastructure Service cloud [75].

All OpenStack services expose a RESTful API for communication among them and use

HTTP protocol for each data exchange. Moreover, by using this type of API, fault-tolerance and

33

scalability is provided to the system. Nevertheless, the real communication is provided by

separate processes devoted for certain items execution, perhaps running on other machines,

connected through AMQP and using a message bus which is RabbitMQ by default.

Regarding the service data storage, each OpenStack service has its own SQL based

database for keeping state information, but in order to provide flexibility and throughput it is

likely to implement a virtual multi-master databases. In order to deliver all the resources required

to create an Infrastructure service cloud, the following services of OpenStack have been used in

this thesis:

 Keystone: Identity service

 Nova: Compute service

 Neutron: Networking service

 Glance: Image service

 Horizon: Dashboard

 Ceilometer: Telemetry service

Figure 3.1 depicts the conceptual architecture of a typical OpenStack environment.

34

Figure 3.1: OpenStack conceptual architecture

3.2. Keystone

Keystone service [86] provides a common verification and permission store for OpenStack

services. Keystone is responsible for operators, their parts, and to which project (tenants) they

belong to. Furthermore, it provides a list of all other OpenStack services which confirm on

Keystone a user’s request. Essentially, Keystone has primary functions to control the validation

and authorization of a user:

 User management: Keystone keep track of users and of what they are endorsed to do.

This task is made by examining and administering the existing association among users,

tenant and roles.

35

 Service catalog: Keystone delivers a list of accessible services and where their API

endpoints are located.

3.2.1. Architecture

Keystone’s architecture is organized in a group of internal services exposed on one or many

endpoints which can be seen in Figure 3.2:

 Identity: The identity service delivers auth qualification authentication and data about

Operators, Roles and Tenants as well as any related metadata.

 Token: The token service authenticates and manages Tokens used for validating requests

once a user/tenant’s credentials have already confirmed.

 Catalog: The Catalog service provides an endpoint registry used for endpoint detection.

 Policy: The policy service provides a rule-based authorization engine.

Figure 3.2: Keystone architecture

36

3.3. Nova

Nova [87] is liable for managing and hosting cloud computing systems, which is the main part of

an IaaS system and most complex and distributed service of OpenStack. Nova interacts with

Keystone for verification and Glance for disk and server images whose access is restricted by

users and tenants. Its main units are applied in Python and configure a large number of processes

which cooperate to turn API requests into running virtual machines.

3.3.1. Architecture

Nova uses a SQL-based central database that is mutual among all components in the system

whose data fits into an SQL database appropriately. For small placements it is an optimum result

but for larger ones, multiple data stores with a suitable accumulation system would be used.

Nova architecture is defined by numerous components as shown in Figure 3.3.

 API: It is responsible for accepting HTTP requests, transforming commands and

interacting with other components. It further includes:

o nova-api service: Responds and accepts to end user compute API calls.

o nova-api-metadata service: Receives metadata requests from instances.

 Compute: It is responsible for managing communication with virtual and hypervisor

machines. It has the following components:

o nova-compute service: It produces and terminates simulated machine occurrences

through available hypervisor APIs, like libvirt for KVM, XenAPI for

XenServer/XCP, VMwareAPI or QEMU for VMware.

o nova-scheduler service: It takes a virtual machine occurrence request from the

queue and governs on which compute server host it runs.

37

o nova-conductor module: It facilitates interactions between the database and nova-

compute service and removes direct accesses to the cloud database made by the

nova-compute service.

 Networking: It is responsible for managing IP advancing, VLANs and bridges. It further

includes:

o nova-network worker daemon: It receives networking tasks from the queue and

controls the network. It performs tasks like changing IPtables rules or setting up

bridging interfaces..

 Console: It permits end users to access their instance’s console through a proxy. It

comprises of the following components:

o nova-consoleauth daemon: It approves tokens for users that console proxies

provide.

o nova-novncproxy daemon: It delivers a proxy for retrieving running requests

through a VNC connection.

o nova-cert daemon: It provides x509 certificates.

 Image: This area manages the interaction with Glance for image use. The components

for this communication are:

o nova-objectstore daemon: It is an S3 interface for registering images with the

OpenStack Image Service.

o euca2ools client: It is a set of command-line translator commands for managing

cloud resources.

38

 Database: It is responsible for storing most run-time and build-time states for a cloud

infrastructure like existing instance types, available networks, instances in use, and

projects.

Figure 3.3: Nova architecture

3.4. Neutron

Neutron [88] delivers “networking as a service” amongst interface devices managed by other

OpenStack services (e.g., nova). The central Neutron API comprises of support for IP address

management (IPAM) and Layer 2 networking, as well as an addition for a Layer 3 router concept

that allows routing between gateways and Layer 2 networks to external networks. Neutron

39

contains a list of plugins that allow interoperability with several open source technologies and

commercial, including virtual switches, switches, SDN and routers.

3.4.1. Architecture

Neutron is a separate component in the OpenStack segmental architecture. It is placed alongside

OpenStack services like Keystone, Nova, or Glance. Like those services, the Neutron

deployment frequently involves positioning numerous services to a variety of hosts. Neutron

server uses the neutron-server inspiration to depict the Networking API and allow administration

of the configured Networking plug-in which needs access to a database for determined storage.

Neutron is constituted by the following components:

 Neutron-server: Accepts and routes API requests to the suitable Neutron plug-in for

action.

 Neutron plug-ins and agents: Plugs and unplugs ports, provides IP addressing and

creates subnets or networks. These agents and plug-ins vary depending on the

technologies and vendor used in the specific cloud. Neutron ships with agents and plug-

ins for Cisco physical and virtual switches, OpenvSwitch, NEC OpenFlow products, Ryu

Network Operating System, Linux bridging, and the VMware NSX product. The

common agents for a typical environment are plug-in agent and L3, DHCP.

 Messaging queue: Route information amongst the various agents and neutron-server, as

well as a database to store networking state for specific plug-ins.

The Figure 3.14 shows neutron components in its architecture diagram:

40

Figure 3.4: Neutron architecture

3.5. OpenStack Deployment

As illustrated in Figure 3.5, the OpenStack Mitaka [89] release has been deployed on the testbed.

The deployment includes one control node and four compute nodes, all running Ubuntu 14.04 as

an operating system. The OpenStack control node runs the Identity service (Keystone), Image

service (Glance), management portions of Compute, management portions of Networking,

various networking agents, and the dashboard (GUI). It also includes supporting services such as

41

a SQL database, message queue, and network time protocol (NTP). Each compute node runs the

hypervisor portion of Compute that operates instances.

In our scenario, Compute uses QEMU hypervisor [90]. The compute node also runs a

Networking service agent that connects instances to virtual networks and provides firewalling

services to instances via security groups. The testbed also consists of a separate machine that has

ONOS installed in it. Each node of OpenStack (control node and compute nodes) is connected to

ONOS SDN controller via management network. Each compute node is connected to one

another via a Data Tunnel Network, whereas to the Internet via External Network.

Figure 3.5: Cloud computing platform-based testbed

42

3.5.1. OpenStack-ONOS Integration

In OpenStack, the Module Layer2 (ML2) [91] plug-in is a framework allowing OpenStack

networking to simultaneously utilize the variety of layer 2 networking technologies found in

complex real-world datacenters. However, when integrating ONOS [92] SDN controller with

OpenStack, the ONOS mechanism driver becomes responsible for layer 2 networking instead of

the default OVS mechanism driver, as well as the default OpenStack’s router plugin is replaced

with ONOS L3 plug-in for layer 3 routing purpose.

Figure 3.6: OpenStack-ONOS integration

43

OpenStack-ONOS integration, as shown in Figure 3.6, leads to the fact that all traffic

between VM instances can be monitored, managed, and controlled by ONOS SDN controller.

The northbound API of ONOS can be utilized to execute customized control applications for

flow management and control Furthermore, if visualized in ONOS GUI, the VM instances

connected with OVSes of their respective compute nodes can give a better view of an overall

network topology.

3.5.2. Visualization of OpenStack Deployment in ONOS GUI

As shown in Figure 3.7, there are four compute nodes in the OpenStack deployment. Since all

the compute services are provided by Nova on compute node, whenever a VM instance is booted,

it has to be assigned one of the existing hosts (compute nodes). In order to validate OpenStack-

ONOS integration, we launched three VM instances on compute node 1, two on compute node 2,

one on compute node 3, and two on compute node 4. If the integration has been done properly,

the VM instances and compute nodes should appear in ONOS GUI the same as they have been

launched in OpenStack. As depicted in Figure 3.7, each VM instance has been assigned an IP

address, and connected with an OVS. The OVS is in fact representing a compute node on which

the VM instance has been launched. The connection of one compute node with another shows

the existence of a proper data tunnel network between compute nodes.

44

Figure 3.7: Visualization of OpenStack deployment in ONOS GUI

45

Chapter 4

Resource Orchestration Framework

and its Major Components

This chapter presents a novel service-oriented resource orchestration framework. The aim of the

orchestration framework is to provide main components in order to manage network and cloud

resources required by cloud services to satisfy requests generated by remote end-users.

4.1. Proposed Architecture

The overall architecture of proposed orchestration framework is illustrated in Figure 4.1. It

includes two fundamental building blocks: (i) Service Abstraction Model, and (ii) The

Orchestrator. We used Service Abstraction Model for the orchestrator, with which the

46

orchestrator understands the requirements of the requested services and provides the resources

for the services. The orchestrator is responsible for resource allocation based on the requests

generated by remote end-users. The Network Resource Communicator (NRC) and Cloud

Resource Communicator (CRC) modules of orchestrator are meant to manage network and cloud

resources respectively. Infra Monitor module collects cloud and network infrastructure-related

information stored in an internal database server for use by the Resource Allocator.

Figure 4.1: Proposed orchestration framework

4.2. Service Abstraction Model

With our existing service abstraction model [93], the orchestrator gets the abstracted

requirements of the requested services, and maintains/provisions networks performance to meet

the requested service requirements. The orchestrator deals with the dynamic nature of the

services by easily changing the networks accordingly. For instance, the abstraction model

describes any change occurred in the number of viewers of the video service, whereas the

orchestrator manages the required bandwidth for this change. Our service abstraction model

47

abstracts the requested service parameters to support future and legacy network services. The

overall concept of the service abstraction model is depicted in Figure 2.

Figure 4.2: The service abstraction model

The service requirements are described in the service abstraction description of service

abstraction layer. The requirements are classified into three categories, i.e., Resources, Context,

and Content. The service-related parameters are provided by Content. They may be standard and

resolution of a video, QoS, or audio bit-rate. The user-related parameters are covered by Context.

They may be schedule and location of the service, or interest of the user. The requirements of the

infrastructural resources are provided by Resource. All these three sets of parameters are

converted into XML format, and are parsed at service abstraction description module. After that,

48

the communication manager module transfers these requirements of a service to the orchestrator.

Finally, they are processed by the orchestrator, and an appropriate network is generated for the

user to access the requested service.

The service parameters are received by the service abstraction layer either from the

applications or inputted by the users as shown in Figure 4.2. Based on these parameters, the

service is categorized by the service abstraction layer, which then generates a suitable service

abstraction model in XML format and delivers it to the orchestrator.

4.2.1. Service Abstraction Communicator

A JSON-RPC server-client module is implemented to deliver abstracted service requirements to

the orchestrator. The overall structure of this module consists of a function/method that is

defined in the request object, and the abstracted service parameters. As depicted in Figure 4.3,

the service abstraction client and server modules communicate with each other by means of a

TCP channel. The abstracted service parameters are sent as a request from the service abstraction

client module to the service abstraction server module where they are parsed and delivered to the

orchestrator. The server also sends a message in response to the client’s request message if

required.

49

Figure 4.3: Service Abstraction Communicator Module

4.3. The Orchestrator

It is the main building block of our proposed orchestration framework. Its core module, Resource

Allocator allocates resources in the form of VMs in order to meet the requirements of the

requested applications/services, which are requested by remote end-users. Once a request is

received, it is necessary to determine what VMs are the most appropriate to be allocated. This

issue is solved by algorithms for VM selection. One such example can be selecting a VM

randomly from a pool of VMs assigned to the host. Alternatively, based on our proposed

algorithm, Algorithm 1, called maximum RAM minimum CPU utilization (MRMC) algorithm,

VMs with the maximum amount of RAM are first selected, and then out of these selected VMs,

the VM with the minimum CPU utilization averaged over the last n quantifications is selected.

The algorithm takes n number of previous CPU utilizations, RAM and CPU utilization statistics

of VMs, and a pre-defined CPU utilization threshold. It starts with first sorting the VMs in terms

50

of their RAM utilization in an ascending order. Then, from the sorted list of VMs, the mean

value of the last n number of CPU utilizations of each VM is determined. If the calculated mean

value of CPU utilization of any particular VM in the sorted VM list is less than or equal to the

pre-defined CPU utilization threshold value, it is selected and returned as an output of the

algorithm for resource allocation. The Big-O time complexity for Algorithm 1 is given as:

 where m is vm_list.

51

4.3.1. Network Resource Communicator

The SDN controller provides an open interface on the controller to allow for automated control

of the network. The terms northbound and southbound are often used to differentiate whether the

interface is to the applications or to the devices. The southbound API is the OpenFlow interface

that the controller uses to program the network devices. The controller offers a northbound API,

allowing software applications to be plugged into the controller and thereby allowing that

software to provide the algorithms and protocols that can run the network efficiently. The

northbound API of the controller is intended to provide an abstraction of the network devices and

topology. That is, the northbound API provides a generalized interface that allows the software

above it to operate without knowledge of the individual characteristics of the network devices

themselves.

One of the results of this level of abstraction is that it provides the ability to virtualize the

network, decoupling the network service from the underlying physical network. Those services

are still presented to host devices in such a way that those hosts are unaware that the network

resources they are using are virtual and not the physical ones for which they were originally

designed.

The NRC module is responsible for managing the network infrastructure resources. As

shown in Figure 4.4, the NRC module interacts with the SDN controller in order to get the

details of available resource, as well as to POST the changes/rules to manage the network. We

use ONOS as the SDN controller. The NRC module uses the REST API of ONOS controller in

order to get the details of flows, devices etc. It can GET the FLOWS, INTENTS, DEVICES and

LINKS. It can also POST intent as per the application requirements. The south bound API of

ONOS provides an abstraction of the actual physical network infrastructure.

52

There is a method/function defined in the NRC module, which retrieves the information

related to the network devices and links from the ONOS SDN controller and aggregates it in a

variable. This information is shared with the orchestrator for monitoring and management

purpose. The NRC communicator module also allows for installing host-to-host intents on

ONOS SDN controller by means of HTTP POST method.

Figure 4.4: Network resource communicator module

4.3.2. Cloud Resource Communicator

The CRC module is meant for interacting with the OpenStack and managing the

compute/network resources inside OpenStack according to the user requirements. As shown in

the Figure 4.5, OpenStack provides different APIs that can be used to control/manage/allocate

resources on the physical infrastructure. The CRC module uses the identity API to authenticate

with the OpenStack cloud in the very first step. Then it uses the neutron API to

create/delete/modify tenant networks inside OpenStack, and compute API to manage compute

53

resources. By using the compute API, CRC module can allocate new resources, modify current

resources or delete any resource as per requirements of the requested application.

There is a method/function defined in the CRC module, which retrieves the information

related to the already launched VM instances in OpenStack and aggregates it in a variable.

Another function for creating networks uses HTTP POST request to create tenant networks in

OpenStack. It first uses the identity information and creates a session with OpenStack and then

creates a network with the name as specified in the parameters. There are also several other

functions defined in CRC module that allow the orchestrator to delete the VM instances and

networks in OpenStack clouds.

Infra Monitor module collects and stores cloud and network infrastructure-related

information, and shares it with the Resource Allocator. A monitoring component is also

deployed on each compute host of OpenStack and is meant for collecting data related to the

resource utilization by hypervisors and VM instances, and then sending the data to the Infra

Monitor module. Based on this information, the Resource Allocator module assigns resources by

means of our proposed algorithm. The details of which are given in the next section.

54

Figure 4.5: Cloud resource communicator module

The overall working of the orchestrator involves several steps. It starts from a user

requesting for a service/application, which is forwarded to the web server. The web server

forwards this request to service abstraction client module, which abstracts the requirements such

as service type and quality, and forwards it to the service abstraction server module. It parses the

request message and forwards it to the orchestrator, which then forwards set of links and

bandwidth for embedding virtual topology to NRC module, and Node Information (Location

etc.), Service Type, Server Capacity to CRC module. The communication of CRC and NRC

modules with OpenStack and ONOS SDN controller respectively enables the orchestrator to

handle the network requirements by means of SDN Controller and service requirements via

Cloud Manager.

55

4.4. sFlow-based Monitoring System

In order to maintain a record of the resources utilized by compute nodes, a monitoring system

based on sFlow technology [94] has been used in this thesis. In this monitoring system, sFlow

sample from the OVSes of compute nodes are collected and stored in a database. The Host sFlow

agent, deployed on each compute node, is responsible for providing samples of performance

counters related to infrastructural resources. It exports physical and virtual server performance

metrics using the sFlow protocol. The agent provides scalable, multi-vendor, multi-OS

performance monitoring with minimal impact on the systems being monitored. Figure 4.6 shows

the sFlow host structure that allows pairing host metrics with corresponding network metrics

with the help of mapping of MAC addresses [95].

Figure 4.6: sFlow host structure

The essential components of sFlow monitoring system are depicted in Figure 4.7.

The Graphite [96] real-time charting software provides a flexible way to store and plot time

series data. Graphite is an open-source project that is growing in popularity among network

engineers. However, while Graphite is very good at storing and plotting metrics, it offers no

default monitoring capabilities. Instead, it relies on agents provided by user to make

http://graphite.wikidot.com/

56

measurements. The open source Host sFlow agent [97] is able to work in parallel with Graphite,

providing a portable, lightweight agent that exports standard metrics from a wide range of

systems. Host sFlow agents together with a Graphite collector offer a complete, highly scalable

monitoring solution. The Host sFlow agents continuously send metrics to the Graphite collector

in the form of binary sFlow data, which is converted into Graphite’s text-based data and

submitted to the Graphite server.

Figure 4.7: Architecture of sFlow monitoring system

http://host-sflow.sourceforge.net/
http://blog.sflow.com/2011/06/standard-metrics.html

57

4.5. Implementation of Proposed Resource Orchestration Framework

The proposed architecture has been validated in the cloud computing platform-based testbed

discussed in Section 3.5. The use case that has been considered is a creation of a VM instances in

OpenStack with the proposed resource orchestration framework.

As mentioned above, the CRC module of the Orchestrator manages compute/network

resources in OpenStack according to the user requirements. A function/method has been defined

in this module which receives several options as input variables and uses HTTP POST to create a

VM/instance in OpenStack. Figure 4.8 shows the conversation between the service abstraction

server module, the orchestrator, OpenStack, ONOS SDN controller, and the OpenFlow switch of

the corresponding compute node on which the VM/instance is created. The orchestrator receives

a parsed message from the service abstraction server module, and requests the available

resources from OpenStack through HTTP GET message. After getting a reply from OpenStack,

the orchestrator instructs OpenStack to create a VM/instance by means of HTTP POST message.

To give network connectivity to this VM, OpenStack communicates with ONOS SDN controller,

which instructs the OVS of the corresponding compute node that hosts the newly created VM.

58

Figure 4.8: Exchange of messages between different modules for VM creation

4.5.1. Performance Analysis of Proposed MRMC Algorithm

When a request is received, it is necessary to allocate the appropriate VMs in terms of available

resources. These VMs can be either selected randomly or by means of any efficient scheme.

However, random VM selection may lead to performance degradation because the selected VMs

may have minimum RAM and maximum CPU utilization. We address this issue by proposing

MRMC algorithm, which selects VMs on the basis of maximum RAM and minimum CPU

utilization. It accepts historical data on the resource usage by VMs running on the compute nodes

and returns a set of VMs to be allocated.

The performance of our proposed MRMC algorithm is compared with two algorithms, i.e.,

the random VM selection scheme and a resource allocation algorithm given in [108]. The

comparison is first performed for VM selection on the basis of the amount of utilized RAM from

the pool of VMs. All the algorithms are run ten times with the time difference of five seconds

59

between each run. It can be clearly seen in Figure 4.10 that MRMC algorithm outperforms the

random VM selection scheme. For each run, the MRMC algorithm selects VM(s) with minimum

RAM utilization, whereas the random VM selection scheme selects VM(s) without taking into

consideration the amount of RAM available on each VM. The proposed MRMC also

outperforms the MCDA algorithm because the MCDA algorithm makes decision on the basis of

available resources. It simply assigns a compute node which has the available resources to meet

the requirements of the requested service. On the other hand, our proposed MRMC algorithm has

two-dimensional selection criteria. It first selects those VMs from a pool of VMs which have the

maximum amount un-utilized RAM for allocation. It is obvious from Fig. 4.10 that for the first

run, the proposed MRMC algorithm selects a VM which has a utilized RAM of around 500 MB,

whereas the MCDA algorithm chooses a VM which has the RAM utilization of around 1.1 GB.

60

Figure 4.9: Performance analysis of MRMC for minimum occupied RAM

In the second step, the proposed MRMC algorithm allocates the resource (VM) from a set

of previously selected VM(s) having the maximum amount of un-utilized RAM by determining

the VM with the minimum CPU utilization averaged over the last n quantifications. On the other

hand, the random VM selection and MCDA algorithms allocate resources regardless of the CPU

utilization for each run. The performance of the proposed MRMC algorithm is compared with

random VM selection and MCDA algorithms on the basis of the minimum CPU utilization. All

the algorithms are run ten times with the time difference of five seconds between each run. It is

obvious from Figure 4.11 that MRMC algorithm outperforms the random VM selection scheme

and MCDA algorithms. The resource (VM) with the minimum CPU utilization is allocated by

61

means of MRMC algorithm, whereas the random VM selection and MCDA algorithm do not

consider CPU utilization when allocating resources. For instance, MRMC algorithm selects a

VM with a CPU utilization of around 28%, whereas the MCDA algorithm chooses a VM which

has the CPU utilization of more than 50% for the same run.

Figure 4.10: Performance Analysis of MRMC for minimum CPU utilization

62

Chapter 5

A Framework for Resource

Utilization-based Migration of VMs in

OpenStack Clouds

In this chapter, we introduce an architecture and implementation of a framework for dynamic

VM migration in cloud data centers based on the OpenStack platform. The deployment of the

framework includes a controller node and multiple instances of compute nodes. The purpose of

the framework is to provide dynamic live migration to adjust the VM instances on compute

nodes to offload a number of VMs from an overloaded compute node. We address this issue by

focusing on the following key points:

63

 Detecting an overloaded compute node, so that some VM instances may be migrated to

other efficient compute nodes.

 Based on CPU and RAM utilization, selecting the overloaded VM instance(s) from a

compute node.

 Locating the selected VM instance(s) for migration on other efficient compute nodes.

The overall process of VM migration is illustrated in Fig. 5.1. At the beginning of each

iteration, the migration manager module reads from the stats DB, the historical data on the

resource usage by the VMs. Then, the migration manager module invokes the overload detection

algorithm to determine whether the compute node is overloaded. If the compute node is not

overloaded the migration manager reads the resource utilization data from the stats DB at the

next iteration.

If the compute node is overloaded, the migration manager invokes the VM selection

algorithm to select VMs to offload from a compute node. Once the VMs to migrate from the

compute node are selected, the migration manager invokes the VM placement algorithm to

determine the most efficient compute node to place the migrated VM. Finally, upon the selection

of the most efficient compute node, the migration manager sends a request to the OpenStack

Nova API to migrate the selected VMs.

64

Figure 5.1: The proposed VM migration process

5.1. System Model

The framework implements essential components for monitoring hypervisors and VMs,

gathering resource utilization statistics, sending messages and instructions between the system

elements, and conducting VM live migrations. It enables the implementation of the three

proposed algorithms for dynamic VM migration: detecting overloaded compute node, selecting a

VM based resource utilization, and allocating a VM to an efficient compute node.

Fig. 5.2 depicts the overall architecture of the proposed framework that is deployed in

OpenStack to avoid an overloaded compute node by conducting dynamic VM migration at

65

appropriate time. It includes four fundamental building blocks: (i) Stats Aggregator, (ii) Stats

Database, (iii) Migration Manager, and (iv) Algorithms Repository. In the following, we will

discuss each of the framework’s components in detail.

Figure 5.2: Proposed system model

5.1.1. Stats Aggregator

A component that is deployed on the control node and is responsible for collecting statistics on

the resource utilization by VM instances and hypervisors and then forwarding it to the statistics

database, which can also be shared with other components. The statistics are collected by means

of libvirt’s API [98] in the form of the RAM consumed by VM instances and hosts. For the

66

collection of statistics related to CPU utilization of VM instances, we have installed and

configured the Ceilometer [99] project of OpenStack on control node. The RAM and CPU

statistics are both collected periodically and submitted to the Stats Database module of the

framework.

5.1.2. Stats Database

The stats database is used for storing historical statistics on the resource utilization by VM

instances and hypervisors. The database is populated by the stats aggregator deployed on the

same control node. The RAM and CPU utilization statistics of VM instances are periodically

submitted to this module, which are then used by the migration manager to determine the VM

instances that are consuming most of their respective compute nodes’ resources.

5.1.3. Migration Manager

The migration manager is responsible for conducting VM migrations and making VM allocation

decisions, which results in offloading VMs from an overloaded compute node. It runs the

overload detection algorithm when resource utilization statistics are received from the Stats DB

module. If an overload condition is detected, it runs the VM selection algorithm to select the VM

instances, which are utilizing maximum RAM and CPU resources. Then it determines the

efficient compute nodes in order to place selected VMs on them, and invokes OpenStack API for

live migration of the selected VM instances.

5.1.4. Algorithm Repository

This repository is deployed to store custom decision-making algorithms for dynamic VM

migration, i.e., compute node overload detection, VM selection, and VM allocation algorithms.

Based on these algorithms, the migration manager module determines the overloaded compute

67

node, selects the VM instances that are to be migrated, as well as initiates VM migrations and

makes VM placement decisions.

5.2. Proposed Structure and Algorithms

The migration process should be initiated offload the compute nodes based on a predefined

threshold. A compute node is offloaded by VM migrations, which can make the load below the

predefined threshold. Figure 5.2 depicts the exchange of messages for handling a compute node

overload situation. First, the migration manager detects an overload of the compute node using

the overload detection algorithm. Then, by means of proposed VM selection algorithm, the

migration manager selects VM instances based on their CPU utilizations. Next, the migration

manager initiates the VM allocation algorithm with the list of selected VMs along with their

utilized resources and states of the compute nodes obtained from the stats database as arguments.

Finally, based on the VM allocation generated by the algorithm, the migration manager requests

the OpenStack Nova API for the appropriate VM live migration.

68

Figure 5.3: Exchange of messages between components for VM instances migration

5.2.1. Overload Detection Algorithm

The overload detection algorithm shown in Algorithm 2 is a simple algorithm which detects an

overloaded compute node if the average of the last n CPU utilization measurements is greater

than the pre-defined threshold value. The upper threshold value has been defined by following a

traditional approach, i.e., the static threshold algorithm (STA). The STA defines an upper

threshold for the hosts beforehand and the provisioning of schemes have to keep the total

utilization of the CPU under the threshold limit.

The algorithm takes n number of previous CPU utilizations, RAM and CPU utilization

statistics of a compute node, and pre-defined CPU utilization and RAM utilization threshold

values. It starts with initializing the defined variables. Then, from the list of compute nodes, the

mean values of the last n number of CPU utilizations and the last n number of RAM utilizations

69

for each compute node is determined. If the calculated mean value of CPU utilization or RAM

utilization of any particular compute node is greater than or equal to the pre-defined CPU

utilization threshold value, it is selected and returned by the algorithm as an overloaded compute

node.

Since there is one nested for loops used in Algorithm 2, the general mathematical expression for

its time complexity can be written as:

The Big-O time complexity for Algorithm 2 can be calculated by considering the line-wise

execution of the algorithm as following:

By excluding coefficient and lower order terms, we get the following simplified equation:

70

The Big-O time complexity for Algorithm 2 is finally given as:

where m is cn_list.

5.2.2. VM Selection Algorithm

Once an overloaded compute node is detected, it is necessary to determine what VMs are to be

migrated. This issue is solved by algorithms for VM selection. One such example can be

selecting a VM randomly from a pool of VMs assigned to the host. Alternatively, based on our

proposed algorithm called minimum RAM maximum CPU utilization (minRmaxC) algorithm as

shown in Algorithm 3, VMs with the maximum amount of RAM usage are first selected, and

then out of these selected VMs, the VMs with the maximum CPU utilization averaged over the

last n quantifications are selected. The algorithm takes n number of previous CPU utilizations,

RAM and CPU utilization statistics of VMs, and a pre-defined CPU utilization threshold. It starts

with first sorting the VMs in terms of their RAM utilization in a descending order. Then, from

the sorted list of VMs, the mean value of the last n number of CPU utilizations of each VM is

determined. If the calculated mean value of CPU utilization of any particular VM in the sorted

VM list is greater than or equal to the pre-defined CPU utilization threshold value, it is selected

and returned as an output of the algorithm for VM migration.

A VM selected for migration should have maximum CPU and RAM utilizations among all

other VMs located on any particular compute node. More precisely, a VM with maximum

utilization is the most efficient case. To achieve this goal, we determine the utilization of a VM

by (1). Where is the VM CPU utilization and is its RAM utilization. Therefore, in case

there are multiple VMs for migration, the one which has the highest utilization is selected.

 (1)

71

Since the cost of VM live migration is mostly determined by its memory footprint.

Therefore, it can be said, migration time of a VM is directly proportional to the memory size of

that VM. As a result, memory size of VMs is a good measure for the cost of migration. Thus, in

case there are options for migration, the VM which has the lowest memory footprint is suitable

for migration.

The migration cost of a VM can be calculated by the (2)

 (2)

72

Since there are two nested for loops used in Algorithm 3, the general mathematical expression

for its time complexity can be written as:

The Big-O time complexity for Algorithm 3 can be calculated by considering the line-wise

execution of the algorithm as following:

By excluding coefficient and lower order terms, we get the following simplified equation:

The Big-O time complexity for Algorithm 3 is finally given as:

 where m is vm_list.

5.2.2.1. VM Selection Criteria

Based on the VM selection criteria form VM migration, the VMs with the maximum CPU

utilization averaged over the last n quantifications are first selected.

 is a 2D array that contains VMs that contains VMs based on the following condition:

Where is a threshold for CPU utilization. is an indicator that shows if ith VM is in

matrix or not. The VM for migration is selected based on minimum RAM, which is expressed by

following equation:

73

or it can be expressed as:

5.2.3. VM Allocation Algorithm

In order to get the efficient compute nodes for hosting VM instances, the VM allocation

algorithm engages an OpenStack Nova-scheduler which conducts an overall allocation process.

More precisely, it returns the efficient compute nodes on which the VM instances would be

placed. Therefore, the algorithm first selects a list of the light load compute nodes for the heavy

load VM instances. Then, this list is delivered to the OpenStack-Nova API in order to initiate the

VM migration process between source and destination compute nodes. The pseudo-code for

algorithm is shown in Algorithm 4, which explains the method of selecting the light load

compute node for the heavy load VMs. The algorithm takes n number of previous CPU

utilizations, RAM and CPU utilization statistics of a compute node, as well as RAM and CPU

utilization statistics of VMs. It starts with initializing the defined variables. Then, from the list of

compute nodes, the mean values of the last n number of CPU utilizations and the last n number

of RAM utilizations for each compute node is determined. If the calculated mean value of

compute node’s CPU utilization is greater than the CPU utilization of any particular VM and the

calculated mean value of compute node’s RAM utilization is greater than the RAM utilization of

that particular VM, it leads to the fact that compute node has enough resources to accommodate

the migrated VM. Hence, the algorithm selects and returns this compute node for VM instance

placement.

74

The Big-O time complexity for Algorithm 4 is finally given as:

where m is cn_list.

5.3. Experiment and Results

The proposed architecture has been validated in the cloud computing platform-based testbed

discussed in Section 3.5. First it is necessary to generate the work load in an appropriate way in

order to reproduce a realistic data. For this purpose, software called Lookbusy [100] is used,

which is a simple application for load generation on a Linux system. It enables to generate

predictable, fixed loads on CPUs, and also maintain selected amounts of memory active.

Several experiments are performed to evaluate the proposed algorithms. For this purpose, the

proposed overload detection algorithm has been analyzed for two cases, i.e., the impact on an

overall system without and with the execution of this algorithm. The proposed VM selection and

75

VM allocation algorithms have been compared with random VM selection and random VM

allocation schemes. A VM instance type with 32 MB amount of RAM allocated to it. Eight VM

instances are launched on compute node 1, 7 VM instances on compute node 2, 5 VM instances

on compute node 3, and 3 VM instances on compute node 4. Load has been generated on random

VM instances of compute node 1, which results in an increased CPU utilization of the VM

instances.

During the experiment, the overload detection algorithm has been executed by the

migration manager module, which detects an overloaded compute node based on pre-defined

threshold value. The performance of our proposed overload detection algorithm has been

compared for two scenarios: 1) overload situation without any algorithm used, and 2) direct

overload detection [109]. The proposed algorithm detects an overloaded compute node if the

average of the last n CPU utilization measurements is greater than the pre-defined threshold

value, whereas the direct overload detection detects an overloaded compute node as soon as the

CPU utilization surpasses the pre-define threshold value. The drawback in direct overload

detection is that most of the times a compute node goes above the threshold for a very short

period of time because there are always CPU utilization spikes in real time while performing

tasks. In this case, a compute node would be detected as an overload node as soon as its CPU

utilization is above the threshold for a very short period of time. The granularity can be selected

according to the requirement; however, in most of the cases the system is not too sensitive to the

CPU overloads. In the case when no overload detection algorithm is executed, the compute

nodes stay overloaded, which may result in the degradation of an overall system/service. Fig. 5.4

depicts the detection of compute node for each run of the proposed overload detection and direct

overload detection algorithms. It is obvious from the figure that the compute node is detected as

76

an overloaded compute node by direct overload detection algorithm as soon as it surpasses the

threshold value of 80% CPU utilization. On the other hand, the proposed overload detection

algorithm detects an overloaded compute node if the average of the last n CPU utilization

measurements is greater than the pre-defined threshold value. In the case when the algorithm is

not executed, there is no overload detection even if the CPU utilization surpasses the threshold

value of 80%.

Figure 5.4: Performance analysis of the proposed overload detection algorithm

Once an overloaded compute node has been detected, the next step is to select the VM

instances which are consuming most of the resource of that compute node. These VM instances

can be selected randomly, but this may lead to performance degradation because the selected

VM instances may the minimum CPU utilization at the time of selection. Another issue with VM

selection is that if the selected VM has the higher RAM assignment, the migration time required

77

for its migration would be high, which may cause a delay in the operation of the applications

running on that VM. We address the aforementioned issues by proposing minRmaxC algorithm,

which selects VM instances on the basis of minimum RAM and maximum CPU utilization. It

accepts historical data on the resource usage by VM instances running on the compute nodes and

returns a set of VM instances to be selected. The performance of the proposed minRmaxC

algorithm is compared with random VM selection and maximum utilization [110] algorithms on

the basis of the maximum CPU utilization. It is obvious from Fig. 5.5 that minRmaxC algorithm

outperforms the random VM selection scheme. The VM instances with the maximum CPU

utilization are selected by means of minRmaxC algorithm, whereas the random VM selection

scheme selects VM instances regardless of the CPU utilization for each run. Although, the

maximum utilization algorithm selects VMs which have higher CPU utilizations than the VMs

selected by proposed minRmaxC algorithm, the former does not consider the RAM factor when

selecting VMs, which may have effect on the minimum migration time required for migrating

the selected VMs [110].

78

Figure 5.5: Performance analysis of the proposed minRmaxC-based VM selection algorithm

The proposed minRmaxC also addresses the issue of migration time when selecting the

VMs for migration. It can be clearly seen in Fig. 5.6 that there is a significant difference in the

minimum time required for migrating VMs with higher and lower RAMs. The VMs with higher

RAM required higher time, whereas VMs with lower RAM require less time to complete the

migration process. The performance of the proposed minRmaxC algorithm has been also

compared with the maximum utilization algorithm. Since the maximum utilization considers

only CPU utilization and does not consider RAM size when selecting VMs for migration, it

would require more time for the migration of selected VMs. It is obvious from Fig. 5.6 that the

VMs selected with maximum utilization algorithm require more time than that of selected with

the proposed minRmaxC algorithm.

79

Figure 5.6: Minimum migration time versus RAM assigned to VMs

After selecting the overloaded VM instances, the migration manager module runs the VM

allocation algorithm to place the selected VM instances on an efficient compute node. The

performance of the proposed algorithm is compared with random VM allocation scheme and first

fit VM allocation algorithm [111]. The first fit algorithm starts with the first compute node and

determines the availability of the required CPU resources. If it finds enough resources, it places

the migrated VM on that compute node, otherwise goes to the next compute node. On the other

hand, our proposed algorithm finds the most efficient compute node among all the nodes. For

this purpose, it calculates the mean CPU utilization and mean RAM utilization to determine the

most efficient compute node from a list of compute nodes. If the calculated mean values satisfy

the requirements of the migrated VM, it selects that compute node for VM placement. In case of

random VM allocation scheme, the VMs are placed on random compute nodes. Fig. 5.7 depicts

the comparison of our proposed VM allocation algorithm with the random VM allocation

80

algorithm and first fit VM allocation algorithm. It can be clearly seen that the proposed VM

allocation algorithm outperform the first fit VM allocation algorithm by selecting light load

compute nodes in terms of CPU utilization. It also clearly outperforms the random VM

allocation scheme because it may place VMs on already overloaded compute nodes, which may

lead to the performance degradation of an overall system.

Figure 5.7: Performance analysis of the proposed VM allocation algorithm

81

Chapter 6

Conclusions

Cloud Computing plays a significant role in varied areas like e-business, search engines, data

mining, virtual machines, batch oriented scientific computing, online TV amongst many others.

Cloud computing has the potential to become an integral part of our lives. The resources residing

in Cloud infrastructure such as compute, storage and network become the worthwhile

infrastructure for computation, data storage and hosting network based applications. However,

the dynamic nature of requests for cloud services or applications generated by remote end-users

makes resource provisioning a major concern.

82

In this work, a resource orchestration framework for resource management and

provisioning has been presented. The resource allocation is performed by implementing an

algorithm, which allocates resources on the basis of unutilized resources. Two additional

modules have been developed for communication with OpenStack and ONOS SDN controller to

manage cloud and network resources. The framework has been validated by creating a VM

instance in OpenStack with the framework. The random VM selection scheme is compared with

the proposed MRMC algorithm for the VM(s) selected on the basis of the amount of utilized

RAM as well as minimum CPU utilization. The experiment results show that the random VM

selection scheme is outperformed in both the cases by the proposed MRMC algorithm.

An overview of OpenStack, the core services required for its deployment, and the

integration with ONOS SDN controller is also presented. The integration has been validated by

visualizing the OpenStack deployment in ONOS GUI. Furthermore, a monitoring system based

on sFlow technology has been implemented in order to monitor the utilized resources of a

compute node. A Host sFlow agent on each compute node periodically collects performance

metrics related to its utilized infrastructural and network resources and stores them in a database.

These metrics are then used when allocating resources or initiating VM migrations.

A design and implementation of a framework for dynamic VM migration in OpenStack

clouds has been proposed in this thesis. The framework addresses the issue of the dynamic VM

migration by implementing the proposed overload detection, VM selection, and VM allocation

algorithms. It can be easily deployed to the default OpenStack installation by communicating

with it by means of the public APIs, and without the requirement of any alterations of

OpenStack’s configurations. The experiment results show that the proposed framework prevents

compute nodes from getting overloaded, selects the VM instances which are consuming most of

83

the compute node’s resources, and migrates them to other efficient compute nodes. The proposed

algorithms outperform the algorithms that are considered for the sake of comparison.

Despite substantial contributions of the current thesis in cloud resource orchestration,

monitoring of infrastructural resources, and VM migrations, there are a number of open

challenges that need to be addressed in order to further advance these areas. The proposed

overload detection algorithm detects the overloaded situation on the basis of CPU utilization

only. However, there are factors like bandwidth and RAM which may affect the compute node.

These additional factors need to be considered to make the algorithm more efficient.

Furthermore, the proposed framework can be implemented on large-scale OpenStack

deployments to improve the utilization of resources. More precisely, we intend to present a test

environment for assessing the effectiveness of VM placement algorithms. This test environment

builds on the CloudSim simulator, and extends it with several further components that are

needed for reproducible experiments, like converters for publicly available workload traces and a

workload generator. Also, there is a need to focus on the northbound API of ONOS SDN

controller by executing customized control applications for flow management and control

between the VM instances of OpenStack.

84

Bibliography

[1] Drago, Idilio, et al. "Inside dropbox: understanding personal cloud storage services."

Proceedings of the 2012 ACM conference on Internet measurement conference. ACM,

2012.

[2] Quick, Darren, and Kim-Kwang Raymond Choo. "Google drive: forensic analysis of data

remnants." Journal of Network and Computer Applications 40 (2014): 179-193.

[3] H. Erdogmus, “Cloud Computing: Does Nirvana Hide behind the Nebula?,” IEEE

Software,vol. 26, no. 2, pp. 4–6, 2009.

[4] Peng, Junjie, et al. "Comparison of several cloud computing platforms." Information

Science and Engineering (ISISE), 2009 Second International Symposium on. IEEE, 2009.

[5] Goldberg, Robert P. "Survey of virtual machine research." Computer 7.6 (1974): 34-45.

85

[6] Chen, Yang, et al. "Resilient virtual network service provision in network virtualization

environments." Parallel and Distributed Systems (ICPADS), 2010 IEEE 16th

International Conference on. IEEE, 2010.

[7] B Sonkoly, J Czentye, R Szabo, D Jocha, J Elek, S Sahhaf, W Tavernier, F Risso. Multi-

domain service orchestration over networks and clouds: a unified approach. ACM

SIGCOMM Computer Communication Review. 2015 Sep 22;45(4):377-8.

[8] Wei, Yi, and M. Brian Blake. "Service-oriented computing and cloud computing:

Challenges and opportunities." IEEE Internet Computing 14.6 (2010): 72-75.

[9] IBM Inc. Blue Cloud project [URL]. IBM, June 2008. http://www-03.ibm.com/

press/us/en/pressrelease/22613.wss/.

[10] Wilder, Bill. “Cloud architecture patterns: using microsoft azure”. O'Reilly Media, Inc.,

2012.

[11] Ostermann, Simon, et al. "A performance analysis of EC2 cloud computing services for

scientific computing." International Conference on Cloud Computing. Springer Berlin

Heidelberg, 2009.

[12] S. Bose, A. Pasala, D. Ramanujam A, S. Murthy, and G. Malaiyandisamy. “Sla

management in cloud computing: A service provider’s perspective“. Cloud Computing,

pages 413–436, 2011.

[13] Xing, Yuping, and Yongzhao Zhan. "Virtualization and cloud computing." Future

Wireless Networks and Information Systems. Springer Berlin Heidelberg, 2012. 305-312.

86

[14] Dhingra, Mohit, J. Lakshmi, and S. K. Nandy. ”Resource usage monitoring in clouds.”

Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid Computing.

IEEE Computer Society, 2012.

[15] B Jennings, R Stadler. “Resource management in clouds: Survey and research

challenges.” Journal of Network and Systems Management. 2015 Jul 1;23(3):567-619.

[16] Swathi, T., K. Srikanth, and S. Raghunath Reddy. "Virtualization in cloud computing."

International Journal of Computer Science and Mobile Computing, ISSN (2014): 540-

546.

[17] Paul Goransson, Chuck Black, “Software Defined Networks: A Comprehensive

Approach”, 1st Edition, May 23, 2014.

[18] Mohammad Banikazemi, D Olshefski, A Shaikh, J Tracey, G Wang. “Meridian: an

SDN platform for cloud network services.” IEEE Communications Magazine. 2013

Feb;51(2):120-7.

[19] Bhardwaj, Sushil, Leena Jain, and Sandeep Jain. "Cloud computing: A study of

infrastructure as a service (IAAS)." International Journal of engineering and information

Technology 2.1 (2010): 60-63.

[20] Boniface, Michael, et al. "Platform-as-a-service architecture for real-time quality of

service management in clouds." Internet and Web Applications and Services (ICIW),

2010 Fifth International Conference on. IEEE, 2010.

87

[21] IETF, “Network Virtualization Overlays,” http://datatracker.ietf.org/wg/nvo3/, Sept.

2012, work in progress.

[22] K Barabash et al., “A Case for Overlays in DCN Virtualization,” Proc. Wksp. Data

Center-Converged and Virtual Ethernet Switching, Sept. 2011.

[23] T. Benson et al., “CloudNaaS: A Cloud Networking Platform for Enterprise

Applications,” Proc. ACM Symp. Cloud Computing, Oct. 2011.

[24] Nicira, Inc., “Networking in the Era of Virtualization,” white paper, 2012,

http://www.nicira.com.

[25] Menezes, Evandro, et al. "CPU utilization measurement techniques for use in power

management." U.S. Patent No. 6,845,456. 18 Jan. 2005.

[26] Gade, Anuradha, Bruce McMurdo, and Jeremy Stieglitz. "System and method for

improving network resource utilization." U.S. Patent Application No. 11/154,204.

[27] Karawash, Ahmad, Hamid Mcheick, and Mohamed Dbouk. "Quality-of-service data

warehouse for the selection of cloud services: a recent trend." Cloud Computing.

Springer International Publishing, 2014. 257-276.

[28] M. Bichler, T. Setzer, and B. Speitkamp. “Capacity planning for virtualized servers“. In

Workshop on Information Technologies and Systems (WITS), Milwaukee, Wisconsin,

USA, volume 1, 2006.

http://www.nicira.com/

88

[29] G. Khanna, K. Beaty, G. Kar, and A. Kochut. “Application performance management

in virtualized server environments”. In Network Operations and Management Symposium,

2006. NOMS 2006. 10th IEEE/IFIP, pages 373–381. IEEE, 2006.

[30] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu. “A cost-sensitive adaptation

engine for server consolidation of multitier applications“. Middleware 2009, pages 163–

183, 2009.

[31] Vincent C. Emeakaroha and Marco A.S. Netto and Rodrigo N. Calheiros and Ivona

Brandic and Rajkumar Buyya and Csar A.F. De Rose, “Towards autonomic detection of

SLA violations in Cloud infrastructures,” Future Generation Computer Systems, no. 0, pp.

–, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X11002184

[32] Han, Fang-fang, et al. "Virtual resource monitoring in cloud computing." Journal of

Shanghai University (English Edition) 15.5 (2011): 381-385.

[33] Janna Anderson, Elon University, and Lee Rainie. “Technical seminar report on cloud

computing”. Intel Executive Summary, 2005.

[34] Wikipedia. Cloud computing. Second International Symposium on Information Science

and Engineering, 2010.

[35] Everything as a Service. Gathering clouds of xaas. Second International Symposium on

Information Science and Engineering, 2010.

[36] What is cloud computing? Journal of Parallel and Distributed Computing, 2008.

89

[37] P. Goyal, R. Mikkilineni, and M. Ganti. “The fcaps in the business services fabric

model”. In proceedings of WETICE 2009:18th IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises, 2009.

[38] Wikipedia. Wikipedia, free encyclopedia. 2009.

[39] Ian Lumb, Eunmi Choi, and Bhaskar Prasad Rimal. “Virtualization for dummies”.

Second International Symposium on Information Science and Engineering, 2010.

[40] H. Q. Yu and S. Reiff-Marganiec. “A method for automated web service selection”. In

Services-Part I, 2008. IEEE Congress on, pages 513520. IEEE, 2008.

[41] Jason Carolan and Steve Gaede. “Introduction to cloud computing architecture”. Sun

Microsystems Inc white paper, 2009.

[42] Wikipedia. Wikipedia, free encyclopedia. 3rd International Conference on Grid and

Pervasive Computing-gpc-workshops, 2008.

[43] Usman Sait. “The future of cloud computing”. Intel Executive Summary, 2005.

[44] Usman Sait. “Welcome to www.cloudtutorial.com”. Intel Executive Summary, 2005.

[45] D. Baran. “Cloud computing basics”. ICWS, 2007.

[46] Amazon. “Amazon elastic compute cloud (amazon ec2)”. Journal of Parallel and

Distributed Computing, 2008.

[47] Amazon. “Amazon simple storage service (amazon s3)”. Journal of Parallel and

Distributed Computing, 2008.

90

[48] IBM. IBM corp, “cloud computing:. Journal of Object Technology, 2009.

[49] Google App. Multitenancy, 2010.

[50] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. “A taxonomy and survey of cloud

computing systems”. Fifth International Joint Conference on INC, IMS and IDC, 2009.

[51] M. Turner, D. Budgen, and P. Brereton. “Turning software into a service”. IEEE

Computer, Vol. 36, 2008.

[52] “Software as a service: strategic backgrounder”. Software and Information Industry

Association, 2001.

[53] Jeffery F. Rayport and Andrew Heyward. “Envisioning the cloud: The next computing

paradigm”. 2009. Technical Report, available at

http://www.hp.com/hpinfo/analystrelations/marketspace- 090320-Envisioning-the-

cloud.pdf

[54] Ya-Qin Zhang. “The future of computing in the cloud – client”. The Economic

Observer, 2008.

[55] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, and I. Stoica. “Above the clouds: a Berkeley view of cloud

computing”. EECS Department, University of California, Berkley, Tech Rep, 2009.

[56] Liu, C., Mao, Y., Van der Merwe, J., and Fernandez, M. “Cloud Resource

Orchestration: A Data-Centric Approach”. In CIDR (2011).

91

[57] Van der Merwe, J., Ramakrishnan, K., Fairchild, M., Flavel, A., Houle, J., Lagar-

Cavilla, H. A., and Mulligan, J. “Towards a ubiquitous cloud computing infrastructure”.

In LANMAN (2010).

[58] Wood, T., Shenoy, P., Venkataramani, A., and Yousif, M. “Black-box and gray-box

strategies for virtual machine migration”. In NSDI (2007).

[59] Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman, A., and Bhogan, H. “Volley:

automated data placement for geo-distributed cloud services”. In NSDI (2010).

[60] Wood, T., Gerber, A., Ramakrishnan, K., Shenoy, P., and der Merwe, J. V. “The case

for enterprise-ready virtual private clouds”. In HotCloud (2009).

[61] Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., and Vahdat, A. “Hedera:

dynamic flow scheduling for data center networks”. In NSDI (2010).

[62] S. T. Selvi, C. Valliyammai, and V. N. Dhatchayani. “Resource Allocation Issues and

Challenges in Cloud Computing”. In 2014 International Conference on Recent Trends in

Information Technology, pages 1–6, Chennai, India, April 2014.

[63] P. Salot. “A Survey of Various Scheduling Algorithm in Cloud Computing

Environment”. International Journal of Research in Engineering and Technology,

2(2):131– 135, February 2013.

[64] G. Rastogi and R. Sushil. “Cloud Computing Implementation: Key Issues and

Solutions”. In 2nd International Conference on Computing for Sustainable Global

Development, pages 320–324, New Delhi, India, March 2015.

92

[65] L. Uhsadel, A. Georges and I. Verbauwhede, “Exploiting Hardware Performance

Counters,” Proceedings of the 2008 5th Workshop on Fault Diagnosis and Tolerance in

Cryptography, 10 August 2008, pp. 59-67.

[66] L. O’Brien, P. Merson and L. Bass, “Quality Attributes for Service- Oriented

Architectures,” International Workshop on Systems Development in SOA Environments,

20-26 May 2007, p. 3.

[67] L. G. Williams and C. U. Smith, “PASA SM: A Method for the Performance

Assessment of Software Architectures,” Proceedings of the 3rd International Workshop

on Software and Performance, Rome, July 24-26, 2002, pp. 179- 189.

[68] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D.

Zagorodnov, “The eucalyptus opensource cloud-computing system,” in Proceedings of

the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid,

ser. CCGRID ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 124–131.

[69] “Amazon Elastic Compute Cloud,” 2012. [Online]. Available:

http://aws.amazon.com/ec2/

[70] Yadav, Sonali. ”Comparative study on open source software for cloud computing

platform: Eucalyptus, openstack and opennebula.” International Journal of Engineering

And Science 3.10 (2013): 51-54.

[71] octo Forster, Florian. ”Collectd, a daemon for collecting system performance statistics.”

(2015).

93

[72] Wang, Lizhe, et al., “eds. Cloud computing: methodology, systems, and applications”.

CRC Press, 2011.

[73] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and Migration Cost Aware

Application Placement in Virtualized Systems,” in Proc. of the 9th ACM/IFIP/USENIX

International Conference on Middleware, pp. 243–264, 2008.

[74] O. Sefraoui, M. Aissaoui, M. Eleuldj. “OpenStack: toward an open-source solution for

cloud computing“. International Journal of Computer Applications. 2012 Jan 1;55(3).

[75] OpenStack Nova: http://nova.openstack.org/, 2011.

[76] JungYul Choi, “Virtual Machine Placement Algorithm for Saving Energy and Avoiding

Heat Islands in High-Density Cloud Computing Environment,” J. KICS, vol. 41, no. 10,

pp. 1233-1235, Oct. 2016.

[77] F. Wuhib, R. Stadler, and H. Lindgren, “Dynamic resource allocation with management

objectives—Implementation for an OpenStack cloud,” in Proc. of Network and service

management (cnsm), international conference and workshop on systems virtualiztion

management (svm), pp. 309-315, 2012.

[78] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and K. Schwan, “vManage: Loosely

Coupled Platform and Virtualization Management in Data Centers,” in Proc. of the 6th

International Conference on Autonomic Computing (ICAC), pp. 127–136., 2009.

94

[79] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner, “JustRunIt:

Experiment-Based Management of Virtualized Data Centers,” in Proc. of the 2009

USENIX Annual Technical Conference, pp. 18–33., 2009.

[80] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser,

and D. Gmach, “1000 Islands: Integrated capacity and workload management for the next

generation data center,” in Proc. of the 5th International Conference on Auto-nomic

Computing (ICAC), pp. 172–181, 2008.

[81] X. Wang, and Y. Wang, “Coordinating Power Control and Performance Management

for Virtualized Server Clusters,” IEEE Transactions on Parallel and Distributed Systems

(TPDS), vol. 22, no. 2, pp. 245–259, 2011.

[82] G. Han, W. Que, G. Jia, and L. Shu, “An Efficient Virtual Machine Consolidation

Scheme for Multimedia Cloud Computing,” Sensors, vol. 16, no. 2, pp. 246, 2016.

[83] R. Nathuji, and K. Schwan, “VirtualPower: coordinated power management in

virtualized enterprise systems,” ACM SIGOPS Operating Systems Review, vol. 41, no. 6,

pp. 265-278, 2007.

[84] N. Bobroff, A. Kochut, K. “Dynamic placement of virtual machines for managing SLA

violations“. Proceedings of the 10th IFIP/IEEE International Symposium on Integrated

Network Management (IM), Munich, Germany, 2007; 119–128.

[85] B. Nandi, A. Banerjee, S. Ghosh, N. Banerjee. “Stochastic VM multiplexing for

datacenter consolidation“. Proceedings of the 9th IEEE International Conference on

Services Computing (SCC), Honolulu, HI, USA, 2012; 114–121.

95

[86] Keystone service documentation. http://es.slideshare.net/openstackindia/openstack-

keystone-identity-service?related=1.

[87] Nova service documentation.

http://docs.openstack.org/developer/nova/project_scope.html.

[88] Neutron service documentation.

http://docs.openstack.org/admin-guide-cloud/networking_arch.html.

[89] OpenStack: Openstack mitaka (2016). https://www.openstack.org/software/mitaka

[90] QEMU - open source processor emulator, 2009. http://www.qemu.org

[91] P. Singh, and S. Manickam. "Design and deployment of OpenStack-SDN based test-

bed for EDoS." Reliability, Infocom Technologies and Optimization (ICRITO)(Trends

and Future Directions), 2015 4th International Conference on. IEEE, 2015.

[92] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B.

O'Connor, P. Radoslavov, W. Snow, G. Parulkar. “ONOS: towards an open, distributed

SDN OS”. InProceedings of the third workshop on Hot topics in software defined

networking 2014 Aug 22 (pp. 1-6). ACM.

[93] DN Gde, Q Nguyen-Van, TV Duc, N Nguyen-Sinh, PJ Alvin, K Kim, D Choi. “Design

of service abstraction model for enhancing network provision in future network”. In

Network Operations and Management Symposium (APNOMS), 2016 18th Asia-Pacific

2016 Oct 5 (pp. 1-4). IEEE.

96

[94] Phaal, Peter, Sonia Panchen, and Neil McKee, “InMon corporation’s sFlow: A method

for monitoring traffic in switched and routed networks”, RFC 3176, 2001.

[95] Some practical considerations for monitoring in OpenStack cloud,

https://www.mirantis.com/blog/openstack-monitoring/

[96] Graphite – Scalable Realtime Graphing, http://www.graphite.wikidot.com/

[97] Host sflow, http://www.sflow.net/

[98] "Libvirt, the Virtualization API," http://libvirt.org/, Accessed in May. 2017.

[99] OpenStack Community, "Ceilometer," 2013, available at:

https://wiki.openstack.org/wiki/Ceilometer/. Accessed in: May 2017.

[100] "lookbusy -- a synthetic load generator,"

[101] Afaq Muhammad, Song Wang-Cheol; Seok Seung-Joon; Kang M.G., “sFlow

Monitoring System in a Disaster-Resilient Global SDN Testbed based on

KOREN/APII/TEIN Network”, International Journal of Computer Aided Engineering

and Technology.

[102] Muhammad Afaq, Wang-Cheol Song, “sFlow-Based Resource Utilization Monitoring

in Clouds”, Network Operations and Management Symposium (APNOMS), 2016 18th

Asia-Pacific (Kanazawa, Japan).

[103] Afaq Muhammad, Wang-Cheol Song, “Real-time Classification, Visualization, and

QoS Control of Elephant Flows in SDN”, The Journal of Korea Information and

Communications Society (J-KICS), Vol.42 No.03: 612-622 (March 2017).

97

[104] Afaq Muhammad; Zubair Amjad, Wang-Cheol Song, “A Framework for Orchestration

based on Live Migration of Virtual Machines”, KSII Conference 2016 (Seoul, Korea),

17(2), 121-122,

[105] (in review) Afaq Muhammad, Wang-Cheol Song, “A Framework for Resource

Utilization-based Dynamic Migration of VMs in OpenStack Clouds”, The Journal of

Korea Information and Communications Society (J-KICS).

[106] (in review) Afaq Muhammad, Wang-Cheol Song, “Service Orchestration over Clouds

and Networks”, The International Journal of Communication Networks and Distributed

Systems (IJCNDS).

[107] Afaq Muhammad, Wang-Cheol Song, “Deployment of OpenStack and its Integration

with ONOS SDN Controller”, 2017 Korea Information and Communications Society

(KICS) Conference, Jeju, South Korea.

[108] Yazir, Yagiz Onat, et al. "Dynamic resource allocation in computing clouds using

distributed multiple criteria decision analysis." Cloud Computing (CLOUD), 2010 IEEE

3rd International Conference on. IEEE, 2010.

[109] Abdelsamea, Amany, et al. "Virtual machine consolidation challenges: a

review." International Journal of Innovation and Applied Studies 8.4 (2014): 1504.

[110] Chowdhury, Mohammed Rashid, Mohammad Raihan Mahmud, and Rashedur M.

Rahman. "Implementation and performance analysis of various VM placement strategies

in CloudSim." Journal of Cloud Computing 4.1 (2015): 20.

98

[111] Chowdhury, Mohammed Rashid, Mohammad Raihan Mahmud, and Rashedur M.

Rahman. "Study and performance analysis of various VM placement

strategies." Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS International Conference

on. IEEE, 2015.

	I. Introduction
	1.1 Resrouce Orchestration
	1.2 VM Migration
	1.3 Monitoring of Utilized Resources
	1.4 Research Problems and Objectives
	1.5 Thesis Organization

	II. Related Work
	2.1 Cloud Computing
	2.1.1 Cloud Computing Methodologies
	2.1.2 The Cloud Architecture
	2.1.3 Cloud Services
	2.1.4 Cloud Applications

	2.2 Cloud Resource Orchestration
	2.3 Monitoring of Infrastrcutural Resources
	2.3.1 Existing Monitoring Frameworks

	2.4 Dynamic VM Migration.

	III. Overview of OpenStack and its Deployment
	3.1 Introduction
	3.2 Keystone
	3.2.1 Architecture

	3.3 Nova
	3.3.1 Architecture

	3.4 Neutron
	3.4.1 Architecture

	3.5 OpenStack Deployment.
	3.5.1 OpenStack-ONOS Integration
	3.5.2 Visualization of OpenStack Deployment in ONOS GUI

	IV. Resource Orchestration Framework and its Major Components
	4.1 Proposed Architecture
	4.2 Service Abstraction Model
	4.2.1 Service Abstraction Communicator

	4.3 The Orchestrator
	4.3.1 Network Resource Communicator
	4.3.1 Cloud Resource Communicator

	4.4 sFlow-based Monitoring System
	4.5 Implementation of Proposed Resource Orchestration Framework
	4.5.1 Performance Analysis of Proposed MRMC lgorithm

	V. A Framework for Resource Utilization-based Migration of VMs in Cloud
	5.1 System Model
	5.1.1 Stats Aggregator
	5.1.2 Stats Database
	5.1.3 Migration Manager.
	5.1.4 Algorithm Repository

	5.2 Proposed Structure and Algorithms
	5.2.1 Overload Detection Algorithm
	5.2.1 VM Selection Algorithm
	5.2.1.1 VM Selection Critera

	5.2.1 VM Allocation Algorithm

	5.3 Experiment and Results

	VI. Conclusions
	Bibliography

<startpage>15
I. Introduction 1
 1.1 Resrouce Orchestration 3
 1.2 VM Migration 5
 1.3 Monitoring of Utilized Resources 6
 1.4 Research Problems and Objectives 7
 1.5 Thesis Organization 9
II. Related Work 11
 2.1 Cloud Computing 11
 2.1.1 Cloud Computing Methodologies 13
 2.1.2 The Cloud Architecture 15
 2.1.3 Cloud Services 19
 2.1.4 Cloud Applications 21
 2.2 Cloud Resource Orchestration 23
 2.3 Monitoring of Infrastrcutural Resources 25
 2.3.1 Existing Monitoring Frameworks 27
 2.4 Dynamic VM Migration. 28
III. Overview of OpenStack and its Deployment 32
 3.1 Introduction 32
 3.2 Keystone 34
 3.2.1 Architecture 35
 3.3 Nova 36
 3.3.1 Architecture 36
 3.4 Neutron 38
 3.4.1 Architecture 39
 3.5 OpenStack Deployment. 40
 3.5.1 OpenStack-ONOS Integration 42
 3.5.2 Visualization of OpenStack Deployment in ONOS GUI 43
IV. Resource Orchestration Framework and its Major Components 45
 4.1 Proposed Architecture 45
 4.2 Service Abstraction Model 46
 4.2.1 Service Abstraction Communicator 48
 4.3 The Orchestrator 49
 4.3.1 Network Resource Communicator 51
 4.3.1 Cloud Resource Communicator 52
 4.4 sFlow-based Monitoring System 55
 4.5 Implementation of Proposed Resource Orchestration Framework 57
 4.5.1 Performance Analysis of Proposed MRMC lgorithm 58
V. A Framework for Resource Utilization-based Migration of VMs in Cloud 62
 5.1 System Model 64
 5.1.1 Stats Aggregator 65
 5.1.2 Stats Database 66
 5.1.3 Migration Manager. 66
 5.1.4 Algorithm Repository 66
 5.2 Proposed Structure and Algorithms 67
 5.2.1 Overload Detection Algorithm 68
 5.2.1 VM Selection Algorithm 70
 5.2.1.1 VM Selection Critera 72
 5.2.1 VM Allocation Algorithm 73
 5.3 Experiment and Results 74
VI. Conclusions 81
Bibliography 84
</body>

