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SUMMARY 

Panax ginseng C.A Meyer (Korean wild ginseng) is an ancient and medicinal plant that 

wildly used all over the world. The most beneficial compound involved inside of ginseng 

plants is ginsenoside, with the high attentions have been paid to ginseng researches, more and 

more ginsenosides had been extracted and identified from ginseng plants. Up to now, more 

than 70 ginsenosides have been reported from natural and processed ginseng. In the meantime, 

various functional genes which are engaged in ginsenosides biosynthesis pathway come to be 

known, including UDP-glycosyltransferases (UGTs). UGTs play roles in the final step of 

ginsenoside synthesis, after glycosylate reactions catalyzed by UGTs result in variety of 

ginsenosides. In order to explore the function of UGTs in ginenosides biosynthesis pathway 

and increase the content of ginsenosides in ginseng adventitious roots, two endogenous UGTs 

genes (PgUGT74AE2 and PgUGT94Q2) were transformed to Korean wild ginseng by 

Agrobacterium-mediated transformation. The adventitious roots induction procedure was 

optimized by applying different rooting hormones, and induced adventitious roots directly 

from callus. Because different phenotypes were observed in different hormone rooting 

medium during culturing, morphological and histological analysis were applied for recording. 

In case of hormones and different resources give rise to the concentration of ginsenoside, high 

performance liquid chromatography (HPLC) was supposed for ginsenoside contents analysis 

for both wild-type and transgenic lines. Callus derived and adventitious roots derived roots 

rooting by IBA was observed increasing of total content of main ginsenosides (Re, Rg1, Rc, 

Rb1, Rb2, Rd), especially ginsenoside Rb2. As callus acting as the most suitable host for plant 
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genetic engineering, transformed callus derived roots rooting by IBA was supposed to 

produce transgenic roots in brief period. PgUGT74AE2 and PgUGT94Q2 transgenic lines 

generated within 6 month, including callus induction, transformation, roots induction from 

transformed callus. Transgenic candidates of PgUGT74AE2 and PgUGT94Q2 were selected 

by Immuno strip test (Agrastrip GMO, LL test Strips) as first confirmation. 9 lines of 

PgUGT74AE2 (74 L2, 74 L4, 74 3L2, 74 L2-2, 74 T2, 74 T3, 74 T5, 74 T6, 74 T7) and 7 

lines of PgUGT94Q2 (94 L2, 94 T2, 94 T4, 94 T5, 94 T8, 94 T11, 94 T12) were screened 

from transgenic candidates. Total RNA was extracted from all transgenic lines, and cDNA 

synthesized from total RNA, cDNA used as template for RT-PCR analysis and bar gene 

confirmation. Genomic DNA extracted from all transgenic lines to performed southern 

blotting to analyze T-DNA region insertion copies. Incorporation with HPLC results of 

transgenic lines, PgUGT74AE2 transgenic lines have 4 lines (74 L2-2, 74 L2, 74 L4, 74 T2) 

and PgUGT94Q2 transgenic lines have 4 lines (94 L2, 94 T4, 94 T2, 94 T5) gained 

ginsenoside contents increasing compared with wild-type ginseng. And one unknown 

compound among these 8 transgenic lines showed content enhancement. Further analysis of 

unknown compound structure is in the management. 
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INTRODUCTION 

Ginseng (Panax ginseng C.A. Meyer) is an important medicinal plant that is widely 

cultivated in eastern countries. The roots have been used as drugs for over 2000 years in 

oriental countries and also rapidly expanding in western countries as complementary and 

alternative medicine (Shim et al. 2009). The beneficial effects of ginseng are attributed to 

glycosylated tetracyclic triterpene compounds, also known as ginsenosides, are mainly 

produced in ginseng roots and reported mostly concentrated in adventitious roots (Han et al. 

2013). Ginsenosides are mainly consisted of two parts named oleanane- and dammarene-type 

ginsenosides that generated at first cyclization of 2,3-oxidosqualene. And dammarene-type 

triterpenes are classified into two groups, protopanaxadiol- (PPD) and protopanaxatriol-type 

(PPT) ginsenosides, continuously with different glycosylation and result in various 

ginsenosides. More than 40 different ginsenosides producing various pharmacological effects 

have been identified in ginseng roots (Jung et al. 2014), and more than 70 ginsenosides have 

been investigated from ginseng plants including these involved in fresh ginseng (FG), 

suncured ginseng (SG) and red ginseng (RG) (Guo et al. 2014). Ginseng is a perennial plant 

that has a long production cycle (4-6 years) and greater than 3 years of juvenile period are 

required for producing seeds (Ahn et al. 1996; Choi et al. 1998), which has made the 

generation of superior genotypes by conventional breeding toughly to handle. Therefore, 

many attempts have been carried out to achieve more rapid ginseng plant regeneration 

procedure and increasing production of the ginsenosides. Biotechnological techniques have 

been applied in previous researches, such as classical tissue culture, bioreactor culture, 

Agrobacterium-mediated hairy root production, elicitors using in cell cultures and mutation 
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breeding by γ-irradiation (Yoshikawa et al. 1987; Bae et al. 2006; Kim et al. 2013).  

P. ginseng is a difficult species to manipulate in vitro, however, the regeneration of 

ginseng has generally been accomplished by using somatic embryogenesis in callus derived 

from mature root tissues, callus derived from zygotic embryo (Lee et al. 1990), protoplast 

derived from callus, and cotyledons, aging callus produced numerous embryoids (Arya et al. 

1991). Re-cultured of embryoids in MS solid medium supplemented with benzyladenine 

(6-BA) and gibberellic acid (GA3) resulted in profuse plantlet regeneration (Chang et al. 

1980). Metabolic engineering of P. ginseng thorough the transgenic adventitious root culture 

can be an important technique to upgrade medicinal value and produce efficient production of 

secondary metabolites from roots. Cotyledonary explants of ginseng zygotic embryos were 

co-cultured with Agrobacterium tumefaciens strain LBA4404 harboring binary vector carried 

with β-glucuronidase (GUS) gene, and transgenic plants were obtained by somatic 

embryogenesis (Lee et al. 1994). A rapid and efficient genetic transformation of P. ginseng by 

a plasmolyzing pretreatment of cotyledon explants was reported by Choi et al. (2001). 

However, more than 1 year is required to induce transgenic adventitious roots from 

regenerated transgenic plantlets via somatic embryogenesis. We are looking forward to find a 

new process to generate adventitious roots directly from calluses in brief period. Various 

hormone combinations were used to optimized ginseng adventitious roots induction and 

growth on the basis of previous researches. 

At present, many novel UDP-glycosyltransferases (UGTs) genes which involved inside 

of ginsenosides biosynthesis have been reported by using advanced sequencing tools. It is 

reported that putative UDP-glycosyltransferases play a complex and important role in the 
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synthesis and metabolism of ginsenosides (Figure 2.)(Wang et al. 2011). Since the first UGT 

(UGTPg1) were reported by Yan et al. (2014), soon afterwards, consecutive UGTs and 

encoded genes were been coherented in intricate ginsenosides biosynthesis pathway. UGTPg1 

from P. ginseng was characterized as a regio-specific enzyme which glycosylate the C20-OH 

position of PPD and also its derived ginsenosides (Yan et al. 2014). More currently, two 

UGTs named PgUGT74AE2 and PgUGT94Q2 from P. ginseng were characterized to catalyze 

the glycosylation of C3-OH of PPD to yield Rh2 and to elongate a glucose moiety of Rh2 and 

F2 to form Rg3 and Rd respectively (Jung et al. 2014; Wang et al. 2015; Wei et al. 2015). Not 

yet, no information is available about the UGTs transgenic lines by over-expressing of UGTs 

genes in P. ginseng plants. In this paper, we report an efficient procedure for producing 

transgenic lines of P. ginseng adventitious roots based on Agrobacterium-mediated 

transformation and root induction directly from wild-type ginseng somatic embryos. Two 

UDP-glycosyltransferases (UGTs) were supposed to be transferred into and over-expressed in 

Korean wild ginseng to enhance concentration of ginsenosides Rh2 and Rg3 or other possible 

related ginsenosides.  

Ginsenosides: Triterpenoid saponins are secondary metabolites of isoprenoid compounds 

and mostly exist in higher plants. Ginsenosides are considered to be the primary components 

of the ginseng and have been verified mostly contained in adventitious roots. P. ginseng roots 

contain at least 4% ginsenosides by dry weight (Shibata et al. 2001). Six dammarane-type 

tetracyclic triterpenes (ginsenosides Rb1, Rb2, Rc, Rd, Re and Rg1) are reported as the major 

ginsenoside constituents (Figure 1.). Protopanaxadiol (PPD) is the reasonable substrate lied 

upstream of PgUGT74AE2 and PgUGT94Q2 encoded pathway. F2, S-Rh2, R-Rh2 and S-Rg3 
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are the possible products after PgUGT74AE2 and PgUGT94Q2 encoded glycosylation 

according to published paper (Jung et al. 2014). It has been reported that ginsenosides Rh2 

and Rg3 are potent medicinal agents for inducing tumor cell apoptosis (Min et al. 2006; Park 

et al. 1997), inhibiting tumor cell proliferation (Kim et al. 2004). Rh2 and Rg3 are also 

potentially effective candidates for preventing metabolic disorders of human beings, such as 

diabetes and obesity, via activating the AMPK signaling pathway (Hwang et al. 2007; Park et 

al. 2008). Indeed, as ginsenosides Rh2 and Rg3 are the versatile compound value of 

infrequent bioactivities, a huge demand has been existed to manufacturing them for 

commercial use. Whereas, their contents inside of ginseng are extremely low in natural 

ginseng, the contents of Rh2 and Rg3 can be increased markedly to 0.001% and 0.015%, 

respectively, in red ginseng, which the production process performed by steaming and drying 

harvested ginseng root (Shibata et al. 2001).  

UDP-glycosyltransferases: Glycosylation of natural products in plants is catalyzed by 

glycosyltransferases (GTs), leading to changes in hydrophilicity, stability, and subcellular 

localization, and thus the chemical properties and bioactivity of the natural products (Bowles 

et al. 2006). Enzymes belonging to the multigene families of oxidosqualenecyclases, and 

UDP-glycosyltransferases are key players in biosynthesis of plant triterpenoid saponins. 

(Augustin et al. 2011). GTs are members of a multigene superfamily that catalyzes the 

transfer of sugar moieties to specific acceptors. The GTs that take usage of uridine 

diphosphate (UDP)-activated sugar molecules as donors are referred as 

UDP-glycosyltransferases (UGTs) (Barvkar et al. 2012; Ross et al. 2001). Nevertheless, only 

a limited number of UGTs characterized to glycosylate triterpenoid aglycones have been 
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exposed from plants, such as Medicago truncatula (Achnine et al. 2005), Saponaria vaccaria 

(Meesapyodsuk et al. 2007), Barbarea vulgaris (Augustin et al. 2012), Glycine max (Shibuya 

et al. 2010), and P. ginseng (Yan et al. 2014; Wang et al. 2015). Two endogenous genes 

PgUGT74AE2 and PgUGT94Q2 from P. ginseng were characterized to catalyze the 

glycosylation of C3-OH of PPD to yield Rh2 and to elongate a glucose moiety of Rh2 and F2 

to form Rg3 and Rd respectively, and convert reactions have been demonstrated in yeast 

system (Jung et al. 2014). 
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Figure 1. Structures and accurate masses of ginsenosides. 
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Figure 2. Putative ginsenosides biosynthesis pathway in P. ginseng. (Wang et al. 2011) 

IPP, isopentenyl diphosphate; β-AS, β-amyrin synthase; DS, dammarenediol-II synthase; GT, 

UDP-glycosyltransferases. 
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MATERIALS AND METHODS 

Callus induction and selection 

Adventitious roots derived from Korean wild ginseng were provided by Sunchon National 

University, Sunchon, Korea. The adventitious roots were generated as described previously 

and have been maintained in our laboratory for over 10 years (Zhang et al. 2011). Calluses 

were induced from fresh adventitious roots remained on MS solid medium with 2mg/L NAA 

and 0.25mg/L IAA in plates culture. Wild-type adventitious roots were sectioned into 10 mm 

in length and were placed on Murashige and Skoog (MS) solid medium supplemented with 

0.5mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), 0.3mg/L kinetin, and 3% sucrose and media 

were solidified with 0.3% Gelrite (Zhang et al. 2014). All media were adjusted to pH 5.8 prior 

to autoclaving. Ten pieces of adventitious roots were placed on each petri dish. Callus 

formation was observed after 4 weeks of culture. The induced callus was sub-cultured at 3-wk 

intervals on the same medium for induction of embryogenic callus and maintenance. After 2 

months of culture, we selected the compact and strong pro-embryogenic masses and used for 

somatic embryos induction. Somatic embryos induction medium was MS medium 

supplemented with 0.5mg/L 2,4-D. Induced somatic embryos were inoculated on MS solid 

medium for enlarge cultivation with 0.5mg/L 2,4-D every 3 weeks. All media were adjusted 

to pH 5.8 prior to autoclaving. All cultures were incubated at 23 ± 2 ℃ in the dark. 

Optimization of adventitious roots induction procedure 

 Wild-type ginseng adventitious roots were used to induce calluses, from calluses to form 

somatic embryos and then induce roots from somatic embryos directly. We applied two 
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different roots induction medium according to previous research paper (Zhang et al. 2014 and 

Huang et al. 2010), and measured the root induction efficiency of both roots and calluses 

while the culturing procedure. Somatic embryos and adventitious roots were inoculated onto 

MS solid media containing 5.0 mg/L indole-3-butric acid (IBA), 30 g/L sucrose and 0.3% 

gelrite ( IBA medium) ,  and MS solid medium containing 2 mg/L NAA, 0.25mg/L IAA and 

0.3% gelrite (NI medium). Also hormone-free MS solid medium was used for control. Three 

replicates were prepared for each treatment. Roots performed further development in conical 

flask containing 50ml liquid MS medium supplemented with 5.0 mg/L IBA or 2 mg/L NAA, 

0.25mg/L IAA, respectively, on a rotary shaker (120 rpm) at 23 ± 2 ℃ and sub-cultured every 

4 weeks. Plates culturing of ginseng roots were implemented in dark, then further culturing in 

flasks were maintained under a 16-h (light)/8-h (dark) photoperiod with light supplied by 

white fluorescent tubes at an intensity of 30 µmol m
–2

 s
–1

. 

Morphologic and histological analyses of CR and AR 

Comparison of two different roots induction medium was showed in morphological 

differences, such as growth ratio, secondary root number, length and diameter. Fresh weight 

(FW) and dry weight (DW) were measured after two months culture either on plates or in 

flasks culture. Harvest roots was rinsed by tap water once and then put on tissue paper for 10 

minutes and blotting with tissue paper to remove residual water, straight after, measure about 

FW of roots. And DW was recorded after fresh roots were dried to constant weight. Root 

growth ratio was calculated as following formula (Yu et al. 2002). 

Growth ratio= Harvest DW (g)/Inoculated DW (g) 
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The length of secondary roots was measured by calipers. The number of occurred 

secondary roots was counted from main roots body. The diameters of secondary roots were 

measured from microscope and Nikon NIS-Elements system by using measure scale. Newly 

developed adventitious roots of all treatments were selected for checking callus formation 

ability. Callus induction medium referred to callus induction and selection section.  

Gene cloning and vectors construction 

Total RNA was extracted from wild-type ginseng adventitious roots by using Trizol 

(Invitrogen, Carlsbad, CA, USA) reagent, and cDNA synthesized from total RNA by using 

M-MLV Reverse Transcriptase kit (Promega, Seoul, Korea). Synthesized cDNA used as 

template and gateway cloning method used for PgUGT74AE2 (JX898529) and PgUGT94Q2 

(JX898530) genes cloning. Specific primers were designed according to registered sequences 

on NCBI (Table 1.). Pfu DNA Polymerase (Promega, Seoul, Korea) is supposed to generate 

blunt ends and yield high fidelity PCR products. Then PCR products ligated into pENTR 

vector according to pENTR™/D-TOPO® cloning kit protocol (Invitrogen, Carlsbad, CA, 

USA). Ligated pENTR vector was transformed to competent TOP10 E. coli cells. Positive 

transformant was selected and isolated plasmid DNA, and then confirm the sequence. pENTR 

vector contains target genes sub-cloned into destination vectors (pB2GW7,0) by LR 

recombination (Invitrogen, Carlsbad, CA, USA). LR reaction mixture transformed to 

competent TOP 10 E. coli cells, spread on LB solid medium contained 50mg/L spectinomycin. 

Harvested positive transformant and extracted plasmid DNA then transferred to 

Agrobecterium EHA105 competent cells, and spread on YEP solid medium contained 25 
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mg/L rifampicin and 50mg/L spectinomycin. Harvested positive transformant make 

Agrobacterium cell stocks which contained transgene and used for plant transformation. 

Agrobacterium-mediated transformation   

Selected calluses were pre-treated in hormone-free MS liquid medium containing 30g/L 

sucrose for 1 day. A. tumefaciens EHA105 cells cultured in YEP medium with 25mg/L 

rifampicin and 50mg/L spectinomycin for 24h at 28℃, 180rpm. The pre-treated calluses were 

immersed in the suspension of A. tumefaciens EHA105 carried with destination vectors in 

hormone-free MS liquid medium containing 100 mg/L acetosyringone. After 24h cultured in 

dark on a gyratory shaker, the calluses were placed on sterilized filter paper for 10 min to 

remove extra Agrobacterium cells, and then cultured on hormone-free MS solid medium 

containing 100 mg/L acetosyringone, 3% sucrose, 0.3% gelrite at 23±2°C in the dark 3 days 

for co-culture. Thereafter, the calluses were cultured on MS medium with 3% sucrose and 600 

mg/L cefotaxime 3 weeks for elimination, and then transferred to selection MS solid medium 

with 600 mg/L cefotaxime, 1mg/L PPT，5mg/L IBA and 0.3% gelrite. All media were 

adjusted to pH 5.8 prior to being autoclaved at 120°C for 15 min.  

Production of transgenic roots 

 Transformed calluses were inoculated onto MS solid media containing 5.0 mg/L 

indole-3-butric acid (IBA), 600mg/L cefotaxime, 1mg/L PPT, 30 g/L sucrose and 0.3% gelrite, 

sub-cultured every 3 weeks. Newly developed roots from transformed calluses were selected 

and cut from resourced calluses to perform further development on new solid root induction 

medium, and amplified in conical flasks containing 50ml liquid MS medium supplemented 
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with 5.0 mg/L IBA, 600mg/L cefotaxime, 1mg/L PPT on a rotary shaker (120 rpm) at 23 ± 2 ℃ 

and sub-cultured every 4 weeks. 

Genotype analysis of transgenic candidates  

Newly developed roots from transfected calluses were supposed as transgenic candidates. 

Immuno strip test (Agrastrip GMO, LL test Strips) used for the most convenient method to 

confirmed genetically modified organism (GMO). For the first confirmation of transgenic 

lines, we chose the transgenic candidates length reached about 2cm, half kept for strip test, 

and another half remained on root induction medium for further development. Transgenic 

lines would get two bands on test strips, while wild-type lines would gain only one band, and 

under bands indicated on strips are the indication of bar gene encoded protein, PAT 

(phosphinothricin acetyltransferase) protein. With the first step confirmation, PgUGT74AE2 

transgenic lines and PgUGT94Q2 transgenic lines were selected and amplified in conical 

flask containing 50ml liquid MS medium supplemented with 5.0 mg/L IBA, 600mg/L 

cefotaxime, 1mg/L PPT on a rotary shaker (120 rpm) at 23 ± 2 ℃ and sub-cultured every 6 

weeks. Each line sampled with liquid nitrogen grounding in mortar, and collected samples 

divided to extract total RNA and genomic DNA. Total RNA then performed to do cDNA 

synthesis, cDNA of each lines was used as template to do RT-PCR (Reverse 

transcript-polymerase chain reaction) to check relative expression of transgene (Table 1), 

genomic DNA from transgenic lines was used for Southern blotting to analyze T-DNA 

integration and to confirm the copy number.  
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Extraction and determination of crude saponin 

Extraction method of ginsenosides from ginseng roots followed and modified from the 

method of Jin et al. (2012) and Su et al. (2016). Ginseng samples of wild-type and transgenic 

lines were accurately weighed (approximately 0.5 g) and ultrasonic-extracted with 2.0 ml of 

methanol in an ultrasonic water bath for 15 min at the temperature of 40℃, each sample 

repeats ultrasonic extraction for 3 times and eventually get 6 ml volume in total. The extracts 

were transferred into pear-shaped flasks and evaporated to dryness at 40℃ with a vacuum 

rotary evaporator. Then, the residue was dissolved in 1.0 ml of methanol and filtered by a 0.22 

μm PTFE syringe filter before HPLC analysis (Figure 3). 

HPLC analysis of wild-type and transgenic lines 

  For ginsenosides assay of wild-type and transgenic lines, the HPLC (High Performance 

Liquid Chromatography) conditions followed Jung et al. (2014) and made some modifications 

(Table 2). HPLC running conditions showed as following table (Table 3.). All the solvents 

were belonged to HPLC grades. Ginsenoside standards (Re, Rg1, Rb1, Rc, Rb2, Rd, Rh2 and 

Rg3) were purchased from SHANGHAI ZZBIO CO., LTD. An ODS C18 column (Shiseido, 

Japan) was selected as stationary phase, mobile phase including Solvent (A): Acetonitrile, 

Solvent (B): Distilled water. Ginsenoside standard solutions were prepared in 100% HPLC 

grade methanol. A series gradient concentration (50ppm, 100ppm, 400ppm) of each standard 

were tested for calibration curve. 

Analysis of ginsenoside contents was performed according to Son et al. (1999a) and Yu et 

al. (2000). The total ginsenoside content was calculated as the sum of individual ginsenoside 
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fractions. 

The ginsenoside content of ginseng adventitious roots was calculated as: 

(GC: ginsenoside content; SGC: sample ginsenoside concentration from HPLC; SV: 

sample volume; AR: adventitious root derived from root itself; CR: adventitious root derived 

from callus which induced from AR) 

 

 

 

Statistical analysis 

Statistical analysis achieved by using SPSS (Statistical Product and Service Solutions) 

system, IBM SPSS Statistics version 22.0.  Mean and standard errors were measured 

throughout datas and statistical significance between the mean values was assessed by 

Duncan’s multiple range tests. A probability of P < 0.05 was considered as significantly. 
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Table 1. Primers sets used in experiments.  

 

 

 

 

 

 

 

 

 

 

PCR types  Genes  Oligo sequences (5’->3’)  

Gateway 

cloning 

PgUGT74AE2  FW:CACCATGGATAACCAAAATGGTAGA  

RE: CTATTGTTCATCTTTCTTCTTCTT  

 PgUGT94Q2  FW:CACCATGCTGAGCAAAACTCACATT  

RE:TCAGGAGGACACAAGCTTTGAAAT  

RT-PCR  PgUGT74AE2  FW: CGAACCCGAACGTACAAAGCT  

RE: CCCAAACTCAATGCCTCAACC  

 PgUGT94Q2  FW: TCAAAGGGTAGGAGACAGAGG  

RE: GCTTACCATTCAAAGGCTGAT  

 18s rRNA  FW: ATGATAACTCGACGGATCGC 

RE: CCTCCAATGGATCCTCGTTA  

Probe  PgUGT74AE2  FW: GCTCGGTAGTCTACGCCTCAT  

RE: CTATTGTTCATCTTTCTTCTTCTT  

 PgUGT94Q2  FW: GGCTGAATCTACAGTGGTGTT  

RE:TCAGGAGGACACAAGCTTTGAAAT  

 Bar  FW: AAGTCCAGCTGCCAGAAACCCAC 

RE: GTCTGCACCATCGTCAACCACTA  



 

18 

Table 2. HPLC conditions for ginsenoside analysis. 

 

 

 

 

 

 

 

 

Parameter  Condition 

Instruments  

Shimadzu HPLC system 

(DGU-20A, LC-20AD, SIL-20A, CTO-20A, SPD-M20A, 

CBM-20A) 

Column  

Capcell-pak C18 MG (4.6 × 250 mm) column, 5µm 

(Shiseido, Japan) 

Mobile phase  Distilled water and Acetonitrile 

Flow rate  1 mL/min 

Detector   Wavelength: 203 nm (PDA) 

Scan wavelength  190 - 400 nm 

Column temperature  35℃ 

Sample injection  20 μL 

Run time  28 min 
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Table 3. Mobile phase of HPLC gradient conditions for ginsenoside analysis. 

Solvent (A): Acetonitrile, Solvent (B): Distilled water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Retention time (min)              Solvent (A)               Solvent (B) 

0 

8 

12 

20 

20.1 

28 

32 

65 

100 

100 

32 

32 

68 

35 

0 

0 

68 

 68 
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Table 4. Media composition for ginseng tissue culture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Medium  Composition  

Callus induction  MS medium, 30 g/L sucrose, 0.5 mg/L 2,4-D, 0.3 mg/L 

kinetin, 3 g/L Gelrite, pH 5.8.  

Callus growth  MS medium, 30 g/L sucrose, 0.5 mg/L 2,4-D, 0.3 mg/L 

kinetin, 3 g/L Gelrite , pH 5.8.  

Somatic embryos induction  MS medium, 30 g/L sucrose, 0.5 mg/L 2,4-D, 3 g/L Gelrite , 

pH 5.8.  

Root 

induction  

IBA  MS medium, 30 g/L sucrose, 3 g/L Gelrite , 5mg/L IBA, pH 

5.8.  

NI  MS medium, 30 g/L sucrose, 3 g/L Gelrite , 2mg/L NAA, 

0.25mg/L IAA, pH 5.8.  
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Table 5. Media compositions used for transformation. 

 

 

 

 

Medium  Composition  

Callus induction  MS medium with 30 g/L sucrose, 0.5 mg/L 2,4-D, 0.3 mg/L kinetin, 3 

g/L Gelrite , pH 5.8.  

Callus growth  MS medium, 30 g/L sucrose, 0.5 mg/L 2,4-D, 0.3 mg/L kinetin, 3 g/L  

Gelrite , pH 5.8.  

Somatic embryos 

induction  

MS medium, 30 g/L sucrose, 0.5 mg/L 2,4-D, 3 g/L Gelrite , pH 5.8.  

Agrobacterium 

culture  

Yep medium, 50 mg/L spectinomycin, 25 mg/L rifampicin, pH 7.0.  

Agrobacterium 

resuspension  

MS medium, 100 mg/L acetosyringone, 30 g/L sucrose, pH 5.8.  

Co-cultivation  MS medium, 30 g/L sucrose, 3 g/L Gelrite , 100 mg/L acetosyringone, 

pH 5.8.  

Elimination  MS medium, 30 g/L sucrose, 3 g/L Gelrite , 300 mg/L cefotaxime, pH 

5.8.  

Selection  MS medium, 30 g/L sucrose, 3 g/L Gelrite , 0.5 mg/L 2,4-D, 0.3 mg/L 

kinetin, 300 mg/L cefotaxime, 3 mg/L PPT, pH 5.8.  

Shoot induction  MS medium, 30 g/L sucrose, 3 g/L Gelrite , 300 mg/L cefotaxime, 3 

mg/L PPT, 5 mg/L GA3, pH 5.8.  

Root induction  MS medium, 30 g/L sucrose, 3 g/L Gelrite , 300 mg/L cefotaxime, 

5mg/L IBA and 1 mg/L PPT, pH 5.8.  
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Figure 3. Schematic extraction procedure of crude saponin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

23 

RESULTS 

Callus induction and selection 

During the culture procedure, root segments started swelling after 2 weeks culture, 

proembryogenic mass (PEMs) produced firstly on the MS solid medium with 2,4-D and 

kinetin after 1 month culturing. Then PEMs were divided to pieces, around 0.5mm in 

diameter for following somatic embryos induction, kinetin was removed and white and strong 

somatic embryos gained on somatic embryos induction medium, somatic embryo calluses 

were used for Agrobacterium-mediated transformation and adventitious roots induction host.  

Optimization of roots induction procedure and comparison between AR and CR 

 Callus-derived roots (CR) induced from compact and strong callus masses within 1 month, 

identical phenomenon were discovered in both roots derived adventitious roots (AR) and 

callus derived adventitious roots (CR) in roots induction procedure though incubating with 

different rooting hormone (Figure 4). Measurements of newly developed adventitious roots 

inducing efficiency on different rooting medium were recorded after 6 weeks of rooting 

culture, also first derived roots segments from callus were tested for rooting ability. IBA 

rooting medium gained significant enhancements for callus, CR and AR in secondary roots 

inducing number (Table 6), behaved similar performances in diameter of secondary roots 

among each treatment, but uncontemplated with extraordinary shorter length of secondary 

roots than NI rooting medium (Figure 4). As for growth ratio of adventitious roots 

development, IBA treatments behaved exemplary both in flask shaking liquid culture and 

plate solid culture (Figure 5). In the case of callus formation ability, adventitious roots rooting 
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by NAA and IAA medium presented higher callus formation frequency than IBA rooting 

medium (Table 7). 

Production of transgenic roots and genotype analysis 

 Transgenic candidates generated from somatic embryos after 2 month sub-culturing on roots 

induction medium, MS solid medium with 5mg/L IBA, PPT 1mg/L and 300mg/L cefotaxime. 

Bar gene confirmation and RT-PCR (Reverse transcript-polymerase chain reaction) analysis 

of and PgUGT74AE2 and PgUGT94Q2 transgenic lines (CRIBA is supposed as wild-type 

control) were shown in Figure 7 and Figure 9. There had 5 lines (T2, T4, T5, T8, L2) of 

PgUGT94Q2 transgenic lines and 8 (T2, T6, L2-2, T7, L2, L4, T5, 3L2) of PgUGT74AE2 

transgenic lines gained higher relative expression level while compared with wild-type 

control. Incorporation with southern blot results, 7 lines (T2, T4, T5, T8, T11, T12, L2) of 

PgUGT94Q2 transgenic lines appeared 4, 2, 1, 1, 3, 1 and 2 bands respectively, 9 lines (L2, 

L4, T2, T7, T3, T5, T6, L2-2, 3L2) of PgUGT74AE2 transgenic lines appeared 1, 3, 3, 1, 7, 2, 

1, 1, 2 bands respectively. Single copy of transgenic lines (PgUGT94Q2 T5, PgUGT74AE2 

L2-2, PgUGT74AE2 L2) exerted high relative expression, two copies (PgUGT94Q2 T4, 

PgUGT94Q2 L2), triple copies (PgUGT74AE2 L4, PgUGT74AE2 T2) and quadruple copies 

(PgUGT94Q2 T2) also showed up high relative expression, while single copy of 

PgUGT94Q2 T12 and triple copies of PgUGT94Q2 T11 acted out low relative expression, 7 

copies of PgUGT74AE2 acted out low relative expression (Figure 7-10). HPLC analysis of all 

transgenic lines was carried out to check T-DNA insert effect and ginsenosides variation.  
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HPLC analysis of wild-type and transgenic lines 

CRIBA treatment showed highest concentration of ginsenosides among all 4 treatments 

(ARIBA, CRIBA, ARNI and CRNI) (Figure 10-11). CRIBA was used as wild-type control 

and contrasted with transgenic lines, PgUGT74AE2 transgenic groups have 4 lines (74 L2-2, 

74 L2, 74 L4, 74 T2) and PgUGT94Q2 transgenic groups have 4 lines (94 L2, 94 T4, 94 T2, 

94 T5) gained ginsenosides contents increasing. And the content of one unknown compound 

increased in these 8 transgenic lines (Figure 12-15). Transgenic line PgUGT74AE2 T2 

showed the highest ginsenosides concentration among wild-type control and other 

PgUGT74AE2 transgenic lines, and 1.4-fold higher than that of wild-type ginseng. 

Transgenic line PgUGT94Q2 T2 showed the highest ginsenosides concentration among 

wild-type control and other PgUGT94Q2 transgenic line, and 1.3-fold higher than that of 

wild-type ginseng. 
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Table 6. Comparison of different medium for ginseng adventitious roots induction from 

calluses and adventitious roots
1) 

1) Data were collected after 6 weeks of culture. The results represent the means standard error 

obtained from three repeats. Different corresponding letters within a column are significant 

different at p < 0.05 by Duncan’s multiple range test.  

Non: Hormone-free. 

NI: MS solid medium supplemented with 2mg/L NAA, 0.25mg/L IAA and 0.3% Gelrite. 

IBA: MS solid medium supplemented with 5mg/L IBA and 0.3% Gelrite. 

 

 

 

 

 

 

Explant types Induction  

medium 

Number of 

inoculated 

explants 

Number of 

induced roots 

from each 

explants 

Frequency of 

roots formation 

（%） 

Callus Non 30 0.67±1.27
e
 33±22.14 

NI 30 16.53±2.98
cd

 100 

IBA 30 20.77±4.72
bc

 100 

Adventitious root Non 30 1.57±1.81
e
 49±21.32 

NI 30 13.3±2.9
de

 100 

IBA 30 24.03±6.14
a
 100 

Callus-derived 

adventitious root 

Non 30 0.37±0.81
e
 61±35.42 

NI 30 12.07±3.22
de

 100 

IBA 30 24.1±5.36
a
 100 
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Table 7. Frequency of callus formation of ginseng adventitious roots from AR and CR 

groups
1) 

1) Data were collected after 6 weeks of culture. The results represent the means standard error 

obtained from three repeats. Different corresponding letters within a column are significant 

different at p < 0.05 by Duncan’s multiple range tests.  

ARNI: Adventitious roots induced by NI medium and induced callus on callus induction 

medium. 

ARIBA: Adventitious roots induced by IBA medium and induced callus on callus induction 

medium. 

CRNI: Callus-derived adventitious roots induced by NI medium and induced callus on callus 

induction medium 

CRIBA: Callus-derived adventitious roots induced by IBA medium and induced callus on 

callus induction medium. 

Callus induction medium: MS solid medium supplemented with 0.5mg/L 2,4-D, 0.3mg/L 

kinetin, 30g/L sucrose and 0.3% Gelrite. 

 

Roots types Number of root 

explants 

Number of root explants 

forming callus 

Callus induction 

frequency（%）  

ARNI 30 15.67±1.53
a
 47.78±5.09 

ARIBA 30 5.67±2.52
b
 20±5.78 

CRNI 30 14.33±1.53
a
 52.22±5.09 

CRIBA 30 6±1.73
b
 18.89±8.39 
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Figure 4. Morphological comparison between CR and AR cultured on different rooting 

medium. A~G, incubated on MS solid medium, solidified with 0.3% Gelrite. H~K, incubated 

in MS liquid medium with rotary shaking (120 rpm). A, Calluses cultured on hormone-free 

medium; B, Calluses cultured on NI medium; C, Calluses cultured on IBA medium; D, H, 

Callus-derived roots induced by NI medium; E, J, Callus-derived roots induced by IBA 

medium; F, I, Adventitious roots induced by NI medium; G, K, Adventitious roots induced by 

IBA medium; L, Comparison of length, incidence and diameter of secondary roots in flask 

shaking culture among each treatment, data analyzed by R studio version 1.0.44. ARNI, 

Adventitious roots cultured in NI medium; ARIBA, Adventitious roots cultured in IBA 

medium; CRNI, Callus-derived roots cultured in NI medium; CRIBA, Callus-derived roots 

cultured in IBA medium. Bar 1cm. 
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Figure 5. Effect of plant hormones on growth of ginseng adventitious roots. A, Growth ratio 

of adventitious roots in the flask culture. Original weight is 1g for all types of adventitious 

roots. B, Fresh weight of adventitious roots in solid root induction medium. Each plate 

incubated with 10 root segments originally. ARNI: Adventitious roots cultured on NI medium; 

ARIBA: Adventitious roots cultured on IBA medium; CRNI: Callus-derived adventitious 

roots cultured on NI medium; CRIBA: Callus-derived adventitious roots cultured on IBA 

medium. 
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Figure 6. Southern blot analysis of PgUGT94Q2 transgenic lines. 
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Figure 7. RT-PCR analysis of PgUGT94Q2 over-expression lines. 
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Figure 8. Southern blot analysis of PgUGT74AE2 transgenic lines. 
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Figure 9. RT-PCR analysis of PgUGT74AE2 over-expression lines. 
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Figure10. Comparison of ginsenoside contents of AR and CR that induced by NI (NAA and 

IAA) and IBA. 
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Figure 11. Effects of plant hormones on ginsenoside content in AR and CR roots. Data are 

shown as means ± standard deviation of values obtained from three experiments. 
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Figure 12. Analysis of ginsenoside contents of PgUGT74AE2 transgenic lines by HPLC. 
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Figure 13. Ginsenosides concentration of PgUGT74AE2 transgenic lines.  
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Figure 14. Analysis of ginsenoside contents of PgUGT94Q2 transgenic lines by HPLC. 
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Figure 15. Ginsenosides concentration of PgUGT94Q2 transgenic lines. 
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DISCUSSION 

Over-expression of endogenous UDP-glycosyltransferases genes in Korean wild ginseng 

results in a reasonable improvement of ginsenoside Rb2 and Rd, but Rg1 glycosylated by 

unknown UDP-glycosyltransferases also increased concentration. Transgenic lines with 

relative high expression (PgUGT74AE2 T5, 94 T4, 94 L2, 94 T2; PgUGT74AE2 L2-2, 74 L2, 

74 L4, 74 T2) showed content enhancement of one unknown compound, that need to be 

confirmed in the future (LC-MS is on the progress to analyze unknown compound). 

PgUGT74AE2 and PgUGT74AE2 encoded UDP-glycosyltransferases reported in yeast 

system that corresponding to Rh2 and Rg3 synthesis, PgUGT74AE2 add 1 glucose at C3 and 

PgUGT94Q2 add 1 glucose at glucose side chain of C3, PgUGT71A27 add 1 glucose at C20. 

PgUGT74AE2 and PgUGT94Q2 worked same function in synthesis of F2 and Rd (Jung et al. 

2014) (Figure 16). But over-expression of these two UGTs in wild-type ginseng didn’t show 

contents improvement of Rh2 and Rg3. In the protopanaxtriol (PPT) type ginsenosides 

biosynthesis pathway, UGTPg 101 performed multiple functions that could add 1 glucose at 

both C20 and C6 site, while UGTPg100 is not specific of substrate that could add 1 glucose at 

C6 site of ginsenosides F1 and PPT (Wei et al. 2015) (Figure 17). Based on the reported 

researches, we could Figureure out that UDP-glycosyltransferases work very complicatedly 

involved of ginsenosides biosynthesis pathway inside of ginseng plants. As Rh2 and Rg3 are 

the specific ginsenosides which have been reported existence in red and processed ginseng, 

PgUGT74AE2 and PgUGT94Q2 encoded UDP-glycosyltransferases corresponding 

biosynthesis pathway inside of natural ginseng plants deserved to be verified. 
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Figure 16. PgUGT74AE2 and PgUGT94Q2 involved ginsenosides biosynthesis pathway 

demonstrated in yeast system (Jung et al. 2014). 
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Figure 17. UDP-glycosyltransferases genes involved in ginsenosides biosynthesis pathway 

(Wei et al. 2015). 
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CONCLUSION 

Adventitious roots induction procedure of ginseng has been optimized, callus-derived 

adventitious roots induced by IBA performed enhancement of total 12 selected ginsenoside. 

Ginseng transgenic lines could be screened from transgenic candidate adventitious roots 

which induced from transfected callus directly. 

Over-expression of endogenous UDP-glycosyltransferases genes in Korean wild ginseng 

couldn’t increase the contents of ginsenoside Rg3 and Rh2 directly, but enhanced the contents 

of possible down-stream ginsenoside Rb2, Rd and Rg1. Rb2 and Rd have been reported lied 

on the down-stream synthesis pathway behind Rh2 and glycosylated by unknown UGTs. And 

Rg1 lied on the branch pathway divided from PPD, then glycosylated by other unknown 

UGTs.  

Through over-expression of PgUGT74AE2 and PgUGT94Q2 respectively in Korean 

wild ginseng, we produced transgenic ginseng lines with enrichment in Rg1, Rb2 and Rd. 

Ginsenoside Rg1 has the effcacy of improving cerebral and liver functions, adjusting blood 

pressure and anti-fatigue and anti-stress activities. Ginsenoside Rd has efficacy of relieving 

pain. Ginsenoside Rb2 has efficacy of relieving pain, inhibiting the metastasis of cancer cells 

and anti-diabetic efficacy (Choi et al. 2008) 
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