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1. Introduction

Electrical impedance tomography (EIT) is a non-invasive imaging technique that
estimates and reconstructs the internal resistivity distribution of the object. This
technique is based on the fact that the organs or targets inside domain have different
electrical resistivity. In fact, the quantity to be imaged in EIT is the impedivity, but
since EIT often assumes that the resistive part of the impedivity dominates, it
estimates the resistivity distribution.

EIT has been developed as an alternative to the medical imaging techniques such
as computer tomography (CT), magnetic resonance imaging (MRI), ultrasonic
imaging that are expensive and/or even cause adverse health effects. EIT has been
applied for industrial and geophysical imaging in addition to medical imaging. EIT
has been applied to several medical applications that include lung imaging (Brown
2001, Mueller et al. 2001), head imaging (Holder 1992), and breast imaging
(Osterman et al. 2000, Cherepenin et al. 2002, Kerner et al. 2002). In industrial
applications, EIT has been used to monitor flow processes such as two or multi-
phase mixing in pipes (Jones ef al. 1993, Dickin and Wang 1996, Pinheiro et al. 1997,
George et al. 2000). In geophysics applications, resistivity imaging is widely used in
exploring mineral resources, detection of faults, fractures, contaminant plumes, waste
dumps, and geotechnical and environmental applications (Daily er al. 1992,
Reynolds and Taylor 1996, Maillol et al. 1999, Casas et al. 2008). EIT is made up of
relatively inexpensive hardware, and it contains fast data acquisition system thus has
high temporal resolution characteristics. In addition, EIT system is portable and
contains no health hazard due to its exposure to humans (Webster 1990, Williams
and Beck 1995, Cheney et al. 1999). In medical applications, with the above
advantages that EIT poses it can be used as a long-term bedside monitoring tool for
diagnosis of patients in the intensive care unit (ICU). Also, in the industrial
applications undergoing fast transient process, EIT can be used to visualize
heterogeneous phase in the flow process because of its high temporal resolution.
However, the reconstructed EIT images suffer from the poor spatial resolution
compared to other image techniques due to diffusive characteristics of injected
source energy and ill-posed nature of the inverse problem. Thus, the resolution of

1



reconstructed EIT images need to be improved to yield useful information from the
measured voltage data.

In EIT, electrical current is injected through the electrodes attached to the surface
of the object that is to be imaged, and the resulting excited voltages are measured on
the electrode. Based on the current-voltage relationship, the resistivity distribution
inside the object is reconstructed by using an image reconstruction algorithm.

Schematic diagram of the EIT is shown in figure 1.1.

e A Measurement
{ System

28 O o

% ' :_:( ﬁ" < - Inject Currents

b\ - Measure voltages
W - Interface with PC

i

Figure 1.1. Schematic diagram illustrating the principle of EIT

Image reconstruction problem in EIT is to recover an unknown internal resistivity
distribution from the measured voltages on the electrode, and it is usually treated as a
least squares problem. That is, the resistivity distribution is estimated such that it
minimizes the [2-norm of the difference between the measured voltages and
calculated voltages. The reconstruction procedure is accomplished by solving the
forward and inverse problem.

In the forward problem, with the assumed resistivity distribution inside the domain
and the injected currents, the boundary voltages on the electrode are calculated by
using a proper physical model. The physical model between the injected currents and
the boundary voltages on the electrode is governed by a partial differential equation
with boundary conditions. The analytical solution of forward problem is only
possible for simple geometries (Choi et al. 2004, Kim et al. 2007). Therefore, for
complex geometry, numerical methods are used instead of the analytical solution
such as finite element method (Vauhkonen 1997, Jain ef al. 1997, Polydorides and
Lionheart 2002), boundary element method (de Munck et al. 2000, Cartwright et al.
2001, Khampampati et al. 2012).



In the inverse problem, with the measured voltage and injected current, the
internal resistivity distribution is estimated by using Gauss-Newton algorithm as a
common approach. The inverse problem in EIT is mathematically discrete ill-posed
problem, thus it has a numerically unstable solution. That is, a small change in
voltage measurement results in a large change in resistivity distribution. Therefore, in
order to solve an ill-posed problem, the regularization method has to be used in
reconstruction procedure. That is, the inversion process is imposed with an additional
constraint using a priori knowledge of the true solution. Since the reconstruction
resolution appears significantly different depending on the regularization method, the
proper regularization method with regularization matrix and parameter should be
used in the image reconstruction.

Commonly, the /2-norm regularization method known as a quadratic
regularization method is used in EIT to penalize sudden variations in the resistivity.
As a regularization matrix, the identity matrix (Yorkey et al. 1987), a positive
diagonal matrix (Cheney et al. 1990), approximations of first and second order
differential operator (Hua et al. 1988), and the inverse of a Gaussian matrix (Adler
and Guardo 1996) can be mostly used. The /2-norm regularization method achieves
stability of the inverse problem with rapid convergence. However, it is difficult to
describe discrete variations in the reconstructed image that cannot differentiate the
distinct variation in resistivity due to the smoothness assumption (Borsic et al. 2002).
In addition, the resistivity of targets with high value is often underestimated, and the
undesirable spots that can be regarded as targets are shown in the background region
of the reconstructed image.

In order to have a better spatial resolution by preserving sharp transition between
the target and background, there are several methods such as the total variation (TV)
regularization method, the /1-norm regularization method, and the approach using
the prior information of known internal structure. The TV regularization method
(Dobson and Santosa 1994, Chung et al. 2005, Borsic et al. 2007) uses the total
variation function in a regularization method and the constraint assumes the total
variations in resistivity distribution are zero. The TV regularization method preserves
discontinuities in the reconstructed images, but its performance is degraded by noise

(Chan et al. 2005). The /1-norm regularization method is referred to as sparsity



regularization and its penalty function uses the /1-norm instead of the /2-norm. This
method recently has been investigated intensively, and it can be successfully used in
situations where small targets are located to close to each other (Jin et al 2011,
Gehre et al. 2012). The third approach is that of using the prior information of
known internal structure by incorporating into the reconstruction procedure
(Vauhkonen et al. 1998, Kaipio et al. 1999, Heikkinen ef al. 2001, Kim et al. 2002a).
This method can reconstruct sharp boundaries of targets and have a better resolution
when the prior information is known with good accuracy.

The purpose of this thesis is to improve the spatial resolution in EIT images using
a new regularization method. A new regularization method called a sub-domain
based regularization method (Kang et al. 2016a, Kang et al. 2016b) developed in this
thesis is inspired by the fact that a prior information on the internal structure of the
object can improve the spatial resolution by being incorporated into the
regularization method. Especially, this work is motivated from the /2-norm
regularization method with the new difference-type regularization matrix modified
by prior information (Heikkinen et al. 2001, Kim et al. 2002a). However, for most
real situations, the prior information on the internal structure of the whole domain
cannot be known exactly. If the prior information on internal structure is not reliable
with an actual model, the reconstruction performance gets deteriorated.

Therefore, in this thesis, when the partial information on the internal structure is
known or available, a sub-domain based regularization method is proposed to
improve the spatial resolution in EIT. In the proposed sub-domain based
regularization method, the modified difference regularization matrix is selected in a
similar way to the previous method using the prior information on the known
internal structure (Heikkinen et al. 2001, Kim et al. 2002a). However, the
regularization matrix in the proposed sub-domain based regularization method is
different from the previous methods that consider the known internal structure from
the whole domain as to be separate. In the proposed method, the regularization
matrix is constructed to consider the partially known internal structure as sub-
domains. Also, the regularization parameter is set with different weight for the sub-
domains. By doing so, the resistivity changes in the sub-domains have an effect on

the resistivity changes within each sub-domain, however, the resistivity changes in



the regions excluding sub-domains are affected by the resistivity changes in whole
domain. To investigate the performance of the proposed regularization method, two
applications for human thorax monitoring and two-phase flow monitoring are
considered. For the human thorax monitoring, available CT image is used to
determine the sub-domains and the one-step Gauss-Newton algorithm is used as the
reconstruction algorithm. For the two-phase flow monitoring, the part of background
selected by using Otsu’s thresholding method (Otsu 1979) after 1% iteration of
Gauss-Newton algorithm is considered as a sub-domain and the iterative Gauss-
Newton algorithm is used as the reconstruction algorithm.

This thesis contains five chapters. Chapter 1 gives an introduction as an overview
of this thesis. Chapter 2 presents the image reconstruction in EIT using FEM and
Gauss-Newton algorithm. In chapter 3, the common three regularization methods in
EIT are presented. The proposed sub-domain based regularization method is

presented in chapter 4. Finally, the conclusions of the thesis are given in chapter 5.



2. Image Reconstruction in EIT

Image reconstruction in EIT can be obtained by solving the forward problem and
inverse problem. The forward problem is to calculate a unique result of a given cause
by using a relative physical model. In EIT, the voltages as the solution of forward
problem are calculated on the boundary electrodes with the given current injection
and internal resistivity distribution. Conversely, the inverse problem is to seek the
cause of a measured or given result. That is, in EIT, the internal resistivity
distribution is estimated and reconstructed using the measured voltages and injected
currents on the boundary electrodes. The principle of image reconstruction in EIT is

shown in below figure 2.1.

/ Forward problem / Inverse problem \

Current = Given ., Calculated Cusrent injection Fidenown Estimated
mjection resistivity Y voltage & — resistivity [, resistivity
distribution Measured voltage data distribution distribution

v -(p“Vu] =0
Finite element method / Gauss-Newton algorithm

Figure 2.1. Forward problem vs. inverse problem in EIT

In order to estimate the resistivity distribution in EIT inverse problem, the forward
solution for the physical model is needed. The physical model for the forward
problem is governed by a partial differential equation with boundary conditions.
Generally, it is difficult to formulate an analytical forward solution for a complex
domain. Hence, to solve the forward problem, numerical methods are used such as
finite element method (FEM), boundary element method (BEM) and finite difference
method (FDM). In this thesis, FEM is used to solve the forward problem for two-
dimensional (2D) computational domain. The inverse problem in EIT is usually
treated as a least squares problem and several reconstruction algorithms are
implemented. Among the reconstruction algorithms, Gauss-Newton algorithm is
widely used method to estimate the resistivity distribution in EIT because of its rapid

convergence and an estimated accuracy.



In section 2.1, the governing equation for EIT is derived through Maxwell
equations, and boundary conditions and FEM formulation to solve the forward
problem are presented. In addition, current injection methods for the data collection
are introduced. In section 2.2, Gauss-Newton algorithm is reviewed as an inverse
solver and the computation of Jacobian is derived for linearization to find the inverse

solution.

2.1 Forward problem

2.1.1 Derivation of governing equation

The governing equation of the physical model can be derived through Maxwell
equations (Barber and Brown 1984, Isaacson and Cheney, 1990, Vauhkonen 1997,
Holder 2005).

The electromagnetic field in the two-dimensional domain Q can be described as

_oB

VxE = 2.1
<E=-Z2, @.1)
VxH:J+aa—lt), 2.2)

where E is the electric field, A is the magnetic field, D is the electric flux density,
B is the magnetic flux density, and J is the current density. Here, the total current

density J consists of ohmic current (J, ) and current source (J ).

The electric field E can be expressed as

E=_v”_6_A, (2.3)
ot
where u is electric potential and A is magnetic potential.

In a linear isotropic medium, the following relationships are valid

D = ¢E, (2.4)
B = uH, (2.5)
J =cE, (2.6)



where ¢, i, and o are permittivity, permeability, and conductivity of the medium,

respectively.
If the injected currents are time harmonic with frequency @, the electric field

E and magnetic field H are

E = Ee'™, 2.7)
B = Be™. (2.8)

Substituting the equations (2.4) to (2.8) into the equations (2.1) and (2.2) leads to

OB A(Be) . = .
VXE=—-—=———""=—jwBe" =—iwB
ot ot (2.9)
=—iwuH,
VXH:J+6_D:J+@:J+M
ot ot ot
=J +iwsE =J,+J +iwcE (2.10)

=(otiwe)E+J..

In EIT, the quasi-static conditions are usually assumed for the simplification of

equations (Vauhkonen 1997). That is, iouH and iwsE in the above equations (2.9)
and (2.10) can be omitted at the given frequency @ in EIT, and time derivative term

in equation (2.3) is set to be zero. On the other hand, the current source J| is zero

inside the object. Therefore, the equation (2.3) and (2.10) can be simplified as

E=-Vu, (2.11)
VxH=cE+J.. (2.12)

Applying the divergence on the above equation (2.12), we get
V- (VxH)=V-J=V-(cE+J,)=0. (2.13)

Here, the current source J is zero inside the object. Substituting the equation (2.11)

into the equation (2.13), we get



V(oY) = V- (V) = 0, (2.14)
o,

where p =o' is resistivity, The equation (2.14) is known as the governing equation

for EIT. The governing equation is corresponding to the interior of the object.

2.1.2 Boundary conditions

On the boundary of the object 0Q , the current source J is not zero in EIT.

Therefore, the equation (2.13) on the boundary is as follows
V. cE=-V-J. (2.15)

s

Integrating the equation (2.15) over the volume v,
j v-aEdv=—j V-Jdv. (2.16)
Using the divergence theorem, we get

jSaE-ndS =—LJS -nds, (2.17)

where S is the surface of v, and n is the unit normal vector. Since J, =0 inside the

object and E =0 outside the object, the equation (2.17) gets the form

=-J.n

inside B

—ocFE-n

(2.18)

outside

Using the equation (2.11) in the equation (2.18), the Neumann-type boundary

condition is obtained as

o _J o=, (2.19)
on ’

where j is the negative normal component of the injected current density J .

In EIT, the electrode models are used to represent the boundary conditions for

injected currents and measured boundary voltages. There are several electrode
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models such as gap model, shunt model, and complete electrode model (Cheng 1989,
Somersalo et al. 1992, Vauhkonen 1997). The complete electrode model (CEM) is
usually used in EIT because it is more realistic and accurate model.

The CEM consists of the following boundary conditions

u+zlag—u=U1, (x,y)eel, [=1,2,---,L (2.20)
n
ou
[o—=ds=1,, (x.y)ee, 1=12:L (2.21)
¢ on
ou L
o—=0, (x,y)edQ\e (2.22)
on I=1

where L is the number of electrodes, z; is the contact impedance between the / th
electrode and the surface of an object, U, is the measured voltage on the / th

electrode, and /; is the injected current into the / th electrode. As represented in the

equation (2.20), CEM considers the shunting effect of the electrodes, i.e., the

potential on the electrode is constant, as well as the contact impedance between the

electrode and the medium. The injected current /; is known rather than the current
density j, under the electrodes, therefore, the boundary condition (2.19) is rewritten
as the equation (2.21). Furthermore, the current density j, =0 on the gaps between

electrodes, so the relation is given in the equation (2.22).
In addition to the electrode model, the following Kirchhoff’s laws on the measured
voltages and injected currents are needed to guarantee the existence and uniqueness

of the solution (Somersalo ef al. 1992).

L
>1,=0 and YU, =0, (2.23)
I=1 /=1

L
2.1.3 Finite element formulation
The FEM is a numerical method for solving partial differential equations with

complicated geometries and non-trivial boundary conditions (Brenner and Scott

1994). The FEM formulation changes a continuous form of the forward problem into

10



a discrete form. In this thesis, two-dimentsional FEM for CEM is used to solve the

forward problem.

A
AN
Y, KD
AV, y AVAAVAVVAVAA S ) v a v
'4¢'¢V"‘¢A¢A¢A¢A"'¢' 7;’?‘4

Figure 2.2. Typical FEM mesh structure

In FEM, the object Q is discretized into small elements as shown in figure 2.2.
The vertices of the triangle elements are called the nodes. The black elements are

corresponding to the electrodes attached on the circumference of object.

If N, is the number of nodes of the FEM mesh, the electric potentials » within the

object are approximated as ", and it is represented as

Nﬂ

u=u(x,y)~u" (x,y) = Za,¢,. (x,y), (2.24)

i=1

and the voltages U on the electrodes are approximated as
. L
U=U"=3 Bm, (2.25)
j=1

where ¢ is the two-dimensional first-order basis function, «; and g, are the

coefficients to be determined, and m, = [1,—1,0,---,0]T, m, = [1,0,—1,0,---,0]T e R¥,
etc. This choice for m, ensures that the Kirchhoff’s voltage law in the equation

(2.23) is fulfilled.

Representing the equation (2.25) in a matrix form, the voltages U” on the

electrodes can be expressed as

11



A L1 e L[ B BB B
1
U -1 0 - 0| B -5
Uh = .2 = MB =0 -1 - 0 ﬂ3 = _ﬂz ) (226)
\ Do : :
U; ] 0 0 - B | B
T
where Mz[m1 m, - mL_l]and BZ[IBI B - IBL—I] :

Let w and W, be arbitrary weighting functions for the basis function ¢ and
M(/, j) =(m,),. Multiplying the governing equation (2.14) by w and integrating it

over Q,
[, WV ( o7 'Vu )dQ =0. (2.27)

The gradient product rule of terms in equation (2.27) is written as
V. (wp_IVu) = p 'Vw-Vu+wV-(p 'Vu). (2.28)
Using the equation (2.28) in the equation (2.27), we have
JoV - (p'VuldQ = [ V- (wp 'VuldQ - [, p7'VW-Vu d2=0.  (2.29)
Therefore,
[, 7' VW VudQ=| V- (wp—lw)dg. (2.30)

Using the divergence theorem,

Jop 'Vw-Vu dQ =] V-(wp VuldQ=[_wp™ %ds. (2.31)

L
Adding and subtracting z_[ w, p! Z—udS in the above equation, the equation (2.31)
= n

can be written as

12



—1 ou -1 ou

L
[P 'Vw-Vu dQ =3 L, (w=W)p ds+z j W,p " ——ds. (2.32)
=1

Invoking the equation (2.20),

p_l ou :_u _Ul , (233)
on z

and using equations (2.33) and (2.21), the equation (2.32) can be written as

[P 'VW-Vu dQ = z j (u U, ) (w— Wl)dS+ZI,Wl (2.34)

I=1Z; I=1
Therefore, we can obtain the weak form of the complete electrode model as follows

[op™Vu - deQ+z j(u U, ) w—W))dS = ZIW (2.35)
=1 Z; I=1

-1
Substituting the equation (2.24) and Ulh =ZﬂqM(l,q) imto v and U, ,
-1

respectively, and inserting the FEM basis functions ¢ and M(/, j) to the weak form

(2.35), the weak form becomes

([ o'v4 Ve, + Z{

k=1 k=1

1 L] \
;Z_ILI ¢i¢de:| o — ;Z_,Lz pU,'dS
& <& L (2.36)
_Z[ZZLLIM(I,J')¢de}ak+Z 1 f M(l, j)U,dS = Z[ M(, /),

=1 Z; I=1

»MZ

U PV -VdQ ak+i{i

Z{ — | mq, ])¢kd5}0{k+2|:

Z g=1| 1=1 Z|

= ¢¢kds}ak Z{Zi I (/ZM(l,q)dS}ﬁq
(2.37)

€

zzi J. M(l,j)M(l,q)dS}ﬁq = 2 1M j).

=1 <]

That is, for any i and ¢,

13



zD PV - V¢de+Z j ¢¢de} {Zzi L]QM(l,q)dS}ﬁq:
and
_Z[Z j M(/, ])¢de}ak+Z[zz j M(l, )YM(L,¢)dS

L
=2 IM(. j).
=1

(2.38)

Using the finite element formulation Ab = f, the above equation can be expressed

in a matrix form where each components are defined as below

— B C GR(N”+L_1)X(N”+L_1)
c’ b ’

b= [“j < RV
p

0
I _ 0 :(V)GRNWLL—I,
SIM(L )| \MTr) I
=1

where

_ L1
)= 1PV V40 S L ggas.
I=1 “]

i’j = 172,...)N

n

C(i,j)= ( j¢dS——j ¢de

/

i=1,2,-,N, and j=12,--,L—1

@’ I#j, i,j=1,2,-,L—1
Z] ’ 9.]_ 9~y )
m+ eM, =]
21 i

14

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)



is the area of the jth electrode. Also, in the equation (2.41), 0cRY,

where ‘e j‘

1 =[Il,12,---,IL]T e R"and I=[1l -1,,1,-1,,---,1 —IL]T eR"", and the vector 1
is called current pattern. Therefore, the approximate solutions #" and U” for the

forward problem are obtained by solving b=A"'f . That is, the last L—1

coefficients in b give the referenced voltages on the electrodes.

2.1.4 Current injection methods for the data collection
In this thesis, we focus on static cases where the internal resistivity distribution of the
object is not changed within the time taken to acquire a single frame of measurement
data induced from all the independent current patterns. The current is injected
between two of the electrodes or to all electrodes, and then the voltages are measured
between two of the electrodes or from all the electrodes with respect to one reference.

Current injection method can affect the reconstruction performance depending on
each internal situation termed as sensitivity. Various methods have been studied for
the current injection (Isaacson 1986, Cheng et al. 1988, Webster et al. 1990, Cheney
and Isaacson 1992). In EIT, the most common current injection methods are the
adjacent method, the opposite method, and the trigonometric method. The number of
independent current patterns is decided by the number of electrodes and the current
patterns.

In the adjacent method, currents are injected through two adjacent electrodes, e.g.

1, =1,, I,=-1,, and the voltages are measured from all the pairs of electrodes. This

is repeated for all the current patterns. For example, with 16 electrodes the number of
voltage measurement data is 16x16 =256 . This method produces non-uniform
current density because the injected currents are spread near the boundary. That is,
this will diminish the sensitivity of the voltage measurements with respect to the
resistivity changes at the center of the object.

In the opposite method, a pair of diametrically opposed electrodes is selected to
inject current, e.g. the current pattern for the electrode pair (e, eg) with 16 electrodes

will be (1, =1,, 1, =—1,). The voltages are measured using one reference electrode.

The number of voltage measurement data is 16x8 =128 since the number of
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independent current patterns is 8. This method has more uniform density compared
to the adjacent method.

As for the trigonometric method, the currents with appropriate magnitude flow
through all the electrodes simultaneously. The voltages are obtained with respect to a
single grounded electrode. The injected trigonometric current is defined on the / th

electrode at £ th pattern as

I,cos(k6), 1=1,2,---,L, k=1,2,...,£
I} = 2 (2.45)
1 I I

]OSin(kel—Eel), I:1,2,"',L, k:5+1"",L—1

where 6, =27/ /L. This method is known as the best current injection method to

distinguish a target placed at the center of the domain.

2.2 Inverse problem

2.2.1 Gauss-Newton algorithm

The relation for the voltages on boundary electrodes U and internal resistivity

distribution p is a nonlinear function, so the measured voltages U can be written

using the measurement errors &, as
0=Up)+¢,, (2.46)

where U , U(p) and & R and peR"™ . N, is the number of independent
voltage data, and N, is the number of FEM elements. For the estimated resistivity

distribution /5, the measured voltages using the residual errors & € R"" also can be

written as
U=U(p)+£&.. (2.47)

The general inverse problem approach for estimating the internal resistivity

distribution is represented as a least squares problem. In the least squares problem,
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the estimated resistivity distribution p that minimizes the /2-norm of the residual
errors 1s selected as an optimal choice for the internal resistivity distribution p . The

objective function to find the optimal estimates p is given by

1
‘D=‘1)(/5)=5 S

2 1 g

:Efr g,
L o (2.48)
=S0-vp | [0-vp)

Let p=p +Ap, where p, is the estimated current resistivity distribution which
can converge to least squares estimates and Ap is sufficiently small value.

Linearizing U(p) at p, using a first-order Taylor series expansion,
U(p)~U(p,)+ HAp, (2.49)

oU N - . .
where H=H(p,) EMGRN’" M is the Jacobian matrix. The measurement

op

c

residual error can be linearly approximated as

£=AU=U-Up)~U-Ulp,)~HA

(2.50)
=AU, — HAp,
where AU, =U -U(p,). The above objective function can be written as
D(P) ~ D(Ap) = %[AUU ~HAp]' [AU, - HAp). (2.51)

To find the global minimum of the quadratic function of equation (2.51), the

differentiation of the equation (2.51) is set to zero as
V,,&=0'(Ap)=H "HAp—-H"AU, =0. (2.52)
From the above equation, we have the following equation

H"HAp=H"AU,. (2.53)
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If the H"H called Hessian matrix is positive definite, then H'H can be inverted

to obtain the solution for the optimal estimate as
Ap=(H"H)'H"AU.,,. (2.54)

Using p=p,+Ap and AU,=U-U(p,) , Gauss-Newton algorithm can be

obtained as
p=p.+HH)'H (U-U(p,)). (2.55)
Also, using iterative index i, the above equation can be rewritten as
Pro = P+ (HH) H (U -U(p)). (2.56)

The Hessian matrix (H," H,) in the equation (2.56) is highly ill-posed. So, in order
to give the stability of inverse solution and the meaningful solution, the
regularization method as a penalty or prior information has to be used in the equation
(2.56). As for the regularization methods in EIT, it will be reviewed and described in
chapter 3.

2.2.2 Computation of Jacobian

Forward solution and Jacobian have to be calculated iteratively in the Gauss-Newton
algorithm given in the equation (2.56). Jacobian means the rate of change of voltages
with respect to the internal resistivity distribution, and the Jacobian matrix is defined

as

Fout U |
p, apN(,
H= + (2.57)
ou™ ou™
L op, apN(, ]

where U e R is induced by  th current pattern.
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The Jacobian matrix can be computed by the standard method (Yorkey and
Webster 1987, Vauhkonen 1997). From the formulation of FEM Ab=f, the nth
column of the Jacobian matrix H can be obtained from

ob _OATYf _ A1 OA 0A

— A'f=-A"b. (2.58)
9p,  op, p, p,

The derivative g—A is related to only the matrix B in A . So, the derivative s—A
P P

can be obtained as

6A(m,i) 1
——“2=——| Vo -Vedxdy, 2.59
g Von Vo @59

where A, denotes the element with which the derivative is calculated.
The equation (2.58) forms the derivatives of all the voltages with respect to p, .

So, the part of voltages on the electrodes has to be extracted. Consider an extracting

matrix below

M=[0 M], (2.60)

where 0 e R”Y | M e R”“™"  As for kth current pattern, using equations (2.60)

and (2.40), the voltages U*) = M on the electrodes are expressed as
U = Mp = Mb. (2.61)

(k)
can be obtained as

Therefore, the derivatives

Py
(k) Y R R
U _OMb) _ 5 0b _ _mia1 Ay, (2.62)
op,  0p, Py Py
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3. Regularization Methods in EIT

EIT inverse problem is a discrete ill-posed problem due to its nonlinear behaviour of
measured voltage and inner resistivity distribution. In the discrete ill-posed problem,
the regularization has to be used to stabilize the problem and provide the meaningful
solution.

In this chapter, the requirement of the regularization and three regularization
methods widely used in EIT are introduced. In section 3.1, the need of the
regularization in discrete ill-posed problem is introduced. Three regularization
methods such as the /l-norm, /2-norm and total variation (TV) are reviewed in
section 3.2. Also, the numerical simulations for comparison of three regularization

methods are presented in section 3.3.

3.1 Why the regularization is necessary in discrete ill-posed problem?

Consider the following discrete linear model
Yexact — FXexact’ (31)

where X“““ eR" , Y eR", and F e R™" with m >n . The measurement data

Y includes noise e and the naive solution X"“* can be solved by the least squares

problem represented as rr§n||Y ~-FX ||2 . And the solution is given by

X" = (F'FY'FTY. (3.2)

As one method for finding inversion matrix, the singular value decomposition

(SVD) can be used. Using SVD, the matrix F is decomposed of the form

F=UsV' => v/, (3.3)

i=1

20



where U=[u,,---,u,]eR™ and V=[v,--,v,]eR" are matrices with
orthonormal columns u, e R” and v, e R" | respectively, and X =diag[4,,---,4,]
has non-negative diagonal elements in decreasing order, thatis, 4, 2---> 4 >0.

Using the equation (3.3) with U'U=V’'V =1eR"", the naive solution X" in

the equation (3.2) can be rewritten by

) n Yexact
Y raive _ z ﬂ/ — Z ( )Vi. (34)

i=1 (]

The naive solution in the equation (3.4) is dominated by the smallest singular

value A, . If the singular values of F are close to zero and the condition number, i.e.,

the ratio between the largest and the smallest nonzero singular values, is large, then
F is rank-deficiency and ill-conditioned. This inverse problem is called discrete ill-
posed problem (Hansen 1994, Fuhry and Reichel 2012). In the discrete ill-posed
problem, the naive solution is potentially very sensitive to error e and tends to have
many sign changes and appear randomly. Even if there is no error in the
measurement data Y , the discrete ill-posed problem has numerically unstable naive
solution. That is, the naive solution is far from the exact solution as shown in figure

3.1 and then it can be useless.

RI’J RT??

T exact
Exactuhuion: Y forward problem
&

o Y exact F exact

[ ] e
® Y = o
1 regularization y = yewacr o
s rrrnad = e
¥ i<
......... Xﬂ
g
o555
y
Naive solution: @

X??d’f‘)e — (FTF)—].FTY

Figure 3.1. The requirement of regularization in the discrete ill-posed problem

In the discrete ill-posed problem, specific techniques called the regularization

method to find a stable solution have to be used as an additional term in the least
21



squares problem. The regularization method can be formulated based on the prior
information. That is, the regularization method can replace ill-posed inverse problem
by a nearby well-posed problem, and it gives efficient and numerically stable

methods that lead to a useful solution. Hence, the regularized solution (X, ) provides

a good approximation to the exact solution as shown in figure 3.1.

3.2 Three regularization methods in EIT
Recall equations (2.48) and (2.56). The objective function to estimate internal

resistivity distribution in EIT is rewritten as

1.~ 2
o=_|0-ve) (33)
and the iterative naive solution is given by
p\iH = ﬁi + (HiTHi)_lHiT(U - U(,bl)) (3.6)

The Jacobian matrix H € R¥*" is rank-deficient and ill-conditioned, that is, the
Hessian Matrix (H"H ) is highly ill-posed. The main reason of ill-posed nature in
EIT is resulted from the fact that the number of unknown resistivity elements is
generally much larger than the number of independent measured voltage data as well
as by the fact that the relation between voltages and resistivity distribution is non-
linear (Dai 2008). Hence, the naive solution in the equation (3.6) is unstable and it
has large changes caused by small changes in the measurement data. In order to
mitigate the ill-posed problem, the equation (3.6) should be regularized by adding an
additional term in the equation (3.5). The regularized objective function can be
written as

11~
@ =_|0-v@| + RG>~ p0). (3.7)

where R(p — p.) is a regularizing penalty function and p. is a priori estimate of p.

The reconstruction solution has different performance depending on the type of the

regularization method used in the equation (3.7), i.e., the regularization method plays
22



an important role in the spatial resolution. A brief description of the typical three
regularization methods used in EIT is described and compared in the following

subsection.

3.2.1 The I2-norm regularization method

In the equation (3.7), the regularizing penalty function is commonly used as

(3.8)

2
r'r?

1
R(p=p)=57[p=p.

2 . . . . . .
where |||| denotes the /2-norm, I' is a regularization matrix or a regularization

operator, ¥ is a regularization parameter.

The objective function with the /2-norm regularization method can be written as

(3.9)

2
r’'r

R [ LA ST
®zz(p)=§HU—U(p) +57||p—p*

The regularized solution minimizing the equation (3.9) can be derived in a similar

fashion as shown in chapter 2. Linearizing the above equation (3.9) has the form

A 1
®,y(P) = @y (Ap) = —[AU, = HAP] [AU, — HAp]
1 (3.10)

The differentiation of the equation (3.10) is set to zero as
@, (Ap)=H"HAp—H" AU+ T TAp+ " T(p, - p.)=0. (3.11)
From the above equation,
Ap=(H"H+'T)'[H' AU - TT(p, - p.)]. (3.12)

where H"H + I''T is positive definite. Therefore, the regularized solution can be

obtained from iterative Gauss-Newton algorithm with the /2-norm regularization

method,
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P =P+ (HH,+ T TY {H U -U(p)]-A'T(p,~p.)y. (3.13)

In the /2-norm regularization method, the prior estimate p, is generally set to zero,

therefore, the equation (3.13) takes the form
P =p+(HH + T {HU-Up)-ATH,}. (3.14)

The regularization matrix I" in the equation (3.14) is properly chosen to achieve
good reconstruction performance. Commonly, it uses an identity matrix (Yorkey ef al.
1987) called standard Tikhonov regularization method, a positive diagonal matrix
(Cheney et al. 1990) called NOSER (Newton’s one-step error reconstructor) prior,
difference-type regularization matrix (Hua et al. 1988) called generalized Tikhonov
regularization method (I" = 1).

The regularization parameter ¥ controls the amount of regularization. Choosing

proper regularization parameter is very important to have a good reconstruction
performance. There are several methods for the choice of this regularization
parameter. The most common methods are the L—curve method (Hansen 1992,
Hanke 1996), the generalized cross validation method (Golub et al. 1979), and ad
hoc method adjusting a posteriori by visual examination. The ad hoc approach is

commonly used in EIT, and the method is adopted in this thesis.
In the standard Tikhonov regularization matrix, since I''T' =1, the condition

number of H"H + y1 can be written

cond(H"H + y1) =247 (3.15)
4 A +y

n

where A is ith singular value. If 4 is very small, the above equation is close to
A, /y+1. For a large y even if H does not have full rank, it can be seen that the
inversion term in the equation (3.14) is well-posed.

In the NOSER prior, I''T is considered to be diagonal of the Hessian matrix
H"H with respect to the linearization pointp,. Where p, is the best homogenous

resistivity distribution which minimizes the /2-norm between measured and

calculated voltages.
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In the generalized Tikhonov regularization method, the regularization matrix I"is
related to the FEM discretization of the computation domain. The resistivity

distribution is estimated in element basis, so it is parameterized such that

N,
PG Y) =Y poai(x.y), (3.16)

k=1

where y,(x,y) is the characteristic function of the k& th FEM element. The gradient

of the resistivity of the & th element can be approximated as the differences in the
resistivity of k& th element and those of neighboring elements. If the FEM mesh has
triangular elements, for inner elements except the boundary, each element has three
elements with common edge.

Therefore, k th row of difference matrix I" for the inner elements can be used

commonly as (Heikkinen ef al. 2001, Kim et al.2001, Holder 2005, Yang et al. 2014)
r, =[o,--0,-1,0,---,0,-1,0,---,0,3,0,---,0,-1,0,---, 0], 3.17)

where 3 is placed in the & th column and —1 s are allocated in the columns
corresponding to the adjacent elements of the & th element. The weight 3 is given
with the absolute value of the weight —1’s sum. If the element £ is on the boundary,

the & th element has only two adjacent elements, then the 3 is replaced by 2 in T, .

Therefore, I', for & th element on the boundary can be written as
r, =[o,---,0,-1,0,---,0,-1,0,---,0,2,0,---,0,0,0,---,0]. (3.18)

The /2-norm regularization method penalizes sudden variation in the resistivity to
stabilize the inverse problem in EIT. This method gives a good convergence of the
invese problem since it gives the smoothing effect. However, it prevents sharp
transitions on the boundary between target and background (Borsic et al. 2007, Dai
and Adler 2008). To preserve sharp transitions, the /1-norm and TV regularization

methods in following subsection are adapted to EIT reconstruction problem
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3.2.2 The /1-norm regularization method

2
, and

The /1-norm regularization method as a penalty function uses ||||1 instead of ||

the objective function with the /1-norm regularization method can be written as

(3.19)

1
r’'r:

Ly R 1 .
<Dn(p)=5HU—U(p) +57||(p—p*)

The above equation is linearized and can be reformulated in a quadratic form

N 1
\(p) = @, (Ap) = _[AU, ~ HAP] [AU, ~ HAp]

| . (3.20)
+57[Dp(Ap +p.—p)| T'T[D,(Ap+p.—p) ],
where D is a diagonal matrix in which
L
[Dpl)j =((|p-»r. ]j+5) 2, (3.21)

where 6 is a small positive value to maintain differentiability when p = p. .
Assume that p, = p_, the regularized solution minimizing the above equation

(3.20) can be written as

P =P+ (HH, +yD,'T'TD, )" (H[U-U(p))). (3.22)

3.2.3 Total variation regularization method

In the total variation (TV) regularization method, the constraint that the total
variations in resistivity distribution is assumed zero and is added in the original
objective function. The objective function with the TV regularization method is

given by

Ly~ AR .
@y (p) =0 -U@| +2rTV(H). (3.23)
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In EIT using FEM, the total variations of the resistivity distribution can be defined
as the sum of the variations of two elements across each edge weighted by its length.

The TV regularization can be expressed as

N, N,
YIV(P) =y D L |p(m) - p(m)| =7 |L, 4], (3.24)
k=1 k=1

here N, is the number of the edge of FEM, and /, is the length of & th edge, and m

and n are indices of the elements having the common edge k. Also the & th row of

TV operator L can be written as
L, =[0,---,0,4,,0,--,—/,0,---,0]. (3.25)

The equation (3.24) can be expressed in matrix form as

1

YIV(p) = 7|Lp (3.26)

Consequently, the TV regularization method becomes one of the /l-norm
regularization methods. The objective function with the TV regularization method

can be written as

1

Ly~ 1
@ (p) = [0 -vp)| + 27 (3.27)

The regularized solution minimizing equation (3.27) can be expressed as (Borsic

et al. 2007)
Pra =Py +(HH,+yL' Dy, L) (H[U -U(p)]- 7L Dy, '), (3.28)

where D,, is a diagonal matrix in which

[Dy],, = [\/(Lkﬁi)z +5 J (3.29)

here ¢ is a small positive value to maintain differentiability when p,(m) = p,(n).
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3.3. Comparison of three regularization methods

Numerical simulations are performed to compare the performance of the above three
regularization methods. Two-phase flow imaging is considered using an industrial
process pipe that has a radius of 4 cm. This work is reference to the paper by Kang

and Kim published in Journal of IKEEE on 2016 (Kang and Kim 2016).

3.3.1 Simulation conditions

To perform numerical simulations, a circular domain that has 32 electrodes with a
width of 0.6 cm is used, and the two different meshes are used to avoid the inverse
crime as shown figure 3.2. The true voltages are generated using the unstructured
mesh with 4472 triangular elements and 2365 nodes (figure 3.2(a)). The calculated
voltages and the estimate of the resistivity distribution are obtained using the

structured mesh with 3104 elements and 1681 nodes (figure 3.2(b)).
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Figure 3.2. Finite element mesh used for two-phase flow imaging: (a) unstructured
mesh and (b) structured mesh

The background is considered to be liquid with a resistivity value of 400 Qcm
and the targets with a radius of 1 cmare considered to be voids with a resistivity
value of 800 Qcm . Two scenarios are considered. One scenario has two targets
located near the boundary and the other scenario has two targets located near the
center. The cases with and without noise are also examined to compare the

reconstruction performance by three regularization methods. With noise case, 1%
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relative white Gaussian noise of the generated voltages is added. As a current
injection method, trigonometric current patterns are used.

The reconstructed images of numerical simulations are compared using three
regularizations such as the /2-norm, /l-norm, and TV regularization methods
described by the equations (3.14), (3.22) and (3.28), respectively. The values of
regularization parameter y for numerical simulations are chosen for each

regularization method that gives the best reconstruction performance. The values are

shown in table 3.1. Also, the small positive value & is set to 10°. The difference
matrix using equation (3.17) is used in as /2-norm, /1-norm regularization methods

and TV operator using equation (3.25) is used in the TV regularization method.

Table 3.1. The values of regularization parameter y for numerical simulations

Noise Index [2-norm [1-norm TV
Scenario 1 107 107 107

0% )
Scenario 2 107 107 10
Scenario 1 1072 107° 107"

1% )
Scenario 2 1072 107° 107"

© 2016 IKEEE. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226)

3.3.2 Performance evaluation index

To compare the estimation performances, the image error (IE) is used as a

performance evaluation index (Yang and Peng 2003) and it is defined as follows

E = ”’]%ﬁ). (3.30)

It should be noticed that the smaller IE corresponds to better estimation performance.

3.3.3 Numerical results and discussion

Figures 3.3 and 3.4 show the true and reconstructed images for each scenario without
noise. The true images are shown in figures 3.3(a) and 3.4(a). The reconstructed

images are obtained after 10 iterations using each method, and they are shown in
29



figures 3.3(b-d) and figures 3.4(b-d). The black circles in figures 3.7 and 3.8
represent the true position of the targets. Figure 3.5 shows the true and estimated
resistivity values of each regularization method along the center line in true images.
Figure 3.6 shows image errors without noise to evaluate the estimated performance
of three regularization methods for each scenario.

Figure 3.7 and figure 3.8 show the true and reconstructed images for each scenario
with 1% noise. The true images are shown in figures 3.7(a) and 3.8(a). The
reconstructed images are shown in figures 3.7(b-d) and figures 3.8(b-d). The true
position of the targets are represented by the black circles in figures 3.7 and 3.8.
Figure 3.9 shows the true and estimated resistivity values of each regularization
method along the center line in true images. Figure 3.10 shows image errors in the
scenarios with 1% noise.

Numerical results show the /2-norm regularization has rapid convergence as
compared to the other regularization methods. Therefore, it can be said the /2-norm
regularization method is suitable for one-step algorithms. In without noise case, TV
regularization method has the better reconstruction performance with sharp transition
in resistivity distribution between target and background as well as preserves discrete
change in the resistivity distribution. From the reconstructed results in the presence
of noise, for targets close to each other, the /1-norm regularization method is found
to have better reconstruction performance. For scenario 1 with targets located close
to the boundary, TV has better reconstruction performance and the /1-norm and /2-

norm regularization methods are found to have similar reconstruction performance.
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(b) (c) (d)
Figure 3.3. Images for scenario 1 without noise: (a) true image, (b) ~ (d) the
reconstructed images by the /2-norm, /I-norm, and TV regularization methods,

respectively. © 2016 IKEEE. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226)

(b) (c) (d)
Figure 3.4. Images for scenario 2 without noise: (a) true image, (b) ~ (d) the
reconstructed images by the /2-norm, /1-norm, and TV regularization methods,

respectively. © 2016 IKEEE. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226)
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Figure 3.5. The true and estimated resistivity values along the center line without
noise: (a) scenario 1 and (b) scenario 2.

© 2016 IKEEE. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226)
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Figure 3.6. Image errors without noise: (a) scenario 1 and (b) scenario 2.
© 2016 IKEEE. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226)
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Figure 3.7. Images for scenario 1 with 1% noise: (a) true image, (b) ~ (d) the
reconstructed images by the [2-norm, /l-norm, and TV regularization methods,

respectively. © 2016 IKEEE. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226)
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Figure 3.8. Images for the scenario 2 with 1% noise: (a) true image, (b) ~ (d) the
reconstructed images by the /2-norm, /1-norm, and TV regularization methods,

respectively. © 2016 IKEEE. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226)
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Figure 3.9. The true and estimated resistivity values along the center line with 1%
noise: (a) scenario 1 and (b) scenario 2.

© 2016 IKEEE. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226)

35



0.24 T T T T T . : :
—6— |2-norm

0.224 —8— 1-norm |
—— TV

(a)
0-26 T T T T T T T T
—6— |2-norm
—B— [1-norm
0.24Q ——TV u

(b)

Figure 3.10. Image errors with 1% noise: (a) scenario 1 and (b) scenario 2.
© 2016 IKEEE. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226)

36



4. Sub-domain based Regularization Method

As mentioned earlier, the generalized Tikhonov regularization method that employs
[2-norm regularization method uses difference-type regularization matrix as given in
equation (3.17). It is commonly used method that has fast convergence and
computationally efficient (Mamatjan et al. 2012). However, this method is difficult
to recover discontinuous resistivity distribution in image reconstruction because of
smoothness assumption. That is, the reconstructed images get smoothen at the
boundary of internal organs or targets. The images are difficult to show the structural
and functional properties caused by the differences in electrical properties inside the
object.

To overcome these limitations, the /I-norm and TV regularization methods in
chapter 3 were introduced and compared with /2-norm regularization method. On the
other hand, as another approach in order to improve spatial resolution, the prior
information on the internal structure of object can be incorporated into the
regularization method. The prior information of internal structure in industrial
applications can be the target’s size, shape, or position and in medical applications
previously available images of CT and MRI can be used. Using the prior information,
the internal resistivity distribution can be reconstructed with sharp target boundaries
and estimated more accurately.

However, for most real situations, the prior information on the internal structure of
the whole domain cannot be known exactly. If the prior information on internal
structure is not reliable with actual model, the reconstruction performance gets
deteriorated. When partial information on the internal structure is known or available,
to improve the spatial resolution in EIT a sub-domain based regularization method
which is proposed in this thesis can be used.

To evaluate the performance of the sub-domain based regularization method, two
applications are considered. One is human thorax monitoring and the other is two-
phase flow monitoring. A part of whole domain is considered as a sub-domain, such
prior information is incorporated into the regularization method. In the proposed

regularization method, the regularization matrix is anisotropically modified to
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contain prior information on a sub-domain. Also, the regularization parameter is set
with different weight for the sub-domain.

This chapter is a reference to two papers on human thorax monitoring (Kang et al.
2016a) and two-phase flow monitoring (Kang et al. 2016b). Using the sub-domain
based regularization method for human thorax monitoring is introduced in section

4.1 and two-phase flow monitoring in section 4.2.

4.1 Human thorax monitoring

4.1.1 Image reconstruction method for human thorax monitoring

Consider human thorax monitoring during cardiac cycle assuming that the lung
boundaries do not change and the thorax model is simply composed of background,
lungs and heart. Also, the anatomical information of human thorax can be obtained
from the previous CT image of a patient. The simple thorax model in figure 4.1 can
be designed by considering accurate boundaries of the lungs and an ambiguous
boundary of heart during the cardiac cycle. In figure 4.1, the regions I and II
correspond to background and lungs, respectively, and the region III is consist of the

heart and a part of background adjoining the heart during the cardiac cycle.

Figure 4.1. Simple thorax model with a prior information obtained from CT image.
© 2016 IOP Publishing. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1088/0957-0233/27/2/025703)

To reconstruct the human thorax image, one-step Gauss-Newton algorithm with

generalized Tikhonov regularization method is employed and can be written as
pr=py+(HH+ T (H'[U-U(p))). @.1)
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The above equation (4.1) was formulated from the equation (3.13) by linearizing an

initial value p, and assuming p. = p,. Here, the initial value p, generally uses the

best homogeneous resistivity value.

The regularization constraint in the equation (4.1) has a quadratic form I''T". The
quadratic form with allocated weights in the equation (3.17) has an effect not only
the neighboring elements connected to the element but also other adjacent elements
connected to the neighboring elements. To easily approach a prior information on the
internal structure for human thorax, a square matrix I" was used instead of the
quadratic form T''T" . Therefore, one-step Gauss-Newton method can be represented

as follows
Py = po+ (HTH + Y (H[T -U(B,)). 42)

The generalized Tikhonov regularization method with the conventional difference
matrix in equation (3.17) gives the smoothing effect in the reconstructed image since
the changes in resistivity distribution inside the object are isotropic. Since this
method is hard to identify the lungs and heart boundaries in human thorax, we lose
important medical information from the reconstructed image. Also, with a scalar
regularization parameter, it is difficult to select an optimized regularization
parameter depending on the situations. A comparatively large value for the
regularization parameter results in the blurred regions on the boundary of organ,
whereas a smaller value produces undesirable spots in the reconstructed image

Therefore, to improve the spatial resolution of human thorax imaging, a sub-
domain based regularization method with the prior information on internal structure
is proposed. In figure 4.1, the known regions I and II can be considered as sub-

domains Q,and Q, of the whole domain Q. On the other hand, the region III

belongs to the whole domain Q. In the proposed method, to restrict the resistivity
change in sub-domains within each sub-domain, the difference regularization matrix
and the regularization parameter are modified.

The modified difference regularization matrix is selected in a similar way to the
previous method using the prior information on known internal structure (Heikkinen

et al. 2001, Kim et al. 2002a). However, the regularization matrix in the proposed
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method is different from the previous methods that consider the known internal
structure from the whole domain as to be separate. In the proposed method, the
regularization matrix is constructed to consider the partially known internal structure
as sub-domains.

Figure 4.2 describes i th row and jth row of the difference matrix for three
different methods. Figure 4.2(a) shows the conventional method in the equation
(3.17) that does not consider any prior information of known internal structure.
Figure 4.2(b) shows the previous method with known internal structure, i.e. region II.

Figure 4.2(c) shows the proposed method employing the sub-domain principle.

Jjthrow

ith row Jth row

-1

-1

LorIl 1T LorIl il
(c)
Figure 4.2. The diagram for the difference regularization matrix in: (a) conventional
method, (b) previous method with known internal structure, and (c) proposed method
employing sub-domain principle.
© 2016 IOP Publishing. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1088/0957-0233/27/2/025703)

In figure 4.2(b), the elements on the boundary of the known internal structure are
treated in the manner as the domain boundary in the equation (3.18). In this method,
since the heart boundary during the cardiac cycle is not known, only region II is the
known internal structure. The difference matrix is modified for the row vectors
corresponding to all inner and outer elements on the boundary of region II as shown
in figure 4.2(b). Using this approach, region II is treated as separate from the whole
domain Q. Just using known lung structure does not give desired performance. The

region II appears discretely in the reconstructed image, but regions I and III get
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smoothen. If we consider the known internal structure as regions I and II, the
reconstructed images get smoothen inside each region, and we cannot obtain the
meaningful image about heart boundary during the cardiac cycle.

On the other hand, in figure 4.2(c), the difference matrix is modified for the row

vectors corresponding to the only inner elements on the boundary of sub-domains Q,
or Q. The row vectors for the outer elements on the boundary of sub-domains are

handled in the same way as the conventional method. With this, the resistivity
changes in the sub-domains have an effect on the resistivity changes within each sub-
domain, however, the resistivity changes in region III are affected by the resistivity
changes in the whole domain. If i th element is the inner element on the boundary of

sub-domains and has one outer adjacent element, i th row of new difference matrix

I'" can be written as follows
rj :[0,"‘,0,_1,0,“',O,_1,0,"‘,0,2,0,"‘,0,0,0,"‘,0], (4'3)

where the column of the outer adjacent element is allocated as 0 and the column of

i th element is replaced by 2 which is the absolute sum value of two inner elements.
It should be noticed that the new regularization matrix I'" is not a symmetric matrix.

The new regularization matrix I is written as follows

*

[M=T+T, +T7, 4.4)

* * * N N .
where I';, I, andT';; e R™™¢ are composed of the corresponding row sets of

regions I, II and III, respectively and the others as zero rows. This sub-domain

approach can provide different weights for each region in regularization parameter.
The I}, Iy andT}, in the equation (4.4) are weighted with y, , 7, and y,

respectively.
Therefore, the one-step Gauss-Newton algorithm with the proposed regularization

method can be written as

o= /30 + (HTH + 71r? + 721“;;1 + 73FT11)71(HT[U - U(/So)])- 4.5)
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Here, y, and y, are set to higher value than y, because they penalize the regions I

and II which can be considered to have a single resistivity distribution in each region.

However, y, should be set to a value as small as possible because it regularizes to

distinguish heart from background. Here, y, is the equal to » in the equation (4.2).

4.1.2 Numerical simulations and phantom experiments
Computer simulations with synthetic data and experimental data are performed to
investigate the performance of a sub-domain based regularization method on the
spatial resolution for human thorax monitoring. To monitor human thorax while the
patient holds his breath for the heart diagnosis, the resistivity of heart and lungs is
assumed to be constant during the cardiac cycle. The heart expands and contracts
during the cardiac cycle, so, the size and resistivity of heart change. However, since
the average resistivity of heart does not have large variation, the resistivity of heart is
considered as constant.

One-step Gauss-Newton algorithm is used and compared with three different
regularization methods named conventional regularization method (CRM) in
equation (4.2), proposed regularization method (PRM1) with constant regularization

parameter (y, =y, =y,) in the equation (4.5), and proposed regularized method

(PRM2) with different weights for each sub-domain.

In figure 4.3, FEM mesh for human thorax imaging with exact lung structure is
considered. Also, two different meshes are used to avoid inverse crime. Fine mesh in
figure 4.3(a) consists of 3028 triangular elements and 1637 nodes, and coarse mesh
in figure 4.3(b) is composed of 2216 triangular elements and 1230 nodes. Fine mesh
is used to generate the synthetic voltage data for numerical simulation and estimate
the resistivity distribution for experiments. Coarse mesh is used to estimate the
resistivity distribution for numerical simulation. An array of 16 electrodes is attached
on the surface of the thorax. The adjacent current patterns are used, and the voltage

data is measured on the surface of all 16 electrodes.
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Figure 4.3. Meshes for 2D thorax model: (a) fine mesh and (b) coarse mesh.
© 2016 IOP Publishing. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1088/0957-0233/27/2/025703)

Two different sizes of heart corresponding to systole (small heart) and diastole (big
heart) are considered. The resistivity of background, lungs, and heart are set to
495 Qcm, 645 Qcm and 207 Qcm , respectively (Bruder et al. 1994, Vauhkonen
1997, Baysal and Eyuboglu 2000, Rashid et al. 2011), and these values can be
acceptable clinically.

Synthetic and experimental voltage data U, with homogeneous background
resistivity instead of U(p,) are used in computing the equations (4.2) and (4.5). This

approach can minimize the modeling errors related to truncation of the computational
domain, electrode position, contact impedance, and etc.

In the numerical simulations, p, is calculated as 497 Qcm and 491 Qcm for the
small and big heart cases, respectively. In the experimental studies, p, is calculated

as 505 Qcm and 497 Qcm for the small and big heart cases, respectively.

For the numerical simulations, the regularization parameter  in CRM and y,, 7, ,
and y, in PRM1 are set to 5x107*(y, =y, =7,). In PRM2, y, is equal to y, and 7,,
7, are set to 5x107 that is weighted 100 times more than y . For the experimental
studies, the regularization parameter y in CRM and y,, y,, and y, in PRM1 are set
to 10™. In PRM2, 7, is equal to 7, and , and y, are set to 107 that is weighted

100 times more than y .
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B Experimental setup

For the experiments, as a current source, agilent 4284A LCR meter is used and NI
PXIe-1062Q is used to acquire voltages. The experimental phantom has the same
geometry as in figure 4.3. Electrodes with height of 5 cm and width of 1.8 cm are
attached around the phantom periphery. The experimental phantom is filled with
saline solution that has resistivity of 495 Qcm up to the depth of the electrode to
simulate two-dimensional conditions. The lungs and heart are made of agar with

mean resistivity of approximately 645 Qcm and 207 Qcm, respectively.

B Performance evaluation index
In numerical simulations, to compare the estimation performance, the image error
(IE) in the equation (3.30) and the correlation coefficient (CC) between true

resistivity and estimated resistivity are used. The CC is defined as follows

N,

e

> o —P)p,—P)]
CC = —=£ (4.6)

\/2(”" NODICERS

where p , 5 are the mean values of the true resistivity distribution p and the
estimated resistivity distribution p, respectively. It should be noticed that the bigger

CC value and smaller IE value correspond to better reconstruction performance.

(a) Numerical results and discussion
Figures 4.4 and 4.5 show the true and reconstructed images for the small and big
heart cases using synthetic data. The true resistivity distribution is given in figures
4.4(a) and 4.5(a). The reconstructed images by CRM, PRM1 and PRM2 for small
heart case are shown in figures 4.4(b-d) and for big heart cases are shown in figure
4.5(b-d), respectively. The color bar for all the images is shown in same scale
(200 to 650 Qcm).

In figures 4.4(b) and 4.5(b), the images using CRM without known structure
information has the poorest spatial resolution with non-uniform background with
unclear lung boundaries as compared to the other methods. In figures 4.4(c) and

44



4.5(c), with PRM1, the spatial resolution is slightly improved and has sharp edges of
lungs compared to CRM but still the resistivity distribution is not estimated well. The
results using PRM2 in figures 4.4(d) and 4.5(d) have clear background and lungs,
and the heart size and position are close to true images. The improvement in the
resolution of background and lungs makes the heart appear more distinctly.
Moreover, the size and location of heart are estimated with better accuracy by using
PRM2.

Figure 4.6 shows the sorted resistivity distributions for the numerical simulations.
As noticed in figures 4.4 and 4.5, PRM2 has more uniform resistivity distribution in
background and lungs and fast transient at the boundaries of the heart and lungs
compared to the CRM and PRMI1. That is, the results mean that PRM2 has more
uniform resistivity distribution in sub-domains and more discrete changes on the
organ boundary as shown in figures 4.4 and 4.5.

Table 4.1 shows IE and CC results for numerical simulations to evaluate the
reconstruction performance of CRM, PRM1 and PRM2. It can be noticed that PRM?2
has the lowest IE and highest CC values compared to the other methods.

Table 4.1. IE and CC results for numerical simulations

IE CC
CRM PRMI PRM2 CRM PRM1 PRM2

Index

Small heart 0.0806 0.0543 0.0444 0.7722 0.9039 0.9358
Bigheart  0.1032 0.0735 0.0550 0.7667 0.8880 0.9380

© 2016 IOP Publishing. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1088/0957-0233/27/2/025703)
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Figure 4.4. Images for the small heart case using synthetic data: (a) true image, (b)
image by CRM, (c) image by PRM1, and (d) image by PRM2. The black circle in the
images represents the true position of heart.

© 2016 IOP Publishing. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1088/0957-0233/27/2/025703)

6 ﬂ

) ()

Figure 4.5. Images for the big heart case using synthetic data: (a) true image, (b)
image by CRM, (c) image by PRM1, and (d) image by PRM2. The black circle in the
images represents the true position of heart.

© 2016 IOP Publishing. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1088/0957-0233/27/2/025703)
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Figure 4.6. The sorted resistivity distributions for numerical cases: (a) small heart
and (b) big heart.

© 2016 IOP Publishing. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1088/0957-0233/27/2/025703)
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(b) Experimental results and discussion

Figures 4.7 and 4.8 show the true and reconstructed images for the small heart case
and the big heart case using experimental data. The true images are shown in figures
4.7(a) 4.8(a). The reconstructed images by CRM, PRM1 and PRM2 for small heart
case are shown in figures 4.7(b-d) and for large heart case are shown in figures 4.8(b-
d), respectively.

In figures 4.7(b) and 4.8(b) by using CRM, the spatial resolution is poor due to the
smoothened regions surrounding the organ boundaries. Also, the heart size is over
estimated compared to the heart size in true image. In figures 4.7(c) and 4.8(c),
PRMI1 gives a better spatial resolution compared to CRM because it regulates the
variation in resistivity distribution within the each sub-domain for lungs and
background. However, the region in between lungs is still ambiguous. In figures
4.7(d) and 4.8(d) by using PRM2 with different weights of each sub-domain, the
spatial resolution is improved compared to the CRM and PRMI. The different
weight makes spatial resolution of the background and lung regions more clear, thus
the heart size and position are estimated more accurately.

Figure 4.9 shows the sorted resistivity distributions for the experimental
simulations. As noticed in figure 4.9, PRM2 has more uniform resistivity distribution
in sub-domains and more fast transient at the organ boundary compared to the CRM
and PRM1, as shown in the results of numerical simulations.

Consequently, all the results for the numerical and experimental simulations show

that PRM has improved resolution compared to CRM.
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(c) (d)

Figure 4.7. Images for the small heart case using experimental data: (a) true image,
(b) image by CRM, (c¢) image by PRM1, and (d) image by PRM2

© 2016 IOP Publishing. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1088/0957-0233/27/2/025703)

(d)

Figure 4.8. Images for the big heart case using experimental data: (a) true image, (b)
image by CRM, (c) image by PRM1, and (d) image by PRM2.

© 2016 IOP Publishing. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1088/0957-0233/27/2/025703)
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4.2 Two-phase flow monitoring

Two-phase flow phenomena are frequently encountered in many engineering
applications, such as heat exchanger, oil or natural gas pumping system, and nuclear
power plant. For example, the bubbles with high resistivity are formed within liquid
contained in a pipe. Since this two-phase phenomenon can reduce process efficiency
and disturb safe operations, the two-phase flow system is monitored. In this section
in order to improve the spatial resolution of two-phase flow image, a sub-domain

based regularization method is applied.

4.2.1 Image reconstruction method for two-phase flow monitoring

In two-phase flow monitoring, to obtain a sub-domain as a prior information on the
internal structure, Otsu’s thresholding method (Otsu 1979) is used after 1st iteration
of iterative Gauss-Newton algorithm in the equation (3.14). The background
classified using Otsu’ thresholding method is considered as a sub-domain.

The iterative Gauss-Newton algorithm with the /2-norm regularization in the

equation (3.14) is rewritten as
Py =P+ (HH,+ )T TY HH[U-U(p)]-A'TH}. (4.7)

Using the sub-domain based regularization method, the above equation is modified

as
P =P, T T+ T TV =U(p)I- (T T 1, (4.8)

where T is the new regularization matrix considered the sub-domain, ¢ is the

regularization parameter. The procedure of the proposed method is described in the

following steps.
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Procedure of the proposed method

1. Find an initial guess p, and compute the U(p,) and J(p,).
2. Update p, by using the equation (4.7).

3. Identify the FEM elements that belong to a sub-domain Qg from a whole
domain by using Otsu’s thresholding method.

4. Obtain the new regularization matrix I"".
5. Set y, for the sub-domain to a higher value than y, that is equal to y .

6. Update the resistivity distribution by using the equation (4.8) after 1%
iteration of Gauss-Newton algorithm.

Let’s consider the suitable sub-domain selected by Otsu’s thresholding method.
The sub-domain can be considered to be composed of background, but it isn’t exactly
same to actual background. The other region except for the sub-domain regions is
considered to be composed of target and the other background.

As mentioned in the section 4.1, if the proper sub-domain is selected, the new
regularization matrix I is obtained from I" considering the sub-domain. If the & th
element belongs to inner elements on the boundary of the sub-domain Q. , T, is
modified from I', in the equation (3.17) by removing the column weight —1s of the

outer adjacent elements corresponding to the inner elements. In that case, the number
3 is replaced by 2, i.e., the absolute sum value of two inner element weights. The
whole domain Q can include the sub-domain by modifying only row vectors of

inner elements on the boundary of the sub-domain Qg, . The new regularization

matrix I is not a symmetric matrix, and it can be partitioned by rows as

U=l 0 =T T T (4.9)
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The regularization parameter ¢ is set with different weights for the each FZ, as

follows

,  k eelements in Q
, = {7 ! B (4.10)

7,, Kk eotherwise

where y, for the elements in Q is set to be a more weighted value than y, for the
other elements because it penalizes the sub-domain Qg; which can be considered to

have a single resistivity distribution, however, y, is set to the value as small as

possible because it regularizes to distinguish actual targets from background. Here,

7, 1s identical to y in the equation (4.7).

4.2.2 Selecting a sub-domain by Otsu’s thresholding method

Otsu’s thresholding method is described to select a sub-domain. The Otsu’s
thresholding method is commonly used to select a proper threshold for distinguishing
targets from its background in a given image.

Let the FEM elements of the reconstructed image be represented in gray levels

{1,2,---,t,---, T}, and suppose that the reconstructed image be divided into two classes

A and B by a threshold at level 7. The class 4 represents elements with levels from
1 to ¢, and Class B represents elements with levels from 7+1 to 7. The number of

clements at level j is represented by o, and the total number of elements is
represented by N, =0, +0, +...+0,.

The gray level histogram is normalized and considered as a probability distribution

as follows
p;=0,/N,, p;20, ij:l. (4.11)
Then, the probabilities of each class occurrence are given by

a)AEa)A(t)zzt:pj =a(t), (4.12)
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W, = wy(t) = i p;=l-0,=1-0(), (4.13)

Jj=t+l

!
where w(t) = z p, 1s the zeroth order cumulative moments of histogram.
j=1

The each class mean level is given by

_ IR ()
My = (1) = . j§:] IP= oy (4.14)
_ _ ﬂ(t)
Hy = pg (1) = B}% Jp; 1 D) (4.15)

t
where (1) = z jp; is the first order cumulative moments of histogram, and the
j=1

total mean level is given by

T
Hr E/U(T)Zijj = [+ Ol (4.16)

J=1

The each class variance is given by

1 &
oi=0i()=—2.(j—1,)p;s (4.17)
4 =L
2 2 1 . . 2
op=0,()=— > (j— 1) p;. (4.18)
B j=t+1

Otsu’s thresholding method seeks for the optimal threshold that minimizes the
within-class variance, or equivalently maximizes between-class variance. The

within-class variance and the between-class variance, respectively, are defined as

O-»zvithin(t) = a)AO-j + a)Bo-Ii’ (4- 19)

O-bzetween =a,(u, — ly )2 + @5 (Hg — ,ur)za (4.20)

and the total variance of levels is
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T
or =2~ 1) p; (4.21)
=

Using equations ( 4.14) ~ (4.16) and o, + @, =1, the between-class variance can

be rewritten as

O-lfetween =,(u,— IUT)2 + @y (U — iy )?
= a)AwB(:uB - lLlA)z
_ B My — p(@)  u(?) ’ (4.22)
(1)1 a)(t)]{ T a)(t)}

_ o) - p())
o[- o(1)]

The optimal threshold ¢ is obtained by

t = arg max O',femm (1). (4.23)

1<t<T

4.2.3. Numerical simulations and phantom experiments

The reconstruction performance of the sub-domain regularization method for the
two-phase flow monitoring is evaluated by performing numerical and experimental
simulations. In the numerical and experimental simulations, an industrial pipe with a
radius of 4 cm is considered. Also, four cases with two or more bubbles appearing
within the homogeneous liquid inside the flow domain are tested. To carry out the
computer simulations, two mesh structures in figure 3.2 are used. Also, 32 electrodes
with a width of 0.6 cm are used. Synthetic data for numerical simulations are
generated using an unstructured mesh in figure 3.2(a). The resistivity distribution for
both numerical simulations and experimental simulation is estimated using a
structured mesh in figure 3.2(b).

To perform numerical simulations, the background is considered to be liquid with
a resistivity value of 300 Qcm and the targets are considered to be void or bubbles
with a high resistivity value of 2000 Qcm . The 1% relative white Gaussian noise of
synthetic voltage data is added to the synthetic voltage to represent the real situations.
The added noise corresponds to the instrument handling, environmental conditions
and numerical error of FEM mesh.
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The reconstructed images of numerical and experimental cases are compared using
iterative Gauss-Newton algorithm with the conventional regularization method
(CRM) in the equation (4.7) and the proposed sub-domain based regularization
method (PRM) in the equation (4.8). They are also compared with the /lI-norm
regularization method (/1-norm) in the equation (3.22) and TV regularization method
(TV) in the equation (3.28) developed for non-smooth images. Trigonometric current
patterns are injected through the electrodes and the corresponding voltages are
measured on all electrodes.

In the numerical simulations, the values of regularization parameter for CRM, /1-
norm and TV in table 4.2 are the optimized values which correspond to low image
error. In the experimental simulations, the values of regularization parameter for
CRM and /1-norm and TV which are shown in table 4.3 are chosen a posteriori by

visual inspection. In PRM, y, is equal to the value y, and y,is set to a value
weighted 100 times more than y, to constrain a sub-domain Qg . In the /1-norm and

TV regularization method, the small positive value & is setto 107°.

Table 4.2. The values of regularization parameter for numerical simulations with 1%
noise

Index CRM(y) [l-norm(y) TV (y) PRM(y,, 7,)
Case 1 5x107 5x107" 5x107 5x107, 5x107"
Case 2 10~ 5x107" 107 107, 107
Case 3 5x107* 107! 107 5x1072, 5x107"
Case 4 5x107* 107! 5x107° 5x1072, 5x107"

© 2016 Elsevier B.V. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002)

Table 4.3. The values of regularization parameter for experimental simulations

Index CRM(y) Il-norm(y)  TV(y) PRM(7,, 7,)
Case 1 5x107 107! 5x107° 5x107%, 5x107*
Case 2 107 5x107" 1072 107, 107
Case 3 5x107° 5x107"! 15 5x107", 5x107°
Case 4 5x107 5 0.5 5x107", 5x107°

© 2016 Elsevier B.V. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002)
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In numerical simulations, as a performance evaluation index to evaluate the
reconstruction performances for three methods, image error (IE) and correlation

coefficient (CC) as defined earlier in equations (3.30) and (4.6) are used.

B  Experimental setup
The experimental data is obtained from the experimental setup developed by Jeju
National University’s research group with about 1% noise level (Kim et al. 2002b,
Kim et al. 2002c).

The measurement system is composed of a cylindrical phantom with 32 electrodes,
a data acquisition board with control software for voltage measurement, and current
generator with switching board for current injection. Cylindrical phantom is filled
with saline solution that has the resistivity of approximately 330 Qcm up to the
electrode’s height of 20 cm . The plastic rods of diameter 1 cm and 2 cm with
almost an infinite resistivity value are used as targets, and the currents with

maximum amplitude 4.89 mA are injected through all the electrodes.

(a) Numerical results and discussion

Figure 4.10 shows the true and reconstructed images for numerical simulations. The
true images for four cases are shown in the 1% row of figure 4.10. The reconstructed
images obtained after 10 iterations using CRM, TV, /1-norm and PRM are shown
from the 2™ row to 5™ row in figure 4.10, respectively. All the images are shown

with same color bar (300 to 2000 Qcm). Figure 4.11 shows the two regions that are

classified by Otsu’s method after 1% iteration of Gauss-Newton algorithm with the
conventional regularization method. The elements selected in figure 4.11 are

considered as belonging to a sub-domain Qg for each case.

In the 2™ row of figure 4.10, the reconstructed image using CRM has blurred
boundaries of targets. In case 1, the target placed close to the center is not estimated
well. In general, the reconstructed images using CRM have a low spatial resolution at
the center region. This method makes the resistivity to be under-estimated, especially
for cases 1, 2, and 4 which are placed near to the center. Also, the boundary of target
is ambiguous. In the presence of noise, the reconstructed images using TV shown in

the 3™ row of figure 4.10 have less spatial resolution, especially at the center region.
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Multiple targets located close to each other near to the center have a poor
reconstruction performance. However, for the targets located close to the boundary
(case 3), the size and shape of the target are recovered. In the 4™ row of figure 4.10,
the reconstructed images using /1-norm have better spatial resolution compared to
the CRM and TV. However, the target close to the center, especially with small size,
is not reconstructed well like CRM and TV. In the 5" row of figure 4.10, the
reconstructed images using PRM have better spatial resolution with distinct
boundaries of the targets with improved estimation of resistivity distribution.
Especially the background region has relatively uniform distribution compared to
CRM and /1-norm. It is noticed that even if the targets are classified with irregular
shape in figure 4.11, the reconstructed images using PRM show better spatial
resolution.

Figure 4.12 shows the resistivity distribution about x-coordinate along the line on
the true images in figure 4.10. As shown in the 2™ row of figure 4.10, in the case of
CRM, the resistivity of targets is underestimated for all the four cases, and
particularly the resistivity of the target located close to the center is more
underestimated. The resistivity distribution estimated using TV has a uniform
distribution in the target region while the resistivity values are underestimated in all
the four cases. The resistivity distribution estimated using /1-norm is estimated well,
relatively compared to the CRM and TV. However, the resistivity distribution of
background between targets in case 2 and case 4 is still not estimated well. Also, the
resistivity distribution of background has non-uniform distribution. However, the
resistivity distribution estimated using PRM is shown closer to actual resistivity
distribution compared to that using the other methods. Figure 4.13 shows the sorted
resistivity distributions for each numerical case. The PRM curves have more flat
region and steep slope compared to the other methods in all the cases. The results in
figures 4.12 and 4.13 imply that PRM has uniform resistivity distribution in the
background and more fast changes between the background and targets rather than
the other methods.

The IE and CC results for all the numerical cases are shown in figures 4.14 and
4.15, respectively. As expected, the PRM has the better performance in the IE and
CC results.
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(©) (d)
Figure 4.10. Numerical results for two-phase flow monitoring with 1% noise: (a)
case 1, (b) case 2, (c) case 3 and (d) case 4. True image and reconstructed images
using CRM, TV, /1-norm, and PRM are given from the 1*" row. The black circles in

the image represent the true position of targets.
© 2016 Elsevier B.V. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002)
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Figure 4.11. Two regions classified by Otsu’s thresholding method after 1% iteration
of Gauss-Newton algorithm for numerical cases: (a) case 1, (b) case 2, (c) case 3 and

(d) case 4.
© 2016 Elsevier B.V. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002)

60



resistivity (Q cm) resistivity (Q cm) resistivity (@ cm)

resistivity (2 cm)

Figure 4.12. The resistivity distributions about x-coordinate along the line on the true
images in figure 4.10 for numerical cases: (a) case 1, (b) case 2, (c) case 3 and (d)

case 4
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Figure 4.13. The sorted resistivity distributions for numerical cases: (a) case 1, (b)
case 2, (¢) case 3 and (d) case 4
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Figure 4.15. Correlation coefficients for numerical cases: (a) case 1, (b) case 2, (c)
case 3 and (d) case 4
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(b) Experimental results and discussion

The true images for four experimental cases are shown in the 1% row of figure 4.16,
and the reconstructed images after 10 iterations using the Gauss-Newton algorithm
with the CRM, TV, /1-norm and the PRM are shown from the 2™ row to 5 row in
figure 4.16. Figure 4.17 shows two regions classified by Otsu’s method after 1%
iteration of Gauss-Newton algorithm with the conventional regularization method.
All the reconstructed images in figure 4.16 are shown using same color bar

(300 to 2000 Qcm). The resistivity of targets by CRM and TV is underestimated

compared to the /1-norm and PRM, especially, for the targets placed near to the
center. In experimental case 1, the background regions using CRM, TV and /1-norm
are not uniform with artifacts that can be misinterpreted as target. The reconstructed
images by PRM have a better spatial resolution with the more uniform background
and discrete boundary for target compared to the other methods.

Figure 4.18 shows the resistivity distribution about x-coordinate along the line in
the 1% row of figure 4.16 for each experimental case. In figure 4.18, CRM and TV
have an underestimated target resistivity compared to the /I-norm and PRM. The
undesirable ripples in the background are shown in the resistivity distribution using
CRM, TV and /l-norm compared to the PRM. Figure 4.19 shows the sorted
resistivity distributions for each experimental case. In figure. 4.19, the PRM curves
have more discrete transient on the boundary of targets and more uniform
background similar to the numerical results. The results in figures 4.16 to 4.19
suggest that PRM has better reconstruction performance compared to the other

methods.
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(d)
Figure 4.16. Experimental results for two-phase flow monitoring: (a) case 1, (b) case
2, (c) case 3 and (d) case 4. True image and reconstructed images using CRM, /1-
norm, TV and PRM are given from the 1* row.

© 2016 Elsevier B.V. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002)
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Figure 4.17. Two regions classified by Otsu’s thresholding method after 1%
iteration of Gauss-Newton algorithm for experimental cases: (a) case 1, (b) case 2,
(c) case 3, and (d) case 4.

© 2016 Elsevier B.V. Reproduced with permission. All rights reserved.
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002)
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Figure 4.18. The resistivity distributions about x-coordinate along the line in the 1*
row of figure 4.16 for experimental cases: (a) case 1, (b) case 2, (c) case 3, and (d)
case 4
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Figure 4.19. The sorted resistivity distributions for experimental cases: (a) case 1, (b)
case 2, (c) case 3, and (d) case 4
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5. Conclusions

Image reconstruction using electrical impedance tomography is highly ill-posed,
therefore, the regularization method is required in the inversion process as an
additional constraint from the prior information of the true solution. The
reconstruction performance is heavily dependent on the type of regularization
method. The generalized Tikhonov regularization wusing difference-type
regularization matrix is used as a common regularization method in EIT. This
conventional regularization method provides good stability of the inverse problem
with rapid convergence, however, the image gets smoothen and it makes difficult to
describe the sharp transition in boundary with different resistivity.

In order to have a desirable reconstructed image with better accuracy and by
preserving sharp transition in boundary with different resistivities, a sub-domain
based regularization method is proposed in this thesis. In the proposed regularization
method, the partially known or guessed prior information of an internal structure is
considered as a sub-domain. To impose the prior information into the proposed
regularization method, the regularization matrix is anisotropically modified by
considering sub-domains and the regularization parameter is assigned with different
weights for the sub-domains. By doing so, the resistivity changes in the sub-domains
have an effect on the resistivity changes within each sub-domain, however, the
resistivity changes in the other regions except for the sub-domains are affected the
resistivity changes in the whole domain. To investigate the performance of the
proposed regularization method, two applications for human thorax monitoring and
two-phase flow monitoring are considered.

In the human thorax monitoring, the situation with constant lung region and two
different sizes’ heart region during the cardiac cycle is considered. Also, CT image is
considered as the prior information, and one-step Gauss-Newton algorithm is used
for estimating internal resistivity distribution. Simulations with synthetic data and
experimental data are computed with chest shape mesh. The sub-domain based
regularization method has the improved spatial resolution with the more uniform
resistivity distribution in the background and the more distinct boundaries of the
lungs and heart.
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In two-phase flow monitoring, the part of background is considered as a sub-
domain. The sub-domain region is distinguished automatically using Otsu’s
thresholding method after 1% iteration of Gauss-Newton algorithm with the
conventional regularization method. The reconstructed results with synthetic and
experimental data are compared using iterative Gauss-Newton algorithm with the
conventional regularization method and sub-domain based regularization method.
Also, they are compared with the /1-norm and total variation regularization methods
developed for non-smooth images. It can be noticed that the sub-domain based
regularization method is successful in improving the spatial resolution of the
reconstructed images with sharp boundary of targets and good accuracy compared to
the other methods.

Further study will be carried out to test the three-dimensional reconstruction
performance of the sub-domain based regularization method. In addition, the sub-
domain concept will be extended with other regularization methods such as the total

variation and /1-norm regularization methods.
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Summary

Electrical impedance tomography (EIT) is a non-invasive imaging technique in
which the internal resistivity distribution is reconstructed based on the injected
currents and measured voltages on the electrodes which are attached to the boundary
of an object.

The image reconstruction in EIT is usually treated as least squares problems, and
Gauss-Newton algorithm is widely used to estimate the resistivity because of its
rapid convergence and an estimated accuracy. However, since EIT has highly ill-
posed inverse problem, the regularization method is used to mitigate the ill-posed
nature and reconstruct the meaningful image. The regularization method plays an
important role in the spatial resolution in EIT. The generalized Tikhonov
regularization method using difference-type regularization matrix is commonly used
because of the most convenient in computational time and convergence stability of
the inverse problem. However, this method is impossible to recover the discrete
resistivity distribution in the image reconstruction due to its smoothness assumption.

To improve the spatial resolution by overcoming this problem, a sub-domain
based regularization method is used when the partial information on the internal
structure is known or available. In the sub-domain based regularization method, a
part of whole domain is considered as a sub-domain, such prior information is
incorporated into the regularization method. In order to do so, the regularization
matrix is anisotropically modified to contain prior information on a sub-domain and
the regularization parameter is set with different weight for the sub-domain. With
this, the resistivity changes in the sub-domain have an effect on the resistivity
changes within the sub-domain, however, the resistivity changes outside the sub-
domain are affected the resistivity changes in the whole domain.

To illustrate the reconstruction performance of the sub-domain based
regularization method, two applications, i.e., human thorax monitoring and two-
phase flow monitoring, are considered. The results of computer simulations for
synthetic and experimental data show that the sub-domain based regularization

method has the improved reconstruction performance than the conventional method.
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