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 초 록 

 

전기 임피던스 단층촬영법(electrical impedance tomography; EIT)은 MRI 나 

CT 등과 같은 단층촬영법의 일종이다. EIT 는 물체 표면에 부착된 전극에 전류를 

주입하고 유기된 전압을 측정하여 영상 복원 알고리즘으로 물체 내부의 미지 저항률 

분포를 추정하고 이를 영상화하는 기술이다.  

EIT 에서의 영상복원은 일반적으로 계산전압과 측정전압의 차인 잔류오차의 

최소자승문제로 다루어진다. 전압과 내부 저항률 분포와의 관계는 비선형이며, 주로 

빠른 수렴성과 추정 정확도면에서 성능이 우수한 Gauss-Newton 알고리즘에 의해 

내부 저항률 분포를 추정한다. 그러나, 이 경우의 영상복원은 이산적 비정치 

문제(discrete ill-posed problem)의 일종으로 대부분의 경우에 있어 내부 저항률 

분포 영상을 얻기가 어렵다. 그러므로, EIT 에서는 역문제의 비정치성을 완화하여 

실제의 내부 저항률 분포에 대한 정보를 제공할 수 있는 의미있는 영상을 얻기 위해 

최소자승문제의 부가적인 제약조건으로서 조정기법을 사용된다.  

EIT 에서는 역문제 계산 시 difference 타입의 조정행렬을 갖는 일반화된 

Tikhonov 조정기법을 주로 사용하는데, 이는 one-step 알고리즘에 적용할 수 

있어 계산소모가 적고, 안정적으로 수렴성이 확보되는 장점을 갖고 있다. 그러나, 이 

방법은 내부 저항률 분포의 갑작스런 변화를 제약하는 smoothness 가정을 전제로 

하고 있어 복원된 영상에서 표적의 경계가 모호해지는 한계가 있다.  

따라서, 본 논문에서는 표적의 경계를 뚜렷하게 나타내어 공간해상도를 

향상시킬 수 있는 부분영역 기반 조정기법(sub-domain based regularization 

method)을 제안하였다. 제안한 조정기법에서는 물체 내부 구조에 대한 부분적인 

정보가 알려져 있거나 가정할 수 있을 때 이를 부분영역(sub-domain)으로 

간주하고 이에 대한 사전정보를 조정기법에 포함한다. 이를 위해 기존 등방성의 

difference 타입 조정행렬을 비등방성으로 수정하고 부분영역마다 다른 조정 

파라미터의 값을 사용한다. 그렇게 함으로써 부분영역 내의 저항률 변화는 부분영역 

내에서만 영향을 끼치도록 하고 그 외 영역의 저항률 변화는 전체 영역에서 인접한 

지역의 저항률 변화와 상호 영향을 미치도록 하였다. 제안한 기법은 인체 흉부 및  

이상 유동장 모니터링에 적용하였으며, 복원 성능을 비교 분석하였다. 결과적으로 

가공 데이터와 실험 데이터에 대한 영상복원 결과, 제안한 기법은 기존 방법에 
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비하여 타겟의 경계를 뚜렷하게 복원하고 부분영역에서는 균일한 분포를 

나타냄으로써 개선된 영상을 얻을 수 있음을 보였다.  
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1. Introduction 
 

Electrical impedance tomography (EIT) is a non-invasive imaging technique that 

estimates and reconstructs the internal resistivity distribution of the object. This 

technique is based on the fact that the organs or targets inside domain have different 

electrical resistivity. In fact, the quantity to be imaged in EIT is the impedivity, but 

since EIT often assumes that the resistive part of the impedivity dominates, it 

estimates the resistivity distribution.  

EIT has been developed as an alternative to the medical imaging techniques such 

as computer tomography (CT), magnetic resonance imaging (MRI), ultrasonic 

imaging that are expensive and/or even cause adverse health effects. EIT has been 

applied for industrial and geophysical imaging in addition to medical imaging. EIT 

has been applied to several medical applications that include lung imaging (Brown 

2001, Mueller et al. 2001), head imaging (Holder 1992), and breast imaging 

(Osterman et al. 2000, Cherepenin et al. 2002, Kerner et al. 2002). In industrial 

applications, EIT has been used to monitor flow processes such as two or multi-

phase mixing in pipes (Jones et al. 1993, Dickin and Wang 1996, Pinheiro et al. 1997, 

George et al. 2000). In geophysics applications, resistivity imaging is widely used in 

exploring mineral resources, detection of faults, fractures, contaminant plumes, waste 

dumps, and geotechnical and environmental applications (Daily et al. 1992, 

Reynolds and Taylor 1996, Maillol et al. 1999, Casas et al. 2008). EIT is made up of 

relatively inexpensive hardware, and it contains fast data acquisition system thus has 

high temporal resolution characteristics. In addition, EIT system is portable and 

contains no health hazard due to its exposure to humans (Webster 1990, Williams 

and Beck 1995, Cheney et al. 1999). In medical applications, with the above 

advantages that EIT poses it can be used as a long-term bedside monitoring tool for 

diagnosis of patients in the intensive care unit (ICU). Also, in the industrial 

applications undergoing fast transient process, EIT can be used to visualize 

heterogeneous phase in the flow process because of its high temporal resolution. 

However, the reconstructed EIT images suffer from the poor spatial resolution 

compared to other image techniques due to diffusive characteristics of injected 

source energy and ill-posed nature of the inverse problem. Thus, the resolution of 
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reconstructed EIT images need to be improved to yield useful information from the 

measured voltage data.  

In EIT, electrical current is injected through the electrodes attached to the surface 

of the object that is to be imaged, and the resulting excited voltages are measured on 

the electrode. Based on the current-voltage relationship, the resistivity distribution 

inside the object is reconstructed by using an image reconstruction algorithm. 

Schematic diagram of the EIT is shown in figure 1.1.  

 

 
Figure 1.1. Schematic diagram illustrating the principle of EIT 

 

Image reconstruction problem in EIT is to recover an unknown internal resistivity 

distribution from the measured voltages on the electrode, and it is usually treated as a 

least squares problem. That is, the resistivity distribution is estimated such that it 

minimizes the l2-norm of the difference between the measured voltages and 

calculated voltages. The reconstruction procedure is accomplished by solving the 

forward and inverse problem.  

In the forward problem, with the assumed resistivity distribution inside the domain 

and the injected currents, the boundary voltages on the electrode are calculated by 

using a proper physical model. The physical model between the injected currents and 

the boundary voltages on the electrode is governed by a partial differential equation 

with boundary conditions. The analytical solution of forward problem is only 

possible for simple geometries (Choi et al. 2004, Kim et al. 2007). Therefore, for 

complex geometry, numerical methods are used instead of the analytical solution 

such as finite element method (Vauhkonen 1997, Jain et al. 1997, Polydorides and 

Lionheart 2002), boundary element method (de Munck et al. 2000, Cartwright et al. 

2001, Khampampati et al. 2012).  
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In the inverse problem, with the measured voltage and injected current, the 

internal resistivity distribution is estimated by using Gauss-Newton algorithm as a 

common approach. The inverse problem in EIT is mathematically discrete ill-posed 

problem, thus it has a numerically unstable solution. That is, a small change in 

voltage measurement results in a large change in resistivity distribution. Therefore, in 

order to solve an ill-posed problem, the regularization method has to be used in 

reconstruction procedure. That is, the inversion process is imposed with an additional 

constraint using a priori knowledge of the true solution. Since the reconstruction 

resolution appears significantly different depending on the regularization method, the 

proper regularization method with regularization matrix and parameter should be 

used in the image reconstruction.  

Commonly, the l2-norm regularization method known as a quadratic 

regularization method is used in EIT to penalize sudden variations in the resistivity. 

As a regularization matrix, the identity matrix (Yorkey et al. 1987), a positive 

diagonal matrix (Cheney et al. 1990), approximations of first and second order 

differential operator (Hua et al. 1988), and the inverse of a Gaussian matrix (Adler 

and Guardo 1996) can be mostly used. The l2-norm regularization method achieves 

stability of the inverse problem with rapid convergence. However, it is difficult to 

describe discrete variations in the reconstructed image that cannot differentiate the 

distinct variation in resistivity due to the smoothness assumption (Borsic et al. 2002). 

In addition, the resistivity of targets with high value is often underestimated, and the 

undesirable spots that can be regarded as targets are shown in the background region 

of the reconstructed image.  

In order to have a better spatial resolution by preserving sharp transition between 

the target and background, there are several methods such as the total variation (TV) 

regularization method, the l1-norm regularization method, and the approach using 

the prior information of known internal structure. The TV regularization method 

(Dobson and Santosa 1994, Chung et al. 2005, Borsic et al. 2007) uses the total 

variation function in a regularization method and the constraint assumes the total 

variations in resistivity distribution are zero. The TV regularization method preserves 

discontinuities in the reconstructed images, but its performance is degraded by noise 

(Chan et al. 2005). The l1-norm regularization method is referred to as sparsity 
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regularization and its penalty function uses the l1-norm instead of the l2-norm. This 

method recently has been investigated intensively, and it can be successfully used in 

situations where small targets are located to close to each other (Jin et al. 2011, 

Gehre et al. 2012). The third approach is that of using the prior information of 

known internal structure by incorporating into the reconstruction procedure 

(Vauhkonen et al. 1998, Kaipio et al. 1999, Heikkinen et al. 2001, Kim et al. 2002a). 

This method can reconstruct sharp boundaries of targets and have a better resolution 

when the prior information is known with good accuracy. 

The purpose of this thesis is to improve the spatial resolution in EIT images using 

a new regularization method. A new regularization method called a sub-domain 

based regularization method (Kang et al. 2016a, Kang et al. 2016b) developed in this 

thesis is inspired by the fact that a prior information on the internal structure of the 

object can improve the spatial resolution by being incorporated into the 

regularization method. Especially, this work is motivated from the l2-norm 

regularization method with the new difference-type regularization matrix modified 

by prior information (Heikkinen et al. 2001, Kim et al. 2002a). However, for most 

real situations, the prior information on the internal structure of the whole domain 

cannot be known exactly. If the prior information on internal structure is not reliable 

with an actual model, the reconstruction performance gets deteriorated.  

Therefore, in this thesis, when the partial information on the internal structure is 

known or available, a sub-domain based regularization method is proposed to 

improve the spatial resolution in EIT. In the proposed sub-domain based 

regularization method, the modified difference regularization matrix is selected in a 

similar way to the previous method using the prior information on the known 

internal structure (Heikkinen et al. 2001, Kim et al. 2002a). However, the 

regularization matrix in the proposed sub-domain based regularization method is 

different from the previous methods that consider the known internal structure from 

the whole domain as to be separate. In the proposed method, the regularization 

matrix is constructed to consider the partially known internal structure as sub-

domains. Also, the regularization parameter is set with different weight for the sub-

domains. By doing so, the resistivity changes in the sub-domains have an effect on 

the resistivity changes within each sub-domain, however, the resistivity changes in 
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the regions excluding sub-domains are affected by  the resistivity changes in whole 

domain. To investigate the performance of the proposed regularization method, two 

applications for human thorax monitoring and two-phase flow monitoring are 

considered. For the human thorax monitoring, available CT image is used to 

determine the sub-domains and the one-step Gauss-Newton algorithm is used as the 

reconstruction algorithm. For the two-phase flow monitoring, the part of background 

selected by using Otsu’s thresholding method (Otsu 1979) after 1st iteration of 

Gauss-Newton algorithm is considered as a sub-domain and the iterative Gauss-

Newton algorithm is used as the reconstruction algorithm.  

This thesis contains five chapters.  Chapter 1 gives an introduction as an overview 

of this thesis. Chapter 2 presents the image reconstruction in EIT using FEM and 

Gauss-Newton algorithm. In chapter 3, the common three regularization methods in 

EIT are presented. The proposed sub-domain based regularization method is 

presented in chapter 4. Finally, the conclusions of the thesis are given in chapter 5.  
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2. Image Reconstruction in EIT 
 

Image reconstruction in EIT can be obtained by solving the forward problem and 

inverse problem. The forward problem is to calculate a unique result of a given cause 

by using a relative physical model. In EIT, the voltages as the solution of forward 

problem are calculated on the boundary electrodes with the given current injection 

and internal resistivity distribution. Conversely, the inverse problem is to seek the 

cause of a measured or given result. That is, in EIT, the internal resistivity 

distribution is estimated and reconstructed using the measured voltages and injected 

currents on the boundary electrodes. The principle of image reconstruction in EIT is 

shown in below figure 2.1.  

 
Figure 2.1. Forward problem vs. inverse problem in EIT 

In order to estimate the resistivity distribution in EIT inverse problem, the forward 

solution for the physical model is needed. The physical model for the forward 

problem is governed by a partial differential equation with boundary conditions. 

Generally, it is difficult to formulate an analytical forward solution for a complex 

domain. Hence, to solve the forward problem, numerical methods are used such as 

finite element method (FEM), boundary element method (BEM) and finite difference 

method (FDM). In this thesis, FEM is used to solve the forward problem for two-

dimensional (2D) computational domain. The inverse problem in EIT is usually 

treated as a least squares problem and several reconstruction algorithms are 

implemented. Among the reconstruction algorithms, Gauss-Newton algorithm is 

widely used method to estimate the resistivity distribution in EIT because of its rapid 

convergence and an estimated accuracy. 



7 
 

In section 2.1, the governing equation for EIT is derived through Maxwell 

equations, and boundary conditions and FEM formulation to solve the forward 

problem are presented. In addition, current injection methods for the data collection 

are introduced. In section 2.2, Gauss-Newton algorithm is reviewed as an inverse 

solver and the computation of Jacobian is derived for linearization to find the inverse 

solution.  

 

2.1 Forward problem 

2.1.1 Derivation of governing equation  

The governing equation of the physical model can be derived through Maxwell 

equations (Barber and Brown 1984, Isaacson and Cheney, 1990, Vauhkonen 1997, 

Holder 2005).  

The electromagnetic field in the two-dimensional domain W  can be described as  

,BE
t
¶Ñ´ = -
¶

              (2.1) 

,DH J
t
¶Ñ´ = +
¶

                                                (2.2) 

where E  is the electric field, H  is the magnetic field, D  is the electric flux density, 

B  is the magnetic flux density, and J  is the current density. Here, the total current 

density J  consists of ohmic current ( oJ ) and current source ( sJ ).  

The electric field E  can be expressed as 

,AE u
t
¶= -Ñ -
¶

                                     (2.3) 

where u  is electric potential and A  is magnetic potential.  

In a linear isotropic medium, the following relationships are valid 

  ,D Ee=                              (2.4) 

  ,B Hm=                                         (2.5) 

  ,oJ Es=                      (2.6) 
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where e , m , and s  are permittivity, permeability, and conductivity of the medium, 

respectively.  

If the injected currents are time harmonic with frequency w , the electric field 

E and magnetic field H  are   

         ,i tE Ee w= %                           (2.7) 

         .i tB Be w= %                    (2.8) 

Substituting the equations (2.4) to (2.8) into the equations (2.1) and (2.2) leads to 

  
( )

         ,

i t
i tB BeE i Be i B

t t
i H

w
ww w

wm

¶ ¶
Ñ´ = - = - = - = -

¶ ¶
= -

% %
                        (2.9) 

( ) ( )

  = 
           = ( + ) .

i t

o s

s

D E EeH J J J
t t t

J i E J J i E
i E J

we e

we we
s we

¶ ¶ ¶
Ñ´ = + = + = +

¶ ¶ ¶
= + + +

+

%

                      (2.10) 

In EIT, the quasi-static conditions are usually assumed for the simplification of 

equations (Vauhkonen 1997). That is, wmi H and i Ewe in the above equations (2.9) 

and (2.10) can be omitted at the given frequency w  in EIT, and time derivative term 

in equation (2.3) is set to be zero. On the other hand, the current source sJ  is zero 

inside the object. Therefore, the equation (2.3) and (2.10) can be simplified as  

,E u= -Ñ                                               (2.11) 

.sH E JsÑ´ = +                                        (2.12) 

Applying the divergence on the above equation (2.12), we get  

( ) ( ) 0.sH J E JsÑ× Ñ´ = Ñ × = Ñ × + =                           (2.13) 

Here, the current source sJ  is zero inside the object. Substituting the equation (2.11) 

into the equation (2.13), we get 
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1( ) ( ) 0,u us
r

Ñ × Ñ = Ñ × Ñ =                                   (2.14) 

where  1r s -º  is resistivity. The equation (2.14) is known as the governing equation 

for EIT. The governing equation is corresponding to the interior of the object.  

 

2.1.2 Boundary conditions 

On the boundary of the object ¶W , the current source sJ is not zero in EIT. 

Therefore, the equation (2.13) on the boundary is as follows  

.sE JsÑ× = -Ñ ×                                    (2.15) 

Integrating the equation (2.15) over the volume v ,  

 .sv v
Edv J dvsÑ× = - Ñ ×ò ò                                    (2.16) 

Using the divergence theorem, we get  

,sS S
E dS J dSs × = - ×ò òn n                                    (2.17) 

where S  is the surface of v , and n  is the unit normal vector. Since 0=sJ  inside the 

object and 0E =  outside the object, the equation (2.17) gets the form  

.sinside outside
E Js- × = - ×n n                                      (2.18) 

Using the equation (2.11) in the equation (2.18), the Neumann-type boundary 

condition is obtained as  

,s n
u J js ¶ = - × º
¶

n
n

                                      (2.19) 

where nj  is the negative normal component of the injected current density sJ .  

In EIT, the electrode models are used to represent the boundary conditions for 

injected currents and measured boundary voltages. There are several electrode 
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models such as gap model, shunt model, and complete electrode model (Cheng 1989, 

Somersalo et al. 1992, Vauhkonen 1997). The complete electrode model (CEM) is 

usually used in EIT because it is more realistic and accurate model.  

The CEM consists of the following boundary conditions 

l l
uu z Us ¶+ =
¶n

,   ( ), lx y eÎ ,    1,2, ,l L= L               (2.20) 

l
le

u dS Is ¶ =
¶ò n

,    ( ), lx y eÎ ,    1,2, ,l L= L                (2.21) 

0us ¶ =
¶n

,    ( )
1

, \
L

l
l

x y e
=

Î¶W U                                 (2.22) 

where L  is the number of electrodes, lz  is the contact impedance between the l th 

electrode and the surface of an object, lU  is the measured voltage on the l th 

electrode, and lI  is the injected current into the l th electrode. As represented in the 

equation (2.20), CEM considers the shunting effect of the electrodes, i.e., the 

potential on the electrode is constant, as well as the contact impedance between the 

electrode and the medium. The injected current lI  is known rather than the current 

density nj  under the electrodes, therefore, the boundary condition (2.19) is rewritten 

as the equation (2.21). Furthermore, the current density 0nj =  on the gaps between 

electrodes, so  the relation is given in the equation (2.22).  

In addition to the electrode model, the following Kirchhoff’s laws on the measured 

voltages and injected currents are needed to guarantee the existence and uniqueness 

of the solution (Somersalo et al. 1992). 

1
0

L

l
l

I
=

=å   and   
1

0
L

l
l

U
=

=å .               (2.23) 

 

2.1.3 Finite element formulation  

The FEM is a numerical method for solving partial differential equations with 

complicated geometries and non-trivial boundary conditions (Brenner and Scott 

1994). The FEM formulation changes a continuous form of the forward problem into 
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a discrete form. In this thesis, two-dimentsional FEM for CEM is used to solve the 

forward problem. 

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

 
Figure 2.2. Typical FEM mesh structure 

In FEM, the object W  is discretized into small elements as shown in figure 2.2. 

The vertices of the triangle elements are called the nodes. The black elements are 

corresponding to the electrodes attached on the circumference of object.  

If nN  is the number of nodes of the FEM mesh, the electric potentials u  within the 

object are approximated as hu , and it is represented as  

( ) ( )
1

( , ) , , ,
nN

h
i i

i
u u x y u x y x ya f

=

º » =å   (2.24) 

and the voltages U  on the electrodes are approximated as  

1

1
,

L
h

j j
j

U U b
-

=
» = å m                                         (2.25) 

where if  is the two-dimensional first-order basis function, ia  and b j  are the 

coefficients to be determined, and [ ]T1 1, 1,0, ,0= -m L , [ ]T 1
2 1,0, 1,0, ,0 L´= - Îm L ¡ , 

etc. This choice for jm ensures that the Kirchhoff’s voltage law in the equation 

(2.23) is fulfilled.  

Representing the equation (2.25) in a matrix form, the voltages hU on the 

electrodes can be expressed as  
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1 1 1 1
1

2 1
2

3 2

1 1

1 1 1
1 0 0

,0 1 0

0 0 1

h L

h
h

h
L

L L

U

UU

U

b b b b
b b
b b

b b

-

- -

+ + +é ù é ùé ùé ù ê ú ê úê ú --ê ú ê ú ê úê úê ú= = = = -- ê ú ê úê úê ú ê ú ê úê úê ú ê ú ê úê úê úë û ê ú ê úê ú --ë û ë û ë û

Mβ

LL
L
L

M M MM M O M
L

     ( 2.26)  

where [ ]1 2 1L-=M m m mL and [ ]1 2 1
T

Lb b b -=β L . 

Let w  and lW  be arbitrary weighting functions for the basis function if  and 

( , ) ( )j ll j =M m . Multiplying the governing equation (2.14) by w  and integrating it 

over W , 

( )1 0.w u dr -
W
Ñ× Ñ W =ò                                   (2.27) 

The gradient product rule of terms in equation (2.27) is written as  

( )1 1 1( ).w u w u w ur r r- - -Ñ× Ñ = Ñ ×Ñ + Ñ × Ñ                      (2.28) 

Using the equation (2.28) in the equation (2.27), we have  

( ) ( )1 1 1 0.w u d w u d w u dr r r- - -
W W W
Ñ× Ñ W = Ñ× Ñ W - Ñ ×Ñ W =ò ò ò      (2.29)  

Therefore,  

( )1 1 .w u d w u dr r- -
W W

Ñ ×Ñ W = Ñ× Ñ Wò ò                                 (2.30) 

Using the divergence theorem,  

( )1 1 1 .uw u d w u d w dSr r r- - -
W W ¶W

¶
Ñ ×Ñ W = Ñ× Ñ W =

¶ò ò ò n
              (2.31) 

Adding and subtracting 1

1 l

L

le
l

uW dSr -
=

¶
¶

åò n
 in the above equation, the equation (2.31) 

can be written as  
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1 1 1

1 1
( ) .

l l

L L

l le e
l l

u uw u d w W dS W dSr r r- - -
W

= =

¶ ¶
Ñ ×Ñ W = - +

¶ ¶
å åò ò òn n

          (2.32) 

Invoking the equation (2.20),  

  1 ,l

l

u u U
z

r - ¶ -
= -

¶n
                                          (2.33) 

and using equations (2.33) and (2.21),  the equation (2.32) can be written as  

1

1 1

1 ( )( ) .
l

L L

l l l le
l ll

w u d u U w W dS I W
z

r -
W

= =
Ñ ×Ñ W = - - - +å åò ò            (2.34) 

Therefore, we can obtain the weak form of the complete electrode model as follows  

    1

1 1

1 ( )( ) .
l

L L

l l l le
l ll

u wd u U w W dS I W
z

r -
W

= =
Ñ ×Ñ W + - - =å åò ò        (2.35) 

Substituting the equation (2.24) and 
1

1
( , )

L
h
l q

q
U l qb

-

=
= å M   into u  and lU , 

respectively, and inserting the FEM basis functions if  and ( , )l jM  to the weak form 

(2.35), the weak form becomes  

   

1

1 1 1 1

1 1 1 1

1 1

1 1( , ) ( , ) ( , ),

n n

l l

n

l l

N N L L
h

i k k i k k i le e
k k l ll l

N L L L
h

k k l le e
k l l ll l

d dS U dS
z z

l j dS l j U dS I l j
z z

r f f a ff a f

f a

-

W
= = = =

= = = =

é ùé ùÑ ×Ñ W + -ê úë û ë û
é ù

- + =ê ú
ë û

å å å åò ò ò

å å å åò òM M M
      (2.36) 

1
1

1 1 1 1 1

1

1 1 1 1 1

1 1 ( , )

1 1( , ) ( , ) ( , ) ( , ).

n n

l l

n

l l

N N L L L

i k k i k k i qe e
k k l q ll l

N L L L L

k k q le e
k l q l ll l

d dS l q dS
z z

l j dS l j l q dS I l j
z z

r f f a ff a f b

f a b

-
-

W
= = = = =

-

= = = = =

é ù é ùé ùÑ ×Ñ W + -ê ú ê úë û ë û ë û
é ù é ù

- + =ê ú ê ú
ë û ë û

å å å å åò ò ò

å å å å åò ò

M

M M M M

(2.37) 

 

That is, for any i and q , 
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1
1

1 1 1 1

1 1

1 1 ( , ) 0

                                                          and

1 1( , ) ( , ) ( , )

n

l l

n

l l

N L L L

i k i k k i qe e
k l q ll l

N L

k ke e
k l l l

d dS l q dS
z z

l j dS l j l q
z z

r f f ff a f b

f a

-
-

W
= = = =

= =

é ù é ù
Ñ ×Ñ W + - =ê ú ê ú

ë û ë û

é ù
- +ê ú

ë û

å å å åò ò ò

å å ò

M

M M M
1

1 1 1

( , ).
L L L

q l
q l l

dS I l jb
-

= = =

é ù
=ê ú

ë û
å å åò M

(2.38) 

Using the finite element formulation =Ab f , the above equation can be expressed 

in a matrix form where each components are defined as below  

( 1) ( 1) ,n nN L N L
T

+ - ´ + -æ ö
= Îç ÷
è ø

B C
A

C D
¡                              (2.39) 

1,nN L+ -æ ö
= Îç ÷
è ø

α
b

β
¡                                           (2.40)  

1

1

,
( , )

nN LL
T

l
l

I l j I
+ -

=

æ ö æ ö æ öç ÷= = = Îç ÷ ç ÷ç ÷ è øç ÷ è øè ø
å

0 0 0
f

M IM
( ¡         (2.41) 

where  

( ) 1

1

1,
l

L

i j i je
l l

i j d dS
z

r f f ff-
W

=
= Ñ ×Ñ W +åò òB ,                         (2.42)     

, 1,2, , ni j N= L                 

( )
1 11 1

1 1, ,
j

i ie e
j

i j dS dS
z z

f f
+

+

æ ö
= - -ç ÷ç ÷

è ø
ò òC                                     (2.43) 

1,2, , ni N= L  and  1,,2,1 -= Lj L  

   

( )
1

1

1

11

1 1

1,

,

            =
,

l

L

i je
l l

j

j

i j dS
z

e
i j

z

ee
i j

z z

=

+

+

=

ì
¹ï

ï
í
ï + =ï
î

å òD m m

,      , 1,2, , 1i j L= -L     (2.44) 
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where je  is the area of the j th electrode. Also, in the equation (2.41), nNÎ0 ¡ , 

[ ]T1 2, , , L
LI I I I= ÎL ¡ and [ ]T 1

1 2 1 3 1, , , L
LI I I I I I -= - - - ÎI

(
L ¡ , and the vector I  

is called current pattern. Therefore, the approximate solutions hu  and hU  for the 

forward problem are obtained by solving 1-=b A f . That is, the last 1L -  

coefficients in b  give the referenced voltages on the electrodes.      

                                                      

2.1.4 Current injection methods for the data collection 

In this thesis, we focus on static cases where the internal resistivity distribution of the 

object is not changed within the time taken to acquire a single frame of measurement 

data induced from all the independent current patterns. The current is injected 

between two of the electrodes or to all electrodes, and then the voltages are measured 

between two of the electrodes or from all the electrodes with respect to one reference.  

Current injection method can affect the reconstruction performance depending on 

each internal situation termed as sensitivity. Various methods have been studied for 

the current injection (Isaacson 1986, Cheng et al. 1988, Webster et al. 1990, Cheney 

and Isaacson 1992). In EIT, the most common current injection methods are the 

adjacent method, the opposite method, and the trigonometric method. The number of 

independent current patterns is decided by the number of electrodes and the current 

patterns.  

In the adjacent method, currents are injected through two adjacent electrodes, e.g. 

01 II = , 2 0I I= - , and the voltages are measured from all the pairs of electrodes. This 

is repeated for all the current patterns. For example, with 16 electrodes the number of 

voltage measurement data is 16 16 256´ = . This method produces non-uniform 

current density because the injected currents are spread near the boundary. That is, 

this will diminish the sensitivity of the voltage measurements with respect to the 

resistivity changes at the center of the object.  

In the opposite method, a pair of diametrically opposed electrodes is selected to 

inject current, e.g. the current pattern for the electrode pair (e1, e9) with 16 electrodes 

will be ( 01 II = , 09 II -= ). The voltages are measured using one reference electrode. 

The number of voltage measurement data is 16 8 128´ =  since the number of 
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independent current patterns is 8 . This method has more uniform density compared 

to the adjacent method.  

As for the trigonometric method, the currents with appropriate magnitude flow 

through all the electrodes simultaneously. The voltages are obtained with respect to a 

single grounded electrode. The injected trigonometric current is defined on the l th 

electrode at k th pattern as 

0

0

cos( ),    1,2, , ,  1,2, ,
2

sin( ),   1,2, , ,  1, , 1
2 2

l
k
l

l l

LI k l L k
I

L LI k l L k L

q

q q

ì = =ïï= í
ï - = = + -
ïî

L L

L L
              (2.45) 

where 2 /l l Lq p= . This method is known as the best current injection method to 

distinguish a target placed at the center of the domain.   

 

2.2 Inverse problem 

2.2.1 Gauss-Newton algorithm  

The relation for the voltages on boundary electrodes U  and internal resistivity 

distribution r  is a nonlinear function, so the measured voltages U% can be written 

using the measurement errors mx  as 

( ) ,mU U r x= +%                                                 (2.46) 

where U% , ( )U r  and mN
mx Î¡ and eNr Î¡ . mN  is the number of independent 

voltage data, and eN  is the number of FEM elements. For the estimated resistivity 

distribution r̂ , the measured voltages using the residual errors mN
rx Î¡  also can be 

written as 

ˆ( ) .rU U r x= +%                                                (2.47) 

The general inverse problem approach for estimating the internal resistivity 

distribution is represented as a least squares problem. In the least squares problem, 
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the estimated resistivity distribution r̂  that minimizes the l2-norm of the residual 

errors is selected as an optimal choice for the internal resistivity distribution r . The 

objective function to find the optimal estimates r̂  is given by 

21 1ˆ( )

1 ˆ ˆ( ) ( )

2 2

                = .
2

T
r r r

T
U UU U

r x x x

r r

F = F = =

é ù é ù- -ë û ë û
% %

                               (2.48) 

Let ˆ cr r r= + D , where cr  is the estimated current resistivity distribution which 

can converge to least squares estimates and rD is sufficiently small value. 

Linearizing ˆ( )U r  at cr  using a first-order Taylor series expansion,  

ˆ( ) ( ) ,cU U Hr r r» + D                                            (2.49) 

where ( )
( ) m eN Nc

c
c

U
H H

r
r

r
´¶

º º Î
¶

¡  is the Jacobian matrix. The measurement 

residual error can be linearly approximated as  

ˆ ˆ( ) ( )

                                  = ,
r c

c

U U U U U H

U H

x r r r

r

º D - » - - D

D - D

º % %
                             (2.50) 

where ( )c cU U U rD º -% . The above objective function can be written as  

[ ] [ ]1
( ) ( )ˆ .

2
T

c cU H U Hr r r rF » F =D D - D D - D                       (2.51) 

To find the global minimum of the quadratic function of equation (2.51), the 

differentiation of the equation (2.51) is set to zero as  

( ) 0.T T
cH H H Ur r rD ¢Ñ F º F =D D - D =                           (2.52) 

From the above equation, we have the following equation  

.T T
cH H H UrD = D                                           (2.53) 
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If the TH H called Hessian matrix is positive definite, then TH H  can be inverted 

to obtain the solution for the optimal estimate as  

1( ) .T T
cH H H Ur -D = D                                         (2.54) 

Using ˆ cr r r= D+  and ( )c cU U U rD º -% , Gauss-Newton algorithm can be 

obtained as  

1ˆ ( ) ( ( )).T T
c cH H H U Ur r r-= + -%                              (2.55) 

Also, using iterative index i , the above equation can be rewritten as  

1
1ˆ ˆ ˆ( ) ( ( )).T T

i i i i i iH H H U Ur r r-
+ = + -%                            (2.56) 

The Hessian matrix ( T
i iH H ) in the equation (2.56) is highly ill-posed. So, in order 

to give the stability of inverse solution and the meaningful solution, the 

regularization method as a penalty or prior information has to be used in the equation 

(2.56). As for the regularization methods in EIT, it will be reviewed and described in 

chapter 3.   

 

2.2.2 Computation of Jacobian 

Forward solution and Jacobian have to be calculated iteratively in the Gauss-Newton 

algorithm given in the equation (2.56). Jacobian means the rate of change of voltages 

with respect to the internal resistivity distribution, and the Jacobian matrix is defined 

as     

(1) (1)

1

( ) ( )

1

,
e

e

N

K K

N

H

U U

U U

r r

r r

=

é ù¶ ¶
ê ú¶ ¶ê ú
ê ú
ê ú
¶ ¶ê ú
ê ú¶ ¶ë û

L

M O M

L

                                       (2.57) 

where ( )k LU Î¡  is induced by k th current pattern.  



19 
 

The Jacobian matrix can be computed by the standard method (Yorkey and 

Webster 1987, Vauhkonen 1997). From the formulation of FEM =Ab f , the n th 

column of the Jacobian matrix H can be obtained from  

1
1 1 1 .

n n n nr r r r

-
- - -¶ ¶ ¶ ¶

= = - = -
¶ ¶ ¶ ¶

b A f A AA A f A b                        (2.58) 

The derivative 
nr

¶
¶

A  is related to only the matrix B  in A . So, the derivative 
nr

¶
¶

A  

can be obtained as  

( )
2

, 1 ,
n

m i
n n

m i
dxdyj j

r r D

¶
= - Ñ ×Ñ

¶ ò
A

                            (2.59) 

where nD denotes the element with which the derivative is calculated.   

The equation (2.58) forms the derivatives of all the voltages with respect to nr . 

So, the part of voltages on the electrodes has to be extracted. Consider an extracting 

matrix below 

[ ],=M 0 M
)

                                              (2.60) 

where nL N´Î0 ¡ , ( 1)L L´ -ÎM ¡ . As for k th current pattern, using equations (2.60) 

and (2.40), the voltages  ( )kU =Mβ  on the electrodes are expressed as  

( ) .kU = =Mβ Mb
)

                                          (2.61) 

Therefore, the derivatives 
( )k

n

U
r

¶
¶

 can be obtained as  

( )
1( ) .

k

n n n n

U
r r r r

-¶ ¶ ¶ ¶
= = = -

¶ ¶ ¶ ¶
Mb b AM MA b
) ) )

                 (2.62) 
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3. Regularization Methods in EIT 
 

EIT inverse problem is a discrete ill-posed problem due to its nonlinear behaviour of 

measured voltage and inner resistivity distribution. In the discrete ill-posed problem, 

the regularization has to be used to stabilize the problem and provide the meaningful 

solution.  

 In this chapter, the requirement of the regularization and three regularization 

methods widely used in EIT are introduced. In section 3.1, the need of the 

regularization in discrete ill-posed problem is introduced. Three regularization 

methods such as the l1-norm, l2-norm and total variation (TV) are reviewed in 

section 3.2. Also, the numerical simulations for comparison of three regularization 

methods are presented in section 3.3.  

 

3.1 Why the regularization is necessary in discrete ill-posed problem?  

Consider the following discrete linear model 

,exact exactY FX=                                                (3.1) 

where exact nX Î¡  , exact mY Î¡ , and m nF ´Î¡  with m n³ . The measurement data 

Y includes noise e  and the naive solution naiveX  can be solved by the least squares 

problem  represented as 2min
X

Y FX- . And the solution is given by  

1( ) .naive T TX F F F Y-=                                          (3.2) 

As one method for finding inversion matrix, the singular value decomposition 

(SVD) can be used. Using SVD, the matrix F  is decomposed of the form 

1

,
n

T T
i i i

i
F l

=

= S =åU V u v                                       (3.3) 
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where 1[ , , ] m n
n

´= ÎU u uL ¡  and 1[ , , ] n n
n

´= ÎV v vL ¡  are matrices with 

orthonormal columns m
i Îu ¡  and n

i Îv ¡  , respectively, and 1[ , , ]ndiag l lS = L  

has non-negative diagonal elements in decreasing order, that is, 1 0nl l³ ³ ³L .   

Using the equation (3.3) with T T n n´= = ÎU U V V I ¡ , the naive solution naiveX  in 

the equation (3.2) can be rewritten by  

1 1

( ) .
T T exactn n

naive i i
i i

i ii i

Y Y eX
l l= =

+
= =å åu uv v                              (3.4) 

The naive solution in the equation (3.4) is dominated by the smallest singular 

value nl . If the singular values of F are close to zero and the condition number, i.e., 

the ratio between the largest and the smallest nonzero singular values, is large, then 

F is rank-deficiency and ill-conditioned. This inverse problem is called discrete ill-

posed problem (Hansen 1994, Fuhry and Reichel 2012). In the discrete ill-posed 

problem, the naive solution is potentially very sensitive to error e  and tends to have 

many sign changes and appear randomly. Even if there is no error in the 

measurement data Y , the discrete ill-posed problem has numerically unstable naive 

solution. That is, the naive solution is far from the exact solution as shown in figure 

3.1 and then it can be useless.   

 
Figure 3.1. The requirement of regularization in the discrete ill-posed problem 

In the discrete ill-posed problem, specific techniques called the regularization 

method to find a stable solution have to be used as an additional term in the least 
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squares problem. The regularization method can be formulated based on the prior 

information. That is, the regularization method can replace ill-posed inverse problem 

by a nearby well-posed problem, and it gives efficient and numerically stable 

methods that lead to a useful solution. Hence, the regularized solution ( rX ) provides 

a good approximation to the exact solution as shown in figure 3.1. 

 

3.2 Three regularization methods in EIT  

Recall equations (2.48) and (2.56). The objective function to estimate internal 

resistivity distribution in EIT is rewritten as  

21 ˆ( ) ,
2

UU rF = -%                                               (3.5) 

and the iterative naive solution is given by 

1
1ˆ ˆ ˆ( ) ( ( )).T T

i i i i i iH H H U Ur r r-
+ = + -%                               (3.6) 

The Jacobian matrix m eN NH ´Î¡  is rank-deficient and ill-conditioned, that is, the 

Hessian Matrix ( TH H ) is highly ill-posed. The main reason of ill-posed nature in 

EIT is resulted from the fact that the number of unknown resistivity elements is 

generally much larger than the number of independent measured voltage data  as well 

as by the fact that the relation between voltages and resistivity distribution is non-

linear (Dai 2008). Hence, the naive solution in the equation (3.6) is unstable and it 

has large changes caused by small changes in the measurement data. In order to 

mitigate the ill-posed problem, the equation (3.6) should be regularized by adding an 

additional term in the equation (3.5). The regularized objective function can be 

written as  

 
2

*
1 ˆ ˆ( ) ),(
2

UU Rr r rF = -- +%                                         (3.7) 

where *ˆ( )R r r-  is a regularizing penalty function and *r  is a priori estimate of r . 

The reconstruction solution has different performance depending on the type of the 

regularization method used in the equation (3.7), i.e., the regularization method plays 
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an important role in the spatial resolution. A brief description of the typical three 

regularization methods used in EIT is described and compared in the following 

subsection.  

 

3.2.1 The l2-norm regularization method 

In the equation (3.7), the regularizing penalty function is commonly used as  

2
* *ˆ ˆ)

1( ,
2 TR r r r rg

G G
- = -                                      (3.8) 

where 2× denotes the l2-norm, G  is a regularization matrix or a regularization 

operator, g  is a regularization parameter.      

The objective function with the l2-norm regularization method can be written as  

2 2
2 *

1 1ˆ ˆ ˆ( ) .( )
2 2 Tl UUr r r rg

G G
F = -- +%                          (3.9) 

The regularized solution minimizing the equation (3.9) can be derived in a similar 

fashion as shown in chapter 2. Linearizing the above equation (3.9) has the form  

[ ] [ ]

[ ] [ ]

2 2

* *

1
( ) ( )

1

ˆ
2

                              + .
2

T
l l c c

T T
c c

U H U Hr r r r

g r r r r r r

F » F =D D - D D - D

D + - G G D + -
       (3.10) 

The differentiation of the equation (3.10) is set to zero as 

2 *( ) ( ) 0.T T T T
l cH H H Ur r g r g r r¢F =D D - D + G GD + G G - =         (3.11) 

From the above equation,  

1
*( ) [ ( )].T T T T

cH H H Ur g g r r-D = + G G D - G G -                  (3.12) 

where T TH H g+ G G  is positive definite. Therefore, the regularized solution can be 

obtained from iterative Gauss-Newton algorithm with the l2-norm regularization 

method, 
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1
1 *ˆ ˆ ˆ ˆ( ) { [ ( )] ( )}.T T T T

i i i i i i iH H H U Ur r g r g r r-
+ = + + G G - - G G -%       (3.13) 

In the l2-norm regularization method, the prior estimate *r  is generally set to zero, 

therefore, the equation (3.13) takes the form 

1
1ˆ ˆ ˆ ˆ( ) { [ ( )] }.T T T T

i i i i i i iH H H U Ur r g r g r-
+ = + + G G - - G G%                (3.14) 

The regularization matrix G  in the equation (3.14) is properly chosen to achieve 

good reconstruction performance. Commonly, it uses an identity matrix (Yorkey et al. 

1987) called standard Tikhonov regularization method, a positive diagonal matrix 

(Cheney et al. 1990) called NOSER (Newton’s one-step error reconstructor) prior, 

difference-type regularization matrix (Hua et al. 1988) called generalized Tikhonov 

regularization method (G ¹ I ).  

The regularization parameter g  controls the amount of regularization. Choosing 

proper regularization parameter is very important to have a good reconstruction 

performance. There are several methods for the choice of this regularization 

parameter. The most common methods are the L–curve method (Hansen 1992, 

Hanke 1996), the generalized cross validation method (Golub et al. 1979), and ad 

hoc method adjusting a posteriori by visual examination. The ad hoc approach is 

commonly used in EIT, and the method is adopted in this thesis.  

In the standard Tikhonov regularization matrix, since TG G = I , the condition 

number of TH H g+ I  can be written  

1( ) ,T

n

cond H H l gg
l g
+

+ =
+

I                                   (3.15) 

where il  is i th singular value. If nl  is very small, the above equation is close to 

1 / 1l g + .  For a large g  even if H  does not have full rank, it can be seen that the 

inversion term in the equation (3.14) is well-posed.  

In the NOSER prior, TG G  is considered to be diagonal of the Hessian matrix 
TH H with respect to the linearization point hr . Where hr  is the best homogenous 

resistivity distribution which minimizes the l2-norm between measured and 

calculated voltages.  
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In the generalized Tikhonov regularization method, the regularization matrix G is 

related to the FEM discretization of the computation domain. The resistivity 

distribution is estimated in element basis, so it is parameterized such that 

1

( , ) ( , ),
eN

k k
k

x y x yr r c
=

=å                                            (3.16) 

where ( , )k x yc  is the characteristic function of the k th FEM element. The gradient 

of the resistivity of the k th element can be approximated as the differences in the 

resistivity of k th element and those of neighboring elements. If the FEM mesh has 

triangular elements, for inner elements except the boundary, each element has three 

elements with common edge.  

Therefore, k th row of difference matrix G  for the inner elements can be used 

commonly as (Heikkinen et al. 2001, Kim et al.2001, Holder 2005, Yang et al. 2014) 

[0, ,0, 1,0, ,0, 1,0, ,0,3,0, ,0, 1,0, ,0],kG = - - -L L L L L                (3.17) 

where 3  is placed in the k th column and 1- s are allocated in the columns 

corresponding to the adjacent elements of the k th element. The weight 3  is given 

with the absolute value of the weight 1- ’s sum. If the element k  is on the boundary, 

the k th element has only two adjacent elements, then the 3  is replaced by 2  in kG . 

Therefore, kG  for k th element on the boundary can be written as  

[0, ,0, 1,0, ,0, 1,0, ,0,2,0, ,0,0,0, ,0].kG = - -L L L L L                 (3.18) 

The l2-norm regularization method penalizes sudden variation in the resistivity to 

stabilize the inverse problem in EIT. This method gives a good convergence of the 

invese problem since it gives the smoothing effect. However, it prevents sharp 

transitions on the boundary between target and background (Borsic et al. 2007, Dai 

and Adler 2008). To preserve sharp transitions, the l1-norm and TV regularization 

methods in following subsection are adapted to EIT reconstruction problem  
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3.2.2 The l1-norm regularization method 

The l1-norm regularization method as a penalty function uses 1×  instead of 2× , and 

the objective function with the l1-norm regularization method can be written as  

2 1
1 *

1 1ˆ ˆ ˆ( ) .( ) ( )
2 2 Tl UUr r r rg

G G
F = -- +%                          (3.19) 

The above equation is linearized and can be reformulated in a quadratic form 

[ ] [ ]1 1

* *

1
( ) ( )

1

ˆ
2

                              ( ) ( ) ,
2

T
l l c c

T T
c c

U H U H

D Dr r

r r r r

g r r r r r r

F » F =D D - D D - D

é ù é ù+ D + - G G D + -ë û ë û

   (3.20) 

where Dr is a diagonal matrix in which  

1
2

*,
ˆ( ) ,

jj j
Dr r r d

-
-é ù = +é ùë ûë û                                       (3.21) 

where d  is a small positive value to maintain differentiability when *r̂ r= .  

Assume that * cr r= , the regularized solution minimizing the above equation 

(3.20) can be written as  

1
1ˆ ˆ ˆ( ) ( [ ( )]).T T T T

i i i i i iH H D D H U Ur rr r g r-
+ = + + G G -%                 (3.22) 

 

3.2.3 Total variation regularization method 

In the total variation (TV) regularization method, the constraint that the total 

variations in resistivity distribution is assumed zero and is added in the original 

objective function. The objective function with the TV regularization method is 

given by  

21 1ˆ ˆ ˆ( ) ).( ) TV(
2 2TV UUr r rgF = - +%                                  (3.23) 
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In EIT using FEM, the total variations of the resistivity distribution can be defined 

as the sum of the variations of two elements across each edge weighted by its length. 

The TV regularization can be expressed as  

1 1

ˆ ˆ ˆ ˆ) ( ) ( )TV( ,
l lN N

k k
k k

m nlr r r rg g g
= =

= - =å å L                             (3.24) 

here lN  is the number of the edge of FEM, and kl  is the length of k th edge, and m  

and n  are indices of the elements having the common edge k . Also the k th row of 

TV operator L can be written as  

[ ]0, ,0, ,0, , ,0, ,0 .k k kl l= -L L L L                               (3.25) 

The equation (3.24) can be expressed in matrix form as 

1ˆ ˆ)( .r rg g= LTV                                           (3.26) 

Consequently, the TV regularization method becomes one of the l1-norm 

regularization methods. The objective function with the TV regularization method 

can be written as 

2 11 1ˆ ˆ ˆ( )( ) .
2 2TV UUr r rgF = - + L%                            (3.27) 

The regularized solution minimizing equation (3.27) can be expressed as (Borsic 

et al. 2007) 

        1 1 1
1ˆ ˆ ˆ ˆ( ) ( [ ( )] ),T T T T

i i i i TV i i TV iH H D H U U Dr r g r g r- - -
+ = + + - -L L L L%            (3.28) 

where TVD  is a diagonal matrix in which  

[ ] 2
,

ˆ( ) ,TV k ik kD r dé ù= +
ë û

L                                  (3.29) 

here d  is a small positive value to maintain differentiability when ˆ ˆ( ) ( )i im nr r= .   
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3.3. Comparison of three regularization methods 

Numerical simulations are performed to compare the performance of the above three 

regularization methods. Two-phase flow imaging is considered using an industrial 

process pipe that has a radius of 4 cm . This work is reference to the paper by Kang 

and Kim published in Journal of IKEEE on 2016 (Kang and Kim 2016). 

 

3.3.1 Simulation conditions  

To perform numerical simulations, a circular domain that has 32 electrodes with a 

width of 0.6 cm  is used, and the two different meshes are used to avoid the inverse 

crime as shown figure 3.2. The true voltages are generated using the unstructured 

mesh with 4472 triangular elements and 2365 nodes (figure 3.2(a)). The calculated 

voltages and the estimate of the resistivity distribution are obtained using the 

structured mesh with 3104 elements and 1681 nodes (figure 3.2(b)).  

 

 
(a) 

 
(b) 

Figure 3.2. Finite element mesh used for two-phase flow imaging: (a) unstructured 
mesh and (b) structured mesh 

 

The background is considered to be liquid with a resistivity value of 400 cmW  

and the targets with a radius of 1 cm are considered to be voids with a resistivity 

value of 800 cmW . Two scenarios are considered. One scenario has two targets 

located near the boundary and the other scenario has two targets located near the 

center. The cases with and without noise are also examined to compare the 

reconstruction performance by three regularization methods. With noise case, 1% 
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relative white Gaussian noise of the generated voltages is added. As a current 

injection method, trigonometric current patterns are used.  

The reconstructed images of numerical simulations are compared using three 

regularizations such as the l2-norm, l1-norm, and TV regularization methods 

described by the equations (3.14), (3.22) and (3.28), respectively. The values of 

regularization parameter g  for numerical simulations are chosen for each 

regularization method that gives the best reconstruction performance. The values are 

shown in table 3.1. Also, the small positive value d  is set to 610- . The difference 

matrix using equation (3.17) is used in as l2-norm, l1-norm regularization methods 

and TV operator using equation (3.25) is used in the TV regularization method.  

Table 3.1. The values of regularization parameter g  for numerical simulations 

Noise Index l2-norm l1-norm TV 

0% 
Scenario 1 410-  410-  410-  
Scenario 2 510-  310-  410-  

1% 
Scenario 1 210-  010-  110-  
Scenario 2 210-  010-  110-  

© 2016 IKEEE. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226) 

 

3.3.2 Performance evaluation index 

To compare the estimation performances, the image error (IE) is used as a 

performance evaluation index (Yang and Peng 2003) and it is defined as follows 

ˆ
IE .

r r
r
-

=                                                     (3.30) 

It should be noticed that the smaller IE corresponds to better estimation performance.  

 

3.3.3 Numerical results and discussion 

Figures 3.3 and 3.4 show the true and reconstructed images for each scenario without 

noise. The true images are shown in figures 3.3(a) and 3.4(a). The reconstructed 

images are obtained after 10 iterations using each method, and they are shown in 
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figures 3.3(b-d) and figures 3.4(b-d). The black circles in figures 3.7 and 3.8 

represent the true position of the targets. Figure 3.5 shows the true and estimated 

resistivity values of each regularization method along the center line in true images. 

Figure 3.6 shows image errors without noise to evaluate the estimated performance 

of three regularization methods for each scenario.  

Figure 3.7 and figure 3.8 show the true and reconstructed images for each scenario 

with 1% noise. The true images are shown in figures 3.7(a) and 3.8(a). The 

reconstructed images are shown in figures 3.7(b-d) and figures 3.8(b-d). The true 

position of the targets are represented by the black circles in figures 3.7 and 3.8. 

Figure 3.9 shows the true and estimated resistivity values of each regularization 

method along the center line in true images. Figure 3.10 shows image errors in the 

scenarios with 1% noise.  

Numerical results show the l2-norm regularization has rapid convergence as 

compared to the other regularization methods. Therefore, it can be said the l2-norm 

regularization method is suitable for one-step algorithms. In without noise case, TV 

regularization method has the better reconstruction performance with sharp transition 

in resistivity distribution between target and background as well as preserves discrete 

change in the resistivity distribution. From the reconstructed results in the presence 

of noise, for targets close to each other, the l1-norm regularization method is found 

to have better reconstruction performance. For scenario 1 with targets located close 

to the boundary, TV has better reconstruction performance and the l1-norm and l2-

norm regularization methods are found to have similar reconstruction performance. 
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(d) 

Figure 3.3. Images for scenario 1 without noise: (a) true image, (b) ~ (d) the 
reconstructed images by the l2-norm, l1-norm, and TV regularization methods, 
respectively. © 2016 IKEEE. Reproduced with permission. All rights reserved. 
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226) 
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(d) 

Figure 3.4. Images for scenario 2 without noise: (a) true image, (b) ~ (d) the 
reconstructed images by the l2-norm, l1-norm, and TV regularization methods, 
respectively. © 2016 IKEEE. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226) 
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(b) 

Figure 3.5. The true and estimated resistivity values along the center line without 
noise: (a) scenario 1 and (b) scenario 2.  
© 2016 IKEEE. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226) 
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(b) 

Figure 3.6. Image errors without noise: (a) scenario 1 and (b) scenario 2. 
© 2016 IKEEE. Reproduced with permission. All rights reserved. 
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226) 
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(d) 

Figure 3.7. Images for scenario 1 with 1% noise: (a) true image, (b) ~ (d) the 
reconstructed images by the l2-norm, l1-norm, and TV regularization methods, 
respectively. © 2016 IKEEE. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226) 
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(d) 

Figure 3.8. Images for the scenario 2 with 1% noise: (a) true image, (b) ~ (d) the 
reconstructed images by the l2-norm, l1-norm, and TV regularization methods, 
respectively. © 2016 IKEEE. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226) 
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(b) 

Figure 3.9. The true and estimated resistivity values along the center line with 1% 
noise: (a) scenario 1 and (b) scenario 2.  
© 2016 IKEEE. Reproduced with permission. All rights reserved. 
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226) 
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(a) 

 
(b) 

Figure 3.10. Image errors with 1% noise: (a) scenario 1 and (b) scenario 2. 
© 2016 IKEEE. Reproduced with permission. All rights reserved. 
(http://dx.doi.org/10.7471/ikeee.2016.20.3.226) 

 

1 2 3 4 5 6 7 8 9 10

0.16

0.18

0.2

0.22

0.24

0.26
IE

 

 
l2-norm
l1-norm
TV



37 
 

4. Sub-domain based Regularization Method 
 

As mentioned earlier, the generalized Tikhonov regularization method that employs 

l2-norm regularization method uses difference-type regularization matrix as given in 

equation (3.17). It is commonly used method that has fast convergence and 

computationally efficient (Mamatjan et al. 2012). However, this method is difficult 

to recover discontinuous resistivity distribution in image reconstruction because of 

smoothness assumption. That is, the reconstructed images get smoothen at the 

boundary of internal organs or targets. The images are difficult to show the structural 

and functional properties caused by the differences in electrical properties inside the 

object.  

To overcome these limitations, the l1-norm and TV regularization methods in 

chapter 3 were introduced and compared with l2-norm regularization method. On the 

other hand, as another approach in order to improve spatial resolution, the prior 

information on the internal structure of object can be incorporated into the 

regularization method. The prior information of internal structure in industrial 

applications can be the target’s size, shape, or position and in medical applications 

previously available images of CT and MRI can be used. Using the prior information, 

the internal resistivity distribution can be reconstructed with sharp target boundaries 

and estimated more accurately.  

However, for most real situations, the prior information on the internal structure of 

the whole domain cannot be known exactly. If the prior information on internal 

structure is not reliable with actual model, the reconstruction performance gets 

deteriorated. When partial information on the internal structure is known or available, 

to improve the spatial resolution in EIT a sub-domain based regularization method 

which is proposed in this thesis can be used.  

To evaluate the performance of the sub-domain based regularization method, two 

applications are considered. One is human thorax monitoring and the other is two-

phase flow monitoring. A part of whole domain is considered as a sub-domain, such 

prior information is incorporated into the regularization method. In the proposed 

regularization method, the regularization matrix is anisotropically modified to 
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contain prior information on a sub-domain. Also, the regularization parameter is set 

with different weight for the sub-domain.  

This chapter is a reference to two papers on human thorax monitoring (Kang et al. 

2016a) and two-phase flow monitoring (Kang et al. 2016b). Using the sub-domain 

based regularization method for human thorax monitoring is introduced in section 

4.1 and two-phase flow monitoring in section 4.2. 

 

4.1 Human thorax monitoring  

4.1.1 Image reconstruction method for human thorax monitoring   

Consider human thorax monitoring during cardiac cycle assuming that the lung 

boundaries do not change and the thorax model is simply composed of background, 

lungs and heart. Also, the anatomical information of human thorax can be obtained 

from the previous CT image of a patient. The simple thorax model in figure 4.1 can 

be designed by considering accurate boundaries of the lungs and an ambiguous 

boundary of heart during the cardiac cycle. In figure 4.1, the regions I and II 

correspond to background and lungs, respectively, and the region III is consist of the 

heart and a part of background adjoining the heart during the cardiac cycle.  

 

 
Figure 4.1. Simple thorax model with a prior information obtained from  CT image. 
© 2016 IOP Publishing. Reproduced with permission. All rights reserved. 
(http://dx.doi.org/10.1088/0957-0233/27/2/025703) 
 

To reconstruct the human thorax image, one-step Gauss-Newton algorithm with 

generalized Tikhonov regularization method is employed and can be written as  

1
1 0 0ˆ ( ) ( [ ( )]).T T TH H H U Ur r g r-= + + G G -%                              (4.1) 
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The above equation (4.1) was formulated from the equation (3.13) by linearizing an 

initial value 0r  and assuming * 0r r= . Here, the initial value 0r  generally uses the 

best homogeneous resistivity value.   

The regularization constraint in the equation (4.1) has a quadratic form TG G . The 

quadratic form with allocated weights in the equation (3.17) has an effect not only 

the neighboring elements connected to the element but also other adjacent elements 

connected to the neighboring elements. To easily approach a prior information on the 

internal structure for human thorax, a square matrix G  was used instead of the 

quadratic form TG G . Therefore, one-step Gauss-Newton method can be represented 

as follows  

1
1 0 0ˆ ˆ ˆ( ) ( [ ( )]).T TH H H U Ur r g r-= + + G -%                                 (4.2) 

The generalized Tikhonov regularization method with the conventional difference 

matrix in equation (3.17) gives the smoothing effect in the reconstructed image since 

the changes in resistivity distribution inside the object are isotropic. Since this 

method is hard to identify the lungs and heart boundaries in human thorax, we lose 

important medical information from the reconstructed image. Also, with a scalar 

regularization parameter, it is difficult to select an optimized regularization 

parameter depending on the situations. A comparatively large value for the 

regularization parameter results in the blurred regions on the boundary of organ, 

whereas a smaller value produces undesirable spots in the reconstructed image 

Therefore, to improve the spatial resolution of human thorax imaging, a sub-

domain based regularization method with the prior information on internal structure 

is proposed. In figure 4.1, the known regions I and II can be considered as sub-

domains IW and IIW  of the whole domain W . On the other hand, the region III 

belongs to the whole domain W . In the proposed method, to restrict the resistivity 

change in sub-domains within each sub-domain, the difference regularization matrix 

and the regularization parameter are modified.  

The modified difference regularization matrix is selected in a similar way to the 

previous method using the prior information on known internal structure (Heikkinen 

et al. 2001, Kim et al. 2002a). However, the regularization matrix in the proposed 
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method is different from the previous methods that consider the known internal 

structure from the whole domain as to be separate. In the proposed method, the 

regularization matrix is constructed to consider the partially known internal structure 

as sub-domains.  

Figure 4.2 describes i th row and j th row of the difference matrix for three 

different methods. Figure 4.2(a) shows the conventional method in the equation 

(3.17) that does not consider any prior information of known internal structure. 

Figure 4.2(b) shows the previous method with known internal structure, i.e. region II. 

Figure 4.2(c) shows the proposed method employing the sub-domain principle.  

Figure 4.2. The diagram for the difference regularization matrix in: (a) conventional 
method, (b) previous method with known internal structure, and (c) proposed method 
employing sub-domain principle.  
© 2016 IOP Publishing. Reproduced with permission. All rights reserved. 
(http://dx.doi.org/10.1088/0957-0233/27/2/025703) 
 

In figure 4.2(b), the elements on the boundary of the known internal structure are 

treated in the manner as the domain boundary in the equation (3.18). In this method, 

since the heart boundary during the cardiac cycle is not known, only region II is the 

known internal structure. The difference matrix is modified for the row vectors 

corresponding to all inner and outer elements on the boundary of region II as shown 

in figure 4.2(b). Using this approach, region II is treated as separate from the whole 

domain W . Just using known lung structure does not give desired performance. The 

region II appears discretely in the reconstructed image, but regions I and III get 

 
(a) 

 

 
 

(b) 

 
 

(c) 
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smoothen. If we consider the known internal structure as regions I and II, the 

reconstructed images get smoothen inside each region, and we cannot obtain the 

meaningful image about heart boundary during the cardiac cycle.  

On the other hand, in figure 4.2(c), the difference matrix is modified for the row 

vectors corresponding to the only inner elements on the boundary of sub-domains IW  

or IIW . The row vectors for the outer elements on the boundary of sub-domains are 

handled in the same way as the conventional method. With this, the resistivity 

changes in the sub-domains have an effect on the resistivity changes within each sub-

domain, however, the resistivity changes in region III are affected by the resistivity 

changes in the whole domain. If i th element is the inner element on the boundary of 

sub-domains and has one outer adjacent element, i th row of new difference matrix 
*G can be written as follows 

* [0, ,0, 1,0, ,0, 1,0, ,0,2,0, ,0,0,0, ,0],iG = - -L L L L L                    (4.3) 

where the column of the outer adjacent element is allocated as 0  and the column of 

i th element is replaced by 2 which is the absolute sum value of two inner elements. 

It should be noticed that the new regularization matrix *G  is not a symmetric matrix. 

The new regularization matrix *G  is written as follows 

* * * *
I II III ,G = G + G + G                                             (4.4) 

where * * *
I II IIIand,    e eN NR ´G G G Î  are composed of the corresponding row sets of 

regions I, II and III, respectively and the others as zero rows. This sub-domain 

approach can provide different weights for each region in regularization parameter. 

The * * *
I II IIIand,    G G G  in the equation (4.4) are weighted with 1g , 2g  and 3g  

respectively.  

Therefore, the one-step Gauss-Newton algorithm with the proposed regularization 

method can be written as  

* * * 1
1 0 1 I 2 II 3 III 0ˆ ˆ ˆ( ) ( [ ( )]).T TH H H U Ur r g g g r-= + + G + G + G -%               (4.5) 
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Here, 1g  and 2g  are set to higher value than 3g  because they penalize the regions I 

and II which can be considered to have a single resistivity distribution in each region. 

However, 3g  should be set to a value as small as possible because it regularizes to 

distinguish heart from background. Here, 3g  is the equal to g  in the equation (4.2).  

 

4.1.2 Numerical simulations and phantom experiments 

Computer simulations with synthetic data and experimental data are performed to 

investigate the performance of a sub-domain based regularization method on the 

spatial resolution for human thorax monitoring. To monitor human thorax while the 

patient holds his breath for the heart diagnosis, the resistivity of heart and lungs is 

assumed to be constant during the cardiac cycle. The heart expands and contracts 

during the cardiac cycle, so, the size and resistivity of heart change. However, since 

the average resistivity of heart does not have large variation, the resistivity of heart is 

considered as constant.  

One-step Gauss-Newton algorithm is used and compared with three different 

regularization methods named conventional regularization method (CRM) in 

equation (4.2), proposed regularization method (PRM1) with constant regularization 

parameter ( 1 2 3g g g= = ) in the equation (4.5), and proposed regularized method 

(PRM2) with different weights for each sub-domain. 

In figure 4.3, FEM mesh for human thorax imaging with exact lung structure is 

considered. Also, two different meshes are used to avoid inverse crime. Fine mesh in 

figure 4.3(a) consists of 3028 triangular elements and 1637 nodes, and coarse mesh 

in figure 4.3(b) is composed of 2216 triangular elements and 1230 nodes. Fine mesh 

is used to generate the synthetic voltage data for numerical simulation and estimate 

the resistivity distribution for experiments. Coarse mesh is used to estimate the 

resistivity distribution for numerical simulation. An array of 16 electrodes is attached 

on the surface of the thorax. The adjacent current patterns are used, and the voltage 

data is measured on the surface of all 16 electrodes.  
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(a) 

 
(b) 

Figure 4.3. Meshes for 2D thorax model: (a) fine mesh and (b) coarse mesh.  
© 2016 IOP Publishing. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.1088/0957-0233/27/2/025703) 
 

Two different sizes of heart corresponding to systole (small heart) and diastole (big 

heart) are considered. The resistivity of background, lungs, and heart are set to 

495 Ωcm , 645 Ωcm  and 207 Ωcm , respectively (Bruder et al. 1994, Vauhkonen 

1997, Baysal and Eyuboglu 2000, Rashid et al. 2011), and these values can be 

acceptable clinically.  

Synthetic and experimental voltage data hU%  with homogeneous background 

resistivity instead of 0( )U r  are used in computing the equations (4.2) and (4.5). This 

approach can minimize the modeling errors related to truncation of the computational 

domain, electrode position, contact impedance, and etc.  

In the numerical simulations, 0r̂  is calculated as 497 cmW  and 491 cmW for the 

small and big heart cases, respectively. In the experimental studies, 0r̂  is calculated 

as 505 cmW  and 497 cmW  for the small and big heart cases, respectively. 

For the numerical simulations, the regularization parameter g  in CRM and 1 2,  g g  , 

and 3g  in PRM1 are set to 45 10-´ ( 1 2 3g g g= = ). In PRM2, 3g  is equal to g , and 1g , 

2g  are set to 25 10-´  that is weighted 100 times more than g . For the experimental 

studies, the regularization parameter g  in CRM and 1 2,  g g , and 3g  in PRM1 are set 

to 410- . In PRM2, 3g  is equal to g , and 1g  and 2g  are set to 210-  that is weighted 

100 times more than g . 
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n Experimental setup 

For the experiments, as a current source, agilent 4284A LCR meter is used and NI 

PXIe-1062Q is used to acquire voltages. The experimental phantom has the same 

geometry as in figure 4.3. Electrodes with height of 5 cm  and width of 1.8 cm  are 

attached around the phantom periphery. The experimental phantom is filled with 

saline solution that has resistivity of 495 cmW  up to the depth of the electrode to 

simulate two-dimensional conditions. The lungs and heart are made of agar with 

mean resistivity of approximately 645 cmW  and 207 cmW , respectively.  

 

n Performance evaluation index  

In numerical simulations, to compare the estimation performance, the image error 

(IE) in the equation (3.30) and the correlation coefficient (CC) between true 

resistivity and estimated resistivity are used. The CC is defined as follows 

   1

2 2

1 1

CC ,
ˆ ˆ[( )( )]

ˆ ˆ( ) ( )

e

e e

N

i i
i

N N

i i
i i

r r r r

r r r r

=

= =

=
- -

- -

å

å å
                                 (4.6) 

where r , r̂  are the mean values of the true resistivity distribution r and the 

estimated resistivity distribution r̂ , respectively. It should be noticed that the bigger 

CC value and smaller IE value correspond to better reconstruction performance. 

 

 (a) Numerical results and discussion 

Figures 4.4 and 4.5 show the true and reconstructed images for the small and big 

heart cases using synthetic data. The true resistivity distribution is given in figures 

4.4(a) and 4.5(a). The reconstructed images by CRM, PRM1 and PRM2 for small 

heart case are shown in figures 4.4(b-d) and for big heart cases are shown in figure 

4.5(b-d), respectively. The color bar for all the images is shown in same scale 

(200  to  650 cm)W .  

In figures 4.4(b) and 4.5(b), the images using CRM without known structure 

information has the poorest spatial resolution with non-uniform background with 

unclear lung boundaries as compared to the other methods. In figures 4.4(c) and 
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4.5(c), with PRM1, the spatial resolution is slightly improved and has sharp edges of 

lungs compared to CRM but still the resistivity distribution is not estimated well. The 

results using PRM2 in figures 4.4(d) and 4.5(d) have clear background and lungs, 

and the heart size and position are close to true images. The improvement in the 

resolution of background and lungs makes the heart appear more distinctly. 

Moreover, the size and location of heart are estimated with better accuracy by using 

PRM2.  

Figure 4.6 shows the sorted resistivity distributions for the numerical simulations. 

As noticed in figures 4.4 and 4.5, PRM2 has more uniform resistivity distribution in 

background and lungs and fast transient at the boundaries of the heart and lungs 

compared to the CRM and PRM1. That is, the results mean that PRM2 has more 

uniform resistivity distribution in sub-domains and more discrete changes on the 

organ boundary as shown in figures 4.4 and 4.5.  

Table 4.1 shows IE and CC results for numerical simulations to evaluate the 

reconstruction performance of CRM, PRM1 and PRM2. It can be noticed that PRM2 

has the lowest IE and highest CC values compared to the other methods.  

 

Table 4.1. IE and CC results for numerical simulations 

Index 
IE CC 

CRM PRM1 PRM2 CRM PRM1 PRM2 

Small heart 0.0806 0.0543 0.0444 0.7722 0.9039 0.9358 

Big heart 0.1032 0.0735 0.0550 0.7667 0.8880 0.9380 

© 2016 IOP Publishing. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.1088/0957-0233/27/2/025703) 
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(b) (c) (d) 

Figure 4.4. Images for the small heart case using synthetic data: (a) true image, (b) 
image by CRM, (c) image by PRM1, and (d) image by PRM2. The black circle in the 
images represents the true position of heart. 
© 2016 IOP Publishing. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.1088/0957-0233/27/2/025703) 
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(b) (c) (d) 

Figure 4.5. Images for the big heart case using synthetic data: (a) true image, (b) 
image by CRM, (c) image by PRM1, and (d) image by PRM2. The black circle in the 
images represents the true position of heart. 
© 2016 IOP Publishing. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.1088/0957-0233/27/2/025703) 
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(a) 

 
(b) 

Figure 4.6. The sorted resistivity distributions for numerical cases: (a) small heart 
and (b) big heart. 
© 2016 IOP Publishing. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.1088/0957-0233/27/2/025703) 
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(b) Experimental results and discussion 

Figures 4.7 and 4.8 show the true and reconstructed images for the small heart case 

and the big heart case using experimental data. The true images are shown in figures 

4.7(a) 4.8(a). The reconstructed images by CRM, PRM1 and PRM2 for small heart 

case are shown in figures 4.7(b-d) and for large heart case are shown in figures 4.8(b-

d), respectively.  

In figures 4.7(b) and 4.8(b) by using CRM, the spatial resolution is poor due to the 

smoothened regions surrounding the organ boundaries. Also, the heart size is over 

estimated compared to the heart size in true image. In figures 4.7(c) and 4.8(c), 

PRM1 gives a better spatial resolution compared to CRM because it regulates the 

variation in resistivity distribution within the each sub-domain for lungs and 

background. However, the region in between lungs is still ambiguous. In figures 

4.7(d) and 4.8(d) by using PRM2 with different weights of each sub-domain, the 

spatial resolution is improved compared to the CRM and PRM1. The different 

weight makes spatial resolution of the background and lung regions more clear, thus 

the heart size and position are estimated more accurately.  

Figure 4.9 shows the sorted resistivity distributions for the experimental 

simulations. As noticed in figure 4.9, PRM2 has more uniform resistivity distribution 

in sub-domains and more fast transient at the organ boundary compared to the CRM 

and PRM1, as shown in the results of numerical simulations.  

Consequently, all the results for the numerical and experimental simulations show 

that PRM has improved resolution compared to CRM.  
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Figure 4.7. Images for the small heart case using experimental data: (a) true image, 
(b) image by CRM, (c) image by PRM1, and (d) image by PRM2 
© 2016 IOP Publishing. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.1088/0957-0233/27/2/025703) 
 

Figure 4.8. Images for the big heart case using experimental data: (a) true image, (b) 
image by CRM, (c) image by PRM1, and (d) image by PRM2. 
© 2016 IOP Publishing. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.1088/0957-0233/27/2/025703) 
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(a) 

 
(b) 

Figure 4.9. The sorted resistivity distributions for experimental cases: (a) small heart 
and (b) big heart. 
© 2016 IOP Publishing. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.1088/0957-0233/27/2/025703) 
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4.2 Two-phase flow monitoring 

Two-phase flow phenomena are frequently encountered in many engineering 

applications, such as heat exchanger, oil or natural gas pumping system, and nuclear 

power plant. For example, the bubbles with high resistivity are formed within liquid 

contained in a pipe. Since this two-phase phenomenon can reduce process efficiency 

and disturb safe operations, the two-phase flow system is monitored. In this section 

in order to improve the spatial resolution of two-phase flow image, a sub-domain 

based regularization method is applied. 

 

4.2.1 Image reconstruction method  for two-phase flow monitoring 

In two-phase flow monitoring, to obtain a sub-domain as a prior information on the 

internal structure, Otsu’s thresholding method (Otsu 1979) is used after 1st iteration 

of iterative Gauss-Newton algorithm in the equation (3.14). The background 

classified using Otsu’ thresholding method is considered as a sub-domain.  

The iterative Gauss-Newton algorithm with the l2-norm regularization in the 

equation (3.14) is rewritten as 

1
1ˆ ˆ ˆ ˆ( ) { [ ( )] }.T T T T

i i i i i i iH H H U Ur r g r g r-
+ = + + G G - - G G%                     (4.7) 

Using the sub-domain based regularization method, the above equation is modified 

as  

* * 1 * *
1ˆ ˆ ˆ ˆ[ ( ) ] { [ ( )] ( ) },T T T T

i i i iJ J J V Ur r V r V r-
+ = + + G G - - G G               (4.8) 

where *G is the new regularization matrix considered the sub-domain, V  is the 

regularization parameter. The procedure of the proposed method is described in the 

following steps.   
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Procedure of the proposed method 

1. Find an initial guess 0r̂  and compute the 0ˆ( )U r  and 0ˆ( )J r . 

2. Update 1r̂  by using the equation (4.7). 

3. Identify the FEM elements that belong to a sub-domain BGW  from a whole 
domain by using Otsu’s thresholding method. 

4. Obtain the new regularization matrix *G . 

5. Set 1g  for the sub-domain to a higher value than 2g that is equal to g . 

6. Update the resistivity distribution by using the equation (4.8) after 1st 
iteration of Gauss-Newton algorithm. 

 

Let’s consider the suitable sub-domain selected by Otsu’s thresholding method. 

The sub-domain can be considered to be composed of background, but it isn’t exactly 

same to actual background. The other region except for the sub-domain regions is 

considered to be composed of target and the other background.  

As mentioned in the section 4.1, if the proper sub-domain is selected, the new 

regularization matrix *G  is obtained from G  considering the sub-domain. If the k th 

element belongs to inner elements on the boundary of the sub-domain BGW , *
kG  is 

modified from kG  in the equation (3.17) by removing the column weight 1- s of the 

outer adjacent elements corresponding to the inner elements. In that case, the number 

3  is replaced by 2 , i.e., the absolute sum value of two inner element weights. The 

whole domain W  can include the sub-domain by modifying only row vectors of 

inner elements on the boundary of the sub-domain BGW . The new regularization 

matrix *G  is not a symmetric matrix, and it can be partitioned by rows as  

{ }

*
1
*
2* * * * *

1 2

*

       ,  .  
e

e

k k k kN

N
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é ù
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                             (4.9) 
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The regularization parameter V  is set with different weights for the each *
kG , as 

follows 

1 BG

2

      

               

elements in
otherwise 

,
,k

k
k

g
V

g

Î W
=

Î

ì
í
î

                         (4.10) 

where 1g  for the elements in BGW  is set to be a more weighted value than 2g  for the 

other elements because it penalizes the sub-domain BGW  which can be considered to 

have a single resistivity distribution, however, 2g  is set to the value as small as 

possible because it regularizes to distinguish actual targets from background. Here, 

2g  is identical to g  in the equation (4.7).  

 

4.2.2 Selecting a sub-domain by Otsu’s thresholding method 

Otsu’s thresholding method is described to select a sub-domain. The Otsu’s 

thresholding method is commonly used to select a proper threshold for distinguishing 

targets from its background in a given image.  

Let the FEM elements of the reconstructed image be represented in gray levels 

{1,2, , , , }t T× × × × × × , and suppose that the reconstructed image be divided into two classes 

A  and B  by a threshold at level t . The class A  represents elements with levels from 

1  to t , and Class B  represents elements with levels from 1t +  to T . The number of 

elements at level j  is represented by jo  and the total number of elements is 

represented by 1 2 ...e TN o o o= + + + .  

The gray level histogram is normalized and considered as a probability distribution 

as follows 

1

/ ,       0,      1.
T

j j e j j
j

p o N p p
=

= ³ =å                                   (4.11) 

Then, the probabilities of each class occurrence are given by  

1

( ) ( ),  
t

A A j
j

t p tw w w
=

º = =å                                         (4.12) 
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1

 ( ) 1 1 ( ),
T

B B j A
j t

t p tw w w w
= +

º = = - = -å                                 (4.13) 

where 
1

( )
t

j
j

t pw
=

ºå  is the zeroth order cumulative moments of histogram.  

The each class mean level is given by  

1

1 ( )( ) ,
( )

t

A A j
jA

tt jp
t

mm m
w w=

º = =å                                    (4.14)  

1

1 ( ) ( ) ,
1 ( )

T
T

B B j
j tB

tt jp
t

m mm m
w w= +

-
º = =

-å                              (4.15) 

where  
1

( )
t

j
j

t jpm
=

ºå  is the first order cumulative moments of histogram, and the 

total mean level is given by  

 
1

( ) .
T

T j A A B B
j

T jpm m w m w m
=

º = = +å                            (4.16) 

The each class variance is given by  

2 2 2

1

1( ) ( ) ,  
t

A A A j
jA

t j ps s m
w =

º = -å                                (4.17) 

 2 2 2

1

1( ) ( ) .
T

B B B j
j tB

t j ps s m
w = +

º = -å                                (4.18) 

Otsu’s thresholding method seeks for the optimal threshold that minimizes the 

within-class variance, or equivalently maximizes between-class variance. The 

within-class variance and the between-class variance, respectively, are defined as  

2 2 2( ) ,within A A B Bts w s w s= +                                          (4.19) 

   2 2 2( ) ( ) ,between A A T B B Ts w m m w m m= - + -                             (4.20) 

and the total variance of levels is 
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2 2

1

( ) .
T

T T j
j

j ps m
=

= -å                                                 (4.21) 

Using equations ( 4.14) ~ (4.16) and   1A Bw w+ = , the between-class variance can 

be rewritten as  

[ ]

2 2 2

2

2

2

( ) ( )

            = ( )

( ) ( )            = ( ) 1 ( )
1 ( ) ( )

[ ( ) ( )]            = ,
( )[1 ( )]

between A A T B B T

A B B A

T

T

t tt t
t t

t t
t t

s w m m w m m

w w m m

m m mw w
w w

m w m
w w

= - + -

-

é ù-
- -ê ú-ë û
-
-

                           (4.22) 

The optimal threshold *t  is obtained by  

* 2

1
arg max ( ).between

t T
t ts

£ <
=                                           (4.23) 

4.2.3. Numerical simulations and phantom experiments 

The reconstruction performance of the sub-domain regularization method for the 

two-phase flow monitoring is evaluated by performing numerical and experimental 

simulations. In the numerical and experimental simulations, an industrial pipe with a 

radius of 4 cm  is considered. Also, four cases with two or more bubbles appearing 

within the homogeneous liquid inside the flow domain are tested. To carry out the 

computer simulations, two mesh structures in figure 3.2 are used. Also, 32 electrodes 

with a width of 0.6 cm  are used. Synthetic data for numerical simulations are 

generated using an unstructured mesh in figure 3.2(a). The resistivity distribution for 

both numerical simulations and experimental simulation is estimated using a 

structured mesh in figure 3.2(b).  

To perform numerical simulations, the background is considered to be liquid with 

a resistivity value of 300 cmW  and the targets are considered to be void or bubbles 

with a high resistivity value of 2000 cmW . The 1% relative white Gaussian noise of 

synthetic voltage data is added to the synthetic voltage to represent the real situations. 

The added noise corresponds to the instrument handling, environmental conditions 

and numerical error of FEM mesh.  
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The reconstructed images of numerical and experimental cases are compared using 

iterative Gauss-Newton algorithm with the conventional regularization method 

(CRM) in the equation (4.7) and the proposed sub-domain based regularization 

method (PRM) in the equation (4.8). They are also compared with the l1-norm 

regularization method (l1-norm) in the equation (3.22) and TV regularization method 

(TV) in the equation (3.28) developed for non-smooth images. Trigonometric current 

patterns are injected through the electrodes and the corresponding voltages are 

measured on all electrodes.  

In the numerical simulations, the values of regularization parameter for CRM, l1-

norm and TV in table 4.2 are the optimized values which correspond to low image 

error. In the experimental simulations, the values of regularization parameter for 

CRM and l1-norm and TV which are shown in table 4.3 are chosen a posteriori by 

visual inspection. In PRM, 2g  is equal to the value g , and 1g is set to a value 

weighted 100 times more than 2g  to constrain a sub-domain BGW . In the l1-norm and 

TV regularization method, the small positive value d  is set to 610- .  

Table 4.2. The values of regularization parameter for numerical simulations with 1% 
noise 

Index CRM(g ) l1-norm(g ) TV (g ) PRM( 1 2,  g g ) 

Case 1 45 10-´  15 10-´  25 10-´  2 45 10 ,  5 10- -´ ´  

Case 2 310-  15 10-´  110-  1 310 ,  10- -  

Case 3 45 10-´  110-  110-  2 45 10 ,  5 10- -´ ´  

Case 4 45 10-´  110-  25 10-´  2 45 10 ,  5 10- -´ ´  

© 2016 Elsevier B.V. Reproduced with permission. All rights reserved. 
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002) 

 
Table 4.3. The values of regularization parameter for experimental simulations 

Index CRM(g ) l1-norm(g ) TV(g ) PRM( 1 2,  g g ) 

Case 1 45 10-´  110-  35 10-´  2 45 10 ,  5 10- -´ ´  
Case 2 310-  15 10-´  210-  1 310 ,  10- -  
Case 3 35 10-´  15 10-´  15  1 35 10 ,  5 10- -´ ´  
Case 4 35 10-´  5  0.5  1 35 10 ,  5 10- -´ ´  

© 2016 Elsevier B.V. Reproduced with permission. All rights reserved. 
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002) 
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In numerical simulations, as a performance evaluation index to evaluate the 

reconstruction performances for three methods, image error (IE) and correlation 

coefficient (CC) as defined earlier in equations (3.30) and (4.6) are used.  

 

n Experimental setup 

The experimental data is obtained from the experimental setup developed by Jeju 

National University’s research group with about 1% noise level (Kim et al. 2002b, 

Kim et al. 2002c).  

The measurement system is composed of a cylindrical phantom with 32 electrodes, 

a data acquisition board with control software for voltage measurement, and current 

generator with switching board for current injection. Cylindrical phantom is filled 

with saline solution that has the resistivity of approximately 330 cmW  up to the 

electrode’s height of 20 cm . The plastic rods of diameter 1 cm and 2 cm  with 

almost an infinite resistivity value are used as targets, and the currents with 

maximum amplitude 4.89 mA  are injected through all the electrodes.  

 

 (a) Numerical results and discussion 

Figure 4.10 shows the true and reconstructed images for numerical simulations. The 

true images for four cases are shown in the 1st row of figure 4.10. The reconstructed 

images obtained after 10 iterations using CRM, TV, l1-norm and PRM are shown 

from the 2nd row to 5th row in figure 4.10, respectively. All the images are shown 

with same color bar (300  to  2000 Ωcm) . Figure 4.11 shows the two regions that are 

classified by Otsu’s method after 1st iteration of Gauss-Newton algorithm with the 

conventional regularization method. The elements selected in figure 4.11 are 

considered as belonging to a sub-domain BGW for each case.  

In the 2nd row of figure 4.10, the reconstructed image using CRM has blurred 

boundaries of targets. In case 1, the target placed close to the center is not estimated 

well. In general, the reconstructed images using CRM have a low spatial resolution at 

the center region. This method makes the resistivity to be under-estimated, especially 

for cases 1, 2, and 4 which are placed near to the center. Also, the boundary of target 

is ambiguous. In the presence of noise, the reconstructed images using TV shown in 

the 3rd row of figure 4.10 have less spatial resolution, especially at the center region. 
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Multiple targets located close to each other near to the center have a poor 

reconstruction performance. However, for the targets located close to the boundary 

(case 3), the size and shape of the target are recovered. In the 4th row of figure 4.10, 

the reconstructed images using l1-norm have better spatial resolution compared to 

the CRM and TV. However, the target close to the center, especially with small size, 

is not reconstructed well like CRM and TV. In the 5th row of figure 4.10, the 

reconstructed images using PRM have better spatial resolution with distinct 

boundaries of the targets with improved estimation of resistivity distribution. 

Especially the background region has relatively uniform distribution compared to 

CRM and l1-norm. It is noticed that even if the targets are classified with irregular 

shape in figure 4.11, the reconstructed images using PRM show better spatial 

resolution.  

Figure 4.12 shows the resistivity distribution about x-coordinate along the line on 

the true images in figure 4.10. As shown in the 2nd row of figure 4.10, in the case of 

CRM, the resistivity of targets is underestimated for all the four cases, and 

particularly the resistivity of the target located close to the center is more 

underestimated. The resistivity distribution estimated using TV has a uniform 

distribution in the target region while the resistivity values are underestimated in all 

the four cases. The resistivity distribution estimated using l1-norm is estimated well, 

relatively compared to the CRM and TV. However, the resistivity distribution of 

background between targets in case 2 and case 4 is still not estimated well. Also, the 

resistivity distribution of background has non-uniform distribution. However, the 

resistivity distribution estimated using PRM is shown closer to actual resistivity 

distribution compared to that using the other methods. Figure 4.13 shows the sorted 

resistivity distributions for each numerical case. The PRM curves have more flat 

region and steep slope compared to the other methods in all the cases. The results in 

figures 4.12 and 4.13 imply that PRM has uniform resistivity distribution in the 

background and more fast changes between the background and targets rather than 

the other methods.  

The IE and CC results for all the numerical cases are shown in figures 4.14 and 

4.15, respectively. As expected, the PRM has the better performance in the IE and 

CC results.  
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(a)                             (b)                            (c)                             (d) 

Figure 4.10. Numerical results for two-phase flow monitoring with 1% noise: (a) 
case 1, (b) case 2, (c) case 3 and (d) case 4. True image and reconstructed images 
using CRM, TV, l1-norm, and PRM are given from the 1st row. The black circles in 
the image represent the true position of targets.  
© 2016 Elsevier B.V. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002) 
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Figure 4.11. Two regions classified by Otsu’s thresholding method after 1st iteration 
of Gauss-Newton algorithm for numerical cases: (a) case 1, (b) case 2, (c) case 3 and 
(d) case 4.  
© 2016 Elsevier B.V. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002) 
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Figure 4.12. The resistivity distributions about x-coordinate along the line on the true 
images in figure 4.10 for numerical cases: (a) case 1, (b) case 2, (c) case 3 and (d) 
case 4 



62 
 

 
 

 

1000 2000 3000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
the distribution of sorted resistivities

the number of elements

re
si

st
iv

ity
 (W

 c
m

)

 

 

True
CRM
TV
l1-norm
PRM

 
1000 2000 3000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
the distribution of sorted resistivities

the number of elements

re
si

st
iv

ity
 (W

 c
m

)

 

 

True
CRM
TV
l1-norm
PRM

  
(a)                                                                    (b) 

1000 2000 3000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
the distribution of sorted resistivities

the number of elements

re
si

st
iv

ity
 ( W

 c
m

)

 

 
True
CRM
TV
l1-norm
PRM

 
1000 2000 3000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
the distribution of sorted resistivities

the number of elements

re
si

st
iv

ity
 (W

 c
m

)

 

 

True
CRM
TV
l1-norm
PRM

  
(c)                                                                    (d) 

Figure 4.13. The sorted resistivity distributions for numerical cases: (a) case 1, (b) 
case 2, (c) case 3 and (d) case 4 
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Figure 4.14. Image errors for numerical cases: (a) case 1, (b) case 2, (c) case 3 and 
(d) case 4 
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Figure 4.15. Correlation coefficients for numerical cases: (a) case 1, (b) case 2, (c) 
case 3 and (d) case 4 
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(b) Experimental results and discussion 

The true images for four experimental cases are shown in the 1st row of figure 4.16, 

and the reconstructed images after 10 iterations using the Gauss-Newton algorithm 

with the CRM, TV, l1-norm and the PRM are shown from the 2nd row to 5th row in 

figure 4.16. Figure 4.17 shows two regions classified by Otsu’s method after 1st 

iteration of Gauss-Newton algorithm with the conventional regularization method. 

All the reconstructed images in figure 4.16 are shown using same color bar 

(300  to  2000 Ωcm) . The resistivity of targets by CRM and TV is underestimated 

compared to the l1-norm and PRM, especially, for the targets placed near to the 

center. In experimental case 1, the background regions using CRM, TV and l1-norm 

are not uniform with artifacts that can be misinterpreted as target. The reconstructed 

images by PRM have a better spatial resolution with the more uniform background 

and discrete boundary for target compared to the other methods. 

Figure 4.18 shows the resistivity distribution about x-coordinate along the line in 

the 1st row of figure 4.16 for each experimental case. In figure 4.18, CRM and TV 

have an underestimated target resistivity compared to the l1-norm and PRM. The 

undesirable ripples in the background are shown in the resistivity distribution using 

CRM, TV and l1-norm compared to the PRM. Figure 4.19 shows the sorted 

resistivity distributions for each experimental case. In figure. 4.19, the PRM curves 

have more discrete transient on the boundary of targets and more uniform 

background similar to the numerical results. The results in figures 4.16 to 4.19 

suggest that PRM has better reconstruction performance compared to the other 

methods. 
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(a)                             (b)                            (c)                             (d) 

Figure 4.16. Experimental results for two-phase flow monitoring: (a) case 1, (b) case 
2, (c) case 3 and (d) case 4. True image and reconstructed images using CRM, l1-
norm, TV and PRM are given from the 1st row. 
© 2016 Elsevier B.V. Reproduced with permission. All rights reserved.  
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002) 
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Figure 4.17. Two regions classified by Otsu’s thresholding method after 1st 
iteration of Gauss-Newton algorithm for experimental cases: (a) case 1, (b) case 2, 
(c) case 3, and (d) case 4. 
© 2016 Elsevier B.V. Reproduced with permission. All rights reserved. 
(http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.002) 
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Figure 4.18. The resistivity distributions about x-coordinate along the line in the 1st 
row of figure 4.16 for experimental cases: (a) case 1, (b) case 2, (c) case 3, and (d) 
case 4 
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Figure 4.19. The sorted resistivity distributions for experimental cases: (a) case 1, (b) 
case 2, (c) case 3, and (d) case 4 
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5. Conclusions 
 

Image reconstruction using electrical impedance tomography is highly ill-posed, 

therefore, the regularization method is required in the inversion process as an 

additional constraint from the prior information of the true solution. The 

reconstruction performance is heavily dependent on the type of regularization 

method. The generalized Tikhonov regularization using difference-type 

regularization matrix is used as a common regularization method in EIT. This 

conventional regularization method provides good stability of the inverse problem 

with rapid convergence, however, the image gets smoothen and it makes difficult to 

describe the sharp transition in boundary with different resistivity.  

In order to have a desirable reconstructed image with better accuracy and by 

preserving sharp transition in boundary with different resistivities, a sub-domain 

based regularization method is proposed in this thesis. In the proposed regularization 

method, the partially known or guessed prior information of an internal structure is 

considered as a sub-domain. To impose the prior information into the proposed 

regularization method, the regularization matrix is anisotropically modified by 

considering sub-domains and the regularization parameter is assigned with different 

weights for the sub-domains. By doing so, the resistivity changes in the sub-domains 

have an effect on the resistivity changes within each sub-domain, however, the 

resistivity changes in the other regions except for the sub-domains are affected the 

resistivity changes in the whole domain. To investigate the performance of the 

proposed regularization method, two applications for human thorax monitoring and 

two-phase flow monitoring are considered.  

In the human thorax monitoring, the situation with constant lung region and two 

different sizes’ heart region during the cardiac cycle is considered. Also, CT image is 

considered as the prior information, and one-step Gauss-Newton algorithm is used 

for estimating internal resistivity distribution. Simulations with synthetic data and 

experimental data are computed with chest shape mesh. The sub-domain based 

regularization method has the improved spatial resolution with the more uniform 

resistivity distribution in the background and the more distinct boundaries of the 

lungs and heart.  
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In two-phase flow monitoring, the part of background is considered as a sub-

domain. The sub-domain region is distinguished automatically using Otsu’s 

thresholding method after 1st iteration of Gauss-Newton algorithm with the 

conventional regularization method. The reconstructed results with synthetic and 

experimental data are compared using iterative Gauss-Newton algorithm with the 

conventional regularization method and sub-domain based regularization method. 

Also, they are compared with the l1-norm and total variation regularization methods 

developed for non-smooth images. It can be noticed that the sub-domain based 

regularization method is successful in improving the spatial resolution of the 

reconstructed images with sharp boundary of targets and good accuracy compared to 

the other methods.  

Further study will be carried out to test the three-dimensional reconstruction 

performance of the sub-domain based regularization method. In addition, the sub-

domain concept will be extended with other regularization methods such as the total 

variation and l1-norm regularization methods. 
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Summary 
 

Electrical impedance tomography (EIT) is a non-invasive imaging technique in 

which the internal resistivity distribution is reconstructed based on the injected 

currents and measured voltages on the electrodes which are attached to the boundary 

of an object.  

The image reconstruction in EIT is usually treated as least squares problems, and 

Gauss-Newton algorithm is widely used to estimate the resistivity because of its 

rapid convergence and an estimated accuracy. However, since EIT has highly ill-

posed inverse problem, the regularization method is used to mitigate the ill-posed 

nature and reconstruct the meaningful image. The regularization method plays an 

important role in the spatial resolution in EIT. The generalized Tikhonov 

regularization method using difference-type regularization matrix is commonly used 

because of the most convenient in computational time and convergence stability of 

the inverse problem. However, this method is impossible to recover the discrete 

resistivity distribution in the image reconstruction due to its smoothness assumption. 

To improve the spatial resolution by overcoming this problem, a sub-domain 

based regularization method is used when the partial information on the internal 

structure is known or available. In the sub-domain based regularization method, a 

part of whole domain is considered as a sub-domain, such prior information is 

incorporated into the regularization method. In order to do so, the regularization 

matrix is anisotropically modified to contain prior information on a sub-domain and 

the regularization parameter is set with different weight for the sub-domain. With 

this, the resistivity changes in the sub-domain have an effect on the resistivity 

changes within the sub-domain, however, the resistivity changes outside the sub-

domain are affected the resistivity changes in the whole domain.   

To illustrate the reconstruction performance of the sub-domain based 

regularization method, two applications, i.e., human thorax monitoring and two-

phase flow monitoring, are considered.  The results of computer simulations for 

synthetic and experimental data show that the sub-domain based regularization 

method has the improved reconstruction performance than the conventional method.  
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