THE DETERMINATION OF TRACE ELEMENTS IN SQUIDS USING ICP-MS/INAA AND ITS APPLICATION TO THE MARINE RADIOACTIVITY MONITORING

Sung-Jun Song[•], Kaneaki Sato[•], Kikyoshi Kitamura[•], Takeshi Maeyama[•], Zang-Kual U.[•], Kenji Tomura^{••}, Hideo Higuchi^{••}

- Cheju Applied Radioisotope Research Institute, Cheju National University, Ara-dong, Cheju-shi, Cheju-do, 690-756, Korea
- Japan Chemical Analysis Center, 295-3, Sanno-cho, Inageku, Chiba-shi, Chiba-ken, 263, Japan
- "Institute for Atomic Energy, Rikkyo University, 2-5-1, Nagasaka, Yokosuka, 240-01, Japan

1. INTRODUCTION

The atmospheric nuclear testing of nuclear weapon conducted in the late 1950s and 1960s increased the level of environmental radioactivity in the ecosystem. Moreover, since the accident of Chernobyl nuclear power plant in 1986, radioactive fallout had been world-widely spreaded out, and much more attention has been directed to monitoring the environmental radioactivities in the ecosystem and in the food in aspect of radiological hazard. As the number of nuclear power plants in many countries were continuously increased in the recent years, there might exist the discharge of a large amount of radionuclides into environments and of their environmental contamination.

In the marine ecosystem, some marine organisms such as algae and shellfish are the first concentrators of metals or radionuclides and, through the food chain, those substances are transferred to fishes and finally human being. It is well accepted that the analysis of trace elements in marine organisms is very important for evaluating the environmental contamination of radionuclides as well as estimating their behaviors in the marine ecosystem.

In 1965, Folsom and Young found ⁶⁰Co and ^{108m/110m}Ag in the viscera of squid collected from the North Pacific. After his discover, we had continuously surveyed the long lived radionuclides including ⁶⁰Co and ^{108m/110m}Ag in the various kind of squid collected from around Japan during 1978-1989. As the results of analysis of squid, we have found that squid is useful material to investigate the radioactivity level of marine environment.

In this paper, we describe the analytical results on the trace elements in squids and their organs by inductively coupled plasma-mass spectrometry(ICP-MS) and instrumental neutron activation analysis (INAA) as well as the radioactive nuclides(60 Co, $^{108m/110m}$ Ag and 137 Cs) by γ -spectrometry.

2. EXPERIMENTAL

1) Sample collection and preparations

Three varieties of squids(*Todarodes pacificus*, *Loligo edulis*, *Sepia officinalis*) had been collected from the eight local fishery cooperative unions in Japan during 1981–1988, dried at 105°C and ashed for 24 hour at 450°C. Especially, *Todarodes pacificus* collected from Chiba fishery cooperative union in 1996 was divided into edible part, backbone, liver, stomach including diets, and other viscera.

2) Determination of trace elements in squids

(1) ICP-MS analysis

0.5 gram of squid ash samples was taken in the teflon beaker and 5 ml of 7 M HNO₃ was added, heated to dryness. The residue was dissolved in 20 ml of 1 M HNO₃ and boiled for 10 min. The sample solution was transferred to 100 ml teflon

20 Sung-Jun Song, Kaneaki Sato, Kikyoshi Kitamura, Takeshi Maeyama, Zang-Kual U., Kenji Tomura, Hideo Higuchi

Element	Mass number of isotope used	Internal standard	Scan time (msec)	Element	Mass number of isotope used	Internal standard	Scan time (msec)
V	51	Sc	120	Мо	98	Y	120
Cr	53	Sc	120	Ag	107	Rh	80
Mn	55	Sc	120	Cd	111	In	80
Fe	57	Sc	120	Cs	133	In	80
Co	59	Sc	120	Ba	137	In	80
Ni	62	Sc	120	Tl	205	ТЪ	50
Cu	63	Sc	120	Pb	207	ТЪ	50
Zn	66	Sc	120	Bi	209	ТЪ	50
Se	77	Y	120	Th	232	ТЪ	50
Rb	85	Y	120	U	238	Tb	50
Sr	88	Y	120				

Table 1. Isotopes and internal standards used for analysis of biological samples.

flask with 1 M HNO₃. When required, samples were diluted 10 or 50 times with 18.2 megaohm pure water produced freshly by Milli-Ro60 (Millipore). The sample solutions were analyzed for V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr, Mo, Ag, Cd, Cs, Ba, Tl, Pb, Bi, Th and U. The mass number of isotopes used for ICP-MS measurement are presented in table 1. 10 ng/ml of Sc, Y, Rh, In and Tb was separately added to the sample solutions as an internal standard.

The standard stock solution of 10 mg/l(SPEX multi-element plasma standard, SPEX chemical, USA) was diluted to prepare a series of standard solution(0, 0.05, 0.5, 2.5, 5, 50, 100, 200 ng/ml).

The data obtained from ICP-MS were calculated by spreadsheet software "Quattro Pro(Boland)" installed in personal computer.

(2) INAA analysis

For the analysis of V, Mn and Cu, 100 mg of squid ash samples or the standards impregnated with filter paper were sealed in polyethylene bag, irradiated for 2 min by TRIGA Mark II reactor(100 kW, flux of thermal neutron; 1.5x10¹²n cm⁻²sec⁻¹) of RIKKYO University in Japan. After the sample was cooled down for 6 min, radioactivities of ⁵²V, ⁶⁶Cu and ⁵⁶Mn were counted for 300 sec using the

multichannel analyzer with Ge detector with 19 and 35% relative efficiency for 1.332 MeV gamma rays of ⁶⁰Co. The measurement of ⁵⁶Mn(half life: 2.58h, 0.8438 meV) was made after ²⁷Mg (half life:9.46m, 0.8468 meV), interfering ⁵⁶Mn counting had decayed out (about 1 hr)(Morrison and Potter, 1972).

Figure 1. γ -ray spectrum of squid ash sample counted by Ge detector one month after neutron irradiation

For the analysis of Fe, Cs, Ag, Co and Zn 200 mg of samples and standards were irradiated for 12 hr at the flux of 5x10¹¹n cm⁻²sec⁻¹. After the sample was cooled down for 2 weeks - 1 month, radioactivities of ⁵⁹Fe, ⁶⁰Co, ⁶⁵Zn, ⁸⁶Rb, ^{110m}Ag, ^{115m}In and ^{115m}Cd were counted for 600-4000 sec under the

conditions of plastic plate inserted between detector and sample to reduce intensity of the gamma rays induced from intense ³²P in sample(Morrison and Potter, 1972). Figure 1 shows the γ -ray spectrum of squid ash sample counted by Ge detector 1 month after neutron irradiation.

Figure 2. Mass spectrum of squid ash sample solution. After 0.1 g of squid ash sample was taken and dissolved in 20 ml of 1M HNO₃ and boiled. The sample was transferred to 100 ml flask with 1M HNO₃ and diluted 10 times.

3) γ -spectrometry

After the ash samples were uniformly packed into a cylindrical vessel of 48 mm diameter, 60 mm height, ⁶⁰Co, ^{106m/110m}Ag and ¹³⁷Cs activities in squid ash sample were counted for about 80,000 sec by γ spectrometry with Ge detector having approximately 20 % relative efficiency for 1.332 MeV gamma rays of ⁶⁰Co. The counting efficiency of Ge detector is determined by using a mixed point source and KCl volume source with different height.

3. RESULT AND DISCUSSIONS

1) Elimination of spectral interferences of ICP-MS

Inductively coupled plasma-mass spectrometry (ICP-MS) is now a well-established analytical technique that provides with very low detection limits(1 ug/L or less) for most of the elements in the periodic table. Also it allows multi-element analysis with rapid sample throughput(Dams *et al.*, 1995). This technique has, however, some difficulties associated with analytical performance such as matrix effect and molecular ion interference.

Figure 3. Comparison of ICP-MS and INAA results, as determined the concentrations of trace elements in squid by their techniques.

problems of the background spectral The interference(e.g. ArO⁺, Ar₂ etc.) of blank sample can be solved to some extent by optimizing ICP-MS performance. However, the contribution of polyatomic ions and oxides from biological sample matrix on m/z peak of elements(³⁵ClO⁺, ArC⁺, ³⁷ClO⁺, ArO⁺, PO₂, ArNa^{*}, ³⁵Cl₂ or Ar₂ occurred as a result of combinations of C, Cl, S, O, P and Na) is the most severe problem for the determination of lighter elements(m/z < 80)(Houk and Thompson, 1988; Dams et al., 1995), giving higher background to reduce the accuracy and precision of analysis because the peaks of some polyatomic ions and oxides are overlapped with those from analytes. Therefore, in squid sample possible interferences may be caused by Na, K, Ca, Mg, Cl, S or P. The peaks of polyatomic ions and oxides generated from those matrixes were identified by introducing the solution containing Na, K, Ca, Mg, Cl, P or S(data not shown). The important spectral overlapping related to the determination of squid samples occurred on peaks of ${}^{51}V({}^{35}Cl^{16}O^{+})$, ${}^{53}Cr ({}^{37}Cl^{16}O^{+})$, ⁷⁷Se(⁴⁰Ar³⁷Cl⁺) (figure 2), thus being limited to Cl effect. However, as the contribution of Cl on ${}^{35}\text{Cl}{}^{16}\text{O}^{+}$, ${}^{37}\text{Cl}{}^{16}\text{O}^{+}$ and ${}^{40}\text{Ar}{}^{37}\text{Cl}^{+}$ at the different Cl concentrations(0 - 50 mg/l) was very small, those spectral interferences can be eliminated by diluting sample solution to be below 20 mg/l.

2) Analysis of trace elements

Under the optimum condition of ICP-MS measurement previously mentioned, the simultaneous multi-analysis of 21 elements(V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr, Mo, Ag, Cd, Cs, Ba, Tl, Pb, Bi, Th, U) in the squid sample was tried. As there are no available certified values for trace elements in the squid, the method of INAA was applied to compare with the results of ICP-MS. In the practical measurement, besides spectral interference by polyatomic ions derived from matrix elements such as Na, Ca and Cl, the count rates of analytes

can be affected by high level of salts or heavy matrix ions themselves(Houk and Thompson, 1988). Orifice plugging is also, a problem for the samples with high solid contents(> 0.5 %). Hence, internal standard was adapted to ICP-MS to deal with matrix effects. Five elements(Sc, Y, In, Tb, Rh) well-known as internal standard were used.

Three biological reference samples(SRM 1572 citrus leaves, SRM 1577 bovine liver, NIES No. 9 sargasso) were analyzed to obtain the validity of our ICP-MS results, and in general our analytical data were well agreed with the certified values in all standard materials(data not shown). On the other hand, the concentrations of V, Mn, Fe, Co, Cu, Zn, Rb, Ag and Cd determined by ICP-MS were closely correlated with those of INAA as shown in figure 3.

The reason why the analytical result of Ag by ICP-MS is less than that by INAA could be explained from the fact that Ag is apt to absorb on teflon vial wall and its concentration can be decreased as time elapsed. This is one of the difficulties of Ag determination by ICP-MS.

The concentration of trace elements in squids was shown in table 2. The concentrations of Fe, Ni, Cu, Zn, Mo, Cd, Pb and U in *Todarodes pacificus*, a migratory squid, were higher than those in other varieties. *Sepia officinalis*, a sedentary one, had higher concentration of V, Co, Se, Sr. However, there were no differences among the varieties in the concentrations of other elements. The concentrations of trace elements in *Todarodes pacificus* were influenced by the sampling sites.

Based on these results, there might be physiologically different characteristics among squid varieties. It might be considered that the different Cd values in *Todarodes pacificus* among sampling sites represents some possibility of environmental contamination.

Location	Variety	÷	Fe	3	ភ្	윤	S	¥8	-	5	3	Z	5	2	3	g	1	:				
	T-doucher	- 0 U	8.58	85.4	77 6	92	50 T	: 33	0.440	0.023		0, 229	0, 039	0.054 1		0.004	0.146 0.	1000	0.339 0.	0025	0,0004	0.0347
Hokkaido	locarocies	0.90#	82.0	8. 3 8	6.8 8 8 8 8	1.18	3	36 O	10	ł										0000		0.0027
Hokkaido	//	0.71	68.7	54.6	57.8	1.03	2.63	69	655	0.017	0.104	0.077 (0.027	0.012		0.003	0.013 0.	0000	0. Z13 U.	9700	1000.0	1070.1
		0. 70	63, 4	45.3	49.1	1.05	1	67	8				0.074	0 017 1		0 005 0	0 073 0	0.0001	0.094 0	0, 0007 0	0.0002	0.0615
Miyagi	11	1.07	77.1	131	4 3.9	1.52	5. 22	g ⊆	- 88 - 0 - 0	0.037	0.200	0. 393 1			13.2	3						
ed i Ac	"	0.74	57.3	101 49.6	32.6	3 8 8	5.85		113	600 .0		0.166 (0.028	0.009	_	0, 003	0.043		0.095 0	0.0014 0	0.0001	0.0167
2		0.60	53.2	44.8	28.6	0.83		0.64	88								0 001 0		0 911 0	0 0002 0	0 0003 (0.0222
Chiba	11	1.21	49.0	168	59.4	1.24	10.9	0.42	505	0. 021		0.643	0.076	0.026								
		0.90	42.0	106	42.4	1.28		1. 09 2. 5	9 :			360 0	0.024	0 007		0 003 (0 026 0	1000 0	0.299 0	0.0016 0	0.0002	0.0158
Niigata	11	0 [.] 80	54.2	77.5	35.7			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	020	0.010	0.065											
:	:	0.72	52. 3 53 0	1.6/	2 2 2 2	8 1	1 03	. 8	135	0.016		0.179	0.013	0, 011	5	0.003	0.036 0	0.0000	0.292 0	0, 0036 (0.0002	0, 0297
NIIgata		95 O	6.70 60 6	67.4	51.5	1.23	2								0				Ę	2000	2	O MEE
Nijerata	11	0, 83	64.4	97.9	52.4	1.07	3.46		090 .0	0. 029	0, 086	0.129	0. 027	0.012		0.003	0.038 0.	1000	0.42A U	0.000.0		670 °
		0. 75	68.5	87.9	47.7	1.12			0.050		0.087				15.4							
	131	10 0	64.7	5	8 9 5	1	5 89	88.0	0.194	0.021	0.116	0. 237		0.019	0	0.003	0.072 0.	1000	0.235 0	0.0023	0.0002	0.0287
CU(K)		17.8	16.9	38.2	24.2	16.8	47.2	32.8		39.2	33.5	76.3	54.4	2	2		85.6	87.2	49.7		40.0	-
Submean(INA)	A.)	0.81	62.9	84.5	45.6	1.19		1.02	0, 181		0. 111				10.8							
CV(*)		15.9	20.9	32.1	25.2	22.0		25.9	88.0		37.5				35.4							
		10	6 V6	3 81	31.8	8	13.4	60 0	0.044	0.008	0.032	0.048	0.124	0, 005	0.24	0.008	0, 084	ï	0.012 0	0, 0003	0.0001	0.0061
Kagoshine	LOI 180	6 0	21.3	15.5	28.7	8		0.27			0.030						:					1000
Fukui	//	0.76	24.0	21.5	20.2	1.36	10.1	0.17	0.071	0, 005	0.024	0. 033	0.040	0, 006	8	0,006	0.106	·	500.0	- 	- m	ŝ
		0.77	20.5	18.1	20.5	1.38		0.24	0, 020		0.020	000 0	0.056	100 0	, c	300 0	0 067	ı	0 023 (0000	0.0002	0.0056
Nagasaki	Loligo	1.69	15.7	26.3	25.7	1.21	8.22	0.07	0.097	0.005	0,038	0.036	000.0	5	<u>-</u>		8					
	edulis	1.66	12.8	28.3	8.27 24 - 24		1 12	0.05	0.062	0.001	0000	0.042	0, 063	0.005	0.12	0.006	0.044 0	0, 0003	0, 033 (0.0002	0, 0001	0.0048
Nagasaki		1.66	16.0	34.0	25.0	1.33	1	0.19	0:030		0.030				ı					ŝ	0000	3300 0
Kagoshima	"	1.08	37.3	20.3	27.6	1.27	7.50	0.10	0.068	0, 003	0.024	0.047	0.116	0.005	0.25	0,005	0.038	n. uuut	0,019			2
		0.92	39.7	19.7	26.4	1.46	80.0	0.26	0,050	200	0.025	6 M 0		0.005	61 0			0.0001	б	0, 0003	0.0003	0, 0052
Submean(ICP-MS)	(SN-d	1.30	2.2	73.1	1.02	57. 	9, 33 1 1 2	U. 10	0. 000 25 1	55 D	17.8	13.5	42.4	14.7	27.5	2	37.0	129	44.3	70.2	79.8	ន
CV(%)			• •		24.7	8.5	1.13	0 22	0.052		0.029		0:030									
CV(%)	1	33.1	4.24	30.06	11.5	13.3		18.9	108		22.9		125									
								8	001.0	500	0 287	0 173	0 223	610 0	3.47	000	0.026	0.0001	0.064	0.0012	0.0004	0.0122
Okinawa	Sepia	1.25	27.7	7.12	2.2	5	23.2		0.170	170.0			2		3,35							
	Officinalis	02.1	0.02 0.02	5.5 - 5	0.4C	1 05	2 12	0.12	0.286	0.022	0.220	0, 116	0.179	0.014	3, 35	0,004	0.092	0, 0002	0, 260	0, 0003	0.000	0.0118
UKINAWA		6 6 1	26.1	25.3	43.7	1.17		0.27	0.290		0. 239				4.77					2000		000
Submon(1CP-VS)	(Sh-a	1.17	26.8	48,4	51.4	1.07	25.2	0.21	0.243	0. 025	0, 304	0.144	0. 201	0.017	3.41	0.00	0.059	0.0001	0.162	1,000,0		0710.0
CV(*)	1	6.79	3.27	48.1	13.2	16.1	7.87	40.5	17.9	9, 938	27.5	19.7	11.0	15,8	1.65		• 8	0.20	.	3		
Submean(INAA)	4A.)	1.14	26.5	47.8	48.9	1.16		0.43	0.23		0, 305				8 : -							
CV(x)		5.26	1.32	47.1	10.5	0.86		36.5	26.1		21.5				c.71							
4 1 a.J. / M		80	45.7	65.4	1 2	1 16	61.6	0.53	0.16	0,016	0.112	0.159	0.075	0.014	6. 39	0,004	0.069	0.0001	0.153	0.0014	0.0003	0.0187
	ĺa.		9 87	67.2	32 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14.2	75.7	82.1	86.8	65,0	84.3	<u>99</u> .9	1.67	88.7	89.4	34.0	71.1	113	87.8	84.4	29. O	Ċ
UV(%) Maan(INAA)		- 10 86 0	1	59.1	30.05	1.21	į	0,68	0.14		0.110											
A CONTENT NUMBER								•														

Table 2. The concentrations(µg/g) of trace elements in squids as determined by ICP-MS and INAA.

THE DETERMINATION OF TRACE ELEMENTS IN SQUIDS USING ICP-MS/INAA AND ITS APPLICATION TO THE MARINE RADIOACTIVITY MONITORING 23

*: [CP-VS determination, **: INAA determination -: not detected

Table 3. The concentrations(µg/g) and enrichment factors of trace elements in Todarodes pacificus organs as determined by ICP-MS.	در	The co	ncenti	rations	(g/gi);	and e	inrichn	nent fa	actors	of tra	ice elei	ments	in To	darode	s paci	ficus (organs	as de	termir	led by	ICP-	MS.
Description	;	ş	e E	5 C	ų	æ	ъ	\$	>	చ	ദ	ž	ж	¥	3	S	Ba	F	£	Bi	£	Ŀ
Edible part	ပမ	0. 22 6687	6. 30 1853	3. 55 27339	13.9 53593	1.28 12	1.67 0.19	0.002 2246	0.00 4 2	0.002 0.004 0.035 0.007 2246 2 106735 4023	0.007 4023	0. 082 165	0. 030 270	0. 002 0. 176	0.33 5914	0.004	0. 039 3339	0.004 0.039 0.0001 0.054 0.0000 0.0001 0.0013 14 3339 10 3701 603 287 0.404	0. 05 4 3701	0. 0000 603	0.0001	0,0013
Back bone	υщ	0.84 25510	9.91 2915	28.4 218743	152 582998	1.17 11	3.31 0.38	0.001 1272	0.088	0.090 271953	0.048 26926	0.171 342	0.171 0.275 342 2502	0. 062 6. 4 39	3. 75 0. 004 0. 106 0. 0027 67000 13 9021 222	0.004 13	0.106 9021	1	0. 291 20091	0.291 0.0000 0.0001 20091 0 181	181	0.0581 18.8
Viscerat	<u></u> с ш	0.90 27388	9.26 2723	54.5 419113	54.5 31.2 419113 119852	1.55 15	4. 50 0. 51	0.077 77044	0.033 16	0.077 0.033 0.047 0.038 77044 16 143132 20920	0. 038 20920	0.069 139	0,069 0.030 139 273	0. 004 0. 4 31	0. 30 5326	0.012 0.053 0.0002 38 4502 17	0.053 4502	0. 0002 17	0.132 9128	0.132 0.0005 0.0002 0.0078 9128 6660 325 2.53	0. 0002 325	0.0078 2.53
Liver	ιυш	1.17 35455	161 47474	101 779923	68.3 262692	68.3 1.23 52692 12	2.53 0.29 1	2.53 1.85 0.29 1850000	0.920 460	0.920 0.080 460 242424 2	0.510	0.470 940	0.310 2818	0.310 0.018 39.49 0.004 0.078 0.0006 2.150 0.0020 0.0004 0.0027 2818 1.875 705179 13 6667 49 148276 27397 800 0.87	39.49 705179	0.004 13	0.078 6667	0.0006 49	006 2.150 49 148276	0. 0020 27397	0. 0004 800	0.0027 0.87
Others**	υш	5.17 156667		20.6 158653	49.5 190278	1.22 12	40.7 4.62	0. 058 58269	0. 317 159	0.112 338635	0.034 18906	0.118 236	0.317 0.112 0.034 0.118 0.090 0.007 159 338635 18906 236 816 0.708		1.28 0.006 0.967 0.0002 22821 22 82634 19	0. 006 22	0. 967 82634	0. 0002 19	0.152 10490	0.152 0.0006 0.0013 0.0202 10490 7940 2520 6.51	0.0013 2520	0.0202 6.51
															1							

*: not including liver, and stomach with diets **: stomach including diets C: concentration E: enrichment factor

ł

24 Sung-Jun Song, Kaneaki Sato, Kikyoshi Kitamura, Takeshi Maeyarna, Zang-Kual U., Kenji Tomura, Hideo Higuchi

3) Distributions of trace elements in squid organ and concentration factor

Examination of tissue-specific distributions of trace elements in fish organ and concentration factor would be extremely informative in estimating the environmental contamination as well as artificial radionuclide's behavior in marine ecosystem. Todarodes pacificus collected in 1996 was divided into edible part, backbone, liver, stomach including diets and other viscera, and trace elements in each ICP-MS were analyzed using and organ concentration factors for all metals were calculated concentrations of those in sea from the water(Nozaki, 1987)(table 3).

It is well known that liver is a very important organ in living organisms and have lots of metallo-enzymes. The concentrations and concentration factors of Fe(161 µg/g, 4.8 x 10⁴) Cu(101 µg/g, 7.8 x 10⁵), Zn(68.3 µg/g, 2.6 x 10⁵), V(0.92 µg/g, 460), Co(0.51 µg/g, 2.8 x 10⁵) and Se(0.31 µg/g, 2.8 x 10³) being very essential for enzyme functions in liver were higher than in other organs, which were consistent with the report of Ueda *et al.*(1979). In addition, the concentration of Cd(39.5 µg/g, 7.0 x 10⁵), Ag(1.85 µg/g, 1.85 x 10⁶), Pb(2.15 µg/g, 1.4 x 10⁵) and Bi(2 ng/g, 2.7 x 10⁴) in liver were highly accumulated and thus, very high concentration factors were calculated. On the other hand, the concentrations and concentration factors of Mn(stomach and diets: 2.15 vg/g, $1.4 \text{ x } 10^5$), $Cr(0.112 \ \upsilon g/g, 3.4 \ x \ 10^5)$ and $Ba(0.97 \ \upsilon g/g, 8.3 \ x$ 10^4) in the viscera not including liver also were rather high. Therefore, it is suggested that the characteristic distribution patterns of trace elements in squid organs offer the possibility of its application to study of marine environments and squid viscera can be a good indicator organ in estimating the marine environment.

4) ⁶⁰Co, ^{108m/110m}Ag, and ¹³⁷Cs determination in squids

Since the artifical radionuclides ⁶⁰Co, ^{108m/110m}Ag and ¹³⁷Cs are important indicators of radioactive pollution in marine ecosystem(Folsom and Young, 1965: Folsom *et al.*, 1970: Fukatsu *et al.*, 1982: Fukatsu and Higuchi, 1985 and 1987: Umezu ,1992), the concentrations of ⁶⁰Co, ^{108m/110m}Ag and ¹³⁷Cs in three varieties of squids were measured. As shown in table 4, 5, 6 and 7, radioactivities of ⁶⁰Co, ^{108m/110m}Ag and ¹³⁷Cs depending on species and sampling location were different. Interestingly, the level of ^{108m}Ag activities in squids collected after

T	Collection	Variety	[∞] Co (mE	q/kg wet)	Stable Co	Specific activity
Location	date	variety	A*	B**	(mg/kg wet)	(Bq/g Ag)
Hokkaido	Nov. 10, 86	Todarodes pacificus	18.9	5.67	0.141	40
Hokkaido	Nov. 11. 88	Todarodes pacificus	12.6	4.94	0.097	51
Miyagi	Sept. 19, 88	Todarodes pacificus	11.8	4.54	0.200	23
Chiba	June 30, 86	Todarodes pacificus	24.4	7.00	0.065	108
Chiba	July 3, 88	Todarodes pacificus	29.2	10.9	0.105	104
Niigata	July 13, 81	Todarodes pacificus	51.1	7.62	0.065	117
Niigata	June 29, 88	Todarodes pacificus	25.2	7.21	0.108	67
Niigata	June 27, 88	Todarodes pacificus	13.0	4.82	0.087	56
Fukui	Oct. 9, 86	Loligo edulis	7.4	2.20	0.018	121
Okinawa	July 4, 86	Sepia officinalis	40.7	11.7	0.346	34
Okinawa	July 19, 88	Sepia officinalis	47.0	17.6	0.239	74

Table 4. Stable Co concentration, "Co activity and Co specific activity in squids taken from Japan near-seas.

*: Activity at sampling date

**: Activity decay-corrected to Jan. 1, 1996

26 Sung-Jun Song, Kaneaki Sato, Kikyoshi Kitamura, Takeshi Maeyama, Zang-Kual U., Kenji Tomura, Hideo Higuchi

Location	Collection		^{110m} Ag (mE	Bq/kg wet)	Stable Ag	Specific
Location	date	Variety	A `	в"	(mg/kg wet)	activity (Bq/g Ag)
Hokkaido	Nov. 10, 86	Todarodes pacificus	10,730	1.101	0.91	1.21
Hokkaido	Nov. 11. 88	Todarodes pacificus	70.3	0.056	0.67	0.08
Miyagi	Sept. 19, 88	Todarodes pacificus	181	0.120	1.24	0.10
Chiba	June 30, 86	Todarodes pacificus	4,070	0.290	0.64	0.45
Chiba	July 3, 88	Todarodes pacificus	218	0.117	1.10	0.11
Niigata	July 13, 81	Todarodes pacificus	185	8.990	0.88	0.00
Niigata	June 29, 88	Todarodes pacificus	9,620	0.683	1.41	0.49
Niigata	June 27, 88	Todarodes pacificus	185	0.098	1.39	0.07
Kagoshima	June 22, 86	Loligo edulis	229	0.016	0.22	0.07
Fukui	Oct. 9, 86	Loligo edulis	1,147	0.108	0.24	0.46
Nagasaki	June 18, 88	Loligo edulis	340	0.023	0.17	0.14
Okinawa	July 4, 86	Sepia officinalis	1,295	0.093	0.58	0.16

Table 5. Stable Ag concentration, ¹¹⁰mAg activity and Ag specific activity in squids taken from Japan near-seas.

* Activity at sampling date

**: Activity decay-corrected to Jan. 1, 1996

	Collection		^{iusm} Ag (m	Bq/kg wet)	Stable Ag	Specific
Location	date	Species	A*	в"	(mg/kg wet)	activity (Bq/g_Ag)
Hokkaido	Nov. 11. 88	Todarodes pacificus	34.0	32.7	0.67	49
Chiba	July 3, 88	Todarodes pacificus	74	71.0	1.10	65
Niigata	July 13, 81	Todarodes pacificus	44.4	41.0	0.88	47
Kagoshima	June 22, 86	Loligo edulis	229	217	0.22	990
Nagasaki	June. 18, 88	Loligo edulis	340	323	0.17	1,901
Okinawa	July 4, 86	Sepia officinalis	74	70.3	0.58	120

Table 6. Stable Ag concentration, ¹⁰⁸mAg activity and Ag specific activity in squids taken from Japan near-seas.

*: Activity at sampling date

**: Activity decay-corrected to Jan. 1, 1996

Table 7. Stable Cs concentration, ¹³⁷Cs activity and Cs specific activity in squids taken from Japan near-seas.

Location	Collection		¹³ 'Cs (mE	3q/kg wet)	Stable Cs	Specific activity
	date	Variety	A	В**	(mg/kg wet)	(Bq/g Ag)
Hokkaido	Nov. 10, 86	Todarodes pacificus	66.6	54.0	0.004	13,496
Hokkaido	Nov. 11. 88	Todarodes pacificus	32.2	27.3	0.003	9,115
Miyagi	Sept. 19, 88	Todarodes pacificus	111	93.9	0.005	18,780
Niigata	July 13, 81	Todarodes pacificus	62.9	45.1	0.003	15,037
Okinawa	July 4, 86	Sepia officinalis	88.8	71.4	0.004	17,849

*: Activity at sampling date

**: Activity decay-corrected to Jan. 1, 1996

Chernobyl accident in April 1986 were increased. The accumulation was much more in *Todarodes pacificus*, a migratory squid than in *Loligo edulis* and *Sepia officinalis*, sedentary ones. However, ^{110m}Ag(127.7 y) activities having longer physical half life were higher in *Loligo edulis* than other squids. It seemed to be closely related to regional level of ^{110m}Ag in marine environment.

Unlike ^{108m/110m}Ag, ⁶⁰Co levels in squids were generally decreased year by year. *Sepia officinalis* has higher ⁶⁰Co activity than *Todarodes pacificus* and *Loligo edulis*. On the other hand, ¹³⁷Cs specific activities in squids were 10 - 100,000 times higher than those of ⁶⁰Co or ^{108m/110m}Ag.

4. CONCLUSION

This study shows that the inductively coupled plasma-mass spectrometry (ICP-MS) can be used for the simultaneous determination of 21 trace elements in squid. In the practical ICP-MS measurement of squid ash samples, corrections for spectral interferences caused by polyatomic ions of $Cl({}^{35}Cl^{16}O^{+}$ on ${}^{51}V$ and ${}^{40}Ar{}^{37}Cl^{+}$ on ${}^{77}Se$) were not required. Since there was a good relation between ICP-MS and INAA in the determination of V, Mn, Fe, Co, Cu, Zn, Rb, Ag and Cd, ICP-MS is thought to be a reliable technique for the trace element analysis of squids.

The different chemical composition between two varieties was observed: high concentrations of Fe, Cu, Zn, Ni, Mo, Cd, Pb and U in *Todarodes pacificus*, a migratory squid and of Sr, V, Co, and Se in *Sepia officinalis*, a sedentary one. The change of Cd values in squid samples from different sampling sites might be caused due to the possible contamination of their environment.

The analytical data for the stable isotopes measured by ICP-MS were closely correlated with the results of radioactive counting of ⁶⁰Co, ^{110m}Ag and ¹³⁷Cs by gamma spectrometry.

5. REFERENCES

- Dams, R. F. J., Goossens, J. and Moens, L. 1995: Spectral and Non-spectral Interference in Inductively Coupled Plasma Mass-spectrometry. Mikrochim. Acta., 119:277-286
- Folsom, T. R., Grismore, R. and Young, D. R. 1970: Long-lived γ-Ray Emitting Nuclide Silver-108m Found in Pacific Marine Organisms and Used for Dating. Nature, 227:941-943
- Folsom, T. R. and Young, D. R. 1965: Silver-110m and Cobalt-60 in Oceanic and Coastal Organisms. Nature, 203:803-806
- Fukatsu, H., Nakayama, K., Imazawa, Y., Abukawa, J. and Higuchi, H. 1982: The Concentration of Cobalt-60 and Stable Cobalt in Migratory Marine Organisms. Radioisotopes, 31:16-20(in Japanese)
- Fukatsu, H. and Higuchi, H. 1985: Radioactive Cobalt and Silver and Their Stable Elements in Marine Organisms. Radiological Sciences, 28(9):201-209(in Japanese)
- Fukatsu, H. and Higuchi, H. 1987: The Concentration of Radioactive and Stable Silver in Marine Biological Samples. JCAC, 14:63-73(in Japanese)
- Morrison, G. H. and Potter, N. M. 1972: Multielement Neutron Activation of Biological Material using Chemical Group Separations and High Resolution Gamma Spectrometry. Anal. Chem., 44(4):839-842
- Nozaki, Y. 1987: A Prospect of Modern Chemical Oceanography. Kaiyo, 8:8-9(in Japanese)
- Houk, R. S. and Thompson, J. J. 1988: Inductively Coupled Plasma Mass Spectrometry. Mass Spectrom. Rev., 7:425-461
- Ueda, T., Nakahara, M., Ishii, T., Suzuki, Y. and Suzuki, H. 1979: Amounts of Trace Elements in Marine Cephalopods. J. Radiat. Res., 49:30-32
- Umezu, T. 1992: Liver of Squid Shows Marine Environmental Radioactivity. Radiological Sciences, 35(11):369-374(in Japanese)