creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

A Semantic 10T System for Indoor Environment Control based on Sensor and Actuator Support Toolbox

Faiza Tila

N O — ©

A Thesis

For the Degree of Master of Science

A Semantic 1oT System for Indoor Environment
Control based on Sensor and Actuator Support
Toolbox

Faiza Tila

Department of Computer Engineering
Graduate School

Jeju National University

June 2016

A Semantic loT System for Indoor Environment
Control based on Sensor and Actuator Support
Toolbox

Faiza Tila

(Supervised by professor Do-Hyeun Kim)

A thesis submitted in partial fulfillment of the requirements for the degree
of Master of Science in Computer Engineering.

2016. 06.

This thesis has been examined and approved by

ooo

Thesis Committee Chair
Sang-Joon Lee, Professor, Jeju National University

Thesis Committee Member
Jeong-Won Jo, Professor, Jeju National University

oo

Thesis Supervisor,
Do-Hyeun Kim, Professor of Computer Engineering, Jeju National University

Department of Computer Engineering
Graduate School

Jeju National University

Dedicated to my father and his love for our education and to my husband

for being a constant source of support and encouragement!

Acknowledgements

Accomplishing this research has been an amazing journey with pit falls
and plateaus. | have learned a lot of new things and met a lot of great
people. The journey to completing this study includes the help and
support of many people. First of all I would like to pay my gratitude to my
supervisor DoHyeun Kim, for introducing me to a world of new
technologies. Without his help and numerous meetings I could not have
achieved what | did. Secondly | would like to thank my husband, my
mentor, for always being on my side, and for his unconditional love and
support. This would not have been possible without his constant
motivation. | would like to thank my parents for their endless prayers,
love and support. They have always encouraged me in pursuing my
dreams, believed in me and taught me to overcome the difficulties in life.
Finally I would like to thank my siblings, my lab members and my friends
for being supportive and helpful throughout my time here.

To all of you, a heartfelt thanks for everything you did!!

Table of Contents

Contents

TaDIE OF CONMLENES ...ttt [
LISE OF FIGUIES .ttt ettt b et et e et eneens iii
F o] (0101 11 ST P PSPPSR Vi
AADSTFACT .. b bt n e et eae viii
1 INEFOTUCTION ..ottt ettt ebe e 1
2 REIAIEA WOTK.....cveniiietiee ettt 5
2.1 EXisting SEmMaNtiC 10T SYSIEIMS......ccvririririerieieieieie ettt 9
2.2 THE SSN ONEOIOGY ..eveeverriiereieieieeierieete sttt ettt sttt sttt eb e sbe sttt eneeas 15
3 Semantic 0T System Architecture based on Sensor and Actuator Networkce...... 20
4 Design of Semantic 10T System based on Sensor NetWOrkcccceeveeveiveeceneeiecieceenne, 25
4.1 Semantic SENSOr PIAFOIMc.co.ciiiiiieiiieeee et 25
411 Semantic SENSOr SEIVICE PrOVIETc.cuiirieiririeniesieeeieiete et 25
412 Semantic SENSOr MIAAIBWAEcc.ooviieieirieeereeeee s 26
4.1.3 Semantic Sensor SUPPOIt TOOIDOXccueiueeieiieeieeieceetes ettt 27
4.1.4 Semantic sensor provider ontology modellingcoovevveieeiiiiece e, 30
4.2 Semantic Actuator Platform based on Actuator NetwWorkcocccveeererencninenieenieeens 32
421 Semantic Actuator Service PrOVIAErccoeoiieiininineniiincceeeeteees 32
422 Semantic Actuator MiddIEWAre..............ccooeivieiieiiic s 34
4.2.3 Semantic Actuator SUPPOIt TOOIDOXc.ccueeieiiieieiceeeceeee e 35
4.2.4 Actuator Service Provider Ontology Modelling..........cccoveeveieiieieieiice e, 38
4.3 Semantic GIS Platform based on Indoor Location InNformation............c..cceeevrerinenienenns 41
431 Semantic GIS SErviCe PrOVITEcccocireirieiinieiiieceeceeeeee s 41
4.3.2 Semantic GIS SUPPOIt TOOIDOX......cvccveriereeierieeeete ettt 42
4.3.3 GIS Provider Ontology MOdellingcocoeoerieieiiiee e 45
4.4 SemantiC SErVICE REGISIIYottt sttt et s ne e 47
44.1 Service Registry Ontology Modelling.........ccvveeieniiiieriisieereseee e 49
45 Semantic APPlICALION SEIVENiiieciecieeeee ettt ettt sreesae b e sre e e e 51
451 Semantic Application Server SUPPOrt TOOIDOX........cccvevirieieniree e 52
452 SMAIT CONLIOL ... 54

453 Smart Control CONCEPt DESIGN......cc.eeuerierieieieieierierertestesee e 55

454 Application Server Ontology Modellingcceoveiririnineneeeeeeeeeee 57
4.6 Semantic ApPlCAtioN CHENL........ccveciiieeeeceee ettt s 60
5 Implementation and Performance Analysis of Semantic 10T SysStem........c.cccevvvevevervvennenee. 63
51 SemantiC SENSOr SErvViCe PrOVITENcccocirierieieieieieniertesesteteiee et 65
511 Implementation of Semantic Sensor Service ProVIdercccecvveverereneneenieneeenene 65
5.1.2 Development and Reasoning of the Sensor ONtologycccvvvvecievieeeecieseeiece e 72
5.1.3 Performance Analysis of Semantic Sensor Service Provider...........ccocevveeeecveveseennene. 76
5.2 Semantic Actuator SErvice PrOVITENcccocoireiriiiinieiniicce ettt 79
521 Implementation of Semantic Actuator Service Provider..........ccoceevvveevevvnceenenceceene, 79
5.2.2 Development and Reasoning of Actuator Ontology..........coceeveveeeeerenenenenienieeeenene 88
5.2.3 Performance Analysis of Semantic Actuator Service Provider...........ccccceevevveveeveennene. 91
53 SemantiC GIS SErVIiCe PrOVIENcocuivieuirieirieirieirictete ettt 93
5.3.1 Implementation of Semantic GIS Service Providercccccvveeeveneeveececeeceseeeee, 93
5.3.2 Development and Reasoning of GIS Provider ontologyccccceevererenenenienieeeene. 101
5.3.3 Performance Analysis of Semantic GIS Service Providerccceevevevveceeneneeeene. 103
5.4 Semantic APPHCAtION SEIVENcveiiiiieeeecieeeeteett ettt st a e e ae e aesteeraente s 105
54.1 Implementation of Semantic AppPliCation SEIVENcoovceeeeveeciece e 105
54.2 Smart Control IMpPIeMENAtioNcccevirierireeereeere e 114
543 Actuator Emulator CONLIOL..........co.cvvieiiieiniiiiiineeeceeeeee s 119
54.4 Development and Reasoning of Application server ontologyccccevveeveveereeenenne. 125
5,5 Semantic ApPPlCation CHENL..........ooiiieeieeceee ettt st s te e ne 127
55.1 Implementation of Semantic Application Client...........ccocoveeeiieviii e, 127
55.2 Performance Analysis of Sensor Provision based on Application Client.................... 139
55.3 Performance Analysis of Actuator Information Provision based on Semantic

N o] o] FTox= U o o T 1T o TP 141
B CONCIUSION ...ttt 144
RETEIENCES ...ttt b e b e sa et ne e 146

List of figures

FIGURE 1 SEMANTIC INTEROPERABILITY ..uttiiiitteeeitieeeeitteeessteeeestseesssssesessseesasssssesasssssessssessasssssessnssssesssseses 1
FIGURE 2 THE SEMANTIC WEB STACK
FIGURE 3 IOT DOMAIN KNOWLEDGEccceevtieietteeeiiteeeeesteeeeeiseeeeeitseeeessseeesessesesasseeeesssesssessesesssseessssseessaseeens
FIGURE 4 52NORTH SOS ARCHITECTURE ...ceceeiutieeiitteeeeiteeeeeitteeeeetaeeeessreeeeeisaeeeestseeeeasreseeessseeesseseessseeesenees 11
FIGURE 5 MERGING HETEROGENEQUS IOT DOMAINcciutiiieiiieeeeieeeeecireeeeeteeeeeteeeeeetreeeeenaeeeeeareeeeensaeeeennnes 12
FIGURE 6 HOME ENERGY MANAGEMENT ONTOLOGY [21] ...eveuieierieinierieienienieeeieseeeteie et seeseere e 14
FIGURE 7 THE SSN ONTOLOGY KEY CONCEPTS SOURCE: [9]...vecveieieieriesiesieseeeteeeetesieste e seeeeeeeesensesreeas 16
FIGURE 8 REUSED SSIN CONCEPTSutttieitiiteiiitreeeitteeeestteeesssseeessseesasssaeessssssssssssssasssssessssssesssssessssssssesnsees 18
FIGURE O SYSTEM ARCHITECTUREcettteitttteiittteestteeeassteeeesssesesasseesasssssesssssssssssssssasssssessssssesssssssssssssssnnsses 22
FIGURE 10 SEMANTIC SENSOR SERVICE PROVIDER CONFIGURATION DIAGRAMccccvvieiitireeciieeeeciveee e 26
FIGURE 11 SEMANTIC SENSOR MIDDLEWAREcoitvteeeiteeeeeteeeeeitveeeeereeeeeiseeeeeetseeeesseesesssssesensseseesseessessees
FIGURE 12 SEMANTIC SENSOR SUPPORT TOOLBOX
FIGURE 13 SEMANTIC SENSOR PROVIDER SEQUENCE DIAGRAMcccoiviteeeteeeeeiteeeeeecteeeeeeeeeeeeveeeeeaeeeeenees 29
FIGURE 14 SEMANTIC SENSOR ONTOLOGY GRAPHeeiieittiieeeteeeeeteeeeeereeeeeiseeeeeetseeeeeseeeeesneeeensreseenseeeennees
FIGURE 15 SSN ONTOLOGY CONCEPTS.......uvtieiitreeeenreeeeereeeeennreeens

FIGURE 16 SEMANTIC ACTUATOR SERVICE PROVIDER
FIGURE 17 SEMANTIC ACTUATOR MIDDLEWAREceeiiititeeeiieeeiiteeeestreeesssaesesssesessssasessssseessssesesssssesnnsees
FIGURE 18 SEMANTIC ACTUATOR SUPPORT TOOLBOXuvtiieiieeeiiiieeeitieeeeitteeestseeeessseeessssaseesssesesssssessnnnens 36
FIGURE 19 SEMANTIC ACTUATOR SERVICE PROVIDER AND SUPPORT TOOLBOX SEQUENCE DIAGRAM 37
FIGURE 20 ACTUATOR ONTOLOGY GRAPHcuvviiiiteeeeeeteeeeeiteeeeeeteeeeeeseeeeeisaeeeeeteeeeeeseesensnsesensreseeanseesennees
FIGURE 21 ACTUATOR ONTOLOGY MODEL.....uvviiiiitreeeeireeeeeiieeeeeeteeeeeereeeeeiseeeeeetreeeeereesessssesensneseesseeeennees
FIGURE 22 SEMANTIC GIS SERVICE PROVIDERcccuviitiiiiteeiiteeeiteesteeeiteesteeesseesseessessssesessessnsesssessnsessnsessns
FIGURE 23 SEMANTIC GIS SUPPORT TOOLBOXccccuteireeaireesireeaiseesseeasseesssesessessssessssesssessssesssssesssessnsessssessns
FIGURE 24 SEMANTIC GIS SEQUENCE DIAGRAM
FIGURE 25 GIS PROVIDER ONTOLOGY GRAPH......cciittteeeitteeeeiteeeiitteeeesireeessissesestseeeessssssessssesssssesessssessasens
FIGURE 26 GIS PROVIDER ONTOLOGY MODELccceiititeeeiiteeeeeieeeeiireeeesireeeessseaesssssesessssssessssseessssesesssssessasens
FIGURE 27 SERVICE REGISTRY CONFIGURATION DIAGRAM....cuuuuieeerrerteuiieseeererstnnaeseeesssssnnaaesessssssnniesesessssssninesessssesses
FIGURE 28 SERVICE REGISTRY SEQUENCE DIAGRAM
FIGURE 29 SERVICE REGISTRY ONTOLOGY GRAPH......utiiitieiiieeeiteeiteeeiteesteeeiseesteessesstesssessssesssessseesssessns
FIGURE 30 SERVICE REGISTRY ONTOLOGY MODEL ...cccuvtiiiueesreeeiueesreeesseesreeesseesseesssesssessssessssessssessnsessssessns
FIGURE 31 SEMANTIC APPLICATION SERVER CONFIGURATION DIAGRAMooceoitvieeeereeeeeieeeeeereeeeereeeeenees 51
FIGURE 32 APPLICATION SERVER SUPPORT TOOLBOX CONFIGURATION DIAGRAMccovvuveeeerreeeereeeeennee 53
FIGURE 33 SEMANTIC APP SERVER SEQUENCE DIAGRAMuctiitieitieeieesteeeiteesteeeireesteeeveesseessseesseesseesns
FIGURE 34 INDOOR ENVIRONMENT CALCULATION 11vtuuueeererursueneseeersesssnnaeseesssssssnnsesessssssssnsesessssssnnnneesessssssnnnesesessssses
FIGURE 35 INDOOR ACTUATOR CONTROL PROCESS .. cetvuutiituuntetttieetttneessuseesssnessssneesssnsesssnsesssnessssnseessieeesssnneesssinees
FIGURE 36 APP SERVER ONTOLOGY GRAPHoviiiiiiieeeiiieeeeiteeeetteeeeeiteeeeetteeeetaeeeeeavaesesasaseeessesesassaessnnnees
FIGURE 37 APPLICATION SERVER ONTOLOGY MODEL...................

FIGURE 38 APP SERVER CLIENT CONFIGURATION DIAGRAM
FIGURE 39 APP SERVER CLIENT SEQUENCE DIAGRAM......eiiiiteeeeiteeeeeeireeeeeeeeeeeteeeeessveeesesaeeesssneeeenssesesennees
FIGURE 40 SEMANTIC SENSOR SERVICE PROVIDER MANAGERctvieitteiitieeteesteeereesreeereesreesseesreessesans 66
FIGURE 41 SEMANTIC MANAGEMENT CONTROL PANELuvvtiitieeiteeiteeeiteesteeeseesiseessesssessssessseesssesssessssessns 67
FIGURE 42 SEMANTIC SENSOR MANAGEMENTeecitieiteeeiteesiteeeiseesiteeesseesseeesseessesssessssessssesssessssesssessnsessns 68
FIGURE 43 SEMANTIC MIDDLEWARE IMANAGEMENTcutiiieiiieeeiiieeeeiiteeeeeteeeeeteeeeessreeeesaseseesssesaessssessnnsees 69
FIGURE 44 SERVICE INFORMATION MANAGEMENT EXECUTION SCREENuuutieiitiieeeitieeeeereeeeecireeeeeseeeenanens 70
FIGURE 45 SENSOR MIDDLEWARE EXECUTION SCREENccceiiuieieiitiieeeiireeeeeiteeeeeitteeeeesreeeesasaseessseeessssssssnnsens 71

FIGURE 46 SENSOR NETWORK IMODULEcoectiriirieriiesitenieenttett et esee et e e sresenesaeesreesmeenseeneesneesneesseesseens 72
FIGURE 47 SSN AND SSP ONTOLOGY

FIGURE 48 REASONINGeeevieitieeeieeiteeeteesreeeveesbeeeseesreesseesnns

FIGURE 49 QUERY COMPARISON FOR ADDING A SENSOR

FIGURE 50 QUERY COMPARISON FOR UPDATE SENSORuveeiiteeeiteesteeessessseeessesssessssesssessssesssessssessnsessssessns
FIGURE 51 QUERY COMPARISON FOR DELETE SENSOR.....ccuttittttesteeiteeesreesteeessessssessssesssessssessssessssessnsessssessns
FIGURE 52 SEMANTIC ACTUATOR SERVICE PROVIDER MANAGERccvttiieitieeeeiteeeeeeteeeeeteeeeeetreeeeereee e 79
FIGURE 53 SEMANTIC ACTUATOR SERVICE SUPPORT TOOLBOX ...ccvvieiveeireeereesreesreeereeessessnseesssessssessssessns 80
FIGURE 54 SEMANTIC ACTUATOR INFORMATION IMANAGEMENToveeiteeireeeteesteeereeereeereesreesseesveesseesns 81
FIGURE 55 SEMANTIC ACTUATOR MODEL MANAGEMENTcccttiiitieiteeeteeiteeeteesteesseesreessesssseesssesssessnsessns 82
FIGURE 56 SEMANTIC ACTUATOR MIDDLEWARE MANAGEMENTccvviiiieeiieeeteeeiteeereesreesseesreessseesereesnseesns 83
FIGURE 57 SEMANTIC SERVICE INFORMATION MANAGEMENT

FIGURE 58 ACTUATOR MIDDLEWARE EXECUTION SCREENcvtiiiiuiieeeiirieeeeiteeeeeieeeeeeireeeeeseeeeesreeeeenseeeeennens
FIGURE 59 ACTUATOR MESSAGE FORMATcoiuvteeiteeeeeeteeeeeiueeeeeetseseesseeeeessseeesssseeeessesesesseessssseseessesesnnnnes
FIGURE 60 MAPPING TABLE MANAGEMENTuvttiiiitteeeeiiteeeeeiteeeeeetreeeesseeeeeisseeeentseeeeeseeeesssnsesensreseesseeeensnees
FIGURE 61 ACTUATOR ONTOLOGYuvvieeeiurieeeireeeesreeeeeisreeeeenveeeens

FIGURE 62 REASONING RESULTS ON ACTUATOR ONTOLOGY

FIGURE 63 QUERY COMPARISON FOR ADD ACTUATOR ...cccuttriteterteerreeeiteesteesssessseessseessessssesssessssesssseesssessns
FIGURE 64 QUERY COMPARISON FOR UPDATE ACTUATOR ...cccvtteiteerreeeireesreessseesteesseesresssseessessssesssseesssessns
FIGURE 65 QUERY COMPARISON FOR DELETE ACTUATOR ..eeiittteiueerireeeireesreessseessseessseessesssseessseesssesssseessseesns
FIGURE 66 SEMANTIC GIS SERVICE PROVIDERccctvteeeitiiteeeiteeesiteeeessreeessssesesssssssesssssesanssssessssessssssssssnnsens
FIGURE 67 SEMANTIC GIS SUPPORT TOOLBOXccctveeieireeeeeireeeeeieeeeesreeeeeiseeeeeesseeeesseseenssssesensreseessseesensnees
FIGURE 68 IMAP IMAGE IMANAGER.......ccceitiieieiteeeeectteeeeeiteeeeeeteeeeeetaeeeeeseeeeeisaeeesetseeeensreseeesseeeensreseenseeeennees
FIGURE 69 BUILDING INFORMATION IMANAGEMENTccuvtiieetteeeeeteeeeeetreeeeeteeeeeitseeeessveeeeesneesensneseesseesennnes
FIGURE 70 SEMANTIC BUILDING MANAGEMENT

FIGURE 71 SEMANTIC FLOOR IMANAGEMENTctiiiittteeeiteeeeeiteeestteeeestreeesesseeessssseasssassesssssesssssessssssessnsens
FIGURE 72 INDOOR MAP IMANAGEMENTtttiiiitteeiitteeeeiteeeeeiareeeestseeaesstseseesssesesassssessssssesasssssesssssssssseesanes
FIGURE 73 SEMANTIC ROOM INFORMATION MANAGEMENTccciitieeeiiieeeeiiteeeeiiteeeesteeeeesreeessaseeeessssesennns
FIGURE 74 GIS PROVIDER ONTOLOGY ...cccuvveeiiiieeesireeeeereeeeesneeens

FIGURE 75 REASONING ON THE GIS PROVIDER ONTOLOGY

FIGURE 76 QUERY COMPARISON FOR SAVING BUILDING INFORMATIONccueeiveeeireesrreeseesreeesseeensneesseesnnns 104
FIGURE 77 QUERY COMPARISON FOR SAVING FLOOR INFORMATIONueeeiieeireeeireesieeeseeeseeenseeesseeenseesnnns 104
FIGURE 78 QUERY COMPARISON FOR SAVING ROOM INFORMATIONcvveeiueerreeeireesreesseesseeesseesssaeenseesnns 105
FIGURE 79 SEMANTIC APPLICATION SERVER MODULEvveeiteeiiieeiteesieeeteesteseseesteesseesseesseesnsasensessnnns 106
FIGURE 80 APP SERVER SUPPORT TOOLBOXuutiiiiitieeeitiieeeeitreeeeiseeeesteeseessseeesssssssssssssesssssessssssessssssseanns 107
FIGURE 81 MAP SERVICE BINDING.......ceiiitiiiiiitieeeiiiee e e ettt e eeitteeeeitveeeesataeeeeasaeesssseseasssaseeessseesassesesassessanes
FIGURE 82 OUTDOOR IMAP VIEWERoiiiiutiieieitieeeiitteeeesteeeeetteeesetsesaesstseseessseesassessaastassssssssssssssssssassssssnnns
FIGURE 83 SEMANTIC OBJECT BINDING

FIGURE 84 QUERY L RESULT ..iiuttiitttesiteesteesteesseessseesseesssesssseesssessssessssessssesssessssessssessssessssessssessssesensessnses
FIGURE 85 SEMANTIC ACTUATOR BINDINGcccviiitiieiieeiteeeteesieeeiteesteesseeseteeeseesasaessesssesensssesasensessnses
FIGURE 86 SEMANTIC SENSOR BINDING.......ccuttiitieiiieeiteeiteesteesteeeiteesteesseesseseseesssessseessesssessnsessnsessnses
FIGURE 87 OBJECT ROUTING PROCESSc.veeivieeveesereeereesreeenneennns

FIGURE 88 SENSOR AND ACTUATOR CONTROL ROUTING PLAN

FIGURE 89 DEVICE EMULATORSceiiitttteeitteeeeeitteeeeitaeeeesteeeeeisseseaassssaaastssaaasssssssassssssasssssasssssesasssessasssssannns
FIGURE 90 FAN CONTROLuttiiiitiieeiitiie e ettt e eeitteeeeitteeeestbeeeeesseseeassaaaeastasaaasssssaasssaaaassasseaassaeesassssesansseaaanes
FIGURE 91 LIGHT CONTROL...ceieiittieeiitieeeeitteeeeeitteeeeitteeeestteeeeessesesasssaaaastesaaasssasaassseeaastsseseassssesassseesanssesaanes
FIGURE 92 AIRCON CONTROL ...uuttiieitiieeeiitieeeeitteeeeitteeeestteeeeessesseasssaaaastssaaassssssaassssasassssesasssssesassessassesennns
FIGURE 93 BOILER CONTROL ..eeeuttteeittieeeitteeeeeitteeesitseeeessteeeeasssesesasssaaaasssssaasssssssassssssasssesasssssesssssessssssssennns
FIGURE 94 APPLICATION SERVER ONTOLOGYuveeiieeeiteeireesseesreesiseesseesssesssessssssssessssessssssesssssssessnsessnses

FIGURE 95 REASONING ON APPLICATION SERVER ONTOLOGY ...ceuvteurierieieieneenreenreenreeresressnesseesmeesseenseensesnns 126

FIGURE 96 APPLICATION CLIENT ..uttiiittieeieeiteeeteesteesiseesbeesseesseessessssessnsessasesssesssesssesssessnsesensesensesenses 128
FIGURE 97 SENSOR DATA VIEW ..c.uuiiiitiiectiee ittt ettt sttt e eteesteeetteesteesaeesabaesaseesabesenseesabassnsessatassnseeesesensesenses 129
FIGURE 98 GET SENSOR STATE QUERY ...cuutiiiieitieeeeitteeeeeteeeeeitreeeeetseeeesteeeeessseesaesseeeesseeeeeasseeesaseeesassseeeanns 130
FIGURE 99 SENSOR STATE BEFORE UPDATE QUERYeeieiutiieieireeeeitreeeeeteeeeeinreeeesaseeeesreeeeessseseensseesssssesennns 130
FIGURE 100 SENSOR STATE UPDATE QUERY ...

FIGURE 101 UPDATE QUERY RESULTS ..eeiiutiieeeiteeeeeitteeeeitteeeeeitreeeeetseeeeeteeeeessseesaesseeesasseeeesssesesasssesasseseanes

FIGURE 102 SELECT QUERY ...tetiittriteuteutententestestestteueesteteteseesbesbesueessensebeseeebesbeeseessensenbeseesbesaeensensensensessens
FIGURE 103 SELECT QUERY ..cuttttteiuteuteutententestestestteueeutesetessesbesueeueessensebeseesbesueeseessensenseseesbesueessensensensessens
FIGURE 104 ROOM COMFORT INDEX c.c.ututeuteutententesseeueeutententestessessessesseeseensessessessesuesmeensensensensesuessesasensensensensenne
FIGURE 105 FAN DATA VIEW ...cutittitteuteutententestestestteutentestetesaesbesaeeueeasens e beseesbesseeneessensenseseesbesaeensensensensessens
FIGURE 106 LIGHT DATA VIEW....c..tiutiuteuietintestestestteutestententessestesseeueeasensesbesaesbesueeseessensenseseesbesaeensensensensessens
FIGURE 107 AIRCON DATA VIEW....
FIGURE 108 BOILER DATA VIEW......utiiitiieeieeiieeeteesteesseessseassseesssesasessssesassesssesassessssssssessssessssessssssensessses
FIGURE 109 ACTUATOR STATE UPDATE QUERYutiutiriiesitesiterieenieenseeseeeesusesseesseesseensesnsesnsesnsesaeesseessesnsesnes
FIGURE 110 UPDATE QUERY RESULTS ...citutisttestteteetestesutesieesaeesseesseesesnsesssesseesseessesnsesnsesnsesnsesueesseessesnsesnes
FIGURE 111 SELECT ACTUATOR STATE QUERY ..vvvviieiiiiiiiutireieeeeeiiiteeeeeeeeeissssreeeseeesessssssessesssesssssssseesssesssnnes
FIGURE 112 QUERY COMPARISON FOR GETTING SENSOR INFO......cuvtterterueeueententersensesuessesseensesessessesuessesneensensessensenne
FIGURE 113 QUERY COMPARISON FOR RETRIEVING SENSOR STATE ...cuveuvteuteutentetessentesuesuesseensesessessessessesseensensensensenee
FIGURE 114 QUERY COMPARISON FOR GETTING ACTUATOR INFORMATION....
FIGURE 115 QUERY COMPARISON FOR RETRIEVING ACTUATOR STATEccccittiiierireerieesireesieeesseesnseessseesnnns
FIGURE 116 QUERY COMPARISON FOR GETTING BUILDING INFORMATIONcovtteriieierierieneesieeseeeseeeneeenes

API
RDF
Owl
SPARQL
GIS
HTTP
SQL
loT
SSN
ASP
SSP
URI
DUL

0OGC
SWE
SOA
WCF
SOAP
PMV
ET

loT
WSDL

Acronyms

Application Programming Interface
Resource Description Framework
Ontology Web Language
Simple Protocol and RDF Query Language
Geographic Information System
Hyper Text Transfer Protocol
Structured Query Language
Internet of Things
Semantic Sensor Network
Actuator Service Provider
Sensor Service Provider
Uniform Resource Identifier
Dulce Ultra Lite

Open Geospatial Consortium

Sensor Web Enablement

Service Oriented Architecture
Windows Communication Foundation
Simple Object Access Protocol
Predicted Mean Vote

Effective Temperature

Internet of Things

Web Service Description Language

Vi

vii

/g IS SYT M

JEJU NATIONAL UNIVERSITY LIBRARY

Abstract

The vision of the Internet of Things (10T) is to connect devices all over the Internet to share
and exchange data in order to provide useful services to people. According to Cisco’s predictions
there will be more than 50 billion devices connected to the Internet by 2020. These devices will
generate huge amount of data to be acquired by many services and application in areas such as
smart homes, smart grids, healthcare, and environmental monitoring. These devices are of
heterogeneous nature, producing data in various different formats and requiring different
protocols to communicate. This makes interoperability one of the most fundamental requirements
to support various tasks such as object addressing, tracking and discovery as well as information
representation, storage and exchange.

Recently, different semantic technologies such as ontologies, semantic annotations, linked
data and semantic web services have gained popularity specifically in the connected devices
domain. In this thesis we have used semantic technologies to overcome the issue of
interoperability in an indoor IoT system for environment control. The proposed system is an
indoor environment monitoring and controlling application that collects data from different
service domains/ service modules it is built upon. To provide interoperability between these
domains in order to use their services, we are using semantic technologies. Each service module
collects data from its respective domain, and stores and handles the domain knowledge using
ontologies. Semantic sensor service provider module is used to collect real time sensing data and
sensor information, semantic actuator service provider module is used to exchange messages
between the actuators and the top modules, and GIS service provider module provides the
location information of these devices. The functionality of these modules is to process this data
and provide it to the top module which is the application server. The main idea is to provide an
integrated application server that handles the knowledge retrieved from the service modules using
semantic technologies. Application server integrates device information with its respective

viii

location information and stores it in RDF form in the application server ontology. This enables
semantic interoperability between all the service modules in the system based on the integrated
knowledge.

We have developed a toolbox for each module that handles the data creation and storage in
the ontology. The data stored by each service module in its ontology can be manipulated using
the toolbox associated with it. Each ontology model is a formal representation of the knowledge
or context within a service domain. This facilitates effective data access, integration, resource
discovery, semantic reasoning and knowledge extraction. Semantic description can be applied to
various resources in 10T. An ontology for the Internet of Things provides all necessary semantics
for the specification of 10T devices as well as the specifications of the IoT solution that is
deployed using these devices. These semantics include terminology related to sensors and
observations that is already defined by the SSN ontology. In this thesis we reused the SSN
ontology for basic definition of sensors and its observations. System evaluation is performed by
comparing the system performance with SQL technology and with hybrid approach including

both SQL and SPARQL technologies.

1 Introduction

In simple words, IoT refers to objects (“things/resources”) and the virtual representations of
these objects on the Internet. The aim of 10T is to represent real world entities on the Internet and
to interconnect them to provide useful real world services. These services are offered by various
heterogeneous resources or objects. Current advancement in information & communications
technologies (ICT) and material sciences have enabled these devices with enough communication
and computation capabilities for connecting and interacting with their surrounding environment.
These objects produce data/services that represent real world information in a virtualized

environment and enables end-users to interact with and control the real world phenomenon through

%9 . o
I’ 9
ice \/ spaRGL Home

Application Server

that virtualized environment.

SPARQL

Sensor service Actuator service
provider provider
RDF,RDFS RDF,RDFS

OWL OWL

‘© (@)3 fw\@z

Sensor Network 5 _Actuator Network 5
\J\ L e
RSN g T

Figure 1 Semantic Interoperability

To enhance these real world data/services they must be able to integrate with data from different
sources. Defining these data/services in a uniform way not only allows integration but also supports
autonomous reasoning and decision making mechanisms [1]. The main support for realizing loT
comes from the progress in wireless sensor and actuator networks, and from constructing low cost
and energy efficient hardware for sensor and device communications. Data collected from different
devices and sensors is usually heterogeneous i.e. diverse in nature. This diversity, inconsistency
and pervasiveness of the data make it a challenging task to process, integrate and interpret it. This
makes interoperability among things on the Internet one of the most important challenges. The
word semantic literally means meaning of something. The aim of the semantic web is to provide
meaningful data rather than focusing on the structure or representation of data [2]. Its vision is to
connect and to attach meaning to data on the Internet for the machines and humans to be able to
understand what the data is and where is it coming from. Issues related to interoperability and
ambiguity leads to semantic oriented solution towards loT.

Applying semantic technologies to the things on 1oT will make its data unambiguous and
transparent for both the users and the applications using it. It also provides efficient data access
and integration, resource discovery, reasoning and knowledge extraction. The different semantic
web technologies such as ontologies, semantic annotations, semantic web services and linked data
can be used for fulfilling the goals of 10T. In this thesis we have developed a semantic I0T system
for indoor environment monitoring and control using dotNetRdf API. The proposed system is a
hybrid system that utilizes both semantic and database technologies to collect, store and provide
environmental context information. The system is an 10T structure that consists of several service
modules. To provide interoperability between these domains in order to use their services, we are
using semantic technologies. Each service module collects data’knowledge from its respective
domain. Each service module stores and handles the domain knowledge using ontologies. The
functionality of these modules is to process this data and provide it to the top module which is the
application server. Figure 1 shows how the interoperability issue is handled in our system. The

2

main idea is to provide an integrated application server that manages the information collected from
the service modules using semantic technologies.

We designed an ontology model for each of these modules that serve as semantic repositories
for storing and representing the semantics and relations of the data collected by each module. The
ontology models enables interoperability by annotating the information collected from the devices
with semantics. These ontology models are considered as the key solution for the devices to convey
their context as useful data. The semantic annotation offers reasoning over the data for knowledge
extraction, device discovery and efficient querying on the application server layer despite the
underlying technologies of the devices used. The devices in the system are of diverse nature
producing data in different formats, but due to the semantics added to the device information in the
service provider layer, message exchange between the devices is not an issue.

These semantic repositories in the system are considered as the key solution for the devices to
convey their contexts as useful information. Data relations and data descriptions of this contextual
data make it interoperable for external users and stakeholders using these ontologies. As we know,
ontologies are lightweight and are required to be in memory during program execution in order to
be manipulated by applications. In order to preserve the system performance, database techniques
might be the best solution [3]. This study presents architecture and models to assess how both the
technologies can be used to achieve the best results in a real time system. Databases are widely
used. Their main aim is to store vast amount of data. Using the database for real time data storage
overcomes the lack of flexibility and performance, when the size of the ontology becomes
considerable. The sensing data collected in this system might grow with the addition of new devices
which will affect the processing performance of ontology.

Using databases addresses this issue effectively, as they are structured to use a large quantity
of data making it easily accessible and with a high performance. With database techniques the real
time 10T device data can be accessed and updated safely with high efficiency. The real time sensing
data is collected through the service provider and storing it in the database. Using ontology for

3

storing real time sensing data might decrease system performance especially with the growth of
ontology size. We developed a toolbox for each module that handles the data creation and storage
in the ontology. The toolbox uses the content service and dotNetRdf API provided by its respective
service provide to access and manipulate the RDF data stored in the ontology. This allows the users

to use SPARQL queries.

2 Related work

The term semantic web was introduced by Berners-Lee in 1998. It is defined as the web of
data. The two main ideas of the semantic web are, 1. The idea to provide homogeneous formats for
integrating and compiling data from heterogeneous sources and, 2. The idea to provide meaningful
data of how the data relates to each other and to real world objects, thus allowing machines to
process and interpret that data[4]. It is defined by the W3C Semantic Web Activity as an entity that
is the extension of the World Wide Web in which the meaning or semantics of information on the
web is annotated to it so that it is machine understandable [4]. Semantic Web is growing with each
day passing. To relate the data or information to make it machine interpretable, the semantics or
definitions for information is defined through ontologies.

Semantic web offers an array of languages for modeling and differentiated based on the level
of their expressivity. They provide different tools that can be used by users to define or model
different kinds of information. The semantic web standards are defined by organizing these
languages in layers with each language built on the one before [5]. Figure 2 taken from [6] shows
the architecture of the semantic web, it is also known as the semantic web stack. It illustrates the
technologies or modelling languages standardized by W3C to enable semantic web [7]. The next
layer is the extensible markup language (XML) layer with XML namespace and XML schema
definitions. This layer makes sure that there is a common syntax used in the semantic web. XML
is a general purpose language for documents containing structured information. Middle layer
shows the semantic web technologies. The first one is RDF (Resource Description Framework) that
is the building block of data representation format for the semantic web. It enables applications to
represent resource information in the form of simple graphs. Its basic aim is to represent metadata

about resources on the World Wide Web (WWW).

User interface and applications
Trust
Proof
Unifying logic
Ontologies: ‘ ‘ Rules:
Querying: OWL RIF/ISWRL 53
SPARQL =
Taxonomies: RDFS ‘E{
5
Z
Data interchange: RDF
Syntax: XML
Identifiers: URI Character set: UNICODE

Figure 2 the Semantic Web Stack

All data in the semantic web uses RDF as the primary representation language. RDFS (RDF
Schema) provides more expressivity to the RDF by letting applications to create hierarchies of the
information. It can be used to define taxonomies of classes and properties and sue them to create
light weight ontologies. OWL (Web ontology language) extends the expressivity level of the RDFS
by adding more constructs to enhance the RDF statements [8]. It is derived from description logic
and offer more constructs over RDFS. OWL comes in three forms i.e. OWL Lite for taxonomy
definitions and simple constraints, OWL DL for full description logic support, and OWL Full for
maximum expressiveness and syntactic freedom of RDF. OWL and RDFS have defined semantics
that enables reasoning within ontologies and knowledge bases. Some relations cannot be defined
using these languages. In such cases rule languages are being standardized for the semantic web.
Two emerging rule languages are RIF and SWRL. The data defined using the above described

semantic web technologies can be queried using an SQL like query language.

Simple protocol and RDF query language (SPARQL) uses RDF triples and resources for
matching part and results part of the query. It is expected that all semantics and rules are
implemented below the Proof layer and the results will be used to prove deductions. Formal proof
together with trusted inputs for the proof will mean that the results can be trusted as shown in the
top layer in Figure 2 [1]. For reliable inputs cryptography means are to be used, such as digital
signatures for verification of the origin of the resources. On top of these layers, applications with
user interfaces can be built. With the application of these Semantic Web technologies, it is possible
to automate operations, say, from completing all that you need for a travel to updating of your
personal records. Semantic Web then can be defined as a web of information on the Internet and
Intranet that contains characteristics of annotation which enables accessing of precise information
that you need. Various domains can get benefits from these technologies mainly with issues like
heterogeneity, complexity, and volume[9]. These technologies are helpful in managing, querying
and combining sensors and observation data. Semantic web technologies could be used in isolation
or in augmenting SWE standards in the form of Semantic Sensor Web [10].

The “Internet of Things” (IoT) also referred to as the web of things or the Internet of everything
is the emerging idea of connecting more devices to smart networks and to be able to interact with
humans and each other through the Internet. According to the research in [16], there were
approximately 6.3 billion people on the planet in 2003, and 500 million devices connected to the
Internet. This means there was less than one (0.08) device for every person. But IoT didn’t exist
around that time. According to Cisco IBSG loT was born between 2008 and 2009. Around 2010
the growth of the smartphones and tablet Pc’s was immense which increased the number of
connected devices to 12.5 billion. While the world’s population increased to 6.8 billion making
more than one device per person. The research in [16] predicts the number of connected devices to
be 50 billion by 2020. However the number of devices connected per person might get low as most
of the world population is not connected to the Internet. These devices will need to connect and
communicate to process data and to make it available to applications using it. Depending on the

7

nature of these devices, several different technologies are used for connecting them to 1oT. These
technologies include: a) sensing and actuating devices, b) identity devices (e.g. RFID, barcodes),
and c¢) embedded electronics. A primary goal of interconnecting these devices and
collecting/processing data from them is to create situation awareness and enable applications,
machines, and human users to better understand their environments. The data collected from these
devices is diverse in nature, which makes it difficult to process integrate and interpret the data [17].

Internet of things (10T) enables a global connectivity between the real world and a virtual world
of entities or objects. It requires interoperability due to its vision of the millions of devices

connected to each other [11].

Actionable intelligence _.:""Wisdom

Abstracti “
bstraction and perceptions Knowledge
Structured data (with ; _
Raw sensory data Data

Figure 3 1oT domain knowledge

The applications using these heterogeneous devices require an interface that provides
meaningful information about each device in the environment. By getting the right information
about the situation of each device in a network, the applications can perform its tasks in an
intelligent manner. It makes the communication between the devices and the applications easier.
The data collected by loT devices from a vast domain is processed and analyzed to turn into
actionable knowledge to provide a better perception of the physical world to its users. 10T uses an

array of steps for gathering this data and turning it to knowledge understandable by users and

machines [12] as shown in Figure 3. As the figure depicts in the first step, raw data is collected
from different sources i.e. sensors and other devices available in the surroundings. The data
gathered comes from disparate sources having multimodal and diverse nature, which makes
processing and integrating it a challenging task. To enhance interoperability the next level’s job is
to structure the data meaningfully in order to make it machine readable. The next layer takes this
structured information and present high level abstractions that provide insights to the underlying
data.

The top layer takes this knowledge combines domain and origin knowledge with it and
transforms it to wisdom which the 10T applications can use to solve decision making problems.
Since many of the data generating loT devices and resources are highly distributed, heterogeneous,
and resource constrained. Issues related to interoperability, automation, and data analytics lead to
semantic oriented perspective towards IoT [13]. In an loT system the loT devices should be
managed and represented through suitable technologies i.e. semantic technologies. Semantic
annotation of data can provide machine interpretable descriptions on what the data represents,

where it originates from, how it can be related to its surroundings and who is providing it.

2.1 Existing Semantic 10T Systems

In this section we discuss the recent studies that worked on the application of semantic
technologies to the field of the Internet of things, which are widely to solve interoperability issues
among the loT resources. It facilitates effective data access and integration, resource discovery,
semantic reasoning, and knowledge extraction [16]. One of the main ideas in loT semantic
modelling is to represent the data observation and measurement from sensors. The W3C’s
incubator group has worked on modelling sensor description and observation on the semantic
sensor networks and the OGC sensor web enablement suite [14] of XML based standards. The aim

of the OGC standards suite is to use standard protocols and APIs for discovering and accessing

sensor networks and archived sensor data. These standards comprises of modelling schemas i.e.
observation and measurement and sensorML [15].

The idea of using ontology driven information system for sensor networks was introduced in
[16]. The authors have presented a two phased solution that can be employed to enable a real world
wireless sensor network to adapt itself to variations in environmental conditions. The first phase
executes an efficient algorithm to dynamically calibrate sensed data, and the second phase executes
an efficient ontology driven algorithm to determine the future state of the network under existing
conditions. The ontology captures the most important features of a sensor node that describe its
functionality and its current state.

Use of sensing devices for collecting data is increasing due to its applications in various areas.
This increase is causing an upsurge of data with different data formats from different devices, which
requires advanced analytical processing and interpretation by machines. This sensor data is
becoming the focus for many researchers these days. The Sensor Web Enablement (SWE) [4]
initiative of the Open Geospatial Consortium (OGC) defined data encodings and web services to
store and access sensor-related data. The models, encodings, and services of the SWE architecture
enables implementation of the interoperable and scalable service oriented networks of
heterogeneous sensor systems and client applications. In this regard, SemSOS has proposed
ontology models for sensor domain and sensor observations, with semantics annotated to the sensor
data and using these models to reason sensor observations. This enables SemSOS to provide the
ability to query high level knowledge of the environment as well as low level raw sensor data [17].

The approach in this study is similar to the sensor service provider module of our system, i.e.
to leverage semantic technologies in order to provider and apply more meaningful representation
of sensor data. 52North’s SOS implementation is designed to provide interfaces to sensor
observation data stored in a database, with the sensor descriptions stored in XML files as shown in

Figure 4. The visualization layer provides an interface to the external clients to interact with SOS,

10

in our system the application client layer does the same job. An ontology based prototype sensor

repository referred to as OntoSensor [18] has also been developed.

-
Visualization Layer

[Thin Clients] [Other Services (e.g. WPS)] | Thick Clients]
pN

Presentation Layer

[505 Serviet

-] i

[Business Logic

l RequestOperator J

——-——__ ¥ __——-—__

[GetC aPth"ﬂﬂ-‘.’-liEfﬂl‘lBl’ Gat'ﬂhsnn allonl.isteﬂar XYZListener]

: Data Layer
i E [GetCapabilitiesDAQ | [GetObservationDAQ] [XYZDAO] :
U Ssoooooooooooos| poooooooooooooooooos P ~geoooooooorooad. L :
. SPARGL Data Graph :
. Queries .

Figure 4 52North SOS Architecture

OntoSensor is a repository containing concepts and relations definitions from SensorML [14].
It extends concepts from the IEEE SUMO ontology, and reference terms from ISO 19115. The
authors approach is to use upper level ontologies to deploy a framework in which translation among
different domain ontologies can be more readily accomplished. The definitions of high level
concepts pertaining to sensors can be used as background knowledge for the integration of data
from heterogeneous sensors. Barnaghi, Payam, et al [12] have presented a semantic model for
heterogeneous sensor data representation. A sensor data description model is created by using the
common standards and logical description frameworks proposed by the semantic web community.

The work describes a sensor data ontology which is created based on the Sensor Web Enablement

11

(SWE) and SensorML data component models. W3C’s SSN ontology [9] have been developed to
describe the capabilities and properties of sensors, the act of sensing and the resulting observations.
Similar studies for representing sensor observations include Sensor Data Ontology (SDO) [19],
Sensei O&M [20], and SensorML [14]. Figure 5 describes a M2M architecture that merges data
from heterogeneous sensors, add semantics to the measured data making it interoperable with
external applications [21]. It consists of gateways that add semantics to sensor measurements

enabling application to avail these services regardless the heterogeneity of the devices used.

Health M2M area network RS DR S EAET,

tere ot

cteeera;

M2M area network

M2M area network

Weather forecasting ,\/ % Emotion

M2M application:
Suggest a recipe
according the mood,
diseases, diets and
the weather

Figure 5 Merging heterogeneous 0T domain

The study in [22] is focused on building an ontology for home energy management domain
while reusing the concepts and relationship from Suggested Upper Merged Ontology (SUMO) [23].
The main objective of this study is to provide an ontology that encompasses knowledge of home
appliances, their context, causality and relationships. A hierarchical model of the ontology is shown

in Figure 6. The ontology developed in this study has the potential to be adopted by vendors and

12

manufacturers of home appliances that allows automated reasoning over energy efficiency related
characteristics of the appliances.

The work in [24] has combined the context of loT with semantic technologies to build an
integrated semantic service platform (ISSP) to support ontological models in various 10T based
service domains of a smart city. ISSP is used to develop a prototype service for a smart office,
which can provide personalized office environment by interpreting user text input via a smartphone.
The service domain knowledge is handled using ontologies which provides interoperability
between different service domains based on the integrated knowledge. The authors in [25] have
proposed a framework for Linked Open Data (LOD) about sensor data gathered from the physical
environment. The work is based on introducing a method to publish LOD. RDF and SPARQL
queries are used for semantic discovery between the LOD clouds. This framework enables
interoperability between platforms using a sensor dataset description for LOD. The studies that are
described in this section focus on using semantic modelling to model sensor data and observations
inan loT environment or some researches model the 10T services exposed by 10T devices whereas
other studies focus on modelling sensor data as well as location of the sensors available in a physical
environment. In this thesis we proposed to control the comfort index of an indoor environment
using a semantic 10T system. The indoor environment we control is the engineering building of
Jeju National University. It consists of sensors and actuators to adjust the temperature of the labs
in the building.

We have used semantic technologies to provide interoperability between the different sensor
and actuator data generated by these 10T devices in the system. We have used semantic modelling
to not only capture the sensor data and observations but we have developed ontology models for
representing actuators, actuator data, actuator location, and map information of the indoor
environment. The semantic indoor 10T system consists of separate modules for representing the
data generated by the devices, i.e. for capturing sensor data and information the semantic sensor
service provider module is used which uses the sensor ontology to register the sensing devices

13

available in the environment. For representing the sensor data we have reused the SSN ontology

[9].

WashingiashineStarlnfo

_waterFactor | Instance

_FnergyFactor | Insiance

Kwh/Yzar | Instance

_Annual'WaterJsuage | Stong

SUMOL53E Instance 10031

MNumber of Washing
Programs

ELUl Energy Labsl
Class

Wash
Performance
Wattage on
Standby

Figure 6 Home Energy Management Ontology [21]

Semantic actuator service provider is used to capture actuator data which uses the actuator
ontology to represent actuators and actuator data. Semantic GIS service provider module uses the

GIS ontology to represent the location information of the sensors and actuators registered in the

=
S

sensor and actuator ontology respectively. Ontology schemas of the system modules enable
interoperability by annotating context information with semantics, offering efficient querying and
reasoning over the context information. The ontology model presented in this study is considered
as the key solution for devices to convey their context as useful data. Data relations and data
descriptions of the contextual data make it interoperable for external users and stakeholders using
the same ontology. As we know, ontologies are required to be in memory during program execution
in order to be manipulated. This might decrease system performance, specially querying, with the
growth of the ontology size. In order to preserve the performance, database techniques might be
the best solution [12].

This study presents architecture and models to assess how both the technologies can be used to
achieve the best results in a real time system. Databases are widely used. Their main aim is to store
vast amount of data. Using the database for real time data storage overcomes the lack of flexibility
and performance, when the size of the ontology becomes considerable. The sensing data collected
in this system might grow with the addition of new devices which will affect the processing
performance of ontology. Using databases addresses this issue effectively, as they are structured to
use a large quantity of data making it easily accessible and with a high performance. With database

techniques the real time 10T device data can be accessed and updated safely with high efficiency.

2.2 The SSN Ontology

With the rapid growth in sensing devices and systems, semantic technologies are used in
various studies to manage the enormous amount of data generated as well as the sensors themselves.
A huge number of applications are using sensors nowadays ranging from meteorology to medical
care to environmental monitoring to security and surveillance. With this the volume of data and the
heterogeneity of devices and data formats also grow massively. By using semantics users can
manage and query sensors and data. Indeed as the scale and complexity of sensing networks

increases, machine interpretable semantics may allow autonomous or semi-autonomous agents to

15

assist in collecting, processing, reasoning about and acting on sensors and data. For their own part,
users generally want to operate at levels above the technical details of format and integration, and
rather work with domain concepts and restrictions on quality, allowing technology to handle the

details.

L | hasSubsystem only, some hasSurvivalRange only
7 P et UG o PR i -
[DeploymentRelatedProcess]4’ 7 i PR SurvivalRange
\

hasDeployment only

1]
- 1
= System f-=-=====22I1C & :
e po-eeemz=zzilo
_________ e SRS b P e JL
Deployment depioyedSystem only - [hasOperatingRange only OperatingRange

-
-

Deployment e PR ~ _ deploymentProcesPart only System OperatingRestriction
~

Vi

| deployedOnPlatform only // Process
1 1

1 inDeployment only & Device haslnput only
PlatformSite | . ~6nPlatform only l Device TIza- -l Process

. X s
~ aftachedSystem only hasOutput only, some

: implements some
___ JsProducedBy some___ . . .edeemm ittt N)
------- S~ s Sensing

!

!

!

!

!

!

1!

!

!

!

1!

!

!

!

!

!

!

!

!

!

-__-‘.—-D I:
= ALy i B '
hasValue some__ 1 SensorOutput =T] _ -~ " “sensingMethodUsed only 1
e - \]
-~ !
!

!

!

!

!

!

!

1!

!

!

!

!

1!

!

!

!

1!

Data Skeleton

\

.
,” detects only » e \
— | SensingDevice | /! -~ \.0bserves only
ObservationValue * Sensorinput f====--===———_____ A e

Yery 2 S T T TI I n sz s =222 Property
S o ey -
“\ /includesEvent some { oTAss 4 isPropertyOf some

.
#7 .2 i5bservedProperty only »*
observationResult only") 227 pecty:only H
& observedBy only _. Ee % ’:' !hasProperty only, some
: Y} P S s
¥ featureOfinterest only 1 FeatureOfinterest

MeasuringCapability ' Consl;aﬂlBlm:k

hasMeasurementCapability only y forProperty only: » "

3

1
1
\
\
1\
)
\
o
& \
=3
o
o
3
o
=)
-
[e]
o
3
a
=
o
=]
5
(o]
o
3
o
z
>
o
=)
~

[MeasurementCapability]—---= ----- 4=========p Condition |[e===========feceea-

Figure 7 the SSN Ontology Key Concepts source: [9]

The SSN-XG is a W3C incubator group initiated by the CSIRO and Wright State University
as a forum for the development of an OWL ontology for sensors and to further investigate
annotation of and links to existing standards. The ten conceptual modules and key concepts and
relations of the SSN ontology are shown in Figure 7. The full ontology consists of 41 concepts and
39 object properties: that is, 117 concepts and 142 object properties in total, including those from
DUL. The development of the design of SSN is the result of two iterations.

Iteration 1: ontology module development and examples,

Iteration 2: alignment to the DOLCE Ultra Lite upper ontology.

Figure 7 shows different concepts and domain connected to each other through object

properties. The SSN ontology developed originally has been aligned with the SSO and DUL

16

ontologies. The SSO (Stimulus Sensor Observation) Ontology Design Pattern represents all kinds
of sensors or observation based ontologies and vocabularies for the Semantic Sensor Web and
Linked Data. The classes and relations in the SSO are focused on sensor, stimuli, and observations.
Each class of SSN is defined as a subclass of an existing DUL class and related to other SSN and
DUL classes. The measurement capability and the condition part describes that a sensor may have
a number of measurement capabilities (ssn: MeasurementCapability), describing the capability of
the sensor in various conditions (ssn:Condition). The system perspective consists of a system
(ssn:System) concept representing parts of the sensing infrastructure. A system has components
(ssn:hasSubSystem) which are systems. Systems, of which devices and sensing devices are sub
concepts, have operating and survival ranges, may be deployed and maybe mounted on platforms.
The SSN ontology is reused by a number of research projects for representing sensors and its
observations.

In [26] it is used to annotate semantics to streaming sensor data which helps in analyzing the
data. It is used as a basic building block in [27] to build large semantic sensor network applications
for environmental management. In this study we have reused the SSN ontology for defining sensors
and their observations. It is added as a part of the sensor service provider ontology to describe
sensor, sensor observations and sensor measurements. Figure 8 illustrates the concepts and
properties this study has reused from SSN and DUL ontologies. We have used SSN’s sensor
definition to represent the sensors that are registered in sensor service provider ontology as shown
in Figure 8. The MeasurementCapability class is connected to the sensor by the

hasMeasurementCapability object property.

17

/ =~

SSN ~—

/ —~—_ e

v ST d
e e observes only = ssn:Sensor
‘ ssn:SensorOutput ‘ ssn:Property ~ _ 7

|
A 4

- - -~ | hasMeasurementCapab
h 4

SSN ‘/ssn:PhysicaIObJ
ect
—_— T T == — _isProducedBy

-~

forPropertV‘\ ility only
(e Only \ ﬁ/ssn:MeasurementCapabili
‘ ssn:Observation J ‘ ssn:ObservationValue }— - ty
T ——= \‘ hasMeasurementProp hasOperatingProper
/ I S hasMeasurementPropertyValue ertyonly _ _ | _ _ _ _tyonly
hasQuantithﬁ“E’ -——7 " T ==\ hasQuantityU | ¥ ¥

7] D e
¥ v nitOfMeasure .
([. . (dul:UnitOfMeas \ﬁ SSn e asLiemEntyiopent ‘ ssn:OperatingProperty
| xsd:float { dul:Situation | | ure y

directly precedes Ve
— j [ssn:OperatingPowerRangj

4 .
‘ dul:Entity ‘ ssn:MeasurementRange e

Figure 8 Reused SSN Concepts

The MeasurementCapability class consists of a number of measurement properties, of those we
have used the measurement range defined by the MeasurementRange class. MeasurementRange
class consists of a set of values that the sensor can return as the result of an observation under the
defined conditions with the defined measurement properties. OperatingRange is another property
we have used to define the power range in which system/sensor is expected to operate. This is
represented using the OperatingPowerRange class. observesOnly defines the relation between a
sensor and the property it can observe. SensorOutput class represents an observed value produced
by a sensor. The value itself is represented by the ObservationValue class. Each observed value has
a unit of measurement and a quantity value as represented in the figure. An Observation is a
Situation in which a Sensing method has been used to estimate or calculate a value of a Property
of a FeatureOfInterest. Observation is a subclass of DUL:Situation, which represents things that
have a ssn:observedProperty property who must be a ssn:Property. The SSN classes and properties
represented above describe the characteristics and observations of sensors. There is no information
about actuators or the location of sensors and actuators. In this study we developed ontologies to

represent sensor and actuator information as well as their location information. It will allow the

18

users to not only query sensor and actuator data but also locate them. The following sections

describe the semantic 10T system architecture and its semantic modelling design phase.

19

3 Semantic IoT System Architecture based
on Sensor and Actuator Network

Semantic 10T indoor environment system is based on a mash up of database and semantic
technologies. It is based on a layered architecture as shown in the Figure 9. Each layer consists of
a semantic repository that annotates meaningful information with the data that arrives at the layer.
This helps in transparency and interoperability within the modules of the system. The bottom most
layer in the architecture is the hardware layer. It consists of any kind of sensors and actuators that
are available in an indoor area.

The data from these physical devices is collected by the next layer which is the control and
acquisition layer. This layer consists of middleware’s that helps in monitoring the ports on which
the devices are available, collecting sensing data from the sensors, managing the server connection,
and exchanging command and control messages between the server and the devices. There are two
categories of the middleware’s in this layer, the first is sensor middleware which collects and parses
the real time sensing data, whereas the second one is the actuator middleware which communicates
messages between server and client devices.

The next layer is called the processing layer. Processing layer consists of service providers,
which offers services for storing and managing the data received from the middleware layer. These
services are used by other modules in the system to manipulate the data stored in the database and
ontology. For this purpose dotNetRdf API has been used. It is a powerful and easy to use API for
working with RDF, SPARQL, and semantic web. The services offered by the providers use
semantic functions, they are called semantic functions because they use SPARQL queries and
dotNetRdf API to manipulate the data stored in the ontology model. The three categories of service
providers in this layer are semantic sensor service provider, semantic actuator service provider, and

semantic GIS service provider. Each service provider offers three services i.e. content service,

20

provider service and sensing or control service in case of sensor, actuator and GIS provider
respectively. It also consists of a database and an ontology model. Semantic sensor service provider
stores real time sensor data in the database, whereas the information related to the sensors such as
sensor properties, categories and the relationships between them is stored in the ontology.

The reason for using database for storing real time sensor data is the possible decrease in system
performance with the growth of ontology size. The functions of the content service are used to
manipulate the sensor information in the ontology. Its functionalities include adding a new sensor,
deleting a sensor, and updating sensor information, as well as managing the relationships between
the sensors and middleware. The provider service is used for provision of sensor data and
information to the server whereas the sensing service is used to collect and store sensing data in the
database. The relationships between sensors and different modules in the system are modeled in
the ontology as well. This will help in queries such as: Which sensors are connected to Middlewarel?
How many middleware are connected to service provider 2? The semantic actuator service provider
also consists of an actuator ontology and a database. It uses the database for real time control of the
actuators connected to the system. For example, it can ask for the state of an actuator from the
ontology, and change the state by sending a control message through the database. It provides a
content service, a provider service, and a control service.

The semantic functions in the content service are used to manipulate information in the
ontology. The provider service uses SQL and SPARQL queries to provide the stored data from the
database and ontology to the application server. The control service takes care of the control and
command messages between the server and the actuators. Semantic GIS service provider stores
map images in the database whereas building information in the ontology. Building information
includes the number of buildings, the number of floors and rooms in a building. This information
can help answer question likes: “How many sensors are there on fourth floor of building 1?” and
“Where is sensor 2 located?” Content service of the GIS service provider uses dotNetRdf API to
manage the building information in the ontology.

21

Semantic AP| Requester
Actuator APl Requestor | | GIS API Requestor | | Sensor APl Requestor
Semantic Object Info _E’ - Semantic Query 5 Semantic Control Message
o Supply 2 £z = Generator
Application o g oo Semantic Rules 5
Server Layer) & < 2a 15 Semantic Room Environment Application Server
Semantichctiatoginfo = Controller % Data Calculator Database
Supply
Semantic Service Registry
Semantic Publish Service Semantic Search Service | Semantic Service |
Management
" | Semantic Sensor Support Semantic Actuator Support Semantic GIS Support
E Toolbox 1 Toolbox 1 Toolbox 1
5 Total Map Info ‘ Mini map ‘
% e = = Generator generator
5 8 5|| = 5|l Add/Del Sensor Ss5)L8 Add/Del Actuator
g g E s E 5 E g g ‘ Image Load ‘
£ a % ‘L‘E) % __Update Sensor 2e&¢g Update Actuator
Data ! E ol = 0 -] 8 S99 Semantic Room Info Generator
= Update MW c 1=}
- %) o o o Update Actuator MW
Con:posmon < E gl & & | g 2 % -é P! —
ayer 2 Add/Del MW 3 3 Add/Del Actuator MW ‘ Semantic Building Info Generator ‘
%’_ Semantic Service Info Generator Semantic Actuator Mw Info .
fr Semantic Floor Info Generator
& Genereator
Common
Compon Semantic Query Generator Ontology Manager | Database Controller | | Data Manipulation | | Info Generation |
ents ;
' Semantic Sensor Service Semantic Actuator Service Semantic GIS Service
2 Provider 1 Provider 1 Provider 1
[}
§_ Semantic Content Semantic Sensor Device Sensor location Building Data
g Service Info Search 9 Control information Manager
O . . S 2w Map Data
2 Sensing Service Semantic g ‘éﬁ, E E - Manager
'g Provider Service % RS
Processing 2 Sensing Data g 2||lgtc
- & d [
Layer < Receiver g % s
g Sensing Data Supply 0
3 GIs
=%
£ Sensor AENETEy Database
Database Database
Common : a -
Compon Semantic Query Semant_lc. Data Semantic Search Data Provision Cont.ent Prow_der
! Generator Provision Service Service
ents '
Sensor Middleware 1 Actuator Middleware 1
s Port Manager % Server Connector
Control/ g §
P 2 21| Port Monitoring) S || Message Manager | Sensor Actuator
cquisition 2 2 s o] | e Middleware n | | Middleware n
Layer &3 Sensing Manager 2 g Semantic Middleware
g | Info Management
a
Semantic Middleware & § Semantic Middleware
Configuration Ca Configuration
Hardware
Layer

Figure 9 System Architecture

Provider service offers graphic images of building, floor and rooms map from the database whereas
the relationship information between these entities and their attributes are provided from the

ontology. The next layer in the architecture is the data composition layer. It consists of support

22

toolbox modules, which uses the service provider’s functions to create information related to each
module. Sensor support toolbox uses the sensor service provider’s content service to perform the

following functions

. Get sensors list from ontology,

. Add new sensors,

. Get/save sensing categories,

. Delete / update existing sensors,

. Add sensor middleware, Del/ update sensor middleware, and
. Add relationships between the modules.

Actuator, and GIS toolbox performs similar functions by using content service of actuator
service provider and GIS service provider respectively. Semantic service registry is another small
module that is used by the application server layer. The ontology model of this module stores the
services that are offered by the service provider’s available in the system. Semantic Sensor service
provider, semantic GIS service provider, and semantic actuator service provider each creates its
service information and registers it to the semantic service registry module. The service registry
ontology model stores service attributes like service name, type, URI, and service explain. It also
offers functions like updating service information and deleting service information. This module
offers two main services i.e. to publish and to search a service, publish service is used by the bottom
layers whereas the search service is used by the topmost layer which is the semantic application
server layer. The semantic application server provides collective viewing and data processing
interface. It uses the application server ontology to store the information it retrieves from semantic
sensor service provider, semantic actuator service provider, and semantic GIS service provider. It
processes the sensed data to find the room comfort index based on fuzzy rules and fuzzy variables.
On any request from the client, the semantic application server performs the following series of

steps;

23

First it searches for the intended semantic sensor provider/semantic actuator provider
service information in the semantic service registry module and binds this information
to a map based on client’s choice.

Next it creates binding information for the map coordinates and sensor/actuator
locations based on client’s choice.

The semantic application server finally saves the binding information to the application
server ontology, creates application server provider service information and registers

it to the service registry module.

24

4 Design of Semantic IoT System based on
Sensor Network

As mentioned earlier semantic loT indoor system is a layered architecture. It consists of five
modules i.e. semantic sensor module, semantic actuator module, semantic GIS module, semantic
service registry module, and application server module. Each of these modules has several
components which provide services based on the data it collects. In this section we have explained
the functionality and the data flow within each module and their components using configuration

and sequence diagrams.

4.1 Semantic Sensor Platform

4.1.1 Semantic Sensor Service Provider

The following Figure 10 shows the detailed architecture of the semantic sensor service provider
module. It shows the functionalities offered by each service provided by this module. The Figure
10 also gives an illustration of the sensor service provider ontology and database. The sensor
service provider ontology reuses the Semantic Sensor Network (SSN) ontology. The semantic
service interface provides access to the modules that uses the services of the semantic sensor service
provider. Semantic queries are run and processed using dotNetRdf API. The three services provided
by this module are semantic content service, semantic provider service and sensing service.
Semantic content service is used for middleware information and sensor information management.
Middleware information management involves storing middleware id, IP and service access
information. Sensor information management involves creation and management of sensor
information (such as sensor id, code, name and explain). Semantic provider service is utilized for
searching sensors, sensor information provision, and sensing data provision. Sensor search requires

a search keyword to retrieve a list of sensor ids.

25

Sensor information provision supplies sensor information stored in the ontology based on the
sensor id. Sensing data provision supplies the real time sensing data stored in the service provider
database to the client. The last service is the sensing service that performs two functions sensor
state management, and sensing data receiving. Sensor state management keeps the record of the

sensing state of sensors, and sensing data receiver provides the functionality of receiving sensing

data collected from sensor middleware and storing it to the database.

Semantic Application

Semantic Sensor
Server Support

Semantic Sensor

Application Server

Middleware Support Toolb Toolbox Client
proxy proxy prox proxy
Dotnetrdf API Dotnetrdf API Dotnetrd Dotnetrdf
e - == 1 E————— [—-
Endpoint Endpoint Endpoint

Semantic Service
Interface

Sensor Sensing Sensor Content
Service Interface Service Interface

Sensor Provider Service
Interface

A A

A

-

Sensing Service Semantic Content Service

e GG M Semantic Middleware

Semantic Provider Service

Semantic Sensor
Search

Info Manager

Semantic Sensor Info
Provision

Semantic Sensor

Sensing Data Reveiver 60 [e

Sensing Data

Provision

XML Configuration Viewer

O

* Dotnetrdf API *
I
I

Semantic Repository

Service Middleware |
information information |

Sensor Semantic
information Reasoner

Sensor Database

Figure 10 Semantic Sensor Service Provider Configuration Diagram

4.1.2 Semantic Sensor Middleware

Semantic sensor middleware is the intermediary module that collects real time sensing data

from sensors connected to it. As shown in Figure 11 it consists of five modules. Semantic

26

middleware configuration manager verifies the semantic sensor service provider’s access privileges
by requesting middleware IP address and access rights. Sensing driver takes various sensors’
sensing data format information and parses the received sensing data. Port monitoring monitors the
state of the port connected to the middleware. Sensing data receiver accesses the sensing data sent
from the sensor nodes and saves it in memory through the sensing data parser. Sensing data
transporter reads the real time sensing data stored to the Memory and sends it to the semantic sensor

service provider to be stored in database.

Semantic Sensor : |
. : Sensor |
Provider ; 1

Endpoint | T f ””””””
U |
Dotnetrdf API
proxy A y
Serial Port
D ¢ e .
~FT T | |
I | v |
Semantic | Port Manager Sensing Manager |
Middleware | |
Configuration | Port Monitoring [T Memory |
Manager
I | Sensing Data |
Sensing Driver | Sensing Data <_! Parser |
. Transporter Sensing Data |
Semantic B <
Configurator Data Visualizer

Figure 11 Semantic Sensor Middleware

4.1.3 Semantic Sensor Support Toolbox

Figure 12 shows the detailed architecture of the semantic sensor support toolbox. Its
functionality is to create sensor information, provide middleware access management, and service
information publishing support. The semantic sensor information generator uses the semantic
content service provided by the semantic sensor service provider to create sensor information and

stores it to the ontology. The semantic middleware manager creates middleware information and

27

manages the service provider’s access privileges for the middleware. Semantic service information
publisher creates service information (service name, service Uri, and a search keyword) through

semantic service info generator and stores it to local XML file as well as publish it to the semantic

Semantic Service Semantic Sensor
Registry Pravider

service registry.

Endpoint Endpoint
Dotnetrdf API Dotnetrdf API
proxy /J\ proxy
r-— - _ _ ___ _ I
| proxy [|
Semantic Service Info Semantic Sensor Info Semantic Middleware
Publisher Manager Manager
Semantic Service Info Semantic Middleware
> >
| Generator Semantic Sensor Info Info Generator
| Generator :
L L XML Temp File Semantic Middleware
pF » Access Manager
Data Visualizer

Figure 12 Semantic Sensor Support Toolbox

Figure 13 shows the interaction of the semantic sensor service provider module with semantic
sensor support toolbox and the sensor ontology model. Sensor Provider has three services namely:
sensor web provider service, content service and sensing service. Sensor support toolbox uses the
content service to manage middleware, sensor and provider information. The sensor service
provider module interacts with the ontology model using the dotNetRdf API. As the main window
of the semantic sensor service provider module is loaded it starts the timer to record the amount of
time for which the services are run. Next it starts the content service, the sensing service and the

provider service. The functionality provided by this module can now be used as services by the

28

semantic sensor support toolbox module. The semantic sensor support toolbox asks for the content
service proxy to connect and perform sensor management which includes getting the content

service proxy for enabling semantic queries on the sensor service provider ontology.

Sensor Middleware Protégé SensorWeb Service Provider Semantic sensor support toolbox

Context Ontology Model

—

——— e Mgdere ansgemens

getSensorList()

I
| TypeList(TypeCode, Kind, Name, Explain, Is_Movement),
1

i
getsensorinfo() Addsensor(Name, ID,

IDNode 1D, Node Name, Node Code, connectsTo, hasState) True/False

setsensor(Name, ID, Explain, Type, Code)

True/False

I~
SetSensingstate() delsensor(Node ID)

True/False

getProxy() |

ChangeRight(Enable/Disable)

Figure 13 Semantic Sensor Provider Sequence Diagram

Next it performs the following queries 1) get the sensor list which returns a list of the sensor
ids registered in the ontology, 2) getting the type list which returns a list of sensor types, 3) get the
category list which returns a list of all the sensor categories registered in the ontology. It also
performs the following SPARQL Update queries 1) Add sensor, 2) Update sensor, and 3) Delete
sensor. The semantic sensor support toolbox also performs sensor middleware management which
includes the following SPARQL queries 1) Getting the middleware list, 2) Adding a middleware,
3) Updating a middleware, and 4) Deleting a middleware. The sensor middleware or module asks
for the sensing service proxy to connect and perform sensor state management which includes 1)
Getting the sensor list, 2) Getting the sensing state, 3) Updating the sensing state, and 4) Saving the

sensing state. Finally when the sensor state and the sensed data is stored the services are closed.

29

4.1.4 Semantic sensor provider ontology modelling

In this section figures are used to describe the ontology models for semantic sensor provider
module. As mentioned earlier it uses some of the concepts of the SSN ontology. Figure 14
represents the Onto Graph of the ontology generated by Protégé. Onto Graf gives support for
interactively navigating the relationships of your OWL ontologies. Different relationships
supported are: subclass, individual, domain/range object properties, and equivalence. The figure
shows that all the classes in the ontology are derived from the Thing class. For the purpose of
simplicity we have shown the relationships of one of the sensors registered in the ontology. Sensor
class is defined in the SSN ontology and reused here. TIP700SM is an instance of the Sensor class.
It is connected to ssn:MeasurementCapability class by ssn:hasMeasurementCapability property
which shows that this sensor has the capability to measure some property. In this particular class
TIP700SM has the capability to measure Humidity, Temperature and Illumination values which is
shown by the instances TIP700SMTemperatureMeasurementCapability,
TIP700SMHumidityMeasurementCapability, and TIP700IlluminationMeasurementCapability
respectively. The state of the TIP700SM is shown as idle which the instance of the State class. It
also shows that TIP700SM is connected to Sensor Middlewarel which is an instance of Sensor

Middleware Class.

30

@ TemperatureMeas
urementCapabili

*@® TemperatureSens
orOutput

'@ lluminationSen
sorOutput

® TIP700CMTempera
tureMeasurement.
@ TempValue
- # TIP700CMHumidit
® FowerValue
ARt ® HumMeasurementR YieesurementCap
ange

/

i

® O
e

*® PhysicalObject *© sensor

*@ Observation ® MeasurementCapa ® HumidityMeasure ¢ Categoryd
i mentCepebilty ® TIP700CMillumin
ationMeasuremen
ct . [@ SensorDataSheet] [® Humvalue] SuCaean2
® TIP700CMTempera
A 4 + -
= = - ¥ & Category1 # TIP700CMHumidit
® Region ® TemperatureObse) HumSensorOutput y 2 Mt
rvation 7 Y
: T
Ren 1 e |
s — TIPT00CM t % _ @ TIP700CMTempera

- tureMeasurement
ervation

a ® TIP700CMHumidit & TIP700CMillumin
B luminsioges [yMeasurementCap J ‘ ationMeasuremen

B surementCapabil. :
® HumidityObserva
tion
*' @ SensoMiddiewar
el
D

/!

By

[¢ TPToocM |
erty b
TIP7(MT
@ llluminationVal . m[aMoggm;;“epn?ra

[® liuminationMea ‘
® TIP700CMHumidit
@ FrequencyValue yMeasurementRan

{ ® TIP700CMilumin ’ l @ TIP700CMillumin

L

Figure 14 semantic sensor ontology graph

Figure 15 is a description of the reuse of SSN ontology as done in this study. It shows three
instances namely TIP700SMHumidityMeasurementRange,
TIP700SMTemperatureMeasurementRange, and TIP700SMIlluminationMeasurementRange.
These instances are related to the ssn:MeasurementCapability class through the
ssn:hasMeasurementPropery relation. The sensor output is represented through the
ssn:SensorOutput class which contains HumiditySensorOutput, TemperatureSensorOutput, and
IlluminationSensorOutput classes. The values of these outputs are represented by the observation
class and the relationship between these classes is ssn:hasValue. ssn:isProducedBy object property

is used to relate to the device these outputs are produced by.

31

e
minationSen ", [&J

__sorOutput 1\ . .
| i TIP7OOSMTemperatureMeasrureme*‘:
[SensorOutput { HumSensorOut | | ssn'hasMeasuremeln‘;E:pabiIity ntCapability }
p put IsgniisProducedBy : P |
[N [™/ | ‘/TIP7OOSMHumidityMeasrureme\“
G ————_ |7 = K ————— : i : ..
f TemperatureSe ‘: I’l/ \>T|P7OOSM7%\ : /’ ntCapability MeasurementCapa
\.nsorQutput /™y [AT . bility
ssn:hasValue | hasValug | ~ \I"I"’ TIP700SMllluminationMeasrureme
v | | | | | ntCapability
——————————————————————— I o |
TempValue 4~ | : | I - V-
e | | _{ TIP700SMilluminationMeasrureme |
: / ssn:hasMeasurementPro| Jeﬁygx ntRange]

v
(ObservationVal
ue

|
HumValue ﬁ/ : | :
Y |

\ . { TIP700SMHumidityM t)
‘ umiditylvVieasruremen i

| 1
iaminationVal I ssn:hasOperatingRange
: v Range

A 4

TIP700CMOperatingRange

\., | TIP700SMHumidityMeasrurement
i Range !

p
‘ MeasurementRange }
p

L MeasurementProperty j

Figure 15 SSN ontology concepts

4.2 Semantic Actuator Platform based on Actuator

Network

4.2.1 Semantic Actuator Service Provider

The semantic actuator module consists of semantic actuator service provider, semantic actuator
middleware, and semantic actuator support toolbox. This module performs actuator information
management, as well as supplying and monitoring actuator control and operation status. The
actuators available in the system can be controlled via the semantic application server. This actuator
operation control is based on the environmental state. Semantic actuator middleware receives the
command message from the semantic actuator provider and sends it to the actuator. Figure 16
shows the actuator service provider configuration. It shows the details of the services provided by
the semantic actuator service provider. It also shows the actuator database as well as the actuator

ontology maintained by the provider. The semantic actuator content service handles the semantic

32

configuration of the actuator middleware, and actuator information management. Semantic

configuration means creating an 1D and IP address for each middleware.

Semantic Actuator

Semantic Actuator Support

Middleware Toolbox Client
1P clen ﬂ o Q
A Dotnetrdf API Dotnetrdf API | DotneItLdf_Alj A
| [
' |
1
Y v v
TCP Server Endpoint Endpoint

Semantic Service

Content Service Provider Service

Middleware Service

1
Semantic Service Control

Content Service Control

Provider Service Control

Middleware Service Control

(____

Semantic Repository
Actuator Semantic
information Reasoner
Service Middleware
information information

Dotnetrdf
API

Semantic Middleware Service

Semantic Message
Exchange

Message Parser

Mapping Table
Management

Interface
Interface Interface Interface
x x x
I . T
| - _
j————————— | |
K Actuator Mapping L
SAEIE AT ot Table Semantic Actuator Service
Service Provider
Semantic Configuration Semantic Search
——|==_—» 4______|_
Sermeniie ACEET | | Semantic Data Provision
Information Management | |
: : Semantic Control
T | Actuator Database |
- e e e = — - __1

A mapping table is maintained for each actuator that stores the actuator id and the IP address
associated to it. Actuator information management means adding new actuator information to the

ontology and deleting/updating existing information. The next service offered by this module as

Figure 16 Semantic Actuator Service Provider

shown in the figure is semantic actuator provider service. Its functionalities include semantic search,

semantic control and data provision. Semantic search retrieves actuator id from actuator

information in the ontology based on a search keyword. Data provision functions by providing

33

actuator information e.g. actuator name, explain, code etc. based on actuator ID. Semantic control
service offers actuator remote control interface.

The next service is the semantic middleware service, it manages parsing the middleware
mapping table. Mapping table saves actuator ID in ontology and manages middleware address
information. Service control controls the start and stop functionality for the services in this module.
Semantic repository shown in the figure represents the actuator ontology. It consists of actuator
information, actuator middleware information and semantic actuator provider’s service information.

A reasoner is run on the above information the results in improved resource discovery.
4.2.2 Semantic Actuator Middleware

Semantic actuator middleware as shown in Figure 17 is the intermediary module between the
actuators in the physical layer and the semantic actuator service provider in the service layer. Its
basic function is to precisely send the messages sent by Actuator Web provider to the specific
actuator and send messages sent by actuator to service provider. This module implements two-way
communication using TCP sockets. Its basic functionality is to exchange messages between these
two layers. It consists of seven functional units i.e. service message processor, client message
processor, mapping table manager, message manager, middleware connection manager, semantic
viewer, and actuator mapping table. Server message processor controls the messages sent by the
semantic actuator service provider to the actuator, where Message manager is responsible for
management of the messages flowing between the semantic actuator providers and the actuators. It
consists of two components message parser parses these messages and message processor decides
the type of the processing from the parsed message. The messages can be a connection request
message, control request, mapping table renewal request, control response and connect response.
As client message processor receives messages from actuators available in the system. Middleware
manager manages the connection and setup of the middleware to the semantic actuator service

provider. It consists of semantic middleware configuration and server connector.

34

Actuator Semantic Actgator Service
Provider

TCP Client TCP Server
Dotnetrdf API | Dotnetrdf API |
A 4 A 4
TCP Client TCP Server
A A
|- - - - - - - - - - boo== _i r—-—-————-— - - -~ ——— tes=== |
| | .
| Server Message Processer : | Client Message Processer :
| Server Message Server Message l(— | Client Message Client Message
=y . | =)
Receiver Sender | Receiver Sender
| ' A
| : l
I | L
Mapping Table Manager | Message Manag% \\
|
Mapping Table Updater : Message Parser Message Processor
|
2 !
A4 |
: MW Connection Manager
Actuator Mapping Table Data Visualizer == Semantic Middleware

Server Connector

Configuration

Figure 17 Semantic Actuator Middleware

Semantic middleware configuration functions by running a SPARQL query to provider
actuator id and IP information to the service provider. The functionality of the server connector is
to verify middleware access right, and to decide whether service provider can connect to the
middleware. The mapping table manager updates mapping table with actuator mapping information

in real time
4.2.3 Semantic Actuator Support Toolbox

Figure 18 shows the detailed architecture of the semantic actuator support toolbox. The
functionality provided by this module includes creating actuator and middleware information,
middleware access management, and registration of service information. It consists of three units
the semantic actuator information manager, semantic middleware information manager, and
semantic service information publishing. The first two units connects to the semantic actuator
provider through dotNetRdf API and the third unit connects to the semantic service registry through

the dotNetRdf API. Semantic actuator information generator is responsible for creating information

35

for an actuator discovered in the system, whereas semantic actuator model information generator
creates and manages actuator model information. Semantic middleware information management
consists of semantic middleware access right and semantic middleware information generator.
Semantic middleware access right management manages the middleware access rights for the
semantic actuator service provider. Semantic middleware information generator creates and
manages middleware information stored in the ontology. Semantic service information publishing

creates service information through service information generator, and saves it to local XML file

as well as registers it with the semantic service registry module.

Semantic Service Semantic Actuator

Registry Service Provider
Endpoint Endpoint
A A
Dotnetrdf API Dotnetrdf API
U T ___
v v v
Semantic Service Semantic Actuator Semantic Middleware
Information Publishing Information Manager Information Manager
Semantic . Semantic s ticM Semantic
Sarvice [XML Temp semantic Actuator emantic Viw Middleware
ervice o File geialagle Model Info i) Access Right
Generator Generator Generator g
Generator Manager
Viewer

Figure 18 Semantic Actuator Support Toolbox

Figure 19 shows the sequence diagram that illustrates the interaction between the semantic
actuator service provider and semantic actuator support toolbox, and the interaction of these
modules with the actuator ontology model. These modules use the dotNetRdf APl and SPARQL
queries to interaction with the actuator ontology. It retrieves data from the ontology as well as stores

data to it.

36

Protégé

Semantic Actuator Service Provider

Semantic Actuator Support Toolbox

Actuator Ontology Model

frmMainWindow

clsProviderService

‘r\(‘

Actuator

DNETRDF API connection request
fnGetActuatornfof)

ActuatorList (ID, name, state)

fnGetActuatorNum()

fnGetActuatorState(ID)

True/False

fnSetActuatorState(ID, State)
Plllatas

dot

i
|
o

fnProStart() (host the service)

tNETRDF API connection

RemoveMappingTal

> update Time (using Timer Thread)

> SetMappingTable(MW IP, Actuator ID)

ble(MW IP)

dotNETRDF API connection

Spargl Query

getActuatorList()

ActuatorList(Node ID)

Spargl Query

T T
ActuatorList(Node ID)

getTypeList()

e

Spargl Query

ypeList(TypeCode, Kind, Name, Explain, Is_Movement)

Typeli

| T
'ypeCode, Kind, Name, Explain, Is_Movement)

getActuatorModel()

Model Code, Mode Name, Model Blend

lodel Code, Mode Name, Model Blend
—

e
|
|
|
I

,,,,,,,,, St AN
Sparal Query lddActuator(Name, ID, Explain, Type))
T
True/False
,,,,,,,,, || Treefeke | pe Ty
Sparal Query Actuator(Name, ID, Explain, Type, Code)
True/False True/False
,,,,,,,,, i
Spargl Query delActuaotor(Node ID)
True/False
,,,,,,,,, I . . N [SSRGS A
> Close()
dotNETRDF API connection request
LI
Spargl Query getMiddleWareList()
T I
MiddleWareList(Code, ID, Right, Config_Time) MiddleWarelList(Code, ID, Right, Config_Time)
********* I < ittt I B B el
Spargl Query AddMiddleWare(ID, Config_Time))
T
True/False True/False
********* I et [e e B B Rttt
Spargl Query delMiddleWare(MW Code)
I
True/False True/False
********* R e [B el B P Bttt
Spargl Query SetMiddleWareRight(Code, Right)
I
True/False True / False|
********* I ettt [e el B B
- | -
| | }
I I
l l

Figure 19 Semantic actuator service provider and support toolbox sequence diagram

The main window after loading connects to the ontology model to retrieve the following
information i.e. Actuator info, Actuator no, Actuator state and to set the actuator state. The semantic
actuator support toolbox connects to the content service to perform actuator management which
includes the following functionalities: 1) Getting actuator list, 2) Getting type list, 3) Getting

actuator model, 4) Adding an actuator, 5) Updating an actuator, and 6) Deleting an actuator. The

37

semantic actuator support toolbox connects to the content service to perform actuator middleware

management which includes Getting actuator middleware list, Updating an actuator middleware,

and Deleting an actuator middleware.

4.2.4 Actuator Service Provider Ontology Modelling

Actuator service provider ontology is maintained in the semantic actuator service provider

module. Figure 20 shows the ontology graph as generated by protégé. This graph shows the classes

and their respective instances and the relations between them. The classes defined in the ontology

are Device, Actuating Device, Actuator Middleware, Actuator Model, Type Information, Time

Duration, Switch State, Range Attribute, Multistep Attribute, Provider Service, Content Service,

Middleware Service, Management, Actuator Middleware Management, Actuator Model

Management, Actuator Support Toolbox, Service Information Management, and Actuator

Actuator_Info_M
anagement
=
aacacement Middeware_Acce
) e ss_Management
(e)
Senvice_info_Ma
nagement
@ Actuator_Suppor —
1_Toolbox Actuator_Contro 7
I_Senvice /
- - Actuator_Provid
er_Senvice
Actuator_Conten Actuator_Senvic
1_Senvice e_Provider
7 —[" ¢ switch2 S
Swich_Attribut | —— .
tl T " # switchs
Time_Attribute Ty =
Range_Attribute
/ Actuator_State &)
= # Range2 .
/ Actuatorhodel = — 2
o Typelnformation |
/'/
2
%

Figure 20 Actuator Ontology Graph

* @ ActuatorService
Provider!
T S * ¢ controlSenvicet
Actuator_Middle e e .
ware B !
iR T o —|" # Actuator3
- ’
@ step3 [4 switcht] arel . /
- B DS S [# Actuator2] [¢ offine]
= | @ mutistep2 | ™ s =
5 4 Modelt NoY @ Actuators
S freme]
Typeinfol | L
~ SB " T
T @ step? Actuating_Devic SN
N e = 17 # Actuator?
- - @ Multistep_Attri =
= —,—*" bute * ¢ Actuators
> * @ stepd * @ Actuators
" @ Typeinfo3
@ Typeinfod
4 Typeinfos
o
4 Typeinfo2

Figure 21 shows the ontology model developed for the actuator service provider ontology

showing the object properties in detail. It models the actuator information, actuator middleware

3

0o

information and the different components of the actuator service provider and the relationships
between them. The object properties involved in the ontology are Provides,
connectsActuatorToMiddleware, connectsActuatorMiddlewareToProvider,
connectsActuatorProviderToSupportToolbox, subClassOf, hasDuration, hasSwitchState, hasType,
hasRange, hasMultiStep, hasModel, and performs. Device class represents any hardware device
that the modeler wants to talk about. Actuating Device is the subclass of the Device class. Each
actuator added to the ontology is a type of Actuating Device and Device class. Each Actuating
Device has a model which is represented by the Actuator Model, and is connected to it through the
hasModel object property.

Each Actuator has a number of attributes based on its model. All these attributes are connected
to the Actuator Model class. hasDuration connects the Actuator Model class to the Time Duration
class which represents the Time attribute of an actuator. hasSwtichState connects the Actuator
Model class to the Switch State class which represents the power switch attribute of an actuator
hasType connects the Actuator Model class to the Type Information class which represents the
type of an actuator hasDuration connects the Actuator Model class to the Time Duration class which
represents the Time attribute of an actuator hasRange connects the Actuator Model class to the
Range Attribute class which represents the operating range of an actuator hasMultistep connects
the Actuator Model class to the Multistep Attribute class which represents the multistep attribute
of an actuator. connectsActuatorMiddleware connects the Device class to the Actuator Middleware
class.

connectsActuatorMiddlewareToProvider connects the Actuator Middleware class to the
Actuator Service Provider Class. connectsActuatorProviderToSupportToolbox connects the
Actuator Service Provider class to the Actuator Support Toolbox class Content service, provider
service and middleware service are the subclasses of the Actuator service provider class, and are

connected to it through provideActuatorServices object property. Actuator support toolbox module

39

performs management of the information storeed in the ontology. This is represented by connecting

the Actuator support toolbox class to the management class.

Semantic Actuator
Support Toolbox

id . Middleware
Content Service Provider Service Service

A
ProvideActautorSery J

performsActuatorManagement \ syhclhssOf

Semantic Service Registry

Semantic Actuator provider

Actuator
Middleware
Management

Management

- connectsActuatorProvider
Actuator Service ToSupportToolbox

Provider — Actuator Support
+

Actuator Model
Management

Toolbox

connectsActuatorMiddlewareToProvider

Device
Actuator e

Middleware

Service Information
Management

Actuator
Management

connectsActutorMiddleware subclassOf

Actuator Model

A

Actuating Device

. . . hasModel
Time Duration |[€«——hasDuration
r—hasSwitchState/%m\haSRange\ hasMultistep \
v Multistep
Switch State : Attribute
Type Information Range Attribute

Semantic Actuator Middleware

Figure 21 Actuator Ontology Model

Management class has three subclasses i.e. Actuator management class, Actuator middleware

management class, actuator model management class, and service information management.

40

4.3 Semantic GIS Platform based on Indoor Location

Information

4.3.1 Semantic GIS Service Provider

Figure 22 shows the detailed architecture of the semantic GIS service provider module. It

presents the database and the ontology used by this module to store sensor and actuator’s location

data. Other modules use the services provided by this module using the semantic service interface

through dotNetRdf API.

Semantic GIS Support

Toolbox
proxy :

Semantic Application
Server

Semantic Application
Server Support
Toolbox

+ Dotnetrdf API

Semantic Repository

prox prox
Dotnetrdf API f DotnetrdzAPI T DotnetrdyAPIf
), ———-—-——--" —
v v
Semantic Service Eldeaint e ettt
Interface GIS Content Service GIS Provider Service
Interface Interface
A A
] T
-—— r -
| |
Semantic GIS Content Service Semantic GIS Provider Service
L Semantic Building Info A -
8 L (i Building info provision
© o
S F=
2 © "
S 5 Semantic Floor Info . -
p) M Room info provision
2 = — anager r— —
= (o]
& o | |
g 3 | Semantic Room Info) -
S | Floor info provision
a x Manager
8 | |
I
| Map Data Manager l Map Data provision
I
| | [P —— A
I
I
I
I

Map Database

Service Middleware
information information
Sensor Semantic
information Reasoner

Figure 22 semantic GIS Service Provider

41

This module provides two services namely semantic GIS content service, and semantic GIS
provider service. The former provides functionalities for management of building, floor, and room
information. Map data manager performs the management of map images. Semantic GIS provider
service performs map information provision, building information provision, floor information
provision, and room information provision. Map data provision supplies the graphic map data from
the database, whereas building, room, and floor data provision supplies building, room and floor
information respectively from the ontology. Service state viewer shows the service operational state

management.

4.3.2 Semantic GIS Support Toolbox

Figure 23 shows the detailed architecture of the semantic GIS support toolbox. It performs
functions like creating service contents, managing these contents though semantic GIS content
service and for registering GIS service information to the semantic service registry. For performing
these functionalities it connects to the semantic GIS service provider and the semantic service
registry. Building information generator creates and manages the building information (building
name, building code) in the ontology. Managing includes deleting or updating the information.
Building mark generator creates notations or markers to specify building area and location on the
map. Floor information generator creates floor map information (floor no, floor name), and image
loader creates mini map division and division map of the floor map image using the Map image
file processor and stores it to the database. Room mark generator creates notations to specify the
rooms on the floor map while room info generator creates room information (room name, room no,

room explain) and stores it to the ontology.

42

Semantic GIS Service ProviderJ Semantic Service RegistryJ

Endpoint Endpoint
A A
Dotnetrdf APl | Dotnetrdf API __l
proxy m proxy m
¥ X ______ |
————— ——— —_———— — = > —
| | | i B |
| Semantic Building Info Semantic Floor Info Manager | Semantic Room Info Manager |
I Manager | |
Building Mark I
I uliding Mar Floor Info Generator | Boombdark
| Generator | Generator |
| Building Info Room Info |
Image Loader |

| Generator | Generator |
|
I Map Information Map Image File Processor || Semantic GIS service I
management | information publishing |
I . | Service info]

L _ Map data generator i. —) Mini Map Generator — Generator —

Division Ma i
Map Image Loader] Generatorp XML Temp File
Viewer

Figure 23 Semantic GIS support toolbox

Map image loader creates mini map and map division and stores it to the semantic GIS service
provider database through the map image file processor. Map data generator creates total map
information (map size, mini map size, etc.) and saves it to the database. Finally semantic GIS
service information publishing creates service information (service name, service Uri, search key
word etc.) through the Service info generator, saves it to the xml local file and registers it to the
semantic service registry.

The sequence diagram for semantic GIS service provider shows how the semantic application
server, and client interacts with this module to retrieve location information of a device. First of all

the main window interacts with the GIS ontology model using dotNetRdf API. It gets the building,

43

floor and room count from the ontology and displays it to the user. Data manipulation methods can

be run with the help of semantic GIS support toolbox.

nnnnnnnnnnnnnnnnnnnn

Figure 24 semantic GIS sequence diagram

Figure 24 shows the sequence of information (building, floor, and room) being added, retrieved,
updated and deleted using the methods provided by the content service. For each method a
SPARQL query is run on the ontology and the results are returned to the support toolbox module.
The methods implemented in the provider service are used by the application server and client. The
semantic application server support toolbox module and the application client uses the following

44

functions in the provider service: 1) Get the building information, 2) Get the room information, and
3) Get the floor information. First of all the main window interacts with the GIS ontology model
using dotNetRdf API. It gets the building, floor and room count from the ontology and displays it
to the user. Data manipulation methods can be run with the help of semantic GIS support toolbox.
The figure shows the sequence of information (building, floor, and room) being added, retrieved,
updated and deleted using the methods provided by the content service. For each method a
SPARQL query is run on the ontology and the results are returned to the support toolbox module.

The methods implemented in the provider service are used by the application server and client.

4.3.3 GIS Provider Ontology Modelling

Figure 25 shows the protégé generated Onto graph for the GIS Service provider ontology. It
shows relationship between classes, subclasses, equivalence and object properties. Semantic lIoT
indoor system requires storing and representing the location information of the area it is monitoring.
It uses the GIS provider module for this task. The classes defined in the ontology are building
information, floor information, and room information, room management, building management,
management, GIS support toolbox, GIS provider, provider service, and content service. Figure 26
shows the detailed ontology model for the GIS provider. It shows the classes, the object properties
and the data properties related these class’s instances. The object properties defined in the ontology
are provides, performs, connectsGisproviderToSupportToolbox, managesRoominformation,

managesFloorinformation, managesBuildingInformation, hasRoom, uses, and hasFloor.

45

\
€ Room20

) Room_Informatio [~ S
L - === R~

=i

NNE e

s
- /
< - o
Ko > 7,
2t

~
<

7 4 RoomMamt \\\;4, -

7 | fl

N

Maplnformation I Floor_Informati R
7
on
A W

|

s / |
I

@ GIS_Support_Too X

& Floort

b \ |
@ Building_Inform oy e . S S~ 4 Building2
) ation “w— | 4 Roomi0 \\\ W
Building_Mark AN X\ Z—— X |
7 ’ B ContentService X # Floor3 y b
3 / Y Ne A gt I N\ = o p
r; X £ 4
: cs S > /
Ihox > 1 - /
X 4 cIs_sT) / 4
Nz & GISProvider#

= = 2 -
= GIS_Provider T -
— _ - ® Building_Manage)7,'/ ¢ BuidingMgmnt

—— mei

4 Basement

S
=2
\

~ -

@ GIS_provider1

Figure 25 GIS provider ontology graph

@ GIS_Sewices

The ontology model also shows the data properties and their data types which include Room
Number (long), Room Code (long), Room Explain (string), Floor Code (long), Floor Name (string),
Floor Explain (string), Floor Number (long), Building Code (long), Building Explain (string),
Building Name (string), Content service and provider are the subclasses of the GIS provider class
and are connected to it through the provideGisServices property. GIS Support Toolbox class is
connected to the Management class through performsLocManagement class. The building
management classes uses object property managesBuildingInformation to connect to the building
information class. The room management class uses the object property managesRoomIinformation
to connect to the Room Information class. The floor management class uses the object property
managesfloorinformation to connect to the floor Information class. hasRoom connects the Floor

Information class to the Room Information class. hasFloor connects the Building Information class

to the Floor Information class.

0
I Semantic GIS }
} Support Toolbox “

Building
Explain

Number Co

Building
Information

managesFloorinformatiion ‘

managesBuildingInformation
Building

Management

performsLocManagement
GIS Support
Toolbox

Figure 26 GIS provider ontology model

4.4 Semantic Service Registry

Figure 27 shows the service registry detailed architecture. Service registry is composed of
Publish Service and Search Service. It offers publish service to each system composite tool for
registering the provider service information Service information includes service name, service
type, service address, service search key word Search Service is the registry interface for other
system to search service information. Semantic Service Control controls the operation of Publish
Service and Search Service (on/off). Semantic Publish Service controls whether to show a
registered service as available or to hide it. XML Configuration offers WCF Service location and

other information. Semantic repository saves registered service information.

47

Service Interface

Semantic Publish Service Interface Semantic Search Service Interface

A

>

A

Semantic Application
Server Composite Toy

;

proxy

Semantic Sensor Composite
Toolbox

proxy

Semantic Actuator
Composite Toolbyr™

proxy

Semantic GIS Composite
Toolbox

|

proxy

d

| A 4

Semantic Publish Service Semantic Search Service

Semantic Service Control
Semantic Publish | |
Service Control
_ Agent
) Semantic Search [
Service Control

Agent

Semantic Service Publish —‘ Semantic Service Search

v

Semantic Repository

Semantic Reasoner

Service State Viewer 4_L Semantic Service Manage

Semantic Service Publish ||

XML Configuration Manage

Service Information

| | Semantic Application Server

Composite Toolbox
proxy

Semantic Application Server

Client

Figure 27 Service Registry Configuration Diagram

Figure 28 shows the interaction between the service registry, service registry ontology model,

and the other modules of the system. Semantic service registry provider provides a publish service

that allows the service providers to publish their service information to the service registry ontology.

The service publish is used by the provider service of the semantic GIS server support toolbox,

semantic actuator support toolbox and semantic sensor support toolbox module. All these modules

publish their service information to the service registry ontology through the publish service. The

semantic app server module interacts with the service registry to use the search service. The search

service provides a list of the services registered in the service registry ontology to the app server

module. The service registry module interacts with the service registry ontology model to publish

service information and to search for services published using the dotNetRdf API.

48

Protégé

APP Server Support Toolbox

ServiceRegistry

Service Registry Ontology

‘ APP server toolbox ‘v\dew

l frmMainPage
T

Semantic GIS Server
Support Toolbox

GetServic

Infos()

Servicelnfoj

rmation

fetAllservices()

(code, name,{type, URI, search

PublishService(True/Fal

eyword, time,

ServiceStart(ServicePublish)

o

:
3
> Start Timer Thread
i
|
|
|
|
|
!

|
display services info

ServiceStart(ServiceSearch) 1 fnGutbublishProxyl)

S —

state)

frmServiceManagement_Load()
e

> Select a service from the list

Semantic Actuator
Support Toolbox

Semantic Sensor
Support Toolbox

ProviderManagement

[oroxy

PublishService(GIS service info)

True/False ‘

1
fnGetPublishProxy()

I

[ooy

e) —

True/False

DelService()

True/False

return

> Close()

(
)

PublishService(ActuatorWeb Provider service info)

True/False: ‘ ‘
IT

fnGetPublishProxy()

proxy

PublishService(APP service info)T

True/False

GetSearchProxy()
; i

proxy |

SearchActuatorWebServices(Keyword)
; f

Servicelnformation(code, name, Uri)

SearchSensorWebServices(Keyword)
L

Servicelnformation(code, name, Uri)
1 R —

SearchGlSService(Keyword)
! .

Servicelnformation(code, name, Uri)

fnGetPublishProxy()
|

proxy

PublishService(APP service info)

True/False

Figure 28 Service Registry Sequence Diagram

4.4.1 Service Registry Ontology Modelling

Service

54

Figure 29 Service Registry Ontology Graph

49

Figure 29 shows the onto graph generated for the service registry ontology. It describes the
classes defined for representing the concepts of service registry module. The classes in the ontology
are Service Information, Service Type, and Service WDSL.. The service registry ontology model is
shown in Figure 30. It is a detailed model showing the data properties as well as object properties
in the ontology. As shown Service information class includes the information of the services
published in the service registry module by Sensor, Actuator, and GIS provider module. Service
type class includes the type of service that is available. WSDL is an XML format for describing
network services as a set of endpoints operating on messages containing either document-oriented
or procedure-oriented information. Service WSDL class shows the availability of the WSDL

document for a service registered in the ontology.

Semantic Service Registry

Service WSDL Service Type

N

hasServiceType

isAvaiIabIe\/

Service information

Jk

Service Explain)\ Publish Time

" Semantic Sensor " Semantic Actuator
Service Provider _ Service Provider

¢ Semantic GIS Service\\\;
Provider

Figure 30 Service registry ontology model

50

4.5 Semantic Application Server

The detailed architecture of Semantic Application Server module is shown in Figure 31. It
shows the API’s used by this module to connect to the rest of the subsystems. To provide sensing
data, and sensor information to the client it uses the dotNetRdf and the sensor provider API. For

environment control and actuator information provision it uses the dotNetRdf and actuator provider

API.

Semantic Sensor Semantic Actuator Semantic GiS Client <«
Provider Provider Provider |
—{ Endpoint Endpomt Endpomt |
I
*‘Sem‘énﬂt APl requestor ,—— — — "‘_ — |
* V ¥ v Semantic
Sensor Actuator GIS > |
Dotnetredf : Dotnetredf . Dotnetredf X Application Server
API Provider API Provider AP Provider P ite Toolb |
API API API omposite Toolbox |
i | i | i y |
I I | 1 l | I
|
| Xml configuration Semantic service interface l
Endpoint
| Content service Provider service
P> Service state viewer interface interface
| A o
I Semantic service control | ' Semantic content service
I Semantic content service | _| Object information
'_ i ntrol
' CONLLD agent
Semantic provider P - T—
= ‘ﬁ i il | B e — l\. Map service binding
| | | agent
| Smart control service | ||
| control 1| | a9
| | | _____ I_ —_— — — L — e =
| | v
l Smart Control : Semantic Repository | Semantic provider service
I
L Dl Room environment data | | Service information | Object information
calculator | €
I I n e supply
‘ Fuzzy controller % — location information] |
Control message Map service supply <
— -ﬁ ——— 8 ‘ | Object information

Similarly for map image provision and location information it uses the dotNetRdf and GIS
provider API. Content service interface is used to connect to the application server support toolbox

for data manipulation and processing. The client connects to the semantic application server module

Figure 31 Semantic Application Server Configuration Diagram

51

through the provider service interface. The core of the semantic application server module is the
smart control unit. It requests the sensor provider module for state of a specific area by utilizing the
location information. Depending on that state it controls the environment of the area using actuator
provider module. Semantic Application Server offers three services provider service, content
service, and smart control. Provider service offers data provision to the client.

It provides complete object information i.e. location information, type, map service, and
Service Uri. Content service is utilized by semantic application support toolbox for object
information management and map service binding. Smart control requests environment data for a
target area from semantic sensor provider, calculates the environment state, and controls the state
through fuzzy controllers. Control message generator depends on the control contents to create
control messages to be sent to the semantic actuator provider. XML configuration offers
information related to WCF services and dotNetRdf API’s. Database is used to store the map
images retrieved from the semantic GIS provider, whereas semantic repository contains service,

location and object information.
4.5.1 Semantic Application Server Support Toolbox

Figure 32 shows the application server composite tool detailed configuration diagram. This
module provides visualization of map and objects to manage map service binding and object
location binding. First the management searches GIS Service for specific map service from service
registry and binds it. Next, the Total Map Viewer requests all map data and building information
from GIS provider. Management then selects a building floor on the map viewer and Floor Map
Viewer shows the floor map data, room information and objects associated with the floor map.

Object Binding Management provides the functionality of Sensor Node Binding and Actuator
Node Binding to map locations. Info Generator creates Service information (search key word, name,

address etc.) and the App Server Info Publish saves it to XML Temporary File and then registers it

52

to service registry. The sequence diagram shown in Figure 33 illustrates the interaction between

the semantic app server module and the other modules of the system.

Endpoint

Semantic App Server

Semantic Service Registry

Endpoint

e
|
Floor Map Viewer | | | Total Map Viewer : : Map Service Binding |
a I Management |
Seman:;?etjvt:fct info | Jl\ A 1| |
| I — Total Map Data Viewer | L |
|
Semantic Room Info | I : |
Viewer | |
| | Semantic Building Info | 5 GISS |
= = o emantic ervice
Semantic Floor Info | Viewer I Searcher B
Viewer |
|
|
|

Semantic Object Binding
Management

Semantic App Service Info
Publish

Semantic Sensor
r Service Seatch
|
| Semantic Binding Info
| Generation

Semantic Service Info _
Generation
A
Y

XML Temp File

|
| Viewer
]

Semantic Actuator
Service Search

Figure 32 Application Server Support Toolbox Configuration Diagram

First of all the module is initiated by running the main window, which starts the timer. The
application server uses the semantic sensor and semantic actuator proxy’s to call the following
functions: Get sensor num (), Get actuator num (). The room control service is also started which
follows the following steps: Gets the object information from the ontology model based on the
room code that is selected, Creates fuzzy system using fuzzy variables and rules, Gets the
information of the sensor registered in the room from the semantic sensor provider, Gets the sensing
state of the registered sensor, Gets the sensing data of the generated by that sensor , Processes the
sensing data and finds the average, Gets the season information from the ontology, Calculates the
room comfort index using PMV, PPD and ET indices and saves the room comfort index calculation

details.

53

Semantic Service AppServer Client Semantic App Server Protégé Semantic Actuator Semantic Sensor
Registry Provider Provider
SearchService client ‘ frmMainWindow AggProviderSerw% AppContentServid] tControl Se;VEI'O"“’“’E Semantic Actuator Semantic Sensor
Model
1 T T
o | | H
> StartTimer App Server i
GetsensorNum()
SensorNumber
GetActuatorNum()
ActutorNumber
T
btnProStart() host provider service
StartTimer Provider svc
®btnConStart_Click() host Content svc
> StartTimer Content svc
> btnCtrista Click() ControlRoom Thread start
tControl(RoomCode) tRoomObject(RoomCode)
Il H Il
3 Object code, ID, X, Y, Type, BuildingCode, FloorCode, Provider Uri
| . i
L i > CreateSystem() Fuzzy Variables & Rule
IsearchAppServiceAsync keyword) ! GetSensorinfo(ID)
| 11
App Provider Service | Sensorinfo
| I
GetMapServiceUriCompleted() | GetSensingState(SensorCode)
1
true/false
Ll
GetSensingData(1D)
L
value
> Process data : find averages
GetSeasonData()
1}
SeasonData "
I
|

> Calculate room comfort index PMV, PPD, ET
[|

saveRoomComfortindex(room code, PMV, PPD,ET)
GetActuator(ID)

L
Actuatorinfo

GetAccessState(Actuator ID)
.

Actuatorinfo
I

GetAccessState(Actuator ID)

trueffalse

GetActuatorMoflel(ModleCode)

Actuatdr Model

GetActuatorType(TypeCode)

trueffalse

create control command based on fuzzy variables
GetActuatorPowerState(ID)

Y

true/false

SendMessageToActuator(StrComm)

true/false

L L > dosel)
| | 1

Figure 33 Semantic App Server Sequence Diagram

Next it gets: the information of the actuator registered in the room, the model and type of the
actuator, creates control command based on fuzzy variables, and gets actuator power state, if it is

not according to the comfort index then send the control command to the actuator.
4.5.2 Smart Control

As mentioned before the application server offers smart control service through which it
automatically controls the actuators to maintain a pleasant indoor environment. Sensor nodes
connected to sensor network sends sensing data to the semantic service provider in real time via

sensor middleware and save it. Depending on the sensor network connected and actuator

54

connecting condition, actuator middleware and semantic actuator service provider creates mapping
table and manages it. Application server requests indoor environment sensing data (temperature,
humidity, illumination etc.) based on the area and object information it has in its semantic
repository. Next, it receives environment data and through fuzzy control module, it creates control
object (actuator) and control command to execute. Semantic actuator service provider receives the
control message from application server and according to its mapping table with actuator routing

information through actuator middleware, it forwards the message.

4.5.3 Smart Control Concept Design

Figure 34 shows the course of collecting indoor environment. It has already been explained that
sensor service provider provides sensing data along with an external service interface to get that
data and that Application server ontology has the sensor node location information and indoor space
information. Using this information it is to find sensor nodes in a particular area. Smart Control
module gets sensor node sensing type information based on a particular space because it is possible
that multiple sensor nodes performs the same function in the same space. For such case obtain the
average of data and identify the state of environment. Even single sensor detection can operate the
entire system properly. Send final calculation related to an area’s environment i.e. average
temperature, humidity and illumination information to Controller which will process it for the next

step.

55

T] l

!

Get Room 1D Get Temp Value Get Huin Value

Get [l Value

! ' !

Get Temp Sensor (D Get Hum Sensor 1D Get |l Sensor (D List
List By Room 1D List By Room 1D By Room 1D L
| | Contraller
Y
Get hverage
¥

(e :)

Figure 34 Indoor environment calculation

Figure 34 shows the course of controlling indoor actuator. From the sensor service provider,
the environment information for a specific space is received. Then comfort index PMV and ET
index is computed. Using table 5 describing the fuzzy rule, get the combined comfort state as a
result which is used for controlling fan, Air conditioning and boiler etc. Temperature adjustment,
controlling light appliance through illumination information and adjusting the humidifier through

indoor humidity conditions. Comfortable indoor environment for normal human illumination is

maintaining 1000Ix, for humidity the range is 50%~60%.

56

|

!

Get PMY Index

Get ET Index

Get il Value

—

Fuzzy Rule

¥

Fuzzy

h 4

-

-

Y

~

’—A Value<1000
] _/_‘Y

}

l

|

Get Hum Value

~
-

-

I

l—ﬁum Valug<50 ™
H N

|

!

Reom Envirenment
State

Turn OFf Light

Turr On Light

Turn On Humidifier

Turn Off Hurnidifier

e

A

P //’\\\

\VNWN

¥

¥ h h
Tum On Air-Con Turn Off Air-Con Turn Off Air-Con
Turn Off Bailer Turn Off Boiler Turn On Bailer

Figure 35 Indoor actuator control process

4.5.4 Application Server Ontology Modelling

This section provides graphs and models to illustrate the basic concepts, object properties, and
data properties of the app server ontology. Figure 36 represents the basic classes and relationships
of the ontology in the form of a graph generated by protégé. The classes included in the Application
server ontology are object information, location information, rule information, application server

provider, content service, provider service, application support toolbox, object information

management, and location information management.

57

[# SeasonValue3] A

[L3 SeasoInVaIue4] :
|
[# SeasonValue2] J

[& seasonvaluet]

[00bject10021 J b\ Y

\ Y

<" [@ objects # Objsct2s
22 @ Object2a | — ® Objectt
Obhject_Informat e L
2 £ D U

Rule_Informatio

il P e S * | @ Comfort_Index |

Figure 36 App Server Ontology Graph

The model in Figure 37 is the ontology model of the semantic application server module. Object
information represents the combined information of a resource (sensor or actuator) and its location.
The information stored about an object is 1) Object type: the type of a resource, whether it is a
sensor or an actuator, 2) Object id: the unique identity of an object, 3) Provider Uri : the Uri of the
object’s service provider, 4) Object code: the code of the object, 4) Room code: the code of the
room in which the object is located, 5) Floor code: the code of the floor on which the room is, and
6) Building code: the code of the building in which the floor is.

The object properties connecting these classes are createRulelnfo, createlLoclnfo,
createObjlInfo, providesAppServices, manageslocinfo, managesObjinfo, performObjManagement,
and performLocManagement. createRulelnfo connects the content service to the Rule Information
class. createLocInfo connects the content service to the map service information. The map service
information consists of the following data properties 1) Map code: the code of the map that is
registered in the database and, 2) Map service URI: stores the URI address of the map service. The
application support toolbox connects to the object information management and the map service

management through the performObjManagement object property and performLocinfo object

property.

58

/ Semantic Actuator Service | /" semantic Sensor Service
Provider y { Provider j

Room
ObjeCt Code
Id
PrOV|d
er Uri

‘

! Semantic Application Server

manageObjlnfo

Object Information createObjInfo
/ Management

performObjManagement

Map Service
Management
T
manageloclinfo

provideAppServices

createRulelnfo,

Service Registry GIS Provider Ontology

Figure 37 Application Server Ontology Model

Object Information Management class is connected to the object information class through
manageObjlnfo object property. It is responsible for adding an object, updating an existing object
and deleting an object. manageLoclnfo represents the relationship between the map service
information class and the map service management class. Application server provider class uses

provideAppServices property to relate to the services it provides.

59

4.6 Semantic Application Client

Figure 38 shows the application client detailed configuration diagram. Client offers a simple
visualization. First, the App Service Searcher searches application server from service registry and

accesses selected service.

Semantic Service Registry

Semantic App Server

Floor Map Viewer Total Map Viewer

Semantic Object info
i Total Map Data Viewer

Semantic Room Info
Viewer - -
Semantic Building Info Semantic Service

o Searcher
Viewer

Semantic Floor Info
Viewer

Semantic Sensor Detail Viewer Semantic Actuator Detail Viewer
Semantic Sensor Info Semantic Actuator Info
Viewer Viewer
Viewer
. . Semantic Actuator
Sensing Data Viewer State Viewer

Figure 38 App Server Client Configuration Diagram

Then Map Service Binding requests Map Service information from application server and binds
it. Next, Total Map Viewer requests all map data and building information from GIS provider.
Management selects a building floor on the map viewer and Floor Map Viewer shows floor map
data, room information and objects. When user selects sensor object, Sensor Info Viewer displays
the sensor name, ID, Sensing Type and Attributes.

The sensing data Viewer displays real time sensing data. If the user selects actuator object,
Actuator Info Viewer displays actuator name, 1D, actuator type, model information and Attribute
etc. The sequence diagram for the App Server client shown in Figure 39 describes the internal

sequence of interactions among the internal objects of the client module and the interaction with

60

other modules such as App Server, Service registry, GIS provider and Sensor web provider. The
client uses the search service of the registry to get service list of available App server provider

service. Client connects to a server provider to get the binding information.

Semantic Service App Server Client App Server GIS Provider Sensor Provider

Registry
Semantic GIS Provider @

‘ MainPage ‘
T

‘ i verProvider

SearchService ViewPage | SensorDataView ‘ Comfortindex

’_D SelectApp Provider Service

- i

L) |
SearchAppServiceKeyword|() Get Map Service URI() 3
App Provider Service URI Map Service URI L

Get Map Information()

Map Info

Get Divw’s‘io‘n Map()
Ma;‘) Aata

GetBuildingInfoByMapCode()

Buildin:g I%\fo List

GetFloorInformation()

Floor Info()
I

> DraWBu”dingmoor%‘:’\ﬂa‘gowodeBy‘Na‘melF\oorName)
Floc‘r éode
GetFloorMapData()
Map Data
GetFIourMap‘D‘ataByMuvel)
Map‘ data
GetRoomInfor:m:ationByViewl)

Roominfolist

i
GetObjectList()
ObjectList

i
> DrawSensor/ActuatorNodesOnMap
| GetSensingStateByld()

[N

T True/False

i]
RightClickinsideARoom() ‘ ‘
GetSensorlInfo()

L
L jSensorlnfo
r GetSensingStateByld()
L
L —"'I"rue/False
l\ GetSensingData()
L SensedData
DisplaySensingData()
RightClickinsideARoom() ‘ n
—_— GetRoomEnvironment(Room_ID)
] '

| I I
Comfortindex(PMV,PPD,ET)

‘ -

DisplayComfortindex

Figure 39 App Server Client Sequence Diagram

Client connects to the GIS service to: Get map information, Get map data, Get building information
list, Get floor information list, Get floor map data, Get room information list, Client connects to the
App Server to get the object list. After getting the object list, the client displays sensor and actuator
node based on the list. By right clicking on a node the client connects to the specific service provider
to: Get the state, Get the node information list, Get the node data, and to display the node data. By

clicking inside a room the client connects to the room comfort index which calculates the room

61

comfort index of the room and returns to the client. The client then displays the comfort index to

the user.

62

5 Implementation and Performance Analysis
of Semantic IoT System

Advance research is being carried out by OGC (Open Geospatial Consortium) related to sensor
web and semantic web technologies that report real-time context state using the information
collected from various sensors in a sensor network. OGC members are specifying interoperability
interfaces and metadata encodings that enable real time integration of heterogeneous sensor webs
into the information infrastructure. The SSW annotates sensor data with spatial, temporal, and
thematic semantic metadata. This technique builds on current standardization efforts within the
Open Geospatial Consortium's Sensor Web Enablement (SWE) [29] [30] and extends them with
Semantic Web technologies to provide enhanced descriptions and access to sensor data. The real-
time context reported by these sensors is managed using the concept of SOA (Service Oriented
Architecture). Recently, OGC research interests not only on outdoor, but also indoor sensor web
standardization.

In addition, recently 10T technology is being developed as a strategic industry in major
countries of the world such as Europe, China, America, Japan, and South Korea. The aim of 10T
is to interconnect objects, which have their own addresses based on standardized communication
protocol, located world-wide. In particular, 10T architecture, communication model, application of
business model, mutual and test model construction etc. are presented in the 7th framework
program (FP7) in Europe. In this study we have developed a semantic 10T indoor system based on
semantic sensor module as well as semantic actuator module. Semantic sensor module provides
services that uses sensors to collect the context information of the indoor environment, semantic
actuator module provides services to intelligently control an object according to the environment
of the world. We also present GIS service module that uses semantic technologies to store and

represent the spatial information of the physical space and is used to locate sensors and the actuator.

63

The application server module is the top most module that can use the services provided by the
bottom modules and display them to user using client application. Table 1 shows the requirements
for implementing this system. For developing the modules we used WCF services which is a
framework for building service-oriented applications. Using WCF, you can send data as
asynchronous messages from one service endpoint to another. The WCF programming model
provides various capabilities, such as SOAP services, web HTTP services, data services, rich
internet application (RIA) services, and workflow services. In this study we are using SOAP
services. SOAP services support interoperability between systems that are built with Java, other

platforms, and those that use messaging standards that are supported by Microsoft®.
Table 1 System Implementation Requirements

Implementation requirements

Tools Version

Protégé 4.3.0 (Build 304)
Pellet Reasoner 2.2.0 (Plugin)

OWL API 3.4.2

Protégé SPARQL 1.0.0 (Plugin)
Microsoft NET Framework 4.0 full

Microsoft SQL Server Management Studio 11.0.2100.60
Operating System Windows 7 (64 bit)
Processor Equal or above 3.30GHZ
Microsoft Visual Studio Community 2015
dotNetRdf API 1.0.9(Build 1.0.9.3683)

We have developed the modules using Microsoft Visual Studio Community 2015. Microsoft
SQL Server Management Studio is used for creating the database to store map image information,
and real time sensor data. For developing the ontologies we have used Protégé which is a free,
open-source platform that provides a growing user community with a suite of tools to construct
domain models and knowledge-based applications with ontologies. Protégé’s plug-in architecture
can be adapted to build both simple and complex ontology-based applications. For performing

reasoning on the ontologies to infer new relations we have used the Pellet reasoner. A reasoner is

64

a piece of software able to infer logical consequences from a set of asserted facts or axioms. The
notion of a semantic reasoner generalizes that of an inference engine, by providing a richer set of
mechanisms to work with. The inference rules are commonly specified by means of an ontology

language.

5.1 Semantic Sensor Service Provider

5.1.1 Implementation of Semantic Sensor Service Provider

This sections presents an array of figures to show the execution of the semantic sensor service
provider module. It consists of semantic sensor service provider service manager, semantic sensor
support toolbox control panel, semantic sensor management, semantic middleware management,
and semantic service publish. Figure 40 shows the service manager interface for the semantic sensor
provider module. It describes the service start up and end process. It consists of start and end buttons

for the services that are available.

65

1 " Service Manager l = S

~ semantic Service State Viewer ~service Load Viewer
Tirne Now: 3/11/2016 5:11:29 PM [2016-03-11 16:25:50] // Semantic Content -
i Service Start!
Run Time: [0000:00:021 | | |
i . i } te [2016-03-11 17:11:27] // Semantic Provide
Semantic Provider Service: Service Start o) Service Start!
_ [2016-03-11 17:11:27] // Sensing Service Start!
Run Time: [0000:45:39] | || seseesesseees
- - 5 T
Semantic Content Service: Service Start I8
=

MNode Count: 10

~Semantic Provider Service Control

Service Stop -

~Semantic Content Service Control

Clear Control Histroy

Service Stop

Figure 40 Semantic Sensor Service Provider Manager

It consists of two viewer’s i.e. semantic sensor state viewer and service load viewer, and two
controls i.e. semantic content service control and semantic provider service control. The semantic
sensor state viewer shows the running state of both the services, it records the time for which the
services are in the running state and it also shows the total number of sensors that are registered in
the semantic registry of the sensor provider module. Semantic provider service control has the
controls to start and stop the semantic provider service. The provider service start control starts
both the provider and the sensing service. With the sensing service sensing data based on category
is collected from attached sensors and stored in the database. The provider service implements
functions for getting the sensing category of the sensors from the sensor ontology. Service load
viewer keeps log of the service start up and stop timings in a list. This log can be cleared by the
user by using the control clear control history. Once the content service is initiated the data in the

ontology can be manipulated using SPARQL queries and dotNetRdf API.

66

[Semantic Contents Management Panel] E

& -, |

Time Now: [2016-03-01 12:07:02]

Sensor Number: [5]

Semantic Sensor Management

Semantic Middleware Management

Sensor Service Registiry

Close

\ 7

—

Figure 41 Semantic management control panel

Figure 41 shows the management panel for manipulating different data in the sensor semantic
registry. It consists of a label that shows the no of sensors registered in the ontology. It also consists
of four button controls through which the respective windows can be accessed. The windows
accessible from this panel are semantic sensor management, semantic sensor middleware
management, and semantic service registry. Figure 42 shows the form for the sensor management
in the semantic registry of the sensor provider module. It provide controls that allows the user to
manipulate sensor context data in the ontology. As the window loads it retrieves sensor ids from

the semantic registry and show the results in a list on the left side of the form.

67

i ' [Sensor Management] ﬁ
- Gensor Lisk --Data Properties --0Object Properties
sd04 i . sendevicel :
sd0z Individual Name: ConnectsTo: | 2ensorM iddlewarel
2323 Sensor Code: 1
<d12 MW19 A
Sensor Name: sensor0l
sd13
SensoriD: S0t Typeinfo2
405 Has Type:
® Sensor Explain: Samsung
Typelnfo2 -
SensingMame TemperatureSensor
Has Category: Category3
Category Code TMPOOXXK
Type Code: 2 Galeanmi hd
Kind Code: SNNMD2 Has State: working
Type Name: MaovementNade
Type Explain: typeexplain2 idel b
Search [Save \ l Update I [Delete \ l Cancel I
LS .

Figure 42 Semantic sensor management

As the user selects a sensor from the list its properties are displayed in the textbox controls of
the form. The semantic sensor management form is arranged according to the way data is stored in
the ontology. On the right hand side of the form it displays the object properties of the selected
sensor. In the middle of the form the data properties of the selected sensor are displayed.

Figure 42 shows how this data is displayed in the form. All the data is retrieved from the
ontology using SPARQL queries and dotNetRdf API. Content service also provide functions for
storing new sensor information, updating and deleting existing sensor, and middleware information
from the ontology. All these functionalities are performed based on the unique id of each sensor

in the ontology.

68

-

' [Middleware Management]

= | e S

Middleware Code
19
21
23
20

Middleware ID
MW19
mw21
MW23
mw20

Middleware Right
Enable
Enakle
Enakle

online

Configuration Time
2016-04-05T15:57:44+09:00
2016-02-22T16:12:12+09:00
2016-05-06T12:14:10+09:00
2016-02-22T16:12:12+09:00

Middleware Name
MW19
SensorMiddlewars2
SensorMiddleware3

SensorMiddlewarel

<

Middleware ID:
Middleware Code:

MW Name

Delete l l Add ll Enable ll Disable l

Figure 43 Semantic Middleware Management

Figure 43 shows the sensor middleware management window. From here the user can

manipulate the middleware context data stored in the ontology. This is performed with the help of

SPARQL queries run through the semantic sensor content service. New middleware data can be

added and existing can be deleted or updated. The list in the window displays all the sensor

middleware context data available in the ontology. For each middleware it shows the middleware

code, middleware id, access right, configuration time, and the middleware object. The enable and

disable button controls are used to enable the access rights of a specific middleware. When user

clicks the add button the data is added to the ontology through SPARQL insert queries. With each

new middleware the value for middleware right is disable. The value for the middleware access

right can be updated using enable and disable buttons.

69

[Service Information Management] Y

(=)
Service Information
Service Name: SemanticSensorService] Is WSDL:
Service Explain: SemanticService
Service Uri: http://220.149.42.19/Design_Time_Addresses/G_Sensorweb_Service_Pro

Search Key Word: Sensor,Semantic

Save Service Infomation

-
Figure 44 Service information management execution screen

Figure 44 shows the service information management screen at runtime. This interface is used
for creating service information and to register it to semantic service registry. Service information
includes service name, offers WSDL or not, service explanation, service access address and service
searching key word. Service Name is area entering service name. Is WSDL provides option to
select whether the provider’s service offers WSDL (Web Services Description Language) or not.
Service Explain is explanation of service. Service Uri is service provider’s access address. Search
Keyword assigns keyword that is used for searching service provider. Save Service Information is

a button that registers service provider's information to service registry ontology.

70

[Sensor Middleware] -
oo oD oo oSO o O e SRR R e 1
I Sensing Data g ! 1
| =, |]

N Sensor ID: SDO00001 : 1 Temperature :
] . |

: Sensor Name:Sensor#01 !, Pot |COM4 "] !
| | Sensor Code:21 : 1 :
i | Sensor Category: 1 .
| | [Temperature Sensor] A : 1 Humidity . :
1 | [Humidity Sensor]|) | Port: | COMA4 "J ;
1| [Light Sensor] L = "
I]
| : 1 Hluminalion :
1 I - =
| ' | Pot [coma

—]
| i ! I
I S 4 : 1
r =
|| #=Time:2013/5/23 11:41:44 11 :
1| TMP:29.09 11 i
|| HUM:46.38701 11 I
| LUX:2131.348 : ! i
1]
. B o '
| | | i
| 11 I
I | I |

Stop 1

| LB I
e e ' e e e e e

Figure 45 Sensor middleware execution screen

Figure 45 shows the runtime screen for sensor middleware. Sensor middleware connects to
sensor and collects sensing data. Area A of the screen shows the information about connected
sensor. Sensor ID provides a list of selectable sensor ID from the provider ontology. Upon selecting
a sensor, the sensor information (sensor name, code, sensing type) is displayed in area A. Area B
shows real time sensing data. Sensing data includes sensing time and the sensor's measured values.
C provides list of ports for selecting sensor connecting port. Figure 46 displays the sensor network
module this study has used to collect sensing data. The image shown on the right side is the
TIP700SM which is the Wireless Sensor Network Module using MSP430F1611 MicroController

Unit of Tl and CC2420 of ChipCon.

71

' TIP700CM |8

33333330 8

o

) e
=,
-
=
~
o
o
728
>
Q 4

232223

Figure 46 Sensor Network Module

The image on the right shows the sensor board used with the sensor module. The sensor board
consists of humidity and temperature sensor: SHT11 (by sensirion), Par (photosynthetically active

radiation- photodiode for visible range: S1087 (by Hamamatsu). In this study we have collected

and used temperature, humidity and illumination data.
5.1.2 Development and Reasoning of the Sensor Ontology

The sensor ontology is modeled for the semantic sensor service provider module. The ontology
is developed using protégé. Protégé is a free, open source ontology editor and a knowledge
management system. Protégé provides a graphic user interface to define ontologies. It also includes
deductive classifiers to validate that models are consistent and to infer new information based on

the analysis of an ontology. As mentioned before in this system we have reused the SSN ontology

72

for basic definitions of a sensor and its observations. Figure 47 represents a screen shot taken from
protégeé. It displays the classes and the instances in our ontology. The classes in protégé are all
subclasses of the root class i.e. Thing.

In this ontology we have focused on the sensor board TIP700SM from the TIPxxx series, as
we have used it to collect the sensor data for our semantic loT system. The TIP700SM have
temperature/humidity sensor, PAR (photosynthetically Active Radiation) sensor and a TSR sensor
(Total Solar Radiation). The humidity/temperature sensors are from the SHT 1x sensirion’s family.
And we have used the PAR sensor for illumination data collection. The PAR sensor belongs to
51087 series by Hamatsu. The classes that are reused from the SSN ontology are; Sensor which is
defined as an entity that can implement sensing and observe some property, Sensor Output class
represents a piece of information that is produced by some sensor.

In our ontology we have define three Sensor Outputs i.e. Humidity Sensor Output, Temperature
Sensor Output, and Illumination Sensor Output. And we have reused the ssn:isProducedBy object
property to connect Sensor Output Class to the Sensor (TIP700SM). Each Sensor Output has some
value represented by SSN Observation Value class, which is defined as the value of the result of
an Observation. We have defined 3 values to be observed by the sensor, humidity value,
temperature value, and illumination value. Observation class is defined as a Situation in which a
Sensing method has been used to estimate or calculate a value of a Property. We have defined three
subclasses of Observation class. Humidity Observation which is connected to the Humidity Sensor
Output class by the observation result property, and uses the observed by property to connect to the

sensor class.

73

& [sl

Jlj D @ Categoryl

----- HumSensorOutput <] & Ccategory2
----- IlluminationSensorOutput @ Category3
----- TemperatureSensorOutput # Category4
@ Input # Category5
I Management & humidity
| o= Met_:h-:d Ll e idel
Object # illumination
- Output !
¥ @ PhysicalObject ® List1
[Platform 4 Managementl
Y& Sensor # sdoo
[TIP7005M # sd1o
@ SensingDevice & sd12
= TIPTF00CM @ sd13
B @ System & sd1a
b Process @ sendevicel
¥ Quality X .
V@ Property @ sensingdevices
Condition # Senso04
V- MeasurementCapability = # Sensor2
V- HumidityMeasurementCapability ot # Sensor3
L@ TIP700SMHumidityMeasurementCapability & Sensord
¥--@ IlluminationMeasurementCapability # Sensors

TIP7005MIlluminationMeasurementCapability # SensorMiddlewarel
J TemperatureMeasurementCapability

L TIP7005MTemperatureMeasurementCapability
¥ MeasurementProperty

b4

@ SensorServiceProviderl
@ SensorSupportToolbox1

Accuracy # SPServices1
- DetectionLimit @ statel
Drift # State2
-@ Frequency # State3
Latency # temperature
v MeasurementRange & TIP700SM

§ @ HumMeasurementRange . o
' IluminationMeasurementRange || |4 TIP700SMHumidityMeasurementCapability

b @ TempMeasurementRange # TIP700SMHumidityMeasurementRange

@ Precision * TIP?UUSMIIIuminati]mnaummmahjm_,
.. : Resolution & TIP700SMIII PR nﬂp.rmww.semantlcwebfrgrr iz

% HumidityResolution # TIP7005MTemperatureMeasurementCapabil
L@ TIP7005SMHumidityResolution # TIP7005MTemperatureMeasurementRange
V@ TemperatureResolution @ Typelnfol
-0 TIP700SMTemperatureResolution @ Typelnfo2
- ResponseTime @ Typelnfo3
-0 Selectivity .
-0 Sensitivity # wiorking
OperatingProperty
hé OperatingRange
- HumidityOperatingRange
- TemperatureOperatingRange
PhysicalQuality —
Cueuiualn - = [[T

Figure 47 SSN and SSP ontology

The next class reused from the SSN ontology is the Measurement Capability class, which
collects together measurement properties and environmental conditions in which those properties
hold. It represents a specification of a sensor’s capability in those conditions. We specified that the
class TIP700SM must have 3 properties for ssnhasMeasurementCapability belonging to the classes
Humidity Measurement Capability, Temperature Measurement Capability, and Illumination
Measurement Capability. These classes define possible configurations of measurement capabilities
for TIP700SM sensor board: Resolution value for humidity is (min 0.4%, max 0.05% relative

humidity), and for temperature it is (min 0.04, max 0.04), we have also specified operating range

74

for these sensors by associating them with the Operating Property class. The operating ranges for
humidity are (0-100%), for temperature (-40-123.8 C) and for illumination its (320-1100).
Reasoning in ontologies and knowledge bases is one of the reasons why a specification needs
to be a formal one. By reasoning we mean deriving facts that are not expressed in ontology or in
knowledge base explicitly. A reasoner performs the following validation checks on an ontology.

o Satisfiability of a concept - determine whether a description of the concept is not
contradictory, i.e., whether an individual can exist that would be instance of the concept.

e Subsuming of concepts - determine whether concept C subsumes concept D, i.e., whether
description of C is more general than the description of D.

e Check an individual - check whether the individual is an instance of a concept

e Retrieval of individuals - find all individuals that are instances of a concept

e Realization of an individual - find all concepts which the individual belongs to, especially
the most specific ones.

Figure 48 shows a screen shot from protégé displaying the reasoning performed on sensor
ontology. In this study we have used the Pellet reasoner. Pellet is a complete OWL DL reasoner
and has extensive support for reasoning with individuals, user-defined types, and debugging
ontologies [32]. The area A shows the individuals added in the sensor ontology, whereas the area
B shows the inferred facts about a particular individual. In the figure the individual Category 3 is
highlighted in the red outlined area which means the inferencing results shown are based on the
facts asserted for this specific individual. E.g. the reasoner infers the isCategoryOf property for the
individual Category 3. This property lists all the sensors that are associated with this specific
instance of a category. These inferred facts can be queried using SPARQL queries with some

special operators which can help users in resource discovery.

75

@& Categoryl
@& Category?
@& Category3
@& Category4
@& Category5
& humidity
@ idel

|
1
I
I
|
& illuminati 1
illumination
® Listl |
Managementl 1
* sdo9
* sd1o |
® sd1z |
* sd13 1
® sd1a
sendevicel 1
sensingdevices 1
& SensoD4 1
& Sensor2
@ Sensor3 I
@ Sensord 1
@ Sensors |
@ SensorMiddlewarel
SensorServiceProviderl |
SensorSupportToolbox1 1
SPServicesl
& statel 1
& State2 |
State3 1
& temperature
& TIP7005M 1
@ TIP700SMHumidityMeasurementCapabilify
@ TIP7005SMHumidityMeasurementRange
& TIPTCIDSMIIIuminationMeasurementCapaLilit
I’ TIP7CIEISMIIIuminationMeasurementRang'z
p TIP7005MTemperatureMeasurementCap §bil
* TIP?DDSMTemperatureMeasurementRan'e
I. Typelnfol
Typelnfo2 1
P Typelnfo3 1
@& working

— e e — —

Rules

Description: Category3

Property assertions: Category3

Types

Category
Same Individual As
Different Individuals

Figure 48 Reasoning

[Ty s S5) == == = = = = = 1
misCategoryOf TIP700SM
misCategoryOf Sensor2
misCategoryOf sensingdevicesS

I I
I I
I misCategoryOf sendevicel J
I misCategoryOf Senso04 B i
I |
ID:«a property assertions I
| m SensingName "LightSensor”#~~string |
I W CategoryCode "LUXODOXXX"~~string I
m SensingCode "3"~~long

: ® CategoryCode "LIUXODXCC" ™~ string :
I I
| I

I

I

I

|

®m Sensinghame "LightSensor”~~string

msSensingCode "3"~"long

IHEg:ﬂi--s object property assertions

[izastive data property assetions

5.1.3 Performance Analysis of Semantic Sensor Service Provider

The experiments analyze the efficiency of performing SPARQL queries versus SQL queries.

Both of these languages give the user access to create, combine, and consume structured data. SQL

does this by accessing tables in relational databases, and SPARQL does this by accessing a web of

Linked Data. The graph shown in Figure 49 illustrates the comparison of SPARQL and SQL

queries for adding new sensor information to the sensor service provider repository.

76

Add Sensor

1200
1000
800
600

400

200 I I I
; u af . BNann
1 2 3 4 5 6 7 8 9 10

B SPARQL = SQL

Figure 49 Query comparison for adding a sensor

10 iterations are taken at random resource utilization level of the host system. The difference
between the two queries have been recorded in terms of min, max and average time in milliseconds
for the 10 iterations. For the SPARQL query the min time in milliseconds taken for adding an
iteration is 16ms, max time taken is 874ms and average time taken is 227.65. Whereas the min time
taken for an SQL query to add an iteration is 65ms, the max time taken is 976ms and the average
time taken is 555.45. The graph shown in Figure 50 describes the comparison results for SPARQL
and SQL update queries. The update query takes the data updated from the user interface and
updates the entry in the service provider repository. The graph shows the time taken in milliseconds
to update 10 iterations each for SPARQL and SQL. The comparison of the two queries is based on

the min, max and average time taken in milliseconds to update an iteration.

77

Update Sensor
1000
800
600

400 :
3 IS
0 B = [B E-
1 2 3 4 5 6 7 8 9

B SPARQL mSQL

o

10

Figure 50 Query comparison for update sensor

The min time taken in milliseconds by the SPARQL query to update an iteration is 104ms, the
max time taken is 776ms and the average time taken is 227.88. Whereas the min time taken in
milliseconds to update an iteration using SQL query is 16ms, the max time taken is 920ms and the
average time taken is 272.66ms. Figure 51 shows the graph displaying the results of SPARQL and

SQL queries for deleting a sensor from the sensor service provider repository.

Delete Sensor

1800
1600
1400
1200
1000

80 1 ‘ | 1 . t
60 i ‘ 1 1 i | 1
20 J]
20
0 . 1 —_—
2 3 4 5 6 7 8 9 1

1

o O O O

0

HSPARQL mSQL

Figure 51 Query comparison for delete sensor

78

The queries are compared based on the min, max and average time in milliseconds taken to

delete an iteration. 10 iterations have been taken for each query. The min time taken in milliseconds

by a delete SPARQL query is 9ms, the max time taken is 997, and the average time taken is 585.5.

Whereas the min time taken by a SQL delete query is 4ms, the max time taken is 1534ms and the

average time taken is 915.6ms.

5.2 Semantic Actuator Service Provider

5.2.1 Implementation of Semantic Actuator Service Provider

Semantic actuator service provides actuator related information, control and management.

The execution screen for the actuator service provider is shown in the Figure 52.

Semantic Actuator Service Provider

Senvice Informaticn

Time Now:

Provider Service:

Content Service:

Actuator Number:

2016-05-09 17:54:26

Service Stop

Service Stop

9

Service Start ‘
Service Start ‘

Actuator Information

MNum Actuator Name Actuater ID Middleware IP Access State
1 Bailer #DS00003 offline
2 Fan 20500005 offline
3 AirCon EDS00004 offline
4 LabBeiler #D500002 offline
5 Light #DS00006 offline
& LanairCan Ds00011 offline
7 Fang ZDS00008 offline
8 Light9 #DS500009 onling

Figure 52 Semantic Actuator Service Provider Manager

79

It consists of two panels; the service information and the actuator information. The service
information panel contains controls for starting and ending the content service and provider service.
Time now shows the current date and time. Actuator information shows the actuator name, its id,

and its access state. Middleware IP is the IP address to which the object is associated.

Each module consists of a toolbox for management of the data maintained by that module’s
ontology. Figure 53 shows the execution screen for the semantic actuator support toolbox control
panel. It provides the following functionality: actuator information generation and management,
actuator model information generation and management, middleware information generation and
management, and service information generation and management. Controls are available on the

execution screen to carry out each of the above functionality.

[Semantic Actuator Service Support Tool] @

i 4

Time Now: [2016-05-13 11:55:18]
Actuator Number: [0]

Actuator Management

Actuator Model Management

Middleware Management

Actuatorweb Service Registiry

Closs

Figure 53 Semantic Actuator Service Support Toolbox

The Figure 54 shows the execution screen for the semantic actuator information management.

It displays an Actuator list that consists of the ids of all the actuators registered in the ontology.

The execution screen also displays a form for generating and manipulating actuator information.

80

The information that is required to add a new actuator includes 1) Actuator ID; a unique id that
uniquely identifies each actuator in the ontology, 2) Actuator Name; a string name assigned to each
actuator, 3) Actuator Explain; description of an actuator, 4) Power Consumption; corresponds to
the energy requirement of an actuator, 5) Access state; describes the status of an actuator it takes
two values i.e. online and offline, 6) Individual Name; defines an instance for each actuator added

to the ontology, 7) Connects to; a combo box that shows the registered actuator in the ontology,

[Actuator Information Management] @
 Actuator Information — =
) tuator IC: EZD0S00009
-Actuator List pctor Has Type: fan -
uator Name:
#DS00005 - XQ7100_AS3
#DS00003 Actuator Explain: | | ABFAN Has Model: | 2Q7100_ i
20500004
#D500002 -Actuator Attribute List
#D3500006 ;
Agccess State
#DS00007 offline Name Type
#D500008 Individual Name Actuatord .
power SwichType
SETEE AT shuinkiliouscan windstep MultistepType
Consumption: 234 Kwi
ActuatorModel Modell A
Actuator Image:
Load |
Cancel | o
Refrech Form Add Actuator Update Actuator Delete Actuator

Figure 54 Semantic Actuator Information Management

8) Has type; a combo box displays the list of actuator types registered in the ontology, and 9)
Has model; a combo box that shows the actuator models registered in the ontology.

Actuator Attribute list shows the attributes related to a particular model of an actuator e.g. the
actuator model shown in the figure is fan it has two attributes associated with it, the first one is the

power attribute that represents the off and on switch type, whereas the second one is the wind step

81

attribute that represents the wind steps available in the fan. The execution screen shows a list for

the actuator attributes.

frmbbodelianagement =

-Type Management ————————————— ~Actuator Attribute
fan [Attribute Mame] [Atzribute Typel [Feild Name)
boiler
-ﬁ.d;:om:lihon power SwitchType hasPower
Light Temperature RangeType hasTempState
Type IT: =aIR
Type Name: AsrCanditan 1
Typelndividual Typelnfal |
TypeCode 3 "

Add Update Celete

- Model Management —— ||
Type Option: firCondition .
s |
IWS0OYNOL
ModelCode B
Model Mame: ITS00
Blend Name: LG
Modelndmidusl pjader?

Add Update Debete Artribute Type: TemeAtrribute - Add Save Delete

Figure 55 semantic actuator model management

The attributes of an actuator in the list are displayed based on the actuator model and actuator
type values selected from the combo boxes. The controls displayed on the screen are Refresh Form:
it reloads the list of actuator ids registered in the ontology, Add Actuator: it adds the information
from the textboxes into actuator ontology, Update Actuator: it is used to update existing information
in the ontology, and Delete Actuator: it is used to delete a registered actuator from the ontology.
For each actuator registered in the ontology, a model and a type is associated with it based on its

attributes.

82

Figure 55 shows the execution screen for manipulating actuator model and type information. It
consists of Actuator type management form which shows: a list that displays the type information
of actuators registered in the ontology, it displays textboxes for generating new type for an actuator.
The information needed to add a new actuator type is: 1) Type ID: a unique identification for each
type, 2) Type Name: name of the type, 3) Type Individual: an instance of the type class and, 4)

Type Code: a code for each type. It consists of controls for add, update and delete functions.

B ' [Middleware Management] [é]
Middleware Code Middleware ID Middleware Right Configuration Time Middleware Individua
2 EMWO111 Disable 2015-10-07T00:25:12-05:00 2015-10-07T00:25:12-05:00
3 EMW100 Disable 2015-10-07T00:25:12-05:00 2015-10-07T00:25:12-05:00
s #MW00122 Enable 2015-10-07T00:25:12-05:00 2015-10-07T00:25:12-05:00

L[] 3

Middleware Code Add Delete ‘ Enable Disable

Middleware ID:
Middleware Individual

Middleware Right

Figure 56 semantic actuator middleware management

The figure also displays an actuator model management form which consists of a list and a
combo box named type option. On selection of an actuator type it displays the model associated
with the type in the list. It consists of textboxes to add new information for actuator model. The
information needed to add a new model is: 1) Model code: define a code for each model, 2) Model
Name: defines the name of a model, 3) Model Individual: defines the instance for the model and,
4) Blend Name: defines the name of the brand for the model. It consists of controls to manipulate
actuator model data in the ontology. Actuator attribute list consists of: 1) Attribute Name: displays

the name of the attribute associated with the selected model, 2) Attribute Type: displays the type

83

of the attribute and, 3) Field Name: displays a unique key for each attribute. Controls are provided

for the user to add, save, and delete attributes.

[Service Information Management] @

~Senace Information

Service Mame: SemantichctuatarService Is WS
Service Explain: SemanticActuator
Senvice Uri: http:/7220.149.42.19:81/Design_Time_Addresses/G_Actuator_Service_Pr

Search Key Word: | Actuator,Semantic

Save Service Infomation

Figure 57 semantic service information management

Figure 56 shows the middleware management execution screen. It consists of a list to display
the middleware's that are registered in the ontology. The list contains information: 1) Middleware
Code: a code value for each middleware. It takes a long value. 2) Middleware ID: a unique identity.
It takes a string value that can consists of letters and numbers. 3) Middleware access right: value to
define if the service provider can access the middleware or not. It takes two string values i.e. enable
and disable. 4) Configuration Time: defines the time the middleware is configured and added to the
ontology and, 5) Middleware Individual: defines the instance for each middleware information.

The execution screen also displays text boxes for adding new middleware information in the
ontology. It also consists of controls to manipulate the middleware information in the ontology.

The screen shown in Figure 57 is used to create service information and register it at service registry

84

ontology. Service information include service name, WSDL offering or not, service explanation,

service access address and service search keyword.

Actuator Middleware =]

iDisccnncet ' 15:22:00@connect@#DS00004
=TT T T 115:23:10@Request@1197081588@#DS00004@POW_STA:

Actuator ID Actuator [P
#DS00004 220.149.42.19

ON

15:23:11@=DS00004@POW_STA:ON
15:23:10@Response@1197081588@True
15:24:10@Request@751820235@#DSC0004@POW_STAO
FF

1

1

1

1

1

1

1

I
15:24:11@=DS00004@POW_STA:OFF 1
15:24:10@Response@751820235@True I
15:24:10@Request@1616969700@=DS00004@POW _STA: I
ON I
15:24:11@=DS00004@POW_STA:ON I
15:24:10@Response@1616969700@True :
I

1

|

1

I

1

|

1

e e = = = = = = = = = = = = = = =

Disconncet | History Clear

Figure 58 Actuator middleware execution screen

Service Name is area for entering service name, Is WSDL is option for selecting the service
provider as a WSDL (Web Services Description Language) offering service or otherwise, Service
Explain is explanation about service, Service Uri is service provider access address and, Search
Keyword assigns a keyword that is used for searching service provider. Save Service Information
is a button which registers service provider information to service registry. Figure 58 shows
actuator middleware execution screen. Area A is for setting Actuator service provider’s IP address.
Server IP represents the IP address of the actuator service provider to which this middleware is
connected.

Area B shows the connection state information of the actuators connected to the middleware.
The connection state information consists of actuator id and actuator IP. Actuator ID is actuator’s
unique identifier whereas Actuator IP is the current actuator’s IP address. Area C shows messages

exchanged between the actuator service provider and the actuator.

85

Type | Message | ObjectId Description
Code | Type
Request Actuator/Mid Key & Connection
dleware ID connect request msg
2 00 Respond Actuator/Mid Key & True/ Connection
dleware ID connect false acknowledgem
ent
3 00 Request Actuator/Mid Key & Disconnect
dleware ID disconnect request msg
4 00 Respond Actuator/Mid Key & True/ Disconnect
dleware ID disconnect false acknowledgem
ent
5 01 Middleware Actuator ID Service provider
1D list mapping table
message
6 10 Request ActuatorID Key & Actuator
command control request
message
7 10 Respond ActuatorID key True Actuator
/ control respond
false message
8 11 ActuatorID State list Actuator work
state message

In this thesis, semantic actuator service provider provides service for remotely controlling the
indoor Appliances. Based on the comfort index, the application client generates command through
semantic actuator service provider. The actuator middleware executes the command on the actuator
and the client receives the response message back through the actuator web provider. This study
uses TCP Socket system and to communicate between actuator and semantic actuator service
provider, a message format is needed for sending and receiving messages as shown in Figure 59.

Actuator message is composed of 4 parts namely Type Code, Message Type, object ID and
Data. Using 4 part message satisfies the requirements of Actuator system. This is different from
connection message, mapping information exchange message, control message and state

information message. These Control message and connection message commands does not use

simple push methods.

Figure 59 Actuator message format

86

Actuator ID P '
DS00001 HHH KK KK HRK
D500002 OO 000000
,,,,, Actuator Service Provider
4
MW IP Actuator 1D '
OO 200K X000 DS00001
OO XK 200K X000 DS00002
Actuator Middleware
/ L J Vl L J v
. ” —
- - lEl ¢
y W ~ — —
— 5995
= -
Actuator 1 Actuator 2 Actuator 3 Actuator 4

Figure 60 Mapping table management

But like HTTP, there must be acknowledgement for each request message. Using a filter called
Type, the messages are divided into Request and Respond message. Object ID is unique identifier
from the perspective of client. Using this system it is easy to know which component sent the
message when client parses the message. Data has the actual contents of the message. When Type
Code is “00” it indicates a connection request message, Type code “01” indicates mapping
information exchange message, Type Code “10” specifies control message, and Type Code “11”
indicated state information message. This study implements the Actuator system remote control
message sending functionality with TCP Sockets.

But between service provider and middleware, middleware and actuator, one to many
communication system is required. Thus from the perspective of service provider a mechanism is
needed which meets the requirement as shown in Figure 60. This is very similar to network routing

concepts. First the actuator middleware receives a connection request message from each actuator.

87

It creates mapping table from its memory, consisting of actuator id and IP information, and sends
this information to the actuator service provider. The service provider has its own mapping table
consisting of actuator id and middleware IP, it compares mapping table information from the

middleware with its own mapping table and updates it accordingly.
5.2.2 Development and Reasoning of Actuator Ontology

In this section the development of the actuator ontology is discussed. This ontology is
developed in protégé using Rdf/xml format. Figure 61 shows the screen shot of the ontology from
protégeé. It shows the classes and the individuals tab. The classes tab shows all the classes added to
the ontology. The classes included in the actuator ontology are: Actuating Device class defines any
actuating device that is registered to the ontology, Actuator Middleware class defines the
middleware’s that are in the proposed system, Actuator State class defines the state of each
actuating device added in the ontology. We have defined two states for actuator online for actuator
that is switched on and offline state for actuator that is switch off. Actuator Support Toolbox class
represents the toolboxes in the proposed service. It is important to know which actuator,
middleware and toolbox are connected, for maintaining the mapping table in the actuator service

provider module.

88

MMmanﬂcﬁ\ct\:amr} : [DASemantic Web ResearchhOT Providers Ontology Modelling\ActuatoriAc

ile Edit ‘iew Reasoner Tools Refactor Window Help

<A > |@SemanticAc1uator (hitp: ihwww semanticweb orgifaizajontologies/201 6/3/Semantic Actuator)

\ctive Ortology | Entiies | Classes | Object Properties | Data Properties | Annotation Properties | Individuals | OWLViz | EvaluationTab | DL Guery | OntoGraf | OWL2C

Class hizrarchy | Class hierarchy (infered) |

ST * Actuator2

¥ Thing @ Actuator3
...... Actuating_Device # Actuatorsd
------ Actuator_Middleware # Actuator5
------ Actuator_Service_Provider # Actuator6
------ Actuator_State # Actuator?
------ Actuator_Support_Toolbox # Actuators
ActuatorModel # Actuator9

PServices .
Actuator_Content_Service : :g::tg::;gg::x:::;
:gzgtg::g::\tr:dotla_rf;;‘:'l\rciie @ ActuatorServiceProviderl

anagement @ ActuatorSupportToolbox1
Acfuator_lnfu_Management # ControlServicel
Middleware_Access_Management # Managementl
S_er\rice_lnfo_Management @ Middleware3

----- Mult!step_Attrlhute & Modell

------ Multistep_Step

------ Range_Attribute & Model2

------ Switch_Attribute # Model3

------ Time_Attribute # Model4

------ TypeInformation @ Model5

@ Model6

@® Model?

multistep1

multistep?

@ offline

online

Rangel

® Range2

& stepl

& step2

& step3

step4

& steps

#® step6

& step?

@& switch1

@ switch2

#® switch3

@ switcha

& Temperature

@ Timel

@® Time2

@ Time3

Typelnfol

Typelnfo2

Typelnfo3

A~ T Tk a

Figure 61 Actuator ontology

APServices class represents the services provided by the actuator provider. Each service is
defined by creating a subclass of the APServices class. In the proposed system each actuator is
defined to have multiple models based on which its functionality is determined. The models are
represented by the Actuator Model class. As mentioned earlier the functionality of the support

toolbox module is to perform management of the actuator and middleware information, this is

89

represented using the Management class. This class has three subclasses Actuator Information
Management, Middleware Access Management, and Service Information Management, these
classes represents the management performed by the actuator support toolbox.

The attributes to be defined for each new actuator in the system are the multistep function of
the actuator, the range of the actuator, the switch function of the actuator, the time at which the
actuator is manufactured and the type of the actuator. All these attributes are represented by
Multistep Attribute class, Range Attribute class, Switch Attribute class, Time Attribute class, and
Type Information class. For each class individuals or instances are added, individual instances are
the most specific concepts represented in a knowledge base. In this ontology we have defined
individual for each class. Results of reasoning performed on the ontology is shown in Figure 62
Area A shows the individuals added in the ontology whereas highlighted facts shown in Area B are
the inferred facts for the individual Model 1. As shown the actuator model individual infers some
new relations based on the object properties it is given. This helps in querying, if user wants to
know how many actuator or which actuators are related to this specific instance of Actuator Model

class, special operators with SPARQL query can be used.

90

Individuals: Model1

K2ES

Rules:

Modell
#] Model2
jMudeB

Modela
ol Models

& Modelb
@ Model7

offline
online
Rangel
#| Range2
’ stepl
step2
step3
4 stepa
’ step5s
step6

step7

#l Actuator2
@] Actuator3
Actuatord
QI Actuators

#l Actuators
0| Actuator?
@ Actuatorg

Actuator9

#] ActuatorMiddleware1
ActuatorMiddleware2

ActuatorServiceProviderl
ActuatorSupportToolbox1

#| ControlServicel
Managementl
Middleware3

J multistep1
#l multistepz

— o e

[»

Rules

Description: Model1

Property assertions: Modell

Types

ActuatorModel

Sama Individual Az

Different Individuals

SccEmop e et (e —— — — — - =

mhasType Typelnfol
mhasMultistep multistep2
I-hasswitchstate switch1

| mModelof Actuators
| mmodelof Actuator?
| mModelOf Actuatord

DTx property assertions
mModelName "XQ7100_A53"~~string
wmModelCode "1"~~long
mModelBlend "Samsung™~“string

Nehative abiect property assertions

Negative data property assertions

Figure 62 Reasoning results on actuator ontology

5.2.3 Performance Analysis of Semantic Actuator Service

Provider

This section provides the results of SPARQL and SQL query comparison performed for

analyzing the semantic actuator service provider system performance. All the comparisons are

based on the min, max and average time taken in milliseconds for 10 iterations of each query.

91

Add Actuator

1000
800
600 T 1
400 - - -
TP R T P
e DR el R B ED
1 2 3 4 5 6 7 8 9 10

B SPARQL mSQL

Figure 63 Query comparison for add actuator

Figure 63 displays a graph that compares the query results for adding an actuator information
in the semantic actuator service provider repository. 10 iterations have been taken for each query
based on random resource utilization of the host machine. The min, max and average time taken in
milliseconds by these queries is compared. The min time taken by a SPARQL add query is 26ms,
the max time taken is 467ms and the average time taken is 195.2. The min, max and average time

taken for SQL add is 115ms, 939ms and 470.7ms respectively.

Update Actuator

1200
1000

800

600 . .

400 e L Lo - -
gl N EE N 0 Il

0 ._ - | [| m B - a s

1 2 3 4 5 6 7 8 9 10

H SPARQL ®SQL

Figure 64 Query comparison for update actuator

92

Figure 64 shows the comparison results for SPARQL and SQL update queries. The comparison
is based on the min, max and average time taken by these queries to perform the update to the

semantic actuator service provider repository.

Delete Actuator

1000
800
600
400
ZOOI I
) n il mlml los= nll =
1 2 3 4 5 6 7 8 9 10

W SPARQL sQL

Figure 65 Query comparison for delete actuator

The min time taken for SPARQL update query is 9ms, the max time taken is 544ms, and the
average time taken is 262.3ms. Whereas the min time taken by SQL update query is 122ms, the
max time taken is 995ms and the average time taken is 478.7ms.

The graph shown in Figure 65 compares the SPARQL and SQL query results for deleting an
actuator from the semantic actuator service provider repository. 10 iterations are taken for each
query and the comparison for each iteration is based on the min, max and average time. The min
time taken by a SPARQL delete query to delete an actuator information is 88ms, the max time
taken is 390ms and the average time taken is 262.3ms, Whereas the min, max and average time

taken by a SQL delete query is 3ms, 898ms, and 426.2ms respectively.

5.3 Semantic GIS Service Provider

5.3.1 Implementation of Semantic GIS Service Provider

The following figures illustrate the execution of the GIS service prodder module, and the GIS

support toolbox module. The GIS support toolbox module uses the services provided by the GIS

93

service provider module to perform location information management. Figure 66 shows the
semantic GIS provider execution screen. GIS provider offers Provider service and Contents service.
Time now label shows the duration since GIS provider is started. Provider service label shows the
operational state of GIS provider’s Provider service. Content Service label shows the operational
state of GIS provider’s Contents service. Map Number label shows the number of outdoor maps
available in the ontology. Building Number label shows the number of buildings information saved

in ontology.

~Content Information

Time now:
Provider service:
' Content service:
Map number:

' Building number:
Floor number:

! Room number:

2016-05-03 11:51:12
Service Stop
Service Stop

1
2
8

23

~Provider Service

Start

~Content Service

Start

Qs o | D0 TIOL IPT DAIN (o

 Operation History

~Clear History

Clear the operation history

Figure 66 Semantic GIS Service provider

Floor Number label shows the total number of the floors information saved in ontology. Room
Number label shows the total number of room’s information saved in ontology. The Start and Stop
buttons are used to start and stop the respective services. Operation History records the GIS service

control work.

94

p
{2 [Service Content Support Tool] i)

~ Service Content State

Date Time: 0000-00-00 00:00:00

Total Map Infomation-- Floor Information Graph--
Total Map Size: 1146X926 hasFloors: (True)
Mini Map Size: 171X171 Floor Triple Count: 8
Building Information Graph-- Room Information Graph--
hasBuilding: (True) hasRooms: (True)
Building Triple count: 2 Room Triple Count: I23

~ Semantic Service Content Management

Total Map Load ‘ Semantic Content Generation

‘ Semantic Service Registry ‘ ‘ Close

Figure 67 Semantic GIS Support Toolbox

Figure 67 shows the GIS service composite tool execution screen. Service contents tool screen
shows service provider’s content state information directly to the management. It also displays the
total map information, building information, state floor information and state room information and
state etc. Date Time is the GIS service composite tool's environment execution time. It also provides
the interface to call semantic information management screens. Total Map Information show
outdoor map image and mini map image sizes. Building Information shows the number of
registered buildings, Floor Information shows the number of registered floors and Room

Information shows the number of registered rooms in the ontology.

95

- Semantic Service Content Manag

I Total Map Load | ‘ Semantic Content Gencration | Semantic Service Registry ‘ l Close |
i
|
[Map Image Manager] * @
~Map Image Infomation ~Sava Map Data
Preview Map Upload Infomation
I| | Map Image Information
| -Image Format Info: (None)
| -Pixel Format Info: (None)
-Original Image Size: (None)
Mini Map Image Info:
-Mini Map Size(Pixel):
Width: 180 Height: 104 -
Qriciakisiond cad ‘ \ Save Map Data

Figure 68 Map Image Manager

Figure 68 shows the map image management interface. Map image management loads total
map image, divides it into parts and send it to service provider piece by piece. It is necessary
because the map file size for the entire school will be a very large file. If client downloads and
display this file, the delay becomes excessive. Thus the problem is solved here by dividing the
map image file into smaller partition sand saving the partition information and partition image data.
Area on the left side is the interface to load map image and save it to memory.

It also shows information about the image format, size etc. and provide controls to specify the
mini map size. Area on right side displays the map image division and saving process. The image

displayed by Figure 69 here loads by clicking the semantic content generation control from the

96

main window of the support toolbox module shown in Figure 67. It shows the outdoor map

management screen execution.

i~ Semantic Service Content M

>. Total Map Load ‘ i S Content G i i ! S Service Registry ’ Close J
[Building Information Management] g
Map Information View Map Information
(442224) v Map Percent: 100%
Map Sze: 1146x926
View Size: 180x97

Division Map: 42
Other Infomation

¥ Dwision Area

| Division Info
Pixel Value: (150, 285)

Figure 69 Building Information Management

Outdoor map is large range map viewer. Minimum visualization unit is building. Total map
viewer provides the visualization and creation of building information on the map. It displays map
information on the right side of the map. Map Percent shows current map percent. Map Size means
current map total size. View Size means current map visible range. Division Map shows the number
of map divisions within the range of the viewer. Other Information is for displaying division grid
and division info on the map inside the map viewer. Pixel Value means mouse pointer location on
the map. Map Move offers controls for map movement and adjustment. From this interface you
can select a building by adding the building marks and saving them using the menu item displayed.

Once the save marker button is clicked it displays the form shown in the next figure.

97

ExistingBuilding v Buiding Image: Load Infomation:
Name: ARTS
= IS 5 |
-kl B N - |
hasFloorNumbe 0 e !
T rd}h Upload
Floor State: (None) = 5| e| @ i
hasBuildinglnstance ArtsBuilding
. Floor Name: > | Delete l
Building Mark: 0:(545,512) = g
1:(616,511) =
2:(621,520)
3:(642,517) _
ARAA SSM Building Information Saved.
hasExplanation: arts building
hasF'J =
S
hasMapCode > hasFloorinst b
inBuildino: .
hasFloorExolain
Save Delete Cancel hasFloorName

Figure 70 Semantic Building Management

Figure 70 shows the form for building management. The controls available are add building,
and delete building. To add new building the information needed is

o Building name: a string typed name of the building

e Building instance: an instance of the building

e Has explanation: explaining the purpose of the building
e Has map code: the map that this building belongs to

e Building image: stores the image for the building.

98

[Building Management]

1]

ExistingBuilding | ARTS Buiding Image: Load Infomation:

Name: ARTS g #22 [Uploading Start] (Time=11:58:14)

hasFloorNumbe OFloor i B R ¥ > [Old map data have been checked]
r* > [Mini image has been uploaded]

Floor State: (Not Available)

> [100% image start uploading]

hasBuildinglnstance | ArtsBuilding '[;00%'_ ot uploading]
> L image start uploading

00545512) , Floor Name:
Buiding Mark 1:[6-"»3 5:;] = > [90% image start uploading]
2:(621,520) ey .
3:{642,517) > [90 % image start uploading]
AdRAA BEM N = 2 o= | | o= X
= ST Pl 2 > [B0% image start uploading]
hasExplanation: | 2rts building — —
> [B0 % image start uploading]
hasFloorNumber | 1 > [70% image start uploading]
hasMapCode 5 hasFoornst f001 > [70 % image start uploading]

i ArtsBuikling v > [60% image start uploading]
inBuildina:

hasFloorExolain firstfloor

hasFloorName

Figure 71 Semantic Floor Management

The same form as displayed in Figure 70 displays text boxes and controls to add floors to each
building as shown in Figure 71. The information needed to add a floor is:

e Floor number: defines the number of the floor

e Floor Instance: defines the instance of the floor information class in the ontology

e In building: defines the object property that is used to associate a floor to a building
e Floor explain: description of the floor

e Floor name: defines a string based name of the floor

e Floor image uploads an image for that specific floor
When the save button is clicked the status for dividing the image into smaller portions is shows in
the list. Figure 72 shows the indoor map management execution screen. It provides interface for
demarcating room area on the floor map. Map Percent labels the current map size in percent, Map
Size means current map total size, View Size means current map visible range, Division Map
shows the number of map partitions inside the viewer, Other Information provides options for

showing the map division grid and division information on the map, Pixel Value means the current

99

location of mouse pointer on the map,

Map Move offers controls for map movement and

adjustment, and Zoom Up/Down are controls for adjusting the map size (larger/smaller).

[Floor Information Management-(marine sciences Floor01)] E
 Map Information View ~Map Information
(182,16) Map Percent: 100%
o Map Size: 968x510
SP : (200, 0) R : (300, 0) P : (400jp) SP : (500, 0) SP: (600, 0) SP : (700, 0)
EP:(300,100) :Ef:(400,100) :EP:(S00J00) :EP:(600,100) | EP:(700,100) :EP: (800, 10§ View Size: 180x97
SZ : 100x100 S : 100x100 SZ : 1004100 SZ : 100x100 SZ : 100x100 SZ: 100x1 N
Division Map: 35
Other Infomation
6 1 2 26 3 =
(6] 88} [16] [‘;’71 [26) (31) 7] Division Area
SPgEBfcidl0) | SR : (300ai@@ggof SP: (400J100) S 48, 100) [f sp: (600, mape1ed sP: (700 1{0)1- &) Division Inf
EP:(300,200) :FEf:(400,200) EP:(500Jp00) :EP:(600,200) [EP: (700 f‘%))“ gp:(soo 2 e
sz7(28:86mm) it : 10042856m) SZ: 100,100 (28756) 00 s : 100x108°°™ &z - 100x100) Pixel Value: (464, 214)
Map Move:
) u) 3 ol | TP

(18

B (300, 380~ 5P : (400
 : (200 sp;(soomom
‘ $Z: 100400

100x109
We|ojc|of

300)

[Lte) (oom) {1t o

e | ey

Room Management:

[Room Management]

Mini map: 16%

[9428.56M)] (28.56m)19 = N A N

SP: (200, 400) : (300, 400) SP : (400J100) - = | = . =
—e s ? e —_——

$Z: 100x100 $Z : 100x100 SZ : 100x100 [s lalelele

Figure 72 Indoor Map Management

Figure 73 shown displays the form for adding room information to the ontology. The

information needed to add a room is:

e Room no: defines string based no of the room

e Room name: defines the room name

e Room mark shows the room marks selected by the user

¢ Room image loads an image for the room

e On floor associated the room with a floor

e Room instance defines the instance of the room class. On clicking the save button the

room information is stored to the ontology.

100

[Room Management] (=]

~Room Information

hasRoomNumber: A105

hasRoomName: PRIMTINGROOM
Room Mark: 0:(453,4)

{ E i Y
Room Image:

Room information has been saved successfully!

lUpIoadI ‘ Cancel ‘

hasRoomExplain PRINTING

OnFloor [f001 v

hasRoomlnstance pRINTINGROOM

OnFloor: 001

Semantic Operation

Figure 73 Semantic Room Information Management

5.3.2 Development and Reasoning of GIS Provider ontology

This section illustrates the development of an owl ontology for the GIS provider module that
represents all the location information of the sensors and actuators registered in the system. Figure
74 shows the classes defined in the ontology which are Building Information that stores
information about any building on the given map, Building Management, Floor Management, and
Room Management classes represents the management performed by the GIS support toolbox

module. Map Information class represents the buildings registered in a specific map stored.

101

Edit View Reasonsr Tools Refactor Window Hzlp

ﬂ o> | & GISProvider (http: lhwww semanticweb org/faizalontologies/201 41 0/GISPravider)

ttive Ontology r Entities r Classes r Ohbject Properties |/ Diata Properties r Annotation Properties |/ Individuals |/ OWLViz r Evaluation Tab r DL Query

Individuals:

[#] [x

Flass hierarchy r Class hierarchy (inferred) |

Basement

- ® Thing #® Building1
- Building_Information @ Building2

Building_Management @ BuildingMgmnt

Building_Mark & Cs

Floor_Information & fl

GIS_Provider @ Floorl

GIS_Support_Toolbox # Floor2

Management

MapInformation # Floor3

Room_Information @ Floor4

- Room_Management # GIS_providerl

v Services #® GIS_Services
: ContentService & GIS_ST

ProviderService & Map1l

& R103

Rooml

Room10

#® Roomll

% Room12

Rooml3

Rooml14

#® Rooml5s

Roomilé

® Rooml17

Rooml1s

Room19

Room?2

% Room20

Room3

Room4

® Room5

% Roomé6

Room7

Room8

Room9

RoomlInfol

RoomMgmt

Figure 74 GIS Provider ontology

Floor Information class represents all the floors that are registered in a building whereas Room
Information class represents all the rooms that are registered in a specific floor. Services class
represents the services that are offered by the GIS Provider module. Figure 75 shows the reasoning
performed on the GIS provider ontology. The object property hasFloor is inferred in the figure.

This can help the user query for floors and discover new relations. The inferencing shown in this

102

study will be used after publishing the ontologies online which is included in future work of the

thesis.

Basement

Building1

@ Building2

BuildingMgmnt
® s

=1
|
|
|
M 1
Floorl |
Floor2
Floor3 |
Floora 1
GIS_providerl
#® GIS_Services I
#® GIS_ST 1
#® Map1
R103 |
& Room1 1
Room10 I
#® Room11l
@ Room12 |
Room13 1
Room14
Room15 1
#® Room16 1
4 Room17 1
4 Room18
Room19 |
Room2 1
Room20
Room3 1
Room4 1
Room5 |
Room6
Room? |
Room8 1
4 Room9
RoomInfol 1
<

Rules.

Description: Building1

s: Building1

Types
Building_Information

Same Individual As

Different Individuals

Object property assertions

mhasFloor Floord

I
mhasFloor Floor3 I
® hasFloor Floor2 [
m hasFloor Floorl |
mhasFloor Basement |

N

ata property assertions

— — ———— —

@ BuildingCode "2"~~long [
®BuildingName "ZL[H4Z2"~"string |
mMap_Code "5""~~long |
mtopDataProperty "5"™~"long
mtopDataProperty "OOOOO E|D4E|D"""5trinr
mtopDataProperty "O0O0400"~string
mtopDataProperty "2"™~"long

Negative object property assertions

Figure 75 Reasoning on the GIS provider ontology

5.3.3 Performance Analysis of Semantic GIS Service Provider

This section provides the results of SPARQL and SQL query comparison performed for

analyzing the semantic GIS service provider system performance. All the comparisons are based

on the min, max and average time taken in milliseconds for 10 iterations of each query. The graph

shown in Figure 76 displays SPARQL and SQL add query comparison based on the min, max and

average time taken in milliseconds. These queries saves building information to the semantic GIS

service provider repository. The min time taken in milliseconds by SPARQL add query is 41ms,

the max time taken is 54ms and the average time taken is 47.6ms. Whereas the min, max, and

average time taken by the SQL add query is 46ms, 972ms, and 459.8ms respectively.

103

1200
1000
800
600
400
200

SaveBuilding

W sparql msql

Figure 76 Query comparison for saving building information

Figure 77 shows a graph that describes the comparison results for SPARQL and SQL queries

based on the min, max and average time taken in milliseconds. The graph shows the comparison

results taken for 10 iterations of each query. The min time taken for a SPARQL query to add floor

information to the semantic GIS service provider repository is 48ms, the max time taken is 73ms

and the average time taken is 54.9ms. Whereas the min, max and average time taken for a SQL

query to add floor information to the semantic GIS service provider repository is 30ms, 973ms and

419.6ms.

1200
1000
800
600
400
200

SaveFloor
—-—]]] -—] -]
3 4 5 6 7 8 9 10
H sparqgl Hsql

Figure 77 Query comparison for saving floor information

104

Figure 78 shows a graph that describes the comparison results for SPARQL and SQL queries
based on the min, max and average time taken in milliseconds. The graph shows the comparison
results taken for 10 iterations of each query. The min time taken for a SPARQL query to add room
information to the semantic GIS service provider repository is 88ms, the max time taken is 292ms
and the average time taken is 161.6ms. Whereas the min, max and average time taken for a SQL
query to add room information to the semantic GIS service provider repository is 132ms, 990ms

and 607.7ms.

SaveRoomlinfo

1200
1000
800
600
400

200
0 I - - - — - - . - -

1 2 3 4 5 6 7 8 9 10

W sparql msql

Figure 78 Query comparison for saving room information

5.4 Semantic Application Server

5.4.1 Implementation of Semantic Application Server

Application server is the top most module in semantic 10T system. Figure 79 shows the
application server execution screen. It shows information saved in application server ontology such
as object state. It controls the Provider Service, Content Service and Smart Control service. Time
now shows the application server’s execution environment real time. Sensor Count is the number
of sensor object that bound in the ontology. Actuator Count is the number of actuator objects bound
in the ontology. Work Time is the Normal operation time of service. Service State means the service

operational state. Service Start and Service Stop buttons control the service on/off.

105

[Application Server]

Service Content
Time Now:

Sensor Count:

Actuator Count:

[2016-05-05 11:57:59]
1
3]

Update ’ ‘ Clear \

Provider Service
Work Time: [00:00:00] ‘

Service Start J
Service State: Service Stop...

Content Service
Work Time: [00:00:00] \

Service Start ‘
Service State: Service Stop...

Smart Control
Work Time: [00:00:00] ‘

Service Start ’
Service State: Service Stop...

Figure 79 Semantic Application Server Module

Figure 80 shows the application server composite tool execution screen. It presents controls to
user for performing map binding, semantic object binding, and service publishing. By clicking each
button user can access the forms for manipulating the data stored in the ontology. Through the Map
Binding button, go to map service binding management. Press Semantic Object Binding button to
bind sensor or actuator data to its location data. Press service register button to show service
information management window. It shows the no of the services registered in the application
server ontology. It shows the binding status of the services. Object count shows the total no of

objects registered in the application server ontology.

106

MainWindow 53

Service State

Time Now: [2016-05-05 11:58:44]

has Sensor Service: [1] has Binding State: [Has bound]
has Actuator Service: (2] has Object Count: (4]
Map Service: [1]

Service Management

Map Binding ’ {Semantic Object Bindin(_J ‘Semantic Service Regitry’ \ Close

Figure 80 App Server Support Toolbox

Figure 81 shows the map service binding management execution screen. This interface is used
for searching map service and binding selected map service. Service Name is GIS service name.
Service Uri means GIS service access address. Key Word is GIS service search keyword. Service
Refresh button performs the GIS service search again and refresh the list. Map Binding button
binds GIS service with a map. Binding Cancel deletes GIS service information that is already

bound.

107

MainWindow €3

Service State

Time Now: [2016-05-05 11:58:44]
has Sensor Service: [1] has Binding State: [Has bound]
has Actuator Service: [2] has Object Count: (4]
Map Service: [1]
Service Management
I Map Binding ’ [Semantic Object Bindin(} [Semanu‘c Service RegitryJ ’ Close
[Map Service Binding M.mgemg‘] =)
Map Service List
Num Service Code Service Name Service Uri hasinformation
1 4 Jeju University Map http://220.149.42.19/Design_Time_Addresses/G_GIS_Service_Provider/GISPr¢
< m. i 2.
Key Word: | Service Refresh| | Map Binding | | Binding Cancel Close

Figure 81 Map Service Binding

Figure 82 shows the outdoor map viewer execution screen which is displayed by clicking.
Outdoor map viewer offers visualization of outside map and building information on the map. The
buildings registered in the ontology are shows colored with mouse hovering. Selecting a registered
building retrieves the floors that are registered with that specific building. The floor name is
displayed in a menu item as shown in the figure. The floor menu item consists of the floor name’s
that are associated with the selected building. On clicking the floor name the form shown in the

next figure is displayed.

108

frmTotalMapView =

Map Information View Map Information
(542.224) Map Percent: 100%
Map Size: 1146x926
View Sze: 180x137
Dwvision Map: 36
Building Num:
Pixel Value: (466, 318)
Map Move:
Up
Left Right
Down
Zoom Up/Down:
Zoom Up Zoom Down
Mini map: 15%
(1146,702)

Figure 82 Outdoor Map Viewer

The form shown in the Figure 83 displays the rooms that are registered with the particular floor
selected from the previous image. The user is now able to semantically bind objects in these rooms.
The title of the floor displays the building name and the floor number. On clicking a room the menu
item for binding a sensor or an actuator in the room is displayed. Other information displayed on
the map is: Map Percent labels the current map size in percent. Map Size means current map total
size. View Size means current map visible range. Division Map shows the number of map
partitions inside the viewer. Pixel Value means the current location of mouse pointer on the map.
Map Move offers controls for map movement and adjustment. Zoom Up/Down are controls for

adjusting the map size (larger/smaller).

109

[Floor Inf con M.

)

(marine sciences Floor01)]

Map Information View

Map Information

(182,16) Map Percent: 100%
Map Size: 968x510
View Size: 180x139
Division Map: 35
o3
p— AREN0| X*NE axelal Pixel Value: (321, 279)
(28.56m) (28.56m) (28.56m O (48.56m) 1llszdss .

Left ' R-gh!l
) =) u) Fo
© (Do)
Binding Sensor Zoom Up/Dov:
Binding Actuator { Zoom Up ‘ { Zoom Down ‘
Cancel :
Mini map: 16%
*NE welo|ciof 2EEH0| 294 i
(28.56m) (28.56m) (28.56m) asim) [s le|e]|e] e []
fu) fu) —h
[: |
(786,494)
Figure 83 Semantic Object Binding
Queryl:
INSERT DATA

{app:Actuatorl rdf:type app:Object_Information

app:ObjectID ‘#DS00005’ A Axsd:string;

app:ObjectType ‘Actuator’Axsd:string;

app:BuildingCode “2’A*xsd:long;

app:FloorCode ‘18’ xsd:long;

app:RoomCode ‘7’A*xsd:long;

app:ObjectCode ‘10'Axsd:long;|

app:ProviderUri
‘<http://220.149.42.19/G_Actuatorweb_Service_Provider/clsProviderService/>’ *xsd:string;
app:hasService app:MapServicel}.

Query 1 shows the SPARQL query for registering/binding an object to the ontology. The first
triple pattern selects the type of the instance by using the type property from RDF vocabulary. The
second triple pattern inserts the specified id of the object using the data property ObjectID, the third

triple pattern inserts the type of the object using the data property ObjectType, the third triple

110

pattern associated the object with a building by inserting the building code, the fourth triple pattern
inserts the floor on which the object is, the fifth triple pattern inserts the room where the object
physically is, the sixth triple pattern inserts the Uri of the object’s provider i.e if it is an actuator
this Uri will have the value of semantic actuator service provider and if it is a sensor then this Uri
will have the value of semantic sensor service provider.

And the last triple pattern associated the map service for the object. The map service provides
an Uri that is used to visualize the indoor map area. Figure 84 shows the results of query 1. It

displays a screen shot from the application server ontology that illustrates the binding of an object

to its location information using object and data properties.

Inciividuals: Object! (== i Rules:
¥ X Fules
MapServicel

Objectl

Object10021
Object10023
Object10024
Object10025
Object2

Object28

Object3

seasonvaluel
SeasonValuez
SeasonValue3
SeasonValued

Description: Objectt

Types Object property as: s
Object_Information mhasService MapServicel

Same Individual A Data property assertions

®ObjectType "Actuator”~~string
Different Individuals ®mObjectID "#DS00005"~~string
mBuildingCode "2"~~long

@ ProviderUri
“http://220.149.42.19/G_Actuatorweb_Service_Provider/clsProvi
derService/"~"string

mRoomCode "7"~“long
mObjectCode "10"~~long
®mFloorCode "18"~“long

Figure 84 Query 1 result

111

frmActuatorBinding =

Actuatorweb Service
Num Service Code Service Name Service Uri

1 5 JNU Actuator Web http://220.149.42.19/G_Actuatorweb_Service_Provider/t

4 m r

Actuatorweb Service Search: Service Search |

Object Information
-Actuator List

, | hasID: hasBuildingCode: &

#DS00005
| #DS00003 Position X: 520 hasFloorCode: 12

#DS00002 | positionY: 123 hasRoomCode: 26 !
|| #Dsoooos .) .

hasProvideruri: :ltstgr.éf;:rg:i}g:j;lg,’G_Actuatonveb_Serwce_Prowder,.'
#DS00004
DS00011 ~ Object: hasObjectCode:

SemanticSearch | semanticginding | | Delete | [cancel |

Figure 85 Semantic Actuator Binding

Figure 85 displays a form for binding an actuator to a room. It consists of two groups semantic
actuator service and object information. Semantic actuator services shows list of services for the
actuators that are registered in the ontology. The information displayed about a service consists of
Service code, Service name, and Service Uri. Object information shows an actuator list that consists

of actuator id’s retrieved from the ontology. The object information displayed is

. Has Id: associates an id with the actuator

. Position x: shows the x position of the actuator in the room

. Position y: shows the y position of the actuator in the room

. Building code: shows the code of the building where the room is
. Floor code: shows the code of the floor on which the room is

. Room code: shows the code of the room

. Object: shows the instance of the object information class

. Object code: shows the code of the object

Figure 86 displays a form for binding a sensor to a room. It consists of two groups semantic

sensor service and object information. Semantic actuator services shows list of services for the

112

sensors that are registered in the ontology. The information displayed about a service consists of
Service code, Service name, and Service Uri. Object information shows a sensor list that consists

of sensor ids retrieved from the ontology.

[Sensor Binding] e

Sensorweb Service
Num Service Code Service Name Service Uri

‘ m »

Sensor Service Search: Service Search

Object Information

-Sensor List
, hasID: hasBuildingCode: 8
| sdo4
sd02 —| Position X: 370 hasFloorCode: 12
sd0g |
| Position Y: 150 hasRoomCode: 25
il | sdi0 » |
) . http://220.149.42.19/Design_Time_Addresses/
sd12 hasProviderUsi: G_Sensorweb_Service_Provider/SensorwebProviderService/
sd13 hasObject: hasObjectCode:

iSemantic

semanticsin| | Delete | [cancel

Figure 86 Semantic Sensor Binding

The object information displayed is:

. Has Id: associates an id with the sensor

. Position x: shows the x position of the sensor in the room

. Position y: shows the y position of the sensor in the room

. Building code: shows the code of the building where the room is
. Floor code: shows the code of the floor on which the room is

. Room code: shows the code of the room

. Object: shows the instance of the object information class

. Obiject code: shows the code of the object

113

5.4.2 Smart Control Implementation

The comfort index calculation method used in this thesis was developed by Fanger (1972) and
adapted in I1SO standard 7730. It is based on the determination of the PMV index (Predicted Mean

Vote) calculated from an equation of thermal balance for human body shown below.

S=M-W+R4+C+K-E+ Res

The variables used in the equation are defined below:

. M: Metabolic heat production of a human body
. W: Mechanical work

. R: Radiation exchanges with surroundings

. C: Convection exchanges with air layers

. K: Conduction to or from clothing

. E: Evaporation losses in sweating, and

. Res: wet and dry heat exchanges in respiration.

Table 2 comfort index scale

PMV Index ET Index Comfort State
2.5~3 35~41 Very Hot
1.5~25 29~35 Warm

0.5~1.5 23~29 Slightly Warm
-0.5~0.5 18~23 Normal
-1.5~-0.5 13~18 Slightly Cool
-2.5~-15 8~13 Cool

-3~-2.5 4~8 Very Cold

Fanger established a model of correlation between the subjective human perception, expressed
through the vote of comfort on a scale ranging from -3 (very cold) to +3 (very hot) shown in table
2, and the difference between the heat generated and the heat released by the human body, which

corresponds to the following equation [30]:

114

PMV = (0,303e-2,100*M + 0,028)*[(M-W) - H - Ec - Cres - Eres]
1)

Where the different terms represent, respectively:

. M - the metabolic rate, in Watt per square meter (W/m2);

. W - the effective mechanical power, in Watt per square meter (W/m2);
. H - the sensitive heat losses;

. Ec - the heat exchange by evaporation on the skin;

. Cres - heat exchange by convection in breathing;

. Eres - the evaporative heat exchange in breathing.

In equation 1, the terms H, Ec, Cres, and Hres, correspond to the heat exchange between the body

and the surrounding environment and are calculated from the following equations:

H = 3,96*10-8*fcl*[(tcl+273)4 - (tr+273)4] - fcl*hc*(tcl-ta))
Ec = 3,05%10-3*[5733 — 6,99%*(M-W)-pa]-0,42*[(M-W)-58,15] (3)
Cres = 0,0014*M*(34-ta) (4)
Eres = 1,7*10-5*M*(5867-pa) (5)
Where:

. Icl is the clothing insulation, in square meters Kelvin per watt (m2 K/W);

. fcl is the clothing surface area factor;

. ta is the air temperature, in degrees Celsius (°C);

. tr is the mean radiant temperature, in degrees Celsius (°C);

. var is the relative air velocity, in meters per second (m/s);

. pa is the water vapor partial pressure, in Pascal (Pa);

tcl is the clothing surface temperature, in degrees Celsius (°C).

The other index proposed in 1ISO Standard 7730 is PPD (Predicted Percentage of Dissatisfied)
that quantifies the expected percentage of dissatisfied people in a given thermal environment
shown in the equation 6 [30]. Thermal comfort zones (A, B and C classes) are defined in by the
ranges of PMV values from -0.2 to 0.2, -0.5 to 0.5 and -0.7 to 0.7, which correspond respectively
to PPD values below 6, 10 and 15%.

PPD =100 —95- ¢—(0.03353-PMV 4 +0.2179-PMV 2) (6)

115

ET = DBT — 0.4 * (DBT -10) * (1-RH/100) in C)

Using the normalization formula and applying to each PMV and ET index [31], you can convert
the index range from 0-1. Using these three formula comfort index can be easily calculated. To
easily let the user know the total comfort index, there should be a total comfort state rule. So
averaging the normalized PMV and ET ranges the total comfort state rules can be achieved as

shown in table 3.

Table 3 combined values

Comfort State PMV Value ET Value Combine Value
Hot 0.916~1 0.838~1 0.877~1

Warm 0.75~0.916 0.676~0.838 0.713~0.877
Slightly Warm 0.583~0.75 0.514~0.676 0.5485~0.713
Normal 0.416~0.583 0.378~0.514 0.397~0.5485
Slightly Cool 0.25~0.416 0.243~0.378 0.2465~0.397
Cool 0.083~0.25 0.108~0.243 0.0955~0.2465
Cold 0~0.083 0~0.108 0~0.0955

Table 4 shows the fuzzy rules to optimize indoor temperature. For example, some indoor space
PMV environment state is cold and ET environment state is Slightly Cold and the combination
comfort state is cold. Thus for same PMV State and ET State the Comfort State is the same. So for
Comfort State Cold, raise indoor temperature and when hot, drop the indoor temperature. Here the
Smart Control Algorithm is presented which collects environment information and based on this

information it controls the appliances in two ways. The following flow chart describes each plan.

Table 4 comfort index fuzzy rules

PMV State ET State Comfort State PMV State ET State Comfort State
Cold Cold Cold Slightly Warm Normal Normal

Cold Cool Cold Normal Normal Normal

Cold Slightly Cool Cold Hot Hot Hot

Cool Cool Cold Hot Warm Hot

Cool Cold Cold Hot Slightly Warm Hot

116

Cool Slightly Cool Cold Warm Warm Hot
Slightly Cool Cold Cold Warm Hot Hot
Slightly Cool Cool Cold Warm Slightly Warm Hot
Slightly Cool Slightly Cool Cold Slightly Warm Hot Hot
Normal Slightly Cool Normal Slightly Warm Warm Hot
Normal Slightly Warm Normal Slightly Warm Slightly Warm Hot
Slightly Cool Normal Normal

Figure 87 shows the message routing process from application server to an object (sensor,
actuator). According to the figure assume that application server sends a message to an actuator
with id=DS00012. First, from the application server mapping table it gets the corresponding
provider service (semantic actuator service provider in this case) address and forward the message

on that address. The service provider receives the message and finds the corresponding middleware

address from the service provider’s mapping table.

Finally, middleware receives the message and finds the object IP address from the middleware
mapping table and send the message to the object. For response message the process is reversed.
The object sends message through saved middleware IP. Middleware sends message through the
service provider Uri. Service provider receives the message, processes it and saves it in the DB. At

some point application server request data from service provider and provider responds with the

data from the ontology.

117

Application Layer
PP Yy Space ID(Room ID) | Object ID | Provider Uri
8 10500012 —phipi/117 17:102. 199/ Bzto e bProviderService/ i
8 SD00023 hittp://117.17.102.28/SensorwebProviderService/
9 DS00015 | httpy//117.17.10249/ActuatorwebProviderService/ Application Server
. . y
Service Provider Layer— - - - - - - -
Provider Uri Object ID | Middleware 1P Provider Uri Object ID Middleware IP
http://117.17.10 | {DS00012—{P220,149.4219 — http://117.17.102 | Ds10012 220.149.42.19
2.149/Actuatorw .25/Actuatorweb e
cbProviderServie | DS00023 | 220.149.42.19 ProviderService/ | DS10062 270.149.42.19
Service Provid
e DS00019 | 220.149.42.16 DS10089 220.149.42.16 ervice Frovider
: y
Middleware Layer Provider IP Object ID | Object 1P Provider IP Object ID | Object 1P
117.17.10249 | Dsoooss | 192.168.12 117.17.10225 | Ds10012 | 192.168.14
\DS00012 —»}92.168..1.5— DS10054 | 192.168.1.17
DS00065 | 192.168.1.17 DS10034 | 192.168.1.98 Middleware

Things Layer
9 Y Middleware IP Object ID Object IP Middleware IP | Object ID | Object IP

192.168.15 220.149.42.25 D510054 192.168.1.110

Object
Middleware IP Object ID Object IP Middleware IP Object ID Object IP
220.149.42.19 DS00028 192.168.17 220.149.42.99 DS10034 192.168..1.220

Figure 87 Object routing process

If sensor is connected to the sensor network and started, it will automatically create sensing
data and send to the service provider. Sensor provider process receives sensing data and saves it in
its DB. So for application server to receive some sensor node sensing data, it just need to request
sensing data which is saved in Sensor provider using sensor ID and the service provider address.
Actuator control process is little complicated. For actuator control, application server sends control
command to specific actuator. However, in the actual system architecture, Actuator provider acts
as a server and the actuator acts as client. Figure 88 shows sensor and actuator connection routing
plan. Application server smart control module connects the sensor and actuator through area
information (Room ID). Actually, it is not connected directly to the sensor node but in fact it
requests the desired information from Sensor Web provider's ontology. Using the actuator 1D, it

gets the target actuator from mapping table and sends the message to it.

118

Semantic Application

Service
Object ID Object Type Room Code | Provider Service Address
SDO1 SENSOR 8 http://117.17.102.197/semanticasensorproviderservic
DS00001 ACTUATOR 8 http://220.149.42.107/semanticasensorproviderservic
DS0002 ACTUATOR 8 http://117.17.102.192/semanticasensorproviderservice

Semantic Sensor

Service Provider Semantic Actuator

Service Provider

Actuator ID | Middleware IP
DS00001 192.168.1.154
DS00002 192.168.1.101

Sensor Middleware
Actuator Middleware

o= — ‘ == - - Actuator ID Actuator IP

DS00001 220.149.42.19

DS00002 117.17.100.153

Sensor Node

Actuator Node

Figure 88 Sensor and actuator control routing plan

5.4.3 Actuator Emulator Control

This section uses figures to describe the implementation of the actuator control performed by
the actuator emulator, actuator middleware and semantic actuator service provider and application
server. In the IPV6 era, technologies such as smart home are evolving rapidly. In the future all
appliances will be equipped with sensor chips and a user can connect remotely to it using
network/internet. Here, instead of discussing the device hardware architecture, an emulator is
implemented to imitate real-world appliances. Figure 89 shows the device emulators that are

connected to the system.

119

(7 Devi.. el E et |

Fan Connect

Light Connect

Boiler Connect

Air-Con Connect

Close

Figure 89 Device emulators

Figure 90 shows the process of fan control from the application server module. The control
process is based on the evaluation of comfort index using PMV, PPD and ET values. Area 1
indicates the control messages exchanged between the application server and the fan emulator
through the actuator middleware. Area 2 shows the fan emulator screen. It offers functions like
airflow adjustment and power control. Wind Level State show fan Current wind speed rating. Wind
Level Control can adjust to 3 values of wind speed i.e. Strong, Middle and Weak. Power

State can adjust power ON/OFF. The comfort index calculated based on these values is less
than 0.4585 which according to table 4 indicates normal comfort state. The message exchange
shown in area 2 of the figure illustrates the actuator control based on this comfort index value. As
the user starts the fan by clicking the turn on button, the middleware receives message from the
application server to switch off the fan, the actuator middleware turns the fan off and sends an
acknowledgement message to the application. Figure 90 shows the process of controlling the light
from the application server. The light emulator offers functions to control illumination and power.

Light Level show light appliance Current illumination level.

120

cturror Mediemwe A A sencnes

Server I (2201494219 | Disconncet | [PM 11020500009 @haswindSpeed Weak hasPower OFF | »
E = . " 13:19 PM10QRespONSES 14513296659 True

f » 11319

| Achestor D 1 Astor PM 1120500009 @hasWindSpeed Strong hasPower ON

#DS00009 2201494219 319
PM:10QRequest©33057342920S00009S hasPower OFF
319

PM:11 0205000099 haswWindSpeed Strong hasPower OFF
319 PM10@Response@33057342QTrue

Oevee 0 foso 1319

8 Fon Emulator

2
g
2
%
g
%
s
§
>
g
g
2
o
<

PM:10QRequest @ 340275060@ 20500009 hasPower OFF

PM: 11920500009 @ hasWindSpeed Middie hasPower OFF

3:19 PM10QResponse @ 3402750609 True

319

PM: 11920500009 @ hasWindSpeed Weak hasPower ON

19

PM: 100 Request @ 1543968898 20500009@hasPower OFF
319 -

Wind Level Controb Strong MSgie

“s

Power State: OFF Tuen off

Disconncet ' History Clear

Figure 90 Fan control

Light Level Control can adjust light appliance illumination from 1 to 5. Power State can adjust
power ON/OFF. Screen 1 shows the state of the light is ON with level 3. Screen 2 shows the
command message generated by the application server based on the data collected from the
illumination sensor. The control message asks the middleware to switch off the light. Screen 3
shows that the state of the light is turned off according to the control message sent by the application
server. Comfortable indoor environment for normal human illumination requires maintaining the
lux value 1000Ix. If lux value is < 1000 the application server sends control message to the actuator
middleware to switch on the light, whereas if the lux value is > or = 1000, the application server

sends a control message to the actuator middleware to switch off the light.

121

| Light Emulator (=IO
Device I: 20500007
Ught Levet Level S
voeteet (2] 2f L3 o] s
i ! Power State: ON | Turn off
Actuator dl (S aj
Server IP; [220.14942.19 [DMON’KR $:37 PM:00@connect@2DS00007 -
———— 5:37 PM:11@20500007@hasPowerON
$:37
Actuator ID Actustor I PM:10@Request@601479480@2DS00007@hasPower OFF
20500007 220.149.42.19 5:37 PM:11@#D500007@hasPower.OFF
5:37 PM:10@Response@601479480@ True
/‘/
——
%' Light Emulator =8
Device ID: 0500007
st | .

Light Level: Level 5
Lightlevet | 1 || 2 3 lndal LS
Power State: OFF Turn off i

Figure 91 Light control

Figure 92 shows the control of air condition through the application server. The air con
emulator offers functions for temperature adjustment, air flow adjustment, wind direction
adjustment, ventilation adjustment, conservation arrangement and power adjustment. The upper
part of the figure shows Air conditioning state, lower part shows the control area. Temp Regulation
offers temperature adjustment and Wind Level offers Wind strength adjustment. Wind Direction
offers Wind mode operation. Air Renewal offers ventilation mode. Open Order and Close Order

specifies the scheduled time for air conditioning function. Power offers Air conditioning power

122

control. Based on the comfort index of the room shown in the previous figure, the comfort state is

normal which means there is no need for air condition.

° Air-Condition Emulator ecn{slEl

18:43:59+09:00 Close Time:l Hour ON

-~ 93

[l Medium ON Air RenewalON

6:49 PM:00@connect@=DS00004 -
6:49 PM:11@2DS00004@hasTempState:17;hasPower.ON
649
PM:10@Request@231443012@=0D500004@hasPower.OFF
6:49 PM:11@2DS00004@hasTempState:17;hasPower.OFF
6:49 PM:10@Response@231443012@True

|l * Air-Condition Emulator

18492840900 Close Time:l Hour OFF

| E==— ¥

“17

Low ON Air RenewatON

‘emp Regulation:
Wind Level:

Wind Direction:

Power:

Device ID:

Figure 92 Aircon control

As the user connects the air con to the actuator middleware and sets the power state to ON, the
application server sends a control command to the actuator middleware to set the power state to

OFF. This process is shown in the screen shots here. Figure 93 shows the control of the boiler

123

through the application server. The boiler emulator offers functions like temperature adjustment,

boiler mode adjustment and power control. Temperature can be adjusted from 20 to 80, the mode

selection functions can specify the operation mode of boiler as water heater or heater, and adjusts

power ON/OFF state. Based on the comfort index of the room shown in the previous figure, the

comfort state is normal which means there is no need for switching on the boiler.

° Boiler Emulator

ulE)

OFF Hea
O O |
SlopBodev)
L sop |
8 ' Boiler Emulator
—

- -

HotWaterSetting ON

10:08 PM:00@connect@#DS00003

10:08 PM:11@=DS00003@hasPower.ON

10:16
PM:10@Request@787377553@#DS00003 @hasPower.OFF
10:16 PM:11@=DS00003@hasPower.OFF

10:16 PM:10@Response@787377553@True

HeatSetting ON

SuﬂBod«
Device ID: #D500003
L sop |

- -

OFF Hea

OO

Figure 93 Boiler control

As the user connects the boiler to the actuator middleware and clicks the start button, the

application server sends a command control to the actuator middleware to stop the boiler. And the

boiler is set to stop through the actuator middleware. This process is shown in the screen shots here.

124

5.4.4 Development and Reasoning of Application server ontology

This section describes the development of the application server ontology as well as the
reasoning performed on the ontology. Figure 94 shows the screen shot from protégé illustrating the
classes and the individuals defined in the ontology. Map Service class represents the Uri and the
code of the map that is registered in the GIS provider service provider. An Object in the ontology
represents any device that is registered in the system along with its location information. Object

Information class represents the objects registered in the application server ontology. Rule

information class represents

Q| > |© ApplicationServer (hitp:/fwww semanticweb orgifaizalontologies/201 41 0iApplicationServer)

(Active Ontology r Entities r Classes r Ohject Properties r Data Properties r Annotation Properties r Individuals r OWLYiz |/ Evaluation Tah r DL Query r OntoGr

r Class hierarchy |/ Class hierarchy (inferred) | Inclividuals: Building1

][x]

#® MapServicel

¥ @ Thing & Object1
Comfort_Index # Object10021

MapService # Object10023

; Object_Information @& Object10024

Lo Rule_Information @ Object10025

Object2

Object28

Object3

& seasonvaluel

& SeasonValue2

SeasonValue3

& SeasonValued

Figure 94 Application Server ontology

To calculate the required comfort index of a room, the application server first calculates the
season at that time. The application server ontology calculated the season value based on the data
given in table 5. It is calculated using Icl, M, and W value. Icl means the clothing insulation. It is
the thermal insulation provided by clothing. M means the metabolic heat production. W means the
effective mechanical work. In the ontology these are stored as attributes of the Rule Information
class, and each season is represented by an instance of the Rule Information class. Table 5 shows

the season name based on the values of these three factors.

125

Table 5 Season Data Calculation

0.0f 1.0f

1.2f

1.0f 0.0f 1.5f
1.1f 0.5f 1.1f
1.4f 0.4f 1.0f

Figure 95 shows a screen shot from protégé that describes the inferencing results performed on
the ontology. As shown in the figure the object property hasinformation is inferred by the reasoner,
relating the objects in the ontology to their map service. This information can be queried by the

user to inquire about the objects registered based on the map services in the ontology.

| MR UEIY | ARUSIGD | TNLSSUTY 1AW | WTIUGGY DHISIEIGS | ST sty |

Rules

1
ject1
+]
Object10023 I
Object10024
b Object10025 I
t Object2 1
Object28
® Object3 1
seasonvaluel
SeasonValue2 |
SeasonValue3 I
SeasonValue4
I e e o o o o o =
Types lﬁmﬁm# ————————————— 1
S MapService mhasInformation Object2
I m hasInformation Object3 I
Same Izl A | =hasinformation Object1 1
| m hasInformation Object28 |
Different Individuals
1 m hasnformation Object10021 1
m hasinformation Object10024
| mhasinformation Object10023 1
| mhasinformation Object10025 1
Inm property assertions 1
| =mMapServiceURI “htip://220.149.42.19 1
/Design_Time_Addresses/G_GIS_Service_Provider/GISProviderSe
I rvice/"~~string I
I mMapCode "5"~~long I
———————————————— —
egative object property assertions

Figure 95 reasoning on application server ontology

126

5.5 Semantic Application Client

5.5.1 Implementation of Semantic Application Client

Figure 96 shows the execution screen for the client which is a web based application and acts
as a simple visualization tools. It displays two controls to the user a textbox and a search button. It
searches for available services in the semantic service registry ontology. Service registry returns
the following service information Service name, IS WSDL, and Service Uri. The client displays
the above information to the user in the form of a list. By clicking the access button the client
displays the map data to the user. It displays the outdoor map view of the building registered.

The building that is registered in the ontology turns red with mouse hover. Once the user right
clicks the building, a user menu item is displayed showing the floors that are registered in the
building. When user selects a floor, the floor map is displayed in a separate window. It displays
zoom in, zoom out, move right, move left, move up and move down controls Floor map displays
the rooms that are registered in the floor. The objects registered in a room are displayed using
ellipses. The blue ellipse indicated a sensor object whereas the yellow ellipse indicate an actuator

object.

127

vy
(er56m)

anvy
s)

anvy
14054}

vy
(a3)

Figure 96 Application Client

object, a data view is displayed that shows:

The state of the sensor. If the sensor is connected to the application it shows the state ON

Current date time value

The latest temperature value detected by the sensor

Figure 97 shows the sensor data retrieved by the client. When the user clicks on the sensor

The latest humidity and illumination value detected by the sensor

The sensor name
The sensor id

And the sensor category list

hasState: [on)
Data Time: $/18/2016 11:41:12 4
@
i Temperature: 26.41°C
o“ng
sey sl 288W Humidty: 27.4%
(48.56m) (28.56m) (28.56m 28.56m
! f 5 1519.781x
fo] \ . has Name: temp,hum, light
e 0.00*
has 10: 2404
o - T o - sy hasType: | 3
. Speed: Oom/s has Category:
Attude: Oom PR = || -
% |
. b il
£ | |
anod “ne weoco 2080 sy
e (28.56m) (28.56m) (28.56m) (48.56m)
. I . {‘ A) ¢
I —T .. 0
= = e | '
A=1=1=]
)
| EndPoint:(871,459)

Figure 97 Sensor Data View

The SPARQL queries used to retrieve the above data are discussed below. Figure 98 shows the
SPARQL query for getting the sensor state from the sensor ontology. The figure displays the
SARQL query tab from protégé which allows users to execute SPARQL queries on the ontologies

developed in it.

129

PREFIX rdf. =http: lhwww w3 orgi 999/02/22-rdf-syntax-ns#=

PREFIX awl: <http: ifwww w3.0rgi200207 fowl#=

PREFIX xsc <http: ifwww w3.0rgi2001 HKMLSchemad=

PREFIX rofs: <http: www w3.0rgi2000/01 rdf-schema#=

PREFIX spo: <http: ihwww semanticweb orgifaizalontologiesi201 2i0/zervicepoviderontology =

SELECT ?ind 7id ?Pstate

WHERE {

7ind spo:ModeCode "2 xsd long.
7ind spo:hasState Ystate.

7ind spo:ModelD 7id. }

incl

icd

sensordl "SDO4" N shttpe ffwww w3.0rgf200 1 XMLSchema# strings warking

Figure 98 Get sensor state query

The first triple pattern in the query ?ind spo:NodeCode ‘2’**xsd:long selects the sensor with

the code value = 2. The second triple pattern ?ind spo:hasState ?state selects sensor state based on

the code of the sensor stored as a object property hasState in the ontology. The third triple

pattern ?ind spo:NodelD ?id selects the id of sensor based on the code of the sensor. The table

displays the results based on the query. It returns the instance, state and id of the sensor based on

the sensor code given in the query.

sensingdevices

Senso04

sensordl

Sensor2

Sensor3

Sensord

Sensors

SensorMiddlewarel

SensorServiceProviderl
& SensorSupportToolbox1
SPServices1

statel

State2

4 State3

temperature

TIP700CM

Description: sensor(1

Types Object property assertions
Sensor m connectsSensorMiddleware SensorMiddlewarel
mhasCategory Category3
Same Individual As mhasCategory Category2
mhasCategory Categoryl
Different Individuals mhasState idel

Data property assertions
mNodeExplain "MixedTypeSensor”~~string
mNodeCode "2"~“~long
mNodeID "SDO04"~"string
mNodeName "Sensor01™~~string

Figure 99 Sensor state before update query

130

Figure 99 shows a screen shot from protégé that illustrates the results before and after an update
query shown in Figure 100. State of a sensor is stored in the ontology using an object property
hasState. To update the state of the sensor the query shown in Figure 100 is run.

DELETE {
<http://www.semanticweb.org/faiza/ontologies/2015/0/serviceproviderontology/sensor01>

spochasState ?st.}
INSERT {
<http://www. semanticweb.org/faizafontologies/2015/0/serviceproviderontology/sensorQl>
spochasState ‘'working”.)
WHERE {
<http://www.semanticweb.org/faiza/ontologies/2015/0/serviceproviderontology/sensorQ1>
spochasState st}

Figure 100 Sensor state update query

Figure 100 shows a query from Sparl 1.1 Update query, which is an update language for RDF
graphs. It uses a syntax derived from the SPARQL Query Language for RDF. Update operations

are performed on a collection of graphs in a Graph Store.

w senaevicel
& sensingdevice5
& Senso04 Types Object property

Description: sensorld1

® sensordl Sensor m connectsSensorMiddleware SensorMiddlewarel
Sensor2 mhasCategory Category3
: :e"“'ri Same Individual A5 mhasCategory Category2
ensor
@ Sensors mhasCategory Categoryl

® SensorMmiddlewarel Different Individuals mhasState working

@ SensorServiceProviderl

& SensorSupportToolbox1
@ SPServicesl

® statel

& State2

& State3

& temperature

@ TIP700CM

Data property assertions
mNodeExplain "MixedTypeSensor™~~string
mNodeCode "2"~~long
mNodeIlD "SDD4™**string
mNodeName "Sensor01"~~string

Figure 101 Update query results

Operations are provided to update, create, and remove RDF graphs in a Graph Store. This query
updates the sensor state in the sensor ontology graph. The first triple pattern deletes the hasState
property associated with the specific sensor given in the Uri. The second triple pattern assigns a

given value to the hasState property of the specified sensor.

131

SPARGL guery:

PREFIX rdf: <http: ifwww w3 .orgi 999/02/22-rdf-syntax-ns#=

PREFIX owl: <http:fiwww w3.orgl2002/07 fowld=

PREFIX xsd: =http:liwww . w3.0rgi2001 (XMLSchema#=

PREFIX rdfs: =<http:diwww . w3.0rgi2000/01 rdf-schema#=

PREFIX spo: =http:fiwww semanticweh orgifaizalor i 015/0servicepoviderar
SELECT ?category ?catgcode

WHERE {

Tind spo:ModeCode 2" xsdlong.

Tind spochasCategory ?category.

‘?category spo:CategoryCode Toatgoode.

category
Category2 "HUMODXCOC ™~ <httpe ffwww w3.0rg/200 1/ XMLSchema#string >
Category3 VLKD"t wewew w3 .0rgf 200 1/ XMLSchema# string =
Categoryl "TMPOCXCC ™" <http: ffwww.w3.0rg/2001/XMLSchema#string>

Figure 102 Select Query

The WHERE clause identifies data in existing graphs, and creates bindings to be used by the
template. Figure 100 shows the state of the sensor after executing the update query. As shown the
state is changed from idle to working. Figure 102 shows the SPARQL query for retrieving the
category name and the category code of a sensor. The first triple pattern selects a sensor based on
its code whose value is specified as 2. The second triple pattern selects the hasCategory object
property of a sensor selected in the previous triple. The third triple pattern selects the category code
of the category instance selected in the second triple pattern. The results of this query are shown in

the same figure.

it {fwwn w3.019/2001/XMLSChamaBlang> ' SeNsor0L =~ <http:/fwww. w3,0r/200 1/ XMLEChemass "MixadType5ensor = ~<HLp. f/www w3.org2001/KML 20"~ ~ <hkEp: ffww w w3, 6r@/200 1/KMLECh ema#longs LA A <D e, w3 61Q/2001/XMLEenma #long

Figure 103 Select query

132

The SPARQL query for retrieving the sensor information is shown in Figure 103. The first
triple pattern selects a sensor based on its id whose value is specified as SDO1. The second triple
pattern selects the code of a sensor, the third triple selects the name of a sensor, the fourth triple
pattern selects the explain of a sensor, the fifth triple pattern selects the connectssensormiddleware
property of a sensor, the sixth triple pattern selects the middleware code based on the previous
triple. The seventh triple pattern selects the type of a sensor and the last triple pattern selects the
code of the type selected in the previous triple. Selected in the previous triple.

Figure 104 shows the indoor comfort index and environment state for a selected (right-clickled)
room. This process is carried out by the control system in the application server. The comfort index
calculation method is described in detail in the previous section. The figure displays the PMV value,
the PMD and the ET value. Mamdani Fuzzy system based on Mamdani fuzzy concept is used to
implement the fuzzy system. Based on the final value of the comfort index a control message is

created by the control system to send to the actuator.

StartPoint:(-12,-11) 100%
7|
a8 welolciol 311 L] e Bt
(48.56m) (28.56m) (28.56m) (28.56m 0 f4856m)
1 B
.)) o
ol (20 Shet J 284
(28.56m) PMV: 1.37 Shghtly Warm 48.56m) |
PPD: 43.78% A Iittle comfortable | ——]
il
ET: 22.7C Normal

Figure 104 Room Comfort Index

Figure 105 shows the fan data retrieved by the client. When the user right clicks on an actuator
object it requests the service provider to retrieve that data from the actuator ontology. The figure

133

shows the data for a fan that is registered in the ontology. It shows the Actuator ID, Actuator Name,
Actuator Type, Actuator Model, and the power consumption of the actuator. In a separate list it
displays the latest state of the actuator, it consists of the date time when the state is changed, the

power state, and the wind speed at the time.

StartPoint:(-157,-87) 70%
<-Back
-Image
has 1D: #DS00009
has Name: LABLIGHT
e g S P | e ot XQ7100_453
(48.56m) (2856) (20.56m) @156m 0 R - A
hasState
fol fol o has Product Time: 1/1/0001 12:00:
State Name State Value
(3 1 P hasPower: 234KW | DATE_TIME 5/19/2016 3:35::
!
| hasPower OFF
hasExplain: LABLIGHTS |
@ @ . @ | hasWindSpeed Strong
m Hide... < »
anvy e weee T —_—
(4856) (28560) 2a56m) (28.56m) l 5.30m) I I |
= PMV: 1.37 Shghtly Warm
Il z
- PPD: 43.78% A little comfortable &
1l v
ET: 22.7'C Normal

Figure 105 Fan data view

Figure 106 shows the light data retrieved by the client. When the user right clicks on an actuator
object it requests the service provider to retrieve that data from the actuator ontology. The figure
shows the data for the light that is registered in the ontology. It shows the Actuator 1D, Actuator
Name, Actuator Type, Actuator Model, and the power consumption of the actuator. In a separate
list it displays the latest state of the actuator, it consists of the date time when the state is changed,

the power state, and the wind speed at the time.

134

StartPoint:(-12,-11)

E3 1]
(48.56m)

wejolciof
(28.56m)

2mEH0|
(28.56m)

| |

has 1D:

A10¢
has Name:

@NE
has Type:

(28.56m
has Model:

has Product Time:

CExoIal

*18

(28.56m)

N = M
L]

PMV: 1.37
43.78%
ET: 22.7'C

hasPower:

(o]
hasExplain:

Shightly Warm
A little comfortable $

Normal

Figure 106 Light data view

<<IPIH

100%

<-Back
LI |
~Image
2DS00007
hight?
Light :
XE007 ’ :
hasState
1/1/0001 12:00:
State Name State Value
234KW iDATE_TlME 5/18/2016 11:32
hasPower OFF
lablight
‘. »
_I
E3] |
48.56m)

Figure 107 shows the air conditioner data retrieved by the client. When the user right clicks on

an actuator object it requests the service provider to retrieve that data from the actuator ontology.

The figure shows the data for the air conditioner that is registered in the ontology. It shows the

Actuator 1D, Actuator Name, Actuator Type, Actuator Model, and the power consumption of the

actuator. In a separate list it displays the latest state of the actuator, it consists of the date time when

the state is changed, the power state, and the wind speed at the time.

135

StartPoint:(-60,-36)

are

«N8
(28.56m)

weolciof

(28.56m)

’ " ol
-Image
has 10: #DS00004
A104 has Name: airconditioner
e, f— Anano VN8 has Type: AirCondition
(48.56m) (28.56m) (28.56m) QBS6mE Iy s 27500
) hasState
has Product Time: 1/1/0001 12:00:
State Name State Value
/ . hasPower: 3423KwW DATE_TIME 5/19/2016 6:49:!
hasPower OFF
lab air
hasExplain:
(o] conditioner hasTempState 17

@ Hide... < >

—
2R800| ey
(28.56m) (48.56m)

Figure 107 Aircon data view

Figure 108 shows the boiler data retrieved by the client. When the user right clicks on an

actuator object it requests the service provider to retrieve that data from the actuator ontology. The

figure shows the data for a boiler that is registered in the ontology. It shows the Actuator ID,

Actuator Name, Actuator Type, Actuator Model, and the power consumption of the actuator. In a

separate list it displays the latest state of the actuator, it consists of the date time when the state is

changed, the power state, and the wind speed at the time.

136

StartPoint:(-12,-11)

| I

has 10:
Al0¢

#DS00003

1

-Image

100%

<-Back

has Name: boiler t
AN
a8 wWejojciof L2280 has Type: Bodler 0
(48.56m) (28.56m) (28.56m) (28.56m
has Model: B8OI_3
s] u] L) hasState
has Product Time: 1/1/0001 12:00:
State Name State Value
v] T hasPower: 3422KW | DATE_TIME 5/19/2016 10:17
. hasPower OFF
hasExplain: Lab Boiler
e °

*718
3 (28.56m)

- t b PPOD:
iy

PMV: 1.37

@"“--- I — : == I

ChoIAl a8

48.56m)

Shightly Warm

43.78% A lttle comfortable

<<IPIH

ET: 22.7C Normal

Figure 108 Boiler data view

Query shown in Figure 109 a query from Spargl 1.1 Update query, which is an update language
for RDF graphs. It uses a syntax derived from the SPARQL Query Language for RDF. Update
operations are performed on a collection of graphs in a Graph Store. Operations are provided to
update, create, and remove RDF graphs in a Graph Store. This query updates the actuator state in
the sensor ontology graph. The first triple pattern deletes the hasState property associated with the
specific actuator given in the Uri. The second triple pattern assigns a given value to the hasState
property of the specified actuator. The WHERE clause identifies data in existing graphs, and creates
bindings to be used by the template. Figure 110 displays a screenshot that shows the state of an
actuator after the update query is executed. As shown the state is changed from offline to online as

explained before.

137

DELETE {

<http://www.semanticweb.org/faiza/ontologies/2016/3/SemanticActuator/Actuatorl>
ap:hasState ?st.}
INSERT {

<http://fwww.semanticweb.org/faiza/ontologies/2016/3/SemanticActuator/Actuatorl>
ap:has5tate ap:'online’.}
WHERE {

<http:/fwww.semanticweb.org/faiza/ontologies/2016/3/5emanticActuator/Actuatorl>
ap:hasState ?st.}

Figure 109 Actuator state update query

icidals Actuator memefllries

vlix

Actuatorl o
& Actuator2

Actuator3

& Actuatord

Actuators

& Actuator6

4 Actuator7

& Actuator8

Actuator9

ActuatorMiddlewarel

ActuatorMiddleware2

& ActuatorServiceProvideri
@ ActuatorSupportToolbox1
ControlServicel

#® Managementl

& Middleware3

& Modell Description: Actuator1 Property assertions: Actuator!
. Model2 Types Object property assertions

Model3 Actuating_Device mhasState online
& Modeld

Figure 110 Update query results

Figure 111 shows a simple spargl select query to show the state of an actuator in the ontology.
The state is stored as an object property hasState. The first triple pattern illustrates the variable for
the value that is returned by the query. The second triple pattern states the id of the actuator whose
state is needed, and the third triple pattern mentions the hasState property related to the actuator.

The results of the query are also shown in the figure.

138

| e ey | s | I T e T T T

SPARGL guery:

PREFIX rdf: <hitp: fiwwew w3.orgh 999002/22-rdf-syrtax-nsg=
PREFIX awl: <http: ihwww w3 orgl2002/07 fowl#=
PREFIX xsct =http:itwww w3 org/2001 MLSchemag=
PREFIX rdfs: <http: fhwww w3 .orgi2000/01 rdf-schemads
PREFI¥ ap: =http:lhwww semanticweb org/faizalontologies/2016/3/Semartic Actuatoré=
SELECT 7accState
WHERE {
Pind ap: ActuatorlD "$D500004' " xsd: string.
Pind ap:hasState TaccState.
¥

offline

Figure 111 Select actuator state query

5.5.2 Performance Analysis of Sensor Provision based on

Application Client

The following graphs shows the comparisons of SPARQL and SQL queries for retrieving
sensor information and sensor state from the sensor ontology through the semantic sensor service
provider module. The queries are compared for 10 iterations of retrieval. The results show that

SPARQL queries take less time to retrieve and display the results to the client than the SQL query.

139

GetSensorinfo

600
500
400
300
200

100 . . . N ‘]
' o TN

1 2 3 4 5 6 7 8 9 10
H Spargl msql

Figure 112 Query comparison for getting sensor info

Figure 112 shows the graph for comparing the SPARQL and SQL queries for retrieving sensor
information. Application client displays the registered objects (sensors and actuators) to the user.
When the user clicks an object, the client connects to the object’s service provider and retrieves the
information. The graph shows the time taken in milliseconds by SPARQL and SQL queries. The
min time taken by SPARQL query is 106.5ms, the max time is 246.5, and the average time is 169.78.
Whereas the mix, max and average time taken by the SQL query is 104.9, 498.3, and 244.42. The
graph shown in Figure 113 illustrates the SPARQL and SQL query comparison for retrieving sensor
state from the semantic sensor service provider repository. The comparison is based on the min,
max, and average time taken in milliseconds to retrieve the sensor state. The time taken by
SPARQL query is min 46.1ms, max 201.43, and average 86.29ms. The time taken by SQL query

to retrieve sensor state is min 48.92ms, 225.16ms and average 114.92ms.

140

GetSensingState

250
200
150

100
SOI il ilalslnlninln
0

1 2 3 4 5 6 7 8 9 10

M sparqgl msql

Figure 113 Query comparison for retrieving sensor state

5.5.3 Performance Analysis of Actuator Information Provision

based on Semantic Application Client

The following graph shows the comparison results of SPARQL and SQL queries based on min,
max and average time taken in milliseconds. The queries compared here are for retrieving actuator
information and actuator state. Figure 114 displays the graph for comparing SPARQL and SQL
queries for retrieving actuator data. The comparison is based on the min, max and average time
taken in milliseconds for each query to retrieve the information. The min time taken by SPARQL

guery is 105.6ms, the max time taken is 225.9ms, and the average time taken is 162.9ms.

141

Get Actuator Info

350
300
250
200
150

10 - - - = B AN e -
1 2 3 4 5 6 7 8 9 10

H spargl Hsql

o O

Figure 114 Query comparison for getting actuator information

Whereas the min, max and average time taken by the SQL query is 106.8ms, 324.2ms, and
208.1ms.The graph shown in Figure 115 displays the time taken in milliseconds for each query to
retrieve the actuator state. The min time taken by SPARQL query is 88.23ms, the max time taken
is 251.57ms, and the average time taken is 142.17ms, Whereas the min, max, and average time

taken by SQL query is 102.3ms, 341.5ms, and 197.5ms.

Get Actuator State
400
300 L
200 L - = Lo
0 — __ __ - = __ I __ I __ I __ I __
1 2 3 4 5 6 7 8 9 10
H spargl ®sql

Figure 115 Query comparison for retrieving actuator state

Figure 116 displays the graph for comparing the time taken in milliseconds by the application
client to retrieve the building information. 10 iteration have been compared for each query in terms

of min, max, and average time taken. The min time taken by SPARQL query is 90ms, the max time

142

taken is 165ms, and the average time taken is 140.47ms, Whereas the min, max, and average time

taken by SQL query is 142ms, 325ms, and 194.6ms.

Get Building Info

350
300
250
200
150
100
50
p EEES EEES SRS ERES EREES EEES ERES SR s
1 2 3 4 5 6 7 8 9 10

M sparql Hsql

Figure 116 Query Comparison for getting building information

143

6 Conclusion

The problem discussed in this thesis is perhaps one of the most challenging task for loT
application developers. In this thesis we have proposed a solution for providing interoperability
caused by the heterogeneity of 10T devices. We have used semantic technologies to overcome the
issue of interoperability. We have developed a Semantic loT system based on Support toolbox,
that uses both semantic and database technologies to collect, store and provider environmental
context information. It is built upon various service modules that collects data from sensors and
actuators bind their location data and provider this information to the users.

We have taken a modular approach by building an ontology model for each module to represent
its data. In the Semantic sensor module we have reused the SSN ontology. Reusing existing
ontologies increases application interoperability both on syntactic and semantic level. Stakeholders
using the same ontology are assumed to agree on the concepts used in the ontology. We have used
SSN ontology to define basic definition of sensor, its properties and its observations. We have
extended this ontology by adding additional attributes related to our system.

We did performance analysis of the system based on the SPARQL and SQL queries. The main
queries that effect the system performance are adding a new resource to the ontologies, updating
or deleting the resource, and to retrieve the resource information from the client layer. The time
taken in milliseconds for these queries to execute has been calculated for 10 iterations of each query.
The results of the analysis shows that the overall response of the SPARQL queries is better than
the SQL queries.

Future work includes linking the RDF data by publishing the ontologies online. By publishing
the ontology online it can be interlinked to existing ontologies and become more useful through
semantic queries. Publishing an ontology means making it an accessible resource, both human and
machine readable, with documentation with examples and with its license specified. Linked Data
lies at the heart of what Semantic Web is all about: large scale integration of, and reasoning on,

144

data on the Web. It can help a person or machine can explore the web of data. With linked data,
when you have some of it, you can find other, related, data. Our eventual goal is to publish the
ontology online and link it to other similar ontologies. This can make the ontologies useful for

people developing similar applications.

145

[1]
[2]
[3]
[4]
[5]
[6]
[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

References

S. De, P. Barnaghi, M. Bauer, and S. Meissner, “Service modelling for the Internet of
Things,” 2011 Fed. Conf. Comput. Sci. Inf. Syst., pp. 949-955, 2011.

L. F. Sikos, “Introduction to the Semantic Web,” in Mastering Structured Data on the
Semantic Web, 2015, pp. 1-11.

V. H. Laand A. Cavalli, “Security Attacks and Solutions in V Ehicular a D Hoc N
Etworks : a S Urvey,” vol. 4, no. 2, pp. 1-20, 2014.

E. Koivunen, M. R., & Miller, “W3C Semantic Web Activity,” W3C. Semantic Web Kick-
Off in Finland, 2001. [Online]. Available: http://www.w3.0rg/2001/12/semweb-
fin/w3csw.

E. Bash, No Title No Title, vol. 1. 2015.

“Semantic Web - XML2000, slide 10.” W3C.

W3C, World Wide Web Consortium (W3C) About the Consortium. 20009.
“XML and Semantic Web W3C Standards Timeline.” 2012.

M. Compton, P. Barnaghi, and L. Bermudez, “The SSN Ontology of the Semantic Sensor
Networks Incubator Group,” J. Web ..., pp. 1-6, 2011.

M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC (R) Sensor Web Enablement:
Overview and High Level Architecture,” Lect. Notes Comput. Sci., vol. 4540, no.
December, pp. 175-190, 2007.

A. Katasonov and M. Palviainen, “Towards ontology-driven development of applications
for smart environments,” 2010 8th IEEE Int. Conf. Pervasive Comput. Commun. Work.
(PERCOM Work., pp. 696701, 2010.

P. Barnaghi, W. Wang, C. Henson, and K. Taylor, “Semantics for the Internet of Things:
early progress and back to the future,” Int. J. Semant. Web Inf. Syst., vol. 8, pp. 1-21,
2012.

L. Atzori, A. Tera, and G. Morabito, “The Internet of Things : A survey,” Comput.
Networks, vol. 54, no. 15, pp. 2787-2805, 2010.

C. Reed, M. Botts, J. Davidson, and G. Percivall, “Open Geospatial Consortium Sensor
Web Enablement: Overview and High Level Architecture.,” IEEE Autotestcon, pp. 372—
380, 2007.

M. Botts and A. Robin, “OpenGIS ® Sensor Model Language (SensorML)
Implementation Specification,” Design, p. 180, 2007.

S. Avancha, C. Patel, and A. Joshi, “Ontology-driven adaptive sensor networks,” in
Proceedings of MOBIQUITOUS 2004 - 1st Annual International Conference on Mobile
and Ubiquitous Systems: Networking and Services, 2004, pp. 194-202.

C. A. Henson, J. K. Pschorr, A. P. Sheth, and K. Thirunarayan, “SemSOS: Semantic
sensor observation service,” in 2009 International Symposium on Collaborative
Technologies and Systems, CTS 2009, 2009, pp. 44-53.

146

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]

[30]
[31]

[32]

M. Compton, C. Henson, L. Lefort, H. Neuhaus, and A. Sheth, “A survey of the semantic
specification of sensors,” in CEUR Workshop Proceedings, 2009, vol. 522, pp. 17-32.

E. Saddikt, “A Universal Ontology for Sensor Networks Data 1,” Work, no. June, pp. 27—
29, 2007.

C. Villalonga, M. Bauer, V. Huang, J. Bernat, and P. Barnaghill, “Modeling of sensor data
and context for the real world internet,” in 2010 8th IEEE International Conference on
Pervasive Computing and Communications Workshops, PERCOM Workshops 2010, 2010,

pp. 1-6.

A. Gyrard, “A Machine-to-Machine Architecture to Merge Semantic Sensor
Measurements,” pp. 371-375.

N. Shah, K. M. Chao, T. Zlamaniec, and A. Matei, “Ontology for home energy
management domain,” in Communications in Computer and Information Science, 2011,
vol. 167 CCIS, no. PART 2, pp. 337-347.

A. Pease, 1. Niles, and J. Li, “The Suggested Upper Merged Ontology: A Large Ontology
for the Semantic Web and its Applications,” Imagine, vol. 28, pp. 7-10, 2002.

M. Ryu, J. Kim, and J. Yun, “Integrated semantics service platform for the Internet of
Things: a case study of a smart office.,” Sensors (Basel)., vol. 15, no. 1, pp. 2137-60, Jan.
2015.

H. Patni, C. Henson, and A. Sheth, “Linked sensor data,” in 2010 International
Symposium on Collaborative Technologies and Systems, CTS 2010, 2010, pp. 362—-370.

K. Center.org, “Project Descriptions,” Environment, no. August. 2005.
A. Gémez-Pérez, “SemsorGrid4Env FP7-1CT-223913.” .
W3C, “Semantic Sensor Network Ontology.” 2014.

A. Broring, J. Echterhoff, S. Jirka, I. Simonis, T. Everding, C. Stasch, S. Liang, and R.
Lemmens, New generation Sensor Web Enablement, vol. 11, no. 3. 2011.

Open Geospatial Consortium, “Sensor Web Enablement DWG.” pp. 1-2, 2015.

Marek Obitko, Faculty of Electrical Engineering, Czech Technical University in Prague,
“Philosophical Roots - Introduction to ontologies and semantic web - tutorial.” .

E. Sirin, B. Parsia, and B. Cuenca, “Pellet : A Practical OWL-DL Reasoner.”

147

	Table of Contents
	List of figures
	Acronyms
	Abstract
	1 Introduction .
	2 Related work
	2.1 Existing Semantic IoT Systems
	2.2 The SSN Ontology

	3 Semantic IoT System Architecture based on Sensor and Actuator Network
	4 Design of Semantic IoT System based on Sensor Network
	4.1 Semantic Sensor Platform
	4.1.1 Semantic Sensor Service Provider
	4.1.2 Semantic Sensor Middleware
	4.1.3 Semantic Sensor Support Toolbox
	4.1.4 Semantic sensor provider ontology modelling

	4.2 Semantic Actuator Platform based on Actuator Network
	4.2.1 Semantic Actuator Service Provider
	4.2.2 Semantic Actuator Middleware
	4.2.3 Semantic Actuator Support Toolbox
	4.2.4 Actuator Service Provider Ontology Modelling

	4.3 Semantic GIS Platform based on Indoor Location Information
	4.3.1 Semantic GIS Service Provider
	4.3.2 Semantic GIS Support Toolbox
	4.3.3 GIS Provider Ontology Modelling

	4.4 Semantic Service Registry
	4.4.1 Service Registry Ontology Modelling

	4.5 Semantic Application Server
	4.5.1 Semantic Application Server Support Toolbox
	4.5.2 Smart Control
	4.5.3 Smart Control Concept Design
	4.5.4 Application Server Ontology Modelling

	4.6 Semantic Application Client

	5 Implementation and Performance Analysis of Semantic IoT System
	5.1 Semantic Sensor Service Provider
	5.1.1 Implementation of Semantic Sensor Service Provider
	5.1.2 Development and Reasoning of the Sensor Ontology
	5.1.3 Performance Analysis of Semantic Sensor Service Provider

	5.2 Semantic Actuator Service Provider
	5.2.1 Implementation of Semantic Actuator Service Provider
	5.2.2 Development and Reasoning of Actuator Ontology
	5.2.3 Performance Analysis of Semantic Actuator Service Provider

	5.3 Semantic GIS Service Provider
	5.3.1 Implementation of Semantic GIS Service Provider
	5.3.2 Development and Reasoning of GIS Provider ontology
	5.3.3 Performance Analysis of Semantic GIS Service Provider

	5.4 Semantic Application Server
	5.4.1 Implementation of Semantic Application Server
	5.4.2 Smart Control Implementation
	5.4.3 Actuator Emulator Control
	5.4.4 Development and Reasoning of Application server ontology

	5.5 Semantic Application Client
	5.5.1 Implementation of Semantic Application Client
	5.5.2 Performance Analysis of Sensor Provision based on Application Client
	5.5.3 Performance Analysis of Actuator Information Provision based on Semantic Application Client

	6 Conclusion
	References

<startpage>16
Table of Contents i
List of figures iii
Acronyms vi
Abstract viii
1 Introduction . 1
2 Related work 5
 2.1 Existing Semantic IoT Systems 9
 2.2 The SSN Ontology 15
3 Semantic IoT System Architecture based on Sensor and Actuator Network 20
4 Design of Semantic IoT System based on Sensor Network 25
 4.1 Semantic Sensor Platform 25
 4.1.1 Semantic Sensor Service Provider 25
 4.1.2 Semantic Sensor Middleware 26
 4.1.3 Semantic Sensor Support Toolbox 27
 4.1.4 Semantic sensor provider ontology modelling 30
 4.2 Semantic Actuator Platform based on Actuator Network 32
 4.2.1 Semantic Actuator Service Provider 32
 4.2.2 Semantic Actuator Middleware 34
 4.2.3 Semantic Actuator Support Toolbox 35
 4.2.4 Actuator Service Provider Ontology Modelling 38
 4.3 Semantic GIS Platform based on Indoor Location Information 41
 4.3.1 Semantic GIS Service Provider 41
 4.3.2 Semantic GIS Support Toolbox 42
 4.3.3 GIS Provider Ontology Modelling 45
 4.4 Semantic Service Registry 47
 4.4.1 Service Registry Ontology Modelling 49
 4.5 Semantic Application Server 51
 4.5.1 Semantic Application Server Support Toolbox 52
 4.5.2 Smart Control 54
 4.5.3 Smart Control Concept Design 55
 4.5.4 Application Server Ontology Modelling 57
 4.6 Semantic Application Client 60
5 Implementation and Performance Analysis of Semantic IoT System 63
 5.1 Semantic Sensor Service Provider 65
 5.1.1 Implementation of Semantic Sensor Service Provider 65
 5.1.2 Development and Reasoning of the Sensor Ontology 72
 5.1.3 Performance Analysis of Semantic Sensor Service Provider 76
 5.2 Semantic Actuator Service Provider 79
 5.2.1 Implementation of Semantic Actuator Service Provider 79
 5.2.2 Development and Reasoning of Actuator Ontology 88
 5.2.3 Performance Analysis of Semantic Actuator Service Provider 91
 5.3 Semantic GIS Service Provider 93
 5.3.1 Implementation of Semantic GIS Service Provider 93
 5.3.2 Development and Reasoning of GIS Provider ontology 101
 5.3.3 Performance Analysis of Semantic GIS Service Provider 103
 5.4 Semantic Application Server 105
 5.4.1 Implementation of Semantic Application Server 105
 5.4.2 Smart Control Implementation 114
 5.4.3 Actuator Emulator Control 119
 5.4.4 Development and Reasoning of Application server ontology 125
 5.5 Semantic Application Client 127
 5.5.1 Implementation of Semantic Application Client 127
 5.5.2 Performance Analysis of Sensor Provision based on Application Client 139
 5.5.3 Performance Analysis of Actuator Information Provision based on Semantic Application Client 141
6 Conclusion 144
References 146
</body>

