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Abstract

Smart homes and residential buildings are becoming one of the interesting and challenging
research topics in order to satisfy what occupants’ need in the certain building environment. At the
same time, the total amount of energy consumption in smart home and building environment has
been increasing rapidly since last few years. Therefore, many scientific researchers have been
given huge attention to the energy control and management in smart home and residential building
environment. Several proposals based on optimization algorithms and other technologies exist in
literature that has been tried to solve the challenge between energy consumption and occupant’s
comfort index. In this thesis, we proposed rule based optimization scheme for reducing power
consumption, an optimization scheme based on dynamic user setting for multi-users, and
optimization scheme based on prediction of indoor environment parameters in order to increase
user comfort index and consume less energy in the smart home area. Previously, we have already
implemented optimization algorithms such as Ant colony optimization and Incremental genetic
algorithm in order to increase user satisfaction level and energy efficiency. The energy control
system using algorithms aimed to find highest optimal set points and increase the occupant’s
overall satisfaction in building environment. It gives a high overall comfort index and less power
consumption results. However, there are still ways to get higher comfort index results with less
energy consumption. Therefore the purpose of this thesis is aimed to increase occupant’s comfort
index and consume less power through optimal environment set points which is using rule based
optimization. In addition, we considered multi user set point setting for every members of the
home. Thus every user is able to customize their comfort condition ranges by dynamic user set
point settings for multi-users. The third proposed idea is about predicting indoor environment
parameters to consume less power. As a result, RBO reduced power consumption by 24.32% as
compared to GA, 10.26% as compared to IGA, and 25.72% as compared to ACO. To satisfy multi
users’ comfort in smart home, we proposed dynamic user set points setting by three methods.
Among the three methods, max-min based user set point setting consumed highest power. Average
based user set point setting reduced power by 4.28% as compared to max-min based user set point

iX



setting and min-max based user set point setting reduced power by 8.74% as compared to max-
min based user set point setting. Finally, we compared predicted indoor environment parameters
and unpredicted indoor parameters. For illumination and air quality control, the results were
almost similar. But, the prediction of indoor parameters, for temperature control, ABS, and RBO
based system reduced power consumption by 2% as compared to unpredicted indoor parameters,
ABS, and RBO based system. Prediction of indoor parameters, for temperature control Max-min,
and RBO based system reduced power consumption by 0.71% as compared to unpredicted indoor
parameters, Max-min, and RBO based system. Similarly, prediction of indoor parameters, for
temperature control Min-max, and RBO based system reduced power consumption by 3.28% as

compared to unpredicted indoor parameters, Min-max, and RBO based system.
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1. Introduction

The usage of energy has been increased worldwide since last decade. People have been spending
most of their time in building environment. Because of this reason, too much energy has been
consumed in smart and intelligent building areas. At the same time, energy resource that we have is an
expensive and certain limit. Therefore, we need solutions that consume less power with occupants’
high satisfaction or comfort level in the smart buildings, thus spending less money on energy
consumption. In order to overcome those issues researchers have been paying their attention to this
topic. Increasing the occupants’ overall comfort index and decreasing energy consumption is still a

big challenge in energy management and control systems.

Why we need to implement energy efficient system? We have already mentioned about issues that
we have been facing related to usage of energy in smart home and building. In order to improve the
occupants’ overall satisfaction level with consume less energy. Also to overcome financial issues, we
need an energy efficiency system. The fundamental purpose of implementing energy efficient system

is improve to make occupants comfort index and consume less power in the smart home.

What are the energy control and management system in smart home? Basically, according to the
basic definition that energy management and control system is a system of computer-aided tools
utilized by operators of electric utility grids to monitor, control, and optimize the performance of the
generation and transmission system. Therefore, inside the smart home area, we can manage, control,
and optimize the usage of the generation using energy management and control system.

What is optimization algorithm? Optimization algorithms, try to find the minimum values of
mathematical functions, are used commonly. Among other things, they’re used to evaluate design
tradeoffs, to assess control systems, and to find patterns in data. One way to solve a difficult
optimization problem is to first reduce it to a related but much simpler problem, then gradually add

complexity back in, solving each new problem in turn and using its solution as a guide to solving the



next one. This approach seems to work well in practice, but it’s never been characterized theoretically.
What is optimization and optimization problem? Mathematics, computer science and operations
research, mathematical optimization is the selection of the best elements from some set of available
alternatives. Basically, optimization algorithms aim is that maximizing or minimizing a real function
by systematically choosing input values from an allowed set and estimate the value of the function.
Generally, an optimization issue is the problem of finding the fittest solution from all possible
solutions. An optimization issue can be divided into two sections depending on whether the variables
are continuous or discrete.

Why do we need to use energy optimization? Optimization has been used by an energy management
system to find optimal parameters. There is two major elements in this system are current indoor
parameters and user set points. The current indoor parameters indicate the environmental conditions in
the smart home area. The user set points indicate the demand comfort level of the occupants in the
smart home area. To express user’s comfort, we consider three parameters, such as temperature,
illumination, and air quality. Then current indoor environment and user set points consist of those
basic three parameters. The difference between user set points and current indoor parameters is called
error difference. In our thesis, error difference is the input to the fuzzy controller in order to calculate
required power consumption. So here is an important point that the minimum error difference can
achieve minimum power consumption. In this way, it is obvious that we need to use energy
optimization in order to minimize the error difference between the user set points and current indoor
parameters. As a result of those concepts, we can minimize the error difference between the two
parameters using optimization. At the same time we can achieve minimum energy consumption in a
smart home.

Figure 1.1 shows the conceptual design of overall proposed ideas. Each concept is described below.
We propose three ideas in this work. Firstly, the rule based optimization scheme for reducing power is
proposed. The rule based optimization targets to satisfy of the user’s requirement along with minimal
energy consumption with improved performance in terms of computation. The ranges of user set
parameters are optimized using rule based optimization. Then the optimal parameters from rule based

optimization and indoor environment parameters from sensors are input to fuzzy controller.
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Figure 1.1 Conceptual design of overall proposed ideas

Then minimum required power is output of a fuzzy controller which is passed to control actuators
for temperature, illumination, and air quality. Coordinator agent takes as input required power and
optimal parameters. The coordinator agent adjusts the input power of the smart home on the basis of
available power, required power. The adjusted power compared with the required power to get the
actual consume power. The consumed power is used by the actuators. Secondly, optimization scheme
based on dynamic user set point setting for multi-users is proposed. The dynamic user set point setting
is considered for comfort condition of every member of the home. Every member is able to choose
their comfort ranges which are minimum and maximum between certain ranges. Then minimum and
maximum ranges are input to dynamic user set point setting and system level comfort ranges for
temperature, illumination, air quality are calculted according to all members comfort ranges. We use

three met



hods to calculate actual user set point which is average based setting, maximum-minimum based
setting, and minimum-maximum based setting. The actual user set points from dynamic user set point
setting is input to rule based optimization to get optimal parameters. Then the optimal parameters
from rule based optimization and indoor environment parameters from the sensors are input to fuzzy
controller. Minimum required power is output of fuzzy controller for controls which are temperature,
illumination, air quality. Coordinator agent takes as input required power and optimal parameters.
The coordinator agent adjusts the input power of the smart home on the basis of available power,
required power. The adjusted power compares with the required power to get the actual consume
power. The consumed power is used by the actuators. Thirdly, optimization scheme based on
prediction of indoor environment paremeters. We use Kalman filter prediction for predicting indoor
environment parameters from the sensor. We observe small reduction in actual power consumption by

using prediction of indoor environment parameters.

The rule based optimization idea is inspired by comfort index calculation. The goal of optimizing
user set points is in order to maximize comfort index and at the same time consuming less energy.
Therefore, getting optimal parameter is the key of the system. If we can get optimal parameters with
highest comfort index, we can get minimum power consumption. For this reason, rule based
optimization considered on minimizing the error difference between current indoor environmental
parameters and user set points based on some rules. Users can define their own ranges of each set
point. So, user defined set point ranges, and current environment parameters are input to the rule
based optimization. We optimize temperature, illumination, and air quality parameters separately.
Current environmental parameters such as temperature, illumination, and air quality and user set point

ranges are input to the rule based optimization.

User set points define comfortable maximum and minimum ranges of users. In smart home, comfort
environment is important to every family member. Therefore, we suggest that all people in the smart
home are able to set their comfortable user set points. Then the system user set point is calculated by

user set point setting. Thus, we can make a comfortable environment for every member in a smart



home. The adjusted user set points are input of the rule based optimization. Actually the user set

points are parameters which have maximum and minimum value. It indicates that user’s comfort zone.

Optimization scheme based on prediction of indoor environment parameters uses Kalman filter to
predict indoor environment parameters from sensors. Then predicted indoor environment parameters
are input to rule based optimization to get optimal parameters and also it is input to the fuzzy
controller to calculate required power. We consume less energy using Kalman filter prediction of

indoor environment parameters.



2. Related works

2.1. Optimization approaches in energy consumption

In this section we are going to discuss about the related work optimization and prediction algorithms
which are applied to the energy management system and schemes. Since people spend most of their
time in building, the environment comfort conditions of buildings are highly related to occupants’
satisfaction. Therefore, in the literature many works have been proposed to energy savings and energy
management control system. Those works have been applied optimization algorithms to address the
problem. In particular genetic algorithm (GA) is used by an energy management system in many
ways. Optimizing the input parameters of fuzzy logic using GA and predict using Kalman filter. The
parameters we optimized are temperature, illumination, and air-quality which reflects the occupant’s
comfort index in the building environment. The proposed GA based optimized model produces over
all improved comfort indexes as compare to our previous work PSO based system [3]. Adaptive
learning algorithm based on genetic algorithms GA for automatic tuning of proportional, integral and
derivative (PID) controllers in Heating, ventilating, and air conditioning (HVAC) systems to achieve
optimal performance. Genetic algorithms which are search procedures based on the mechanics of
Darwin’s natural selection, are employed since they have proven to be robust and efficient in finding
near-optimal solutions in complex problem spaces. The modular, dynamic simulation software
package HVACSIM has been modified and incorporated in the genetic algorithm-based optimization
program to provide a complete simulation environment for detailed study of controller performance.
Three performance indicators overshoot, settling time, and mean squared error are considered in the
objective function of the optimization procedure for evaluation of controller performance [4]. Genetic
algorithm optimization techniques are applied to shift properly the membership functions of the fuzzy
controller in order to satisfy the occupants’ preferences while minimizing energy consumption. The
implementation of the system integrates a smart card unit, sensors, actuators, interfaces, a

programmable logic controller (PLC), local operating network (LON) modules and devices, and a



central PC which monitors the performance of the system. The communication of the PLC with the
smart card unit is performed using an RS 485 port, while the PLC-PC communication is performed
via the LON network [10]. Energy savings potential for using MPC with weather predictions for the
investigated building heating system were between 15% and 28%, depending on various factors,

mainly insulation level and outside temperature [12].

In the literature many works have been proposed in the area of energy savings and some valuable
energy management control systems have been proposed. Approaches based on conventional control
systems have been introduced in prior works [22, 23]. These conventional controllers consist of
classical controllers [22]. The classic controller has the temperature overshoot problem. The other
problem with this approach is that, it does not consider user set parameters and the model is not user
friendly. It also does not address the energy efficiency and the model was not energy efficient. To
overcome the overshoot problem designer proposed PID controllers [23]. These controllers improve
the situation, but the improper choice of the gains in PID controllers could make the system unreliable
and unstable. Therefore, designers give attention to the optimal controller and adaptive controller
respectively [24, 25]. The problems of conventional controllers are addressed in the optimal and
adaptive controls. The optimal controller based approach improves the thermal comfort. Adaptive
controllers have the capability to adapt to the environmental conditions. It is reported as most
promising controllers in the context of adaptation to the climate conditions. Although optimal and
adaptive controllers addressed the problems of classical controllers, but these approaches also have
problems. These approaches need a building model which makes it difficult to implement for each and
every building. The use of elements of bioclimatic architecture confuses the process of minimization
of the cost function and if such a minimization is acquired, the results are not valid in practice.
Another problem with techniques is that, they don’t consider occupants comfort index. These
approaches are also not user friendly because they did not consider user set parameters. The last and
most important point is that, these approaches don’t consider energy efficiency and consumed more

energy.



A comparison of different control mechanisms for energy consumption and occupants comfort index
in building environment is carried out in [26]. During comparisons, user set parameters were not
considered. So the main disadvantage of their work is that, their models are not user friendly because
users are not involved in deciding the occupants comfort index. A control strategy is proposed in [27]
to maintain energy consumption and occupants comfort index, but user set parameters does not
consider in deciding occupants comfort index. User set parameters plays a vital role in deciding
occupants comfort index. In one of the previous work attention is made towards the occupants
comfort index [28]. This work also did not consider the user participation in deciding occupants
comfort index. Predictive and adaptive controllers using artificial neural network to allow the
adaptation of the control model to the environmental conditions, building characteristics and user
behaviors is proposed in [29]. This approach not only lack of user set parameters, but also did not
consider occupants comfort index. Another predictive control strategy using a system method for
overall system environment and energy performance to the changes of control settings of VAV air-
conditioning system is proposed and developed in [30]. To optimize the parameters GA algorithm has
been used. This system also lack of user set points and occupants comfort index. The approach only
considers energy efficiency in the building. A reinforcement learning controller to achieve occupants
comfort index with minimal energy consumption is described in [31]. The method succeeded in
accomplishing occupants comfort index, but failed to provide energy efficiency. Another robust
reinforcement learning control for building power systems is proposed in [32]. The main drawback of
this system is energy efficiency because the system could not achieve the desired results in minimized
energy consumption. An optimized fuzzy controller applied for the control of environmental
parameters at the building zone level has been proposed in [33]. In this method the occupants’
preferences are monitored via a smart card unit. Other proposals in this connection are predictive
control approaches [34, 35], where weather predictions have been applied to heating, ventilating and

air-conditioning system.



2.2. Optimization scheme approach based on the IGA

In this approach, we use an optimization scheme approach based on an Incremental genetic
algorithm (IGA). The aim of this approach is to achieve maximum user comfort with less power

consumption as compared to GA based system.

User Set

Points Environmental Parameters
IGA Optimizer

A

T+ at
LrerpeT e
lllumination, Air Quality)

Optimal Parameters

4

User Comfort Index

Building Actuators
Comfort Index and Sensors
Optimal
Parameters v 4
»{ Coordinator Agent Ajcent
Grid Power
Power -
v Constimed
Power
Required Power
Required Comparator
Power

Fuzzy Controllers
| (Temperature,
| Mumination and Air

Quality)
Environmental
Parameters

Figure 2.1 Optimization scheme approach based on the IGA

Figure 2.1 illustrates the optimization scheme approach based on IGA in the building environment.
In particular the system scheme consists of six basic components which are IGA optimizer, user
comfort index, coordinator agent, fuzzy controllers, comparator, building actuators and sensors. IGA
optimizer takes environmental parameters and user set points as input. Then the optimal parameters
from IGA are input to the user comfort index in order to calculate the comfort index. Then the optimal
parameters and environmental parameters are input to the fuzzy controller in order to estimate
required power. Then the required power from fuzzy controller and grid power are input to the
coordinator agent in order to get adjusted power. Then the required power and adjusted power are

input to the comparator in order to get actual consumed power. Finally, the consumed power is input
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to building actuators.
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The idea of IGA for optimizing modified problems is simple. Instead of starting with a randomly
generated population of chromosomes, start by using the information saved from running an initial
population on the initial problem. IGA has given focus in two major directions. First is that a
modification made to a problem does not shift optimal and good sub-optimal solution points much in
the solution space. Second is that the information saved during the application of a GA for the initial
problem will be useful for subsequent application of a genetic algorithm to modified versions of a
problem. The aim is to reduce evolution time, measured in number of generations of a genetic
algorithm used for re-optimizing modified problem. Then the proposed system provides improved
results. Figure 2.2 illustrates work sequence of IGA which is used by the system. First of all, initial
population of chromosomes is created. Then it is evaluated by some fitness function. Then crossover

is started. The crossover makes offspring. Then we need to increase the number of chromosomes and

No—<:,’\’j§nd of iteration?t:::>

\({»

Yes
Y

Publish best chromosomes

Figure 2.2 Incremental genetic algorithm

10



update chromosomes for the next iteration of crossover. After finishing crossover, mutation process is

started. Then end of the mutation, we got best chromosomes.

Userset point ranges (TsetLsetAsef) , Environmental (Tenv,Lenv, Aenv), a1=034, a2=033, i3=0.33, /
|

Totallteration=10, mutation rate=01%

v
Chramosame(Tchram, Lchrom, Achrom)
W
eT=(Tchram-Tenw), el.—(Lchram-Lerw), eA=(Achrom-Aenv)
2
ComfortChram= as[1 (€T / Tchram) 2]+ a2{1 -(el. / Lchrom) 2] + a3[1-(eA / Achram)2]

— T — A ——

Condidate=(90* (ChromosomeCount+IGAnumber)/ 100)

ChromParentjGondidate]=Ch

OffSpring Z*Condidate]

Publishing best chromosome(T chrom.Lchrom, Achrom)

Figure 2.3 Detailed flow chart of IGA

The figure 2.3 illustrates detailed flow chart of incremental genetic algorithm. We get user set
ranges, environmental parameters, mutation rate, user defined factor, and iteration count as input.
Then random chromosomes are created. Then error differences are calculated from chromosomes and
environmental parameters. Then the comfort index is calculated by following equation [1.1] using
error differences and environmental parameters. Then best chromosomes are selected by the rank
based selection. After that, the crossover is started and we calculate the candidate number in order to

make parent chromosomes. Then offspring is created from parent chromosomes. Then we estimate the

11
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error difference for each offspring and comfort index. Then the best offspring is selected by the rank
based selection. The offspring is given to chromosomes from next iteration. Then, if the mutation rate
is met, we perform the mutation. End of the mutation, iteration will be increased for the next iteration.

Similarly iteration will repeat until certain numbers of iterations are finished.

2.3. Optimization scheme approach based on ACQO algorithm

Environmental Parameters
Building Actuators
Temperature Air-quality Tumination and sensors
EnvironmJntaI (T,LA) cp
User Set | ysp — Optimal RP
a—a‘m "> ACO Optimizer [ty Fuzzy Controller ™
Optimal
(T,LA)
- ik Comparator
User comfort index A
i = { Coordinator Agent ]7

Figure 2.4 Block model optimization method based on ACO algorithm

In this approach, we proposed that optimization method based on Ant Colony Optimization
algorithm. We implemented different algorithms in order to get optimal parameter and increase
comfort index. Therefore the figure 2.4 shows the block model consists of basic eight concepts which
are environmental parameters, user set points, power grid, ACO optimizer, fuzzy controller,
coordinator agent, comparator, and actuators and sensors. User set points and environmental
parameters are input to the ACO optimizer. The output of ACO optimizer is called trails. The trails are
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solutions. So, user comfort indexes are calculated for each trail. Then the optimal parameters from
ACO optimizer are input to fuzzy controller. Then required power from the fuzzy controller is an
input to coordinator agent and comparator. Adjusted power from coordinator Agent is input to the
comparator. Then consumed powers are estimated by the comparator and input to the building

actuators and sensors.

| Make graph and distances |

I Initiate random ant trails |
Vi

I Initiate to put pheromones |

v

Evaluate pheromones for user comfort index

v

Select trails using pheromones

End of iteration?

YES

v

Publish the best trails

NO

Figure 2.5 Ant colony optimization algorithm flowchart diagram

2.4. Sensor data

Sensor data are input to the system which indicates the condition of the smart home. We have three
sensor data which are temperature, illumination, and air quality. We use real temperature sensor data

from January 2010 and June 2010. Then for illumination and air quality, we use simulation linear data.
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2.5. Comfort index and condition

Comfort condition is the quality of life in an intelligent and smart home or building area. It is
important because of the reason that people spend their most of time in the building environment.
Then occupants’ comfort environment directly impacts on their satisfaction and productivity. We can
determine the occupants’ comfort index by three basic factors which are thermal comfort, visual
comfort, and indoor air quality. Temperature is utilized to indicate the thermal comfort in a smart
home. The auxiliary heating and cooling system are deployed to preserve the temperature in the
comfort zone range. The illumination level is utilized to indicate the visual comfort in the building
environment, which is measured in Lux [0, 1]. The electrical lighting system is utilized to manage
visual comfort. CO; concentration is utilized as an index to measure the air quality in the building
environment, and the ventilation system is utilized to preserve the low CO2 concentration.

Comfort index using Eq. (1.1).

Comfort =al [1-(er/Tser) 2] + 02 [1-(er/Lser) 2] + a3 [1-(ea/Aser) ] (1.1)

The range of comfort index is between [0, 1]. The comfort index varies between ‘0’ and “1°. ‘0’ means
lowest or minimum comfort index and ‘1’ means highest or maximum comfort index. al, a2, a3 are
the user defined factors which solve any possible conflict between the three comfort factors which are
temperature, illumination and air-quality. Overall comfort is al+a2+a3 = /. In (Eq. 1.1) eris the error
difference between optimal parameter of rule based optimization (temperature in this case) and actual
sensor temperature [0, 1]. The minimum error difference, the maximum will be the comfort index.
Therefore, comfort index and error difference are opposite parameters to each other. As a result of that
the error difference is an actual input to the fuzzy controller. e, is the error difference between
optimal parameter of rule based optimization (illumination in this case) and actual sensor
illumination. e, is the error difference between optimal parameter of rule based optimization and
actual sensor air-quality. Tie, Lse, Aser are the user set parameters of temperature, illumination and air-

quality.

14



2.6. Fuzzy logic and controllers

Fuzzy controller is a control system based on fuzzy logic. We use fuzzy controllers for temperature,

illumination, and air quality. The proposed schemes use fuzzy controllers to get required power
consumption. Error difference €; and change in error C€; (difference between current and previous

error) between optimal parameters and indoor environment parameters are input to the fuzzy
controller for temperature. The terms NB, NM, NS, ZE, PS, PM, and PB have been abbreviated for
negative big, negative medium, negative small, zero, positive small, positive medium, and positive
big. The input to the fuzzy controller for illumination is the error difference between the optimal

parameter and real environmental illumination parameter.
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Figure 2.6 Input and output membership functions for temperature. (a) Input membership function of er, (b)

Input membership function of cer, (¢) Output membership function.

The input membership function is for the error which is the only input. If the input error is High

Small the required output power would be OLittle. For error Medium Small (MS) the output power
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would be OMS. For Basic Small (BS) the required power would be OBS. For OK the output power
would be OOK. For SH the required output power is OSH while for High, the required power is OH.
The input to the fuzzy controller for air-quality is the error difference between optimized air-quality

parameter and real environmental air-quality parameter.
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Figure 2.7 Input and output membership functions for illumination. (a) Input membership function of err; (b)
Output membership function
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Figure 2.8 Input and output membership functions for air quality. (a) Input membership function of e, (b)

Output membership function

The input membership function is for the error which is the only input to the air quality fuzzy

controller. If the input error is little, the required output power would be OFF. For OK, the output
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power would be ON. For LH the required power will be OL. For MH, the required power would be
OMH, and for HIGH the required would be OHIGH. The output of the fuzzy controllers is the
required power for each of the temperature, illumination and air-quality. The required power is input

to the coordinator agent and comparator components.

Table 2.1 Fuzzy controller rules for temperature controller

Required Power errr
NB NM NS ZE PS PM PB

NB NB NS PS PB PB PB PB
NM NB NM ZE PM PM PB PB
NS NB NM NS PS PM PB PB

cerrr ZE NB NM NS ZE PS PM PB
PS NB NB NM NS PS PM PB
PM NB NB NM NM ZE PM PB
PB NB NB NB NB NS PS PB

Table 2.2 Fuzzy controller rules for illumination control
Error HS MS BS OK SH H
Required Power OHS OMS 0OBS 00K OSH OH
Table 2.3 Fuzzy controller rules for air-quality control
Error Little OK LH MH HIGH
Required Power OFF ON oL OMH OHIGH

2.7. Coordinator agent

Required power from fuzzy controller and available power from source of power are input to the
coordinator agent. Adjusted power is calculated for each temperature, illumination, and air-quality
control. Figure 2.9 shows flowchart of coordinator agent. Required powers for temperature,
illumination, and air quality are input to the coordinator agent. We calculate the total required power
for the system. After checking the total power, whether less than the available power source or more
than an available power source. If the total power is less than available power, take required power as

adjusted power. Otherwise, customize adjusted power and finally we get adjusted powers for each

temperature, illumination, air quality control.
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Coordinatoragent flowchart

/ Reading required powers l
I Calculate total required power I

Is total required power
less that powergrid?

I Adjusted power is equal torequired power I

%I Make Adjusted power I
4

I Write Adjusted power |
End

Figure 2.9 Flowchart of coordinator agent

2.8. Comparator

Required power from fuzzy controller and adjusted power from coordinator agent are input to the
comparator to get actual consume power for each temperature, illumination, and air quality control.
Finally, the actual consumed powers are input to the smart home actuators. Figure 2.10 shows a flow
chart of comparator. It takes adjusted power and required power as input. Then checking condition,
whether to adjust power is less than required power or not. If the condition is yes, take adjusted power
as consumed power. If the condition is no, take required power as consumed power. Then write

consumed power as a result.
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Comparator flowchart

Start

/ Reading adjusted power, required power /

Is adjusted power less
than required power?

I Consumed power isequal toadjusted power I

ﬁl Consumed power is equal torequired power |

v

I Write consumed power I

Figure 2.10 Flowchart of comparator

2.9. Smart home actuators

Smart home actuators are the devices which utilize the power in the smart home. The actuators are
AC used for cooling, heater for heating in the home, and light for visual comfort and fan for providing
air quality comfort. The consumed power calculated by comparator is given to the actuators to set its

operational level in order to maintain user comfort in building environment.
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3. Optimization scheme based on rule for
reducing power consumption

3.1. Conceptual design of optimization scheme based on rule for

reducing power consumption

In this section, we propose an optimization scheme based on rule for reducing power consumption

approach in order to reduce power consumption.
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Figure 3.1 Conceptual design of an optimization scheme based on rule for reducing power consumption

Figure 3.1 shows conceptual design of optimization scheme based on rule which illustrates concepts
of the rule based optimization scheme for reducing power consumption. Conceptual design includes
three basic steps which are input, processing, and output. In stepl, we have indoor environment

parameters (temperature, illumination, and air-quality), user set points (temperature, illumination, and
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air-quality), and source of power. In step2, it includes three sub steps which are optimization,
calculation, and comparison. In step2.1, it includes rule based optimization and user comfort index. In
step2.2, it includes fuzzy controller and coordinator agent. In step 2.3, it includes comparator. Then, in

step3, it includes smart home actuators.

3.2. Block diagram of optimization scheme based on rule for

reducing power consumption
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Figure 3.2 Block diagram of optimization scheme based on rule for reducing power consumption

Figure 3.2 shows block diagram of optimization scheme based on rule for reducing power
consumption. Indoor environment parameters (temperature, illumination, and air quality) from sensors
and user set points are input to the RBO optimizer for optimization. Then the optimized parameters

are input to user comfort index to calculate the user comfort index.

Figure 3.3 shows overall architecture of rule based optimization scheme. Minimum and maximum
set point ranges of temperature, illumination, and air quality are input to the rule based optimization.

Also current home temperature, illumination, and air quality are input to the rule based optimization.
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Then optimal parameters for temperature, illumination, and air quality are calculated separately. Each

part is described below.

3.3. Optimization scheme based on rule
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Figure 3.3 Flowchart design of optimization scheme based on rule

Figure 3.4 illustrates rule based optimization for temperature set point. We take temperature user set

maximum, minimum ranges, and current environment parameter as input. Then checking current

temperature parameter is whether in comfort zone or not. If the current temperature is in the comfort

zone, we use current temperature parameter as a user set temperature point. If the current temperature

as not in the comfort zone, If current temperature is not in comfort zone, we check current

temperature is less than minimum range of temperature and if it is true, take the minimum range value

as the user set point temperature.
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Figure 3.4 Optimization scheme based on rule for temperature set point

If the current temperature is less than minimum range condition is false, we check another condition
to find optimal temperature set point. The condition is that the current temperature is higher than the

maximum range of temperature, if the condition is true, we take the maximum range value as the user

set point temperature.
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Figure 3.5 Optimization scheme based on the rule for illumination set point

Figure 3.5 illustrates rule based optimization for illumination set point. For illumination optimal set
point, we do similar actions to find optimal user set point. Therefore, checking current illumination
parameter is whether in comfort zone or not. If the current illumination is in the comfort zone, we use
the current illumination parameter as a user set illumination point. If current illumination is not in
comfort zone, we check current illumination is less than minimum range of illumination and if it is
true, take the minimum range value as the user set illumination point. If the current illumination is less

than minimum range condition is false, we check another condition to find optimal illumination set
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point. The condition is that current illumination is higher than the maximum range of illumination, if

the condition is true, we take the maximum range value as the user set illumination point.
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Figure 3.6 Optimization scheme based on rule for air quality set point

Figure 3.6 illustrates rule based optimization for air quality set point. For air quality optimal set
point, checking current air quality parameter is whether in comfort zone or not. If the current air
quality is in the comfort zone, we use the current air quality parameter as a user set air quality point. If
current air quality is not in comfort zone, we check current air quality is less than minimum range of
air quality and if it is true, take the minimum range value as the user set air quality point. If the current

air quality is less than minimum range condition is false, we check another condition to find optimal
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air quality set point. The condition is that current air quality is higher than the maximum range of air

quality, if the condition is true, we take the maximum range value as the user set air quality point.

3.4. Simulation result of optimization scheme based on rule for
reducing power consumption

In order to evaluate performance of our proposed Rule based optimization scheme, we have
developed and simulator in Visual Studio 2013 using c#. User preference set parameters range was

Tset = [66, 78] (Kelvin), Lset = [720, 880] (lux), and Aset = [700, 880] (ppm). Brief detail of system

configuration is given in Table 3.1.

Table 3.1 Simulation Environment

Module Hardware Software Remark

Virtual sensing data for Intel(R) Xeon(R) CPU Microsoft Cit

temperature, illumination, and air- | W3503 @2.4GHz 2.39GHz . . .

quality AGB RAM Visual Studio | Windows 7
Optimization of user set Intel(R) Xeon(R) CPU .

parameters (temperature, W3503 @2.4GHz 2.39GHz gilsflrz;)lsgf; dio \C}én dows 7
illumination, and air-quality) 4GB RAM

Intel(R) Xeon(R) CPU
W3503 @2.4GHz 2.39GHz
4GB RAM

Microsoft C#
Visual Studio | Windows 7

Dynamic user set point settings for
multi-users

Prediction of indoor environment Intel(R) Xeon(R) CPU
parameters for temperature, W3503 @2.4GHz 2.39GHz
illumination, and air-quality 4GB RAM

Microsoft C#
Visual Studio | Windows 7
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The environmental configuration remains the same for all the experiments. The uniform
configuration helps in the comparison of results with existing techniques. We developed the simulator
by using .Net programming environment with the configuration shown in Table 3.1.

‘F{Smart Home EMS]

Start  Environmental Paramaters ~ Optimization

Parameters Settings | Qutputs

Combinational Optimization Parameter Setting User Set Points
Temperature Set Points
Sensor Input: 134 lteration: 10
Minimum: 66
Maximum: 78
No. of Chromosome: 30 No. of Sources: 10
Mutation Rate: 01 Number of Ants: 4 llumination Set Points
No. of lterations: 10 No. of kterations: Minimum: 720
Maximum: 880
Status
IGA Optimizer: Starting.. Done ArQualty Set Poirts
ACO Optimizer: Starting.. D
ptimizer: Starting one Mo 700
GA Optimizer: Starting.. Done Vi 230
RBO Optimizer Starting.. Done

Figure 3.7 Simulation of optimization algorithms

Figure 3.7 shows a simulation of optimization algorithms which are incremental genetic algorithm
(IGA), ant colony optimization (ACO), genetic algorithm (GA), and rule based optimization (RBO).
134 simulation sensor inputs input to the system. Chromosomes, mutation rate and number of
iterations are input to the system in order to perform GA, and IGA. Then number of sources, number
of ants, and iteration are input to the system in order to perform ACO. Then user set points are input
to the system for temperature, illumination, and air quality. For temperature, the minimum range is 66
and maximum range is 78. For illumination, the minimum range is 720 and maximum range is 880.

For air quality, the minimum range is 700 and maximum range is 880.

Figure 3.8 shows a comparison of rule based optimization power consumption and genetic algorithm
based power consumption for temperature. X-axis shows time in hours and the Y-axis shows the
power consumption in kilowatts. From the graph, we can see that the system using rule based

optimization consumed less power each hour compared than a system using GA. RBO based power
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consumption starts from 11.6075kwt at 1o’clock. Then GA based power consumption starts from

13.3kwt at the same time. Therefore, this due to the fact that optimized parameters for temperature

control based on RBO are more efficient and consuming less power compared as GA.
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Figure 3.8 Power consumption comparison between RBO and GA for temperature

Figure 3.9 shows a comparison of rule based optimization power consumption and genetic

algorithm based power consumption for illumination. X-axis shows time in hours and the Y-axis

shows the power consumption in Kilowatts. From the graph, we can see that the system using rule

based optimization consumed less power each hour compared than a system using GA. RBO based

power consumption starts from 14.9kwt at 20’clock. Then GA based power consumption starts from

15kwt at the same time. Therefore, this due to the fact that optimized parameters for illumination

control based on RBO are more efficient and consuming less power compared as GA.
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Power consumption comparison between RBO and GA for illumination

illumination power consumption based on RBO

= = = = |lumination power consumption based on GA
16

-\ ———— - = -
14 \ A A

' i
T
‘| L]
1 'l ,
X "
)
)
)
1
10 \{
\

|,

Power corsumption (k)

SO SRAERAFRSIIEIHRABEBEERRRER

R R B R R R R e I I

Time{Hours)

Figure 3.9 Power consumption comparison between RBO and GA for illumination

Similarly, Figure 3.10 shows a comparison of rule based optimization power consumption and
genetic algorithm based power consumption for air quality. X-axis shows time in hours and the Y-axis
shows the power consumption in Kilowatts. From the graph, we can see that the system using rule
based optimization consumed less power each hour compared than a system using GA. RBO based
power consumption starts from 2.66kwt at 1o’clock. Then GA based power consumption starts from

3.33kwt at the same time. Therefore, this due to the fact that optimized parameters for air quality

control based on RBO are consuming less power compared as GA.

Table 3.2 shows a comparison of total power consumption for each control. For temperature control,
RBO based power consumption consumed total 494.907kwt power. At the same time, GA based
power consumption consumed 834.593kwt power. As a result, we can see the huge power
consumption difference between RBO based power consumption and GA based power consumption.
Then we can see that RBO based power consumption is way better than GA based power
consumption in this system. For illumination control, RBO based power consumption consumed total
1052.34kwt power. At the same time, GA based power consumption consumed 1261.57kwt power. As

a result, we can see the big power consumption difference between RBO based power consumption

and GA based power consumption.

29




Power consumption comparison between RBO and GA for air quality
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Figure 3.10 Power consumption comparison between RBO and GA for air quality

Table 3.2 Total power consumption comparison of RBO and GA

Temperature Illumination Air quality TOTAL
RBO based power
494,907 1052.34 365.663 1903.91
consumption
GA based power
834.593 1261.57 419.65 2515.82
consumption

This due to the fact that RBO based power consumption consumes less power than GA based power
consumption in this system. Similarly, for air quality control, RBO based power consumption
consumed total 365.663kwt power. At the same time, GA based power consumption consumed
419.65kwt power. As a result, we can see the much power consumption difference between RBO
based power consumption and GA based power consumption. Then we can see that for air quality,

RBO based power consumption consumes less power than GA based power consumption in this
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system. Finally, we have total consumed power from each power consumption scheme using RBO
and GA. Then total power consumption of RBO was 1903.91kwt and total power consumption of GA
was 2515.82kwt. Therefore, we can conclude that RBO based power consumption consumed less

power compared as GA based power consumption.

Figure 3.11 shows a comparison of rule based optimization power consumption and incremental
genetic algorithm based power consumption for temperature. X-axis shows time in hours and the Y-
axis shows the power consumption in kilowatts. From the graph, we can see that the system using rule
based optimization consumed less power each hour compared than a system using IGA. RBO based
power consumption starts from 10kwt at 3o’clock. Then IGA based power consumption starts from
10.9kwt at the same time. Therefore, this due to the fact that optimized parameters for temperature

control based on RBO are more efficient and consuming less power compared as IGA.

Power consumption comparison between RBO and IGA for temperature
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Figure 3.11 Power consumption comparison between RBO and IGA for temperature

Figure 3.12 shows a comparison of rule based optimization power consumption and incremental
genetic algorithm based power consumption for illumination. X-axis shows time in hours and the Y-
axis shows the power consumption in kilowatts. From the graph, we can see that the system using rule

based optimization consumed less power each hour compared than a system using IGA. RBO based
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power consumption starts from 14.9kwt at 20’clock. Then IGA based power consumption starts from
15kwt at the same time. Then we can see that for illumination, RBO based power consumption

consumes less power than IGA based power consumption in this system.

Similarly, Figure 3.13 shows a comparison of rule based optimization power consumption and
incremental genetic algorithm based power consumption for air quality. X-axis shows time in hours

and the Y-axis shows the power consumption in kilowatts.
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Figure 3.12 Power consumption comparison between RBO and IGA for illumination

From the graph, we can see that the system using rule based optimization consumed less power each
hour compared than a system using IGA. RBO based power consumption starts from 2.66kwt at
lo’clock. Then IGA based power consumption starts from 3.07kwt at the same time. From the result

we can see that power consumption based on RBO consumes less power compared as IGA.
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Power consumption comparison between RBO and IGA for air quality
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Figure 3.13 Power consumption comparison between RBO and IGA for air quality

Table 3.3 Total power consumption comparison of RBO and IGA

Temperature Illumination Air quality TOTAL
RBO based power
494.907 1052.34 365.663 1903.91
consumption
IGA based power
614.214 1135.18 372.416 2121.81
consumption

Table 3.3 shows a comparison of total power consumption for each control. For temperature control,
RBO based power consumption consumed total 494.907kwt power. At the same time, IGA based
power consumption consumed 614.214kwt power. As a result, we can see that power consumption

difference between RBO based power consumption and IGA based power consumption. Then we can
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see that RBO based power consumption is consuming less power compare than IGA based power
consumption in this system. For illumination control, RBO based power consumption consumed total
1052.34kwt power. At the same time, IGA based power consumption consumed 1135.18kwt power.
As a result, we can see the much power consumption difference between RBO based power
consumption and IGA based power consumption. This due to the fact that RBO based power
consumption consumes less power than IGA based power consumption for illumination control in this
system. Similarly, for air quality control, RBO based power consumption consumed total 365.663kwt
power. At the same time, IGA based power consumption consumed 372.416kwt power. As a result,
we can see the much power consumption difference between RBO based power consumption and
IGA based power consumption. Then we can see that for air quality, RBO based power consumption
consumes less power than IGA based power consumption in this system. Lastly, we have total
consumed power from each power consumption scheme using RBO and IGA. Then total power
consumption of RBO was 1903.91kwt and total power consumption of GA was 2121.81kwt. As a
conclusion, we can say that RBO based power consumption consumed less power compared as IGA

based power consumption.

Power consumption comparison between RBO and ACO for temperature
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Figure 3.14 Power consumption comparison between RBO and ACO for temperature
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Figure 3.14 shows a comparison of rule based optimization power consumption and ant colony
optimization algorithm based power consumption for temperature. X-axis shows time in hours and the
Y-axis shows the power consumption in Kilowatts. From the graph, we can see that the system using
rule based optimization consumed less power each hour compared than a system using ACO. RBO
based power consumption starts from 11.6075kwt at 10’clock. Then ACO based power consumption
starts from 15.0056kwt at the same time. Therefore, this due to the fact that optimized parameters for

temperature control based on RBO are more efficient and consuming less power compared as ACO.

Figure 3.15 shows a comparison of rule based optimization power consumption and ant colony
optimization algorithm based power consumption for illumination. X-axis shows time in hours and
the Y-axis shows the power consumption in kilowatts. From the graph, we can see that the system
using rule based optimization consumed less power each hour compared than a system using ACO.
RBO based power consumption starts from 14.994kwt at 2o’clock. Then ACO based power
consumption starts from 14.999kwt at the same time. Therefore, this due to the fact that optimized
parameters for illumination control based on RBO are more efficient and consuming less power

compared as ACO.

Power consumption comparison between RBO and ACO for illumination
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Figure 3.15 Power consumption comparison between RBO and ACO for illumination
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Power consumption comparison between RBO and ACO for illumination
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Figure 3.16 Power consumption comparison between RBO and GA for air quality

Similarly, Figure 3.16 shows a comparison of rule based optimization power consumption and ant
colony optimization algorithm based power consumption for air quality. X-axis shows time in hours
and the Y-axis shows the power consumption in kilowatts. From the graph, we can see that the system
using rule based optimization consumed less power each hour compared than a system using ACO.
RBO based power consumption starts from 2.66kwt at lo’clock. Then ACO based power
consumption starts from 3.61kwt at the same time. Therefore, this due to the fact that optimized

parameters for air quality control based on RBO are consuming less power compared as ACO.

Table 3.4 shows a comparison of total power consumption for each control. For temperature control,
RBO based power consumption consumed total 494.907kwt power. At the same time, ACO based
power consumption consumed 848.524kwt power. As a result, we can see the huge power
consumption difference between RBO based power consumption and ACO based power consumption.
Then we can see that RBO based power consumption is way better than ACO based power
consumption in this system. For illumination control, RBO based power consumption consumed total
1052.34kwt power. At the same time, ACO based power consumption consumed 1273.39kwt power.
As a result, we can see the big power consumption difference between RBO based power

consumption and ACO based power consumption.
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Table 3.4 Total power consumption comparison of RBO and ACO

Temperature Illumination Air quality TOTAL
RBO based power
494,907 1052.34 365.663 1903.91
consumption
ACO based power
848.524 1273.39 441,574 2563.49
consumption

This due to the fact that RBO based power consumption consumes less power than ACO based
power consumption in this system. Similarly, for air quality control, RBO based power consumption
consumed total 365.663kwt power. At the same time, ACO based power consumption consumed
441.574kwt power. As a result, we can see the much power consumption difference between RBO
based power consumption and ACO based power consumption. Then we can see that for air quality,
RBO based power consumption consumes less power than ACO based power consumption in this
system. Finally, we have total consumed power from each power consumption scheme using RBO
and ACO. Then total power consumption of RBO was 1903.91kwt and total power consumption of
ACO was 2563.49kwt. Therefore, we can conclude that RBO based power consumption consumed

less power compared as ACO based power consumption.
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4. Optimization scheme based on dynamic user

setting for multi-user

4.1. Conceptual design of optimization scheme based on dynamic

user setting for multi-user
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Figure 4.1 Conceptual design of optimization scheme based on dynamic user setting for multi-user

Figure 4.1 shows the conceptual design of an optimization scheme based on dynamic user setting for

multi users. Conceptual design includes three basic steps which are input, processing, and output. In

stepl, we have indoor environment parameters (temperature, illumination, and air-quality), user set

points (temperature, illumination, and air-quality), and source of power. In step2, it includes four sub

steps which are setting, optimization, calculation, and comparison. In step2.1, it includes dynamic



user set point setting. In step 2.2, it includes rule based optimization and user comfort index. In
step2.3, it includes fuzzy controller and coordinator agent. In step 2.4, it includes comparator. Then, in

step3, it includes smart home actuators.

4.2. Block diagram of optimization scheme based on dynamic user

setting for multi-user

PROCESSING
) Optimization
; :
LR USP(T,L,A) ! i ' ] :
i 1 i
Boss -—>: Dynamic user set > Rilebased iy| Usercomfort :
! pointsetting > e ' index )
— ' optimization ' !
|
L S
indoor e i S S S S e S S S S e ) .
SENSORS environgment O]
parametgers(T,L,A)
4 Calculation
 TEMP Indoor t —\L ' -
w envitoneient : Fuzzy controller i fusalie
ameters(T,L,A) 1 zY ) power
; RP :
T (T,LA) H Coordinator '
% ! Agent '
: '
! 1
> ! ;
AP
: mparison :
1 1
\ I o /
H |
| i
\ |
OUTPUT

Smart Home CP
actuators

Figure 4.2 Block diagram of optimization scheme based on dynamic user setting for multi-user

Figure 4.2 shows a block diagram of an optimization scheme based on dynamic user setting for
multi-user. User set points of multi user are input to the dynamic user set point setting. Then indoor
environment parameters (temperature, illumination, and air quality) from sensors and multi user set
points from dynamic user set point setting are input to the RBO optimizer for optimization. Then the
optimized parameters are input to user comfort index to calculate the user comfort index. Then
optimized parameters from RBO and predicted indoor environment parameters are input to the fuzzy
controller to calculate required power for temperature, illumination, and air quality. Then the

coordinator agent adjusted the power, according to the required power from the fuzzy controllers and
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available power from the source of power. Then comparator takes required power from fuzzy
controller and adjusted power from coordinator agent. Then consumed power from the comparator is

input to smart home actuators which are devices utilized the power inside the smart home.

4.3. Design of optimization scheme based on dynamic user setting

for multi-users in smart home
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Figure 4.3 Design of optimization scheme based on dynamic user setting for multi-users in smart home
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Figure 4.3 illustrates the optimization scheme based on dynamic user setting for multi-user in
a smart home. Users indicate family members in a smart home. When users feel uncomfortable
with certain environment, they can set user set points by themselves. Then the user set points
are input to the rule based optimization. Then we calculate user comfort index of each optimal
parameters. Then the optimal parameter and current environment parameters are input to the
fuzzy controller. Then required power from fuzzy controller is input to the coordinator agent in

order to get adjusted power. Then the required power from fuzzy controller and adjusted power
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of coordinator agent are input to the comparator. Then, using the consumed power from
comparator, we control the heater, cooler, lighting, and air conditioning in a smart home. The
sensor parameters are changed after control the actuators in a smart home. Then the all users

can be in a comfortable environment.

4.4. Design of dynamic user set point setting for multi-users
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Figure 4.4 Dynamic user set point settings for multi-users

Figure 4.4 illustrates user set point setting in a home environment. We suppose n numbers of users
in smart home are able to set their own comfortable user set ranges. Then all user set points are input
to the user set point setting. We get user set point which is calculated by user set point setting. Then
the optimal parameter is calculated based on user set point and indoor parameters from the sensors in
a home environment. Consumed power is given to home actuators such as heater, cooler, lighting, and

air conditioning.
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Figure 4.5 Average based setting for multi-users

Figure 4.5 illustrates user set point setting based on average parameters. Maximum and
minimum user set points of each user are input to the user set point setting. Then we will
calculate average minimum and maximum parameters based on each user set point. Then we get

user set points as user set point which comfortable for everyone in a smart home.

Average based user set point setting(ABS)

USER1 —>[ T[60, 80], L[700, 900], A[800,990] ]
USER2 —)[ T[63, 78], L[710, 980], A[820, 970] ]
USER3 *{ T[66, 69], L[760, 880], A[810, 920] ]

Tnn=AVG[60, 63, 66] Lwn=AVG[700, 710, 760] Amn=AVG[800,820, 810]
Tmax=AVG[80,78, 69] Lmax=AVG[900, 980, 880] Amm=AVG[990,970, 920]

Figure 4.6 Calculation of average based setting for multi-users (Example)

Figure 4.6 illustrates the calculation of average based setting for multi users. We suppose that
we have three users and each user set their own user set points for each control, such as
temperature, illumination, and air quality. For temperature, it takes minimum user set points
and maximum user set points as input from each user in order to calculate actual Tmin and
Tmax. Then it calculates Tmin among the user set points by average calculation and Tmax

among the user set points by average calculation.
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Figure 4.7 Max-min based setting for multi-users

Figure 4.7 illustrates user set point setting based maximum and minimum parameters.
Minimum and maximum user set points of each user are input to the user set point setting. Then
user set minimum point is calculated by rank based selection which choose maximum
parameter among all minimum set points from each user. Similarly, user set maximum point is
calculated by rank based selection which choose minimum parameter among all maximum set

points from each user.

MAX-MIN based user set point setting{ MAX-MIN)

USER1 —{ T[60, 80], L[700, 900], A[800,990] ]
USER2 ——{ T[63, 78], L[710, 980], A[820, 970] ]
USER3 —»{ T[66, 69], L[760, 880], A[810, 920] ]

Tmm=MAX[60, 63, 66] Lumw=MAX[700, 710, 760] Amn=MAX[800, 820, 810]
Tmax=MIN[80, 78, 69] Lmx=MIN[900, 980, 880] Amax=MIN[990, 970, 920]

Figure 4.8 Calculation of Max-min based setting for multi-users (Example)

Figure 4.8 illustrates the calculation of Max-min based setting for multi users. We suppose
that we have three users and each user set their own user set points for each control, such as
temperature, illumination, and air quality. For temperature, it takes minimum user set points

and maximum user set points as input from each user in order to calculate actual Tmin and
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Tmax. Then, Tmin is calculated by choosing maximum parameter among the user set points and

Tmax is calculated by choosing minimum parameter among the user set points .
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Figure 4.9 Min-max based setting for multi-users

Figure 4.9 illustrates user set point setting based minimum and maximum parameters.
Minimum and maximum user set points of each user are input to the user set point setting. Then
user set minimum point is calculated by rank based selection which choose minimum parameter
among all minimum set points from each user. Similarly, user set maximum point is calculated

by rank based selection which choose maximum parameter among all maximum set points from

each user.
MIN-MAX based user set point setting{ MIN-MAX)
USER1 —-)[ T[60, 80], L[700, 900], A[800,990] ]
USER2 ——)[ T[63, 78], L[710, 980], A[820, 970] ]
USER3 —)[ T[66, 69], L[760, 880], A[810, 920] ]

Tn=MIN[60, 63, 66] Lwn=MIN[700, 710, 760] Amn=MIN[800, 820, 810]
Trmax=MAX[80, 78, 69] Lma=MAX[900, 980, 880] Amax=MAX[990, 970, 920]

Figure 4.10 Calculation of Min-max based setting for multi-users (Example)

Figure 4.10 illustrates the calculation of Min-max based setting for multi users. We suppose
that we have three users and each user set their own user set points for each control, such as
temperature, illumination, and air quality. For temperature, it takes minimum user set points
and maximum user set points as input from each user in order to calculate actual Tmin and
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Tmax. Then, Tmin is calculated by choosing minimum parameter among the user set points and

Tmax is calculated by choosing maximum parameter among the user set points .
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4.5. Simulation result of optimization scheme based on dynamic

user set point setting for multi-users

In order to evaluate performance of our proposed Rule based optimization scheme, we have
developed and simulator in Visual Studio 2013 using c#. User preference set parameters range was

Tset = [66, 78] (Kelvin), Lset = [720, 880] (lux), and Aset = [700, 880] (ppm). Brief detail of system

configuration is given in Table 4.1.

The environmental configuration remains the same for all the experiments. The uniform

configuration helps in the comparison of results with existing techniques. We developed the simulator

by using .Net programming environment with the configuration shown in Table 4.1.

Table 4.1 Simulation Environment

illumination, and air-quality

4GB RAM

Module Hardware Software Remark

Virtual sensing data for Intel(R) Xeon(R) CPU .

temperature, illumination, and air- | W3503 @2.4GHz 2.39GHz g;;;;’lsgf; dio %n dows 7

quality 4GB RAM

Optimization of user set Intel(R) Xeon(R) CPU .

parameters (temperature, W3503 @2.4GHz 2.39GHz g;;;ﬁsgtf; dio \C;“;n dows 7

illumination, and air-quality) 4GB RAM

Dynamic user set point settings for Intel(R) Xcon(R) CPU Microsoft C#

multi-users W3503 @2.4GHz 2.39GHz Visual Studio | Windows 7
4GB RAM

Prediction of indoor environment Intel(R) Xeon(R) CPU Microsoft Cit

parameters for temperature, W3503 @2.4GHz 2.39GHz Visual Studio | Windows 7
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In this section, we show dynamic user set points setting for multi-users in a smart home. Multi-users

in smart home are able to set their comfortable set points through this setting by themselves.

Temperature: Fahverhet v Mmberinpus: 2 v 5P nsumgtin by ] Poi n 1
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Figure 4.11 Add user to Multi-user set point setting

Figure 4.11 and 4.12 shows adding users to the system. We added two users who are James and John.
Similarly, we can add more users. Then each user can set their comfortable set points. For user]l who is
named James, user set points are Ty, = [66, 78] (F), Lse: = [720, 880] (lux) and A, = [700, 880] (ppm).

For user2 who is named John, user set points are Ty = [68, 77] (F), Ls: = [730, 870] (lux) and A, =
[710, 880] (ppm).

James s set point has been added!

Memum: 720 v Masmun: 880 - .,M = |
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Figure 4.12 Add user to Multi-user set point setting
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Figure 4.13, 4.14, and 4.15 shows multi user setting which based on average, max-min, and min-
max calculations. We can calculate user set points from multi-user by those three different ways.
When the multi-users set points are Ts: = [66, 78] (F), Lse: = [720, 880] (lux) and Az = [700, 880]

(ppm) and Tie; = [68, 77] (F), Lse: = [730, 870] (lux) and 4s.: = [710, 880] (ppm).
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Figure 4.13 Multi-user setting by avarage based calculation
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Figure 4.14 Multi-user setting by max-min based calculation
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Figure 4.15 Multi-user setting by min-max based calculation

Then the average set point will be Ts; = [67, 77.5] (F), Lset = [725, 875] (lux) and 4, = [705, 880]

(ppm). Similarly, max-min set points will be Ti.; = [68, 77] (F), Lse: = [730, 870] (lux) and Ay, = [710,

880] (ppm) and min-max set points will be Ty = [66, 78] (F), Ls: = [720, 880] (lux) and A = [700,

880] (ppm).

Temperature: Fahrenheit v Number of inputs: % v
Tumination:  Lux v Season: Summer v
Arqualty:  Ppm v
[ Set Parameters ] IReadndoorpme!ets J I Predict ]
Usrrare: losh
Josh set points:
Temperature Set Point
Minimum: 68 v Maximum: 77 v
llumination Set Point
Minimum: 730 v Maximum: 870 v
Air-quality Set Point
Minimum: 710 v Maimum: 880 v
[ Average Set Poirts ] [ Max-Min Set Points | [ Min-MaxPoints |
AR Optimize with Optimize with
A ’ I M MaSP ’ Vi MaxSP ]

jon by ASP | Power

jon by Max-MinSP | Power jon by min-Max Foints | Otimal parameters | Opti 2 | Optimal parameters3)| e

. Optimized temperature paremeters
by ASP and REO
Optimized lllumination paremeters
by ASP and RBO

200
80!

- — Optimized air-quality paremeters
by ASP and REO

600

400
401

200

o

Figure 4.16 Optimization with average user set points by RBO

Figure 4.16 shows the optimal parameters for each of the temperature, illumination, and air-quality
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of average user set point setting and RBO. In case of temperature figure 4.16, the optimal temperature
changes between 67° to 77.5° Fahrenheit. The multi-users feel comfortable if the temperature level is
between [67, 77.5]. Therefore, using Rule based optimization, we can achieve optimal temperature in
that certain comfortable set point range, which is calculated by average set points setting for multi-
users in a smart home. In case of optimal illumination figure 4.16, the illumination parameter changes
between 725° to 875° Lux as compare to indoor environment illumination parameters. Then the user set
points are optimized to [725, 875]. So we can achieve optimal illumination parameter using rule based
optimization. In case of optimal air-quality figure 4.16, the air quality parameter changes between 705
to 880 ppm as compare to predicted indoor air-quality parameters. Then the user set points are
optimized to [705, 880]. So we can achieve optimal air-quality parameter using rule based

optimization.
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Figure 4.17 Optimization with Max-min user set points by RBO

Figure 4.17 shows the optimal parameters for each of the temperature, illumination, and air-quality
by Max-min user set point setting. In case of temperature figure 4.17, the optimal temperature
changes between 68° to 77° Fahrenheit. The multi-users feel comfortable if the temperature level is
between [68, 77]. Therefore, using rule based optimization, we can achieve optimal temperature in

that certain comfortable set point range, which is calculated by average set points setting for multi-
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users in a smart home. In case of optimal illumination figure 4.17, the illumination parameter changes
between 730° to 870° Lux as compare to indoor environment illumination parameters. Then the user
set points are optimized to [730, 870]. So we can achieve optimal illumination parameter using rule
based optimization. In case of optimal air-quality figure 4.17, the air quality parameter changes
between 710 to 880 ppm as compare to indoor environment air-quality parameters. Then the user set
points are optimized to [710, 880]. So we can achieve optimal air-quality parameter using rule based

optimization.
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Figure 4.18 Optimization with Min-max user set points by RBO

Figure 4.18 shows the optimal parameters for each of the temperature, illumination, and air-quality
by Min-max user set point setting. In case of temperature figure 4.18, the optimal temperature
changes between 660 to 780 Fahrenheit. The multi-users feel comfortable if the temperature level is
between [66, 78]. Therefore, using rule based optimization, we can achieve optimal temperature in
that certain comfortable set point range, which is calculated by average set points setting for multi-
users in a smart home. In case of optimal illumination figure 4.18, the illumination parameter
changes between 7200 to 8800 Lux as compared to indoor environment illumination parameters.
Then the user set points are optimized to [700, 880]. So we can achieve optimal illumination

parameter using rule based optimization. In case of optimal air-quality figure 4.18, the air quality
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parameters changes between 700 to 880 ppm as compare to indoor environment air-quality
parameters. Then the user set points are optimized to [700, 880]. So we can achieve optimal air-

quality parameter using rule based optimization.

In this section, simulation of power consumption by average user set points setting and RBO is

described below one by one.
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Figure 4.19 Power consumption of average user set points and RBO
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Figure 4.20 Power consumption of Max-min set points and RBO
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Figure 4.21 Power consumption of Min-max user set points and RBO

The figures 4.19, 4.20, 4.21 show power consumption of temperature, illumination, and air quality

separately. Actual user set points are calculated by dynamic user set point settings which are average,

max-min, and min-max based user set points settings for multi-users. Power consumption is

calculated by these three methods and rule based optimization. The power consumptions are described

results section with detailed.
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4.6. Comparison result of power consumption by dynamic user set

point settings and RBO

In this section, we will show that comparisons of power consumption results using dynamic user set
point setting for multi users in smart home and RBO. User set point is calculated by three different
methods. Then, using the user set point, we get optimal parameters by RBO.

So the figure 4.22 shows a power consumption comparison for temperature control. It compared
average based set point setting, max-min based set point setting, and min-max set point setting. X-axis
shows the time in hours while Y-axis shows the temperature power consumption in KWT. The

average based power consumption starts from 6.18kwt at lo’clock and it reaches to 9.59kwt at

60’°clock. Then it decreases to 3.04kwt at 90’clock.

Power consumption for temperature control using Dynamic user set point
settings and RBO

= = = Average set points and RBO based power consumption
= Max-Min set points and RBO based power consumption
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Figure 4.22 Power consumption comparison for temperature control using dynamic user set point settings and

RBO

Similarly, max-min based power consumption starts from 7.55kwt at lo’clock and it reaches to

10.46kwt at 60’clock. Then it decreases to 3.63kwt at 120’clock. Then min-max based power
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consumption starts from 6.13kwt at 1o’clock and it reaches to 8.92kwt at 60’clock. Then it decreases
to 0.04kwt at 180°clock. From that result, we can say that power consumption based on min-max set

point setting consume less power than average and max-min based user set points setting.

Power consumption for illumination control using Dynamic user set point
settings and RBO
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Figure 4.23 Power consumption comparison for illumination control using dynamic user set point settings and

RBO

The figure 4.23 shows a power consumption comparison for illumination control. It compared
average based set point setting, max-min based set point setting, and min-max set point setting. X-axis
shows the time in hours while the Y-axis shows the illumination power consumption in Lux. Average
based power consumption starts from 14.99kwt at 1o’clock and it decreases to Skwt at 150’clock.
Similarly, max-min based power consumption starts from 14.99kwt at lo’clock and it decrease to
Skwt at 150’clock. Then min-max based power consumption starts from 14.99kwt and it decreases to
Skwt at 130’clock. From the total result, we can say that power consumption of min-max user set

point setting consume less power compare than average and max-min user set point setting.
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Power consumption for air quality control using Dynamic user set point
settings and RBO
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Figure 4.24 Power consumption comparison for temperature control using dynamic user set point settings and

RBO

The figure 4.24 shows a power consumption comparison for air quality control. It compared average
based set point setting, max-min based set point setting, and min-max set point setting. X-axis shows
the time in hours while the Y-axis shows the air quality power consumption in ppm. For air quality
control, we get almost similar results in our certain simulation case. Average based power
consumption starts from 2.63kwt at 1o’clock and it increases to 2.66kwt at 90’clock. Similarly, max-
min based power consumption starts from 2.62kwt at 1o’clock and it increases to 2.66kwt at 90’clock.
Then min-max based power consumption starts from 2.63kwt and it increases to 2.66kwt at
100’clock. From the total result, we can say that power consumptions of these three methods are
almost same.

Table 4.2 shows a comparison of total power consumption by three user set point setting methods
and RBO. For temperature control, ABS and RBO based power consumption consumed total
74.60748kwt power. Then Max-Min and RBO based power consumption consumed 85.00414kwt
power. Similarly, Min-Max and RBO based power consumption consumed 63.60321kwt power. Then

we can see that power consumption difference between ABS and RBO, Max-Min and RBO, and Min-
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Max and RBO based power consumption. As a result, we can see that Min-Max and RBO based
power consumption is consuming less power compare than Max-min and RBO and ABS and RBO

based power consumptions for temperature control.

Table 4.2 Total power consumption by dynamic user set point settings and RBO for temperature

control
Temperature | [llumination | Air quality TOTAL
Average based power
74.60748 205.059 63.86507 343.5316
consumption
Max-Min based power
85.00414 210.0556 63.86507 358.9249
consumption
Max-Min based power
63.60321 200.0592 63.86507 327.5275
consumption

For illumination control, ABS and RBO based power consumption consumed total 205.059kwt
power. Then Max-Min and RBO based power consumption consumed 210.0556kwt power. Similarly,
Min-Max and RBO based power consumption consumed 200.0592kwt power. Then we can see that
power consumption difference between ABS and RBO, Max-Min and RBO, and Min-Max and RBO
based power consumption. As a result, we can see that Min-Max and RBO based power consumption
is consuming less power compare than Max-min and RBO and ABS and RBO based power
consumptions for illumination control. For air quality control, ABS and RBO based power
consumption consumed total 63.86507kwt power. Then Max-Min and RBO based power
consumption consumed 63.86507kwt power. Similarly, Min-Max and RBO based power consumption
consumed 63.86507kwt power. Then we can see that power consumptions between ABS and RBO,
Max-Min and RBO, and Min-Max and RBO methods are similar to each other in our certain case.
Finally, we have total consumed power from each three methods and RBO. Then total power

consumption of ABS and RBO was 343.5316kwt and total power consumption of Max-Min and RBO
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was 358.9249kwt. Also, power consumption of Min-Max and RBO was 327.5275kwt. Therefore, we
can say that Min-max user set point setting and RBO based power consumption consumed less power
compared as the average based user set point setting with RBO and max-min based user set point
setting with RBO. In addition, we can see that Min-Max based user set point setting gives better

results among the three methods.

————— Avarage set points based comfort index
—— Max-Min user set points based comfort index
-~ Min-Max user set point based comfort index

Comfort index

0.995

099

[=]
o o
w0 o
= b
\
)
1
]
[} |
1
)
'
'
'
\

0975

Comfort index

0.87

0.965

0.96 T T T T T T T T T T T T T T T T T T T ]
i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time(Hour)

Figure 4.25 Comparison of comfort index of dynamic user set point settings and RBO for multi-users

The figure 4.25 shows the comfort index of dynamic user set point settings, which based on an
average, max-min, and min-max user set point setting. X-axis shows the time in hours while the Y-axis
shows the comfort indexes from 0 to 1. User set points based on Max-min starts from 0.967 and it
reaches to 1 comfort index at 180’clock. Then user set point based on min-max starts from 0.98 and it
reaches to 1 comfort index at 130’clock. The user set point based on average starts from 0.979 and it
reaches to 1 at 140’clock. As a result, we can see that user set point based on min-max setting comfort

index is higher than average and max-min based user set points.
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5. Optimization scheme based on prediction of

Indoor environment parameters

5.1. Conceptual design optimization scheme based on prediction

of indoor environment parameters
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Figure 5.1 Conceptual design of optimization scheme based on prediction of indoor environment

parameters

Figure 5.1 shows the conceptual design of an optimization scheme based on prediction of indoor

environment parameters. Conceptual design includes three basic steps which are input, processing,
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and output. In stepl, we have indoor environment parameters (temperature, illumination, and air-
quality), user set points (temperature, illumination, and air-quality), and source of power. In step2, it
includes five sub steps which are setting, prediction, optimization, calculation, and comparison. In
step2.1, it includes dynamic user set point setting. In step 2.2, it includes prediction of indoor
parameters. In step 2.3, it includes rule based optimization and user comfort index. In step2.4, it
includes fuzzy controller and coordinator agent. In step 2.5, it includes comparator. Then, in step3, it

includes smart home actuators.

5.2. Block diagram of optimization scheme based on prediction of

indoor environment parameters
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Figure 5.2 Block diagram of an optimization scheme based on prediction of indoor environment

parameters

Figure 5.2 shows a block diagram of an optimization scheme based on prediction of indoor

environment parameters. User set points of multi user are input to the dynamic user set point setting.
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Then indoor environment parameters (temperature, illumination, and air quality) from the sensors are
input to the indoor parameter prediction using a Kalman filter to predict indoor environment
parameters. Then predicted indoor environment parameters and multi user set points from dynamic
user set point setting are input to the RBO optimizer for optimization. Then the optimized parameters
are input to user comfort index to calculate the user comfort index. Then optimized parameters from
RBO and predicted indoor environment parameters are input to the fuzzy controller to calculate
required power for temperature, illumination, and air quality. Then the coordinator agent adjusted the
power, according to the required power from the fuzzy controllers and available power from the
source of power. Then comparator takes required power from fuzzy controller and adjusted power
from coordinator agent. Then consumed power from the comparator is input to smart home actuators

which are devices utilized the power inside the smart home.

5.3. Design of indoor environment parameters prediction using

Kalman filter
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Figure 5.3 Design of indoor environment parameters prediction using Kalman filter
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The figure 5.3 shows the design of indoor environment prediction using Kalman filter. The
temperature, illumination, and air quality from the sensor are input to the Kalman filter prediction of
indoor parameters. Then after getting predicted parameters, we check that whether predicted
parameters still need to optimize or don’t need to optimize. If it is needed to optimize, predicted

indoor parameters are given to system processing part.
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5.4. Simulation result of optimization scheme based on prediction

of indoor environment parameters

In order to evaluate performance of our proposed Rule based optimization scheme, we have
developed and simulator in Visual Studio 2013 using c#. User preference set parameters range was
Tset = [66, 78] (Kelvin), Lset = [720, 880] (lux), and Aset = [700, 880] (ppm). Brief detail of system

configuration is given in Table 5.1.

The environmental configuration remains the same for all the experiments. The uniform
configuration helps in the comparison of results with existing techniques. We developed the simulator

by using .Net programming environment with the configuration shown in Table 5.1.

Table 5.1 Simulation Environment

Module Hardware Software Remark

Intel(R) Xeon(R) CPU
W3503 @2.4GHz 2.39GHz
4GB RAM

Microsoft C#
Visual Studio | Windows 7

Virtual sensing data for temperature,
illumination, and air-quality

Optimization of user set parameters | Intel(R) Xeon(R) CPU
(temperature, illumination, and air- | W3503 @2.4GHz 2.39GHz
quality) 4GB RAM

Microsoft C#
Visual Studio | Windows 7

Intel(R) Xeon(R) CPU
W3503 @2.4GHz 2.39GHz
4GB RAM

Microsoft C#
Visual Studio | Windows 7

Dynamic user set point settings for
multi-users

Prediction of indoor environment Intel(R) Xeon(R) CPU
parameters for temperature, W3503 @2.4GHz 2.39GHz
illumination, and air-quality 4GB RAM

Microsoft C#
Visual Studio | Windows 7
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In this section we are showing indoor environment parameters for temperature, illumination and air-
quality. The indoor parameters show here for 24 hours of the day. Each one point represents one hour
of the day. In case of temperature the unit is Fahrenheit, for illumination the unit of measurement is
Iux and for air-quality, the measurement unit is ppm. Figures 5.4, 5.5, 5.6, 5.7 relatively show the
indoor parameters for temperature, illumination and air-quality. We have two sorts of temperature
data. One is the indoor sensor data in winter time. Another one is the indoor sensor data in summer

time.
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Figure 5.4 Indoor parameters in summer for temperature

Figure 5.4 illustrates indoor parameters summer for temperature. The indoor data come from the
sensor. We used actual indoor temperature data from actual sensor. We can see that temperature starts
from 58.64 degree Fahrenheit at 10’clock of the day. Then it increases and reaches at 78.26 degree

Fahrenheit at 150’clock of the day.
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Figure 5.5 Indoor parameters in winter for temperature

Figure 5.5 illustrates indoor parameters winter for temperature. The indoor data come from the
sensor. We used actual indoor temperature data from actual sensor. We can see that temperature in
winter is less than the summer temperature. It starts from 12.2 degree Fahrenheit at 1o’clock of the

day. Then it increases and reaches at 24.44 degree Fahrenheit at 160’clock of the day.

Tenperstue: Fabvenhet v Numberofinputs: 24 v [ indoor i [ndoor [¢ ion by ASP [ i [ Power on by minlax P+ ||
lumination: ~ Lux v Season: Summer v
Hequdy  Fom : 1000 s gy it
Username: Add user Add set ponts
User's set points:
Temperature Set Point
Minimum v Maimum: v
Minimum: v Maimum: v
Arqualty Set Point
Minimum: v Maimum: v

[ Avarage Set Pots | [ Maxhin Set Ports | [ Min-Max Ponts |

=

Figure 5.6 Indoor parameters for illumination
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The change in illumination starts from 600 lux at lo’clock and reaches 830 lux at 23 o’clock.
Similarly, change in air quality starts from 990 ppm at lo’clock and it decreases to 760 ppm at

230’°clock.

Temperature: Fahrenheit v Numberof inputs: 24 v [ Indoor | Indoor luminati ‘ Indoor airqualty parameter l”’"" ion by ASP | Power by Max-MinSP | Power by min-MaxPo ¢ | >
llumination: ~ Lux v Season: Summer v
1000- Indoor air quality parameters
Hrquaity.  Ppm B | ‘ by 24 hours
[ setPorameters | [Readindoorporameters | [ Predct |
B004— - - - - - e - o e oo o e
User name: Add user Add set points.
User's set points:
Temperature Set Pornt 600 O O O O A O B
Minimum: v Maximum: v
lumination Set Point s 1 1 & & & 1 # & &1 1 111 ¢ 1% 48111411 L
Mirimum: v Maximum: v
Airqualty Set Point
200 - - -1 —
Minimum: v Maximum: v
0
Avarage Set Points Max-Min Set Point Min-Max Points L ! ! 1
oo I bon] onbion o q 4 9 i 19 %
i Optimize with Optimize with
e ‘ ’ Maxhing? I [ Y HarSP ]

Figure 5.7 Indoor parameters for air-quality

Here, we show that predicted indoor environment parameters. Kalman filter prediction is used to

predict indoor parameters.

Temperatue: Fahverhet v Numberofinputs: 24 v [ Indoor uminat [ Indoor airquity parameter | | i Preditedi i Prediced ndoor i qualty parameters | Powercar |
llumination: ~ Lux v Season: Summer v
80 - Predicted indoor temperature

Arqualty:  Ppm v parameters
[ Set Parameters I[Readndwpmus][ Predict ]
- 0

User's set points:
Temperature Set Point

Miiu: - Masmum: v 49+
lhumintion Set Point

Minimum: v Maximum; v
Hirqualty Set P 2

Minimum: v Masmum: v
[ Avarage Set Pots ] ([ Machin Set Ports_ ] [ VinMaxPors_| 0

-1 4 9 4 19 2%

e Optimize with Optimize with

[ ot 8 H HarlinSP ] i asSP ]

Figure 5.8 Predicted Indoor parameters of summer temperature
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Figure 5.9 Predicted Indoor parameters of winter temperature

Figure 5.8 and 5.9 shows that predicted indoor temperature parameters in summer and winter.
Predicted temperature in the summer starts 59.0089 degree Fahrenheit and it reaches to 78.87 degree
Fahrenheit at 150°clock. Similarly predicted temperature in winter time starts 12.85 degree Fahrenheit

and reaches to 26.24 degree Fahrenheit at 160’clock of the day.
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Figure 5.10 Predicted Indoor parameters of illumination
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Figure 5.11 Predicted Indoor parameters of air quality

Figure 5.10 and 5.11 shows predicted indoor parameters of illumination and air quality. The change
in predicted illumination starts from 600.65 lux at lo’clock and reaches 830.64 lux at 23 o’clock.

Similarly, change in air quality starts from 990.65 ppm at 1o’clock and it decreases to 760.65 ppm at

230’clock.

Power consumption comparison for temperature control by predicted and unpredicted
indoor environment parameters, ABS, RBO, and Kalman filter
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Figure 5.12 Power consumption comparison of temperature of predicted and unpredicted indoor environment

parameters, ABS, RBO, and Kalman filter
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Figure 5.12 shows a power consumption comparison for temperature control of predicted and
unpredicted indoor environment parameters, ABS, RBO, and Kalman filter. X-axis shows time in
hours and the Y-axis shows the power consumption in kilowatts. Power consumption with prediction
starts from 5.64kwt at 1o’clock. At the same time, power consumption without prediction starts from
6.18kwt. As a result, total power consumption with prediction consumed slightly less than power

consumption without prediction for temperature control.

Figure 5.13 shows a power consumption comparison for illumination of predicted and unpredicted
indoor environment parameters, ABS, RBO, and Kalman filter. X-axis shows time in hours and the Y-
axis shows the power consumption in kilowatts. Power consumption with prediction starts from
14.99878kwt at lo’clock. At the same time, power consumption without prediction starts from
14.99898kwt. As a result, total power consumption with prediction consumed slightly less than power

consumption without prediction for illumination control.

Power consumption comparison for illumination control by predicted and unpredicted
indoor environment parameters, ABS, RBO, and Kalman filter
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Figure 5.13 Power consumption comparison for illumination of predicted and unpredicted indoor environment
parameters, ABS, RBO, and Kalman filter
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Power consumption comparison for air quality control by predicted and unpredicted
indoor environment parameters, ABS, RBO, and Kalman filter
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Figure 5.14 Power consumption comparison of air quality of predicted and unpredicted indoor environment

parameters, ABS, RBO, and Kalman filter

Figure 5.14 shows a power consumption comparison for air quality of predicted and unpredicted
indoor environment parameters, ABS, RBO, and Kalman filter. X-axis shows time in hours and the Y-
axis shows the power consumption in kilowatts. Power consumption with prediction starts from
2.6321kwt at lo’clock. At the same time, power consumption without prediction starts from
2.6324kwt. As a result, total power consumption with prediction consumed slightly less than power
consumption without prediction for air quality control.

Table 5.2 Total power consumption by predicted and unpredicted indoor environment parameters,
ABS, RBO, and Kalman filter

Temperature IHlumination Air quality Total
Power consumption with
73.09353 210.0001 63.8465 346.9401
prediction
Power consumption
74.60748 210.0556 63.8472 348.5103
without prediction
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Table 5.2 shows a comparison of total power consumption for each control. For temperature
control, power consumption with prediction consumed total 73.09353kwt power. Similarly, power
consumption without prediction consumed 74.60748kwt power. As a result, we can see the much
difference between power consumption with prediction and power consumption without prediction.
Then we can see that power consumption with prediction consumes less power compared as power
consumption without prediction. For illumination control, power consumption with prediction
consumed total 210.0001kwt power. Similarly, power consumption without prediction consumed
210.0556kwt power. As a result, we can see the slightly difference between power consumption with
prediction and power consumption without prediction. For air quality control, power consumption
with prediction consumed total 63.8465kwt power. Similarly, power consumption without prediction
consumed 63.8472kwt power. As a result, we can see the little difference between power consumption
with prediction and power consumption without prediction. Then we can see that power consumption
with prediction consumes almost same, but less power compared as power consumption without
prediction. As an overall result, the total power consumption with prediction consumed 346.9401kwt.
Then the total power consumption without prediction consumed 348.5103kwt. We can consume less

power using Kalman filter prediction of indoor environment parameters.

Power consumption comparison for temperature control by predicted and
unpredicted indoor environment parameters, Max-Min, RBO, and Kalman filter
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Figure 5.15 Power consumption comparison of temperature of predicted and unpredicted indoor environment
parameters, Max-Min, RBO, and Kalman filter
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Figure 5.15 shows a power consumption comparison for temperature control of predicted and
unpredicted indoor environment parameters, Max-Min, RBO, and Kalman filter. X-axis shows time in
hours and the Y-axis shows the power consumption in kilowatts. Power consumption with prediction
starts from 7.17kwt at 1o’clock. At the same time, power consumption without prediction starts from
7.55kwt. As a result, total power consumption with prediction consumed slightly less than power

consumption without prediction for temperature control.

Figure 5.16 shows a power consumption comparison for illumination of predicted and unpredicted
indoor environment parameters, Max-Min, RBO, and Kalman filter. X-axis shows time in hours and
the Y-axis shows the power consumption in kilowatts. Power consumption with prediction starts from
14.99984kwt at 1o’clock. At the same time, power consumption without prediction starts from
14.99965kwt. As a result, total power consumption with prediction consumed slightly less than power

consumption without prediction for illumination control.

Power consumption comparison for illumination control by predicted and
unpredicted indoor environment parameters, Max-Min, RBO, and Kalman filter
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Figure 5.16 Power consumption comparison for illumination of predicted and unpredicted indoor environment

parameters, Max-Min, RBO, and Kalman filter
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Power consumption comparison for air quality control by predicted and
unpredicted indoor environment parameters, Max-Min, RBO, and Kalman filter
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Figure 5.17 Power consumption comparison of air quality of predicted and unpredicted indoor environment

parameters, Max-Min, RBO, and Kalman filter

Figure 5.17 shows a power consumption comparison for air quality of predicted and unpredicted
indoor environment parameters, Max-Min, RBO, and Kalman filter. X-axis shows time in hours and
the Y-axis shows the power consumption in kilowatts. Power consumption with prediction starts from
2.6288kwt at lo’clock. At the same time, power consumption without prediction starts from
2.6292kwt. As a result, total power consumption with prediction consumed slightly less than power

consumption without prediction for air quality control.

Table 5.3 Total power consumption by predicted and unpredicted indoor environment parameters,
Max-Min, RBO, and Kalman filter

Temperature IHlumination Air quality Total
Power consumption with
o 84.39 219 63.8262 368.21
prediction
Power consumption
) o 85 220 63.8271 368.88
without prediction
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Table 5.3 shows a comparison of total power consumption for each control. For temperature control,
power consumption with prediction consumed total 73.09353kwt power. Similarly, power
consumption without prediction consumed 74.60748kwt power. As a result, we can see the much
difference between power consumption with prediction and power consumption without prediction.
Then we can see that power consumption with prediction consumes less power compared as power
consumption without prediction. For illumination control, power consumption with prediction
consumed total 210.0001kwt power. Similarly, power consumption without prediction consumed
210.0556kwt power. As a result, we can see the slightly difference between power consumption with
prediction and power consumption without prediction. For air quality control, power consumption
with prediction consumed total 63.8465kwt power. Similarly, power consumption without prediction
consumed 63.8472kwt power. As a result, we can see the little difference between power consumption
with prediction and power consumption without prediction. Then we can see that power consumption
with prediction consumes almost same, but less power compared as power consumption without
prediction. As an overall result, the total power consumption with prediction consumed 368.21kwt.
Then the total power consumption without prediction consumed 368.88kwt. From the result, we can
say that Kalman filter prediction of indoor environment parameters can make power consumption

decrease.

Power consumption comparison for temperature control by predicted and
unpredicted indoor environment parameters, Min-Max, RBO, and Kalman filter
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Figure 5.18 Power consumption comparison of temperature of predicted and unpredicted indoor environment
parameters, Min-Max, RBO, and Kalman filter

74



Figure 5.18 shows a power consumption comparison for temperature control of predicted and
unpredicted indoor environment parameters, Min-Max, RBO, and Kalman filter. X-axis shows time in
hours and the Y-axis shows the power consumption in kilowatts. Power consumption with prediction
starts from 5.27kwt at 1o0’clock. At the same time, power consumption without prediction starts from
6.13kwt. As a result, total power consumption with prediction consumed slightly less than power

consumption without prediction for temperature control.

Figure 5.19 shows a power consumption comparison for illumination of predicted and unpredicted
indoor environment parameters, Min-Max, RBO, and Kalman filter. X-axis shows time in hours and
the Y-axis shows the power consumption in kilowatts. Power consumption with prediction starts from
14.99936kwt at 1o’clock. At the same time, power consumption without prediction starts from
14.99938kwt. As a result, total power consumption with prediction consumed slightly less than power

consumption without prediction for illumination control.

Power consumption comparison for illumination control by predicted and
unpredicted indoor environment parameters, Min-Max, RBO, and Kalman
filter
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Figure 5.19 Power consumption comparison for illumination of predicted and unpredicted indoor environment

parameters, Min-Max, RBO, and Kalman filter
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Power consumption comparison for air quality control by predicted and
unpredicted indoor environment parameters, Min-Max, RBO, and
Kalman filter
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Figure 5.20 Power consumption comparison of air quality of predicted and unpredicted indoor environment

parameters, Min-Max, RBO, and Kalman filter

Figure 5.20 shows a power consumption comparison for air quality of predicted and unpredicted
indoor environment parameters, Min-Max, RBO, and Kalman filter. X-axis shows time in hours and
the Y-axis shows the power consumption in kilowatts. Power consumption with prediction starts from
2.6341kwt at lo’clock. At the same time, power consumption without prediction starts from
2.6344kwt. As a result, total power consumption with prediction consumed slightly less than power

consumption without prediction for air quality control.

Table 5.4 Total power consumption by predicted and unpredicted indoor environment parameters,
Min-Max, RBO, and Kalman filter

Temperature IHlumination Air quality Total
Power consumption
with prediction 61.51 200.008 63.864 325.38
Power consumption
without prediction 63.6 200.059 63.865 327.52
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Table 5.4 shows a comparison of total power consumption for each control. For temperature
control, power consumption with prediction consumed total 61.51kwt power. Similarly, power
consumption without prediction consumed 63.6kwt power. As a result, we can see the much
difference between power consumption with prediction and power consumption without prediction.
Then we can see that power consumption with prediction consumes less power compared as power
consumption without prediction. For illumination control, power consumption with prediction
consumed total 200.008kwt power. Similarly, power consumption without prediction consumed
200.059kwt power. As a result, we can see the slightly difference between power consumption with
prediction and power consumption without prediction. For air quality control, power consumption
with prediction consumed total 63.864kwt power. Similarly, power consumption without prediction
consumed 63.865kwt power. As a result, we can see the little difference between power consumption
with prediction and power consumption without prediction. Then we can see that power consumption
with prediction consumes almost same, but less power compared as power consumption without
prediction. As an overall result, the total power consumption with prediction consumed 325.38kwt.
Then the total power consumption without prediction consumed 327.52kwt. From the result, we can
say that Kalman filter prediction of indoor environment parameters can make power consumption

decrease.
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6. Conclusion

In this thesis work, we proposed improved energy and comfort index optimization scheme based
on rule in smart home. Our proposed system has three major contributions. Firstly, rule based
optimization which consumed less power as compared to genetic algorithm and incremental genetic
algorithm. Secondly, optimization algorithm based on dynamic user set point setting for multi-users,
which uses three methods such as average based user set point setting, max-min based user set point
setting, and min-max based user set point. As a result of the power consumption comparison of these
three methods, we can say that min-max based user set point setting consumes less power compared
to the other two methods. Thirdly, the proposed idea is that optimization based on prediction of
indoor environment parameters using Kalman filter. The proposed work consumed less power
compared to unpredicted indoor environmental parameters. To conclude, our system improved user
comfort index and decreasing consumed power by temperature, illumination, and air quality control
in a smart home. As a result, RBO reduced power consumption by 24.32% as compared to GA,
10.26% as compared to IGA, and 25.72% as compared to ACO. Then to satisfy multi users’ comfort
of smart home, we proposed dynamic user set points setting by three methods. Among the three
methods, max-min based user set point setting consumed highest power. Then average based user set
point setting reduced power by 4.28% as compared to max-min based user set point setting and min-
max based user set point setting reduced power by 8.74% as compared to max-min based user set
point setting. We compared predicted indoor environment parameters and unpredicted indoor
parameters. For illumination and air quality control, we got results with almost similar. Then
prediction of indoor parameters, for temperature control ABS, and RBO based system reduced power
consumption by 2% as compared to unpredicted indoor parameters, ABS, and RBO based system.
Prediction of indoor parameters, for temperature control Max-min, and RBO based system reduced
power consumption by 0.71% as compared to unpredicted indoor parameters, Max-min, and RBO
based system. Similarly, prediction of indoor parameters, for temperature control Min-max, and
RBO based system reduced power consumption by 3.28% as compared to unpredicted indoor

parameters, Min-max, and RBO based system.
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