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Abstract 

   Smart homes and residential buildings are becoming one of the interesting and challenging 

research topics in order to satisfy what occupants’ need in the certain building environment. At the 

same time, the total amount of energy consumption in smart home and building environment has 

been increasing rapidly since last few years. Therefore, many scientific researchers have been 

given huge attention to the energy control and management in smart home and residential building 

environment. Several proposals based on optimization algorithms and other technologies exist in 

literature that has been tried to solve the challenge between energy consumption and occupant’s 

comfort index. In this thesis, we proposed rule based optimization scheme for reducing power 

consumption, an optimization scheme based on dynamic user setting for multi-users, and 

optimization scheme based on prediction of indoor environment parameters in order to increase 

user comfort index and consume less energy in the smart home area. Previously, we have already 

implemented optimization algorithms such as Ant colony optimization and Incremental genetic 

algorithm in order to increase user satisfaction level and energy efficiency. The energy control 

system using algorithms aimed to find highest optimal set points and increase the occupant’s 

overall satisfaction in building environment. It gives a high overall comfort index and less power 

consumption results. However, there are still ways to get higher comfort index results with less 

energy consumption. Therefore the purpose of this thesis is aimed to increase occupant’s comfort 

index and consume less power through optimal environment set points which is using rule based 

optimization.  In addition, we considered multi user set point setting for every members of the 

home. Thus every user is able to customize their comfort condition ranges by dynamic user set 

point settings for multi-users. The third proposed idea is about predicting indoor environment 

parameters to consume less power. As a result, RBO reduced power consumption by 24.32% as 

compared to GA, 10.26% as compared to IGA, and 25.72% as compared to ACO. To satisfy multi 

users’ comfort in smart home, we proposed dynamic user set points setting by three methods. 

Among the three methods, max-min based user set point setting consumed highest power. Average 

based user set point setting reduced power by 4.28% as compared to max-min based user set point 
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setting and min-max based user set point setting reduced power by 8.74% as compared to max-

min based user set point setting. Finally, we compared predicted indoor environment parameters 

and unpredicted indoor parameters. For illumination and air quality control, the results were 

almost similar. But, the prediction of indoor parameters, for temperature control, ABS, and RBO 

based system reduced power consumption by 2% as compared to unpredicted indoor parameters, 

ABS, and RBO based system. Prediction of indoor parameters, for temperature control Max-min, 

and RBO based system reduced power consumption by 0.71% as compared to unpredicted indoor 

parameters, Max-min, and RBO based system. Similarly, prediction of indoor parameters, for 

temperature control Min-max, and RBO based system reduced power consumption by 3.28% as 

compared to unpredicted indoor parameters, Min-max, and RBO based system. 
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1. Introduction 

   The usage of energy has been increased worldwide since last decade. People have been spending 

most of their time in building environment. Because of this reason, too much energy has been 

consumed in smart and intelligent building areas. At the same time, energy resource that we have is an 

expensive and certain limit. Therefore, we need solutions that consume less power with occupants’ 

high satisfaction or comfort level in the smart buildings, thus spending less money on energy 

consumption. In order to overcome those issues researchers have been paying their attention to this 

topic. Increasing the occupants’ overall comfort index and decreasing energy consumption is still a 

big challenge in energy management and control systems.  

   Why we need to implement energy efficient system?  We have already mentioned about issues that 

we have been facing related to usage of energy in smart home and building. In order to improve the 

occupants’ overall satisfaction level with consume less energy. Also to overcome financial issues, we 

need an energy efficiency system. The fundamental purpose of implementing energy efficient system 

is improve to make occupants comfort index and consume less power in the smart home. 

   What are the energy control and management system in smart home? Basically, according to the 

basic definition that energy management and control system is a system of computer-aided tools 

utilized by operators of electric utility grids to monitor, control, and optimize the performance of the 

generation and transmission system. Therefore, inside the smart home area, we can manage, control, 

and optimize the usage of the generation using energy management and control system.  

   What is optimization algorithm? Optimization algorithms, try to find the minimum values of 

mathematical functions, are used commonly. Among other things, they’re used to evaluate design 

tradeoffs, to assess control systems, and to find patterns in data. One way to solve a difficult 

optimization problem is to first reduce it to a related but much simpler problem, then gradually add 

complexity back in, solving each new problem in turn and using its solution as a guide to solving the 
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next one. This approach seems to work well in practice, but it’s never been characterized theoretically. 

What is optimization and optimization problem? Mathematics, computer science and operations 

research, mathematical optimization is the selection of the best elements from some set of available 

alternatives. Basically, optimization algorithms aim is that maximizing or minimizing a real function 

by systematically choosing input values from an allowed set and estimate the value of the function. 

Generally, an optimization issue is the problem of finding the fittest solution from all possible 

solutions. An optimization issue can be divided into two sections depending on whether the variables 

are continuous or discrete.  

   Why do we need to use energy optimization? Optimization has been used by an energy management 

system to find optimal parameters. There is two major elements in this system are current indoor 

parameters and user set points. The current indoor parameters indicate the environmental conditions in 

the smart home area. The user set points indicate the demand comfort level of the occupants in the 

smart home area. To express user’s comfort, we consider three parameters, such as temperature, 

illumination, and air quality. Then current indoor environment and user set points consist of those 

basic three parameters. The difference between user set points and current indoor parameters is called 

error difference. In our thesis, error difference is the input to the fuzzy controller in order to calculate 

required power consumption. So here is an important point that the minimum error difference can 

achieve minimum power consumption. In this way, it is obvious that we need to use energy 

optimization in order to minimize the error difference between the user set points and current indoor 

parameters. As a result of those concepts, we can minimize the error difference between the two 

parameters using optimization. At the same time we can achieve minimum energy consumption in a 

smart home.   

   Figure 1.1 shows the conceptual design of overall proposed ideas. Each concept is described below. 

We propose three ideas in this work. Firstly, the rule based optimization scheme for reducing power is 

proposed. The rule based optimization targets to satisfy of the user’s requirement along with minimal 

energy consumption with improved performance in terms of computation. The ranges of user set 

parameters are optimized using rule based optimization. Then the optimal parameters from rule based 

optimization and indoor environment parameters from sensors are input to fuzzy controller.  
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Figure 1.1 Conceptual design of overall proposed ideas 

   Then minimum required power is output of a fuzzy controller which is passed to control actuators 

for temperature, illumination, and air quality.  Coordinator agent takes as input required power and 

optimal parameters. The coordinator agent adjusts the input power of the smart home on the basis of 

available power, required power. The adjusted power compared with the required power to get the 

actual consume power. The consumed power is used by the actuators. Secondly, optimization scheme 

based on dynamic user set point setting for multi-users is proposed. The dynamic user set point setting 

is considered for comfort condition of every member of the home. Every member is able to choose 

their comfort ranges which are minimum and maximum between certain ranges. Then minimum and 

maximum ranges are input to dynamic user set point setting and system level comfort ranges for 

temperature, illumination, air quality are calculted according to all members comfort ranges. We use 

three met 
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hods to calculate actual user set point which is average based setting, maximum-minimum based 

setting, and minimum-maximum based setting. The actual user set points from dynamic user set point 

setting is input to rule based optimization to get optimal parameters. Then the optimal parameters 

from rule based optimization and indoor environment parameters from the sensors are input to fuzzy 

controller. Minimum required power is output of fuzzy controller for controls which are temperature, 

illumination, air quality.  Coordinator agent takes as input required power and optimal parameters. 

The coordinator agent adjusts the input power of the smart home on the basis of available power, 

required power. The adjusted power compares with the required power to get the actual consume 

power. The consumed power is used by the actuators. Thirdly, optimization scheme based on 

prediction of indoor environment paremeters. We use Kalman filter prediction for predicting indoor 

environment parameters from the sensor. We observe small reduction in actual power consumption by 

using prediction of indoor environment parameters.  

   The rule based optimization idea is inspired by comfort index calculation. The goal of optimizing 

user set points is in order to maximize comfort index and at the same time consuming less energy. 

Therefore, getting optimal parameter is the key of the system. If we can get optimal parameters with 

highest comfort index, we can get minimum power consumption. For this reason, rule based 

optimization considered on minimizing the error difference between current indoor environmental 

parameters and user set points based on some rules. Users can define their own ranges of each set 

point. So, user defined set point ranges, and current environment parameters are input to the rule 

based optimization. We optimize temperature, illumination, and air quality parameters separately. 

Current environmental parameters such as temperature, illumination, and air quality and user set point 

ranges are input to the rule based optimization.  

   User set points define comfortable maximum and minimum ranges of users. In smart home, comfort 

environment is important to every family member. Therefore, we suggest that all people in the smart 

home are able to set their comfortable user set points. Then the system user set point is calculated by 

user set point setting. Thus, we can make a comfortable environment for every member in a smart 



5 
 

home. The adjusted user set points are input of the rule based optimization. Actually the user set 

points are parameters which have maximum and minimum value. It indicates that user’s comfort zone.  

   Optimization scheme based on prediction of indoor environment parameters uses Kalman filter to 

predict indoor environment parameters from sensors. Then predicted indoor environment parameters 

are input to rule based optimization to get optimal parameters and also it is input to the fuzzy 

controller to calculate required power. We consume less energy using Kalman filter prediction of 

indoor environment parameters.  
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2. Related works 

2.1. Optimization approaches in energy consumption   

   In this section we are going to discuss about the related work optimization and prediction algorithms 

which are applied to the energy management system and schemes. Since people spend most of their 

time in building, the environment comfort conditions of buildings are highly related to occupants’ 

satisfaction. Therefore, in the literature many works have been proposed to energy savings and energy 

management control system. Those works have been applied optimization algorithms to address the 

problem. In particular genetic algorithm (GA) is used by an energy management system in many 

ways. Optimizing the input parameters of fuzzy logic using GA and predict using Kalman filter. The 

parameters we optimized are temperature, illumination, and air-quality which reflects the occupant’s 

comfort index in the building environment. The proposed GA based optimized model produces over 

all improved comfort indexes as compare to our previous work PSO based system [3]. Adaptive 

learning algorithm based on genetic algorithms GA for automatic tuning of proportional, integral and 

derivative (PID) controllers in Heating, ventilating, and air conditioning (HVAC) systems to achieve 

optimal performance. Genetic algorithms which are search procedures based on the mechanics of 

Darwin’s natural selection, are employed since they have proven to be robust and efficient in finding 

near-optimal solutions in complex problem spaces. The modular, dynamic simulation software 

package HVACSIM has been modified and incorporated in the genetic algorithm-based optimization 

program to provide a complete simulation environment for detailed study of controller performance. 

Three performance indicators overshoot, settling time, and mean squared error are considered in the 

objective function of the optimization procedure for evaluation of controller performance [4]. Genetic 

algorithm optimization techniques are applied to shift properly the membership functions of the fuzzy 

controller in order to satisfy the occupants’ preferences while minimizing energy consumption. The 

implementation of the system integrates a smart card unit, sensors, actuators, interfaces, a 

programmable logic controller (PLC), local operating network (LON) modules and devices, and a 
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central PC which monitors the performance of the system. The communication of the PLC with the 

smart card unit is performed using an RS 485 port, while the PLC-PC communication is performed 

via the LON network [10].  Energy savings potential for using MPC with weather predictions for the 

investigated building heating system were between 15% and 28%, depending on various factors, 

mainly insulation level and outside temperature [12]. 

   In the literature many works have been proposed in the area of energy savings and some valuable 

energy management control systems have been proposed. Approaches based on conventional control 

systems have been introduced in prior works [22, 23]. These conventional controllers consist of 

classical controllers [22]. The classic controller has the temperature overshoot problem. The other 

problem with this approach is that, it does not consider user set parameters and the model is not user 

friendly. It also does not address the energy efficiency and the model was not energy efficient. To 

overcome the overshoot problem designer proposed PID controllers [23]. These controllers improve 

the situation, but the improper choice of the gains in PID controllers could make the system unreliable 

and unstable. Therefore, designers give attention to the optimal controller and adaptive controller 

respectively [24, 25]. The problems of conventional controllers are addressed in the optimal and 

adaptive controls. The optimal controller based approach improves the thermal comfort. Adaptive 

controllers have the capability to adapt to the environmental conditions. It is reported as most 

promising controllers in the context of adaptation to the climate conditions. Although optimal and 

adaptive controllers addressed the problems of classical controllers, but these approaches also have 

problems. These approaches need a building model which makes it difficult to implement for each and 

every building. The use of elements of bioclimatic architecture confuses the process of minimization 

of the cost function and if such a minimization is acquired, the results are not valid in practice. 

Another problem with techniques is that, they don’t consider occupants comfort index. These 

approaches are also not user friendly because they did not consider user set parameters. The last and 

most important point is that, these approaches don’t consider energy efficiency and consumed more 

energy.  



8 
 

A comparison of different control mechanisms for energy consumption and occupants comfort index 

in building environment is carried out in [26]. During comparisons, user set parameters were not 

considered. So the main disadvantage of their work is that, their models are not user friendly because 

users are not involved in deciding the occupants comfort index. A control strategy is proposed in [27] 

to maintain energy consumption and occupants comfort index, but user set parameters does not 

consider in deciding occupants comfort index. User set parameters plays a vital role in deciding 

occupants comfort index. In one of the previous work attention is made towards the occupants 

comfort index [28]. This work also did not consider the user participation in deciding occupants 

comfort index. Predictive and adaptive controllers using artificial neural network to allow the 

adaptation of the control model to the environmental conditions, building characteristics and user 

behaviors is proposed in [29]. This approach not only lack of user set parameters, but also did not 

consider occupants comfort index. Another predictive control strategy using a system method for 

overall system environment and energy performance to the changes of control settings of VAV air-

conditioning system is proposed and developed in [30]. To optimize the parameters GA algorithm has 

been used. This system also lack of user set points and occupants comfort index. The approach only 

considers energy efficiency in the building. A reinforcement learning controller to achieve occupants 

comfort index with minimal energy consumption is described in [31]. The method succeeded in 

accomplishing occupants comfort index, but failed to provide energy efficiency. Another robust 

reinforcement learning control for building power systems is proposed in [32]. The main drawback of 

this system is energy efficiency because the system could not achieve the desired results in minimized 

energy consumption. An optimized fuzzy controller applied for the control of environmental 

parameters at the building zone level has been proposed in [33]. In this method the occupants’ 

preferences are monitored via a smart card unit. Other proposals in this connection are predictive 

control approaches [34, 35], where weather predictions have been applied to heating, ventilating and 

air-conditioning system.  
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2.2. Optimization scheme approach based on the IGA  

   In this approach, we use an optimization scheme approach based on an Incremental genetic 

algorithm (IGA). The aim of this approach is to achieve maximum user comfort with less power 

consumption as compared to GA based system.  

 

Figure 2.1 Optimization scheme approach based on the IGA 

   Figure 2.1 illustrates the optimization scheme approach based on IGA in the building environment. 

In particular the system scheme consists of six basic components which are IGA optimizer, user 

comfort index, coordinator agent, fuzzy controllers, comparator, building actuators and sensors. IGA 

optimizer takes environmental parameters and user set points as input. Then the optimal parameters 

from IGA are input to the user comfort index in order to calculate the comfort index. Then the optimal 

parameters and environmental parameters are input to the fuzzy controller in order to estimate 

required power. Then the required power from fuzzy controller and grid power are input to the 

coordinator agent in order to get adjusted power. Then the required power and adjusted power are 

input to the comparator in order to get actual consumed power. Finally, the consumed power is input 
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to building actuators.      

 

Figure 2.2 Incremental genetic algorithm  

   The idea of IGA for optimizing modified problems is simple. Instead of starting with a randomly 

generated population of chromosomes, start by using the information saved from running an initial 

population on the initial problem. IGA has given focus in two major directions. First is that a 

modification made to a problem does not shift optimal and good sub-optimal solution points much in 

the solution space. Second is that the information saved during the application of a GA for the initial 

problem will be useful for subsequent application of a genetic algorithm to modified versions of a 

problem. The aim is to reduce evolution time, measured in number of generations of a genetic 

algorithm used for re-optimizing modified problem. Then the proposed system provides improved 

results. Figure 2.2 illustrates work sequence of IGA which is used by the system. First of all, initial 

population of chromosomes is created. Then it is evaluated by some fitness function. Then crossover 

is started. The crossover makes offspring. Then we need to increase the number of chromosomes and 
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update chromosomes for the next iteration of crossover. After finishing crossover, mutation process is 

started. Then end of the mutation, we got best chromosomes. 

Figure 2.3 Detailed flow chart of IGA 

   The figure 2.3 illustrates detailed flow chart of incremental genetic algorithm. We get user set 

ranges, environmental parameters, mutation rate, user defined factor, and iteration count as input. 

Then random chromosomes are created. Then error differences are calculated from chromosomes and 

environmental parameters. Then the comfort index is calculated by following equation [1.1] using 

error differences and environmental parameters. Then best chromosomes are selected by the rank 

based selection. After that, the crossover is started and we calculate the candidate number in order to 

make parent chromosomes. Then offspring is created from parent chromosomes. Then we estimate the 
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error difference for each offspring and comfort index. Then the best offspring is selected by the rank 

based selection. The offspring is given to chromosomes from next iteration. Then, if the mutation rate 

is met, we perform the mutation. End of the mutation, iteration will be increased for the next iteration. 

Similarly iteration will repeat until certain numbers of iterations are finished.     

2.3. Optimization scheme approach based on ACO algorithm 

 

Figure 2.4 Block model optimization method based on ACO algorithm 

   In this approach, we proposed that optimization method based on Ant Colony Optimization 

algorithm. We implemented different algorithms in order to get optimal parameter and increase 

comfort index. Therefore the figure 2.4 shows the block model consists of basic eight concepts which 

are environmental parameters, user set points, power grid, ACO optimizer, fuzzy controller, 

coordinator agent, comparator, and actuators and sensors. User set points and environmental 

parameters are input to the ACO optimizer. The output of ACO optimizer is called trails. The trails are 



13 
 

solutions. So, user comfort indexes are calculated for each trail. Then the optimal parameters from 

ACO optimizer are input to fuzzy controller. Then required power from the fuzzy controller is an 

input to coordinator agent and comparator. Adjusted power from coordinator Agent is input to the 

comparator. Then consumed powers are estimated by the comparator and input to the building 

actuators and sensors.           

 

 

Figure 2.5 Ant colony optimization algorithm flowchart diagram 

2.4. Sensor data 

   Sensor data are input to the system which indicates the condition of the smart home. We have three 

sensor data which are temperature, illumination, and air quality. We use real temperature sensor data 

from January 2010 and June 2010. Then for illumination and air quality, we use simulation linear data.   
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2.5. Comfort index and condition 

   Comfort condition is the quality of life in an intelligent and smart home or building area. It is 

important because of the reason that people spend their most of time in the building environment. 

Then occupants’ comfort environment directly impacts on their satisfaction and productivity. We can 

determine the occupants’ comfort index by three basic factors which are thermal comfort, visual 

comfort, and indoor air quality. Temperature is utilized to indicate the thermal comfort in a smart 

home. The auxiliary heating and cooling system are deployed to preserve the temperature in the 

comfort zone range. The illumination level is utilized to indicate the visual comfort in the building 

environment, which is measured in Lux [0, 1]. The electrical lighting system is utilized to manage 

visual comfort. CO2 concentration is utilized as an index to measure the air quality in the building 

environment, and the ventilation system is utilized to preserve the low CO2 concentration.  

Comfort index using Eq. (1.1).  

Comfort =α1 [1-(eT/Tset) 2] + α2 [1-(eL/Lset) 2] + α3 [1-(eA/Aset) 2]   (1.1)  

The range of comfort index is between [0, 1]. The comfort index varies between ‘0’ and ‘1’. ‘0’ means 

lowest or minimum comfort index and ‘1’ means highest or maximum comfort index.  α1, α2, α3 are 

the user defined factors which solve any possible conflict between the three comfort factors which are 

temperature, illumination and air-quality. Overall comfort is α1+α2+α3 = 1. In (Eq. 1.1) eT is the error 

difference between optimal parameter of rule based optimization (temperature in this case) and actual 

sensor temperature [0, 1]. The minimum error difference, the maximum will be the comfort index. 

Therefore, comfort index and error difference are opposite parameters to each other. As a result of that 

the error difference is an actual input to the fuzzy controller.  eL is the error difference between 

optimal parameter of rule based optimization (illumination in this case) and actual sensor 

illumination. eA is the error difference between optimal parameter of rule based optimization and 

actual sensor air-quality. Tset, Lset, Aset are the user set parameters of temperature, illumination and air-

quality.  
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2.6. Fuzzy logic and controllers 

   Fuzzy controller is a control system based on fuzzy logic. We use fuzzy controllers for temperature, 

illumination, and air quality. The proposed schemes use fuzzy controllers to get required power 

consumption. Error difference Te  and change in error Tce  (difference between current and previous 

error) between optimal parameters and indoor environment parameters are input to the fuzzy 

controller for temperature. The terms NB, NM, NS, ZE, PS, PM, and PB have been abbreviated for 

negative big, negative medium, negative small, zero, positive small, positive medium, and positive 

big. The input to the fuzzy controller for illumination is the error difference between the optimal 

parameter and real environmental illumination parameter.  

 

Figure 2.6 Input and output membership functions for temperature. (a) Input membership function of eT , (b) 

Input membership function of ceT , (c) Output membership function. 

   The input membership function is for the error which is the only input. If the input error is High 

Small the required output power would be OLittle. For error Medium Small (MS) the output power 
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would be OMS. For Basic Small (BS) the required power would be OBS. For OK the output power 

would be OOK. For SH the required output power is OSH while for High, the required power is OH. 

The input to the fuzzy controller for air-quality is the error difference between optimized air-quality 

parameter and real environmental air-quality parameter.  

 

Figure 2.7 Input and output membership functions for illumination. (a) Input membership function of errL (b) 

Output membership function 

 

Figure 2.8 Input and output membership functions for air quality. (a) Input membership function of eA (b) 

Output membership function 

   The input membership function is for the error which is the only input to the air quality fuzzy 

controller. If the input error is little, the required output power would be OFF. For OK, the output 
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power would be ON. For LH the required power will be OL. For MH, the required power would be 

OMH, and for HIGH the required would be OHIGH. The output of the fuzzy controllers is the 

required power for each of the temperature, illumination and air-quality. The required power is input 

to the coordinator agent and comparator components. 

Table 2.1 Fuzzy controller rules for temperature controller 

Required Power               errT 

 NB NM NS ZE PS PM PB 

 
 
 
cerrT 

NB NB NS PS PB PB PB PB 

NM NB NM ZE PM PM PB PB 

NS NB NM NS PS PM PB PB 

ZE NB NM NS ZE PS PM PB 

PS NB NB NM NS PS PM PB 

PM NB NB NM NM ZE PM PB 

PB NB NB NB NB NS PS PB 

 

Table 2.2 Fuzzy controller rules for illumination control 

Error HS MS BS OK SH H 

Required Power OHS OMS OBS OOK OSH OH 

 

Table 2.3 Fuzzy controller rules for air-quality control 

Error Little OK LH MH HIGH 

Required Power OFF ON OL OMH OHIGH 
 

2.7. Coordinator agent  

   Required power from fuzzy controller and available power from source of power are input to the 

coordinator agent. Adjusted power is calculated for each temperature, illumination, and air-quality 

control.  Figure 2.9 shows flowchart of coordinator agent. Required powers for temperature, 

illumination, and air quality are input to the coordinator agent. We calculate the total required power 

for the system. After checking the total power, whether less than the available power source or more 

than an available power source. If the total power is less than available power, take required power as 

adjusted power. Otherwise, customize adjusted power and finally we get adjusted powers for each 

temperature, illumination, air quality control.  
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 Figure 2.9 Flowchart of coordinator agent 

2.8. Comparator 

   Required power from fuzzy controller and adjusted power from coordinator agent are input to the 

comparator to get actual consume power for each temperature, illumination, and air quality control. 

Finally, the actual consumed powers are input to the smart home actuators. Figure 2.10 shows a flow 

chart of comparator. It takes adjusted power and required power as input. Then checking condition, 

whether to adjust power is less than required power or not. If the condition is yes, take adjusted power 

as consumed power. If the condition is no, take required power as consumed power. Then write 

consumed power as a result.  
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Figure 2.10 Flowchart of comparator  

2.9. Smart home actuators 

   Smart home actuators are the devices which utilize the power in the smart home. The actuators are 

AC used for cooling, heater for heating in the home, and light for visual comfort and fan for providing 

air quality comfort. The consumed power calculated by comparator is given to the actuators to set its 

operational level in order to maintain user comfort in building environment.  
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3. Optimization scheme based on rule for 

reducing power consumption 

3.1. Conceptual design of optimization scheme based on rule for 

reducing power consumption 

   In this section, we propose an optimization scheme based on rule for reducing power consumption 

approach in order to reduce power consumption.  

 

Figure 3.1 Conceptual design of an optimization scheme based on rule for reducing power consumption  

   Figure 3.1 shows conceptual design of optimization scheme based on rule which illustrates concepts 

of the rule based optimization scheme for reducing power consumption. Conceptual design includes 

three basic steps which are input, processing, and output. In step1, we have indoor environment 

parameters (temperature, illumination, and air-quality), user set points (temperature, illumination, and 
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air-quality), and source of power. In step2, it includes three sub steps which are optimization, 

calculation, and comparison. In step2.1, it includes rule based optimization and user comfort index. In 

step2.2, it includes fuzzy controller and coordinator agent. In step 2.3, it includes comparator. Then, in 

step3, it includes smart home actuators.  

3.2. Block diagram of optimization scheme based on rule for 

reducing power consumption 

 

Figure 3.2 Block diagram of optimization scheme based on rule for reducing power consumption 

   Figure 3.2 shows block diagram of optimization scheme based on rule for reducing power 

consumption. Indoor environment parameters (temperature, illumination, and air quality) from sensors 

and user set points are input to the RBO optimizer for optimization. Then the optimized parameters 

are input to user comfort index to calculate the user comfort index.  

   Figure 3.3 shows overall architecture of rule based optimization scheme.  Minimum and maximum 

set point ranges of temperature, illumination, and air quality are input to the rule based optimization. 

Also current home temperature, illumination, and air quality are input to the rule based optimization. 
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Then optimal parameters for temperature, illumination, and air quality are calculated separately.  Each 

part is described below.  

3.3. Optimization scheme based on rule 

 

Figure 3.3 Flowchart design of optimization scheme based on rule  

   Figure 3.4 illustrates rule based optimization for temperature set point. We take temperature user set 

maximum, minimum ranges, and current environment parameter as input. Then checking current 

temperature parameter is whether in comfort zone or not. If the current temperature is in the comfort 

zone, we use current temperature parameter as a user set temperature point. If the current temperature 

as not in the comfort zone, If current temperature is not in comfort zone, we check current 

temperature is less than minimum range of temperature and if it is true, take the minimum range value 

as the user set point temperature. 
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Figure 3.4 Optimization scheme based on rule for temperature set point 

   If the current temperature is less than minimum range condition is false, we check another condition 

to find optimal temperature set point. The condition is that the current temperature is higher than the 

maximum range of temperature, if the condition is true, we take the maximum range value as the user 

set point temperature. 
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Figure 3.5 Optimization scheme based on the rule for illumination set point 

  Figure 3.5 illustrates rule based optimization for illumination set point. For illumination optimal set 

point, we do similar actions to find optimal user set point. Therefore, checking current illumination 

parameter is whether in comfort zone or not. If the current illumination is in the comfort zone, we use 

the current illumination parameter as a user set illumination point. If current illumination is not in 

comfort zone, we check current illumination is less than minimum range of illumination and if it is 

true, take the minimum range value as the user set illumination point. If the current illumination is less 

than minimum range condition is false, we check another condition to find optimal illumination set 
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point. The condition is that current illumination is higher than the maximum range of illumination, if 

the condition is true, we take the maximum range value as the user set illumination point. 

 

Figure 3.6 Optimization scheme based on rule for air quality set point 

   Figure 3.6 illustrates rule based optimization for air quality set point. For air quality optimal set 

point, checking current air quality parameter is whether in comfort zone or not. If the current air 

quality is in the comfort zone, we use the current air quality parameter as a user set air quality point. If 

current air quality is not in comfort zone, we check current air quality is less than minimum range of 

air quality and if it is true, take the minimum range value as the user set air quality point. If the current 

air quality is less than minimum range condition is false, we check another condition to find optimal 
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air quality set point. The condition is that current air quality is higher than the maximum range of air 

quality, if the condition is true, we take the maximum range value as the user set air quality point. 

3.4. Simulation result of optimization scheme based on rule for 

reducing power consumption  

   In order to evaluate performance of our proposed Rule based optimization scheme, we have 

developed and simulator in Visual Studio 2013 using c#.  User preference set parameters range was 

Tset = [66, 78] (Kelvin), Lset = [720, 880] (lux), and Aset = [700, 880] (ppm).  Brief detail of system 

configuration is given in Table 3.1.  

Table 3.1 Simulation Environment 

Module Hardware Software Remark 

Virtual sensing data for 

temperature, illumination, and air-

quality 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 

Optimization of user set 

parameters (temperature, 

illumination, and air-quality) 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 

Dynamic user set point settings for 

multi-users 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 

Prediction of indoor environment 

parameters for temperature, 

illumination, and air-quality 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 
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  The environmental configuration remains the same for all the experiments. The uniform 

configuration helps in the comparison of results with existing techniques. We developed the simulator 

by using .Net programming environment with the configuration shown in Table 3.1. 

 

Figure 3.7 Simulation of optimization algorithms 

   Figure 3.7 shows a simulation of optimization algorithms which are incremental genetic algorithm 

(IGA), ant colony optimization (ACO), genetic algorithm (GA), and rule based optimization (RBO). 

134 simulation sensor inputs input to the system. Chromosomes, mutation rate and number of 

iterations are input to the system in order to perform GA, and IGA. Then number of sources, number 

of ants, and iteration are input to the system in order to perform ACO. Then user set points are input 

to the system for temperature, illumination, and air quality. For temperature, the minimum range is 66 

and maximum range is 78. For illumination, the minimum range is 720 and maximum range is 880. 

For air quality, the minimum range is 700 and maximum range is 880.   

  Figure 3.8 shows a comparison of rule based optimization power consumption and genetic algorithm 

based power consumption for temperature. X-axis shows time in hours and the Y-axis shows the 

power consumption in kilowatts. From the graph, we can see that the system using rule based 

optimization consumed less power each hour compared than a system using GA. RBO based power 
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consumption starts from 11.6075kwt at 1o’clock. Then GA based power consumption starts from 

13.3kwt at the same time. Therefore, this due to the fact that optimized parameters for temperature 

control based on RBO are more efficient and consuming less power compared as GA.  

 

Figure 3.8 Power consumption comparison between RBO and GA for temperature 

   Figure 3.9 shows a comparison of rule based optimization power consumption and genetic 

algorithm based power consumption for illumination. X-axis shows time in hours and the Y-axis 

shows the power consumption in kilowatts. From the graph, we can see that the system using rule 

based optimization consumed less power each hour compared than a system using GA. RBO based 

power consumption starts from 14.9kwt at 2o’clock. Then GA based power consumption starts from 

15kwt at the same time. Therefore, this due to the fact that optimized parameters for illumination 

control based on RBO are more efficient and consuming less power compared as GA.  
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Figure 3.9 Power consumption comparison between RBO and GA for illumination 

    Similarly, Figure 3.10 shows a comparison of rule based optimization power consumption and 

genetic algorithm based power consumption for air quality. X-axis shows time in hours and the Y-axis 

shows the power consumption in kilowatts. From the graph, we can see that the system using rule 

based optimization consumed less power each hour compared than a system using GA. RBO based 

power consumption starts from 2.66kwt at 1o’clock. Then GA based power consumption starts from 

3.33kwt at the same time. Therefore, this due to the fact that optimized parameters for air quality 

control based on RBO are consuming less power compared as GA.  

   Table 3.2 shows a comparison of total power consumption for each control. For temperature control, 

RBO based power consumption consumed total 494.907kwt power. At the same time, GA based 

power consumption consumed 834.593kwt power. As a result, we can see the huge power 

consumption difference between RBO based power consumption and GA based power consumption. 

Then we can see that RBO based power consumption is way better than GA based power 

consumption in this system. For illumination control, RBO based power consumption consumed total 

1052.34kwt power. At the same time, GA based power consumption consumed 1261.57kwt power. As 

a result, we can see the big power consumption difference between RBO based power consumption 

and GA based power consumption. 
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 Figure 3.10 Power consumption comparison between RBO and GA for air quality   

Table 3.2 Total power consumption comparison of RBO and GA 

 

Temperature Illumination Air quality TOTAL 

RBO based power 

consumption 

494.907 1052.34 365.663 1903.91 

GA based power 

consumption 

834.593 1261.57 419.65 2515.82 

 

   This due to the fact that RBO based power consumption consumes less power than GA based power 

consumption in this system. Similarly, for air quality control, RBO based power consumption 

consumed total 365.663kwt power. At the same time, GA based power consumption consumed 

419.65kwt power. As a result, we can see the much power consumption difference between RBO 

based power consumption and GA based power consumption. Then we can see that for air quality, 

RBO based power consumption consumes less power than GA based power consumption in this 
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system. Finally, we have total consumed power from each power consumption scheme using RBO 

and GA. Then total power consumption of RBO was 1903.91kwt and total power consumption of GA 

was 2515.82kwt. Therefore, we can conclude that RBO based power consumption consumed less 

power compared as GA based power consumption.    

   Figure 3.11 shows a comparison of rule based optimization power consumption and incremental 

genetic algorithm based power consumption for temperature. X-axis shows time in hours and the Y-

axis shows the power consumption in kilowatts. From the graph, we can see that the system using rule 

based optimization consumed less power each hour compared than a system using IGA. RBO based 

power consumption starts from 10kwt at 3o’clock. Then IGA based power consumption starts from 

10.9kwt at the same time. Therefore, this due to the fact that optimized parameters for temperature 

control based on RBO are more efficient and consuming less power compared as IGA.  

 

Figure 3.11 Power consumption comparison between RBO and IGA for temperature 

   Figure 3.12 shows a comparison of rule based optimization power consumption and incremental 

genetic algorithm based power consumption for illumination. X-axis shows time in hours and the Y-

axis shows the power consumption in kilowatts. From the graph, we can see that the system using rule 

based optimization consumed less power each hour compared than a system using IGA. RBO based 
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power consumption starts from 14.9kwt at 2o’clock. Then IGA based power consumption starts from 

15kwt at the same time. Then we can see that for illumination, RBO based power consumption 

consumes less power than IGA based power consumption in this system. 

   Similarly, Figure 3.13 shows a comparison of rule based optimization power consumption and 

incremental genetic algorithm based power consumption for air quality. X-axis shows time in hours 

and the Y-axis shows the power consumption in kilowatts. 

 

Figure 3.12 Power consumption comparison between RBO and IGA for illumination 

   From the graph, we can see that the system using rule based optimization consumed less power each 

hour compared than a system using IGA. RBO based power consumption starts from 2.66kwt at 

1o’clock. Then IGA based power consumption starts from 3.07kwt at the same time. From the result 

we can see that power consumption based on RBO consumes less power compared as IGA. 
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Figure 3.13 Power consumption comparison between RBO and IGA for air quality 

Table 3.3 Total power consumption comparison of RBO and IGA 

 

Temperature Illumination Air quality TOTAL 

RBO based power 

consumption 

494.907 1052.34 365.663 1903.91 

IGA based power 

consumption 

614.214 1135.18 372.416 2121.81 

  

   Table 3.3 shows a comparison of total power consumption for each control. For temperature control, 

RBO based power consumption consumed total 494.907kwt power. At the same time, IGA based 

power consumption consumed 614.214kwt power. As a result, we can see that power consumption 

difference between RBO based power consumption and IGA based power consumption. Then we can 
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see that RBO based power consumption is consuming less power compare than IGA based power 

consumption in this system. For illumination control, RBO based power consumption consumed total 

1052.34kwt power. At the same time, IGA based power consumption consumed 1135.18kwt power. 

As a result, we can see the much power consumption difference between RBO based power 

consumption and IGA based power consumption. This due to the fact that RBO based power 

consumption consumes less power than IGA based power consumption for illumination control in this 

system. Similarly, for air quality control, RBO based power consumption consumed total 365.663kwt 

power. At the same time, IGA based power consumption consumed 372.416kwt power. As a result, 

we can see the much power consumption difference between RBO based power consumption and 

IGA based power consumption. Then we can see that for air quality, RBO based power consumption 

consumes less power than IGA based power consumption in this system. Lastly, we have total 

consumed power from each power consumption scheme using RBO and IGA. Then total power 

consumption of RBO was 1903.91kwt and total power consumption of GA was 2121.81kwt. As a 

conclusion, we can say that RBO based power consumption consumed less power compared as IGA 

based power consumption.    

 

Figure 3.14 Power consumption comparison between RBO and ACO for temperature 
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   Figure 3.14 shows a comparison of rule based optimization power consumption and ant colony 

optimization algorithm based power consumption for temperature. X-axis shows time in hours and the 

Y-axis shows the power consumption in kilowatts. From the graph, we can see that the system using 

rule based optimization consumed less power each hour compared than a system using ACO. RBO 

based power consumption starts from 11.6075kwt at 1o’clock. Then ACO based power consumption 

starts from 15.0056kwt at the same time. Therefore, this due to the fact that optimized parameters for 

temperature control based on RBO are more efficient and consuming less power compared as ACO.  

   Figure 3.15 shows a comparison of rule based optimization power consumption and ant colony 

optimization algorithm based power consumption for illumination. X-axis shows time in hours and 

the Y-axis shows the power consumption in kilowatts. From the graph, we can see that the system 

using rule based optimization consumed less power each hour compared than a system using ACO. 

RBO based power consumption starts from 14.994kwt at 2o’clock. Then ACO based power 

consumption starts from 14.999kwt at the same time. Therefore, this due to the fact that optimized 

parameters for illumination control based on RBO are more efficient and consuming less power 

compared as ACO.  

 

Figure 3.15 Power consumption comparison between RBO and ACO for illumination 
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 Figure 3.16 Power consumption comparison between RBO and GA for air quality 

    Similarly, Figure 3.16 shows a comparison of rule based optimization power consumption and ant 

colony optimization algorithm based power consumption for air quality. X-axis shows time in hours 

and the Y-axis shows the power consumption in kilowatts. From the graph, we can see that the system 

using rule based optimization consumed less power each hour compared than a system using ACO. 

RBO based power consumption starts from 2.66kwt at 1o’clock. Then ACO based power 

consumption starts from 3.61kwt at the same time. Therefore, this due to the fact that optimized 

parameters for air quality control based on RBO are consuming less power compared as ACO.  

   Table 3.4 shows a comparison of total power consumption for each control. For temperature control, 

RBO based power consumption consumed total 494.907kwt power. At the same time, ACO based 

power consumption consumed 848.524kwt power. As a result, we can see the huge power 

consumption difference between RBO based power consumption and ACO based power consumption. 

Then we can see that RBO based power consumption is way better than ACO based power 

consumption in this system. For illumination control, RBO based power consumption consumed total 

1052.34kwt power. At the same time, ACO based power consumption consumed 1273.39kwt power. 

As a result, we can see the big power consumption difference between RBO based power 

consumption and ACO based power consumption. 
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Table 3.4 Total power consumption comparison of RBO and ACO 

 

Temperature Illumination Air quality TOTAL 

RBO based power 

consumption 

494.907 1052.34 365.663 1903.91 

ACO based power 

consumption 

848.524 1273.39 441.574 2563.49 

 

   This due to the fact that RBO based power consumption consumes less power than ACO based 

power consumption in this system. Similarly, for air quality control, RBO based power consumption 

consumed total 365.663kwt power. At the same time, ACO based power consumption consumed 

441.574kwt power. As a result, we can see the much power consumption difference between RBO 

based power consumption and ACO based power consumption. Then we can see that for air quality, 

RBO based power consumption consumes less power than ACO based power consumption in this 

system. Finally, we have total consumed power from each power consumption scheme using RBO 

and ACO. Then total power consumption of RBO was 1903.91kwt and total power consumption of 

ACO was 2563.49kwt. Therefore, we can conclude that RBO based power consumption consumed 

less power compared as ACO based power consumption.    

 

 

 

 



38 
 

4. Optimization scheme based on dynamic user 

setting for multi-user 

4.1. Conceptual design of optimization scheme based on dynamic 

user setting for multi-user 

 

Figure 4.1 Conceptual design of optimization scheme based on dynamic user setting for multi-user 

  Figure 4.1 shows the conceptual design of an optimization scheme based on dynamic user setting for 

multi users. Conceptual design includes three basic steps which are input, processing, and output. In 

step1, we have indoor environment parameters (temperature, illumination, and air-quality), user set 

points (temperature, illumination, and air-quality), and source of power. In step2, it includes four sub 

steps which are setting, optimization, calculation, and comparison. In step2.1, it includes dynamic 
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user set point setting. In step 2.2, it includes rule based optimization and user comfort index. In 

step2.3, it includes fuzzy controller and coordinator agent. In step 2.4, it includes comparator. Then, in 

step3, it includes smart home actuators.  

4.2. Block diagram of optimization scheme based on dynamic user 

setting for multi-user 

 

Figure 4.2 Block diagram of optimization scheme based on dynamic user setting for multi-user 

  Figure 4.2 shows a block diagram of an optimization scheme based on dynamic user setting for 

multi-user. User set points of multi user are input to the dynamic user set point setting. Then indoor 

environment parameters (temperature, illumination, and air quality) from sensors and multi user set 

points from dynamic user set point setting are input to the RBO optimizer for optimization. Then the 

optimized parameters are input to user comfort index to calculate the user comfort index. Then 

optimized parameters from RBO and predicted indoor environment parameters are input to the fuzzy 

controller to calculate required power for temperature, illumination, and air quality. Then the 

coordinator agent adjusted the power, according to the required power from the fuzzy controllers and 
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available power from the source of power. Then comparator takes required power from fuzzy 

controller and adjusted power from coordinator agent. Then consumed power from the comparator is 

input to smart home actuators which are devices utilized the power inside the smart home. 

4.3. Design of optimization scheme based on dynamic user setting 

for multi-users in smart home 

 

Figure 4.3 Design of optimization scheme based on dynamic user setting for multi-users in smart home 

  Figure 4.3 illustrates the optimization scheme based on dynamic user setting for multi -user in 

a smart home. Users indicate family members in a smart home. When users feel uncomfortable 

with certain environment, they can set user set points by themselves. Then the user set points 

are input to the rule based optimization. Then we calculate user comfort index of each optimal 

parameters. Then the optimal parameter and current environment parameters are input to the 

fuzzy controller. Then required power from fuzzy controller is input to the coordinator agent in 

order to get adjusted power. Then the required power from fuzzy controller and adjusted power 
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of coordinator agent are input to the comparator. Then, using the consumed power from 

comparator, we control the heater, cooler, lighting, and air conditioning in a smart home. The 

sensor parameters are changed after control the actuators in a smart home. Then the all users 

can be in a comfortable environment.  

4.4. Design of dynamic user set point setting for multi-users 

 

Figure 4.4 Dynamic user set point settings for multi-users 

   Figure 4.4 illustrates user set point setting in a home environment. We suppose n numbers of users 

in smart home are able to set their own comfortable user set ranges. Then all user set points are input 

to the user set point setting. We get user set point which is calculated by user set point setting. Then 

the optimal parameter is calculated based on user set point and indoor parameters from the sensors in 

a home environment. Consumed power is given to home actuators such as heater, cooler, lighting, and 

air conditioning.    
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Figure 4.5 Average based setting for multi-users 

   Figure 4.5 illustrates user set point setting based on average parameters. Maximum and 

minimum user set points of each user are input to the user set point setting. Then we will 

calculate average minimum and maximum parameters based on each user set point. Then we get 

user set points as user set point which comfortable for everyone in a smart home. 

 

Figure 4.6 Calculation of average based setting for multi-users (Example) 

   Figure 4.6 illustrates the calculation of average based setting for multi users. We suppose that 

we have three users and each user set their own user set points for each control, such as 

temperature, illumination, and air quality. For temperature, it takes minimum user set points 

and maximum user set points as input from each user in order to calculate actual Tmin and 

Tmax. Then it calculates Tmin among the user set points by average calculation and Tmax 

among the user set points by average calculation.  
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 Figure 4.7 Max-min based setting for multi-users 

   Figure 4.7 illustrates user set point setting based maximum and minimum parameters. 

Minimum and maximum user set points of each user are input to the user set point setting. Then 

user set minimum point is calculated by rank based selection which choose maximum 

parameter among all minimum set points from each user. Similarly, user set maximum point is 

calculated by rank based selection which choose minimum parameter among all maximum set 

points from each user. 

 

Figure 4.8 Calculation of Max-min based setting for multi-users (Example) 

   Figure 4.8 illustrates the calculation of Max-min based setting for multi users. We suppose 

that we have three users and each user set their own user set points for each control, such as 

temperature, illumination, and air quality. For temperature, it takes minimum user set points 

and maximum user set points as input from each user in order to calculate actual Tmin and 
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Tmax. Then, Tmin is calculated by choosing maximum parameter among the user set points and 

Tmax is calculated by choosing minimum parameter among  the user set points .  

 

Figure 4.9 Min-max based setting for multi-users 

   Figure 4.9 illustrates user set point setting based minimum and maximum parameters. 

Minimum and maximum user set points of each user are input to the user set point setting. Then 

user set minimum point is calculated by rank based selection which choose minimum parameter 

among all minimum set points from each user. Similarly, user set maximum point is calculated 

by rank based selection which choose maximum parameter among all maximum set points from 

each user. 

 

Figure 4.10 Calculation of Min-max based setting for multi-users (Example) 

   Figure 4.10 illustrates the calculation of Min-max based setting for multi users. We suppose 

that we have three users and each user set their own user set points for each control, such as 

temperature, illumination, and air quality. For temperature, it takes minimum user set points 

and maximum user set points as input from each user in order to calculate actual Tmin and 
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Tmax. Then, Tmin is calculated by choosing minimum parameter among the user set points and 

Tmax is calculated by choosing maximum parameter among  the user set points .  
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4.5. Simulation result of optimization scheme based on dynamic 

user set point setting for multi-users 

   In order to evaluate performance of our proposed Rule based optimization scheme, we have 

developed and simulator in Visual Studio 2013 using c#.  User preference set parameters range was 

Tset = [66, 78] (Kelvin), Lset = [720, 880] (lux), and Aset = [700, 880] (ppm).  Brief detail of system 

configuration is given in Table 4.1.  

   The environmental configuration remains the same for all the experiments. The uniform 

configuration helps in the comparison of results with existing techniques. We developed the simulator 

by using .Net programming environment with the configuration shown in Table 4.1. 

Table 4.1 Simulation Environment 

Module Hardware Software Remark 

Virtual sensing data for 

temperature, illumination, and air-

quality 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 

Optimization of user set 

parameters (temperature, 

illumination, and air-quality) 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 

Dynamic user set point settings for 

multi-users 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 

Prediction of indoor environment 

parameters for temperature, 

illumination, and air-quality 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 
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   In this section, we show dynamic user set points setting for multi-users in a smart home. Multi-users 

in smart home are able to set their comfortable set points through this setting by themselves. 

 

 Figure 4.11 Add user to Multi-user set point setting 

   Figure 4.11 and 4.12 shows adding users to the system. We added two users who are James and John. 

Similarly, we can add more users. Then each user can set their comfortable set points. For user1 who is 

named James, user set points are Tset = [66, 78] (F), Lset = [720, 880] (lux) and Aset = [700, 880] (ppm). 

For user2 who is named John, user set points are Tset = [68, 77] (F), Lset = [730, 870] (lux) and Aset = 

[710, 880] (ppm).      

 

Figure 4.12 Add user to Multi-user set point setting 
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   Figure 4.13, 4.14, and 4.15 shows multi user setting which based on average, max-min, and min-

max calculations. We can calculate user set points from multi-user by those three different ways.  

When the multi-users set points are Tset = [66, 78] (F), Lset = [720, 880] (lux) and Aset = [700, 880] 

(ppm) and Tset = [68, 77] (F), Lset = [730, 870] (lux) and Aset = [710, 880] (ppm). 

 

Figure 4.13 Multi-user setting by avarage based calculation 

 

Figure 4.14 Multi-user setting by max-min based calculation 
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Figure 4.15 Multi-user setting by min-max based calculation 

   Then the average set point will be Tset = [67, 77.5] (F), Lset = [725, 875] (lux) and Aset = [705, 880] 

(ppm). Similarly, max-min set points will be Tset = [68, 77] (F), Lset = [730, 870] (lux) and Aset = [710, 

880] (ppm) and min-max set points will be Tset = [66, 78] (F), Lset = [720, 880] (lux) and Aset = [700, 

880] (ppm).  

 

Figure 4.16 Optimization with average user set points by RBO 

      Figure 4.16 shows the optimal parameters for each of the temperature, illumination, and air-quality 
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of average user set point setting and RBO. In case of temperature figure 4.16, the optimal temperature 

changes between 67o to 77.5o    Fahrenheit. The multi-users feel comfortable if the temperature level is 

between [67, 77.5]. Therefore, using Rule based optimization, we can achieve optimal temperature in 

that certain comfortable set point range, which is calculated by average set points setting for multi-

users in a smart home.  In case of optimal illumination figure 4.16, the illumination parameter changes 

between 725o to 875o Lux as compare to indoor environment illumination parameters. Then the user set 

points are optimized to [725, 875]. So we can achieve optimal illumination parameter using rule based 

optimization. In case of optimal air-quality figure 4.16, the air quality parameter changes between 705 

to 880 ppm as compare to predicted indoor air-quality parameters. Then the user set points are 

optimized to [705, 880]. So we can achieve optimal air-quality parameter using rule based 

optimization.  

 

Figure 4.17 Optimization with Max-min user set points by RBO 

   Figure 4.17 shows the optimal parameters for each of the temperature, illumination, and air-quality 

by Max-min user set point setting. In case of temperature figure 4.17, the optimal temperature 

changes between 68o to 77o    Fahrenheit. The multi-users feel comfortable if the temperature level is 

between [68, 77]. Therefore, using rule based optimization, we can achieve optimal temperature in 

that certain comfortable set point range, which is calculated by average set points setting for multi-
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users in a smart home.  In case of optimal illumination figure 4.17, the illumination parameter changes 

between 730o to 870o Lux as compare to indoor environment illumination parameters. Then the user 

set points are optimized to [730, 870]. So we can achieve optimal illumination parameter using rule 

based optimization. In case of optimal air-quality figure 4.17, the air quality parameter changes 

between 710 to 880 ppm as compare to indoor environment air-quality parameters. Then the user set 

points are optimized to [710, 880]. So we can achieve optimal air-quality parameter using rule based 

optimization. 

 

Figure 4.18 Optimization with Min-max user set points by RBO 

  Figure 4.18 shows the optimal parameters for each of the temperature, illumination, and air-quality 

by Min-max user set point setting. In case of temperature figure 4.18, the optimal temperature 

changes between 66o to 78o    Fahrenheit. The multi-users feel comfortable if the temperature level is 

between [66, 78]. Therefore, using rule based optimization, we can achieve optimal temperature in 

that certain comfortable set point range, which is calculated by average set points setting for multi-

users in a smart home.  In case of optimal illumination figure 4.18, the illumination parameter 

changes between 720o to 880o Lux as compared to indoor environment illumination parameters. 

Then the user set points are optimized to [700, 880]. So we can achieve optimal illumination 

parameter using rule based optimization. In case of optimal air-quality figure 4.18, the air quality 
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parameters changes between 700 to 880 ppm as compare to indoor environment air-quality 

parameters. Then the user set points are optimized to [700, 880]. So we can achieve optimal air-

quality parameter using rule based optimization.  

   In this section, simulation of power consumption by average user set points setting and RBO is 

described below one by one.   

 

Figure 4.19 Power consumption of average user set points and RBO 

 

 

Figure 4.20 Power consumption of Max-min set points and RBO 
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Figure 4.21 Power consumption of Min-max user set points and RBO 

   The figures 4.19, 4.20, 4.21 show power consumption of temperature, illumination, and air quality 

separately.  Actual user set points are calculated by dynamic user set point settings which are average, 

max-min, and min-max based user set points settings for multi-users. Power consumption is 

calculated by these three methods and rule based optimization. The power consumptions are described 

results section with detailed. 
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4.6. Comparison result of power consumption by dynamic user set 

point settings and RBO     

   In this section, we will show that comparisons of power consumption results using dynamic user set 

point setting for multi users in smart home and RBO. User set point is calculated by three different 

methods. Then, using the user set point, we get optimal parameters by RBO.  

So the figure 4.22 shows a power consumption comparison for temperature control. It compared 

average based set point setting, max-min based set point setting, and min-max set point setting. X-axis 

shows the time in hours while Y-axis shows the temperature power consumption in KWT. The 

average based power consumption starts from 6.18kwt at 1o’clock and it reaches to 9.59kwt at 

6o’clock. Then it decreases to 3.04kwt at 9o’clock. 

 

 Figure 4.22 Power consumption comparison for temperature control using dynamic user set point settings and 

RBO 

   Similarly, max-min based power consumption starts from 7.55kwt at 1o’clock and it reaches to 

10.46kwt at 6o’clock. Then it decreases to 3.63kwt at 12o’clock. Then min-max based power 
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consumption starts from 6.13kwt at 1o’clock and it reaches to 8.92kwt at 6o’clock. Then it decreases 

to 0.04kwt at 18o’clock.  From that result, we can say that power consumption based on min-max set 

point setting consume less power than average and max-min based user set points setting. 

 

Figure 4.23 Power consumption comparison for illumination control using dynamic user set point settings and 

RBO 

   The figure 4.23 shows a power consumption comparison for illumination control. It compared 

average based set point setting, max-min based set point setting, and min-max set point setting. X-axis 

shows the time in hours while the Y-axis shows the illumination power consumption in Lux. Average 

based power consumption starts from 14.99kwt at 1o’clock and it decreases to 5kwt at 15o’clock. 

Similarly, max-min based power consumption starts from 14.99kwt at 1o’clock and it decrease to 

5kwt at 15o’clock. Then min-max based power consumption starts from 14.99kwt and it decreases to 

5kwt at 13o’clock. From the total result, we can say that power consumption of min-max user set 

point setting consume less power compare than average and max-min user set point setting.  
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 Figure 4.24 Power consumption comparison for temperature control using dynamic user set point settings and 

RBO 

   The figure 4.24 shows a power consumption comparison for air quality control. It compared average 

based set point setting, max-min based set point setting, and min-max set point setting. X-axis shows 

the time in hours while the Y-axis shows the air quality power consumption in ppm. For air quality 

control, we get almost similar results in our certain simulation case. Average based power 

consumption starts from 2.63kwt at 1o’clock and it increases to 2.66kwt at 9o’clock. Similarly, max-

min based power consumption starts from 2.62kwt at 1o’clock and it increases to 2.66kwt at 9o’clock. 

Then min-max based power consumption starts from 2.63kwt and it increases to 2.66kwt at 

10o’clock. From the total result, we can say that power consumptions of these three methods are 

almost same.  

  Table 4.2 shows a comparison of total power consumption by three user set point setting methods 

and RBO. For temperature control, ABS and RBO based power consumption consumed total 

74.60748kwt power. Then Max-Min and RBO based power consumption consumed 85.00414kwt 

power. Similarly, Min-Max and RBO based power consumption consumed 63.60321kwt power. Then 

we can see that power consumption difference between ABS and RBO, Max-Min and RBO, and Min-
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Max and RBO based power consumption. As a result, we can see that Min-Max and RBO based 

power consumption is consuming less power compare than Max-min and RBO and ABS and RBO 

based power consumptions for temperature control.  

Table 4.2 Total power consumption by dynamic user set point settings and RBO for temperature 

control 

 

Temperature Illumination Air quality TOTAL 

Average based power 

consumption 

74.60748 205.059 63.86507 343.5316 

Max-Min based power 

consumption 

85.00414 210.0556 63.86507 358.9249 

Max-Min based power 

consumption 

63.60321 200.0592 63.86507 327.5275 

   

  For illumination control, ABS and RBO based power consumption consumed total 205.059kwt 

power. Then Max-Min and RBO based power consumption consumed 210.0556kwt power. Similarly, 

Min-Max and RBO based power consumption consumed 200.0592kwt power. Then we can see that 

power consumption difference between ABS and RBO, Max-Min and RBO, and Min-Max and RBO 

based power consumption. As a result, we can see that Min-Max and RBO based power consumption 

is consuming less power compare than Max-min and RBO and ABS and RBO based power 

consumptions for illumination control. For air quality control, ABS and RBO based power 

consumption consumed total 63.86507kwt power. Then Max-Min and RBO based power 

consumption consumed 63.86507kwt power. Similarly, Min-Max and RBO based power consumption 

consumed 63.86507kwt power. Then we can see that power consumptions between ABS and RBO, 

Max-Min and RBO, and Min-Max and RBO methods are similar to each other in our certain case. 

Finally, we have total consumed power from each three methods and RBO. Then total power 

consumption of ABS and RBO was 343.5316kwt and total power consumption of Max-Min and RBO 
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was 358.9249kwt. Also, power consumption of Min-Max and RBO was 327.5275kwt. Therefore, we 

can say that Min-max user set point setting and RBO based power consumption consumed less power 

compared as the average based user set point setting with RBO and max-min based user set point 

setting with RBO. In addition, we can see that Min-Max based user set point setting gives better 

results among the three methods.   

 

Figure 4.25 Comparison of comfort index of dynamic user set point settings and RBO for multi-users 

 

The figure 4.25 shows the comfort index of dynamic user set point settings, which based on an 

average, max-min, and min-max user set point setting. X-axis shows the time in hours while the Y-axis 

shows the comfort indexes from 0 to 1. User set points based on Max-min starts from 0.967 and it 

reaches to 1 comfort index at 18o’clock. Then user set point based on min-max starts from 0.98 and it 

reaches to 1 comfort index at 13o’clock. The user set point based on average starts from 0.979 and it 

reaches to 1 at 14o’clock. As a result, we can see that user set point based on min-max setting comfort 

index is higher than average and max-min based user set points.  

 

 

 



59 
 

5. Optimization scheme based on prediction of 

indoor environment parameters 

5.1. Conceptual design optimization scheme based on prediction 

of indoor environment parameters 

  Figure 5.1 Conceptual design of optimization scheme based on prediction of indoor environment 

parameters 

   Figure 5.1 shows the conceptual design of an optimization scheme based on prediction of indoor 

environment parameters. Conceptual design includes three basic steps which are input, processing, 
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and output. In step1, we have indoor environment parameters (temperature, illumination, and air-

quality), user set points (temperature, illumination, and air-quality), and source of power. In step2, it 

includes five sub steps which are setting, prediction, optimization, calculation, and comparison. In 

step2.1, it includes dynamic user set point setting. In step 2.2, it includes prediction of indoor 

parameters. In step 2.3, it includes rule based optimization and user comfort index. In step2.4, it 

includes fuzzy controller and coordinator agent. In step 2.5, it includes comparator. Then, in step3, it 

includes smart home actuators.  

5.2. Block diagram of optimization scheme based on prediction of 

indoor environment parameters 

 Figure 5.2 Block diagram of an optimization scheme based on prediction of indoor environment 

parameters 

    Figure 5.2 shows a block diagram of an optimization scheme based on prediction of indoor 

environment parameters. User set points of multi user are input to the dynamic user set point setting. 
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Then indoor environment parameters (temperature, illumination, and air quality) from the sensors are 

input to the indoor parameter prediction using a Kalman filter to predict indoor environment 

parameters. Then predicted indoor environment parameters and multi user set points from dynamic 

user set point setting are input to the RBO optimizer for optimization. Then the optimized parameters 

are input to user comfort index to calculate the user comfort index. Then optimized parameters from 

RBO and predicted indoor environment parameters are input to the fuzzy controller to calculate 

required power for temperature, illumination, and air quality. Then the coordinator agent adjusted the 

power, according to the required power from the fuzzy controllers and available power from the 

source of power. Then comparator takes required power from fuzzy controller and adjusted power 

from coordinator agent. Then consumed power from the comparator is input to smart home actuators 

which are devices utilized the power inside the smart home. 

5.3. Design of indoor environment parameters prediction using 

Kalman filter 

 

 Figure 5.3 Design of  indoor environment parameters prediction using Kalman filter 
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    The figure 5.3 shows the design of indoor environment prediction using Kalman filter. The 

temperature, illumination, and air quality from the sensor are input to the Kalman filter prediction of 

indoor parameters. Then after getting predicted parameters, we check that whether predicted 

parameters still need to optimize or don’t need to optimize. If it is needed to optimize, predicted 

indoor parameters are given to system processing part.   
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5.4. Simulation result of optimization scheme based on prediction 

of indoor environment parameters 

   In order to evaluate performance of our proposed Rule based optimization scheme, we have 

developed and simulator in Visual Studio 2013 using c#.  User preference set parameters range was 

Tset = [66, 78] (Kelvin), Lset = [720, 880] (lux), and Aset = [700, 880] (ppm).  Brief detail of system 

configuration is given in Table 5.1.  

   The environmental configuration remains the same for all the experiments. The uniform 

configuration helps in the comparison of results with existing techniques. We developed the simulator 

by using .Net programming environment with the configuration shown in Table 5.1. 

Table 5.1 Simulation Environment 

Module Hardware Software Remark 

Virtual sensing data for temperature, 

illumination, and air-quality 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 

Optimization of user set parameters 

(temperature, illumination, and air-

quality) 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 

Dynamic user set point settings for 

multi-users 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 

Prediction of indoor environment 

parameters for temperature, 

illumination, and air-quality 

Intel(R) Xeon(R) CPU 

W3503 @2.4GHz 2.39GHz 

4GB RAM 

Microsoft 

Visual Studio 

C# 

Windows 7 
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    In this section we are showing indoor environment parameters for temperature, illumination and air-

quality. The indoor parameters show here for 24 hours of the day. Each one point represents one hour 

of the day. In case of temperature the unit is Fahrenheit, for illumination the unit of measurement is 

lux and for air-quality, the measurement unit is ppm. Figures 5.4, 5.5, 5.6, 5.7 relatively show the 

indoor parameters for temperature, illumination and air-quality. We have two sorts of temperature 

data. One is the indoor sensor data in winter time. Another one is the indoor sensor data in summer 

time.  

 

Figure 5.4 Indoor parameters in summer for temperature 

   Figure 5.4 illustrates indoor parameters summer for temperature. The indoor data come from the 

sensor. We used actual indoor temperature data from actual sensor. We can see that temperature starts 

from 58.64 degree Fahrenheit at 1o’clock of the day. Then it increases and reaches at 78.26 degree 

Fahrenheit at 15o’clock of the day.  
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Figure 5.5 Indoor parameters in winter for temperature 

   Figure 5.5 illustrates indoor parameters winter for temperature. The indoor data come from the 

sensor. We used actual indoor temperature data from actual sensor. We can see that temperature in 

winter is less than the summer temperature. It starts from 12.2 degree Fahrenheit at 1o’clock of the 

day. Then it increases and reaches at 24.44 degree Fahrenheit at 16o’clock of the day.  

 

Figure 5.6 Indoor parameters for illumination 
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   The change in illumination starts from 600 lux at 1o’clock and reaches 830 lux at 23 o’clock.      

Similarly, change in air quality starts from 990 ppm at 1o’clock and it decreases to 760 ppm at 

23o’clock.  

 

Figure 5.7 Indoor parameters for air-quality 

   Here, we show that predicted indoor environment parameters. Kalman filter prediction is used to 

predict indoor parameters.  

 

Figure 5.8 Predicted Indoor parameters of summer temperature 
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Figure 5.9 Predicted Indoor parameters of winter temperature 

   Figure 5.8 and 5.9 shows that predicted indoor temperature parameters in summer and winter. 

Predicted temperature in the summer starts 59.0089 degree Fahrenheit and it reaches to 78.87 degree 

Fahrenheit at 15o’clock. Similarly predicted temperature in winter time starts 12.85 degree Fahrenheit 

and reaches to 26.24 degree Fahrenheit at 16o’clock of the day.  

 

Figure 5.10 Predicted Indoor parameters of illumination 
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Figure 5.11 Predicted Indoor parameters of air quality 

   Figure 5.10 and 5.11 shows predicted indoor parameters of illumination and air quality. The change 

in predicted illumination starts from 600.65 lux at 1o’clock and reaches 830.64 lux at 23 o’clock. 

Similarly, change in air quality starts from 990.65 ppm at 1o’clock and it decreases to 760.65 ppm at 

23o’clock.  

 

Figure 5.12 Power consumption comparison of temperature of predicted and unpredicted indoor environment 

parameters, ABS, RBO, and Kalman filter 
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   Figure 5.12 shows a power consumption comparison for temperature control of predicted and 

unpredicted indoor environment parameters, ABS, RBO, and Kalman filter. X-axis shows time in 

hours and the Y-axis shows the power consumption in kilowatts. Power consumption with prediction 

starts from 5.64kwt at 1o’clock. At the same time, power consumption without prediction starts from 

6.18kwt. As a result, total power consumption with prediction consumed slightly less than power 

consumption without prediction for temperature control. 

    Figure 5.13 shows a power consumption comparison for illumination of predicted and unpredicted 

indoor environment parameters, ABS, RBO, and Kalman filter. X-axis shows time in hours and the Y-

axis shows the power consumption in kilowatts. Power consumption with prediction starts from 

14.99878kwt at 1o’clock. At the same time, power consumption without prediction starts from 

14.99898kwt. As a result, total power consumption with prediction consumed slightly less than power 

consumption without prediction for illumination control. 

 

Figure 5.13 Power consumption comparison for illumination of predicted and unpredicted indoor environment 

parameters, ABS, RBO, and Kalman filter 
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Figure 5.14 Power consumption comparison of air quality of predicted and unpredicted indoor environment 

parameters, ABS, RBO, and Kalman filter 

    Figure 5.14 shows a power consumption comparison for air quality of predicted and unpredicted 

indoor environment parameters, ABS, RBO, and Kalman filter. X-axis shows time in hours and the Y-

axis shows the power consumption in kilowatts. Power consumption with prediction starts from 

2.6321kwt at 1o’clock. At the same time, power consumption without prediction starts from 

2.6324kwt. As a result, total power consumption with prediction consumed slightly less than power 

consumption without prediction for air quality control.  

Table 5.2 Total power consumption by predicted and unpredicted indoor environment parameters, 

ABS, RBO, and Kalman filter 

 

Temperature Illumination Air quality Total 

Power consumption with 

prediction 

73.09353 210.0001 63.8465 346.9401 

Power consumption 

without prediction 

74.60748 210.0556 63.8472 348.5103 
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    Table 5.2 shows a comparison of total power consumption for each control. For temperature 

control, power consumption with prediction consumed total 73.09353kwt power. Similarly, power 

consumption without prediction consumed 74.60748kwt power. As a result, we can see the much 

difference between power consumption with prediction and power consumption without prediction. 

Then we can see that power consumption with prediction consumes less power compared as power 

consumption without prediction. For illumination control, power consumption with prediction 

consumed total 210.0001kwt power. Similarly, power consumption without prediction consumed 

210.0556kwt power. As a result, we can see the slightly difference between power consumption with 

prediction and power consumption without prediction. For air quality control, power consumption 

with prediction consumed total 63.8465kwt power. Similarly, power consumption without prediction 

consumed 63.8472kwt power. As a result, we can see the little difference between power consumption 

with prediction and power consumption without prediction. Then we can see that power consumption 

with prediction consumes almost same, but less power compared as power consumption without 

prediction. As an overall result, the total power consumption with prediction consumed 346.9401kwt. 

Then the total power consumption without prediction consumed 348.5103kwt. We can consume less 

power using Kalman filter prediction of indoor environment parameters.  

 

 Figure 5.15 Power consumption comparison of temperature of predicted and unpredicted indoor environment 

parameters, Max-Min, RBO, and Kalman filter  
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Figure 5.15 shows a power consumption comparison for temperature control of predicted and 

unpredicted indoor environment parameters, Max-Min, RBO, and Kalman filter. X-axis shows time in 

hours and the Y-axis shows the power consumption in kilowatts. Power consumption with prediction 

starts from 7.17kwt at 1o’clock. At the same time, power consumption without prediction starts from 

7.55kwt. As a result, total power consumption with prediction consumed slightly less than power 

consumption without prediction for temperature control. 

       Figure 5.16 shows a power consumption comparison for illumination of predicted and unpredicted 

indoor environment parameters, Max-Min, RBO, and Kalman filter. X-axis shows time in hours and 

the Y-axis shows the power consumption in kilowatts. Power consumption with prediction starts from 

14.99984kwt at 1o’clock. At the same time, power consumption without prediction starts from 

14.99965kwt. As a result, total power consumption with prediction consumed slightly less than power 

consumption without prediction for illumination control.  

 

Figure 5.16 Power consumption comparison for illumination of predicted and unpredicted indoor environment 

parameters, Max-Min, RBO, and Kalman filter 
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Figure 5.17 Power consumption comparison of air quality of predicted and unpredicted indoor environment 

parameters, Max-Min, RBO, and Kalman filter 

Figure 5.17 shows a power consumption comparison for air quality of predicted and unpredicted 

indoor environment parameters, Max-Min, RBO, and Kalman filter. X-axis shows time in hours and 

the Y-axis shows the power consumption in kilowatts. Power consumption with prediction starts from 

2.6288kwt at 1o’clock. At the same time, power consumption without prediction starts from 

2.6292kwt. As a result, total power consumption with prediction consumed slightly less than power 

consumption without prediction for air quality control. 

Table 5.3 Total power consumption by predicted and unpredicted indoor environment parameters, 

Max-Min, RBO, and Kalman filter 

 

Temperature Illumination Air quality Total 

Power consumption with 

prediction 
84.39 219 63.8262 368.21 

Power consumption 

without prediction 
85 220 63.8271 368.88 
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   Table 5.3 shows a comparison of total power consumption for each control. For temperature control, 

power consumption with prediction consumed total 73.09353kwt power. Similarly, power 

consumption without prediction consumed 74.60748kwt power. As a result, we can see the much 

difference between power consumption with prediction and power consumption without prediction. 

Then we can see that power consumption with prediction consumes less power compared as power 

consumption without prediction. For illumination control, power consumption with prediction 

consumed total 210.0001kwt power. Similarly, power consumption without prediction consumed 

210.0556kwt power. As a result, we can see the slightly difference between power consumption with 

prediction and power consumption without prediction. For air quality control, power consumption 

with prediction consumed total 63.8465kwt power. Similarly, power consumption without prediction 

consumed 63.8472kwt power. As a result, we can see the little difference between power consumption 

with prediction and power consumption without prediction. Then we can see that power consumption 

with prediction consumes almost same, but less power compared as power consumption without 

prediction. As an overall result, the total power consumption with prediction consumed 368.21kwt. 

Then the total power consumption without prediction consumed 368.88kwt. From the result, we can 

say that Kalman filter prediction of indoor environment parameters can make power consumption 

decrease.  

 

Figure 5.18 Power consumption comparison of temperature of predicted and unpredicted indoor environment 

parameters, Min-Max, RBO, and Kalman filter 
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Figure 5.18 shows a power consumption comparison for temperature control of predicted and 

unpredicted indoor environment parameters, Min-Max, RBO, and Kalman filter. X-axis shows time in 

hours and the Y-axis shows the power consumption in kilowatts. Power consumption with prediction 

starts from 5.27kwt at 1o’clock. At the same time, power consumption without prediction starts from 

6.13kwt. As a result, total power consumption with prediction consumed slightly less than power 

consumption without prediction for temperature control. 

     Figure 5.19 shows a power consumption comparison for illumination of predicted and unpredicted 

indoor environment parameters, Min-Max, RBO, and Kalman filter. X-axis shows time in hours and 

the Y-axis shows the power consumption in kilowatts. Power consumption with prediction starts from 

14.99936kwt at 1o’clock. At the same time, power consumption without prediction starts from 

14.99938kwt. As a result, total power consumption with prediction consumed slightly less than power 

consumption without prediction for illumination control. 

 

Figure 5.19 Power consumption comparison for illumination of predicted and unpredicted indoor environment 

parameters, Min-Max, RBO, and Kalman filter  
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 Figure 5.20 Power consumption comparison of air quality of predicted and unpredicted indoor environment 

parameters, Min-Max, RBO, and Kalman filter 

       Figure 5.20 shows a power consumption comparison for air quality of predicted and unpredicted 

indoor environment parameters, Min-Max, RBO, and Kalman filter. X-axis shows time in hours and 

the Y-axis shows the power consumption in kilowatts. Power consumption with prediction starts from 

2.6341kwt at 1o’clock. At the same time, power consumption without prediction starts from 

2.6344kwt. As a result, total power consumption with prediction consumed slightly less than power 

consumption without prediction for air quality control.  

Table 5.4 Total power consumption by predicted and unpredicted indoor environment parameters, 

Min-Max, RBO, and Kalman filter 

 Temperature Illumination Air quality Total 

Power consumption 

with prediction 61.51 200.008 63.864 325.38 

Power consumption 

without prediction 63.6 200.059 63.865 327.52 
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     Table 5.4 shows a comparison of total power consumption for each control. For temperature 

control, power consumption with prediction consumed total 61.51kwt power. Similarly, power 

consumption without prediction consumed 63.6kwt power. As a result, we can see the much 

difference between power consumption with prediction and power consumption without prediction. 

Then we can see that power consumption with prediction consumes less power compared as power 

consumption without prediction. For illumination control, power consumption with prediction 

consumed total 200.008kwt power. Similarly, power consumption without prediction consumed 

200.059kwt power. As a result, we can see the slightly difference between power consumption with 

prediction and power consumption without prediction. For air quality control, power consumption 

with prediction consumed total 63.864kwt power. Similarly, power consumption without prediction 

consumed 63.865kwt power. As a result, we can see the little difference between power consumption 

with prediction and power consumption without prediction. Then we can see that power consumption 

with prediction consumes almost same, but less power compared as power consumption without 

prediction. As an overall result, the total power consumption with prediction consumed 325.38kwt. 

Then the total power consumption without prediction consumed 327.52kwt. From the result, we can 

say that Kalman filter prediction of indoor environment parameters can make power consumption 

decrease.  
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6. Conclusion 

   In this thesis work, we proposed improved energy and comfort index optimization scheme based 

on rule in smart home. Our proposed system has three major contributions. Firstly, rule based 

optimization which consumed less power as compared to genetic algorithm and incremental genetic 

algorithm. Secondly, optimization algorithm based on dynamic user set point setting for multi-users, 

which uses three methods such as average based user set point setting, max-min based user set point 

setting, and min-max based user set point. As a result of the power consumption comparison of these 

three methods, we can say that min-max based user set point setting consumes less power compared 

to the other two methods. Thirdly, the proposed idea is that optimization based on prediction of 

indoor environment parameters using Kalman filter. The proposed work consumed less power 

compared to unpredicted indoor environmental parameters. To conclude, our system improved user 

comfort index and decreasing consumed power by temperature, illumination, and air quality control 

in a smart home. As a result, RBO reduced power consumption by 24.32% as compared to GA, 

10.26% as compared to IGA, and 25.72% as compared to ACO. Then to satisfy multi users’ comfort 

of smart home, we proposed dynamic user set points setting by three methods.  Among the three 

methods, max-min based user set point setting consumed highest power. Then average based user set 

point setting reduced power by 4.28% as compared to max-min based user set point setting and min-

max based user set point setting reduced power by 8.74% as compared to max-min based user set 

point setting. We compared predicted indoor environment parameters and unpredicted indoor 

parameters. For illumination and air quality control, we got results with almost similar. Then 

prediction of indoor parameters, for temperature control ABS, and RBO based system reduced power 

consumption by 2% as compared to unpredicted indoor parameters, ABS, and RBO based system. 

Prediction of indoor parameters, for temperature control Max-min, and RBO based system reduced 

power consumption by 0.71% as compared to unpredicted indoor parameters, Max-min, and RBO 

based system. Similarly, prediction of indoor parameters, for temperature control Min-max, and 

RBO based system reduced power consumption by 3.28% as compared to unpredicted indoor 

parameters, Min-max, and RBO based system. 
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