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< Abstact>

Fixed Point Theorems On Cone Metric Spaces With c—distance

Hong Joon Choi

Let X be an arbitrary nonempty set and f : X — X be a mapping. A fixed point for
fisapoint x € X such that fr = z. Fixed point theory is one of the most powerful and
fruitful tools of modern mathematics and may be considered a core subject of nonlinear
analysis started by Banach in 1922. After that a considerable amount of research work
for the development of fixed point theory have been executed by several authors.

Banach has proved the fixed point theorem for a single-valued mapping in the setting
of a complete metric space known as the Banach contraction principle.

Huang and Zhang([5]) introduced the cone metric space which is more general than
the concept of a metric space and obtained some fixed point theorems in that space.
After that, a series of articles have been dedicated to the improvement of fixed point
theory. Also Cho et al.([3]) introduced the c—distance in a cone metric space and
obtained some fixed point results.

The idea of common fixed point was initially given by Jungck([6]), and Wang and
Guo([12]) proved common fixed points results for two self mappings in a cone metric
space under c—distance.

In this paper, we obtain sufficient conditions for existence of a unique coincidence
point and a common fixed point for a pair of self mappings and give an example satisfying
the sufficient conditions of our result. Also we obtain sufficient conditions for existence of
fixed points for a nondecreasing continuous mapping on a partially ordered set satisfying
contractive conditions in a cone metric space using c—distance.



1 Introduction

Let X be an arbitrary nonempty set and f : X — X be a mapping. A fixed point for f
is a point x € X such that fx = x. Fixed point theory is one of the most powerful and
fruitful tools of modern mathematics and may be considered a core subject of nonlinear
analysis started by Banach in 1922. After that a considerable amount of research work
for the development of fixed point theory have been executed by several authors.

Banach has proved the fixed point theorem for a single-valued mapping in the setting
of a complete metric space known as the Banach contraction principle. The famous
Banach contraction principle states that if (X, d) is a complete metric space and f :
X — X is a contraction mapping (i.e., d(fz, fy) < cd(z,y) for all z,y € X, where ¢
is a nonnegative number such that ¢ € [0,1)), then f has a unique fixed point. As a
classical example, it is well known that every continuous function f : [0,1] — [0, 1] has
a fixed point and Brouwer generalized it like this: If f: D™ — D" is continuous where
D" = {x € R" : ||z|| < 1}, then f has a fixed point. This contraction principle has
further several generalizations in metric spaces as well as in cone metric spaces.

Huang and Zhang([5]) introduced the cone metric space which is more general than
the concept of a metric space and obtained some fixed point theorems in that space.
After that, a series of articles have been dedicated to the improvement of fixed point
theory. In most of those articles, the authors used normality property of cones in their
results. Also Cho et al.([3]) introduced the c—distance in a cone metric space which is a
cone version of the w—distance of Kada et al.([7]) and obtained some fixed point results.

The idea of common fixed point was initially given by Jungck([6]). Afterwards,
many generalizations of this common fixed point result under a variety of settings were
obtained by several mathematicians. In 2011, Wang and Guo([12]) proved common fixed
points results for two self mappings in a cone metric space under c—distance.

In this paper, we obtain sufficient conditions for existence of a unique coincidence
point and a common fixed point for a pair of self mappings as well as fixed points for
a nondecreasing continuous mapping on a partially ordered set satisfying contractive
conditions in a cone metric space using c—distance.

In this section we need to recall some basic notations, definitions, and necessary
results from existing literature. Let E be a real Banach space and 6 denote the zero
element in E. A cone P is a subset of F such that

(i) P is closed, nonempty and P # {6};

(ii) a,b €R, a,b >0, x,y € P = ax+by € P;

(iii) PN (—=P) = {0} i.e, v € P and —z € P imply z = 6.

For any cone P C F, the partial ordering < with respect to P is defined by x < vy if



and only if y — z € P. The notation of < stands for x < y but x # y. Also, we used
r < y to indicate that y — x € int P, where int P denotes the interior of P. A cone P
is called normal if there exists a number K such that for all z,y € F,

0 <z =<y implies [z| < K]|y|l. (1.1)
Equivalently, the cone P is normal if

Tp 2 Yp = zpand lim x, = lim z, = x imply lim y, == (1.2)

n—oo n—oo

The least positive number K satisfying condition (2.1) is called the normal constant of

P.

Example 1.1 ([4]) Let E = Cg[0,1] with ||z = ||7]|oo + ||7/]|ec and P = {x € E :
z(t) > 0}. This cone is nonnormal. For ezample, consider x,(t) = & and y,(t) = L.

Then 0 = x, <y, and y, — 0 as n — oco. but

t" el 1
|zn] = max | —| 4+ max [t" | = —+1> 1.
te[0,1] N te€[0,1] n

Hence x,, does not converge to zero and hence P is a nonnormal cone.

Definition 1.2 Let X be a nonempty set and let & be a real Banach space equipped
with the partial ordering =< with respect to the cone P C E. Suppose the mapping
d: X x X — FE satisfies the following conditions:

(1) 0 X d(z,y) for all xz,y € X and d(x,y) =0 if and only if x =y ;

(2) d(z,y) = d(y,x) for all z,y € X ;

(3) d(z,y) 2 d(x, z) + d(z,y) for all z,y,z € X.

Then d is called a cone metric on X, and (X,d) is called a cone metric space.

Definition 1.3 Let (X,d) be a cone metric space. Let {x,} be a sequence in X and
x e X.

(1) If for every ¢ € E with 0 < ¢, there exists a natural number N such that
d(zp,x) < c for alln > N, then {x,} is said to be convergent and {x,} converges to x,
and the point x is the limit of {x,}. We denote this by

limz, =2 or z,—z (n— ).
n—oo

(2) If for all c € E with § < ¢, there exists a positive integer N such that d(x,, T,) <
c for allm,n > N, then {z,} is called a Cauchy sequence in X.

(8) A cone metric space (X,d) is said to be complete if every Cauchy sequence in X
18 convergent.



Here we point to some elementary results.

Lemma 1.4 ([10]) Let E be a real Banach space with a cone P. Then
(1) If a < b and b < ¢, then a < c.
(2) If a < b and b < ¢, then a < c.

Lemma 1.5 ([10]) Let E be a real Banach space with cone P. Then

(1) If 0 < c, then there exists § > 0 such that ||b]| < & implies b < c.

(2) If {a,},{bn} are sequences in E such that a,, — a,b, — b and a, =< b, for all
n>1, then a < b.

Proof. (1) Since 6 < ¢, we have ¢ € intP. Hence, we find § > 0 such that
{be E:||b—c|| <d} CintP.

If ||b]| <6, then ||[(c—=0b) —¢|| = || — b]| = ||b]| < ¢ and hence (¢ — b) € intP.
(2) a, = b, implies b, —a,, € P. Since P is closed and b, —a, — b—a,b—a € P. O

Lemma 1.6 (/5]) Let (X, d) be a cone metric space, P a normal cone, x € X and {z,}
a sequence in X. Then

(1) {x,} converges to x if and only if d(x,,x) — 6.

(2) The limit point of every sequence is unique.

(3) Every convergent sequence is a Cauchy sequence.

(4) {zn} is a Cauchy sequence if and only if d(z,, x,) — 0 as n,m — 0.

(5) If x,, — x and y, — y then d(x,,y,) — d(x,y) as n — oo.

Proof. (1) Suppose that {z,} converges to z. For every ¢ > 0, choose ¢ € E with
0 < c and K||c|| < e. Then there exists a positive integer N such that d(z,,z) < ¢ for
alln > N. If n > N, then ||d(z,, )| < K||c|| < e. This means d(z,,z) — 0 (n — 00).

Conversely, suppose that d(z,,x) — 0 (n — o). For ¢ € E with 0 < ¢, there exists
d > 0 such that ||z|| < ¢ implies ¢ — = € int P by Lemma 1.5(1) . For this § there is a
positive integer N such that ||d(z,,x)| < § for all n > N. So ¢ — d(z,,x) € int P. This
means d(x,,x) < c. Therefore {z,} converges to x.

(2) Suppose that {x,} converge to x and y. Then for any ¢ € F with § < ¢, there
exists a positive integer N such that for all n > N, d(z,,z) < ¢ and d(z,,y) < c. We
have d(x,y) = d(zp,z) + d(z,,y) < 2¢. Hence ||d(x,y)|| < 2K||c||. Since c is arbitrary
d(z,y) =60 and so z = y.

(3) Suppose that {z,} converge to x. Then for any ¢ € F with < ¢, there exists a
positive integer N such that for all n,m > N, d(z,,z) < § and d(z,,, ) < §. Hence

ATy, ) =2 d(Tp, x) + d(z), ) < C.
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Therefore {z,} is a Cauchy sequence.

(4) Suppose that {z,} is a Cauchy sequence. For every ¢ > 0, choose ¢ € E with
6 < ¢ and K||c|]| < e. Then there exists a positive integer N such that for all n,m >
N, d(zp,xy) < ¢ Thus n,m > N implies ||d(zy,xn)|| < K|lc[| < e. This means
d(xp, Tpm) — 0 (n,m — 0).

Conversely, suppose that d(z,,z,) — 0 (n,m — o). For ¢ € E with < ¢, there
exists 0 > 0 such that ||z|| < 0 implies ¢ — 2 € int P . For this § there exists a positive
integer N, such that for all n,m > N, ||d(z,, zm)|| < d. So ¢ — d(zp, T,) € int P. This
means d(x,, T,) < c. Therefore {z,} is a Cauchy sequence.

(5) For every € > 0, choose ¢ € E with § < ¢ and ||¢|| < 5. From z,, — z and

iK+2’
Yn — ¥, there exists N such that for all n > N, d(x,,r) < ¢ and d(y,,y) < c. We have

(X, yn) = d(zn, ) + d(2,y) + d(yn, y) = d(z,y) + 2c,

d(z,y) 2 d(@n, ©) + d(@n, Yn) + d(Yn, y) = d(@n, yn) + 2c.
Hence 0 < d(z,y) + 2¢ — d(xy,, y,) = 4c and

[d(@n, yn) — d(z, y)l| < [|d(z,y) + 2¢ = d(@n, ya) | + [12¢]] < (4K +2)][c]| <€
Therefore d(z,,y,) — d(z,y) as n — oo. O

Lemma 1.7 ([10]) If E is a real Banach space with cone P. Then

(1) If a < Aa where a € P and 0 < X\ < 1 then a = 6.

(2) If c € int P, 0 < a, and a, — 0, then there exists a positive integer N such that
a, <L c foralln > N.

Proof. (1) The condition a < Aa means that Aa — a € P that is, —(1 — A\)a € P.
Since a € P and 1 — A > 0, then also (1 — X\)a € P. Thus we have

(1-Na€ePn(-P)= {6}

and so a = 0.

(2) Let 6 < ¢ be given. Choose a symmetric neighborhood V' such that ¢ +V C P.
Since a,, — 0, there exists a positive integer ng such that a,, € V = —V for n > ng. This
means that ¢ +a, € c+V C P for n > ng, that is, a, < c. O

Definition 1.8 Let (X,d) be a cone metric space. Then a mapping q: X x X — FE is
called a c—distance on X if the following are satisfied :

(q1) 6 = q(x,y) for all x,y € X.

(q2) q(z,2) 2 q(x,y) +q(y, 2) for all z,y,z € X.



(q3) for all x € X and all n > 1, if q(x,y,) = u for some u = u, € P, then
q(z,y) =X u whenever {y,} is a sequence in X converging to a point y € X.
(q4) for all ¢ € E with 6 < ¢, there exists e € E with 0 < e such that
q(z,7) < e and q(z,y) < e imply d(x,y) < c.

Example 1.9 (/3]) Let (X,d) be a cone metric space and let P be a normal cone. Put
q(z,y) = d(z,y)
forall z,y € X. Then q is a c—distance.

Proof. (q1) and (q2) are immediate. Lemma 1.6(5) shows that (q3) holds. Let c € E
with 6 < ¢ be given and put e = §. Suppose that ¢(z,7) < e and ¢(z,y) < e. Then

d(z,y) = q(z,y) < q(z,2) +q(z,y) < e+e=c.
This shows that ¢ satisfies (q4) and hence ¢ is a c—distance. O

Example 1.10 ([3]) Let (X, d) be a cone metric space and let P be a normal cone. Put
q(z,y) = d(u,y)
for all z,y € X, where u € X is constant. Then q is a c—distance.
Proof. (ql) and (q3) are immediate. Since
d(u,z) 2 d(u,y) +d(u, z) ie., q(x,z) =2 q(z,y)+q(y, 2),

(q2) holds. Let ¢ € E with # < c and put e = 5. If ¢(z,2) < e and ¢(z,y) < e, then
we have

= q(z,2) +q(z,y) Kete=c

This shows that ¢ satisfies (q4) and hence ¢ is a c—distance. O

Example 1.11 ([3/) Let E=R and P ={x € E:x > 0}. Let X = [0,00) and define
a mapping d : X x X — E by d(z,y) = |x —y| for all xz,y € X. Then (X,d) is a cone
metric space. Define a mapping q: X x X — E by q(x,y) =y for allx,y € X. Then q
1S a c—distance.



Proof. (ql) and (g3) are immediate. From

z2=q(z,2) < qlz,y) +q(y,2) =y + 2,

it follows that (q2) holds. From

d(z,y) = v —yl <z +y=q(z 1) +a(zy),
it follows that (q4) holds. Hence ¢ is a c—distance. 0J

Example 1.12 ([4]) Let X = [0,1]. In the example 1.1, a cone metric d on X is defined
by d(z,y)(t) = |x —y|f(t) where f € P is an arbitrary function (e.g., f(t) = €'). Define
a mapping q: X x X — E by

oz y)(t) =y e

forall z,y € X. It is easy to see that q is a c—distance on X.

Remark 1.13 (1) q(x,y) = q(y,x) does not necessarily hold for all z,y € X.
(2) q(z,y) = 6 is not necessarily equivalent to x =y for all x,y € X.

Lemma 1.14 (/3]) Let (X, d)be a cone metric space and let q be a c-distance on X . Let
{z,} and {y,}be sequences in X and z,y,z € X. Suppose that {u,} is a sequence in P
converging to 0. Then the following hold:

(1) If ¢(xn,y) 2 uy and q(zp, 2) < Uy, then y = z.

(2) If (0, yn) = unand q(z,, 2) = up, then {y,} converges to z.

(3) If ¢(xn, ) = uyp for m > n, then {z,} is a Cauchy sequence in X.

(4) If q(y, x,) = uy, then {x,}is a Cauchy sequence in X.

Proof. We first prove (2). Let ¢ € E with § < ¢. Then there exists § > 0 such that
¢ —x € intP for any x € P with ||z|| < § by Lemma 1.5(1). Since {u,} converges to 6,
there exists a positive integer N such that ||u,|| < d for all n > N and so ¢ —u,, € intP,
ie., u, < cforalln > N. Hence by (q4) with e = ¢, from ¢(z,,, y,) < cand ¢(z,, 2) < ¢,
it follows that d(y,, z) < c for all n > N. This shows that {y,} converges to z.

From (2) it is obvious that (1) holds.

Now, we prove (3). Let ¢ € E with § < ¢ be given. As in the proof of (2), choose
e € F with § < e. Then there exists a positive integer ny such that

Q(In7mn+1) < e, q(wnv l’m) <e

for any m > n > ny and hence d(x,11, %) < c¢. This implies that {z,} is a Cauchy
sequence in X. As in the proof of (3), we can prove (4). This completes the proof. [



Definition 1.15 Let T' and S be self mappings of a set X. If y = Tx = Sz for some
xr € X, then x is called a coincidence point of T and S and y is called a point of
coincidence of T and S.

Definition 1.16 The mappings T, S : X — X are weakly compatible if for every x € X,
the following holds:
T(Sz)=S(Tx) whenever Sz =Tx.

Definition 1.17 The mapping T : X — X s continuous if lim,, ., x, = x implies that
lim,, oo T, = Tx.



2 Common fixed point results on cone metric spaces
with normal cone

Theorem 2.1 ([12]) Let (X,d) be a cone metric space. Let P be a normal cone with
normal constant K and let q be a c—distance on X. Let f: X — X and g: X — X be
two self mappings such that f(X) C g(X) and g(X) be a complete subset of X.

Suppose that there exist nonnegative constants a; (i = 1,2,3,4) are nonegative real
numbers with a; + as + as + 2a4 < 1 such that the following contractive condition holds
forall xz,y € X:

q(fz, fy) 2 arq(9x, gy) + axq(gz, fr) + asq(gy, fy) + asq(gz, fy)
and that

inf{|l¢(gz, y)[| + lla(fz,y)[| + lla(gz, fz)|| : v € X} >0

for ally € X with y # fy ory # gy.
Then f and g have a common fixed point in X.

Theorem 2.2 Let (X,d) be a cone metric space, P be a normal cone with normal
constant K and q be a c—distance on X. Let f,g : X — X be two self mappings
such that f(X) C g(X) and g(X) be a complete subset of X. Suppose that there exist
nonnegative constants a; € [0,1),i = 1,2,3,4,5 with a; + 2as + 2a3 + 3a4 + a5 < 1 such
that the following contractive condition holds for all x,y € X:

q(fx, fy) 2 arq(gr, gy) + axqgz, fx) + asq(gy, fy) + asq(gz, fy) + asq(gy, fr)

and that

inf{[lq(gz, y)|| + lla(fz,y)|| + lla(gz, fz)|| : =€ X} >0
for all y € X with y is not a point of coincidence of f and g. Then f and g have a
unique point of coincidence in X.

Moreover if f and g are weakly compatible then f and g have a unique common fized
point in X.

Proof. Let xg,z; € X. Using the fact that f(X) C g(X), construct {xa,}, {z2n41}



such that g, = fro,—2 and groni1 = fron—1  (n € N). Then we have

Q(fIQn—Zy fon—l)
a1q(9Ton—2, 9Tan—1) + a2q(gTon—2, fron—2) + asq(gron—1, fTon—1)
a4q(gTan—2, fTon—1) + a5q(gT2n—1, fTon—2)

)
)
a1q(9%an—2, 9Tom—1) + a2q(9T2n—2, GT2n)
)
)

Q(gx2n7 gl‘Qn-‘rl)

+ 1A

a3q(9Ton—1, 9Tom+1) + a4q(9T2n—2, §T2n41) + a5G(9T2n—1, GT2n)
a1q(9Ton—2, 9Tom—1) + a2{q(9T2m—2, gTon—1) + q(9T2n—1, gT2n) }
a3{q(922n—1, 9T20) + q(9T2n, gT2n11)}

as{q(9zon-2, 9T2n-1) + (92201, gTan) + q(9Ton, gT2n+1)}

G5Q(9$2n—17 91172n).

A+

-~ 4

Hence

az +asz+ as+ as
q(972n, 9Tant1) = 1 q(9T2n—1, 9T2n)
— a3 — a4y
a) + ao + Gy

A o (gTan—2, §Tam1). 2.1
+ 1_@3_a4q(gxz 2, §Tan—1) (2.1)

Similarly,

Qo + a3z + as + as
1—a3—a4
a] + as + a4

L o (g3, GTan—2). 2.2
+ 1_@3_@461(9332 3, YT2n—2) (2.2)

q(9xan—1,gT2,) = q(9xan—2, gT2n—1)

Clearly 0 < Sztostortes o ] a5 () < @omto o] Gep
as 1 aq

a4 —az—

as + as + a4 + as a1+ as + ay
by =a = and ¢g=0=——"7"—.
1—&3—&4 1—&3—&4

Applying (2.1) and (2.2) and putting by = ¢; + aby = 5+ aby, co = by,

Q<gx2n7 g$2n+1) j blq<.g$2n—17 g$2n) + Clq<9$2n—27 ngn—l)
= baq(gxon—2,9Tan—1) + c2q(gTan—3, GTon—2)
(2.3)
= bon-1q(gx1, gx2) + c2n—_19(g9T0, g1),
where bgn_l = ﬁbzn_g + abgn_g and Con—1 = ﬁan_z. Similarly
q(9%2n—1, 9T2n) = ban—2q(921, g22) + con—2q(9x0, g1) (2.4)

10



where bgn_g = 5()2”_4 + Oébgn_g and Cop—2 — 6()271_3. From (23) and (24),

4(9Zni1, 9Tnt2) = bpq(gar, 92) + cnq(gzo, gz1)

where b,, = (b,_» + ab,_1 and ¢, = (5b,_1.
Consider
bn+2 :abn+1+ﬁbn (0§Of,ﬂ< 1>b1762 20)

Then b, > 0 for all n € N. Its characteristic equation is that t* — at — 3 = 0. If
l1—a—pF > 0and 1+a—( > 0 then it has two roots t1, to such that —1 < t; <0 <ty < 1.
Also the hypothesis a; +2as +2a3+3as+a5 < 1 implies | —a— 3 > 0and 1+a—3 > 0.
For such t, s, b, = k1(t1)™ + k2(t2)™ for some kq, ko € R.

Let m > n > 1. It follows that

q(9%n, 9Tni1) + q(9Tni1, 9Tni2) + - + A(9Tm-1, 9Tm)
(bno1+bp + -+ bp2)q(gr1, 972) + (Ch1 + € + -+ - + Cm—2)q(g70, g21)
{hy (B0 7+ D) F k(87 4 -+ 172 Yq(g, go)
Bl 4 4770 + ka5 4 -+ 157%) Ya(go, g1

A Y Epti™2 kgt 2

(1 s + -1 )q(gr1, gs) +ﬁ(1 s + 1 _t2)q(g:t0,gx1)

— 0

Q<gxm gxm)

A TA 1A

A+

as n — oo. Therefore {gx,} is a Cauchy sequence in g(X) by Lemma 1.14 (3). Since
g(X) is complete, there exists ' € g(X) such that gz,, — 2’ as m — oo. By definition
1.8(g3)

nNoo< 1 2 1 2
q(gzn,7") 2 (72 i Ja(gar, gx2) + B(7— o )a(gzo, g1)
Since P is a normal cone with normal constant K, we have
A N A k™2 kepth?
mny m S K bl )
lq(gn, gm) |l 105 7 T1o4, Ja(gz1, gz2) +ﬁ(1_t1 1_t2)Q(9$0 gz
< K(o——+ )HQ(gfcl,ng)H T KB+ 72y lalgzo, g2
11—t 1-— t1 1—
— 0
as n — 0o. Also
. Eptt ™t kpth? A Y
lggn, ) < KI(5 + Ja(gz1, gr2) + B( + )a(go, gz1)||
— 1 1—1t, 1—1% 1—1t,
k,ltn 1 k‘gtn 1 k’ltn 2 k)gtn 2
< K(— llalgar, go2)| + KBS lalgzo, gz1)|
1—1 1-— — 1t 1-—
— 0
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as n — Q.

Suppose that 2’ is not a point of coincidence of f and g. Then by assumption,

0 < nf{llg(gz, )| + lg(fz, )| + lla(gz, fo)|| : © € X}
< inf{llg(gzn, )| + llg(f2n, )| + llg(gzn, frn)]| - n € N}

= nf{[lg(gzn, 2)| + lla(g2nr2, )| + [la(g2n, gTni2)| = = € N}
= 0

which is a contradiction. Therefore x’ is a point of coincidence of f and g. So there
exists © € X such that fo = gxr = 2. If there exists w € X such that fy = gy = w for
some y € X,

q(@',2") = q(fx, fx)
= aq(gz, gz) + axq(gz, fx) + azq(gz, fr) + asq(gz, fx) + asq(gz, fx)
= (a1 + as+az + aq + as)q(x’, 2").

Hence
(', z') = 6. (2.5)
Similarly
q(w,w) = 6. (2.6)
Now by (2.5) and (2.6)
¢’ w) = q(fz, fy)

a1q(gz, gy) + axq(gz, fx) + asq(gy, fy) + asq(gz, fy) + asq(gy, fx)
alQ(xlv U}) + CLQQ((L’I, ZL’I) + CL3Q(UJ, w) + CL4Q(5L'/, ’LU) + CL5C](U), ZE,)

A

= (a1 +as)q(z', w) + asq(w, 2’).
Similarly ¢(w,z’) < (a1 + a4)q(w, 2’) + asq(z’, w). Thus
(', w) + q(w,2") 2 (a1 + as + a5){g(z', w) + q(w,2")}.
Therefore q(z',w) + q(w, 2") = 6 which implies
q(z',w) = qw,2") = 0. (2.7)

By (2.6),(2.7) and Lemma 1.14(1), 2’ = w. Consequently z’ is a unique point of coinci-
dence of f and g.
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Moreover if f and g are weakly compatible,

gz’ = ggr = gfx = fgr = fa'

which implies gz’ is a point of coincidence of f and g. By uniqueness of the point of
coincidence , fr’ = g2’ = 2’. In other words, 2’ is the unique common fixed point of f
and g. O

Corollary 2.3 Let (X, d) be a complete cone metric space and let P be a normal
cone with normal constant K and q be a c-distance on X. Let f : X — X be a self
mapping . Suppose that there exist nonnegative constants a; € [0,1), 1 =1,2,3,4,5 with
a1 + 2as + 2a3 + 3a4 + a5 < 1 such that the following contractive condition holds for all
x,y € X:

Q(fxa fy> j CLIQ(xa y) + QQQ(ma f.CC) + a3Q<y7 fy) + a4Q(x7 fy> + a5Q(y7 fx)

and that
inf{{lg(z, y)|| + lla(fz, Y)[| + la(z, f2)[| : z € X} >0

if fy#vy. Then f has a unique fixed point in X.
Proof. Take g = I in the above theorem. ([l

Corollary 2.4 Let (X, d) be a complete cone metric space and let P be a normal cone
with mormal constant K and q be a c-distance on X. Let f : X — X be a continuous
self mapping . Suppose that there exist nonnegative constants a; € [0,1), 1 = 1,2,3,4
with a; + 2as + 2a3 + 3a4 < 1 such that

q(fr, fy) 2 arq(w,y) + axq(w, fz) + asq(y, fy) + asq(z, fy).

Then f has a unique fixed point in X.
Proof. Assume there exists y € X such that fy # y and

inf{{lq(z, y)|| + la(fz, y)|| + lla(z, f2)|| - 2 € X} =0.

Then we can construct {x,} in X such that

inf{{lq(zn, Y| + lla(fzn, )| + lg(@n, frn)ll - n € N} = 0.

Hence
q(Tn,y) = 0, q(frn,y) — 0, q(z,, fz,) — 0.

13



By Lemma 1.14(2), fz,, — y. By the contractive condition, we have

q(frn, fQIn) = (T, fon) + axq(zn, fr,) + azq(fo,, f2$71> + asq(n, f2xn)
j alQ(xna fxn) + aQQ(xn7 fxn) + a3£](fxna fon)
+

asq(Tp, f2n) + asq(fon, f2xn)

Therefore q(fz,, f2r,) < 2t (y  fr,). Hence

l—az—ay

q(Tn, fP2,) =2 q(wn, frn) + q(fn, f22,)

a1 +as + a
1-(13-&4

Q(xm f'rn) — 0

as n — oo. This implies q(z,, f*r,) — 0. Consequently, f2x, — y by Lemma 1.14(2) .
Since f is continuous, we have

fy=f(lim fr,) = lim foz, =y

n—oo

which is a contradiction. Therefore if fy # y, then

inf{|lq(z,y)|| + llg(fz, Yl + llg(z, fx)|| : € X} > 0.

By Corollary 2.3, the proof is done. OJ

Example 2.5 Let X = {0,1,2,3} . E =R and P = {x € R : = > 0}. Define d :
X xX — E byd(z,y) = |x—y|. Then (X,d) is a complete cone metric space. Define
q: X x X — E by the following :

q(0,0) = 0, ¢(0,1)=1, ¢(0,2)=1.1, ¢(0,3)=0.5,
q(1,0) = 1, ¢(1,1)=0, ¢(1,2)=0.1, q(1,3)=0.5,
q(2,0) = 1, q(2,1)=1, ¢(2,2)=0, q(2,3) = 0.5,
03,00 = 1, ¢(3,1) =05, ¢(3,2) =06, ¢(3,3)=0.

Then q is a c—distance. In fact Definition 1.8 (q1),(q3) are obvious. If we put e = 0.01,
(¢4) is also clear. For (q2),



0.5 =¢(0,3) <q(0,1) +¢(1,3) = 1.5,

0.5 = q(0,3) < (0,2) + q(2,3) = L6,
1= Q<170> < Q(172) + Q(270)
1= Q(LO) < Q(173) + Q(?’?O)

1.1,

1.5,

0.1 =4¢(1,2) <q(1,0) +¢(0,2) = 2.1,

0.1=4¢(1,2) <q(1,3) +¢(3,2) = 1.1,

0.5 =¢(1,3) < q(1,0) +¢q(0,3) = 1.5,

0.5=q(1,3) <q(1,2) +q(2,3) = 0.6,

1= Q(Z’ O) < Q(Qa 1) + Q(L 0) =2,
1=¢q(2,0) <q(2,3) +q(3,0)

1.5,

1= Q(27 1) < Q(27 0) + Q(Ov 1) =2,

1=¢q(2,1) <q(2,3) +¢(3,1) =1,
0.5 =¢(2,3) < ¢(2,0) +¢(0,3) = 1.5,

0.5=q(2,3) < q(2,1) +¢(1,3) = 1.5,

1=¢4(3,0) <q(3,1) +¢(1,0)
1= Q<37 O) < Q(?’? 2) + Q(27 0)

1.5,

1.6,

2,

0.5 = ¢(3,1) < 4(3,0) + ¢(0,1)

0.5=¢q(3,1) <q(3,2) +q(2,1) = 1.6,

0.6 =¢(3,2) < ¢(3,0) +¢(0,2) = 2.1,

0.6 =¢(3,2) < ¢(3,1) +¢(1,2) = 0.6.

Thus (q2) is checked and so q is a c—distance.

2 and define g : X — X by

Define f: X — X by fO=1,f1=2,f2=2,f3

gxr =z. Then f(X) C g(X).

Consider v = 2,y = 0. Then q(f2, f0) =q(2,1) =1 and

a19(92,90) + axq(g2, f2) + a3q(g0, f0) + asq(g2, f0)

= a19(2,0) + a2q(2,2) + azq(0,1) + asq(2,1)

a1 +as+as <a;+as+2a4 <1
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for any nonnegative real numbers a; (i = 1,2,3,4) with a; + as + a3z + 2a4 < 1. Hence
the contractive condition of Theorem 2.1 is not satisfied and so Theorem 2.1 can not be
applied to this example.

But Theorem 2.2 can be applied to this example. In fact we take ay = 0.14, a9 = a3 =
as =0 and as = 0.85. Then

0.1 = ¢(f0,f1) <aiq(g0,91) + asq(g1, fO) = 0.14,
0.1 = q(f0, f2) < a14(g0, g2) + asq(g2, f0) = 1.004,
0.1 = q(f0, f3) < ai1q(g0,g3) + asq(g3, f0) = 0.495,
1 = q(f1, f0) < aiq(gl, g0) + asq(g0, f1) = 1.075,
1 = q(f2, f0) < a1q(92, 90) + asq(g0, f2) = 1.075,
( ) ( ) ( )

1 = q(f3,f0) <aiq(g3, g0) + asq(g0, f3) = 1.075.

Also

inf{(lg(gz, 0)|| + [lg(fz,0)[| + lla(gz, fz)|| : € X} = 2>0
inf{llq(gz, V|| + lla(fz, D[l + [lq(gz, fx)|| : € X} = 1.1>0
inf{(lg(gz, 3)I| + [lg(fz,3)|| + lla(gz, fz)l| : x € X} = 1>0.

Hence the hypotheses are satisfied and so by Theorem 2.2 f and g have a unique point
of coincidence. Since f2 = 2 and g2 = 2, 2 is a unique point of coincidence. Since

2=gf2= fg2, f and g are weakly compatible. 2 is the unique common fixed point of f
and g.
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3 Common fixed point results on cone metric spaces

Theorem 3.1 (/9]) Let (X, d) be a cone metric space, P be a cone and q be a c—distance
on X. Let f,g: X — X be two self mappings such that f(X) C g(X) and g(X) be
a complete subset of X. Suppose that there exists nonnegative constants a; € [0,1),
1 =1,2,3 with ay + as + a3 < 1 such that the following contractive condition holds for
all x,y € X:

q(fx, fy) =X arq(gz, gy) + azq(gz, fx) + asq(gy, fy)
and that
inf{q(gx,y) +q(fr,y) +qlgz, fr) v € X} =0

for all y € X with y is not a point of coincidence of f and g. Then f and g have a
unique point of coincidence in X.

Moreover if f and g are weakly compatible then f and g have a unique common fized
point i X.

In ([4]), Z.M. Fadail, A.G.B Ahmad and S. Radenovic proved the following theorem
3.2 without the condition

inf{q(gx,y) +q(fr,y) +qlgz, fr) v € X} =0 (3.1)

for all y € X which is not a point of coincidence of f and g. In fact in Theorem 3.1 of
([4]) it is necessary that

inf{q(gz,y) +q(fz,y) + q(gz, fr) 12 € X} =0

for all y € X which is not a point of coincidence of f and g. Hence we obtain the
following theorem.

Theorem 3.2 Let (X,d) be a cone metric space, P be a cone and q be a c—distance
on X. Let f,g : X — X be two self mappings such that f(X) C g(X) and g(X)
be a complete subset of X. Suppose that there exist nonnegative constants a; € [0, 1),
1 =1,2,3,4 with a1 + as + az + 2a4 < 1 such that the following contractive condition
holds for all x,y € X:

q(fz, fy) = arq(gz, gy) + azq(gz, fr) + asq(gy, fy) + asq(gz, fy)
and that

inf{q(gz,y) +q(fz,y) + q(gz, fr) 12 € X} = 0
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for all y € X with y is not a point of coincidence of f and g. Then f and g have a
unique point of coincidence in X.

Moreover if f and g are weakly compatible then f and g have a unique common fized
point in X.

Proof. Let xg be an arbitrary point in X. Choose a point x; € X such that gz = fxo.
This can be done because f(X) C ¢g(X). Continuing this process we obtain a sequence
{x,} in X such that gz, = fx,. Then we have

4920, 9Tni1) = q(frn-1, f2,)

a1q(9Tn—1, 9Tn) + a2q(gTn_1, fTn_1) + a3q(gTn, f2n) + asq(gTn_1, fTn)
a19(9Tn-1, 9Tn) + a2q(gTn_1, 97n) + a3q(9Tn, 9Tn11) + a4q(gTn-_1, §Tn 1)
a19(9Tn—1, gn) + a2q(9Tn-1, gTn) + a3q(9Tn, gTnt1) + as{q(gzn-1, gs)
q(9Tn, gTny1)}-

+ A I TA

and so

a1+ as + ay
1—a3—aq
hq(gn—1, 97y)
h2q(g~1‘n72a gxnfl)

(PN

q(9%n, gTn+1) q(9Tn-1,9,)

A

A

h"q(gzo, g1).

Whereogh:m—Qjﬁ<1.
Let m > n > 1. It follows that

4(92n, gTm) = 4(9Tn; 9Tni1) + ¢(9Tni1, 9nt2) + - + 4(9Tm1, 9Tm)
< (K" 4+ A"+ 4+ B g9, g21)
B
1—nh
Hence {gz,} is a Cauchy sequence in g(X). Since g(X) is complete, there exists ' €
g(X) such that gz, — 2’ as m — oo. By definition 1.8 (q3),

IA

q(gxo, g1).

1—h

Suppose that 2’ € X is not a point of coincidence of f and ¢g.Then by assumption,

q(9xn, gTm) = q(gxo, gz1).

0 < inf{q(gz,2") + q(fz,2") + q(gz, fz) -z € X}
=< inf{q(gzn, ') + q(fr,, ') + q(92,, fr,) : n € N}
= inf{q(g9xn, 2") + ¢(gTns1,2") + q(g2n, 9Tp1) : 2 €N} =6
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which is a contradiction. Therefore x’ is a point of coincidence of f and g. So there
exists x € X such that fo = gx = 2. If there exists w € X such that fy = gy = w for
some y € X,

(@', 2') = q(fz, fz)
= axq(gx, gx) + azq(gx, fx) + asq(ge, fr) + asq(gz, f7)
= (a1 +az+az+ aq)q(2’, 2).
Hence ¢(2/,2’) = 0. Similarly ¢(w,w) = 6. Now

q(2",w) = q(fz, fy)

a1q(gz, gy) + asq(gz, fr) + azq(gy, fy) + asq(gz, fy)
= aq(z',w) + asq(2’, o) + azq(w, w) + asq(z’, w)

= (a1 + aq)q(z',w).

IA

Therefore ¢(z',w) = 6 which means 2/ = w. Consequently 2’ is a unique point of
coincidence of f and g. Moreover if f and g are weakly compatible,

gz’ = ggr = gfx = fgr = fa

which implies gz’ is a point of coincidence of f and ¢g. By uniqueness of the point of
coincidence , fa’ = g2’ = 2/. In other words, 2’ is the unique common fixed point of f
and g. ([l

Example 3.3 (the case of a nonnormal cone) Consider Example 1.12. Define the map-
pingssf:X—>Xbyf:c:%2 and g : X — X by gv = 5 for all v € X. It is clear
that f(X) C g(X) and g(X) is a complete subset of X. From the direct calculation, we
obtain that

o(fz, fy)t) = fy e = yzet
= %%et - % gy - ') = aq(gz, gy)(t)

A

a1q(gz, gy)(t) + azq(gz, fr)(t) + asq(gy, fy)(t) + asq(gz, fy)(t),

where a; :%,ag agzé,a4: % anda1+a2+a3+2a4:%< 1. Also

2
inf{q(gz,y) + q(fr,y) + q(gz, fr) : v € X} = inf{ye’ + ye' + %et rx € X} -0,

if y is not a zero element. Hence
inf{q(gz,y) + q(fz,y) + q(gz, fz) 1z € X} -0
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for all y € X which y is not a point of coincidence of f and g.

Also, f and g are weakly compatible at x = 0. Therefore all conditions of Theorem 3.2
are satisfied. Hence f and g have a unique common fized point x = 0 and f(0) = g(0) =0
with ¢(0,0) = 0.

Theorem 3.4 Let (X,d) be a cone metric space, P be a cone and q be a c—distance
on X. Let f,g: X — X be two self mappings such that f(X) C g(X) and g(X) be
a complete subset of X. Suppose that there exist nonnegative constants a; € [0,1),i =
1,2,3,4,5 with ay +2as+2a3+ 3a4 +as < 1 such that the following contractive condition
holds for all x,y € X:

q(fr, fy) = arq(gz, gy) + azq(gz, fo) + asq(gy, fy) + asq(gr, fy) + asq(gy, fr)

and that
inf{q(gz,y) + q(fz,y) + q(gz, fx) v € X} >~ 0
for all y € X with y is not a point of coincidence of f and g. Then f and g have a
unique point of coincidence in X.
Moreover if f and g are weakly compatible then f and g have a unique common fized
point mn X.

Proof. Let xo,z1 € X. Using the fact that f(X) C g(X), construct {za,},{z2n+1}
such that grs, = fro,—2 and gren1 = fron—1  (n € N). Then we have

q(92on, 9Tom1) = q(fTon—2, [Ton_1)

a1q(9Ton—2, 9Tom—1) + a2q(9Tan—2, fTon—2) + a3q(gT2n—1, fTon_1)
a1q(9%an—2, fTon-1) + a5q(gTon—1, [Ton_2)

a1q(gTon—2, gTon—1) + a2q(gT2n—2, gT2n)
)
)

+ 1A

a3q(9Ton—1, gTont1) + a4q(9T2n—2, gTont1) + a5q(9T2n-1, 9T2n)
a1q(gTon—2, gTon—1) + a2{q(gT2n-2, 972n—1) + q(9T2n—1, 9T2n)}
a3{q(92n-1, 9720) + q(9T2n, gT2011)}

as{q(9xan—2, gTon-1) + q(gT2n—1, 9T2) + q(gTon, gTon+1)}

a5Q(9I2n—1, gx2n)-

A+

+ - -

Hence

az +asz + aq + as
1—a3—aq

ay + ag + ay

1-@3—(14

q(9T2n_1, gT2n)

q(9%on, gTony1) =

Q(ngn—ngI?n—l)- (32)
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Similarly,

ag + a3z + ag + as

q(9xan_1, gTan) q(9xan—2, gT2n—1)

1-@3-@4
a1-+-a2-+-a4
——q(g72n_3, GTon_9). 3.3
1_@3_a4Q(92 3, §T2n—2) (3.3)
Clearly0§%<land0§m—ﬁ$<l.86t
as + a a a a1+ as +a
by =a = 2 3+ 44+ s and clzﬁ:—l 2 1
l—a3—ay 1 —ag—ay

Applying (3.2) and (3.3) and putting by = ¢; + aby = 5+ aby, ca = (b,

q(922n, 9%on+1) = b1q(gxan—1, 9T2n) + c19(9T2n—2, gT2n—1)
= baq(gxon—2,9Ton—1) + c2q(gTan—3, GTon_2)

(3.4)
= bon—1q(971, 9%2) + c2n-19(9%0, g1),
where ba,,—1 = Bba,—3 + aba,—2 and cy—1 = Bbay—_a.
Similarly
q(9T2m—1, 9T2n) = ban_2q(gr1, g72) + C2n—2q(9%0, gT1) (3.5)

where by, o = Bbon_4 + abo,_3 and o9 = Bby,_3. From (3.4) and (3.5),

q(9%n11, 9Tny2) = bpg(gr, g2) + cnq(9xo, g21)

where b, = (6b,,_o + ab,_1 and ¢, = Bb,_1.
Consider
bn+2:::abn+1+_6bn (Ojg a?ﬁ <:1>b17622i0)-

Then b, > 0 for all n € N. Its characteristic equation is that > — at — 3 = 0. If
l—a—03 > 0and 1+a— > 0 then it has two roots t1, ¢, such that —1 < t; <0 <ty < 1.
Also the hypothesis a; +2as +2a3+3as+a5 < 1 implies | —a— 3 > 0and 1+a—3 > 0.
For such t; and t, b, = k1(t1)™ + ka(t2)" for some ki, ks € R.

Let m > n > 1. It follows that

q(9Tn, 9Tm) = q(9Tn, 9Tni1) + (9011, 9Tni2) + -+ @(GTm-1, 9Tm)
= (bn—l +bp+ -+ bm—2)9(gx17 9I2) + (Cn—l +Cp At Cm—Z)Q(QIOa gxl)
< k(T A T F Rt -+ 1) b9, gan)
+ Bl ) k(R - 1) Y g0, g1)
n—1 n—1 n—2 n—2
< (lilt_l 0 + ]i?tj o )q(gz1, gxe) + ﬁ(]ilt_l 0 + li2t_2 o )q(gxo, gr1)
— 0
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as n — oo. Therefore {gz,} is a Cauchy sequence in ¢(X) by lemma 1.14(3). Since
g(X) is complete, there exists 2’ € g(X) such that gz,, — 2’ as m — oo. By definition
1.8(q3)

Epth ™t kpth Tt
1—t  1—t

Eith™2 kpth?
1—t  1—t

q(grn, ") = ( Ja(gz1, gz2) + B( )a(gwo, gr1) — 0

as n — 00. Suppose that z’ is not a point of coincidence of f and g. Then by assumtion,

0 =< inf{q(gz,2’) +q(fz,2') + q(gz, fz) 1 v € X}
=< inf{q(grn, ') + q(fr,, ') + q(gzn, fr,) : n € N}
= inf{q(gxn,2") + q(92ni2,2") + q(92n, gTnio) 1z €N} =6

which is a contradiction. Therefore x’ is a point of coincidence of f and g. So there
exists € X such that fo = gxr = 2. If there exists w € X such that fy = gy = w for
some y € X,

q(«",2") = q(fx, fo)
= a1q(gz, gx) + asq(gzx, fr) + asq(gx, fr) + asq(gz, fx) + asq(gz, fx)
= (CLl + a9 + as + a4 + a5)q(:z:’, l’/).

Hence

q(z’,2") = 0. (3.6)
Similarly

q(w,w) =0. (3.7)
Now by (3.6) and (3.7)

q(@',w) = q(fz, fy)
a1q(gz, gy) + axq(gz, fx) + asq(gy, fy) + asq(gz, fy) + asq(gy, fz)
a1q(z', w) + agq(z’, ') + azq(w, w) + asq(z’, w) + asq(w, x')

PN

— (a1 + aa)ale', ) + asg(w, ).
Similarly g(w,z’) < (a1 + a4)q(w, 2") + asq(z’, w). Thus
q(a',w) + q(w,2) 2 (a; + ag + as){q(2’, w) + q(w, 2")}.
Therefore ¢(2', w) + q(w, 2") = 6 which implies

q(z',w) = qw,2") = 0. (3.8)
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By (3.7),(3.8) and Lemma 1.14(1), 2’ = w. Consequently 2’ is a unique point of coinci-
dence of f and g. Moreover if f and g are weakly compatible,

gr' = ggr = gfx = fgx = fa

which implies gz’ is a point of coincidence of f and ¢g. By uniqueness of the point of
coincidence , fa’ = gz’ = 2’. In other words, 2’ is the unique common fixed point of f
and g. 0

Corollary 3.5 Let (X, d) be a complete cone metric space and let P be a cone and
q be a c-distance on X. Let f : X — X be a self mapping. Suppose that there exist
nonnegative constants a; € [0,1), i = 1,2,3,4,5 with ay + 2as + 2a3 + 3a4 + a5 < 1 such
that the following contractive condition holds for all x,y € X:

Q(fxa fy> j CLIQ(xa y) + QQQ(ma f.CC) + a3Q<y7 fy) + a4Q(x7 fy> + a5Q(y7 fx)

and that
inf{q(z,y) +q(fz,y) +q(z, fz) : v € X} - 0
if fy#vy. Then f has a unique fixed point in X.

Proof. Take g = I in Theorem 3.4. 0J

Corollary 3.6 Let (X, d) be a complete cone metric space and let P be a cone and q
be a c-distance on X. Let f : X — X be a continuous self mapping . Suppose that there
exist nonnegative constants a; € [0,1), i = 1,2,3,4 with a; + 2as + 2a3 + 3a4 < 1 such
that

Q(fm7 fy) j (IIQ(:Eu y) + GQQ(xv fZL‘) + a3Q(ya fy) + a’4Q(x7 fy)
Then f has a unique fixed point in X.

Proof. Assume there exists y € X such that fy # y and
inf{q(z,y) + q(fr,y) + q(z, fr) v € X} = 0.
Then we can construct {z,} in X such that

inf{q(z,,y) + q¢(frn,y) + ¢(xn, fr,) :n € N} = 0.

Hence
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By Lemma 1.14(2), fz, — y. By the contractive condition, we have

a1Q(5Ena fxn) + a2Q(£n7 f$n) + Cng(fﬁL‘n, fon> + a4Q(xna fon)
CLIQ(Ina fxn) + aQQ(xn7 fxn) + a3£](fxna fon)

Q(fxnv fQIN)

LA TA

+ a4Q(xm fxn> + a4Q(fxm f2xn)
Therefore T
2 aq a9 ay
e .
dfa S0, 2 S 0, fa)
Hence
@(@n, fP2n) 2 @, frn) + q(fon, fPan)

a1+a2+a4

ns n 9
e (G EOR

=< q(@n, fz,) +

as n — oo. This implies ¢(z,, f?z,) — 0. Consequently, f?x, — y. Since f is
continuous, we have

fy=f(lim fz,) = lim f*z, =y
which is a contradiction. Therefore if fy # y, then
inf{q(z,y) + q(fz,y) + q(z, fr) : v € X} - 0.

By Theorem 3.4, the proof is done. 0
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4 Fixed point on partially ordered cone metric spaces

Theorem 4.1 ([2]) Let (X,C) be a partially ordered set and suppose that (X,d) is
a complete cone metric space. Let q be a c—distance on X and f : X — X be a
nondecreasing mapping with respect to C.(without the assumption of continuity of f)
Suppose that the following three assertions hold:

(i) there ezist nonnegative numbers a;,i = 1,2 with a; + ag < 1 such that

q(fz, fy) 2 arq(w, y) + azq(, fx)

for all z,y € X with x C y;

(i) there exists vg € X such that xo C fxo.

(#i) if {x,} is nondecreasing mapping with respect to T and converges to x then
z, & x asn — oo.

Then f has a fized point x € X. If v = fuv then q(v,v) = 6.

Theorem 4.2 ([3/)Let (X,C) be a partially ordered set and suppose that (X,d) is a
complete cone metric space. Let q be a c—distance on X and f : X — X be a continuous
and nondecreasing mapping with respect to . Suppose that the following two assertions
hold:

(i) there exist a; > 0,i = 1,2,3 with a; + ag + a3 < 1 such that

q(fz, fy) = arq(x,y) + axq(z, fz) + asq(y, fy)

for all x,y € X with x C y,
(i) there exists xo € X such that xo C fxq.
Then f has a fized point x € X. If v = fv, then q(v,v) = 6.

Theorem 4.3 (/2]) Let (X,C) be a partially ordered set and suppose that (X,d) is a
complete cone metric space. Let q be a c—distance on X and f : X — X be a continuous
and nondecreasing mapping with respect to . Suppose that the following two assertions
hold:

(i) there ezist a; > 0,i = 1,2,3,4 with ay + as + asz + 2a4 < 1 such that

q(fr, fy) 2 arq(@,y) + axq(z, fz) + asq(y, fy) + asq(z, fy)

for all z,y € X with x C y;
(ii) there exists xo € X such that xo T fxq.
Then f has a fized point x € X. If v = fuv then q(v,v) = 6.
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Theorem 4.4 Let (X,C) be a partially ordered set and suppose that (X, d) is a complete
cone metric space. Let q be a c—distance on X. Let f : X — X be a continuous
self mapping which is nondecreasing with respect to C. Suppose that the following two
assertions hold:

(i) there exist nonnegative constants a; € [0,1) i = 1,2,3,4,5 with a; + 2as + 2a3 +
3ay + a5 < 1 such that

q(fz, fy) 2 arq(z,y) + azq(z, fx) + asq(y, fy) + asq(z, fy) + asq(y, f)

for all x,y € X with x C y.
(ii) there exist xo, 1 € X such that xo C x1 T fxq.
Then f has a fized point in X. If v = fuv,then q(v,v) =6

Proof. Since f is nondecreasing with respect to C, we have
ro Cx E fro=2C fry =23 -

Then we have

q(fron—2, fl'anl)

a1q(Ton—2, Ton—1) + a2q(Ton—2, fTon—2) + a3q(T2n—1, fT2n-1)

q($2m x2n+1)

PN

+ asq(won—2, fron_1) + a5q(T2n—1, [Ton—2)

= a19(®on—2, Tan—1) + a2q(Ton—2, Ton) + a3q(T2n—1, Tont1)

+  a4q(Ton—2, Tony1) + a5q(Ton-1, Ton)

= a19(T2n—2, Tan—1) + a2{q(@an—2, Ton—1) + ¢(@2n—1,T2n)}

+ as{q(@2n-1,220) + @(20, T2n11) }

+ as{q(Tan—2, Ton—1) + ¢(T20-1, Tan) + ¢(T2n, Tans1) } + a5q(T2n-1, T2n).

Hence

as +as + a4 + as
1—a3—a4

a; + as + ay
]_—CL3—(I4

q(Ton, Tant1) = q(Ton—1,Ta2,) + q(Ton—2, Ton—1)-

Similarly,

az +asz + as + as
1—a3—aq

ay + as + ay
1—a3—aa

Q(372n—17 xzn) o Q($2n—2a xzn—l) C_I($2n—3, xzn—Q)-

Clearly 0 < @2jeataitas < ] and ( < GEe20a < 1. Set

l—az—aq l1—a

a a a a a a
L e . T i S R SO e i Tl

1—&3—(1,4 1—&3—(14‘
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Applying the above inequalities and putting by = ¢; + aby = 8+ aby, ¢ = [Bby,

q(Ton, Tant1) = biq(Ton—1, o) + c1q(Ton—2, Tan—1)
= boq(Ton—2, Ton—1) + C2q(T2n—3, Tan—2)
(4.1)
= bop—1q(x1, 22) + Can_1q(x0, 21),
where by,—1 = Bbzp_3 + aba, 3 and ca,—1 = Bbap_a.
Similarly
q(Z2n—1, T2n) =X ban—2q(x1, 22) + Con—2q(x0, 1) (4.2)

where by, = Bba,—4 + abyy,—3 and cop—9 = Bbo,—3. From (4.1) and (4.2),

Q(Tn+1, Tntz) = baq(21, 22) + cag(@o, 1)

where b, = (6b,,_o + ab,_1 and ¢, = Bb,_1.
Consider
bn+2:abn+1+ﬁbn (OSOZ,BS 1Jblab2 ZO)

Then b, > 0 for all n € N. Its characteristic equation is that t* — at — 3 = 0. If
l—a—pF > 0and 1+a—( > 0 then it has two roots t1, to such that —1 < t; <0 <ty < 1.
Also the hypothesis a; +2as +2a3+3as+as < 1 implies 1 —a— > 0and 1+a— 3 > 0.
For such ty,to, b, = k1(t1)" + ko(t2)™ for some ky, ko € R.

Let m > n > 1. It follows that

Q(Tn; Tm) 2 (T, Tug1) + Q(Tngr, Tag2) + 0+ (T, T0)
= (bpr b+ b o)g(x, ) + (oot +Cn + -+ Cm2)q(x0, 1)
< T ) S k(T ) Y, 20)
+ Bl ) k(8 1) Yo, 1)
n—1 n—1 n—2 n—2
= (l?t—l t l?t—Q  d@n ) ¥ B(ﬁlt—l oo I?tf g, 10 o)
— 0

as n — oo. Therefore {z,} is a Cauchy sequence in X by Lemma 1.14(3). Since X is
complete, there exists x € X such that z,, — x as n — oco. Using the continuity of f,

r = lim z, = lim fz, = fx.
n—oo

n—oo
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Therefore x is a fixed point of f. Moreover suppose that v = fv. Then we have

a(v.v) = (fv. fv) = arg(v,v) + axq(v, fo) + asq(v, fo) + asg(v, fo) + asq(v, fo)
= (a1 +as+az+as+as)q(v,v).

Since 0 < ay + ag + az + a4 + a5 < 1, we have ¢q(v,v) = 0. 0

Example 4.5 Let X ={0,1,2,3}, E =R and P = {z € R: z > 0} in Example 2.5.
Defined: X x X — E by d(x,y) = |x — y| and define C by

Ly & z2y.

Then (X,d) is a complete cone metric space and X is a partially ordered set. Define
q: X x X — FE by the following :

q(0,0) = 0, ¢(0,1)=1, ¢(0,2)=1.1, ¢(0,3)=0.5,

q(1,0) 1, ¢(1,1)=0, ¢q(1,2)=0.1, ¢(1,3)=0.5,

q(2,0) 1, q(2,1)=1, ¢q(2,2)=0, q(2,3) = 0.5,
q(3,0) = 1, ¢(3,1)=0.5, ¢(3,2) =0.6, ¢(3,3)=0.

Then q s a c—distance as in Fxample 2.5.
Define f: X — X by fO=1,f1 =2,f2 =2, f3=2. Then f is nondecreasing.
Consider x = 2,y = 0. Then q(f2, f0) = ¢q(2,1) =1 and
@19(2,0) + a2q(2, f2) + asq(0, f0) + asq(2, f0)
= a19(2,0) + a2q(2,2) + a3q(0, 1) + asq(2,1)
= aptaztas<a;+as+2a<1

for any nonnegative real numbers a; (i = 1,2,3,4) with a1 + ag + a3z + 2a4 < 1. Hence

the contractive condition of Theorem 4.3 is not satisfied and so Theorem 4.3 can not be
applied to this example.

But Theorem 4.4 can be applied to this example. In fact we take a1 = 0.14, a5 = az =
ay =0 and as = 0.85. Then

1 = q(f1, f0) < a1q(1,0) + asq(0, f1) = 1.075,
I = q(f2> fO) < alQ<27 O) + a5q(07 f2) = 107’57
1 = q(f3,0) <a1q(3,0) + asq(0, f3) = 1.075.

Set xo = 3 and vy = 2. Then vy C 2y T fxg. Clearly f is continuous. Hence the
hypotheses are satisfied and so by Theorem 4.4 f has a fixed point 2.
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