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< Abstact>

Fixed Point Theorems On Cone Metric Spaces With c−distance

Hong Joon Choi

Let X be an arbitrary nonempty set and f : X → X be a mapping. A fixed point for

f is a point x ∈ X such that fx = x. Fixed point theory is one of the most powerful and

fruitful tools of modern mathematics and may be considered a core subject of nonlinear

analysis started by Banach in 1922. After that a considerable amount of research work

for the development of fixed point theory have been executed by several authors.

Banach has proved the fixed point theorem for a single-valued mapping in the setting

of a complete metric space known as the Banach contraction principle.

Huang and Zhang([5]) introduced the cone metric space which is more general than

the concept of a metric space and obtained some fixed point theorems in that space.

After that, a series of articles have been dedicated to the improvement of fixed point

theory. Also Cho et al.([3]) introduced the c−distance in a cone metric space and

obtained some fixed point results.

The idea of common fixed point was initially given by Jungck([6]), and Wang and

Guo([12]) proved common fixed points results for two self mappings in a cone metric

space under c−distance.

In this paper, we obtain sufficient conditions for existence of a unique coincidence

point and a common fixed point for a pair of self mappings and give an example satisfying

the sufficient conditions of our result. Also we obtain sufficient conditions for existence of

fixed points for a nondecreasing continuous mapping on a partially ordered set satisfying

contractive conditions in a cone metric space using c−distance.
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1 Introduction

Let X be an arbitrary nonempty set and f : X → X be a mapping. A fixed point for f

is a point x ∈ X such that fx = x. Fixed point theory is one of the most powerful and

fruitful tools of modern mathematics and may be considered a core subject of nonlinear

analysis started by Banach in 1922. After that a considerable amount of research work

for the development of fixed point theory have been executed by several authors.

Banach has proved the fixed point theorem for a single-valued mapping in the setting

of a complete metric space known as the Banach contraction principle. The famous

Banach contraction principle states that if (X, d) is a complete metric space and f :

X → X is a contraction mapping (i.e., d(fx, fy) ≤ cd(x, y) for all x, y ∈ X, where c

is a nonnegative number such that c ∈ [0, 1)), then f has a unique fixed point. As a

classical example, it is well known that every continuous function f : [0, 1] → [0, 1] has

a fixed point and Brouwer generalized it like this: If f : Dn → Dn is continuous where

Dn = {x ∈ Rn : ‖x‖ ≤ 1}, then f has a fixed point. This contraction principle has

further several generalizations in metric spaces as well as in cone metric spaces.

Huang and Zhang([5]) introduced the cone metric space which is more general than

the concept of a metric space and obtained some fixed point theorems in that space.

After that, a series of articles have been dedicated to the improvement of fixed point

theory. In most of those articles, the authors used normality property of cones in their

results. Also Cho et al.([3]) introduced the c−distance in a cone metric space which is a

cone version of the w−distance of Kada et al.([7]) and obtained some fixed point results.

The idea of common fixed point was initially given by Jungck([6]). Afterwards,

many generalizations of this common fixed point result under a variety of settings were

obtained by several mathematicians. In 2011, Wang and Guo([12]) proved common fixed

points results for two self mappings in a cone metric space under c−distance.

In this paper, we obtain sufficient conditions for existence of a unique coincidence

point and a common fixed point for a pair of self mappings as well as fixed points for

a nondecreasing continuous mapping on a partially ordered set satisfying contractive

conditions in a cone metric space using c−distance.

In this section we need to recall some basic notations, definitions, and necessary

results from existing literature. Let E be a real Banach space and θ denote the zero

element in E. A cone P is a subset of E such that

(i) P is closed, nonempty and P 6= {θ};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P ;

(iii) P ∩ (−P ) = {θ} i.e, x ∈ P and −x ∈ P imply x = θ.

For any cone P ⊆ E, the partial ordering ¹ with respect to P is defined by x ¹ y if
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and only if y − x ∈ P . The notation of ≺ stands for x ¹ y but x 6= y. Also, we used

x ¿ y to indicate that y − x ∈ int P , where int P denotes the interior of P . A cone P

is called normal if there exists a number K such that for all x, y ∈ E,

θ ¹ x ¹ y implies ‖x‖ ≤ K‖y‖. (1.1)

Equivalently, the cone P is normal if

xn ¹ yn ¹ zn and lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x (1.2)

The least positive number K satisfying condition (2.1) is called the normal constant of

P .

Example 1.1 ([4]) Let E = C1
R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E :

x(t) ≥ 0}. This cone is nonnormal. For example, consider xn(t) = tn

n
and yn(t) = 1

n
.

Then θ ¹ xn ¹ yn and yn → θ as n →∞. but

‖xn‖ = max
t∈[0,1]

|t
n

n
|+ max

t∈[0,1]
|tn−1| = 1

n
+ 1 > 1.

Hence xn does not converge to zero and hence P is a nonnormal cone.

Definition 1.2 Let X be a nonempty set and let E be a real Banach space equipped

with the partial ordering ¹ with respect to the cone P ⊆ E. Suppose the mapping

d : X ×X → E satisfies the following conditions:

(1) θ ¹ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y ;

(2) d(x, y) = d(y, x) for all x, y ∈ X ;

(3) d(x, y) ¹ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.3 Let (X, d) be a cone metric space. Let {xn} be a sequence in X and

x ∈ X.

(1) If for every c ∈ E with θ ¿ c, there exists a natural number N such that

d(xn, x) ¿ c for all n > N , then {xn} is said to be convergent and {xn} converges to x,

and the point x is the limit of {xn}. We denote this by

lim
n→∞

xn = x or xn → x (n →∞).

(2) If for all c ∈ E with θ ¿ c, there exists a positive integer N such that d(xn, xm) ¿
c for all m,n > N , then {xn} is called a Cauchy sequence in X.

(3) A cone metric space (X, d) is said to be complete if every Cauchy sequence in X

is convergent.
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Here we point to some elementary results.

Lemma 1.4 ([10]) Let E be a real Banach space with a cone P . Then

(1) If a ¿ b and b ¿ c, then a ¿ c.

(2) If a ¹ b and b ¿ c, then a ¿ c.

Lemma 1.5 ([10]) Let E be a real Banach space with cone P . Then

(1) If θ ¿ c, then there exists δ > 0 such that ‖b‖ < δ implies b ¿ c.

(2) If {an}, {bn} are sequences in E such that an → a, bn → b and an ¹ bn for all

n ≥ 1, then a ¹ b.

Proof. (1) Since θ ¿ c, we have c ∈ intP . Hence, we find δ > 0 such that

{b ∈ E : ‖b− c‖ < δ} ⊆ intP.

If ‖b‖ < δ, then ‖(c− b)− c‖ = ‖ − b‖ = ‖b‖ < δ and hence (c− b) ∈ intP .

(2) an ¹ bn implies bn− an ∈ P . Since P is closed and bn− an → b− a, b− a ∈ P . ¤

Lemma 1.6 ([5]) Let (X, d) be a cone metric space, P a normal cone, x ∈ X and {xn}
a sequence in X. Then

(1) {xn} converges to x if and only if d(xn, x) → θ.

(2) The limit point of every sequence is unique.

(3) Every convergent sequence is a Cauchy sequence.

(4) {xn} is a Cauchy sequence if and only if d(xn, xm) → θ as n,m →∞.

(5) If xn → x and yn → y then d(xn, yn) → d(x, y) as n →∞.

Proof. (1) Suppose that {xn} converges to x. For every ε > 0, choose c ∈ E with

θ ¿ c and K‖c‖ < ε. Then there exists a positive integer N such that d(xn, x) ¿ c for

all n > N . If n > N , then ‖d(xn, x)‖ ≤ K‖c‖ < ε. This means d(xn, x) → θ (n →∞).

Conversely, suppose that d(xn, x) → θ (n →∞). For c ∈ E with θ ¿ c, there exists

δ > 0 such that ‖x‖ < δ implies c − x ∈ int P by Lemma 1.5(1) . For this δ there is a

positive integer N such that ‖d(xn, x)‖ < δ for all n > N . So c− d(xn, x) ∈ int P . This

means d(xn, x) ¿ c. Therefore {xn} converges to x.

(2) Suppose that {xn} converge to x and y. Then for any c ∈ E with θ ¿ c, there

exists a positive integer N such that for all n > N , d(xn, x) ¿ c and d(xn, y) ¿ c. We

have d(x, y) ¹ d(xn, x) + d(xn, y) ¹ 2c. Hence ‖d(x, y)‖ ≤ 2K‖c‖. Since c is arbitrary

d(x, y) = θ and so x = y.

(3) Suppose that {xn} converge to x. Then for any c ∈ E with θ ¿ c, there exists a

positive integer N such that for all n,m > N , d(xn, x) ¿ c
2

and d(xm, x) ¿ c
2
. Hence

d(xn, xm) ¹ d(xn, x) + d(xm, x) ¿ c.
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Therefore {xn} is a Cauchy sequence.

(4) Suppose that {xn} is a Cauchy sequence. For every ε > 0, choose c ∈ E with

θ ¿ c and K‖c‖ < ε. Then there exists a positive integer N such that for all n,m >

N , d(xn, xm) ¿ c. Thus n,m > N implies ‖d(xn, xm)‖ ≤ K‖c‖ < ε. This means

d(xn, xm) → θ (n,m →∞).

Conversely, suppose that d(xn, xm) → θ (n,m → ∞). For c ∈ E with θ ¿ c, there

exists δ > 0 such that ‖x‖ < δ implies c− x ∈ int P . For this δ there exists a positive

integer N , such that for all n,m > N , ‖d(xn, xm)‖ < δ. So c− d(xn, xm) ∈ int P . This

means d(xn, xm) ¿ c. Therefore {xn} is a Cauchy sequence.

(5) For every ε > 0, choose c ∈ E with θ ¿ c and ‖c‖ < ε
4K+2

. From xn → x and

yn → y, there exists N such that for all n > N , d(xn, x) ¿ c and d(yn, y) ¿ c. We have

d(xn, yn) ¹ d(xn, x) + d(x, y) + d(yn, y) ¹ d(x, y) + 2c,

d(x, y) ¹ d(xn, x) + d(xn, yn) + d(yn, y) ¹ d(xn, yn) + 2c.

Hence θ ¹ d(x, y) + 2c− d(xn, yn) ¹ 4c and

‖d(xn, yn)− d(x, y)‖ ≤ ‖d(x, y) + 2c− d(xn, yn)‖+ ‖2c‖ ≤ (4K + 2)‖c‖ < ε.

Therefore d(xn, yn) → d(x, y) as n →∞. ¤

Lemma 1.7 ([10]) If E is a real Banach space with cone P . Then

(1) If a ¹ λa where a ∈ P and 0 < λ < 1 then a = θ.

(2) If c ∈ int P , θ ¹ an and an → θ, then there exists a positive integer N such that

an ¿ c for all n ≥ N .

Proof. (1) The condition a ¹ λa means that λa − a ∈ P that is, −(1 − λ)a ∈ P .

Since a ∈ P and 1− λ > 0, then also (1− λ)a ∈ P . Thus we have

(1− λ)a ∈ P ∩ (−P ) = {θ}

and so a = 0.

(2) Let θ ¿ c be given. Choose a symmetric neighborhood V such that c + V ⊆ P .

Since an → θ, there exists a positive integer n0 such that an ∈ V = −V for n > n0. This

means that c± an ∈ c + V ⊆ P for n > n0, that is, an ¿ c. ¤

Definition 1.8 Let (X, d) be a cone metric space. Then a mapping q : X ×X → E is

called a c−distance on X if the following are satisfied :

(q1) θ ¹ q(x, y) for all x, y ∈ X.

(q2) q(x, z) ¹ q(x, y) + q(y, z) for all x, y, z ∈ X.
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(q3) for all x ∈ X and all n ≥ 1, if q(x, yn) ¹ u for some u = ux ∈ P , then

q(x, y) ¹ u whenever {yn} is a sequence in X converging to a point y ∈ X.

(q4) for all c ∈ E with θ ¿ c, there exists e ∈ E with θ ¿ e such that

q(z, x) ¿ e and q(z, y) ¿ e imply d(x, y) ¿ c.

Example 1.9 ([3]) Let (X, d) be a cone metric space and let P be a normal cone. Put

q(x, y) = d(x, y)

for all x, y ∈ X. Then q is a c−distance.

Proof. (q1) and (q2) are immediate. Lemma 1.6(5) shows that (q3) holds. Let c ∈ E

with θ ¿ c be given and put e = c
2
. Suppose that q(z, x) ¿ e and q(z, y) ¿ e. Then

d(x, y) = q(x, y) ¹ q(x, z) + q(z, y) ¿ e + e = c.

This shows that q satisfies (q4) and hence q is a c−distance. ¤

Example 1.10 ([3]) Let (X, d) be a cone metric space and let P be a normal cone. Put

q(x, y) = d(u, y)

for all x, y ∈ X, where u ∈ X is constant. Then q is a c−distance.

Proof. (q1) and (q3) are immediate. Since

d(u, z) ¹ d(u, y) + d(u, z) i.e., q(x, z) ¹ q(x, y) + q(y, z),

(q2) holds. Let c ∈ E with θ ¿ c and put e = c
2
. If q(z, x) ¿ e and q(z, y) ¿ e, then

we have

d(x, y) ¹ d(x, u) + d(u, y) = d(u, x) + d(u, y)

= q(z, x) + q(z, y) ¿ e + e = c.

This shows that q satisfies (q4) and hence q is a c−distance. ¤

Example 1.11 ([3]) Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0,∞) and define

a mapping d : X ×X → E by d(x, y) = |x− y| for all x, y ∈ X. Then (X, d) is a cone

metric space. Define a mapping q : X ×X → E by q(x, y) = y for all x, y ∈ X. Then q

is a c−distance.
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Proof. (q1) and (q3) are immediate. From

z = q(x, z) ≤ q(x, y) + q(y, z) = y + z,

it follows that (q2) holds. From

d(x, y) = |x− y| ≤ x + y = q(z, x) + q(z, y),

it follows that (q4) holds. Hence q is a c−distance. ¤

Example 1.12 ([4]) Let X = [0, 1]. In the example 1.1, a cone metric d on X is defined

by d(x, y)(t) = |x− y|f(t) where f ∈ P is an arbitrary function (e.g., f(t) = et). Define

a mapping q : X ×X → E by

q(x, y)(t) = y · et

for all x, y ∈ X. It is easy to see that q is a c−distance on X.

Remark 1.13 (1) q(x, y) = q(y, x) does not necessarily hold for all x, y ∈ X.

(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Lemma 1.14 ([3]) Let (X, d)be a cone metric space and let q be a c-distance on X. Let

{xn} and {yn}be sequences in X and x, y, z ∈ X. Suppose that {un} is a sequence in P

converging to θ. Then the following hold:

(1) If q(xn, y) ¹ un and q(xn, z) ¹ un, then y = z.

(2) If q(xn, yn) ¹ unand q(xn, z) ¹ un, then {yn} converges to z.

(3) If q(xn, xm) ¹ un for m > n, then {xn} is a Cauchy sequence in X.

(4) If q(y, xn) ¹ un, then {xn}is a Cauchy sequence in X.

Proof. We first prove (2). Let c ∈ E with θ ¿ c. Then there exists δ > 0 such that

c− x ∈ intP for any x ∈ P with ‖x‖ < δ by Lemma 1.5(1). Since {un} converges to θ,

there exists a positive integer N such that ‖un‖ < δ for all n ≥ N and so c− un ∈ intP ,

i.e., un ¿ c for all n ≥ N . Hence by (q4) with e = c, from q(xn, yn) ¿ c and q(xn, z) ¿ c,

it follows that d(yn, z) ¿ c for all n ≥ N . This shows that {yn} converges to z.

From (2) it is obvious that (1) holds.

Now, we prove (3). Let c ∈ E with θ ¿ c be given. As in the proof of (2), choose

e ∈ E with θ ¿ e. Then there exists a positive integer n0 such that

q(xn, xn+1) ¿ e, q(xn, xm) ¿ e

for any m > n ≥ n0 and hence d(xn+1, xm) ¿ c. This implies that {xn} is a Cauchy

sequence in X. As in the proof of (3), we can prove (4). This completes the proof. ¤

7



Definition 1.15 Let T and S be self mappings of a set X. If y = Tx = Sx for some

x ∈ X, then x is called a coincidence point of T and S and y is called a point of

coincidence of T and S.

Definition 1.16 The mappings T, S : X → X are weakly compatible if for every x ∈ X,

the following holds:

T (Sx) = S(Tx) whenever Sx = Tx.

Definition 1.17 The mapping T : X → X is continuous if limn→∞ xn = x implies that

limn→∞ Txn = Tx.

8



2 Common fixed point results on cone metric spaces

with normal cone

Theorem 2.1 ([12]) Let (X,d) be a cone metric space. Let P be a normal cone with

normal constant K and let q be a c−distance on X. Let f : X → X and g : X → X be

two self mappings such that f(X) ⊆ g(X) and g(X) be a complete subset of X.

Suppose that there exist nonnegative constants ai (i = 1, 2, 3, 4) are nonegative real

numbers with a1 + a2 + a3 + 2a4 < 1 such that the following contractive condition holds

for all x, y ∈ X:

q(fx, fy) ¹ a1q(gx, gy) + a2q(gx, fx) + a3q(gy, fy) + a4q(gx, fy)

and that

inf{‖q(gx, y)‖+ ‖q(fx, y)‖+ ‖q(gx, fx)‖ : x ∈ X} > 0

for all y ∈ X with y 6= fy or y 6= gy.

Then f and g have a common fixed point in X.

Theorem 2.2 Let (X, d) be a cone metric space, P be a normal cone with normal

constant K and q be a c−distance on X. Let f, g : X → X be two self mappings

such that f(X) ⊆ g(X) and g(X) be a complete subset of X. Suppose that there exist

nonnegative constants ai ∈ [0, 1), i = 1, 2, 3, 4, 5 with a1 + 2a2 + 2a3 + 3a4 + a5 < 1 such

that the following contractive condition holds for all x, y ∈ X:

q(fx, fy) ¹ a1q(gx, gy) + a2q(gx, fx) + a3q(gy, fy) + a4q(gx, fy) + a5q(gy, fx)

and that

inf{‖q(gx, y)‖+ ‖q(fx, y)‖+ ‖q(gx, fx)‖ : x ∈ X} > 0

for all y ∈ X with y is not a point of coincidence of f and g. Then f and g have a

unique point of coincidence in X.

Moreover if f and g are weakly compatible then f and g have a unique common fixed

point in X.

Proof. Let x0, x1 ∈ X. Using the fact that f(X) ⊆ g(X), construct {x2n}, {x2n+1}

9



such that gx2n = fx2n−2 and gx2n+1 = fx2n−1 (n ∈ N). Then we have

q(gx2n, gx2n+1) = q(fx2n−2, fx2n−1)

¹ a1q(gx2n−2, gx2n−1) + a2q(gx2n−2, fx2n−2) + a3q(gx2n−1, fx2n−1)

+ a4q(gx2n−2, fx2n−1) + a5q(gx2n−1, fx2n−2)

= a1q(gx2n−2, gx2n−1) + a2q(gx2n−2, gx2n)

+ a3q(gx2n−1, gx2n+1) + a4q(gx2n−2, gx2n+1) + a5q(gx2n−1, gx2n)

¹ a1q(gx2n−2, gx2n−1) + a2{q(gx2n−2, gx2n−1) + q(gx2n−1, gx2n)}
+ a3{q(gx2n−1, gx2n) + q(gx2n, gx2n+1)}
+ a4{q(gx2n−2, gx2n−1) + q(gx2n−1, gx2n) + q(gx2n, gx2n+1)}
+ a5q(gx2n−1, gx2n).

Hence

q(gx2n, gx2n+1) ¹ a2 + a3 + a4 + a5

1− a3 − a4

q(gx2n−1, gx2n)

+
a1 + a2 + a4

1− a3 − a4

q(gx2n−2, gx2n−1). (2.1)

Similarly,

q(gx2n−1, gx2n) ¹ a2 + a3 + a4 + a5

1− a3 − a4

q(gx2n−2, gx2n−1)

+
a1 + a2 + a4

1− a3 − a4

q(gx2n−3, gx2n−2). (2.2)

Clearly 0 ≤ a2+a3+a4+a5

1−a3−a4
< 1 and 0 ≤ a1+a2+a4

1−a3−a4
< 1. Set

b1 = α =
a2 + a3 + a4 + a5

1− a3 − a4

and c1 = β =
a1 + a2 + a4

1− a3 − a4

.

Applying (2.1) and (2.2) and putting b2 = c1 + αb1 = β + αb1, c2 = βb1,

q(gx2n, gx2n+1) ¹ b1q(gx2n−1, gx2n) + c1q(gx2n−2, gx2n−1)

¹ b2q(gx2n−2, gx2n−1) + c2q(gx2n−3, gx2n−2)
... (2.3)

¹ b2n−1q(gx1, gx2) + c2n−1q(gx0, gx1),

where b2n−1 = βb2n−3 + αb2n−2 and c2n−1 = βb2n−2. Similarly

q(gx2n−1, gx2n) ¹ b2n−2q(gx1, gx2) + c2n−2q(gx0, gx1) (2.4)
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where b2n−2 = βb2n−4 + αb2n−3 and c2n−2 = βb2n−3. From (2.3) and (2.4),

q(gxn+1, gxn+2) ¹ bnq(gx1, gx2) + cnq(gx0, gx1)

where bn = βbn−2 + αbn−1 and cn = βbn−1.

Consider

bn+2 = αbn+1 + βbn (0 ≤ α, β < 1, b1, b2 ≥ 0).

Then bn ≥ 0 for all n ∈ N. Its characteristic equation is that t2 − αt − β = 0. If

1−α−β > 0 and 1+α−β > 0 then it has two roots t1, t2 such that −1 < t1 ≤ 0 ≤ t2 < 1.

Also the hypothesis a1 +2a2 +2a3 +3a4 +a5 < 1 implies 1−α−β > 0 and 1+α−β > 0.

For such t1, t2, bn = k1(t1)
n + k2(t2)

n for some k1, k2 ∈ R.

Let m > n ≥ 1. It follows that

q(gxn, gxm) ¹ q(gxn, gxn+1) + q(gxn+1, gxn+2) + · · ·+ q(gxm−1, gxm)

¹ (bn−1 + bn + · · ·+ bm−2)q(gx1, gx2) + (cn−1 + cn + · · ·+ cm−2)q(gx0, gx1)

¹ {k1(t
n−1
1 + tn1 + · · ·+ tm−2

1 ) + k2(t
n−1
2 + · · ·+ tm−2

2 )}q(gx1, gx2)

+ β{k1(t
n−2
1 + · · ·+ tm−3

1 ) + k2(t
n−2
2 + · · ·+ tm−3

2 )}q(gx0, gx1)

¹ (
k1t

n−1
1

1− t1
+

k2t
n−1
2

1− t2
)q(gx1, gx2) + β(

k1t
n−2
1

1− t1
+

k2t
n−2
2

1− t2
)q(gx0, gx1)

→ θ

as n → ∞. Therefore {gxn} is a Cauchy sequence in g(X) by Lemma 1.14 (3). Since

g(X) is complete, there exists x′ ∈ g(X) such that gxm → x′ as m →∞. By definition

1.8(q3)

q(gxn, x′) ¹ (
k1t

n−1
1

1− t1
+

k2t
n−1
2

1− t2
)q(gx1, gx2) + β(

k1t
n−2
1

1− t1
+

k2t
n−2
2

1− t2
)q(gx0, gx1)

Since P is a normal cone with normal constant K, we have

‖q(gxn, gxm)‖ ≤ K‖(k1t
n−1
1

1− t1
+

k2t
n−1
2

1− t2
)q(gx1, gx2) + β(

k1t
n−2
1

1− t1
+

k2t
n−2
2

1− t2
)q(gx0, gx1)‖

≤ K(
k1t

n−1
1

1− t1
+

k2t
n−1
2

1− t2
)‖q(gx1, gx2)‖+ Kβ(

k1t
n−2
1

1− t1
+

k2t
n−2
2

1− t2
)‖q(gx0, gx1)‖

→ 0

as n →∞. Also

‖q(gxn, x′)‖ ≤ K‖(k1t
n−1
1

1− t1
+

k2t
n−1
2

1− t2
)q(gx1, gx2) + β(

k1t
n−2
1

1− t1
+

k2t
n−2
2

1− t2
)q(gx0, gx1)‖

≤ K(
k1t

n−1
1

1− t1
+

k2t
n−1
2

1− t2
)‖q(gx1, gx2)‖+ Kβ(

k1t
n−2
1

1− t1
+

k2t
n−2
2

1− t2
)‖q(gx0, gx1)‖

→ 0
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as n →∞.

Suppose that x′ is not a point of coincidence of f and g. Then by assumption,

0 < inf{‖q(gx, x′)‖+ ‖q(fx, x′)‖+ ‖q(gx, fx)‖ : x ∈ X}
≤ inf{‖q(gxn, x

′)‖+ ‖q(fxn, x′)‖+ ‖q(gxn, fxn)‖ : n ∈ N}
= inf{‖q(gxn, x

′)‖+ ‖q(gxn+2, x
′)‖+ ‖q(gxn, gxn+2)‖ : x ∈ N}

= 0

which is a contradiction. Therefore x′ is a point of coincidence of f and g. So there

exists x ∈ X such that fx = gx = x′. If there exists w ∈ X such that fy = gy = w for

some y ∈ X,

q(x′, x′) = q(fx, fx)

¹ a1q(gx, gx) + a2q(gx, fx) + a3q(gx, fx) + a4q(gx, fx) + a5q(gx, fx)

= (a1 + a2 + a3 + a4 + a5)q(x
′, x′).

Hence

q(x′, x′) = θ. (2.5)

Similarly

q(w, w) = θ. (2.6)

Now by (2.5) and (2.6)

q(x′, w) = q(fx, fy)

¹ a1q(gx, gy) + a2q(gx, fx) + a3q(gy, fy) + a4q(gx, fy) + a5q(gy, fx)

= a1q(x
′, w) + a2q(x

′, x′) + a3q(w,w) + a4q(x
′, w) + a5q(w, x′)

= (a1 + a4)q(x
′, w) + a5q(w, x′).

Similarly q(w, x′) ¹ (a1 + a4)q(w, x′) + a5q(x
′, w). Thus

q(x′, w) + q(w, x′) ¹ (a1 + a4 + a5){q(x′, w) + q(w, x′)}.

Therefore q(x′, w) + q(w, x′) = θ which implies

q(x′, w) = q(w, x′) = θ. (2.7)

By (2.6),(2.7) and Lemma 1.14(1), x′ = w. Consequently x′ is a unique point of coinci-

dence of f and g.
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Moreover if f and g are weakly compatible,

gx′ = ggx = gfx = fgx = fx′

which implies gx′ is a point of coincidence of f and g. By uniqueness of the point of

coincidence , fx′ = gx′ = x′. In other words, x′ is the unique common fixed point of f

and g. ¤

Corollary 2.3 Let (X, d) be a complete cone metric space and let P be a normal

cone with normal constant K and q be a c-distance on X. Let f : X → X be a self

mapping . Suppose that there exist nonnegative constants ai ∈ [0, 1), i = 1, 2, 3, 4, 5 with

a1 + 2a2 + 2a3 + 3a4 + a5 < 1 such that the following contractive condition holds for all

x, y ∈ X:

q(fx, fy) ¹ a1q(x, y) + a2q(x, fx) + a3q(y, fy) + a4q(x, fy) + a5q(y, fx)

and that

inf{‖q(x, y)‖+ ‖q(fx, y)‖+ ‖q(x, fx)‖ : x ∈ X} > 0

if fy 6= y. Then f has a unique fixed point in X.

Proof. Take g = I in the above theorem. ¤

Corollary 2.4 Let (X, d) be a complete cone metric space and let P be a normal cone

with normal constant K and q be a c-distance on X. Let f : X → X be a continuous

self mapping . Suppose that there exist nonnegative constants ai ∈ [0, 1), i = 1, 2, 3, 4

with a1 + 2a2 + 2a3 + 3a4 < 1 such that

q(fx, fy) ¹ a1q(x, y) + a2q(x, fx) + a3q(y, fy) + a4q(x, fy).

Then f has a unique fixed point in X.

Proof. Assume there exists y ∈ X such that fy 6= y and

inf{‖q(x, y)‖+ ‖q(fx, y)‖+ ‖q(x, fx)‖ : x ∈ X} = 0.

Then we can construct {xn} in X such that

inf{‖q(xn, y)‖+ ‖q(fxn, y)‖+ ‖q(xn, fxn)‖ : n ∈ N} = 0.

Hence

q(xn, y) → θ, q(fxn, y) → θ, q(xn, fxn) → θ.
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By Lemma 1.14(2), fxn → y. By the contractive condition, we have

q(fxn, f 2xn) ¹ a1q(xn, fxn) + a2q(xn, fxn) + a3q(fxn, f
2xn) + a4q(xn, f 2xn)

¹ a1q(xn, fxn) + a2q(xn, fxn) + a3q(fxn, f
2xn)

+ a4q(xn, fxn) + a4q(fxn, f 2xn).

Therefore q(fxn, f 2xn) ¹ a1+a2+a4

1−a3−a4
q(xn, fxn). Hence

q(xn, f
2xn) ¹ q(xn, fxn) + q(fxn, f

2xn)

¹ q(xn, fxn) +
a1 + a2 + a4

1− a3 − a4

q(xn, fxn) → θ

as n →∞. This implies q(xn, f
2xn) → θ. Consequently, f 2xn → y by Lemma 1.14(2) .

Since f is continuous, we have

fy = f( lim
n→∞

fxn) = lim
n→∞

f 2xn = y

which is a contradiction. Therefore if fy 6= y, then

inf{‖q(x, y)‖+ ‖q(fx, y)‖+ ‖q(x, fx)‖ : x ∈ X} > 0.

By Corollary 2.3, the proof is done. ¤

Example 2.5 Let X = {0, 1, 2, 3} ,E = R and P = {x ∈ R : x ≥ 0}. Define d :

X ×X → E by d(x, y) = |x − y|. Then (X, d) is a complete cone metric space. Define

q : X ×X → E by the following :

q(0, 0) = 0, q(0, 1) = 1, q(0, 2) = 1.1, q(0, 3) = 0.5,

q(1, 0) = 1, q(1, 1) = 0, q(1, 2) = 0.1, q(1, 3) = 0.5,

q(2, 0) = 1, q(2, 1) = 1, q(2, 2) = 0, q(2, 3) = 0.5,

q(3, 0) = 1, q(3, 1) = 0.5, q(3, 2) = 0.6, q(3, 3) = 0.

Then q is a c−distance. In fact Definition 1.8 (q1),(q3) are obvious. If we put e = 0.01,

(q4) is also clear. For (q2),

1 = q(0, 1) ≤ q(0, 2) + q(2, 1) = 2.1,

1 = q(0, 1) ≤ q(0, 3) + q(3, 1) = 1,

1.1 = q(0, 2) ≤ q(0, 1) + q(1, 2) = 1.1,

1.1 = q(0, 2) ≤ q(0, 3) + q(3, 2) = 1.1,
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0.5 = q(0, 3) ≤ q(0, 1) + q(1, 3) = 1.5,

0.5 = q(0, 3) ≤ q(0, 2) + q(2, 3) = 1.6,

1 = q(1, 0) ≤ q(1, 2) + q(2, 0) = 1.1,

1 = q(1, 0) ≤ q(1, 3) + q(3, 0) = 1.5,

0.1 = q(1, 2) ≤ q(1, 0) + q(0, 2) = 2.1,

0.1 = q(1, 2) ≤ q(1, 3) + q(3, 2) = 1.1,

0.5 = q(1, 3) ≤ q(1, 0) + q(0, 3) = 1.5,

0.5 = q(1, 3) ≤ q(1, 2) + q(2, 3) = 0.6,

1 = q(2, 0) ≤ q(2, 1) + q(1, 0) = 2,

1 = q(2, 0) ≤ q(2, 3) + q(3, 0) = 1.5,

1 = q(2, 1) ≤ q(2, 0) + q(0, 1) = 2,

1 = q(2, 1) ≤ q(2, 3) + q(3, 1) = 1,

0.5 = q(2, 3) ≤ q(2, 0) + q(0, 3) = 1.5,

0.5 = q(2, 3) ≤ q(2, 1) + q(1, 3) = 1.5,

1 = q(3, 0) ≤ q(3, 1) + q(1, 0) = 1.5,

1 = q(3, 0) ≤ q(3, 2) + q(2, 0) = 1.6,

0.5 = q(3, 1) ≤ q(3, 0) + q(0, 1) = 2,

0.5 = q(3, 1) ≤ q(3, 2) + q(2, 1) = 1.6,

0.6 = q(3, 2) ≤ q(3, 0) + q(0, 2) = 2.1,

0.6 = q(3, 2) ≤ q(3, 1) + q(1, 2) = 0.6.

Thus (q2) is checked and so q is a c−distance.

Define f : X → X by f0 = 1, f1 = 2, f2 = 2, f3 = 2 and define g : X → X by

gx = x. Then f(X) ⊆ g(X).

Consider x = 2, y = 0. Then q(f2, f0) = q(2, 1) = 1 and

a1q(g2, g0) + a2q(g2, f2) + a3q(g0, f0) + a4q(g2, f0)

= a1q(2, 0) + a2q(2, 2) + a3q(0, 1) + a4q(2, 1)

= a1 + a3 + a4 ≤ a1 + a3 + 2a4 < 1
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for any nonnegative real numbers ai (i = 1, 2, 3, 4) with a1 + a2 + a3 + 2a4 < 1. Hence

the contractive condition of Theorem 2.1 is not satisfied and so Theorem 2.1 can not be

applied to this example.

But Theorem 2.2 can be applied to this example. In fact we take a1 = 0.14, a2 = a3 =

a4 = 0 and a5 = 0.85. Then

0.1 = q(f0, f1) < a1q(g0, g1) + a5q(g1, f0) = 0.14,

0.1 = q(f0, f2) < a1q(g0, g2) + a5q(g2, f0) = 1.004,

0.1 = q(f0, f3) < a1q(g0, g3) + a5q(g3, f0) = 0.495,

1 = q(f1, f0) < a1q(g1, g0) + a5q(g0, f1) = 1.075,

1 = q(f2, f0) < a1q(g2, g0) + a5q(g0, f2) = 1.075,

1 = q(f3, f0) < a1q(g3, g0) + a5q(g0, f3) = 1.075.

Also

inf{‖q(gx, 0)‖+ ‖q(fx, 0)‖+ ‖q(gx, fx)‖ : x ∈ X} = 2 > 0

inf{‖q(gx, 1)‖+ ‖q(fx, 1)‖+ ‖q(gx, fx)‖ : x ∈ X} = 1.1 > 0

inf{‖q(gx, 3)‖+ ‖q(fx, 3)‖+ ‖q(gx, fx)‖ : x ∈ X} = 1 > 0.

Hence the hypotheses are satisfied and so by Theorem 2.2 f and g have a unique point

of coincidence. Since f2 = 2 and g2 = 2, 2 is a unique point of coincidence. Since

2 = gf2 = fg2, f and g are weakly compatible. 2 is the unique common fixed point of f

and g.
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3 Common fixed point results on cone metric spaces

Theorem 3.1 ([9]) Let (X, d) be a cone metric space, P be a cone and q be a c−distance

on X. Let f, g : X → X be two self mappings such that f(X) ⊆ g(X) and g(X) be

a complete subset of X. Suppose that there exists nonnegative constants ai ∈ [0, 1),

i = 1, 2, 3 with a1 + a2 + a3 < 1 such that the following contractive condition holds for

all x, y ∈ X:

q(fx, fy) ¹ a1q(gx, gy) + a2q(gx, fx) + a3q(gy, fy)

and that

inf{q(gx, y) + q(fx, y) + q(gx, fx) : x ∈ X} Â θ

for all y ∈ X with y is not a point of coincidence of f and g. Then f and g have a

unique point of coincidence in X.

Moreover if f and g are weakly compatible then f and g have a unique common fixed

point in X.

In ([4]), Z.M. Fadail, A.G.B Ahmad and S. Radenovic proved the following theorem

3.2 without the condition

inf{q(gx, y) + q(fx, y) + q(gx, fx) : x ∈ X} Â θ (3.1)

for all y ∈ X which is not a point of coincidence of f and g. In fact in Theorem 3.1 of

([4]) it is necessary that

inf{q(gx, y) + q(fx, y) + q(gx, fx) : x ∈ X} Â θ

for all y ∈ X which is not a point of coincidence of f and g. Hence we obtain the

following theorem.

Theorem 3.2 Let (X, d) be a cone metric space, P be a cone and q be a c−distance

on X. Let f, g : X → X be two self mappings such that f(X) ⊆ g(X) and g(X)

be a complete subset of X. Suppose that there exist nonnegative constants ai ∈ [0, 1),

i = 1, 2, 3, 4 with a1 + a2 + a3 + 2a4 < 1 such that the following contractive condition

holds for all x, y ∈ X:

q(fx, fy) ¹ a1q(gx, gy) + a2q(gx, fx) + a3q(gy, fy) + a4q(gx, fy)

and that

inf{q(gx, y) + q(fx, y) + q(gx, fx) : x ∈ X} Â θ
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for all y ∈ X with y is not a point of coincidence of f and g. Then f and g have a

unique point of coincidence in X.

Moreover if f and g are weakly compatible then f and g have a unique common fixed

point in X.

Proof. Let x0 be an arbitrary point in X. Choose a point x1 ∈ X such that gx1 = fx0.

This can be done because f(X) ⊆ g(X). Continuing this process we obtain a sequence

{xn} in X such that gxn+1 = fxn. Then we have

q(gxn, gxn+1) = q(fxn−1, fxn)

¹ a1q(gxn−1, gxn) + a2q(gxn−1, fxn−1) + a3q(gxn, fxn) + a4q(gxn−1, fxn)

= a1q(gxn−1, gxn) + a2q(gxn−1, gxn) + a3q(gxn, gxn+1) + a4q(gxn−1, gxn+1)

¹ a1q(gxn−1, gxn) + a2q(gxn−1, gxn) + a3q(gxn, gxn+1) + a4{q(gxn−1, gxn)

+ q(gxn, gxn+1)}.
and so

q(gxn, gxn+1) ¹ a1 + a2 + a4

1− a3 − a4

q(gxn−1, gxn)

= hq(gxn−1, gxn)

¹ h2q(gxn−2, gxn−1)
...

¹ hnq(gx0, gx1).

where 0 ≤ h = a1+a2+a4

1−a3−a4
< 1.

Let m > n ≥ 1. It follows that

q(gxn, gxm) ¹ q(gxn, gxn+1) + q(gxn+1, gxn+2) + · · ·+ q(gxm−1, gxm)

¹ (hn + hn+1 + · · ·+ hm−1)q(gx0, gx1)

¹ hn

1− h
q(gx0, gx1).

Hence {gxn} is a Cauchy sequence in g(X). Since g(X) is complete, there exists x′ ∈
g(X) such that gxm → x′ as m →∞. By definition 1.8 (q3),

q(gxn, gxm) ¹ hn

1− h
q(gx0, gx1).

Suppose that x′ ∈ X is not a point of coincidence of f and g.Then by assumption,

θ ≺ inf{q(gx, x′) + q(fx, x′) + q(gx, fx) : x ∈ X}
¹ inf{q(gxn, x

′) + q(fxn, x
′) + q(gxn, fxn) : n ∈ N}

= inf{q(gxn, x
′) + q(gxn+1, x

′) + q(gxn, gxn+1) : x ∈ N} = θ
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which is a contradiction. Therefore x′ is a point of coincidence of f and g. So there

exists x ∈ X such that fx = gx = x′. If there exists w ∈ X such that fy = gy = w for

some y ∈ X,

q(x′, x′) = q(fx, fx)

¹ a1q(gx, gx) + a2q(gx, fx) + a3q(gx, fx) + a4q(gx, fx)

= (a1 + a2 + a3 + a4)q(x
′, x′).

Hence q(x′, x′) = θ. Similarly q(w,w) = θ. Now

q(x′, w) = q(fx, fy)

¹ a1q(gx, gy) + a2q(gx, fx) + a3q(gy, fy) + a4q(gx, fy)

= a1q(x
′, w) + a2q(x

′, x′) + a3q(w, w) + a4q(x
′, w)

= (a1 + a4)q(x
′, w).

Therefore q(x′, w) = θ which means x′ = w. Consequently x′ is a unique point of

coincidence of f and g. Moreover if f and g are weakly compatible,

gx′ = ggx = gfx = fgx = fx′

which implies gx′ is a point of coincidence of f and g. By uniqueness of the point of

coincidence , fx′ = gx′ = x′. In other words, x′ is the unique common fixed point of f

and g. ¤

Example 3.3 (the case of a nonnormal cone) Consider Example 1.12. Define the map-

pings f : X → X by fx = x2

4
and g : X → X by gx = x

2
for all x ∈ X. It is clear

that f(X) ⊆ g(X) and g(X) is a complete subset of X. From the direct calculation, we

obtain that

q(fx, fy)(t) = fy · et =
y2

4
et

¹ 1

2

y

2
et =

1

2
(gy · et) = a1q(gx, gy)(t)

¹ a1q(gx, gy)(t) + a2q(gx, fx)(t) + a3q(gy, fy)(t) + a4q(gx, fy)(t),

where a1 = 1
2
, a2 = a3 = 1

8
, a4 = 1

16
and a1 + a2 + a3 + 2a4 = 7

8
< 1. Also

inf{q(gx, y) + q(fx, y) + q(gx, fx) : x ∈ X} = inf{yet + yet +
x2

4
et : x ∈ X} Â θ,

if y is not a zero element. Hence

inf{q(gx, y) + q(fx, y) + q(gx, fx) : x ∈ X} Â θ
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for all y ∈ X which y is not a point of coincidence of f and g.

Also, f and g are weakly compatible at x = 0. Therefore all conditions of Theorem 3.2

are satisfied. Hence f and g have a unique common fixed point x = 0 and f(0) = g(0) = 0

with q(0, 0) = 0.

Theorem 3.4 Let (X, d) be a cone metric space, P be a cone and q be a c−distance

on X. Let f, g : X → X be two self mappings such that f(X) ⊆ g(X) and g(X) be

a complete subset of X. Suppose that there exist nonnegative constants ai ∈ [0, 1), i =

1, 2, 3, 4, 5 with a1 +2a2 +2a3 +3a4 +a5 < 1 such that the following contractive condition

holds for all x, y ∈ X:

q(fx, fy) ¹ a1q(gx, gy) + a2q(gx, fx) + a3q(gy, fy) + a4q(gx, fy) + a5q(gy, fx)

and that

inf{q(gx, y) + q(fx, y) + q(gx, fx) : x ∈ X} Â θ

for all y ∈ X with y is not a point of coincidence of f and g. Then f and g have a

unique point of coincidence in X.

Moreover if f and g are weakly compatible then f and g have a unique common fixed

point in X.

Proof. Let x0, x1 ∈ X. Using the fact that f(X) ⊆ g(X), construct {x2n}, {x2n+1}
such that gx2n = fx2n−2 and gx2n+1 = fx2n−1 (n ∈ N). Then we have

q(gx2n, gx2n+1) = q(fx2n−2, fx2n−1)

¹ a1q(gx2n−2, gx2n−1) + a2q(gx2n−2, fx2n−2) + a3q(gx2n−1, fx2n−1)

+ a4q(gx2n−2, fx2n−1) + a5q(gx2n−1, fx2n−2)

= a1q(gx2n−2, gx2n−1) + a2q(gx2n−2, gx2n)

+ a3q(gx2n−1, gx2n+1) + a4q(gx2n−2, gx2n+1) + a5q(gx2n−1, gx2n)

¹ a1q(gx2n−2, gx2n−1) + a2{q(gx2n−2, gx2n−1) + q(gx2n−1, gx2n)}
+ a3{q(gx2n−1, gx2n) + q(gx2n, gx2n+1)}
+ a4{q(gx2n−2, gx2n−1) + q(gx2n−1, gx2n) + q(gx2n, gx2n+1)}
+ a5q(gx2n−1, gx2n).

Hence

q(gx2n, gx2n+1) ¹ a2 + a3 + a4 + a5

1− a3 − a4

q(gx2n−1, gx2n)

+
a1 + a2 + a4

1− a3 − a4

q(gx2n−2, gx2n−1). (3.2)
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Similarly,

q(gx2n−1, gx2n) ¹ a2 + a3 + a4 + a5

1− a3 − a4

q(gx2n−2, gx2n−1)

+
a1 + a2 + a4

1− a3 − a4

q(gx2n−3, gx2n−2). (3.3)

Clearly 0 ≤ a2+a3+a4+a5

1−a3−a4
< 1 and 0 ≤ a1+a2+a4

1−a3−a4
< 1. Set

b1 = α =
a2 + a3 + a4 + a5

1− a3 − a4

and c1 = β =
a1 + a2 + a4

1− a3 − a4

.

Applying (3.2) and (3.3) and putting b2 = c1 + αb1 = β + αb1, c2 = βb1,

q(gx2n, gx2n+1) ¹ b1q(gx2n−1, gx2n) + c1q(gx2n−2, gx2n−1)

¹ b2q(gx2n−2, gx2n−1) + c2q(gx2n−3, gx2n−2)
... (3.4)

¹ b2n−1q(gx1, gx2) + c2n−1q(gx0, gx1),

where b2n−1 = βb2n−3 + αb2n−2 and c2n−1 = βb2n−2.

Similarly

q(gx2n−1, gx2n) ¹ b2n−2q(gx1, gx2) + c2n−2q(gx0, gx1) (3.5)

where b2n−2 = βb2n−4 + αb2n−3 and c2n−2 = βb2n−3. From (3.4) and (3.5),

q(gxn+1, gxn+2) ¹ bnq(gx1, gx2) + cnq(gx0, gx1)

where bn = βbn−2 + αbn−1 and cn = βbn−1.

Consider

bn+2 = αbn+1 + βbn (0 ≤ α, β < 1, b1, b2 ≥ 0).

Then bn ≥ 0 for all n ∈ N. Its characteristic equation is that t2 − αt − β = 0. If

1−α−β > 0 and 1+α−β > 0 then it has two roots t1, t2 such that −1 < t1 ≤ 0 ≤ t2 < 1.

Also the hypothesis a1 +2a2 +2a3 +3a4 +a5 < 1 implies 1−α−β > 0 and 1+α−β > 0.

For such t1 and t2, bn = k1(t1)
n + k2(t2)

n for some k1, k2 ∈ R.

Let m > n ≥ 1. It follows that

q(gxn, gxm) ¹ q(gxn, gxn+1) + q(gxn+1, gxn+2) + · · ·+ q(gxm−1, gxm)

¹ (bn−1 + bn + · · ·+ bm−2)q(gx1, gx2) + (cn−1 + cn + · · ·+ cm−2)q(gx0, gx1)

¹ {k1(t
n−1
1 + tn1 + · · ·+ tm−2

1 ) + k2(t
n−1
2 + · · ·+ tm−2

2 )}q(gx1, gx2)

+ β{k1(t
n−2
1 + · · ·+ tm−3

1 ) + k2(t
n−2
2 + · · ·+ tm−3

2 )}q(gx0, gx1)

¹ (
k1t

n−1
1

1− t1
+

k2t
n−1
2

1− t2
)q(gx1, gx2) + β(

k1t
n−2
1

1− t1
+

k2t
n−2
2

1− t2
)q(gx0, gx1)

→ θ
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as n → ∞. Therefore {gxn} is a Cauchy sequence in g(X) by lemma 1.14(3). Since

g(X) is complete, there exists x′ ∈ g(X) such that gxm → x′ as m →∞. By definition

1.8(q3)

q(gxn, x
′) ¹ (

k1t
n−1
1

1− t1
+

k2t
n−1
2

1− t2
)q(gx1, gx2) + β(

k1t
n−2
1

1− t1
+

k2t
n−2
2

1− t2
)q(gx0, gx1) → θ

as n →∞. Suppose that x′ is not a point of coincidence of f and g. Then by assumtion,

θ ≺ inf{q(gx, x′) + q(fx, x′) + q(gx, fx) : x ∈ X}
¹ inf{q(gxn, x

′) + q(fxn, x
′) + q(gxn, fxn) : n ∈ N}

= inf{q(gxn, x
′) + q(gxn+2, x

′) + q(gxn, gxn+2) : x ∈ N} = θ

which is a contradiction. Therefore x′ is a point of coincidence of f and g. So there

exists x ∈ X such that fx = gx = x′. If there exists w ∈ X such that fy = gy = w for

some y ∈ X,

q(x′, x′) = q(fx, fx)

¹ a1q(gx, gx) + a2q(gx, fx) + a3q(gx, fx) + a4q(gx, fx) + a5q(gx, fx)

= (a1 + a2 + a3 + a4 + a5)q(x
′, x′).

Hence

q(x′, x′) = θ. (3.6)

Similarly

q(w, w) = θ. (3.7)

Now by (3.6) and (3.7)

q(x′, w) = q(fx, fy)

¹ a1q(gx, gy) + a2q(gx, fx) + a3q(gy, fy) + a4q(gx, fy) + a5q(gy, fx)

= a1q(x
′, w) + a2q(x

′, x′) + a3q(w,w) + a4q(x
′, w) + a5q(w, x′)

= (a1 + a4)q(x
′, w) + a5q(w, x′).

Similarly q(w, x′) ¹ (a1 + a4)q(w, x′) + a5q(x
′, w). Thus

q(x′, w) + q(w, x′) ¹ (a1 + a4 + a5){q(x′, w) + q(w, x′)}.
Therefore q(x′, w) + q(w, x′) = θ which implies

q(x′, w) = q(w, x′) = θ. (3.8)
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By (3.7),(3.8) and Lemma 1.14(1), x′ = w. Consequently x′ is a unique point of coinci-

dence of f and g. Moreover if f and g are weakly compatible,

gx′ = ggx = gfx = fgx = fx′

which implies gx′ is a point of coincidence of f and g. By uniqueness of the point of

coincidence , fx′ = gx′ = x′. In other words, x′ is the unique common fixed point of f

and g. ¤

Corollary 3.5 Let (X, d) be a complete cone metric space and let P be a cone and

q be a c-distance on X. Let f : X → X be a self mapping. Suppose that there exist

nonnegative constants ai ∈ [0, 1), i = 1, 2, 3, 4, 5 with a1 + 2a2 + 2a3 + 3a4 + a5 < 1 such

that the following contractive condition holds for all x, y ∈ X:

q(fx, fy) ¹ a1q(x, y) + a2q(x, fx) + a3q(y, fy) + a4q(x, fy) + a5q(y, fx)

and that

inf{q(x, y) + q(fx, y) + q(x, fx) : x ∈ X} Â θ

if fy 6= y. Then f has a unique fixed point in X.

Proof. Take g = I in Theorem 3.4. ¤

Corollary 3.6 Let (X, d) be a complete cone metric space and let P be a cone and q

be a c-distance on X. Let f : X → X be a continuous self mapping . Suppose that there

exist nonnegative constants ai ∈ [0, 1), i = 1, 2, 3, 4 with a1 + 2a2 + 2a3 + 3a4 < 1 such

that

q(fx, fy) ¹ a1q(x, y) + a2q(x, fx) + a3q(y, fy) + a4q(x, fy).

Then f has a unique fixed point in X.

Proof. Assume there exists y ∈ X such that fy 6= y and

inf{q(x, y) + q(fx, y) + q(x, fx) : x ∈ X} = θ.

Then we can construct {xn} in X such that

inf{q(xn, y) + q(fxn, y) + q(xn, fxn) : n ∈ N} = θ.

Hence

q(xn, y) → θ, q(fxn, y) → θ, q(xn, fxn) → θ.
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By Lemma 1.14(2), fxn → y. By the contractive condition, we have

q(fxn, f 2xn) ¹ a1q(xn, fxn) + a2q(xn, fxn) + a3q(fxn, f
2xn) + a4q(xn, f 2xn)

¹ a1q(xn, fxn) + a2q(xn, fxn) + a3q(fxn, f
2xn)

+ a4q(xn, fxn) + a4q(fxn, f 2xn).

Therefore

q(fxn, f
2xn) ¹ a1 + a2 + a4

1− a3 − a4

q(xn, fxn).

Hence

q(xn, f
2xn) ¹ q(xn, fxn) + q(fxn, f

2xn)

¹ q(xn, fxn) +
a1 + a2 + a4

1− a3 − a4

q(xn, fxn) → θ

as n → ∞. This implies q(xn, f 2xn) → θ. Consequently, f 2xn → y. Since f is

continuous, we have

fy = f( lim
n→∞

fxn) = lim
n→∞

f 2xn = y

which is a contradiction. Therefore if fy 6= y, then

inf{q(x, y) + q(fx, y) + q(x, fx) : x ∈ X} Â θ.

By Theorem 3.4, the proof is done. ¤
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4 Fixed point on partially ordered cone metric spaces

Theorem 4.1 ([2]) Let (X,v) be a partially ordered set and suppose that (X, d) is

a complete cone metric space. Let q be a c−distance on X and f : X → X be a

nondecreasing mapping with respect to v.(without the assumption of continuity of f)

Suppose that the following three assertions hold:

(i) there exist nonnegative numbers ai, i = 1, 2 with a1 + a2 < 1 such that

q(fx, fy) ¹ a1q(x, y) + a2q(x, fx)

for all x, y ∈ X with x v y;

(ii) there exists x0 ∈ X such that x0 v fx0.

(iii) if {xn} is nondecreasing mapping with respect to v and converges to x then

xn v x as n →∞.

Then f has a fixed point x ∈ X. If v = fv then q(v, v) = θ.

Theorem 4.2 ([3])Let (X,v) be a partially ordered set and suppose that (X, d) is a

complete cone metric space. Let q be a c−distance on X and f : X → X be a continuous

and nondecreasing mapping with respect to v. Suppose that the following two assertions

hold:

(i) there exist ai ≥ 0, i = 1, 2, 3 with a1 + a2 + a3 < 1 such that

q(fx, fy) ¹ a1q(x, y) + a2q(x, fx) + a3q(y, fy)

for all x, y ∈ X with x v y;

(ii) there exists x0 ∈ X such that x0 v fx0.

Then f has a fixed point x ∈ X. If v = fv, then q(v, v) = θ.

Theorem 4.3 ([2]) Let (X,v) be a partially ordered set and suppose that (X, d) is a

complete cone metric space. Let q be a c−distance on X and f : X → X be a continuous

and nondecreasing mapping with respect to v. Suppose that the following two assertions

hold:

(i) there exist ai ≥ 0, i = 1, 2, 3, 4 with a1 + a2 + a3 + 2a4 < 1 such that

q(fx, fy) ¹ a1q(x, y) + a2q(x, fx) + a3q(y, fy) + a4q(x, fy)

for all x, y ∈ X with x v y;

(ii) there exists x0 ∈ X such that x0 v fx0.

Then f has a fixed point x ∈ X. If v = fv then q(v, v) = θ.
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Theorem 4.4 Let (X,v) be a partially ordered set and suppose that (X, d) is a complete

cone metric space. Let q be a c−distance on X. Let f : X → X be a continuous

self mapping which is nondecreasing with respect to v. Suppose that the following two

assertions hold:

(i) there exist nonnegative constants ai ∈ [0, 1) i = 1, 2, 3, 4, 5 with a1 + 2a2 + 2a3 +

3a4 + a5 < 1 such that

q(fx, fy) ¹ a1q(x, y) + a2q(x, fx) + a3q(y, fy) + a4q(x, fy) + a5q(y, fx)

for all x, y ∈ X with x v y.

(ii) there exist x0, x1 ∈ X such that x0 v x1 v fx0.

Then f has a fixed point in X. If v = fv,then q(v, v) = θ

Proof. Since f is nondecreasing with respect to v, we have

x0 v x1 v fx0 = x2 v fx1 = x3 v · · · .

Then we have

q(x2n, x2n+1) = q(fx2n−2, fx2n−1)

¹ a1q(x2n−2, x2n−1) + a2q(x2n−2, fx2n−2) + a3q(x2n−1, fx2n−1)

+ a4q(x2n−2, fx2n−1) + a5q(x2n−1, fx2n−2)

= a1q(x2n−2, x2n−1) + a2q(x2n−2, x2n) + a3q(x2n−1, x2n+1)

+ a4q(x2n−2, x2n+1) + a5q(x2n−1, x2n)

¹ a1q(x2n−2, x2n−1) + a2{q(x2n−2, x2n−1) + q(x2n−1, x2n)}
+ a3{q(x2n−1, x2n) + q(x2n, x2n+1)}
+ a4{q(x2n−2, x2n−1) + q(x2n−1, x2n) + q(x2n, x2n+1)}+ a5q(x2n−1, x2n).

Hence

q(x2n, x2n+1) ¹ a2 + a3 + a4 + a5

1− a3 − a4

q(x2n−1, x2n) +
a1 + a2 + a4

1− a3 − a4

q(x2n−2, x2n−1).

Similarly,

q(x2n−1, x2n) ¹ a2 + a3 + a4 + a5

1− a3 − a4

q(x2n−2, x2n−1) +
a1 + a2 + a4

1− a3 − a4

q(x2n−3, x2n−2).

Clearly 0 ≤ a2+a3+a4+a5

1−a3−a4
< 1 and 0 ≤ a1+a2+a4

1−a3−a4
< 1. Set

b1 = α =
a1 + a2 + a4

1− a3 − a4

and c1 = β =
a1 + a2 + a4

1− a3 − a4

.
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Applying the above inequalities and putting b2 = c1 + αb1 = β + αb1, c2 = βb1,

q(x2n, x2n+1) ¹ b1q(x2n−1, x2n) + c1q(x2n−2, x2n−1)

¹ b2q(x2n−2, x2n−1) + c2q(x2n−3, x2n−2)
... (4.1)

¹ b2n−1q(x1, x2) + c2n−1q(x0, x1),

where b2n−1 = βb2n−3 + αb2n−2 and c2n−1 = βb2n−2.

Similarly

q(x2n−1, x2n) ¹ b2n−2q(x1, x2) + c2n−2q(x0, x1) (4.2)

where b2n−2 = βb2n−4 + αb2n−3 and c2n−2 = βb2n−3. From (4.1) and (4.2),

q(xn+1, xn+2) ¹ bnq(x1, x2) + cnq(x0, x1)

where bn = βbn−2 + αbn−1 and cn = βbn−1.

Consider

bn+2 = αbn+1 + βbn (0 ≤ α, β ≤ 1, b1, b2 ≥ 0).

Then bn ≥ 0 for all n ∈ N. Its characteristic equation is that t2 − αt − β = 0. If

1−α−β > 0 and 1+α−β > 0 then it has two roots t1, t2 such that −1 < t1 ≤ 0 ≤ t2 < 1.

Also the hypothesis a1 +2a2 +2a3 +3a4 +a5 < 1 implies 1−α−β > 0 and 1+α−β > 0.

For such t1, t2, bn = k1(t1)
n + k2(t2)

n for some k1, k2 ∈ R.

Let m > n ≥ 1. It follows that

q(xn, xm) ¹ q(xn, xn+1) + q(xn+1, xn+2) + · · ·+ q(xm−1, xm)

¹ (bn−1 + bn + · · ·+ bm−2)q(x1, x2) + (cn−1 + cn + · · ·+ cm−2)q(x0, x1)

¹ {k1(t
n−1
1 + tn1 + · · ·+ tm−2

1 ) + k2(t
n−1
2 + · · ·+ tm−2

2 )}q(x1, x2)

+ β{k1(t
n−2
1 + · · ·+ tm−3

1 ) + k2(t
n−2
2 + · · ·+ tm−3

2 )}q(x0, x1)

¹ (
k1t

n−1
1

1− t1
+

k2t
n−1
2

1− t2
)q(x1, x2) + β(

k1t
n−2
1

1− t1
+

k2t
n−2
2

1− t2
)q(x0, x1)

→ θ

as n → ∞. Therefore {xn} is a Cauchy sequence in X by Lemma 1.14(3). Since X is

complete, there exists x ∈ X such that xn → x as n →∞. Using the continuity of f ,

x = lim
n→∞

xn = lim
n→∞

fxn−2 = fx.
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Therefore x is a fixed point of f . Moreover suppose that v = fv. Then we have

q(v, v) = q(fv, fv) ¹ a1q(v, v) + a2q(v, fv) + a3q(v, fv) + a4q(v, fv) + a5q(v, fv)

= (a1 + a2 + a3 + a4 + a5)q(v, v).

Since 0 ≤ a1 + a2 + a3 + a4 + a5 < 1, we have q(v, v) = θ. ¤

Example 4.5 Let X = {0, 1, 2, 3}, E = R and P = {x ∈ R : x ≥ 0} in Example 2.5.

Define d : X ×X → E by d(x, y) = |x− y| and define v by

x v y ⇔ x ≥ y.

Then (X, d) is a complete cone metric space and X is a partially ordered set. Define

q : X ×X → E by the following :

q(0, 0) = 0, q(0, 1) = 1, q(0, 2) = 1.1, q(0, 3) = 0.5,

q(1, 0) = 1, q(1, 1) = 0, q(1, 2) = 0.1, q(1, 3) = 0.5,

q(2, 0) = 1, q(2, 1) = 1, q(2, 2) = 0, q(2, 3) = 0.5,

q(3, 0) = 1, q(3, 1) = 0.5, q(3, 2) = 0.6, q(3, 3) = 0.

Then q is a c−distance as in Example 2.5.

Define f : X → X by f0 = 1, f1 = 2, f2 = 2, f3 = 2. Then f is nondecreasing.

Consider x = 2, y = 0. Then q(f2, f0) = q(2, 1) = 1 and

a1q(2, 0) + a2q(2, f2) + a3q(0, f0) + a4q(2, f0)

= a1q(2, 0) + a2q(2, 2) + a3q(0, 1) + a4q(2, 1)

= a1 + a3 + a4 ≤ a1 + a3 + 2a4 < 1

for any nonnegative real numbers ai (i = 1, 2, 3, 4) with a1 + a2 + a3 + 2a4 < 1. Hence

the contractive condition of Theorem 4.3 is not satisfied and so Theorem 4.3 can not be

applied to this example.

But Theorem 4.4 can be applied to this example. In fact we take a1 = 0.14, a2 = a3 =

a4 = 0 and a5 = 0.85. Then

1 = q(f1, f0) < a1q(1, 0) + a5q(0, f1) = 1.075,

1 = q(f2, f0) < a1q(2, 0) + a5q(0, f2) = 1.075,

1 = q(f3, f0) < a1q(3, 0) + a5q(0, f3) = 1.075.

Set x0 = 3 and x1 = 2. Then x0 v x1 v fx0. Clearly f is continuous. Hence the

hypotheses are satisfied and so by Theorem 4.4 f has a fixed point 2.
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<국문초록>

거리를 사용한 원뿔 거리공간(cone metric space) 에서의

부동점 정리

X를 임의의 집합, f를 X에서 X로 가는 함수라 하자. fx=x를 만족하는 X의 원소 x
를 f의 부동점이라 한다. 부동점 이론은 현대수학의 가장 강력하고 풍부한 결과를 낳
는 소재중 하나이며, 1922년에 바나흐(Banach)가 ‘완비거리공간에서 축소사상은 부
동점을 갖는다’는 정리를 증명한 후에 많은 수학자들이 이 정리의 일반화된 결과를 
얻었으며 이 정리는 비선형 해석학 이론의 주요 핵심 도구로 사용되고 있다. 
 Huang 그리고 Zhang([5]) 은 거리공간의 일반화된 공간인 원뿔 거리공간 (cone 
metric space) 개념을 도입하고 그 공간 내에서의 여러 부동점 정리를 얻었다. 그 
후  특히 거리를 사용한 원뿔 거리공간에서의 부동점 정리 등 여러 부동점 정리의 
개선을 위한 일련의 논문들이 나왔다.
 공통부동점의 개념은 Jungck([6])에 의해 시작되었고 Wang 그리고 Guo([12])는 
거리를 사용하여 원뿔 거리공간에서의 두 개의 함수에 관한 공통부동점에 관한 결과
를 얻었다.
 본 논문에서는 거리공간의 일반화된 cone 거리공간(cone metric space)에서 거
리를 이용하여 축소조건을 만족하는 함수쌍에 대하여 유일한 공통일치점이 존재하기 
위한 충분조건과 약한 양립 (weakly compatible)을 이용한 유일한 공통부동점을 갖
기 위한 충분조건에 대한 결과를 얻었으며, 또한 부분순서를 갖는 완비 cone 거리공
간에서 축소조건을 만족하는 감소하지 않는 연속함수에 대하여 부동점이 존재하기 위
한 충분조건에 대한 결과를 얻었다.
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