

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

S
o

h
ail

2

0

1

6

A Thesis

For the Degree of Doctor of Philosophy

Enhanced IoT Composition Architecture based on DIY

Business Process Modeling Approach

Muhammad Sohail Khan

Department of Computer Engineering

Graduate School

Jeju National University

June 2016

Enhanced IoT Composition Architecture based on DIY

Business Process Modeling Approach

 Muhammad Sohail Khan

(Supervised by: Professor Do-Hyeun Kim)

A thesis submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in Computer Engineering.

2016. 06.

This thesis has been examined and approved.

Thesis Committee Chair

Sang-Joon Lee, Professor, Jeju National University

Thesis Committee Member

Yun-Jeong Lee, Professor, Jeju National University

Thesis Committee Member

Jeong-Won Jo, Professor, Jeju National University

Thesis Committee Member

Seong-Dong Kim, Korean Electronics Technology Institute

Thesis Supervisor,

Do-Hyeun Kim, Professor, Jeju National University

Department of Computer Engineering

Graduate School

Jeju National University

Dedicated to my parents and my

family for their love and support.

Acknowledgment

All praise to Allah Almighty for bestowing upon me his countless blessings. He became my

strength when I felt weakened, He gave me courage when I felt defeated, and he blessed me with

the patience to finally achieve success in this huge endeavor.

I would like to express my sincere gratitude to my supervisor Prof. Do-Hyeun Kim for his

continuous support of my Ph.D. study and related research, for his patience, motivation, and

encouraging attitude. He has not only been an excellent scientific mentor, but is a great human

being. Besides my advisor, I would like to thank my thesis evaluation committee for their

insightful comments and valuable suggestions during the thesis defense. Their input helped me

in elevating the quality of this thesis. I really appreciate the support and encouragement given to

me by my former lab mates and dear friends Dr. Rashid Ahmad and Dr. Safdar Ali. I would like

to mention my current lab mates Jin Wenquan, Ajaya, Hang le, Israr Ullah and Muhammad

Fayaz for their kind support and help during this endeavor.

Words cannot express my gratitude to my mother who won’t even understand a word of this

thesis but nevertheless prayed endlessly for my success. I wish I could celebrate this huge

achievement with my late father whose selfless efforts made me what I am today. I am deeply

thankful to my siblings for their support, prayers and love towards my success. Finally, I would

like to appreciate the undiminishing and unconditional support, love and care of my lab mate and

my life mate Faiza Sohail Khan for being there for me each and every step of this journey.

Without her support and encouragement I would not have achieved my goals.

 Muhammad Sohail Khan

i

Table of Contents

Acknowledgment i

Table of Contents i

List of Figures iv

List of Tables vii

Abbreviations viii

Abstract 1

1. Introduction 4

2. Related work 15

2.1. Existing IoT composition research ... 15

2.2. Issues with the existing solutions from the DIY perspective 21

2.3. Existing IoT protocols .. 24

3. Proposed DIY IoT System Architecture 27

3.1. Virtual Object Layer.. 27

3.2. Service Composition Layer ... 29

3.3. Business Process Layer .. 31

3.4. Development Process ... 32

3.5. Data representations .. 34

4. BPM based DIY IoT System Design 36

ii

4.1. Virtual Object Layer.. 36

4.2. Service Composition Layer ... 40

4.3. Business Process Layer .. 47

5. BPM Based DIY IoT System Implementation 57

5.1. Virtual Object Manager .. 57

5.2. Service Composition Manager .. 59

5.3. BPM Editor ... 63

5.4. BPM Deployment Manager ... 67

5.5. Performance Analysis .. 70

6. Usability Study for Robotic Arm Use-case 75

6.1. IoT in Industrial Robotics ... 75

6.2. Implementation architecture for robotic arm use-case .. 76

6.3. Robotic Arm prototype implementation .. 78

6.4. Usability study for Robotic Arm use-case .. 81

6.4.1.1. SCM usability assessment for Robotic Arm use-case 84

6.4.1.2. SCM usability score based on SUS ... 87

6.4.1.3. SCM usability from DIY perspective ... 88

6.4.2. BPM Editor usability assessment for Robotic Arm use-case 93

6.4.2.1. BPM Editor usability score based on SUS ... 96

6.4.2.2. BPM Editor usability from DIY perspective ... 97

7. Usability Study for Smart-Space use-case 105

iii

7.1. IoT enabled Smart-Spaces ... 105

7.2. Implementation architecture for smart-space use-case .. 106

7.3. Smart-space prototype implementation ... 109

7.4. Usability study for Smart-Space use-case .. 112

7.4.1. SCM usability assessment.. 114

7.4.1.1. SCM usability score based on SUS ... 116

7.4.1.2. SCM usability from DIY perspective ... 118

7.4.2. BPM Editor usability assessment ... 123

7.4.2.1. BPM Editor usability score based on SUS ... 125

7.4.2.2. BPM Editor usability from DIY perspective ... 127

8. Conclusion 135

References 137

iv

List of Figures

Figure 1: Comparison of the existing and proposed DIY IoT architecture 10

Figure 2: Generic architecture of the Glue.Things project[28] ... 16

Figure 3: Conceptual architecture of IoT MAP [30] .. 17

Figure 4: High-level architecture of the IoTLink [32] .. 18

Figure 5: Layered architecture of the SSC platform[33] ... 18

Figure 6: High-level architecture of Ambient Flow [34] .. 19

Figure 7: BPM based DIY IoT composition system architecture .. 28

Figure 8: Development process through DIY IoT composition system 33

Figure 9: Metadata representation at each layer of the system ... 35

Figure 10: Virtual Object Manager startup and operational configuration 37

Figure 11: Static structure for Virtual Object Manager .. 38

Figure 12: Virtual Object Manager operation sequence .. 39

Figure 13: Service composition Manager basic configuration ... 41

Figure 14: Service Composition Manager static structure ... 43

Figure 15 : VO to SO mapping sequence at SCL .. 46

Figure 16: BPM Editor startup and operational configuration ... 49

Figure 17: Static structure for BPM Editor... 51

Figure 18: SO to process mapping and execution ... 52

Figure 19: BPM Deployment Manager startup and operational configuration 53

Figure 20: BPM based DIY IoT application development system collaboration from the

BPL perspective .. 55

Figure 21: Virtual Object Manager Interface ... 58

Figure 22: XML representations for virtual object storage at VOL 59

Figure 23: Service composition manager interface ... 60

Figure 24: XML representation of service objects at SCL ... 62

Figure 25: BPM Editor interface .. 64

Figure 26: XML representation of a stored BPM model .. 66

Figure 27: Deployment manager interface with a loaded BPM ... 68

Figure 28: Deployment manager execution results ... 69

Figure 29: Performance analysis graph at SCM ... 71

Figure 30: Performance analysis graph for BPM Editor ... 72

Figure 31: Performance analysis graph for BPM Deployment Manager 73

Figure 32: Robotic arm use-case implementation in the proposed architecture and

modifications for usability study... 77

Figure 33: Intel Edison based finalized robotic arm prototype ... 79

Figure 34: Test scenario for usability assessment of robotic arm use-case 82

Figure 35: Flow of SCM usability assessment experiment for robotic arm use-case. 85

Figure 36: Results of SCM usability study based on SUS. Rating values range from 1:

"Don’t agree" to 5: "Strongly agree" (Robotic arm use-case) .. 87

v

Figure 37: Sample comparison of the time taken by both groups to complete SCM task

without any prior training ... 89

Figure 38: Comparison of percentage for successful task completion by Programmers vs

Non-Programmers ... 89

Figure 39: Sample comparison of the time taken by both groups to complete SCM task

after the training session .. 91

Figure 40: Flow of BPM Editor usability assessment experiment for robotic arm use-case

 .. 94

Figure 41: Results of BPM usability study based on SUS. Rating values range from 1:

"Don’t agree" to 5: "Strongly agree" (Robotic arm use-case) .. 96

Figure 42: Sample comparison of the time taken by both groups to complete BPM task

without any prior training (Robotic arm use-case) ... 98

Figure 43: Comparison of percentage successful completion of simple BPM task by

Programmers vs Non-Programmers without any prior training (Robotic arm use-case) .. 99

Figure 44: Sample comparison of the time taken by both groups to complete BPM task

after training (Robotic arm use-case) ... 101

Figure 45: Sample comparison of the time taken by both groups to complete BPM complex

task (Robotic arm use-case)... 103

Figure 46: Comparison of percentage successful completion of BPM complex task by

Programmers vs Non-Programmers (after training) .. 104

Figure 47: Smart space use-case implementation in the proposed architecture and

modifications for usability study... 107

Figure 48: Intel Edison based finalized Smart-Space prototype ... 109

Figure 49: Test scenario for usability assessment of smart space use-case 113

Figure 50: Flow of SCM usability analysis experiment for smart space use-case 115

Figure 51: Results of SCM usability study based on SUS. Rating values range from 1:

"Don’t agree" to 5: "Strongly agree" (Smart space use-case) ... 117

Figure 52: Sample comparison of the time taken by both groups to complete SCM task

without any prior training (smart space use-case) .. 118

Figure 53: Percentage for successful SCM task completion by Programmers and Non-

Programmers (Smart space scenario) .. 119

Figure 54: Sample comparison of the time taken by both groups to complete SCM task

after the training (smart space use-case).. 121

Figure 55: Flow of BPM Editor usability experiment for smart space use-case 123

Figure 56: Results of BPM usability study based on SUS. Rating values range from 1:

"Don’t agree" to 5: "Strongly agree" (Smart space use-case) ... 126

Figure 57: Sample comparison of the time taken by both groups to complete BPM simple

task without any prior training (Smart space use-case) ... 127

Figure 58: Comparison of percentage successful completion of simple BPM task by

Programmers vs Non-Programmers without any prior training (smart space use-case) .. 128

Figure 59: Sample comparison of the time taken by both groups to complete BPM simple

task after the training (Smart space use-case) ... 129

Figure 60: Sample comparison of the time taken by both groups to complete BPM complex

task (smart space use-case) .. 132

vi

Figure 61: Comparison of percentage successful completion of BPM complex task by

Programmers vs Non-Programmers (smart space use-case) ... 132

vii

List of Tables

Table 1: System configuration for performance analysis ... 70

Table 2: Device implementation summary for robotic arm use-case 80

Table 3: System Usability Scale items .. 83

Table 4: Descriptive Statistics of SUS Scores for Adjective Ratings [55] 84

Table 5: SCM usability assessment experimental setup based on robotic arm use-case 86

Table 6: Two-Sample t-Test for unequal variances (Activity 1 before training) 90

Table 7: Two-Sample t-Test for unequal variances (Activity 1 after training) 92

Table 8: BPM Editor usability assessment experimental setup based on robotic arm use-

case .. 95

Table 9: Two-Sample t-Test for unequal variances (Simple BPM task without prior

training, robotic arm use-case) ... 100

Table 10: Two-Sample t-Test for unequal variances (Simple BPM task after training) ... 102

Table 11: Two-Sample t-Test for unequal variances (Complex BPM task) 103

Table 12: Input device implementation summary for smart space use-case 110

Table 13: Output device implementation summary for smart space use-case 111

Table 14: SCM usability assessment experimental setup based on smart space use-case . 116

Table 15: Two-Sample t-Test for unequal variances (Activity 1 before training) 120

Table 16: Two-Sample t-Test for unequal variances (Activity 2 after training) 122

Table 17: BPM Editor usability assessment experimental setup based on smart space use-

case .. 124

Table 18: Two-Sample t-Test for unequal variances (Simple BPM task without prior

training, smart space use-case) ... 129

Table 19: Two-Sample t-Test for unequal variances (Simple BPM task after training,

smart space use-case) ... 130

Table 20: Two-Sample t-Test for unequal variances (BPM complex task, Smart space use-

case) ... 133

Table 21: Mann-Whitney-U Test for non-parametric equivalence (BPM complex task,

Smart space use-case) .. 134

viii

Abbreviations

API Application Programming Interface

BPL Business Process Layer

BPM Business Process Modeling

BPMN Business Process Modeling Notations

CoAP Constrained Application Protocol

CQELS Continuous Query Evaluation over Linked Stream

DIY Do-It-Yourself

HTML Hyper-Text Markup Language

HTTP Hyper-Text Transfer Protocol

IoT Internet of Things

JSON JavaScript Object Notation

MQTT MQ Telemetry Transport

POJO Plain Old Java Object

REST Representational State Transfer

SCL Service Composition Layer

SCM Service Composition Manager

SO Service Object

SOA Service Oriented Architecture

SPARQL Simple Protocol and RDF Query Language

SUS System Usability Scale

TCP Transfer Control Protocol

UDP User Datagram Protocol

UED End-User Development

URI Uniform Resource Identifier

VO Virtual Object

VoIP Voice over IP

ix

VOL Virtual Object Layer

VOM Virtual Object Manager

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol)

1

Abstract

Tremendous leaps in technological advancements have been taken recently and specifically

the advancements in the sensing and communication technologies keep on adding new

dimensions to the field of information and communication technologies. These drastic

advancements led to vision of a new hyper-connectivity based technological paradigm called as

the Internet of Things (IoT). Internet of Things has been the focus of research and development

in the recent years and although, the goal of complete realization of the IoT vision is still to be

achieved, it is already playing a major role in transforming our social, commercial and personal

spheres. The increased attention from academia and industry has resulted in various approaches

for the realization of the IoT vision that every physical entity should be a part of global network

of things.

For a global adaptation and realization of the IoT vision, one approach is to utilize general

population towards the adaptation of IoT vision and for the development of IoT resources and

applications. The approach is suggested to be achieved via the representation of real world

entities as virtualized entities in the cyber world where the behavior of the virtual objects is

exposed as services and it can be accessed and manipulated like real world objects. The Maker

movement and the growing number of MakerSpaces all around the world is a testament to the

utilization of this approach. The problem with this approach is that most part of the general

population lacks the necessary programming skills to utilize the services of these connected

objects to create their own applications.

Do-It-Yourself (DIY) paradigm of development is one of the most popular candidate

solutions for the general public programming skills problem. State of the art studies have

suggested DIY interfaces for their IoT implementations. It has been identified that most of these

2

implementations are application/domain specific or too complex for a non-technical user to

deploy in order to utilize them for the customization/development of IoT applications and

services. To bridge this gap between the utilization of masses for IoT development and the

programming skill requirements on behalf of the masses, an enhanced IoT composition

architecture based on DIY Business Process Modeling approach has been presented in this

dissertation.

Business Process Modeling Notations (BPMN) is a standardized graphical language that has

been utilized to gap the bridge between non-technical managers and the technical staff since

long. This study utilizes the existing concepts of virtual objects and service-orientation to

provide an intuitive DIY IoT composition architecture to enable end-users to visualize IoT

service objects as standardized graphical notation and interact with them via simple actions like

drag-n-drop and clicks etc. Complete design and implementation details for the BPM based DIY

IoT composition architecture have been provided along with the performance evaluation of the

major functional units. In order to assess the usability of the proposed architecture from the

perspective of multi-domain applicability, two separate use-cases have been developed.

The first use-case targets the Industrial Robotics domain which is a growing target for the

IoT implementation. A prototype robotic arm has been developed for this purpose. To assess the

usability of the proposed architecture, an experimental study has been conducted to allow

participant from various age groups and ethnic background to rate the system based on the

System Usability Scale. The second use-case is taken from the Smart-Space domain which is

another focus of IoT implementations. A prototype scenario of a smart space has been developed

to assess the usability of the proposed architecture in the domain.

The experimental study allows participants to use the proposed architecture for service

composition and BPM based process development for the prototype smart space and then use the

3

System Usability Scale (SUS) to rate the system. As the SUS score only indicates a system’s

usability from users’ perspective based on their subjective ratings, thorough statistical analysis

has been conducted on data collected during the experiments for both the use-cases to assess the

usability of the proposed architecture from DIY perspective. The SUS scoring and the statistical

analysis provided positive support for the claims made in this study.

4

1. Introduction

For more than a decade now, the Business Process Modeling (BPM) has been at the center

of close collaboration between business and IT. The term 'Business Process Modeling' was

coined in the 1960s in the field of systems engineering by S. Williams in his 1967 article

'Business Process Modeling Improves Administrative Control' [1]. His idea was that techniques

for obtaining a better understanding of physical control systems could be used in a similar way

for business processes. The term became popular in 1990 and since then it has been utilized in

almost every business including the recent software engineering industry. It has become an

integral part of successful business operations. This popularity of the BPM solutions is mostly

due to the standardization of diagramming language known as the Business Process Modeling

Notations (BPMN) [2]. The initial aim of BPMN was to enable the business analyst to describe a

business’s desired process through a diagram and to accommodate the business agility through

automated execution of the process model.

Service Oriented Architecture (SOA) [3] has since been at the forefronts of BPM solution

implementations with the promise of service reuse. Service reuse is the encapsulation of a

system’s atomic functions as reusable service units with well-defined interfaces. These reusable

services can provide easy and rapid integration of new composite processes hence making the IT

to become more agile. BPMN can be utilized for more than just a means for business

requirements gathering and can also be utilized for process driven applications [4].

The current technologies in the form of sensors and actuators networks, web of things [5]

and most of all the realization of the Internet of Things (IoT) [6] involves ever changing

requirements and implementation within the ecosystem of resource constrained hardware,

services and people. Until recently, accommodation of user desired change in applications

5

associated with these paradigms was not easily possible due to the resource constraints,

heterogeneous nature of the hardware and the lack of standardization in the communication

strategies. With the introduction of REST [7] and resource constrained protocols such as MQTT

[7] and the recent CoAP [8] Protocols, a flexible service orientation has become possible for the

things associated with IoT. Service composition and orchestration has been introduced to the

recent developments in IoT and other associated paradigms.

Research community has embraced the potentials of a resource constrained devices in the

paradigm of business process modeling and management, hence efforts are being done to include

things and services as part of the BPMN. In this regard, Meyer [9] provided the missing concept

of “thing”, as presented by the main components of IoT reference model [10], by extending the

conventional meta-models for the Business Process Modeling Notations. Similarly, [11]

proposed the extension of the business process modeling lifecycle for the integration of IoT in it.

Despite the efforts to integrate IoT as part of the BPM lifecycle. Traditionally, business

process modeling and the demand for rapid incorporation of change have always been based on

service reuse and service composition. This practice, although proven effective at times, has not

been always effective [4]. IoT is also not just some enterprise implementation of proprietary

services for specific goals which can be composed upon to execute processes. In fact, IoT is a

vast ecosystem of billions of devices [12] which present themselves as atomic services on the

Internet. These services must be available for masses to utilize for making their local solutions as

well as to share them. The concept is also known as Do-It-Yourself (DIY) paradigm and it has

been utilized since long for reducing the dependence of common people on proprietary products.

DIY is the technique or method for creating, modifying or repairing something without the direct

aid of experts or professionals. According to research “individuals engage raw and semi-raw

6

materials and component parts to produce, transform, or reconstruct material possessions,

including those drawn from the natural environment (e.g. landscaping)" [13].

According to Avula [14], in an age where mass production has become a practice, DIY is a

way to differentiate your product. From the perspective of a global Internet of Things (IoT)

realization, DIY IoT development via the end-users has been suggested by De Roeck [15] and

the DIY IoT vision is presented in such a way that end-user is able to create applications for

smart environments. The same idea has been supported by Bannon [16] who states that in order

for ubiquitous technologies to get full exploration of the design space, the concepts of how

technology works and what boundaries there are should be forgotten in the design strategy.

According to the DIY manifesto presented by De Roeck [15], The DIY paradigm of

development in the IoT is of special importance because IoT is all about context-aware

applications. However, the existing context-aware applications lack the ability to uniquely

distinguish the meaning of context for individual users of the applications. To solve this, end-

user should be enabled to decide what context means to them in a particular environment.

Therefore, DIY development in IoT can prove very effective if users can develop IoT

applications according to their own environmental setups.

DIY paradigm of development inspires non-technical people to create things on their own. It

eliminates the needs for extensive training. In conventional scenarios, the motivation to achieve

training goals sometimes touches the boundaries of harassment. DIY systems capture the

attention of its users by offering a playground like environment where the user can utilize and

experiment with their own created components or the ones created by others hence increasing

the possibility of application development with unconventional thinking and logics.

7

This idea has been advocated by many such as [12, 13] stating that the end-users should be

part of the creation process while having the power to discover things. Similarly, Gamma et al.,

[36] and Atzori et al., [37] suggests that the end-users should be able to discover things and

control them in order to effectively use the application for smart environments. The vision and

motivations of Makers Revolution [20], the advancement in DIY prototyping platforms such as

Arduino and Raspberry Pi etc. [21] and the ongoing standardization of communication protocols

for constrained devices are all the right steps towards inculcating DIY culture in masses.

However, the masses may not have the skills and the ability to program these embedded devices

for their DIY implementations especially with the growing number of programming languages

currently being used for IoT implementations. BPM and the associated diagramming language

may prove useful as a solution to the problem.

As IoT envisions a global ecosystem of connected devices providing services to the people,

DIY paradigm of development has been suggested as the only solution towards the global

realization and implementation of IoT. In the DIY scenario, the same general population which

utilizes the services provided by IoT implementation will be able to develop IoT application

according to their own needs and requirements. It is however, a concern that the general

population lacks the necessary technical experience and specifically the programming skills to

develop IoT related applications. This is why alternative development strategies are being

investigated to provide people with DIY type development environments through which anyone,

regardless of their programming skills level, can develop applications based on their own

requirements. The work presented in this thesis is based on the same idea.

The global adaptation and implementation of IoT vision is still far from realization and

serious efforts are underway for achieving this goal. However, this global adaptation and

implementation cannot be restricted to only governments or technical development

8

organizations. It has been suggested that mass involvement of general population can prove

effective towards the global adaptation of IoT vision. The mass involvement of general public in

IoT adaptation means that people should be able to create and customize IoT related services for

their own uses. It, however, requires considerable amount of technical skills and knowledge on

behalf of the general population to program and customize IoT services.

It is, therefore, necessary to provide the general population with platforms which uses the

DIY approach to program and customize IoT services and applications. Following the goal of

enabling mass involvement towards the realization of IoT vision, this work proposes the use of

standardized Business Process Modeling Notations (BPMN) based enhanced DIY IoT

composition architecture. The proposed architecture is aimed at enabling non-technical people to

easily and intuitively utilize virtual representations of IoT devices to compose services and to

visualize those services as business process modeling notations to graphically model their own

IoT applications or customize the existing ones according to their needs and requirements.

Our vision is to let the user model the process based on the available atomic services which

have some level of composition and then integrate them with user defined rules to model their

processes and directly execute those processes. Such an approach can enable the users to easily

model and execute their desired processes and hence make IoT applications agile with respect to

the user requirements. The concept of DIY development paradigm is to relieve the end-user of

any technical complexities associated with application development. This concept proves even

more important in the case of IoT application development because the number of IoT enabling

technologies is very high and it is still growing with time. In such a scenario if mass

involvement of general population with lesser or no technical/programming skills is required, the

DIY concept must be implemented in its entirety.

9

Figure 1 presents a generic comparison between the existing architectures which claims to

provide a DIY development environment for IoT applications and the proposed IoT Composition

Architecture based on DIY Business Process Modeling Approach. The first two layers of both

the architectures have the same goals of representing the physical devices as virtual objects. In

different systems, these virtual objects may be represented using different encoding technologies

but nevertheless, the main objective of the virtual objects remains the same. Hence, the general

functionality of the first two layers in the existing and the proposed architecture is same.

The third layer represents the Service Composition Layer where the virtual objects are

utilized to create service objects. The main aim of this layer in the existing and the proposed

architecture is the same and that is to provide a DIY approach to enable use to create the services

of their own choice and according to their own requirements. However, the existing systems

mostly expose these user-created services as Application Programming Interfaces (APIs) and let

the users create their own client applications by utilizing these exposed APIs. This allows for the

creation of more requirement specific applications but it violates the basic concept of DIY

development paradigm. The client application development with application logic at the client

side is again a developer’s job and people with no programming skills may not be able to create

their own custom applications. At the end such application development is time consuming and

the resulting applications cannot be modified easily.

Here, a question arises which states that why we needed to utilize Business Process

Modeling for the representation of an IoT application? The answer lies in the basic definition of

‘Process’ and ‘Business Process’ itself. The word ‘process’ has been defined by Havey [22] in

terms of its verbal meaning as to handle, as in processing of an error, or processing a message

while the noun meaning referring to a program running in an operating system, and to a

procedure, or a set of procedures, for accomplishing a goal. According to Havey, the

10

implications of the term ‘process’ are movement, work, and time; a process performs actions

over some interval of time in order to achieve, or to progress to, some objective.

Physical ObjectsPhysical Objects

Virtual ObjectsVirtual Objects

Service ObjectsService Objects

Service API
DIY Business Process Modeling

Client application required to utilize

Service API

BPMN based Drag-n-Drop interface

for composing IoT applications

(No programming skills required)

Application

Logic??

Programming

Skills??

Static Apps!

DIY No

coding..

Extendable

Apps.Time

Consuming!
Intuitive

Physical

Layer

Virtual

Object Layer

Service

Composition

Layer

Application

Layer

Existing Architectures

(Generic view)

Proposed Architecture

(Generic view)

Figure 1: Comparison of the existing and proposed DIY IoT architecture

From the perspective of Business Process Modeling (BPM) a business process is defined as

a series of steps performed by a group of stakeholders to achieve a concrete goal. These steps are

often repeated many times, sometimes by multiple users and ideally in a standardized and

optimized way. A business process can be manual or automated. If manual, the process is

achieved without the aid of automation or assisting technology. If automated, a technology aid

has been put into place which assists users in implementing the process in a more accurate,

standardized or optimized manner. Examples of business processes include receiving orders,

invoicing, shipping products, updating employee information, or setting a marketing budget.

11

From the perspective of IoT implementations, the same definition of business process fits to

the processes or applications that run on top of an IoT implementation defining its behavior via

the interactions of sensing and actuating agents in order to provide useful services to the end-

users. The example of such an implementation would be a Smart Space, where the process

running as the application would define the behavior of the Smart Space sensing (temperature,

humidity, illumination, proximity etc.) and actuating (Air conditioning, heating, lightings, door

locks etc.) agents based on pre-defined events (resident’s arrival, time schedule, emergency state

etc.). In this example, the IoT application for the Smart Space basically acts a business process

model for the particular resident of the Smart Space. Through the personalized process model,

the resident can define the behavior of her space according her specific needs.

Apart from the fact that an IoT application can be represented via a business process model,

BPM has already been a part of the software development industry for more than twenty years

now. In software development, BPM has been originally used a method for requirement analysis

and specification drawing as a better communication medium between the clients and the

developers. According to Barjis [23], one of the leading causes for the high failure rate is still

poor process modeling (requirements’ specification). Therefore both researchers and

practitioners recognize the importance of business process modeling in understanding and

designing accurate software systems. This is the main reason it has an importance in the IoT

application development paradigm where end-users will be developing software according to

their own requirements. According to Deepak Singh [24], it aligns a process execution with

actual operation activity and redesigning the process is made simple by business process

modeling. From software development perspective, it is beneficial for application redesigning.

Hence it makes the system agile and easy to incorporate changes. As agility is the core factor in

12

IoT related application development via the end-user, BPM can play an important role from this

perspective.

Graphical notations associated with business process modeling such as BPMN are

standardized notations [25] which can be interpreted globally by anyone with basic knowledge

of the standard. As IoT is envisioned as a global network, these standardized notations can

become a global language for the IoT application development and hence aid in the mass

utilization of general public in IoT development. The standardized notations are easy to learn

and it is ideal for training of new people and rapid knowledge transfer. These factors can reduce

the development time and ultimately the cost of development which a major concern in the

software industry. The same benefits can be availed in the IoT paradigm hence this study

investigates the applicability and usability of BPM approach to provide a better DIY IoT

application composition environment.

The proposed IoT composition architecture enhances the existing architecture by providing a

Business Process Modeling approach for a DIY application development platform. The service

objects created at the Service Composition Layer are represented as standardized Business

Process Modeling Notation (BPMN) along with notations to help create the application logic in

an intuitive visual manner. This is the reason we have represented the Application Layer as the

Business Process Layer in the proposed architecture because at this layer, the business logic of

an IoT implementation is defined using business process modeling approach. The simple action

such as Drag-n-Drop, mouse clicks etc. are well known to general population of modern age,

hence enabling anyone to create their own IoT applications. No coding is required on behalf of

the application developer (end-user) and the created applications can be easily modified through

the manipulation of the business process model representing the application. BPMN is a

standardized set of notations designed to allow non-technical users to express their requirements

13

to technical people, hence it can provide a better DIY programming platform for IoT related

applications.

BPM has always been envisioned as the tool to enable the managers and people with no

programming skills to describe their needs and desired processes. The main contribution of this

work include the utilization of BPM diagramming language for the IoT users to make their own

desired processes and let IoT protocols i.e. CoAP enable those models to be executed in their

environment. DIY interfaces have been developed for enabling the users to create virtual objects

for their IoT devices, visually compose services from those virtual objects and finally combine

the composed services into IoT applications or processes in the form of business process models.

The architecture has been developed following the layered approach so each layer complements

the ability of the users to create complex programming structure without the need to learn any

programming languages.

The next chapter of the dissertation provides a thorough analysis of the related projects and

the limitations of the previous works from the DIY perspective. Chapter 3 provides the details of

the proposed architecture by explaining the major component and functionalities at each layer.

Chapter 4 provides detailed design of each layer in terms of static structure, sequence models

and configuration models of each layer. Chapter 5 provides some insight into the implementation

of the proposed system and provides basic performance analysis of the major functions at each

layer. In order to evaluate the utilization of the proposed architecture in different IoT scenarios,

two use-cases have been developed from the fields of industrial robotics and smart spaces.

Prototype implementations have been developed in order to evaluate the performance of the

proposed architecture in each use case from the perspective of its usability. For the usability

analysis of the proposed enhanced IoT composition architecture based on DIY business process

modeling approach, System Usability Survey (SUS) has been implemented as part of each use

14

case. Participants from various age groups and technical backgrounds have been involved in the

usability analysis of the proposed architecture. The SUS data gathered from the usability

experiments has been utilized for SUS based usability scoring of the system. Statistical analysis

of the data recorded for the participants’ interactions with the system has been carried out to

assess the proposed system’s DIY behavior. This is done by dividing the participants into two

groups of programmers and non-programmers respectively and t-test analysis of the user

performance during the usability studies for the two use-cases has been performed to show if the

system provides a better DIY environment to all participants regardless of their programming

skills level. Chapter 6 and Chapter 7 provide the details of the use-cases and the usability study

based on the use-cases respectively.

15

2. Related work

The IoT vision is the realization of a worldwide network of connected and interoperable

smart devices which can provide services to the people. Although the individual technologies in

terms of communication and devices have improved tremendously, the implementation and

realization of such a complex network is still in its nascent stage. The main hurdles include the

coping with the heterogeneity of the hardware and mass involvement of general public in the IoT

development and adaptation process. The first issue is being abstracted out with the help of

middleware based solution and service-orientation. The second issue is of greater importance

because in our view, the realization of a successful worldwide IoT implementation is not

possible without the involvement of masses in the development of IoT. According to [26] “there

is a reason people are excited about the IoT: It feels like a big opportunity to improve how we

design and build products”. With the proliferation of digital technologies, user led innovation is

being considered to have significant commercial value [27].

2.1. Existing IoT composition research

Here we discuss some of the recent IoT related projects which, in some way, provide a

unique and alternate interface for end users to get involved in the design and development of IoT

in our daily life.

Glue.things [28], is a recent project which implements the concepts of device integration and

real-time communication using the recent technologies of Web Sockets, MQTT and CoAP. The

protocols are utilized on real-time data streams networks to allow mashups of the data streams,

add actions etc. The final mashups are deployable in a distributed environment. The system

specially focuses on the composition of data streams from Web services and IoT devices with

16

Web interfaces. The main aim of Glue.things as shown by the architecture in Figure 2 is to

utilize web technologies for providing interoperability platform with REST APIs, JSON data

models and Web sockets etc. The Mashup interface is based on Node-RED [29] which is a

browser based visual data stream aggregation tool. Another important aspect of the project is the

utilization of well-established Open Source technologies.

Figure 2: Generic architecture of the Glue.Things project[28]

IoT Mashup Application Platform (MAP) [30] is an effort towards flexible interoperability

of smart things with smart phones in users’ personal pervasive environments. IoT Map

decouples the development of mobile application from the static model chosen by the

designer/developer of the application which is a great hurdle in the way of application

adaptability to the user’s needs and/or the surrounding environment. IoT MAP utilizes the

concept of abstracted service objects for the development of IoT applications. This is achieved

through a set of application programming interfaces (API) exposed for functions like discovery

and retrieval of the service objects etc. The business logic is written in POJO [31] while

17

abstracting out the details of connectivity and implementation of smart things. As shown in the

conceptual architecture presented in Figure 3, the users can also utilize a graphical authoring tool

based on NodeRed to compose an IoT application which can be converted into API calls and

executed as an application.

Figure 3: Conceptual architecture of IoT MAP [30]

From the perspective of reducing the complexity of IoT application development, IoTLink

[32] has been presented as a development toolkit. The IoTLink toolkit is based on a model

driven approach, which utilizes a domain-specific graphical programming language to allow

inexperienced developers to compose their own IoT applications. It encapsulates the underlying

complexities of interaction with IoT devices and services into visual components. These visual

components represent the IoT devices as virtual objects which can be accessed through multiple

communication technologies. The high level architecture of the IoTLink project is shown in

Figure 4. The project utilized IBM post-study system usability questionnaire to get user feedback

regarding the system usability.

18

Figure 4: High-level architecture of the IoTLink [32]

Figure 5: Layered architecture of the SSC platform[33]

Super Stream Collider (SSC) [33] as shown in Figure 5 is another platform which helps

enable everyone, from novice IoT users to expert programmers, to develop IoT applications in

the form of near-real-time data streams. The web-based interface for SSC enables anyone to

create their own mashups by combining linked data sources and linked streams to create

resources which can be used as applications for IoT scenarios. The system supports drag-n-drop

19

technique with a SPARQL/CQELS editor. As the platform is intended for large data acquisitions

through streams, it utilizes cloud infrastructure for fetching the data, processing and

dissemination of data.

Ambient Flow [34] is another recent effort towards making the IoT devices interoperable

and to provide an intuitive interface for enabling the daily life users of smart devices to remix

the functionalities of their devices in a fun and potentially innovative ways. The project utilizes

the user’s smartphone as the gateway to communicate with heterogeneous smart devices. It

provides a flow-graph model based visual interface through which the design can be easily

created and these designs are then sent over a network to the smartphone in order to be executed.

An architectural overview of the system is presented in Figure 6.

Figure 6: High-level architecture of Ambient Flow [34]

As part of the OpenIoT project, a visual development approach has been presented by

Kefalakis et al. [35]. The visual development tools are intended to be used as an integrated

development environment (IDE) for the support of IoT application development lifecycle. The

20

tools presented are based on a semantic IoT architecture and claims to be a minimal

programming environment for IoT application development. It uses a node-based user interface

theme to allow the user to model service graphs and then convert them into SPARQL queries.

AppsGate [36] is one of the latest efforts towards an end-user development (EUD)

environment for smart homes. An EUD empowers the people with tools to create things from

scratch and enables them to test, debug, maintain and customize the functional coverage of a

system [37]. AppsGate provides direct operation as well as programming opportunity to smart

home users. Visual representation of smart devices lets the user directly turn on/off switches etc.

while programming smart home is viewed as a creative activity which is defined by residents

according to their environment and preferences. AppsGate also provides a timeline based

temporal snapshot interface through which the users can monitor various levels of details

regarding the smart home.

To reduce the development complexity of IoT applications in terms of communication with

heterogeneous device, [38] presents a high level domain specific development language. The

language and IDE resulted in their efforts is termed as DSL-4-IoT Editor which is basically a

high level visual programming language. The editor has been developed using JavaScript and for

the execution engine, an open source project OpenHAB [39], has been utilized. Other similar

Model-driven domain specific languages include PervML [40] which promotes the idea of role

separation in order to categorize the IoT application developers. DiaSuite [41] is based on

Sense/Compute/Control logic and provides Java based programming framework in conjunction

with graphical renderer to simulate the applications along with a deployment framework.

21

2.2. Issues with the existing solutions from the

DIY perspective

This section subsection provides a brief analysis of the existing systems providing

alternative development approaches in order to be used by wider group of people. The issues

mentioned in this section are based on review of the systems/projects from the DIY perspective

only.

Although the project considers the utilization of existing open-source technologies, it does

not consider the users skills to utilize those technologies. The system itself is composed of

several open-source components which even make the deployment of the system complex for

most skilled users. Node-RED is a powerful tool for composition IoT mashups but it still

requires some level of programming skills on behalf of the developers as the composed services

must be utilized in a Web application in order to be utilized. It is therefore, less suitable for end-

user development especially for common people with no programming skills.

The project utilizes POJO for describing the business logic of objects by the users. POJO is a

programming style and the user must learn it before creating their customized objects for

utilization in this platform. Users are still dependent on the manufacturer for providing the ID

resolution procedure and the driver bundles for the smart things [30]. The APIs intended for the

manufacturers to implement in their smart devices are not standard interfaces. From a DIY

perspective, the platform still requires considerable level of programming skills on behalf of the

application developers and hence may not be suitable for ordinary users without much

programming skills. From the evaluation of the IoT MAP project, it is evident that the final

composed application is run fully on the remote device which makes it suitable for latest

smartphones only and may not prove efficient for IoT constrained devices.

22

IoTLink utilizes graphical box notations for the representation of every entity in the system

including virtual objects and services instead of graphical icons or some sort of standardized

notations. The lack of icons or standardized graphical notations may make the graphical

language challenging for the non-experienced developers specially users with no computer

background. Even the testing and usability analysis of the system is performed by experienced

programmers with a median experience of 7.5 years. This shows that programming skill is a

requirement for using the IoTLink and hence not suitable from the DIY point of view.

Although the toolkit provide a better development environment for users with less or no

programming skills but the graphical editor used for the visual programming requires its users to

have an understanding of programming structures such as if-else and loops etc. This can be a

challenge for people who have less or no interaction with computers especially in a

programming sense. The other main attribute of the SSC is representing IoT resources as streams

of data and those streams can be utilized for querying data for a user’s applications. This again

requires programming skills and hence makes is rather unsuitable for adoption in daily life IoT

applications where the non-technical user needs to customize the behavior of their sensing and

actuating equipment.

The Ambient Flow project is strictly a domain specific implementation with focus towards

providing a better experience to users with a set of smart space design tools. The limitations are

evident because the flow–graph model can use only a small set of graphical shapes to represents

every element that could be used in a design hence limiting the diversity and intuitiveness of the

interface. The smartphone based execution of user’s smart space design also limits the

applications to personal environments and may not be applicable to wide range of IoT scenarios.

The request definition module for visual development is web based tool which can operate

only in the presence of a cloud connection and hence cannot be used for standalone applications.

23

The services compose-able through this interface must be OpenIoT platform based services thus

limiting its application. The Request Presentation module of the system is a Web application

which utilizes the SPARQL based composed services to create visualization dashboards which

can only be used to acquire data and visualize it. This limits the domain of the project and makes

it unsuitable for application development and deployment for IoT constrained resources.

AppsGate project is specifically designed from the perspective of smart homes and hence is

a domain specific implementation. The IoT vision is a global network of multi-domain devices,

services and applications. A project can only contribute towards the global realization of IoT

vision if it can be easily applied to multiple domains which is not true for the AppsGate project.

Although domain specific languages support and assist the developers of IoT applications,

the programming skills on behalf of the developers cannot be ruled out. Hence, such visual

development interfaces/languages cannot be utilized for DIY development environments in the

IoT scenario.

Given above are a few of the prominent efforts towards intuitive and alternative

development strategies for the Internet of Things applications and services. The goal of this

section was to highlight these efforts and to identify the shortcomings or limitations of these

systems when truly considered from the perspective of a DIY scenario where the users of such

systems are not mandatorily programmers. As described, most of these systems are either too

complex to deploy and/or program by a non-programmer person or intended for a very limited

application domain. It is therefore, necessary for the realization of IoT to develop a standardized

interface/development environment which can easily be adapted to multiple domains while

providing an intuitive approach towards the development of IoT application.

24

2.3. Existing IoT protocols

This section provides an overview of the prevailing IoT protocols. We only discuss the most

recent and popular protocols which are best suited for the IoT implementations.

HTTP is the foundation of the client-server model used for the Web. The more secure

method to implement HTTP is to include only a client in your IoT device, not a server. In other

words, it is safer to build an IoT device that can only initiate connections, not receive. Although

HTTP can be utilized as a reliable protocol for IoT implementations but due to its heavyweight

protocol stack, it is not suitable for the resource constrained IoT devices.

WebSocket is a protocol that provides full-duplex communication over a single TCP

connection between clients and servers. It is part of the HTML 5 specification. The WebSocket

standard simplifies much of the complexity around bi-directional Web communication and

connection management.

XMPP (Extensible Messaging and Presence Protocol) is a good example of an existing Web

technology finding new use in the IoT space. XMPP has its roots in instant messaging and

presence information. It has expanded into signaling for VoIP, collaboration, lightweight

middleware, content syndication, and generalized routing of XML data. It is a contender for

mass scale management of consumer goods such as washers, dryers, refrigerators, and so on.

MQ Telemetry Transport (MQTT) is an open source protocol for constrained devices and

low-bandwidth, high-latency networks. It is a publish/subscribe messaging transport that is

extremely lightweight and ideal for connecting small devices to constrained networks. MQTT is

bandwidth efficient, data agnostic, and has continuous session awareness. It helps minimize the

resource requirements for your IoT device, while also attempting to ensure reliability and some

degree of assurance of delivery with grades of service. MQTT targets large networks of small

25

devices that need to be monitored or controlled from a back-end server on the Internet. It is not

designed for device-to-device transfer and it is not designed to “multicast” data to many

receivers. MQTT is extremely simple, offering few control options.

The Constrained Application Protocol (CoAP) was designed by the IETF for use with low-

power and constrained networks. CoAP is a RESTful protocol. It is semantically aligned with

HTTP, and even has a one-to-one mapping to and from HTTP. CoAP is a good choice of

protocol for devices operating on battery or energy harvesting.

As CoAP uses UDP, some of the TCP functions are reproduced in CoAP. For example,

CoAP distinguishes between confirmable (requiring an acknowledgement) and non-confirmable

messages. Requests and responses are exchanged asynchronously over CoAP messages. All the

headers, methods and status codes are binary encoded, which reduces the protocol overhead.

Unlike HTTP, the ability to cache CoAP responses does not depend on the request method, but

the Response Code. CoAP fully addresses the need for an extremely lightweight protocol and the

ability for a permanent connection.

CoAP is an open standard and not proprietary like some of the earlier protocols for

networked embedded systems [42]. The open standard means that the standardization process is

open to public and that it is free to be used by anyone without any royalty. This fact alone makes

is perfect for the global implementation of the Internet of Things.

Secondly, the CoAP protocol has been designed with the focus towards resource constrained

devices associated with IoT. Thus it is light in comparison to other IoT protocols. It is based on

the same principles Like HTTP thus it is very easy to use. It provides datagrams based

asynchronous communication which is suitable from the perspective of constrained devices

because it is very lightweight in terms of resource consumption.

26

CoAP runs over IP where IPv6 is the future of IoT. This feature enables the future IoT to

easily integrate with the current IP based IT infrastructure of organizations and personal spaces.

Using the IP based communication infrastructure, CoAP can be utilize for interconnecting the

IoT devices with the HTTP and RESTful web and this can be done through simple proxies.

Lastly, as CoAP is still in the standardization phase, new features are constantly being added

to the protocol stack. The emerging CBOR encoding for CoAP has proved to be a better suit for

REST than the conventional JSON and HTTP [43]. This study does not claim that CoAP alone

can be utilized to fulfill all the requirements of the future IoT but it seemes a better choice based

on the facts described above to use CoAP for the prototype implementations related to this study.

Later on other IoT protocols can be studied and implemented as part of the proposed

architecture.

27

3. Proposed DIY IoT System Architecture

This chapter is dedicated to the description of the proposed DIY IoT architecture. The details

of each layer are divided into shared components and layer specific or application specific

components of the system. Each layer is described in terms of components and the activities

performed by those components. The following text provides the description of each layer.

Figure 7 shows the detailed architecture of the system.

3.1. Virtual Object Layer

The application specific components at the Virtual Object Layer (VOL) include the Virtual

Object Manager (VOM), VO information acquisition interface and the VO repository. The VOM

represents the physical things in the form of VO Behavior, VO attributes and VO visualization.

The VO Behavior is the services or functions which can be utilized by the system to interact

with the physical thing represented by the VO. A simple example would be the name of CoAP

service which can be called remotely to interact with the physical thing. The VO Attributes are

the other information in the form of complete URI and Location etc. which collectively

describes the existence of the physical thing through its virtual representation. Finally, VO

Visualization is the graphical representation of VO depicting the type of the physical thing

represented through it. It is an icon or string of characters visually representing the underlying

physical entity such as thermometer icon to represent a temperature sensor.

The VO information acquisition interface is used to register physical things as virtual

objects. This interface can be a local data entry interface for a user or administrator to register

the available physical things or it can be exposed as an online service to enable users to remotely

28

access and register their devices. After the registration, the information related to VOs is stored

at the VO Repository. VO Repository holds the information about virtual objects in XML

document for so that it can be transferred easily over the Internet.

Physical Objects

Physical
Layer

S1 S2 A1 S3 A2 A3 ... An ... Sn

CoAP Server 1 CoAP Server 2 Other IoT resources

Communication Interface
Shared

Components

Heterogeneous
Sensors and

Actuators

Virtual
Object Layer

Shared
Components

Application
Specific

Components

File Manager XML Parser
Communication

Manager

VO Behavior
VO

Attributes
VO

Visualization

VO Repository
(XML)ViewUpdate

Virtual Object Manager

File
Streams

Read/
Write

XDocument XElement
Server
Socket

Net
Stream

Service
Composition

Layer

Add

VO information Acquisition Interface

Shared
Components

Application
Specific

Components

VO Provision Service

Format Information

File Manager SO Serializer

File
Streams

Read/
Write

XML
Serializer

Classes
(XML Attrib)

SO Provision Service

Format Information

Input
VO

Joins
Output

VO

Visual Service Composition
Manager

SO Repository
(XML)

VO Acquisition Client

SO Provisioning Server

SO Deployment Engine

Control Execution
Thread
MgmtViewUpdate Add

SO Manager

Business
Process
Layer Shared

Components

Application
Specific

Components Tasks Conditions

BPM Editor

File Manager XAML Parser

File
Streams

Read/
Write

Notations Joins SO Acquisition Client

Process Object
Repository

BPM Deployment Engine

BPM Sequencer

Process Execution

Communication

SO to process task
Mapping Manager

Model VisualizerSequence

Figure 7: BPM based DIY IoT composition system architecture

The shared components at the VOL include File Manager, XML Parser, Communication

Manager and VO Provisioning Scheme. The File Manager is responsible for reading and writing

files to the file system of the computer on which the VOM is deployed. It uses the basic file

streams to perform all the I/O operations. The XML Parser, as evident from the name, provides

parsing service for the conversion of VO information into xml documents so it can be saved in

29

the repository and vice versa. The XElement and XDocument classes have been used to perform

the parsing tasks. The Communication Manager is responsible for providing connectivity to the

VOL with adjacent layers of the system. It acts as a server for the upper layer in order to

communicate and provide the VO information based on Sockets and Streams. In order to provide

the VO information to other layers, an information exchange scheme is needed. For this purpose,

the VO Provision Scheme provides the format of messages to exchange the information and the

data structure needed to encapsulate that information.

3.2. Service Composition Layer

The Service Composition Layer (SCL) is the part of the system where the unit services are

composed based on the information obtained from the virtual objects provided by the VOL. The

application specific components of the SCL include Visual Service Composition Manager,

Service Object (SO) manager, the SO Repository and the SO Deployment Engine. Each of these

components is explained in the following paragraphs.

The Service Composition Manager (SCM) is responsible for providing an intuitive and easy

to use visual environment where the VOs obtained from VOM are rendered as graphical module,

enabling the users to drag-n-drop modules onto the main canvas and join them to create service

objects. A Service Object consists of an Input VO joined to an Output VO through the Join

element. The join element also provides an interface for the user to create conditions for the

execution of the Service Object. Each SO is represented as a combination of Module elements

and a join element in an XML document which is stored at the SO Repository.

The SO Manager provides the functionality of viewing the previously stored service objects,

adding new SOs and updating the existing ones in the repository. The SO Deployment Engine is

a standalone entity at the SCL which is responsible for the execution of individual services. This

30

individual service execution capability can also be used for testing the SO objects. The

Deployment Engine provide multithreaded execution environment with a control interface.

The shared components at the SCL include File Manager, SO Serialization, Acquisition

Client and Provisioning Server along with the SO Provision Scheme. The File Manager is

responsible for the actions related to file system interaction in the form of file I/O operations.

This component is used by the application specific components to perform their required I/O

operations with the file system of the host machine. It uses the basic file streams to perform all

the I/O operations. The XML Serializer component is used to convert the VO implementation

classes to an xml format based on the XML attribute class developed as part of the system. This

technique allows the conversion of individual VO’s attributes and selected behavior, as part of a

service object, into an xml format which can be easily transferred over the Internet.

The SO Provision Server provides a listener for the connections from the business layer for

the provisioning of services which can be used to compose a process model. The VO Acquisition

Client enables communication with the VOL for the acquisition of all the available virtual

objects. This layer also defines a SO Provisioning Scheme which defines the message exchange

formats and the data structures used to hold information related to Service Objects.

The Service Objects created at the Service Composition Layer are stored as an XML

repository at the SCL. The SOs are designed in two types, one type is the independent SO which

contains all the required entities to be runnable as an isolated process. The second type of SO are

the one which define partial functionality (Unit SO) and can be combined into sequences to

create larger processes.

31

3.3. Business Process Layer

Business Process Layer (BPL) basically represents the Application Layer in the existing

architectures. As the the proposed system uses BPM approach for providing a DIY IoT

application development environment, the layer has been termed as the BPL. At the BPL, the

application specific components include the BPM Editor, The Process Object Repository and the

Process Execution Engine. The BPL utilizes the service objects composed at the service

composition layer and represents them as business process modeling notations. Normally a

service object is represented as a BPMN task notation while other notations such as Gateways

are defined at the BPL for functions such as condition evaluation or setting multiple paths in a

process model, Script notations represents data processing and generalized actions while Events

represent the start and end of process models. Events can be further utilized for message passing

among tasks and other notifications but the current implementation utilizes them only as the

demarcating elements in the IoT process models.

The BPM Editor application enables the user to create a functionality flow for an IoT

environment in the form of a graphical business process model. The user creates rules and

applies various scripts according to the conventions of the BPMN. This model can be saved as a

process object in the repository at BPL and reloaded into the editor application for update at any

time. An optimized version of the same file is created which can be used by the Deployment

Manager at the BPL.

The Deployment Manager is implemented in such a way that it can directly communicate

with the remote IoT devices. The basic information for communication is extracted from the

optimized version of the business process model file. The file is further parsed to extract the

information related to individual service objects as presented in the BPM by the user. Each

32

service object is retrieved in the order specified by the user and sent as XML document to the

primary IoT device associated with the service object. This information is sent to the device vai

a generic CoAP post which is a default implementation in every IoT devices interacting with the

proposed architecture. The remote IoT device then parses and executes the service object and

sends back a CoAP response which is utilized by the Deployment Manager to further execute the

business process model.

3.4. Development Process

Figure 8 shows the development cycle based on the proposed BPM based IoT system. As in

any development process, the user must first identify the requirement for the system/process that

needs to developed and deployed. Hence, as shown in the figure, requirement analysis is the first

step in which the user specifies what functions the system will be performing and how it will

perform these functions.

Once the functionality of the system/process is decided, the next step is to utilize the tools of

the proposed system to create virtual objects. These virtual objects are basically the software

representation of the physical devices (sensors and actuators) utilized by the system/process

being developed. These devices are termed as IoT resources in this document and certain

information regarding these resources such as URI, location, type etc. are provided by the user to

create virtual objects. The next stage is to create service objects (SO) from the available virtual

objects. A service object is basically a combination of an input and output VO with certain

restriction applied by the user for its operation. For example, a temperature range set on a

thermistor to operate on a switch or led. A service object is a complete operation and can be

executed in isolation. Unit service is another term used by the system where only the input or

output VO along with its operation restriction is composed into a service object. Unit SO can be

33

utilized in situations where a complete definition of a service object in terms of input device,

operation rule and output device is not possible and a service object is required only for a data

acquisition purpose or for an actuation purpose.

Analysis and
modeling

Analysis and
modeling

Deployment systemDeployment system

Virtualization
stage

Composition
stage

Process
Modeling stage

Process deployment stage

Input Output

Update
model

Update
requirements

Design and implementation toolsDesign and implementation tools

Figure 8: Development process through DIY IoT composition system

The service objects from the Service Composition Manager are used by the Business Process

Modeling Editor of the proposed system to represent tasks in a process. The BPM Manger

provides implementation of other BPM notations such as events, decisions and scripts to enable

the user to create a visual flow for the system/process in question. This modeling is performed

according to the requirement analysis of the system/process being developed. The resultant BPM

is deployed using the BPM Deployment Manager and functionality of the system is tested. If any

changes have to be made to the model flow, the Service Composition Manager and business

process modeling manager can be used for the purpose. If new requirements arise for the system,

the whole process of service composition and business process model development must be

followed from start.

34

3.5. Data representations

Figure 9 shows the data production, representation and utilization scheme for the proposed

system. At each layer the data is presented as a single instance illustrating the metadata used at

that layer. The first layer consists of the physical devices which are the IoT resources responsible

for the production of data. These IoT resources are represented in the system as virtual objects.

The metadata for a virtual object is shown in the second layer of the figure. In order to register

an IoT resource with the system, the owner must provide the information corresponding to the

metadata in the Virtual Object Layer. This data includes the URI of the resource which describes

the protocol and the complete network address of the resource so it can be accessed from

anywhere. Other metadata include the location of the resource so it can be associated with other

resources during the design of the business process model. The Type metadata classifies the

resource as an input or output resource and it also helps in visual representation the resource in

the system. This enables the users to interact with the VO in a more intuitive manner. Finally,

the Properties metadata represents the actual functionality of the resource which can be called as

a remote function. This consists of a list of methods provided by the owner of the resource.

As explained previously, the Service Composition Layer utilizes the VO definitions to create

service objects (SO). The service metadata consist of an input SO, a rule which includes a range

values according to the data type of the input VO along with an operation to describe a

restriction on the operation, and finally an output VO whose operation is based on the evaluation

of the condition for input VO. All these data elements combine to create a service object. In a

unit SO, the input or output SO is replaced by a generic VO representing standard input or

output. Service objects are represented as Tasks in the BPM.

35

Physical Device
Data

Virtual Object
Metadata

Service Metadata

Business Process
Metadata

Location

Type

Properties

URI

coap://192.168.2.123/
resource1/

Room423 TemperatureSensor GetTempC, GetTempF

Rule Output
(Alarm)

Properties

Input
(Temp Sensor)

Value

Prop 1

Prop 2

Prop ..

Prop n

Operator

Gateway Script

Task

Event

Stop
Start

Min

Avg

Max
Decision

ID

......

Figure 9: Metadata representation at each layer of the system

The BPM meta-data consists of Task (representation of SOs from the service layer) and

other BPM notation such as events, gateways (decisions) and scripts etc. These visual notations

are presented to the user in the form of an editor and the user interacts with them via simple

clicks and drag-n-drop techniques to create process model according to the desired functionality

of their system. Each element is separately identifiable with a GUID and hence multiple

instances of each notation can be utilized in a model.

36

4. BPM based DIY IoT System Design

This section presents the design details of the layers as presented in the previous section.

The design of each layer includes the static structures and the interaction design for describing

the main component operation at each layer. The following sub-sections present the design

details of each layer.

4.1. Virtual Object Layer

The Virtual Object Manager (VOM) is the main component at the Virtual Object Layer

(VOL). It in collaboration with other classes such as the File Manager, Communication Manager

and Parser etc., provides the implementation of all the functionality associated with the VOL.

Figure 10 shows the startup and operational configuration model for the Virtual Object

Manager (VOM). The local and remote interfaces are used by the users to enter information

related to any CoAP enabled physical thing about which they have the required information.

These interfaces can also be used to add new VOs, Delete and update the previously registered

VOs. Once a VO is created for a physical thing, the visual representation, the attributes and the

behavior of the physical thing are encapsulated in this virtual object.

The visual representations for the VOs already registered can be viewed as a list in the main

interface from where the user can view the information associated with a VO, update and delete

any information for the VO. The XML Parser is used to convert the VO into XML schema

already defined for the VO representation. This XML version of VO is stored in the XML

repository using the File Manager component. In order to send or transfer the VO information to

a remote requesting component, the Communication Manager component through the File

37

Manager reads all the VOs and sends it to the requesting component according to a predefined

information exchange scheme.

Local Interface

XML
Repository

VO Data

Virtual
Object

Remote
Interface

Virtual
Object

Virtual
Object

Visual
Representation

Attributes &
Behavior

Communication
Manager

XML Praser

Physical Things

1. User enters the Device
Profile using VDM interface

has has

Add updateDelete

File Manager

2. User adds, updates or
deletes the device profile

3. VO is shown in VOM
interface 4. Device info is converted to

XML

6. VDM acts as server for
sharing VO with editor

5. VOs are stored as XML
document

Figure 10: Virtual Object Manager startup and operational configuration

The static structure of VOM is shown in Figure 11. VOM is the composition of the local and

remote interfaces classes which enables the users to input information related to the physical

things for which they want to register virtual objects. Similarly, the Communication Manager

38

uses the File Manager for retrieving the XML version of the virtual objects from the local file

system and to send it the client application. The client application in this scenario would be the

service composition manager. The XML Parser works in collaboration with the File Manager

and the interfaces to convert the information entered by users into xml elements representing the

VO and vice versa. The XML Parser uses the DeviceInformation class as a template for the

creation of VOs.

Virtual Object Manager

User Interface

File Manager

Communication Manager

Virtual ObjectXML Parser

Local Interface Remote Interface

1 1

«uses» «uses»

«uses»

XMLSerializer 11

FileInputStream

FileOutputStream

1

1

1

1

Form SocketIOStream

1

1

1

1

1

1

DeviceInformation

«uses»

Figure 11: Static structure for Virtual Object Manager

The Figure 12 shows the internal process of the Virtual Object Manager in the form of a

sequence diagram. The sequence model shows the interaction of user with the interface

component as well as the resultant interactions in the form of messages exchange among the

other internal components of the system in order to fulfill the user commands. The sequence of

39

interactions starts when the VOM is started and all the components including the user interface

and the Communication Manager etc. are initialized.

user Virtual Object Manager XML Parser File Manager Comm ManagerInterface XML Repository

Start Application

Initialize Components

Get Stored VOs
Read file

DataParse data
Virtual Object info

Initialize UI

Visualize VOs

Read VO data

Select VO

Display VO info

Start

Listen for connections

Start Server Thread

IF new connection

Virtual Object info

Get Virtual Object info

Connect Editor client

Send Info to clientupdate VO info

Edit VO info

Save VO info
Parse VO info

Write VO info Write to file

OK
OKupdate view

Delete VO info
Select VO info

Parse VO info
remove VO info update file

OK
OKupdate view

Figure 12: Virtual Object Manager operation sequence

The main interface provides a view for all the existing VOs so it requests the File Manager

through the VOM to read the VO data from the XML repository. The data is parsed by the XML

parser and the virtual object information is provided to the VOM in order to display it through

the interface. Now the user is set to interact with the VOs through the interface. The VO related

interactions that user can perform have been shown in the sequence model. The user selects a

VO graphical representation and the VO information is displayed to the user through the view

interface. The user can then choose to Edit and Update the VO if needed be. To save an edited

VO, the information from the view interface is sent to the parser to convert it into proper format

40

and the File Manager writes it to the XML Repository. The Delete Operation also works in the

same fashion. The Communication Manager acts as a server thread which listens for incoming

connections from the remote client (SCM). Once is connection request is received, the

Communication Manager requests the VOM for VO information which is sent to the client.

4.2. Service Composition Layer

Service Composition Manager (SCM) is the main component at the service composition

layer. All the other components at the service composition layer are implemented as part of the

SCM. The SCM is a DIY graphical designer that is used to compose service objects (SO) from

the virtual objects (VO) and the associated information that is received from the Virtual Object

Layer. The SCM startup configuration is provided in Figure 13. At startup, the SCM initializes

all the user interface components including the Input Module Panel, the Output Module Panel

and the Work Panel. Based on the user’s choice, a client component sends a connection request

to the communication manager at the Virtual Object Layer. If the connection is granted, the

SCM receives a list of virtual object information. The information includes resource name, URI,

attributes and functionalities which can be remotely executed and information about the visual

representation of the device. The information is sent as XML strings and upon reception by the

SCM, it is parsed to initialize VOs. The virtual objects created are used to populate the input and

output panels so that the user can visualize them and ultimately interact with them to compose

them into service objects. Once all the available VOs have been instantiated, the user can

interact with the SCM interface to compose Service Object (SO).

As SCM is designed to be a DIY service composer interface, the users perform simple drag-

n-drop, click and double-click operations using a mouse pointer to compose a design on the

41

WorkPanel, which acts as the main drawing canvas. The service composition process includes

joining the input and output modules and setting up rules for their interaction and operation.

Initialize UI
Components

Connect VOM
server

Receive VO
Information

Parse Information

Initialize VOs
User Drag n Drop

VOs

Join VO to create
SO

Setup Rules for SO
Save SO in XML

format

Deploy SO for
execution

Service Composition Manager startup

Input Module
Panel

WorkPanel

Output Module
Panel

Populate Panels

1. all UI initialized
with no VOs

2. Connect with
VDM for VO info

3. Convert Info to VO

4. Show VO graphically

5. user draws SO flow

6. Saves it for future use and update

7. Sends the SO
for execution to
the Deployment

Manager

Save to SO
Repository

8. Save XML
files to SO
Repository

Figure 13: Service composition Manager basic configuration

An example of this process can be visualized as the temperature control service where the

temperature sensor is the input VO and the heater is the output VO. The join between the two

42

VOs will then specify the operational condition such as if the reading from the temperature

sensor is less than 15 degree centigrade, the heater should be turned on to keep the spaces

properly heated. Once the service composition is completed, the visual SO is converted into

XML data and stored at the SO repository. The SOs can also be deployed and executed for

testing through the service deployment manager at the Service Composition Layer.

Figure 14 shows the static structure of the Service Composition Manager. It provides the

overview of the main classes and the relationship, associations among these classes. The Form,

TabControl and TabPage are the .Net built-in classes which act as displayable window and

containers for visual controls respectively. The DeviceModule class provides the implementation

of virtual representation for the input and output virtual objects. This is shown by the

specialization relationship between the InputModule, OutputModule and the DeviceModule. The

actual classes representing input devices such as a Pressure Sensor or an output device such as

an LED are derived from the InputModule and OutputModule classes respectively. Each of these

input or ouput device representation classes have associated custom attributes. The

DeviceModule class implements the IDeviceModule interface for the implementation of core

properties and methods related to devices modules. It also implements the ICloneable interface

for making the virtual devices clone-able. This interface is used to clone the selected module

when the user drags a module on the canvas.

Each device (VO) module such as the LED class has associated view and settings classes in

the form of LEDView and LEDSettings classes. These classes are specializations from the

DeviceView and DeviceSettings classes. The DeviceView class is associated with the WorkArea

class to show the properties of a selected module in the form of Detail view tab in the editor.

Similarly, the DeviceSettings class is a form for setting the properties or parameters and it is

shown when a module is double-clicked in the editor's work area.

43

TabPage TabControl Form

TabPageEx KRBTTabControl MainForm

1* 11

DevicePanel «interface»
IWorkspace

«interface»
IDeviceModule

«interface»
ISpaceUndoRedo

«interface»
ICloneable

«interface»
IDisposable

MainProcess«interface»
ISerialization

Content

OutputModules

InputModules 11
1

1

1

1

1

*

Serialize

XMLSerialization

DeviceContent

DeviceData

«uses»

«uses»

UserControlTrashBin

WorkSpaceWorkAreaWorkPanel ModulePanel

«uses»

1
*

1 *

«uses»

Space

JoinInfo

«uses»

1

*

«uses»

1*

DeviceModule

OutputModuleInputModule

1 *

1 *

Attribute

ModuleAttribute

«uses» «uses»

1 1
11..*

1

*

1

1

1

1

DeviceFormDeviceView DeviceSettings«interface»
IDeviceView

«interface»
IDeviceSettings

1

*
1

1

Figure 14: Service Composition Manager static structure

MainProcess class acts as the main back end process and it is implemented as a singleton

class. All the other classes use the same instance of the MainProcess through a public interface.

It maintains a list of DeviceModule class and WorkSpace class. Space class is super class of the

Workspace class and it uses XmlSerialization class for the conversion of objects to XML data

for storage purposes in the memory as well as the file system. The Space class implements the

IWorkspace and IspaceUndoRedo interfaces which contains the interfaces related to the storage

44

of data space and maintenance of the current space by providing Undo and Redo functions

respectively.

In order to maintain information about the joins created between the input and output

modules drawn in the functionality editor, the Space class has a list of JoinInfo class. The same

JoinInfo class list is used by the Workspace class to know the joins associated with the current

project. Similarly, each WorkSpace object has an object of the DeviceData class which uses the

DeviceContents and the Contents class for representing the input and output modules drawn on

the work area of a given service composition project. The DevicePanel, WorkPanel and

WorkArea classes are derived from UserControl class. These classes are used to provide the

graphical user interface for individual projects which are displayed as objects of the TabPageEx

class as tabs in the KRBTabControl as an extended for of the TabControl class. TabPageEx is an

extended version of the TabPage class which provides a close-able tabpage. The

KRBTabControl is part of the MainForm class which is the main displayable container for visual

controls and components. The Trash class is a graphical representation of a waste bin which

works with the WorkPanel class to provide the functionality for deleting a module drawn on the

work area of the editor.

Figure 15 shows the sequence of steps for designing or composing a service flow using the

service composition manager. The user starts the main GUI first and then creates a new project.

The first part of the figure shows the sequence of interaction among various internal components

of the service composition manager when the user initiates a new project. This sequence does

not show the initialization of the MainProcess. It is assumed that the editor is already initialized

and the FrmMain container is already displayed on the screen where the user can click the new

project button to start the process shown in this figure. As the user clicks the new project button

on the FrmMain, it calls the createWorkArea() function and it in turn sends CreateSpace()

45

message to the MainProcess. The MainProcess then creates an object of the WorkSpace class

and returns it back to the FrmMain. The FrmMain then adds this new WorkSpace object to the

spaces collection of the MainProcess and further creates an object of the WorkArea class by

passing the newly created WorkSpace object in the message. The WorkArea class has an

associated WorkPanel object which actually acts as the drawing canvas for the SCM. It also

creates the input and output panels for displaying the device module blocks that will be used by

the user to drag-n-drop to the work area for creating the service design. To display this

WorkArea object on the FrmMain, it is added to the controls collection of an extended tabpage

object called as TabPageEx. This tabpage object is then displayed as a new tab on the tabcontrol

and all the toolbar controls are setup for the new project using the enableControls message. At

this point the user is displayed with the new project tab where he/she can drag and drop virtual

objects to create the functionality flows.

Once a new project is initialized, the user can start to “drag n drop” input and output VO

onto the work area. As the work area has an associated WorkPanel control, the graphical

representations for each VO dropped by the user is drawn on the panel. With each “drag n drop”

on the panel, an event handler is executed which get the associated data of the dropped VO and

creates a clone object from original one saved at the devices list at MainProcess. The clone

object is then added to the Devices list maintained at each Workspace via the parent class Space.

The parent class also has stack implementations for maintaining the Undo and Redo operations.

The Workspace class then creates an instance of the XmlSerialization class and calls the

MemorySerializeCollection method with its own reference as parameter. The XmlSerialization

class gets all the data associated with the Workspace object, converts it to XML format and

saves it in a memory buffer as byte data.

46

User FrmMain MainProcess VO Module WorkSpace WorkArea WorkPanel TabPageEX XMLSerializer Service Object

NewProject()

CreateWorkArea

CreateSpace()
WorkSpace(path,filename)

Workspace
Workspace Obj

AddSpace(workspace obj)

add workspace to spaces list

new WorkArea(space)

WorkArea Obj

<<Create>>

populate all panels

new TabPageEx

TabPageEx Obj

Controls.add(WorkArea Obj)

Set as Active tab

enable controls

display tabpage obj

Select VO

Drag n Drop VO

get VO Data
AddModule(VO ref)

MemorySerializeCollection(Workspace)

byte Data

push into undo list

add to VO list

invalidate & redraw
return

IF multiple VO has been drawn
Select a VO in workpanel (press mouse button)

Move mouse towards another VO (button pressed) IF input VO selected

GetJoinInfoOver(position)

Message1 GetJoinPosition(sVO,mPos)

Join start point

start line draw

IF mouse pointer over output VO
GetJoinPosition(VO,startPos)

Join end point

draw line completerelease mouse button

JoinVO(inputVO, Output VO)
<<Create SO>>

Add(joinInfo)return

Double click join

Show settings formset behavior and parameters

Save settings data

Figure 15 : VO to SO mapping sequence at SCL

47

The reference to the byte data buffer is returned to the Workspace class. At this point, the

byte data buffer is pushed into the Undo stack, the device list is updated and the WorkPanel is

invalidated in order to draw the updated flow. This sequence is repeated for every new device

module dropped onto the WorkPanel by the user. One thing is to be noted that each device

module can be dragged to the WorkPanel only once in a project. This is an initial policy for the

simplicity of the created flows and may be changed later on. The user can join an input device

module to any number of output modules. As shown in the sequence, the user has to click and

press the left mouse button on an input VO that is already drawn on the WorkPanel. If the user

moves the mouse while the left button is pressed, the WorkPanel calls a static method of the

JoinInfo class to get the starting position from which the join should be drawn.

To draw the join, a Bezier line is drawn from the starting point of the join to the mouse

pointer. If the mouse pointer enters an output VO area, the static method is called again to

calculate the end position of the join and the join is displayed on the WorkPanel. If the user

releases the mouse button at this moment then the joinInfo object is created with the input and

output device modules' information and the object is added to the Joins list maintained by the

Workspace object. Otherwise, the drawn line is deleted. Once a join is created, the user can

double click the join or the individual VO to set the behavior i.e. select an available function for

the associated physical thing, and set other parameters. This data is saved as part of the SO in the

form of JoinInfo and thus a complete SO is generated by combining input and output VOs.

4.3. Business Process Layer

BPM Editor is the main component of the Business Process Layer (BPL) which acquires the

XML representations of the Service Objects from the SO repository at the Service Composition

Layer and represents them as Business Process Modeling Notation (BPMN) for the user. BPMN

48

is a standardized set of notations used for requirements analysis in software development and for

describing processes in business setups. The user utilizes the standardized notations with an

intuitive drag-n-drop approach to design IoT processes or applications according to their own

needs. Figure 16 shows the startup and operational configuration for the BPM.

The BPM Editor initializes all the user interface components and the communication

components at the startup. In the figure, the communication interface is represented by the

second step if the SO repository is located at a remote location otherwise a simple IO operation

is performed to retrieve the XML files representing the service objects. The user interfaces of the

BPM Editor include a BPMN Panel which displays the general notations for creating a business

process flow. These general BPM notations include Task notation, Gateway notation, Script and

event notations. The service objects retrieved from the repository are represented as BPMN tasks

while the other notations provide supporting logic for the creation of BPM flows. These BPMNs

are XAML based classes which can be dragged and dropped onto the main canvas by the user.

The BPMN Panel is basically populated when the parser module associated with the BPM Editor

receives and parses the service objects from SCM repository. The parser module parses the xml

files, retrieves the input and output components of the service object along with the operational

rules if any, and initializes the BPM notations according to the tasks represented by the service

objects.

BPM Editor initializes all the user interface components and the communication components

at the startup. In the figure, the communication interface is represented by the second step if the

SO repository is located at a remote location otherwise a simple IO operation is performed to

retrieve the XML files representing the service objects. The user interfaces of the BPM Editor

include a BPMN Panel which displays the general notations for creating a business process flow.

49

These general BPM notations include Task notation, Gateway notation, Script and event

notations.

BPM Editor startup and Operation

Initialize UI

BPM Editor UI

BPMN View UI

Connect SCM
Repository

Retrieve SO
information

Parse Information

Business Process
Model for IoT
process/App

Create list of
available BPM

tasks

Create BPMN
Representation for

SO

1. Initialize all UI Forms2. Connect SCM for SO

3. Convert info to Objects

4. Initialize
objects

5. load BPMN

6. User
interaction

7. Composing
BPM

Drag-n-Drop/
Simple DIY Actions

BPM Editing &
Update

Save BPM
BPM Repository

(XML Files)
Load BPM
(Update)

8. Save as

9. Load BPM XML

10. Load visual
BPM

Figure 16: BPM Editor startup and operational configuration

The service objects retrieved from the repository are represented as BPMN tasks while the

other notations provide supporting logic for the creation of BPM flows. These BPMNs are

XAML based classes which can be dragged and dropped onto the main canvas by the user. The

BPMN Panel is basically populated when the parser module associated with the BPM Editor

50

receives and parses the service objects from SCM repository. The parser module parses the xml

files, retrieves the input and output components of the service object along with the operational

rules if any, and initializes the BPM notations according to the tasks represented by the service

objects.

The user then composes a BPM by using drag-n-drop and simple actions such as mouse-

clicks and etc. The graphical BPM created at this stage basically represents the operational logic

of the IoT process or IoT application. The BPM Editor UI provides editing functionalities such

as copy, paste and delete etc. to provide an easy editing environment to the user. Once the BPM

composition process is completed by the user, the graphical BPM is converted into an XML

representation for storage and later on for loading into the BPM Editor for further updates and

changes if the user wishes so.

Figure 17 shows the static structure of the main components at the Business Process Layer.

As the aim of the Business Process Layer is to utilize the service objects created at the Service

Composition Layer and present them to the user in the form of business process modeling

notations, the most important component at this layer is the business process design manager. It

includes a BPM editor which is the main window containing the Toolbar, the Toolbox and the

DesignerCanvas. The Toolbar is the component panel which is derived from the itemControl

class. This panel is populated by the visual representations of the business process modeling

notations in correspondence with the service objects acquired from the Service Composition

Layer. For this purpose, the XmlParser class is utilized to parse the acquired service objects and

instantiate the ServiceObject class with the data extracted from each parsed SO representation.

The newly created ServiceObject class instances are stored in a list maintained at the

AvailableSOs class. The class is implemented as a singleton class and is used by

DesignerCanvas and the XmlParser classes.

51

BPM Editor Canvas

Toolbar DesignerCanvas

Window

DesignerItem

Toolbox

1
1 11

1

*

1 1

Connection ConnectionAdorner

RubberbandAdorner

Connector

ConnectorAdorner

PathFinder

Adorner

ItemsControl

SelectionService

ToolboxItem

1

*

1 1

1

1

«interface»
IGroupable

«interface»
ISelectable

1

*

1

*

1

*

1

1

1
1

1

1

1 1

Commands

XElement

itemType

«uses»

«uses»

AvailableSOsXmlParserServiceObject

1

1

«uses»

1*

«uses»

Figure 17: Static structure for BPM Editor

The Toolbar component implements the basic drawing commands and operations which are

required by a user for performing drag and drop designing. These commands include do, undo

operations, copy, paste operation, group and ungroup operations etc. The connection class and

its associated ConnectionAdorner class are used to draw connecting lines between the BPMN

items representing the sequence of flow among process steps. Figure 18 shows the sequence of

operation at the Business Process Layer. The operations at Business Process Layer include the

acquisition of SOs from the Service Composition Layer, mapping them into business process

modeling notations for the user to convert them into a process model and finally to execute the

process. The figure shows that the SCM communication manager listens for connection requests

from the BPM editor, the main component at the Business Process Layer. Once the connection is

successfully established, the available Service Objects (SOs) from the SO repository at the

52

Service Composition Layer are acquired in the form of XML information objects and sent to the

Business Process Layer.

SO State Repository BPM Editor DesignerCanvas Item Connection ProcessStructureSCM CommManager

Initialize

Listen for connection

connection request

send SO info (xml)

IF conn successful
get available SO info

info

Parser

Parse info

List SOs

intialize items

Draw process flow with items

Create

Draw

Create

IF Process flow
complete

Ref

Deploy process flow

Deployment Manager

Deploy

Sequence process steps

Check step condition

query related SO

run next step

IF condition satisfied

Else

run step 1 again

Figure 18: SO to process mapping and execution

The acquired SOs are then parsed through an XML parser class and presented to the user as

business process modeling notations. The user then creates the process model by visual drag and

drop operations applied to the visual representations of business process modeling notations. The

user draws the process components and connects them via the connection notation along with the

operational rules or conditions applied for the transitions between steps. When the process model

53

is complete, a process object is created. The process object is a deployable entity which is

deployed via the Deployment Manager at the Business Process Layer.

BPM Deployment Manager startup

Initialize UI

Control UI

BPM View UI

Connect BPM
Repository

Receive BPM
information

Parse/ create
objects

(BPMN types)

BPM Execution
Engine

Populate
Executable list

Sort and sequence
the objects

Send Task def for
remote execution

Thread
Function Calls

Californium

Data and State

1. Initialize all UI Forms
2. Acquire BPM for

deployment

3. Convert info to Objects

4. Save
objects

5. load BPM Objects

6. Execute
BPM logic

7. Execute
remote

calls

10. Proceed

Execution at
remote CoAP

server

8. Post task XML

9. Return execution state

Figure 19: BPM Deployment Manager startup and operational configuration

The BPM Deployment Manager is responsible for the deployment and execution of the BPM

models created by the users through the BPM Editor. The BPM Deployment Manager presents a

simple user interface which consists of a viewer for the users to view the components of the

54

BPM that is being deployed. The viewer panel does not visualize the components of the BPM as

visual notations rather it lists them in a sequential order of the textual description of these

components as specified by the graphical model. This operation is performed by parsing the

connections among various BPM notations as part of the graphical model along with the location

of each graphical item in the model to create a sequence for the execution of individual tasks.

Once the task execution sequence is created, the list of the tasks as part of the BPM is shown

to the user in the view panel. The user can then choose to deploy the model. For the execution of

the deployed BPM, the execution engine is responsible to send the XML representation of each

task to the concerned remote IoT resource. The execution state or any data is returned to the

execution engine which further decides how to proceed with the execution of the BPM. The

BPMN Gateways provides branching and execution logic for the process and the BPMN Scripts

provide functions such as data processing or network communications which are too costly for

the remote IoT resources and thus are executed by the execution engine.

In order to provide a detailed and concise picture of the whole system’s design Figure –

shows the overall collaboration among various layers with the BPL at the center of the process.

The CoAP enabled IoT resources means the physical devices with some sort of CoAP services

and functionality which can be invoked remotely via a CoAP client. For these IoT resources, the

users create virtual objects by providing the necessary information to the system via the Virtual

Object Manager interface. The virtual objects created are utilized by the Service Composition

Manager to enable the users to compose Service Objects. The SCM implements simple and

intuitive operations such as drag-n-drop and mouse-clicks to provide DIY service object

composition environment. A Service Object composed by the user consists of three main

components i.e. Input resource, Output resource and the operational rule. The input resource is

normally represented by the VO of a sensing device such as thermistor or gas detector etc., the

55

output resource is represented by a VO of an actuating device such a buzzer or LED and the

operational condition is graphically represented by a join between the two resources.

BPM

Deployment

Manager

SO Acquisition

SO Parsing

BPM Creation

& update

User Interaction

Service Object

Repository

(XML Files)

Service Composition

Manager
Virtual Objects

Virtual Objects Manager

BPMN Object

Creation

2. XML based SO files are

parsed to extract

information

3. Initialize

BPMN shapes

4. Display

BPMN

6. Execute

BPM

7. Select &

control

1. Select SOs

C
o
A

P
 E

n
a
b

le
d

 R
o
b

o
ti

c
A

rm
 R

es
o
u

rc
es

Device

Information

done

Task (Open robot

claw)BPM

Deployment

· Start event

· User drags Task notation

· User select the SO for Buzzer

on based on Temperature

value etc.

· Gateway for conditional logic

· Connects all notations

· End event

· Load BPM for

Deployment

· XML parsing for

extracting information

· Execution sequence

· CoAP post to send

XML task to device

· User choosse

the required

Service

Objects

· XML files are

selected by

the user.

· Input device URI,

Service, Location

etc.

· Output device URI,

Service, Location

etc.

· Operational

Condition values

BPMN objects are

created with the

information extracted in

step 2

Device information

(URI, Services, Location

etc. are input by the user

to register devices.

Input Devices:

Temperature Sensor

Gas Leakage Sensor

Output Devices:

Buzzer

LED
Service Composition:

User drags input, output

devices on SCM canvas

Join them and set

operation rule

Figure 20: BPM based DIY IoT application development system collaboration from the BPL perspective

The join basically set the trigger condition for the actuating resource based on a certain

range value for the input resource. For this purpose simple logical operators are used as part of

the service composition process. The graphically composed Service Objects are editable by the

user as an XML version of each SO is saved to the Service Object Repository at the Service

56

Composition Layer. The same repository is used by the Business Process Layer to acquire the

definitions of Service Object in order to represent them as Business Process Modeling Notations.

For the conversion of Service Objects into Business Process Modeling Notations (BPMN),

the BPM Editor first acquires the relevant Service Objects from the SO Repository at the Service

Composition Layer. This has been represented as the first step in the collaboration diagram. The

SO are in XML format and the BPM Editor uses the internal parser module to extract the

necessary information about the associated resources. This information is used to initialize the

BPMN objects which are clone-able graphical representations so that users can utilize them to

create their BPM based IoT application model. BPM Editor provides a drag-n-drop based DIY

modeling environment for the users to develop process models for their IoT applications and it

also enables them to easily edit and change their models. The graphical models are also saved as

XML files for this purpose to enable the users to share and update the models using the BPM

Editor.

Once a model is completed and the user wants to deploy the IoT application represented by

the BPM, the optimized XML version of the model is loaded into the BPM Deployment

Manager. The BPM Deployment Manager is separate module at the Business Process Layer

which is capable of communicating with the remote IoT devices. The model is parsed and

converted into SO based tasks along with the application logic provided by the BPM notations.

A sequence of execution is generated based on the graphical composition of the model as created

by the user. The execution engine at the BPM Deployment Manager then uses the sequence to

send XML based task definitions to the remote devices via CoAP Post calls. The remote devices

executes the tasks by executing any relevant CoAP services and the response is sent back to the

BPM Deployment Manger where the application logic is evaluated and further execution steps

of the process are carried out.

57

5. BPM Based DIY IoT System

Implementation

This chapter presents details of the prototypes implementation of the proposed architecture.

Each subsection presents the purpose of the respective component, identifying its functionality

and provides a description of the implementation tools and technologies used for the

development of the specific component as part of the prototype development.

5.1. Virtual Object Manager

Figure 21 shows the screen shot for the Virtual Object Manager (VOM) module at the VOL.

It also shows the XML representation for the virtual objects’ data to be stored. This module

enables the users to encapsulate the behavior of their IoT resources. VOM binds the IoT

resource’s data with a visual representation so that the virtual object can be interacted with and

manipulated in a more intuitive way. For this purpose two different approaches have been

utilized. The first approach is the manual one where the user provides the details regarding their

IoT resources in the form of complete URI, location, type and services etc. Through this

approach any device which implements the supported protocols can be added as a resource to the

system. The second approach is the one where the Virtual Objects Manager is provided only the

URI of the remote device and through an implemented service of CoAP protocol, the module

automatically extracts the necessary information from the device. The information would then be

utilized by the VOM to create the corresponding virtual objects for the remote device. This

approach, however, can only be utilized with specific devices which are equipped with the

system specific service implementation for the purpose.

58

Figure 21: Virtual Object Manager Interface

Figure 22 presents the XML representation for virtual objects in the form of device nodes.

For saving the space only two nodes have been expanded in the figure which shows the stored

information for a gas sensor and an LED device. The URI specifies the protocol and address

through which the device can be uniquely identified. The Properties tag specifies the available

services which can be executed via the specific resource. A resource can have more than

properties (executable functions) which is specified by the sub-tags <P> in the Properties tag.

Both URI and an instance of the Properties tag can be utilized to provide a uniquely addressable

function of the remote resource.

The Location tag is used for specifying the location of the remote IoT resource. This tag and

more information regarding the owner or allowed users etc. can be considered for future studies

related to the security of the system.

59

Figure 22: XML representations for virtual object storage at VOL

5.2. Service Composition Manager

Service Composition Manager (SCM) is the main module at the Service Composition Layer.

A snap shot of the SCM interface is shown in Figure 23. The main objective of this module is to

allow the user to easily visualize, interact with and manipulate the virtual objects created by

VOM. The SCM is developed in C-Sharp environment as a Windows application.

For this purpose the sensor VOs and actuator VOs are separately represented as input and

output modules. These modules can be directly dragged and dropped on a canvas through the

basic Windows OS mouse events. The VO modules on the canvas can then be connected with

simple joining lines which represents connection between the input and output VOs. Finally, the

user can set the rules of operations for the joined virtual objects. For this purpose simple and

intuitive approach has been implemented. The user can double-click each VO to display the

60

settings form for the VO or the Join between two VOs can be double-clicked by the user to

display the properties settings form for the complete service object. There the user can specify

the values of attributes, set ranges for the conditional operations and choose conditional

operators for the evaluation of conditional logic.

Figure 23: Service composition manager interface

The SCM interface provides user-centric approach for the development of service objects

based on the virtual representation of IoT resources. The interface is implemented with standard

toolstrip for efficient editing and composition of service objects to enable user efficiency and

better DIY environment. Menus and shortcuts have been implemented for providing the user

61

with standardized editing and composition functions such as cut, copy, paste, detailed viewing of

the graphical models and commenting the models for easy recognition of implemented

functionalities. Following is the main list of operation implemented as the toolstrip.

· New Project: creates a new service composition project when clicked by the user.

· Save: Saves the created graphical model for SO in the form of XML document. The file

is saved at a default location if not mentioned otherwise by the user.

· Open: this button display the open file dialog and the user can select pre-existing SO

files to open in the editor.

· Undo: Cancels an immediate action performed by the user.

· Redo: Performs again an immediate cancelled action by the user.

· Zoom In: Enlarges the contents of the work area by a predefined factor every time the

button is pressed. The zoom ability is limited to a predefined level.

· Zoom Out: the opposite of zoom in and reduces the size of the contents of the work area.

· Restore: Levels out the zooming effects of zoom in or out and restore to size of the

contents in the work area.

· Comments: Toggles the show comments functionality on or off. Comments are some

additional text to explain a VO in the service composition model.

· Help: opens the help window for the SCM.

The joining of input and output VOs in the SCM creates a service object (SO). These SOs

are stored as XML documents which separately represent each input and output VO as part of a

service object. The connections between these VOs are also represented in the XML document

in the form of a join node which specifies the source and sink entities for the connection. Hence

the VOs can be stored, opened and updated according to the user requirements.

62

Figure 24: XML representation of service objects at SCL

Figure 24 shows a sample of the XML documents representing Service Objects (SO). Each

SO is represented by the JoinInfo tag where unique identifiers specifies the input and output

device associated with the specific service object. The same identifiers are used in the

DeviceModule tags as shown in the figure. The DeviceModule tags encapsulate the information

about each resource as part of the saved service objects. This information include the device

type, complete URI to access the remote IoT resource, the service name selected by the user at

SCM to be executed along with the operational conditions as part of the SO for the specific

device and the location of the remote resource. The list of names encapsulated in the tag named

CoAPServices represents all the services supported by the specific device. This list is included in

63

the service object definitions for enabling the SCM to de-serialize the XML files and graphically

render it with complete information if the user wishes to update the SO later. The location

information would further be utilized for security and user rights allocation in the future studies.

5.3. BPM Editor

Business Process Model Editor is responsible for the representation of the Service Objects

composed at the SCM as Business Process Modeling Notations (BPMN). The main interface for

BPM Editor is shown in Figure 25. This component along with the Deployment Manager

constitutes the Business Process Layer of the proposed architecture. The aim of providing a

BPMN based representation of the Service Objects is to provide a DIY interface for anyone with

the basic knowledge of the notations to create and deploy their IoT applications. It also

eliminates the requirement of any programming skills because the user just has to create a

graphical model and it is directly deployed as an IoT application.

The main interface is divided into three main areas. The first is the BPMN Panel on the left

side. This panel groups the various implemented notations in the form of a shape palette. Each

shape in the BPMN panel is an instance of the XAML based class which is derived from a

common class termed as ToolboxItem. This class provides the cloning attributes to each shape

derived from it and thus enabling the shapes to be dragged and dropped by the users. The main

BPMN notations which have been implemented as part of this prototype system include the

Task, Script, Gateway and the swimlane notation. In the event section of the BPMN panel, Start

and Stop events have been implemented. These event notations specify the start and finish of a

process represented by the graphical BPM.

64

Figure 25: BPM Editor interface

The top area of the interface provides an application level toolbar containing editing

functionalities necessary for shapes and model composition. The toolbar is implemented in a

standardized way to resemble the toolbars provided by well-known and common applications

such as Microsoft Word and Microsoft PowerPoint. This feature enables the users to easily

recognize various editing functionalities through general knowledge and helps in providing a

DIY environment for model development. Following is a list of the major groups of

functionalities implemented as part of the application toolbar provided by BPM Editor.

· File group: Provides common commands related to new project creation and file

management such as open file, save file etc. The file open command utilizes the XML

parser to retrieve information to graphically render the BPMN of the canvas while the

save command does the opposite.

65

· Edit Group: This group provides editing functionalities such as cut, copy and paste etc.

for the user to efficiently draw the graphical model.

· Alignment: This group provides commands for adjustment in the alignment of various

shapes or group of shapes. In this scenario, the alignment commands are used to adjust

the location of various BPMN items in reference to other items.

· Arrange: This group while not implemented completely, provides the commands such as

grouping of various BPMN item into a single shape. A grouped object is created in order

to provide easy manipulation and alignment of more than one shape (BPMN items).

For a new BPM project to be created by the user, the user must import the necessary Service

Objects that will be part of the specific BPM. For this purpose, the BPM Editor provides a

simple interface where the user can connect to the SO repository at the Service Composition

Layer and select the XML files for the necessary SOs. The SOs are read by the FileManager and

parsed by the XMLParser to extract the SO components and attributes. A list of the basic

descriptions for the service objects is created which is associated with the BPMN task shape

when the user double-clicks it in the editor canvas area. Service objects are represented as Tasks

and the user can create their model via the same drag-n-drop approach. The sequence of

operation is created by connecting the notations via arrow objects and the same arrow objects are

utilized to capture information regarding the inputs and outputs of notations in the model. As

mentioned earlier, the conditional logic of the process is implemented using the BPMN gateway

notations while processor intensive tasks and remote communication tasks which are not suitable

to be executed on the remote IoT resources are represented by the Script notations. the Script

notation has been provided with a list of scripts from which the user can choose to manipulate or

process the data.

66

Figure 26: XML representation of a stored BPM model

The BPM model created by the users via the BPM Editor is stored as an XML file. This file

is the direct serialization of graphical notation and the associated information such as location on

67

the canvas, identifiers etc. If the user chooses to reload a previously created BPM into the Editor

for updates or changes, the file contains all the information to enable the BPM Editor to load and

re-render the same graphical model as created by the user.

Although the XML file mentioned above is very important from the perspective of editing

and updating the graphical models, it contains too much of unnecessary information from the

perspective of BPM deployment and execution. For this purpose, every time a graphical BPM is

stored by the user, another optimized version of the XML file is created with the sole purpose to

be utilized by the BPM Deployment Manager. This XML files does not contain any information

regarding the graphical rendering of the BPM and only provides information necessary for the

deployment and execution of the process represented by the BPM. The XML sample is shown in

Figure 26 representing tasks and other notations as DesignerItem objects. A DesignerItem tag in

the figure completely represents the information encapsulated by a single BPM notation. In the

figure first task represents a Task notation which encapsulates the complete information

regarding a service object. The information include the names of the input, output devices

associated with the SO, the complete URIs of the services for both the devices and the

operational conditions for the execution of the SO. The file also includes connection objects to

keep track of the source and sink items in the model and hence helps in identifying the correct

sequence and execution order of the process.

5.4. BPM Deployment Manager

BPM Deployment Manager is the second component of the Business Process Layer. It

provides the execution engine for the BPM created via the BPM Editor. Figure 27 shows the

main interface for the BPM Deployment Manager. The component itself is developed using java

so that I can be interoperable with several technologies. For this specific prototype as the

68

physical devices are CoAP based IoT resources based on Intel Edison platform, BPM

Deployment Manager utilizes the Californium framework to communicate with the remote IoT

resources in order to execute the process represented via the BPM. The interface is intentionally

kept very simple with a viewer for the user to visualize the steps of the deployed BPM and a few

controls to enable the user to load BPM from the repository and to control the execution of the

BPM.

Figure 27: Deployment manager interface with a loaded BPM

As mentioned in the previous section, that a process model representing the interaction

among various IoT resources is created by the user via the BPM Editor and stored as an XML

document. These XML documents can be loaded in the Deployment Manager to be executed.

The BPM in its XML format is loaded into the BPM Deployment Manager. The file is first

69

parsed to extract all the executable entities as represented by the BPM notations. Based on the

connection between the notations, the executable entities are sorted and sequenced so that the

final execution of the process is in synch with the original graphical BPM created by the user.

The execution steps are then displayed in the viewer part of the interface as shown in Figure 27.

Figure 28: Deployment manager execution results

The entities are stored in a list which is sorted in accordance with the flow of the process

model. The list is then iterated and each entity is executed based on its attributes and behavior.

70

For task related to remote IoT resources, the XML representation of the complete service object

is sent to the corresponding CoAP server. This transfer is done through a default CoAP post

service which is implemented as part of each CoAP server.

Once the CoAP server receives the XML representation of a Service Object, the CoAP

services, local or remote, are executed using the Californium framework. The response based on

the complete execution of the Service Object is then sent back to the Deployment Manager,

where it is utilized to evaluation the conditional gateways or provided as inputs to the other BPM

notations directly connected with the specific task notation. Scripts implemented as part of the

Deployment Manager are executed by the manager itself while the data is provided by other

entities such as remote IoT resources. Figure 28 shows the execution of a business process

model via the Deployment Manager. The XML description of each service object has been

displayed separately for illustration and the responses received from the remote CoAP server has

been shown before utilized to further execute the process.

Table 1: System configuration for performance analysis

System Specifications

CPU Intel® Xeon® CPU E3-1230 V2 @ 3.30GHz

RAM 8 GB

Graphics NVIDIA GeForce 9600 GT

Operating System Window 7 Professional

Execution Environment Visual Studio 2013 Community with .Net Framework 4.5.2

5.5. Performance Analysis

A basic information retrieval and parsing based performance analysis has been performed at

the three levels of the implemented system. These levels include the Service Composition

Manager, The BPM Editor and the BPM Deployment Manager. Same system configuration has

71

been utilized for performance analysis of all the three layers and the information is presented in

Table 1.

The SCM acquires the VO information from the VOM and parses that information to

instantiate the corresponding visual and interactive virtual representations of the devices

represented by the VOs. This process has been analyzed for performance and the results have

been displayed in Figure 29.

Figure 29: Performance analysis graph at SCM

For this analysis, three sets of 25, 125 and 250 VO information was provided to the SCM

and each set of VO information was allowed to be parsed by the SCM ten times at randomly

selected system resource utilization levels. The graph in Figure 29 presents the minimum,

average and maximum time in milliseconds taken by the SCM to parse and instantiate the

corresponding visual representations of the virtual objects.

For 25 VO information set, the minimum time taken in the ten iterations was recorded to be

65 milliseconds, averaging at the 75.3 milliseconds and the maximum delay was recorded to be

0

100

200

300

400

500

600

700

25 VO 125 VO 250 VO

T
im

e
m

S
ec

Number of virtual objects

VO information parsing

Min time

Avg time

Max time

72

92 milliseconds. For the 125 VO information set, the minimum time taken in the ten iterations

was recorded to be 267 milliseconds, averaging at the 290.5 milliseconds and the maximum

delay was recorded to be 347 milliseconds. For the 250 VO information set, the minimum time

taken in the ten iterations was recorded to be 521 milliseconds, averaging at the 551.9

milliseconds and the maximum delay was recorded to be 584 milliseconds. The BPM Editor

acquires the Service Object information from the SCM and parses that information to instantiate

the corresponding visual and interactive BPMN based representation of each SO. This process

has been analyzed for performance and the results have been displayed in Figure 30.

Figure 30: Performance analysis graph for BPM Editor

For this analysis, three sets of 50, 100 and 400 SO information was provided to the BPM

Editor and each set of SO information was allowed to be parsed by the BPM Editor ten times at

randomly selected system resource utilization levels. The graph in Figure 30 presents the

minimum, average and maximum time in milliseconds taken by the BPM Editor to parse and

instantiate the corresponding visual business process modeling notations for the service objects.

0

50

100

150

200

250

300

350

400

450

50 SOs 100 SOs 400 SOs

T
im

e
m

S
ec

Number of service objects

Service Object Parsing

Min time

Avg time

Max time

73

For 50 SO information set, the minimum time taken in the ten iterations was recorded to be

8 milliseconds, averaging at the 11.4 milliseconds and the maximum delay was recorded to be

18 milliseconds. For the 100 SO information set, the minimum time taken in the ten iterations

was recorded to be 23 milliseconds, averaging at the 32.5 milliseconds and the maximum delay

was recorded to be 51 milliseconds. For the 400 SO information set, the minimum time taken in

the ten iterations was recorded to be 238 milliseconds, averaging at the 321.7 milliseconds and

the maximum delay was recorded to be 390 milliseconds.

Figure 31: Performance analysis graph for BPM Deployment Manager

The BPM Deployment Manager acquires the process object from the BPM Editor in order to

execute it. It first parses that information to create relevant executable objects and then sequence

them according to the order set in the graphical Business Process Model created by the user.

This process has been analyzed for performance and the results have been displayed in Figure

31.

0

10

20

30

40

50

60

70

80

90

5 Step BPM 15 Step BPM 30 Step BPM

T
im

e
m

S
ec

Number of steps in the BPM

BPM parsing and sequencing

Min time

Avg time

Max time

74

For this analysis, three different BPM with 5, 15 and 30 steps process were provided to the

BPM Deployment Manager and each BPM was allowed to be parsed by the BPM Deployment

Manager ten times at randomly selected system resource utilization levels. The graph in Figure

31 presents the minimum, average and maximum time in milliseconds taken by the BPM

Deployment Manager to parse the BPM into executable objects and adjust the sequence of

execution accordingly.

For the 5 step BPM, the minimum time taken in the ten iterations was recorded to be 30

milliseconds, averaging at the 45.4 milliseconds and the maximum delay was recorded to be 62

milliseconds. For the 15 step BPM, the minimum time taken in the ten iterations was recorded to

be 45 milliseconds, averaging at the 57.2 milliseconds and the maximum delay was recorded to

be 68 milliseconds. For the 30 step BPM, the minimum time taken in the ten iterations was

recorded to be 63 milliseconds, averaging at the 74.4 milliseconds and the maximum delay was

recorded to be 84 milliseconds.

75

6. Usability Study for Robotic Arm Use-case

6.1. IoT in Industrial Robotics

The most prominent areas of interest for IoT in the recent few years include the ‘smart

industry’, which under the term of Industry 4.0 can be defined as the development of intelligent

production system and connected production sites. [44]. Smart manufacturing is another term

given to the application of IoT and related technologies for full integration and collaboration of

manufacturing systems for real-time response to meet the changing demands and requirements in

a factory and the customer’s needs.[45][46] . Apart from smart control, the utilization of IoT

technologies in production logistics enables a multi-level dynamic adaptability attribute to the

system [47].

IoT technologies have also evolved according to the needs of the manufacturing industry.

Industrial IoT (IIoT) is the motivation and drive for the industrial up-gradation. It enables the

continuous acquisition of information, processing it in the cloud and seamlessly adjusting the

manufacturing parameters via a closed loop system[48]. The same technologies can also be used

to monitor the state or condition of the machines in the manufacturing environment [49]. Energy

is also one of the main concerns in industrial environments and according to [50] and [51] the

utilization of IoT based energy management platforms in the industrial and manufacturing

environments can drastically improve the energy consumptions by providing better

communication among the industrial entities. These are the reasons that in 2015, manufacturing

sector has the top position in terms of the number of installed IoT devices, which is 307 million

according to a survey by Gartner [52].

76

It is therefore evident that such implementation could highly benefit the industrial

automation, energy consumption and most of all it will enhance the adaptability of

machinery/production entities to changing conditions and requirements. However, the human

interaction strategy with such implementations for programming and customization is still under

consideration especially from the perspective of common users with lower skill level. This

chapter presents a use-case for the usability analysis of the proposed architecture from the

perspective of an automated system’s customization and control. A prototype robotic arm has

been developed for the use-case. Each component of the prototype can be interacted with a

remote IoT resource and the system can be utilized by any common user to control and

customize the operation of the robotic arm. An experiment has also been described in this

chapter to analyze the user feedback regarding the system usability.

6.2. Implementation architecture for robotic arm

use-case

The first use-case for the evaluation of the presented system has been chosen from the

robotics domain. The field of robotics has recently developed an invigorated interest from the

perspective of social and industrial robotics especially from the perspective of IoT enablement.

We have selected this use-case because we think that the presented system can be utilized in this

domain very effectively by letting the common users with no special programming skills to

customize the operations of their personal or industrial robots for innovative and unforeseen

usage scenarios.

Figure 32 presents the previously described architecture from the perspective of the use-case

by highlighting the prototype robot component implemented as CoAP resources for remote

interactions. The architecture also illustrates the addition of new components for the evaluation

77

and usability study of the system from the perspective of the use-case. The following paragraphs

briefly describe the architecture from the perspective of the robot arm control use-case and

provide the details of the experimental setup for usability analysis and user ratings.

Physical Objects

Physical
Layer

Intel Edison based CoAP Server

CoAP Service Interface

Virtual
Object Layer File Manager XML Parser Communication Manager

VO Behavior VO Attributes
VO

Visualization

VO Repository
(XML)ViewUpdate

Virtual Object Manager

File Streams Read/Write XDocument XElement
Server
Socket

Net Stream

Service
Composition

Layer

Add

VO information Acquisition Interface

VO Provision Service

Format Information

File Manager SO Serializer

File
Streams

Read/
Write

XML
Serializer

Classes
(XML Attrib)

SO Provision Service

Format Information

Input VO Joins Output VO

Visual Service Composition Manager

SO Repository (XML)

VO Acquisition Client

SO Provisioning Server

ViewUpdate Add

SO Manager

Business
Process
Layer

Tasks Conditions

BPM Editor

File Manager XAML Parser

File
Streams

Read/
Write

Notations Joins SO Acquisition Client

Process Object
Repository

BPM Deployment Engine

BPM Sequence

Process Execution

Communication

SO to process task
Mapping Manager

Model VisualizerSequence

Robot Arm Base
Component

Robot Arm Shoulder
Component

Robot Arm Forearm
Component

Robot Arm Claw
Component

U
sa

b
ili

ty
 T

es
t

C
as

e

U
se

r
R

at
in

gs

Figure 32: Robotic arm use-case implementation in the proposed architecture and modifications for usability

study

For the purpose of the robot prototype demonstration, the robot arm components e.g. the

robot base, shoulder, forearm and claw are implemented as CoAP devices. The physical layer of

the architecture represents these components as separate physical devices. The details of

implementation of these components are presented in a separate section in this document. The

78

information of the implemented robot components is provided to the Virtual Object Manager

which converts the information into virtual objects.

The Service Composition Layer (SCL) utilizes the virtual objects for the robot components

from the virtual object repository at the Virtual Object Layer. The virtual objects are visualized

using icons which can be interacted with like any Windows based control. The robot VOs are

mostly output devices as they perform only actuation tasks. The scenario of operation can be

enhanced further with the addition of sensing VOs for a more diverse service composition. In

this prototype implementation of the use-case, the user can only compose service object based

on the available services as exposed by the robot components. Based on these conditions, the

user can create Unit SOs for the robot components by linking them with the generic input

module.

The Business Process Layer acquires the service object definitions from the SO repository at

SCL, parses the XML representation of the service objects to extract information and then

represent the services as BPMN task notations. The user can then utilize these notations to

visually create a business process model for the operation of the prototype robotic arm. The user

at the Business Process Layer can only control those parts of the robotic arm for which the

service objects have been created at the Service Composition Layer. Once the BPM is created, it

can be deployed via the BPM deployment engine and the robotic arm will perform the

operations accordingly.

6.3. Robotic Arm prototype implementation

This section provides the implementation details for the robotic arm based use-case for the

DIY IoT composition architecture. The section will only describe the details of the prototype

robotic arm development and the associated components for usability analysis.

79

Figure 33 presents the finalized form of the prototype robotic arm. The prototype has been

developed itself as a DIY project utilizing minimal resources in terms of material as well as cost.

The main components of the prototype are as given below.

C
la

w
 S

er
vo

For
ea

rm
 S

er
vo

Shou
ld

er
 S

er
vo

B
as

e
Ser

vo

Intel Edison

Figure 33: Intel Edison based finalized robotic arm prototype

Robotic Arm Base component: Base is the part of the prototype robotic arm which attaches the

rest of the arm to a fixed base. The base contains a servo motor which is permanently connected

with a stable base on one end and allows the horizontal rotation of the upper parts of the arm

from 0 degrees to 180 degrees.

80

Table 2: Device implementation summary for robotic arm use-case

Component Base

Shoulder Forearm Claw

Visual

Representation

Servo Model

SG-90

miniature servo

SG-90 miniature

servo

SG-90 miniature

servo

SG-90

miniature

servo

Rotation Axis

Horizontal Vertical Vertical Horizontal/

Vertical

CoAP Server

Intel Edison

with

Californium

Framework

Intel Edison with

Californium

Framework

Intel Edison with

Californium

Framework

Intel Edison

with

Californium

Framework

CoAP Services

RotateBase0

RotateShoulder0

RotateForeArm0

ClawOpen

RotateBase90

RotateShoulder90

RotateForeArm90

ClawClose

RotateBase180

RotateShoulder18

0

RotateForeArm18

0

Robotic Arm Shoulder component: The next joint of the prototype robotic arm is termed as

the Shoulder. The shoulder is basically a servo motor attached to the base and on the other side

is attached an arm. The shoulder servo mimics the shoulder joint and allows the movement of

the arm vertically from 0 to 180 degrees.

Robotic Arm Forearm component: Forearm is the next joint created by attaching a servo at the

free end of the arm attached with the shoulder servo. The purpose of the forearm is to enable the

robotic arm to extend via vertical rotation movement and to hold the claw of the robotic arm.

This joint also can move from 0 to 180 degrees.

Robotic Arm Claw component: The last component of the prototype robotic arm is the Claw.

The claw is created by attaching a servo at the free end of the forearm. It consists of a static

81

finger and a moveable finger. The moveable finger is directly attached to the servo motor of the

claw and it mimics the opening and closing of the claw.

Table 2 provides the details related to prototype implementation of the robotic arm for the

use-case. The four parts of the robotic arms are equipped with SG-90 miniature servo. SG-90 is a

cost effective component for prototype development and it offers enough toque for the operation

of our robotic arm. The rotation axis of the components is based on the orientation of the

component hence the based rotates horizontally while shoulder and forearm rotates vertically.

Each component is implemented as a CoAP resource as part of CoAP server which is hosted

by an Intel Edison board with Java based Californium framework. The Californium framework

aids in the development of CoAP server and provides interfaces for CoAP based communication

between the server and client. Each component of the robotic arm prototype exposes a number of

CoAP services. For example, the base component exposes three CoAP services such as the

“RotateBase0”, indicating the Base Rotation to 0 Degrees and “RotateBase180” indicating Base

Rotation to 180 Degrees. These service names are used by the Virtual Object Manager along

with other information provided by the user to create complete URI for each CoAP resource.

6.4. Usability study for Robotic Arm use-case

As the proposed system is focused on providing a DIY development environment for

enabling mass involvement in IoT applications development, its usability from the perspective of

end-user with different levels of programming skills can ultimately judge its performance. The

robotic arm use-case has been developed to test the usability of the proposed architecture in the

IoT enabled industrial robotics domain. The study presented in this chapter is a two pronged

study. The first part captures the performance of participants from the DIY perspective. This

study allows a participant to interact with the system (SCM and BPM Editor) without any prior

82

training and captures the time in seconds to complete the task. After that the participant is

trained briefly, she is allowed to interact with the system in the same manner capturing any

difference in the performance (time in seconds to complete the task again). The test scenario for

the robotic arm use-case is illustrated in the Figure 34. The XML snippet termed as Virtual

Objects in the figure shows the virtual representation of physical IoT devices being sent from

VOM to SCM while the second snippet shows the definition of an individual Service Object

(part of the BPM created by user for the control of the robotic arm) being sent to CoAP enabled

robotic arm for execution. The response is sent back to the Deployment Manager where further

execution of the BPM based process is decided.

Virtual Object Manager

BPM Editor
(Process Modeling)

Service Composition Manager Virtual Objects

SO

CoAP based SO execution request

Response

D
ev

 In
fo

BPM
Deployment

Manager

Californium
based CoAP

Server

Intel Edison based
prototype robotic arm

Study
Participant

Activity 1
Activity 2

Activity 3
Activity 4
Activity 5

CoAP Resources
RotateBase0, 90, 180
RotateShoulder0, 90.
RotateForearm0, 90,.
ClawOpen, ClawClose
SO acquisition

Device Info
Device URI
Device Type
Device Location
Device Functions

Figure 34: Test scenario for usability assessment of robotic arm use-case

The second part of the study utilizes the System Usability Scale (SUS) [53] for the users to

assess the system usability from user’s perspective. The SUS questionnaire provides a structured

rating system for judging the usability of the system according to the standardized questions.

Table 3 provides the list of questions for SUS upon which the participant is asked to rate the

system usability. SUS is a 10 item Likert scale through which the users subjectively rate their

experience with the system on a scale of 1 (Strongly Disagree) to 5 (Strongly Agree).

83

Table 3: System Usability Scale items

No. SUS Item

Q1. I think that I would like to use this system frequently

Q2. I found the system unnecessarily complex

Q3. I thought the system was easy to use

Q4. I think that I would need the support of a technical person to be able to use this

system

Q5. I found the various functions in this system were well integrated

Q6. I thought there was too much inconsistency in this system

Q7. I would imagine that most people would learn to use this system very quickly

Q8. I found the system very cumbersome to use

Q9. I felt very confident using the system

Q10. I needed to learn a lot of things before I could get going with this system

 {∑() ∑()} ……………….Eq. 1

Where i= 1, 3, 5, 7, 9 and j= 2, 4, 6, 8, 10.

Equation 1 is used to calculate the SUS based usability score based on the participants’

responses. The resulting scores represent the overall usability of the system (ranging from 0-

100). A higher score represents better usability in the given context. According to the pilot

studies made by Bangor et al.[54], the usability score above 70 indicates above average usability

for the system in question. The same results were verified by Bangor et al. [55] by utilizing more

than 900 surveys based on an augmented SUS with adjective ratings scale. In each survey the

participants rated a system based on SUS and then provided the adjective ratings for the

system’s usability. The adjective ratings based usability scale obtained from the study is

presented in Table 4 for reference. The Service Composition Layer and Business Process Layer

84

for this use-case implementation have been slightly changed so that it can be utilized for

usability experiments. The flows of the usability experiment at Service Composition Layer and

Business Process Layer are given in the following sub-sections.

Table 4: Descriptive Statistics of SUS Scores for Adjective Ratings [55]

Adjective

Count (Survey) Mean SUS Score Standard Deviation

Worst Imaginable 4 12.5 13.1

Awful 22 20.3 11.3

Poor 72 35.7 12.6

Ok 211 50.9 13.8

Good 345 71.4 11.6

Excellent 289 85.5 10.4

Best Imaginable 16 90.9 13.4

6.4.1.1. SCM usability assessment for Robotic Arm

use-case

Figure 35 illustrates the various steps of the usability analysis experiment designed for the

Service Composition Manager (SCM) in the robotic arm use-case. The participant is given a

brief description of a service composition task with a visual cue related to the task that the

participant is asked to implement using the SCM without any prior training. The participant is

allowed to interact with the service composition manager in order to complete the task. A

supervisor checks the progress of the participant. The time taken in seconds by the participant in

the first step is recorded along with the information if the task was successfully completed or

not.

85

Start

Initial
Instructions to

Participant

Start evaluation

Initialize Timer

Task
implementation

Task
Finished?

Record elapsed
time

without training

Train
Participant

Record Non-
Completion of

task

Re-implement
Task

Reset Timer

Task
Finished?

Record elapsed
time

after training

Record Non-
Completion of

task

Display SUS
form

All questions
answered?

Submit form

Alert participant
to answer all

questions.

Save Data

End

Y

N

Y Y

N
N

Record task
completion

Record task
completion

W W

Figure 35: Flow of SCM usability assessment experiment for robotic arm use-case.

In the next step of the experiment, the participant is given a brief session of training on how

to use the SCM in order to compose a service. Once the training session is completed, the

participant is asked to implement the same task again. Once again the elapsed time in seconds

and the completion state of the task are recorded by the system. As soon as the interaction

session of the participant is completed, the System Usability Scale based ratings form is

86

presented to the participant by the Service Composition Manager in order to rate the system

based on his/her interaction experience. The participant also provides age and gender

information but no other personal information is recorded to keep the data anonymous. The

participant is asked to rate his/her level of computer programming skills level on a scale of 1 to

5. This information is not part of the SUS ratings but it is used for further usability analysis of

the SCM from a DIY perspective.

Table 5: SCM usability assessment experimental setup based on robotic arm use-case

Test use-case Prototype Robotic Arm

Number of Participants 20

 Programmers Non-programmers

 9 11

Test environment Service Composition Manager (SCM)

Activity 1 SCM Task without

training

Creation of a Service Object for controlling the robot

claw. (open the robot claw)

Data recorded Time to complete the task.

Successful/unsuccessful completion of the task

Brief training session on how to use the SCM

Activity 2 SCM task after

training

Creation of a Service Object for controlling the robot

claw. (open the robot claw)

Data recorded Time to complete the task.

Successful/unsuccessful completion of the task

Activity 3 Usability rating Participant provides personal information and SUS

questionnaire based system usability ratings.

Data recorded SUS based participant’s responses for 10 questions.

For the usability analysis of the robotic arm use-case, a total of 20 participants took part in

the experimental setup explained below. The usability analysis of the proposed system was done

at Jeju National University, so most of the participants of the experiments were international

students and native Korean students from various departments along with some participants

external to the university. The participants mostly belonged to the age groups between 21 to 35

87

years with few outliers. The participants included 15 male and 5 female participants. The

experimental setup is summarized in Table 5.

6.4.1.2. SCM usability score based on SUS

All the participants in the experiment provided SUS based responses to the 10 questions

presented in Table 3. Figure 36 presents a question-wise summary boxplot of the responses from

all of the participants.

Figure 36: Results of SCM usability study based on SUS. Rating values range from 1: "Don’t agree" to 5:

"Strongly agree" (Robotic arm use-case)

The figure shows that for the odd number of SUS questions, the participants mostly agreed

by giving the ratings between 4 and 5. The median of responses for Q1, Q3, and Q7 lies at 5

(Strongly agree) while for Q5 and Q9, the median response given by participants lies at 4

88

showing strong agreement with the statements. For the even numbered questions with negative

remarks about the system, the median responses by the participants for Q2, Q4, Q6, Q8 and Q10

lies at 2 (Disagree) respectively. The ‘+’ signs in the boxplot indicate any outlier values in the

responses data set recorded by 20 participants based on System Usability Scale.

All the responses from the 20 participants were utilized to calculate the usability score for

the Service Composition Manager based on the robotic arm use-case. The average usability

score for the SCM is 80 which shows very positive response from all the participants and

indicates that the system is highly useable from the perspective of its utilization for service

composition task in the industrial or domestic robotics domains.

6.4.1.3. SCM usability from DIY perspective

The analysis presented in this section is intended to analyze the usability of Service

Composition Manager from the perspective of a DIY platform. For this purpose, statistical

analysis of the time data recorded during the usability experiment for various task performed by

the participants has been conducted. In order for the SCM to be a DIY platform for service

composition, it should be equally useable to people with less or no programming skills as it is

people with programming skills.

Based on the participant’s subjective ratings of their programming skills, two groups of

participants were defined. Participants with programming skills above 3 were included in the

‘Programmers’ (9) group while the rest were grouped as the ‘Non-programmers’ (11) and

assuming that the data samples are following a normal distribution.

89

Figure 37: Sample comparison of the time taken by both groups to complete SCM task without any prior

training

Figure 38: Comparison of percentage for successful task completion by Programmers vs Non-Programmers

Two-Sample t-Test analysis was performed for the two groups based on the time taken by

each participant to complete the first service composition task without any training given to the

participants. Figure 37 provides a comparison graph of the sample data recorded for both groups.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
)

Randomly selected sample pairs of participants

SCM task completion without prior training

Non-Programmers

Programmers

90

The graph shows the comparison of time in seconds, taken by randomly selected individual

participant from the ‘Non-Programmers’ group with a randomly selected participant from the

‘Programmers’ group. A total of 9 sample comparisons are shown in the graph which clearly

shows a numerical difference in the mean time taken by both groups to complete the activity 1 at

SCM. As there was no prior training, participants from both groups made errors while

completing the activity 1. Figure 38 provides a comparison of the percentage of each group

completing the task with or without errors. The figure shows that members of both groups were

affected almost the same due to the lack of knowledge about how to use the SCM interface.

Table 6 shows the outcome of the t-Test analysis based on the null hypothesis (H0) that the

mean time taken by programmers to complete the task without training is not significantly

different than the mean time taken by the non-programmers to complete the same task without

any prior training. This is as represented by the Hypothesized Mean Difference (0) in the table.

H0: µ0 - µ1 = 0

H1: µ0 - µ1 ≠ 0

Table 6: Two-Sample t-Test for unequal variances (Activity 1 before training)

Non-Programmers Programmers

Mean 93.40436364 74.46166667

Variance 317.1363765 317.474346

Observations 11 9

Hypothesized Mean

Difference 0

 df 17

 t Stat 2.365887786

 P(T<=t) two-tail 0.03013123

 t Critical two-tail 2.109815578

As the data samples are not paired, a t-Test with the assumption of unequal variances for

both data samples was conducted. For the null hypothesis to be rejected, t Stat should be greater

91

than t Critical two-tail. This is true for the case as described in Table 6, 2.36 > 2.11, hence the

null hypothesis is rejected which means that there was a significant difference in the time taken

by programmers to complete the service composition task without any prior training (M=74.46)

and time taken by non-programmers to complete the task without any prior training (M=93.40);

t(17)=2.11, p = 0.030.

The difference shown by the t-test presents very slight difference between the two samples

and the difference can be attributed to the fact that programmers had the additional edge of

computer usage for programming purposes and an understanding of the drag-n-drop type

interfaces previously while the non-programmers used slightly more time to understand and

explored the interface as there was no prior training given to them.

Figure 39: Sample comparison of the time taken by both groups to complete SCM task after the training

session

To prove the fact, a second Two-Sample t-Test was performed for the two groups based on

the time taken by each participant to complete the same service composition task after a brief

session of training given to the participants. A sample of data used for this analysis is given in

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9

T
im

e
(S

ec
)

Randomly selected sample pairs of participants

SCM task completion after training

Non-Programmers

Programmers

92

Figure 39. The graph shows the comparison of time in seconds, taken by randomly selected

individual participant from the ‘Non-Programmers’ group with a randomly selected participant

from the ‘Programmers’ group. A total of 9 sample comparisons are shown in the graph which

clearly shows a numerical difference in the mean time taken by both groups to complete the

activity 2 at SCM.

Table 7 shows the outcome of the t-Test based on the null hypothesis (H0) that the mean

time taken by programmers to complete the task after the training is not significantly different

than the mean time taken by the non-programmers to complete the same task after the training

session as represented by the Hypothesized Mean Difference (0) in the table. Due to the

difference of variance for both data samples (21.7 and 45.6) t-Test assuming unequal variances

was conducted.

H0: µ0 - µ1 = 0

H1: µ0 - µ1 ≠ 0

Table 7: Two-Sample t-Test for unequal variances (Activity 1 after training)

Non-Programmers Programmers

Mean 33.18409 27.89778

Variance 21.70197 45.62954

Observations 11 9

Hypothesized Mean

Difference 0

 df 14

 t Stat 1.99195

 P(T<=t) two-tail 0.066252

 t Critical two-tail 2.144787

As shown in Table 7, t Stat is not greater than t Critical two-tail (1.99 < 2.145), hence the

null hypothesis is accepted. The test specifies that there is no statistically significant difference

in the time taken by programmers to complete the service composition task after the training

93

session (M=27.88) and time taken by non-programmers to complete the task after the training

session (M=33.18); t(14)=1.99, p = 0.066. The above analysis shows that the proposed service

composition manager interface is suitable for the DIY usage and is equally helpful to people

with programming skills and people with less or no programming skills.

The above analysis indicates that the proposed Service Composition Manager interface is

suitable for the DIY usage after a minimal training which can be provided in the form of a

manual or video tutorial. It is also deduced that the interface is equally helpful to people with

programming skills and people with less or no programming skills. It is important to note that

both the groups achieved 100 % task completion without any errors once they were trained on

how to use the SCM.

6.4.2. BPM Editor usability assessment for Robotic

Arm use-case

Figure 40 illustrates the various steps of the usability analysis experiment designed for the

Business Process Modeling Editor (BPM Editor) at the Business Process Layer of the proposed

system. The participant is given a brief description of a simple process based on the previously

composed services with a visual cue related to the final model of the process that the participant

is asked to implement using the BPM Editor.

The participant is allowed to interact with the editor in order to model the process by simple

drag-n-drop and mouse click operation on the graphical BPM notations. A supervisor checks the

progress of the participant. The time taken in seconds by the participant in the first step is

recorded by the application along with the information if the task was successfully completed or

not. In the next step of the experiment, the participant is given a brief session of training on how

to use the BPM Editor in order to visually create a business process model. Once the training

94

session is completed, the participant is asked to create the same business process model again

using the BPM editor. Again the elapsed time in seconds and the completion of the task are

recorded by the system.

Start

Initial Instructions to
Participant

Start evaluation

Initialize Timer

Simple BPM
implementation

Task
Finished?

Record elapsed
time

without training

Train
Participant

Record Non-
Completion of

task

Re-implement
Simple BPM

Reset Timer

Task
Finished?

Record elapsed
time

after training

Record Non-
Completion of

task

Display SUS
form

All questions
answered?

Submit form

Alert participant
to answer all

questions.

Save Data

End

Instruction for
Complex BPM

Start
Implementation

Task
Finished?

Record elapsed time
For complex implementation

Record Non-
Completion of

task

Y

N W

Y

N
W

Record task
completion

Record task
completion

Record task
completion

Y

N W

Y

N

Figure 40: Flow of BPM Editor usability assessment experiment for robotic arm use-case

95

As Business Process Models can become complex for larger processes, an extra step has

been added to this experiment to let the participant assess the system based on a complex process

modeling task. In this step, the participant is given the description of a more complex process

model to be visually created using the BPM editor. The participant tries to visually create the

corresponding process model using the graphical notations. Again the time taken by the

participant to complete the task and the state of errors made by the participant is recorded by the

system.

Table 8: BPM Editor usability assessment experimental setup based on robotic arm use-case

Test use-case Prototype Robotic Arm

Number of Participants 20

 Programmers Non-programmers

 9 11

Test environment Business Process Modeling Editor (BPM Editor)

Activity 1 Simple BPM task

without training

Three step BPM creation task to for the control of

prototype robot arm motion.

Data recorded Time to complete the task.

Successful/unsuccessful completion of the task

Brief training session on how to use BPM Editor

Activity 2 Simple BPM task

after training

Three step BPM creation task to for the control of

prototype robot arm motion.

Data recorded Time to complete the task.

Successful/unsuccessful completion of the task

Activity 3 Complex BPM

task

6 Step BPM task utilizing gateway notations and

script notations to create a complex process model

for robot arm control.

Data recorded Time to complete the task.

Successful/unsuccessful completion of the task

Activity 4 Usability rating Participant provides personal information and SUS

questionnaire based system usability ratings.

 Data recorded SUS based participant’s responses for 10 questions.

Once the interaction session of the participant is completed, a System Usability Scale based

assessment form is presented to the participant by the system in order to rate the system based on

his/her interaction experience. The participant also provides age and gender information but no

96

other personal information is recorded to keep the data anonymous. The participant is asked to

rate his/her level of computer programming skills level on a scale of 1 to 5. This information is

not part of the SUS questionnaire but used for further usability analysis of the system from a

DIY perspective. The experimental setup is summarized in Table 8.

6.4.2.1. BPM Editor usability score based on SUS

All the participants in the experiment provided SUS based responses to the 10 questions

presented in Table 3. Figure 41 presents a question-wise summary boxplot of the responses from

all of the participants.

Figure 41: Results of BPM usability study based on SUS. Rating values range from 1: "Don’t agree" to 5:

"Strongly agree" (Robotic arm use-case)

97

The figure shows that for the odd number of SUS questions, the participants mostly agreed

by giving the ratings between 4 and 5. The median of responses for Q3 and Q7 lies at 5

(Strongly agree) while for Q1, Q5 and Q9, the median response given by participants lies at 4

showing strong agreement with the statements. For the even numbered questions with negative

remarks about the system, the median responses by the participants for Q4, Q6 and Q8 lies at 2

(Disagree) while for Q2 and Q10 the median response by all the participants is 1.5 and 1

respectively. This shows a strong disagreement of the study participants with the negative

remarks regarding the usability of the BPM Editor. The ‘+’ signs in the boxplot indicate any

outlier values in the responses data set recorded by 20 participants based on System Usability

Scale.

All the responses from the 20 participants were utilized to calculate the usability score for

the Business Process Modeling Editor based on the robotic arm use-case. The average usability

score for the BPM Editor is 81.62 which shows very positive response from all the participants

and indicates that the BPM based IoT application development for the industrial or domestic

robotics domain is highly useable based on user ratings.

6.4.2.2. BPM Editor usability from DIY perspective

The analysis presented in this section is intended to analyze the usability of the Business

Process Modeling Editor from the perspective of a DIY platform. As in the previous section,

statistical analysis of the time data recorded during the usability experiment for various task

performed by the participants has been conducted. In order for the BPM Editor to be a DIY

platform for IoT application process modeling, it should be equally useable to people with less

or no programming skills as it can be to people with programming skills.

98

This study also utilizes the same groups of ‘Programmers’ (9) and ‘Non-programmers’ (11)

participants and assuming that the data samples follow a normal distribution. The groups have

been created based on the participants’ subjective ratings of their own programming skills.

Two-Sample t-Test analysis was performed for the two groups based on the time taken by

each participant to complete the first BPM task without any training given to the participants.

Figure 42 provides a comparison graph of the sample data recorded for both groups. The graph

shows the comparison of time in seconds, taken by randomly selected individual participant

from the ‘Non-Programmers’ group with a randomly selected participant from the

‘Programmers’ group. A total of 9 sample comparisons are shown in the graph which shows a

numerical difference in the mean time taken by both groups to complete the activity 1 using the

BPM Editor.

Figure 42: Sample comparison of the time taken by both groups to complete BPM task without any prior

training (Robotic arm use-case)

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

T
im

e
(S

ec
)

Randomly selected pairs of participants

BPM task completion without prior

training

Non-Programmers

Programmers

99

Figure 43: Comparison of percentage successful completion of simple BPM task by Programmers vs Non-

Programmers without any prior training (Robotic arm use-case)

As there was no prior training, participants from both groups made errors while completing

the activity 1. Figure 43 provides a comparison of the percentage of each group completing the

task with or without errors.

For this part of the usability analysis experiment for the robotic arm use-case, the

participants were asked to create a simple BPM for controlling the prototype robotic arm without

any prior training on how to use the proposed BPM Editor. Two-Sample t-Test analysis was

performed for the two groups (Non-programmers, Programmers) based on the time taken by

each group member to complete the simple BPM task without any training given to the

participants.

Table 9 shows the outcome of the t-Test analysis based on the null hypothesis (H0) that the

mean time taken by programmers to complete the task without training is not significantly

different than the mean time taken by the non-programmers to complete the same task without

any prior training. This is represented by the Hypothesized Mean Difference (0) in the table. A t-

Test assuming unequal variances was conducted due to the difference in the variance for both

samples of data.

100

H0: µ0 - µ1 = 0

H1: µ0 - µ1 ≠ 0

Table 9: Two-Sample t-Test for unequal variances (Simple BPM task without prior training, robotic arm use-

case)

 Non-Programmers Programmers

Mean 97.06555 80.908

Variance 170.6756 125.5395

Observations 11 9

Hypothesized Mean

Difference 0

df 18

t Stat 2.976622

P(T<=t) two-tail 0.008086

t Critical two-tail 2.100922

Based on the outcome of the t-Test analysis, the null hypothesis is rejected which means that

there is a significant difference in the time taken by programmers to complete the BPM task

without any prior training (M=80.91) and time taken by non-programmers to complete the task

without any prior training (M=97.06); t(18)=2.98, p = 0.008.

The difference shown by the t-test presents a slight difference between the two samples and

the difference can be attributed to the fact that programmers had the additional edge of computer

usage for programming purposes and an understanding of the drag-n-drop type interfaces

previously while the non-programmers used slightly more time to understand and explore the

interface as there was no prior training given to them.

To prove the fact, a second Two-Sample t-Test was performed for the two groups based on

the time taken by each group member to complete the same BPM task after a brief session of

training given to the participants. Figure 44 presents the comparison graph of sample data

recorded for both the groups. The graph shows the comparison of time in seconds, taken by

101

randomly selected individual participant from the ‘Non-Programmers’ group with a randomly

selected participant from the ‘Programmers’ group. A total of 9 sample comparisons are shown

in the graph which shows a numerical difference in the mean time taken by both groups to

complete the activity 2 using the BPM Editor.

Figure 44: Sample comparison of the time taken by both groups to complete BPM task after training (Robotic

arm use-case)

Table 10 shows the outcome of the t-Test based on the null hypothesis (H0) that the mean

time taken by programmers to complete the simple BPM task after the training is not

significantly different than the mean time taken by the non-programmers to complete the same

task after the training session. This is represented by the Hypothesized Mean Difference (0) in

the table. As the data samples have different variance, t-Test assuming unequal variances was

conducted.

H0: µ0 - µ1 = 0

H1: µ0 - µ1 ≠ 0

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

T
im

e
(S

ec
)

Randomly selected pairs of participants

BPM task completion after training

Non-Programmer

Programmer

102

Based on the outcome of the t-Test analysis, the null hypothesis is accepted as t Stat is less

than t Critical (1.58 < 2.11). The result shows that there is no significant difference in the time

taken by programmers to complete the Simple BPM task after training on how to use the BPM

Editor (M=58.74) and time taken by non-programmers to complete the task after training

(M=68.60); t(17)=1.58, p = 0.132.

Table 10: Two-Sample t-Test for unequal variances (Simple BPM task after training)

 Non-Programmers Programmers

Mean 68.60327 58.74956

Variance 175.8813 206.4545

Observations 11 9

Hypothesized Mean

Difference 0

df 17

t Stat 1.579304

P(T<=t) two-tail 0.132692

t Critical two-tail 2.109816

To further prove the impact of DIY nature of the BPM Editor, both groups of participants

were asked to complete a more complex BPM task. Figure 45 shows a comparison graph of the

sample data collected from both groups. The graph shows the comparison of time in seconds,

taken by randomly selected individual participant from the ‘Non-Programmers’ group with a

randomly selected participant from the ‘Programmers’ group.

A total of 9 sample comparisons are shown in the graph which shows a numerical difference

in the mean time taken by both groups to complete the activity 3 using the BPM Editor. The time

for programmers and non-programmers to complete the task has been analyzed using a Two-

Sample t-Test. The null hypothesis (H0) states that the mean time taken by programmers to

complete the complex BPM task is not significantly different than the mean time taken by the

103

non-programmers to complete the same task. Table 11 presents the outcome of the t-Test. The

null hypothesis is stated as the Hypothesized Mean Difference (0) in the table.

Figure 45: Sample comparison of the time taken by both groups to complete BPM complex task (Robotic arm

use-case)

Table 11: Two-Sample t-Test for unequal variances (Complex BPM task)

 Non-Programmers Programmers

Mean 183.5797 170.1048

Variance 1125.859 577.5301

Observations 11 9

Hypothesized Mean
Difference 0

df 18

t Stat 1.044222

P(T<=t) two-tail 0.310205

t Critical two-tail 2.100922

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

T
im

e
(S

ec
)

Randomly selected pairs of participants

BPM Complex task completion

Non-Programmer

Programmer

104

Figure 46: Comparison of percentage successful completion of BPM complex task by Programmers vs Non-

Programmers (after training)

According to the outcome of the t-Test analysis, the null hypothesis is accepted. It means

that there is no statistically significant difference found in the time taken by programmers to

complete the complex BPM task (M=170.10) and the time taken by non-programmers to

complete the same task (M=183.58); t(18)=1.04, p = 0.310. Hence, it can be deduced from the

analysis that the BPM Editor can provide significant help to non-programmers to perform as

efficiently as the programmers and provides a better DIY environment for programming IoT

related applications and processes in the industrial or domestic robotics domain. The task

completion percentage comparison as shown in Figure 46 also supports the claim that the

behavior of the BPM Editor is almost same for both programmers and non-programmers.

105

7. Usability Study for Smart-Space use-case

7.1. IoT enabled Smart-Spaces

The recent development in technology in the form of Internet of Things (IoT) has on one

hand revitalized innovations in industry and on the other hand it has generated a new interest

towards smart spaces research and development [56]. The concept of smart spaces has been

associated with a number of physical spaces such as home, office, malls, schools and smart

cities. These physical spaces are utilized by people in different ways and based on the

complexities involved, the people’s experience can degrade [57]. Technologies such as Internet

of Things have been utilized in these spaces to improve user experience in terms of services.

The smart space services span over several domains and the domain getting the most

attention is remote monitoring of occupants’ activities in a smart space. The purposes of activity

monitoring include health care purposes as presented in [58][59] [60] and [61]. Occupants’

activities in a smart home are also monitored for the purpose of energy consumption

optimization as presented by Lima et al. [62].

Smart home monitoring and appliance control is another topic vastly studied in this regard.

The aim of smart home monitoring and appliance control services is to provide a remote

interface which enables the user to monitor and allow smart appliances to be controlled with

minimal interactions from the users [63] [64] [65]. Energy management is another type of smart

services deployed in smart spaces. These services utilizes IoT and other recent technologies to

monitor energy load and provide a smart consumption scheme for smart homes [66][67] and

office spaces [68] [69]. The list of these services and domains of application in smart spaces it so

106

vast that large scale implementations of smart spaces are now being termed as smart cities [70]

[71].

Although there are numerous effort for research and development as specified by the few

examples in the previous paragraph, there are still several questions to be answered yet. One of

the research challenges as specified by Helal [57] is, how intuitive and effective interaction

between users and smart spaces can be implemented?. The question becomes more valid when

viewed from the perspective of end-user customization of these IoT implementations in smart

spaces based on the user preferences. Intuitiveness is this regard is important as the end-user is

not equipped with programming skills and hence alternative techniques must be proposed and

tested. Literature review indicates that not much research has been done in this regard.

It is due to these circumstances that our second use-case for the usability analysis of the

proposed system has been chosen from smart space perspective. This chapter presents the use-

case for the usability analysis of the proposed architecture from the perspective of end-user

customization and control of a smart space. A prototype smart space based on sensing and

actuation devices has been developed for the use-case. Each device in the prototype smart space

has been implemented as a remote IoT resource and the proposed architecture can be utilized by

any common user to control and customize the interaction with the smart space. An experiment

has also been described in this chapter to analyze user feedback regarding the system usability.

7.2. Implementation architecture for smart-space

use-case

Figure 47 presents the previously described architecture from the perspective of the use-case

by highlighting the prototype smart space components implemented as CoAP resources for

107

remote programming and customization according to user preferences. The architecture also

illustrates the addition of new components for the evaluation and usability study of the system

from the perspective of the use-case. The following paragraphs briefly describe the architecture

from the perspective of the smart space programming and customization use-case and provide

the details of the experimental setup for usability analysis and user ratings.

Physical Objects

Physical
Layer

Intel Edison based CoAP Server

CoAP Service Interface

Virtual
Object Layer File Manager XML Parser Communication Manager

VO Behavior VO Attributes
VO

Visualization

VO Repository
(XML)ViewUpdate

Virtual Object Manager

File Streams Read/Write XDocument XElement
Server
Socket

Net Stream

Service
Composition

Layer

Add

VO information Acquisition Interface

VO Provision Service

Format Information

File Manager SO Serializer

File
Streams

Read/
Write

XML
Serializer

Classes
(XML Attrib)

SO Provision Service

Format Information

Input VO Joins Output VO

Visual Service Composition Manager

SO Repository (XML)

VO Acquisition Client

SO Provisioning Server

ViewUpdate Add

SO Manager

Business
Process
Layer

Tasks Conditions

BPM Editor

File Manager XAML Parser

File
Streams

Read/
Write

Notations Joins SO Acquisition Client

Process Object
Repository

BPM Deployment Engine

BPM Sequence

Process Execution

Communication

SO to process task
Mapping Manager

Model VisualizerSequence

Gas Sensor Module Buzzer Module LED Module Flame Sensor Module

U
sa

b
ili

ty
 T

es
t

C
as

e

U
se

r
R

at
in

gs

Figure 47: Smart space use-case implementation in the proposed architecture and modifications for usability

study

For the purpose of the prototype smart space demonstration, the various sensing and

actuating components e.g. the temperature sensor, gas sensor, buzzer, LED etc. are implemented

as CoAP enabled IoT devices. The Physical Layer of the architecture represents these

108

components as separate physical devices. The detail of implementation for these

components/devices is presented in a separate section in this document. The information of the

implemented smart space components is provided to the Virtual Object Manager by the user and

VOM converts the information into virtual objects.

The Service Composition Layer (SCL) utilizes the virtual objects for the smart space

components from the virtual object repository at the Virtual Object Layer. The Virtual Objects

are visualized using icons which can be interacted-with like any Windows based control. The

prototype component VOs include sensors as well as actuators for portraying a smart space

implementation, hence the users can create sensing as well as actuation service objects to

experience the system a more diverse manner. Service composition based on these components

enable the users to define their own sets of unit service objects which can be utilized to define

the interaction flow for the prototype smart space. Unit SOs for the smart space components are

created by linking the respective virtual objects with the generic input or output modules

provided by the SCM interface.

The Business Process Layer acquires the service object definitions from the SO repository at

SCL, parses the XML representation of the service objects to extract information and then

represent the services as BPMN task notations. The user can then utilize these notations to

visually create a business process model for the operation/behavior of the prototype smart space.

The user at the Business Process Layer can only utilize those components of the smart space for

which the service objects have been created at the Service Composition Layer. Once the BPM is

created, it can be deployed via the BPM deployment engine and the smart space prototype will

perform/behave in accordance with the user defined model.

109

7.3. Smart-space prototype implementation

This section provides the details of prototype implementation of smart space based use-case

for the DIY IoT composition architecture. The section will only describe the details of the

prototype smart space development and the associated components for usability analysis.

LED

Modules

Buzzer

Light

Sensor

Thermistor

Gas Detector

In
te

l E
dis

on

Figure 48: Intel Edison based finalized Smart-Space prototype

Figure 48 presents the finalized form of the prototype smart space. The prototype has been

developed as a miniature representation of a smart space scenario where multiple sensing

devices are deployed to capture the contextual data and actuating devices are deployed to modify

the surroundings or interact with the people in the smart space. The prototype consists of the

110

following sensing and actuating resources which will be used by users to define/customize the

behavior of the smart space based on the contextual situations. The following components have

been utilized in the smart space prototype implementation for context acquisition and are termed

as the input devices. Table 12 provides summary of the input devices used for this use case.

Gas sensor module: Gas sensor (MQ2) is a common and useful gas leakage detection module.

The module has been developed for Arduino related implementations and can be utilized for

home and industry related applications. It can detect Hydrogen gas, Liquefied Petroleum Gas,

Methane gas, Carbon Monoxide and smoke or Propane. It has been implemented as a CoAP

resource on the Edison platform for this use case.

Table 12: Input device implementation summary for smart space use-case

Input Devices Temperature

Sensor

Gas Sensor Light Sensor

Visual

Representation

Servo Model

TinkerKit

T000200

thermistor module

MQ2 gas sensor

module

TinkerKit T000090

LDR module

CoAP Server

Intel Edison with

Californium

Framework

Intel Edison with

Californium

Framework

Intel Edison with

Californium

Framework

CoAP Services

GetTempC

GetGasReading

GetLightReading

GetTempF

Temperature sensor module: TinkerKit T000200 thermistor is specifically designed to be used

with the TinkerKit development toolkit for Arduino. The thermistor outputs a voltage between 0

and 5 volts as the temperature value increases. The module has been utilized to implement

111

Edison based CoAP services for providing temperature values in Centigrade as well as

Fahrenheit scales.

Light sensor module: The TinkerKit T000090 Light Dependent Resistor (LDR) is another

module which is part of the TinkerKit development toolkit for Arduino. The LDR outputs 5

volts when it receives no light and 0 volts when it is exposed to bright light. The module has

been utilized to implement Edison based CoAP service for providing illumination value at a

given instant.

Table 13 provides the details related to the output devices used in the prototype

implementation of the smart space for the use-case. The four output devices include a buzzer and

three LED modules with different colors. Given below is a brief description of the buzzer and

LED modules.

Table 13: Output device implementation summary for smart space use-case

Output

Devices

Buzzer Red LED Green LED Yellow LED

Visual

Representation

Device Model KY-012 Active

Buzzer

TinkerKit

T01011x LED

Module

TinkerKit

T01011x LED

Module

TinkerKit

T01011x LED

Module

CoAP Server Intel Edison with

Californium

Framework

Intel Edison

with

Californium

Framework

Intel Edison

with

Californium

Framework

Intel Edison with

Californium

Framework

CoAP Services

BuzzerOn

RedLED_On

GreenLED_On

YellowLED_On

BuzzerOff

RedLED_Off

GreenLED_Off

YellowLED_Off

RedLED_Blink

GreenLED_Blink

YellowLED_Blink

112

Buzzer module: Active buzzers are used to produce sounds in electronics. The KY-012 active

buzzer has been utilized for producing some sort of alarming sound in the smart space prototype

implementation. The buzzer module is implemented as a CoAP resource on the Edison platform

and it exposes two CoAP services for turning the buzzer on and turning it off.

LED module: Light Emitting Diodes are the simplest types of output devices from the

perspective of electronic prototyping. We have used three LED modules from TinkerKit toolbox

for Arduino development. Each of these LEDs has been implemented as a CoAP resource which

exposes three CoAP services for turning the LED on, turning it off and making the LED blink

for a period of time.

The IoT resources have been implemented using Java programming and Californium framework

for CoAP implementations. The Californium framework aids in the development of CoAP server

and provides interfaces for CoAP based communication between the server and client. The

service names for each input and output device are used by the Virtual Object Manager along

with other information provided by the user to create complete URI for each CoAP resource.

7.4. Usability study for Smart-Space use-case

As the proposed system is focused on providing a DIY development environment for

enabling mass involvement in IoT applications development, its usability from the perspective of

end-user with different levels of programming skills can ultimately judge its performance. The

Smart-Space use-case has been developed to test the usability of the proposed architecture in the

IoT enabled Smart-Space domain. The study presented in this chapter is a two pronged study.

The first part captures the performance of users from the DIY perspective. This study allows the

user to interact with the system without any prior training and captures the performance data.

After that the user is trained briefly and the user is allowed to interact with the system in the

113

same manner capturing any difference in the performance of the users. The second part of the

study utilizes the System Usability Scale (SUS) [53] for the users to assess the system usability

from user’s perspective. SUS is a low-cost usability measurement procedure which correctly

categorizes the usability of a system even with smaller user groups. Table 3 provides the list of

items for SUS upon which the participant is asked to rate the system. SUS is a 10 item Likert

scale through which the users subjectively rate their experience with the system on a scale of 1

(Strongly Disagree) to 5 (Strongly Agree).

Virtual Object Manager

BPM Editor
(Process Modeling)

Service Composition Manager Virtual Objects

SO

CoAP based SO execution request

Response

 D
ev

 In
fo

BPM
Deployment

Manager

Californium
based CoAP

Server

Study
Participant

Intel Edison based
prototype smart space

Activity 1
Activity 2

Activity 3
Activity 4
Activity 5

CoAP Resources
Get Gas Reading
GetTempC
Get Light Reading
Buzzer On/Off
SO acquisition

Device Info
Device URI
Device Type
Device Location
Device Functions

Figure 49: Test scenario for usability assessment of smart space use-case

The test scenario for the smart space use-case is illustrated in the Figure 49. The XML

snippet termed as Virtual Objects in the figure shows the virtual representation of physical IoT

devices being sent from VOM to SCM while the second snippet shows the definition of an

individual Service Object (part of the BPM created by user as the definition of Smart Space

behavior) being sent to CoAP enabled Smart Space controller for execution. The response is sent

back to the Deployment Manager where further execution of the BPM based process is decided.

The Service Composition Layer and Business Process Layer for this use-case

implementation have been slightly changed so that it can be utilized for usability experiments.

114

The flows of the usability experiment at the Service Composition Layer and Business Process

Layer is given in the following sub-sections.

7.4.1. SCM usability assessment

Figure 50 illustrates the various steps of the usability analysis experiment designed for the

Service Composition Manager (SCM). The participant is given a brief description of a service

composition task with a visual cue related to the task that the participant is asked to implement

using the SCM.

The participant is allowed to interact with the service composition manager in order to

complete the task. A supervisor checks the progress of the participant. The time taken by the

participant in the first step is recorded along with the information if the task was successfully

completed or not. In the next step of the experiment, the participant is given a brief session of

training on how to use the SCM in order to compose a service. Once the training session is

completed, the participant is asked to implement the same task again using the SCM. Again the

elapsed time and the completion of the task are noted.

Once the interaction session of the participant is completed, a questionnaire based on System

Usability Survey is presented to the participant by the service composition manager in order to

rate the system based on his/her interaction experience. The participant also provides age and

gender information but no other personal information is recorded to keep the data anonymous.

The participant is asked to rate his/her level of computer knowledge on a scale of 1 to 10. This

information is not part of the SUS questionnaire but used for associating the SUS results with

age and computer knowledge for better assessment of the system usability.

115

Start

Initial
Instructions to

Participant

Start evaluation

Initialize Timer

Task
implementation

Task
Finished?

Record elapsed
time

without training

Train
Participant

Task could not
be completed.

Re-implement
Task

Reset Timer

Task
Finished?

Record elapsed
time

after training

Task could not
be completed.

Display SUS
form

All questions
answered?

Submit form

Alert participant
to answer all

questions.

Save Data

End

Figure 50: Flow of SCM usability analysis experiment for smart space use-case

For the usability analysis of the smart space use-case, a total of 18 participants took part in

the experimental setup explained below. The usability analysis of the proposed system was done

at Jeju National University, so most of the participants of the experiments were international

students and native Korean students from various departments along with some participants

116

external to the university. The participants mostly belonged to the age groups between 21 to 35

years with few outliers. The participants included 13 male and 5 female participants. The

experimental setup is summarized in Table 14.

Table 14: SCM usability assessment experimental setup based on smart space use-case

Test use-case Prototype Smart Space

Number of Participants 18

 Programmers Non-programmers

 9 9

Test environment Service Composition Manager (SCM)

Activity 1 SCM Task without

training

Creation of a Service Object for controlling an LED

module based on a specific range of temperature

value as read from the Thermistor module.

Data recorded Time to complete the task.

Successful/unsuccessful completion of the task

Brief training session on how to use the SCM

Activity 2 SCM task after

training

Creation of a Service Object for controlling an LED

module based on a specific range of temperature

value as read from the Thermistor module.

Data recorded Time to complete the task.

Successful/unsuccessful completion of the task

Activity 3 Usability rating Participant provides personal information and SUS

questionnaire based system usability ratings.

Data recorded SUS based participant’s responses for 10 questions.

7.4.1.1. SCM usability score based on SUS

All the participants in the experiment provided SUS based responses to the 10 questions

presented in Table 3. Figure 51 presents a question-wise summary boxplot of the responses from

all of the participants. The figure shows that for the odd number of SUS questions, the

participants mostly agreed by giving the ratings between 4 and 5. The median of responses for

Q7 and Q9 lies at 5 (Strongly agree) while for Q1, Q3, and Q5 the median response given by the

participants lies at 4.5, 4 and 4 respectively showing strong agreement with the positive

117

statements regarding the usability of the SCM. For the even numbered questions with negative

remarks about the system, the median responses by the participants for Q2, Q6, Q8 and Q10 lies

at 2 (Disagree) while for Q4 the median response by all the participants is 1.5. This shows a

strong disagreement of the study participants with the negative remarks regarding the usability

of the SCM in Smart Space scenario. The ‘+’ signs in the boxplot indicate any outlier values in

the responses data set recorded by 18 participants based on System Usability Scale.

Figure 51: Results of SCM usability study based on SUS. Rating values range from 1: "Don’t agree" to 5:

"Strongly agree" (Smart space use-case)

All the responses from the 18 participants were utilized to calculate the usability score for

the SCM based on the smart space use-case. The average usability score for the SCM is 80.6

which shows very positive response from all the participants and indicates that the system is

highly useable for end-user control and customization of smart space implementations.

118

7.4.1.2. SCM usability from DIY perspective

The analysis presented in this section is intended to check the usability of Service

Composition Manager from the perspective of a DIY platform. For this purpose, statistical

analysis of the time data recorded during the usability experiment for tasks performed by the

participants has been conducted.

Figure 52: Sample comparison of the time taken by both groups to complete SCM task without any prior

training (smart space use-case)

In order for the SCM to be a DIY platform for service composition, it should be equally

useable to people with less or no programming skills as it is to people with programming skills.

Based on the participant’s subjective ratings of their programming skills, two groups of

participants were defined. Participants with programming skills above 3 were included in the

‘Programmers’ (9) group while the rest were grouped as the ‘Non-programmers’ (9).

Two-Sample t-Test analysis was performed for the two groups based on the time taken by

each participant to complete the first service composition task without any training given to the

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9

T
im

e
(S

ec
)

Randomly selected pairs of participants

SCM task completion without prior training

Non-Programmers

Programmers

119

participants. Figure 52 provides a comparison graph of the sample data recorded for both groups

before any training was given to the participants. The graph shows the comparison of time in

seconds, taken by randomly selected individual participant from the ‘Non-Programmers’ group

with a randomly selected participant from the ‘Programmers’ group. A total of 9 sample

comparisons are shown in the graph which shows a numerical difference in the mean time taken

by both groups to complete the activity 1 using the SCM in the Smart-Space scenario.

Figure 53: Percentage for successful SCM task completion by Programmers and Non-Programmers (Smart

space scenario)

As there was no prior training, participants from both groups made errors while completing

the activity 1. Figure 53 provides a comparison of the percentage of each group completing the

task with or without errors. Table 15 shows the outcome of the t-Test analysis based on the null

hypothesis (H0) that the mean time in seconds taken by programmers to complete the task

without training is not significantly different than the mean time taken by the non-programmers

to complete the same task without any prior training (Hypothesized Mean Difference =0).

H0: µ0 - µ1 = 0

H1: µ0 - µ1 ≠ 0

For the null hypothesis to be rejected, t Stat should be greater than t Critical two-tail. This is

not the case as described in Table 15, 0.66 < 2.13, hence the null hypothesis is accepted which

120

means that there was no statistically significant difference in the time taken by programmers to

complete the service composition task without any prior training (M=102.67) and the time taken

by non-programmers to complete the task without any prior training (M=96.43); t(15)=2.13, p =

0.66. This result supports the fact that in the first experimental analysis for the smart space use-

case, the difference in time to complete the service composition task without any prior training

for both groups was very small and shows that even without prior training anyone can utilize

SCM effectively without the need to have special technical skills.

Table 15: Two-Sample t-Test for unequal variances (Activity 1 before training)

 Non-Programmers Programmers

Mean 103.6714 96.43367

Variance 406.5848 674.2933

Observations 9 9

Hypothesized Mean

Difference 0

df 15

t Stat 0.660447

P(T<=t) two-tail 0.518981

t Critical two-tail 2.13145

The change in the results of the smart space use-case can be attributed to the fact that people

are generally more informed about the common devices (temperature sensors, LEDs etc.) used

for the smart space scenario. The mean time to complete the service composition task without

any prior training for both groups indicates that all the participants took more time to complete

the smart space based task as compared to the robotic arm control task. This is due to the fact

that the smart space service composition task involved setting the conditions for input devices in

order to control the behavior of output devices which was not the case in the smart space use-

case.

121

A second Two-Sample t-Test was performed for the two groups based on the time taken by

each participant to complete the same service composition task after a brief session of training

given to the participants. Figure 54 provides a comparison graph of the sample data recorded for

both groups after training was given to the participants. The graph shows the comparison of time

in seconds, taken by randomly selected individual participant from the ‘Non-Programmers’

group with a randomly selected participant from the ‘Programmers’ group. A total of 9 sample

comparisons are shown in the graph which shows a numerical difference in the mean time taken

by both groups to complete the activity 2 using the SCM in the Smart-Space scenario.

Figure 54: Sample comparison of the time taken by both groups to complete SCM task after the training

(smart space use-case)

Table 16 shows the outcome of the t-Test based on the null hypothesis (H0) that the mean

time taken by programmers to complete the task after the training is not significantly different

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9

T
im

e
(S

ec
)

Randomly selected pairs of participants

SCM task completion after training

Non-Programmers

Programmers

122

than the mean time taken by the non-programmers to complete the same task after the training

session (Hypothesized Mean Difference =0).

H0: µ0 - µ1 = 0

H1: µ0 - µ1 ≠ 0

As shown in Table 16, t Stat is not greater than t Critical two-tail (1.53 < 2.13), hence the

null hypothesis is accepted. The test specifies that there is no statistically significant difference

in the time taken by programmers to complete the service composition task after the training

session (M=33.20) and time taken by non-programmers to complete the task after the training

session (M=35.69); t(9)=1.52, p = 0.147. The task completion rate without any errors for groups

was 100 percent indicating the effectiveness of the SCM with minimal amount of training to the

users.

Table 16: Two-Sample t-Test for unequal variances (Activity 2 after training)

 Non-Programmers Programmers

Mean 35.68767 33.19644

Variance 8.14964 15.77758

Observations 9 9

Hypothesized Mean

Difference 0

df 15

t Stat 1.527874

P(T<=t) two-tail 0.147354

t Critical two-tail 2.13145

The statistical analysis shows that the mean time taken by both groups to complete the

service composition task after the training has significantly reduced. The absence of any

statistical difference in the time for both groups indicates that SCM is suitable for the DIY usage

and that it can be utilized for DIY service composition in the smart space domain.

123

7.4.2. BPM Editor usability assessment

Start

Initial
Instructions to

Participant

Start evaluation

Initialize Timer

Simple BPM
implementation

Task
Finished?

Record elapsed
time

without training

Train
Participant

Task could not
be completed.

Re-implement
Simple BPM

Reset Timer

Task
Finished?

Record elapsed
time

after training

Task could not
be completed.

Display SUS
form

All questions
answered?

Submit form

Alert participant
to answer all

questions.

Save Data

End

Instruction for
Complex BPM

Start
Implementation

Task
Finished?

Record elapsed
time

For complex
implementation

Task could not
be completed.

Figure 55: Flow of BPM Editor usability experiment for smart space use-case

Figure 55 illustrates the various steps of the usability analysis experiment designed for the

Business Process Modeling Editor at the Business Process Layer of the proposed system. The

participant is given a brief description of a simple process based on the previously composed

124

services with a visual cue related to the final model of the process that the participant is asked to

implement using the BPM Editor. The participant is allowed to interact with the editor in order

to model the process by simple drag-n-drop and mouse click operation on the graphical BPM

notations. A supervisor checks the progress of the participant. The time taken by the participant

in the first step is recorded by the application along with the information if the task was

successfully completed or not.

Table 17: BPM Editor usability assessment experimental setup based on smart space use-case

Test use-case Prototype Smart Space

Number of Participants 18

 Programmers Non-programmers

 9 9

Test environment Business Process Modeling Editor (BPM Editor)

Activity 1 Simple BPM task

without training

Three step BPM creation task to for the control of

prototype smart space behavior.

Data recorded Time to complete the task.

Successful/unsuccessful completion of the task

Brief training session on how to use BPM Editor

Activity 2 Simple BPM task

after training

Three step BPM creation task to for the control of

prototype smart space behavior.

Data recorded Time to complete the task.

Successful/unsuccessful completion of the task

Activity 3 Complex BPM

task

6 Step BPM task utilizing gateway notations and

script notations to create a complex process model

for smart space behavior control.

Data recorded Time to complete the task.

Successful/unsuccessful completion of the task

Activity 4 Usability rating Participant provides personal information and SUS

questionnaire based system usability ratings.

 Data recorded SUS based participant’s responses for 10 questions.

In the next step of the experiment, the participant is given a brief session of training on how

to use the BPM Editor in order to visually create a business process model. Once the training

session is completed, the participant is asked to create the same business process model again

125

using the BPM editor. Again the elapsed time and the completion of the task are recorded by the

system.

As business process models can become complex for larger processes, an extra step has been

added to this experiment to let the participant assess the system based on a complex process

modeling task. In this step, the participant is given the description of a more complex process

model to be visually created using the BPM editor. The participant tries to visually create the

corresponding process model using the graphical notations. Again the time taken by the

participant to complete the task or to withdraw from the step is recorded by the system. Once the

interaction session of the participant is completed, a System Usability Scale based assessment

form is presented to the participant by the system in order to rate the system based on his/her

interaction experience.

The participant also provides age and gender information but no other personal information

is recorded to keep the data anonymous. The participant is asked to rate his/her level of

computer programming skill on a scale of 1 to 5. This information is not part of the SUS

questionnaire but used for further usability analysis of the system from a DIY perspective. Table

17 provides a summary of the experimental setup.

7.4.2.1. BPM Editor usability score based on SUS

All the participants in the experiment provided SUS based responses to the 10 questions

presented in Table 3. Figure 56 presents a question-wise summary boxplot of the responses from

all of the participants. The figure shows that the median of responses for odd numbered

questions of SUS Q1, Q3, Q5, Q7 and Q9 lies at 4, 4, 3.5, 5 and 5 respectively. This shows a

strong agreement of the study participants with the positive statements regarding the usability of

the BPM Editor in Smart-Space scenario. For the even numbered questions with negative

126

remarks about the system’s usability, the median responses by the participants for Q2, Q4, Q6,

Q8 and Q10 lies at 2, 2, 2.5, 1.5 and 1 respectively. These median responses show a strong

disagreement of the study participants with the negative remarks regarding the usability of the

BPM Editor in Smart-Space scenario. The ‘+’ signs in the boxplot indicate any outlier values in

the responses data set recorded by 18 participants based on System Usability Scale.

Figure 56: Results of BPM usability study based on SUS. Rating values range from 1: "Don’t agree" to 5:

"Strongly agree" (Smart space use-case)

All the responses from the 18 participants were utilized to calculate the usability score for

the Business Process Modeling Editor based on the use-case 2 scenario. The average usability

score for the BPM Editor is 81.95 which shows very positive response from all the participants

and indicates that the BPM based IoT application development for the smart space domain is

highly useable based on user ratings.

127

7.4.2.2. BPM Editor usability from DIY perspective

Figure 57: Sample comparison of the time taken by both groups to complete BPM simple task without any

prior training (Smart space use-case)

In the second part of the usability analysis experiment for the second use-case, the

participants were asked to create a simple BPM for controlling the prototype smart space without

any prior training on how to use the proposed BPM Editor. Figure 57 provides a comparison

graph of the sample data recorded for both groups. The graph shows the comparison of time in

seconds, taken by randomly selected individual participant from the ‘Non-Programmers’ group

with a randomly selected participant from the ‘Programmers’ group. A total of 9 sample

comparisons are shown in the graph which shows a numerical difference in the mean time taken

by both groups to complete the activity 1 using the BPM Editor for the Smart-Space scenario.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9

T
im

e
(S

ec
)

Randomly selected pairs of participants

BPM Simple task completion without prior

training

Non-Programmers

Programmers

128

As there was no prior training, participants from both groups made errors while completing

the activity 1. Figure 58 provides a comparison of the percentage of each group completing the

task with or without errors.

Figure 58: Comparison of percentage successful completion of simple BPM task by Programmers vs Non-

Programmers without any prior training (smart space use-case)

A Two-Sample t-Test analysis was performed for the two groups (non-programmers,

programmers) based on the time taken by each group member to complete the simple BPM task

without any training given to the participants. Table 18 shows the outcome of the t-Test analysis

based on the null hypothesis (H0) that the mean time taken by programmers to complete the task

without training is not significantly different than the mean time taken by the non-programmers

to complete the same task without any prior training (Hypothesized Mean Difference =0).

H0: µ0 - µ1 = 0

H1: µ0 - µ1 ≠ 0

Based on the outcome of the t-Test analysis, the null hypothesis is accepted which means

that there is a significant difference in the time taken by programmers to complete the BPM task

129

without any prior training (M=102.58) and time taken by non-programmers to complete the task

without any prior training (M = 115.24); t(16) = 1.48, p = 0.159.

Table 18: Two-Sample t-Test for unequal variances (Simple BPM task without prior training, smart space use-

case)

 Non-Programmers Programmers

Mean 115.238 102.5856

Variance 373.1667 287.9604

Observations 9 9

Hypothesized Mean

Difference 0

df 16

t Stat 1.476227

P(T<=t) two-tail 0.159292

t Critical two-tail 2.119905

Figure 59: Sample comparison of the time taken by both groups to complete BPM simple task after the training

(Smart space use-case)

The analysis indicates that although there is numerical difference between the mean time

taken by both groups to complete the simple BPM task but it is not statistically significant.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

T
im

e
(S

ec
)

Randomly selected sample pairs of participants

BPM Simple task completion after training

Non-Programmers

Programmers

130

Hence, it is safe to state that BPM Editor is usable equally for people with no or less

programming skills as it is for programmers. This analysis backs the proposed idea that BPM

Editor can be used as a DIY IoT application composer. The results also supports the fact that the

BPM Editor usability experiment in the robotic arm use-case also resulted in a small difference

of time taken by both the groups to complete the simple BPM task but just not small enough to

prove the null hypothesis true.

To further strengthen the claim, a second Two-Sample t-Test was performed for the two

groups based on the time taken by each group member to complete the same BPM task after a

brief session of training given to the participants. Figure 59 provides a comparison graph of the

sample data recorded for both groups to complete the simple task after the training session. The

graph shows the comparison of time in seconds, taken by randomly selected individual

participant from the ‘Non-Programmers’ group with a randomly selected participant from the

‘Programmers’ group. A total of 9 sample comparisons are shown in the graph which shows a

numerical difference in the mean time taken by both groups to complete the activity 2 using the

BPM Editor for the Smart-Space scenario.

Table 19: Two-Sample t-Test for unequal variances (Simple BPM task after training, smart space use-case)

 Non-Programmers Programmers

Mean 53.17033 47.00756

Variance 76.32227 47.95783

Observations 9 9

Hypothesized Mean

Difference 0

df 15

t Stat 1.658429

P(T<=t) two-tail 0.11799

t Critical two-tail 2.13145

131

Table 19 shows the outcome of the t-Test based on the null hypothesis (H0) that the mean

time taken by programmers to complete the task after the training is not significantly different

than the mean time taken by the non-programmers to complete the same task after the training

session (Hypothesized Mean Difference =0).

H0: µ0 - µ1 = 0

H1: µ0 - µ1 ≠ 0

According to the outcome of the t-Test analysis, the null hypothesis is accepted. It means

that there is no statistically significant difference found in the time taken by programmers to

complete the BPM task (M=47.01) and the time taken by non-programmers to complete the task

(M=53.17) after both groups had the short training session on how to use the BPM Editor;

t(15)=1.66, p = 0.117. It is thus deduced, that both groups performed almost the same after the

brief training session with a significant reduction in the mean time taken to complete the Simple

BPM task. It is however, notable that the percentage of successful task completion without any

error by both the groups rose to 100 percent, an indication of how easily anyone can learn to use

the BPM based DIY IoT composition platform.

To further test the DIY nature of the BPM Editor in smart space scenario, both the groups of

participants were asked to complete a more complex BPM task. The time in seconds for

programmers and non-programmers to complete the task has been presented in

Figure 60. The graph shows the comparison of time in seconds, taken by randomly selected

individual participant from the ‘Non-Programmers’ group with a randomly selected participant

from the ‘Programmers’ group. A total of 9 sample comparisons are shown in the graph which

shows a numerical difference in the mean time taken by both groups to complete the activity 3

using the BPM Editor for the Smart-Space scenario. The percentage successful completion of the

complex BPM task without any errors is shown in Figure 61. The graphs illustrate that

132

programmers and non-programmers regardless of their programming skills level can utilize the

BPM Editor with the same success rate.

Figure 60: Sample comparison of the time taken by both groups to complete BPM complex task (smart

space use-case)

Figure 61: Comparison of percentage successful completion of BPM complex task by Programmers vs Non-

Programmers (smart space use-case)

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9

T
im

e
(S

ec
)

Randomly selected sample pairs of participants

BPM Complex task completion

Non-Programmers

Programmers

133

To statistically analyze the data a Two-Sample t-Test assuming unequal variances has been

conducted. The null hypothesis (H0) states that the mean time taken by programmers to

complete the complex BPM task is not significantly different than the mean time taken by the

non-programmers to complete the same task (Hypothesized Mean Difference =0). Table 20

presents the outcome of the t-Test.

Table 20: Two-Sample t-Test for unequal variances (BPM complex task, Smart space use-case)

 Non-Programmers Programmers

Mean 133.6898 138.6546

Variance 398.1995 1819.463

Observations 9 9

Hypothesized Mean

Difference 0

df 11

t Stat -0.31628

P(T<=t) two-tail 0.75771

t Critical two-tail 2.200985

According to the outcome of the t-Test analysis, the null hypothesis is accepted. It means

that there is no statistically significant difference found in the time taken by programmers to

complete the complex BPM task (M=138.65) and the time taken by non-programmers to

complete the same task (M = 133.58); t(11) = -0.316, p = 0.758.

The means for each sample and the negative t Stat value indicates that in this case the

programmer took more time to complete the complex BPM task than the time taken by non-

programmers. Figure 61 shows that the percentage success rate without errors for both the

groups while completing the BPM complex task is exactly the same showing same behavior of

any participant regardless their programming skills level.

134

Based on the Skewness (1.34) and Kurtosis (2.46) values for the sample data, it cannot be

safely said that the time data collected for both groups to complete the BPM complex task is

normal enough. Hence, a non-parametric statistical analysis is conducted in the form of Mann-

Whitney U. Mann-Whitney U is mostly used in situations where the data sample for analysis

does not follow a normal distribution. Table 21 provides all the details of finding Mann-Whitney

U for the time taken by Programmers and non-programmers to complete the BPM complex task

with the null hypothesis (H0) that there is no statistically significant difference in the time for

both groups.

Table 21: Mann-Whitney-U Test for non-parametric equivalence (BPM complex task, Smart space use-case)

Data samples 18

Number of Non-Programmers (group 1) n1 9

Number of Programmers (group 2) n2 9

R1 74

R2 97

U1 52

U2 29

t-Stat (from Mann-Whitney U table) 17

As the smaller U (U2 in this case) is greater than t-Stat (29 > 17), hence the null hypothesis

is accepted proving that the difference in time taken by each group to complete the BPM

complex task is statistically not significant and that BPM Editor can provide a DIY

programming interface to anyone regardless of their programming skills level. Hence, it can be

deduced from the analysis that the BPM Editor can be utilized as an effective DIY development

environment for smart space related IoT application and process modeling.

135

8. Conclusion

The vision of Internet of Things is a global network of diverse sensing and actuating devices

for the provision of useful services via data acquisition, communication, data sharing and

actuations. Global adaptation of the IoT vision requires mass involvement of general population

and the lack of technical and programming skills on behalf of the common people drives the

motivation to towards the development of Do-It-Yourself type IoT development platforms and

architectures.

This study proposes the novel idea of enhanced IoT composition architecture based on DIY

Business Process Modeling approach. The presented system utilizes the prevalent ideas of object

virtualization and service provisioning and represents them as a DIY interface based on a

Business Process Modeling (BPM). BPM has been at the core of software requirement analysis

and specification processes. It fills the communication gap between the clients and developers by

providing a standardized set of graphical notation called as the Business Process Modeling

Notations (BPMN). BPMN is easy to learn and can be globally interpreted into the same

description of a process. Although there are efforts to extend BPMN to incorporate IoT concepts

but we believe that a standardized modeling language such as BPMN can provide better DIY

environment for IoT application development. It is specifically important from the IoT point of

view because IoT is an emerging field and mass involvement has been reported to be very

necessary for the successful realization of IoT vision. The DIY approach of development in such

a scenario may prove very beneficial as it eliminates the requirement of programming skills on

behalf of the users or general public.

The study visualizes the presented idea in the form of a layered architecture which consists

of the Physical Layer, Virtual Object Layer, Service Composition Layer and the Business

136

Process Layer. A detailed description of the layered architecture and design detail of the layers

has been presented in this document. In order to demonstrate the applicability and usability of

the proposed architecture in multiple domains, two use-cases have been selected from industrial

robotics and smart space domain respectively. Prototype implementations based on CoAP

devices and services have been developed to demonstrate the feasibility of the proposed system

and to perform usability studies for each use-case. For the usability studies, the System Usability

Scale (SUS) based preliminary usability studies have been carried out. Apart from the SUS

based usability scoring, further statistical analysis has been conducted for both the use-case

scenarios to assess the usability of the proposed architecture from a DIY perspective. For this

purpose, participants’ task completion time during the experiments was recorded. Data was

grouped based on the reported programming skills of the participants and t-Test analysis was

carried out for both the groups to determine if the system can provide a better DIY environment

regardless of the programming skills of the users. The results of extensive analysis based on the

two use-case scenarios indicate that the proposed system can provide better DIY programming

environment to anyone in multi-domain setups.

137

References

[1] W. S., “Business process modeling improves administrative control,” Automation, pp.

44–50, 1967.

[2] V. Alpha, O. M. G. D. Number, and P. D. F. A. File, “BPMN 2.0 by Example,” vol. 8,

no. June, 2010.

[3] M. Rosen, B. Lublinsky, and K. T. Smith, Applied SOA. Indianapoli: Wiley Publishing,

Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256, 2008.

[4] V. Stiehl, Process-Driven Applications with BPMN. Springer International Publishing,

2014.

[5] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle, “The Web of Things: Interconnecting

Devices with High Usability and Performance,” in 2009 International Conference on

Embedded Software and Systems, 2009, pp. 323–330.

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision,

architectural elements, and future directions,” Futur. Gener. Comput. Syst., vol. 29, no. 7,

pp. 1645–1660, Sep. 2013.

[7] a P. Castellani, M. Gheda, N. Bui, M. Rossi, and M. Zorzi, “Web Services for the

Internet of Things through CoAP and EXI,” Commun. Work. (ICC), 2011 IEEE Int.

Conf., no. Xml, pp. 1–6, 2011.

[8] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP),”

2014.

[9] S. Meyer, A. Ruppen, and L. Hilty, “The Things of the Internet of Things in BPMN,”

Adv. Inf. Syst. Eng. Work., vol. 215, pp. 285–297, 2015.

[10] M. Bauer, M. Boussard, N. Bui, and F. Carrez, “Project Deliverable D1.2 – Final

Architectural Reference Model for IoT,” no. 257521, pp. 53–59, 2013.

[11] M. G., “Integrating the Internet of Things with business process management: A process-

aware framework for Smart Objects,” CEUR Workshop Proc., vol. 1415, pp. 56–64,

2015.

[12] N. Eddy, “Gartner: 21 Billion IoT Devices To Invade By 2020 - InformationWeek,”

2015. [Online]. Available: http://www.informationweek.com/mobile/mobile-

devices/gartner-21-billion-iot-devices-to-invade-by-2020/d/d-id/1323081. [Accessed: 08-

Jan-2016].

[13] M. Wolf and S. McQuitty, “Understanding the do-it-yourself consumer: DIY motivations

and outcomes,” AMS Rev., vol. 1, no. May 2016, pp. 154–170, 2011.

[14] A. Aluva, “Why DIY Concept Has Started Trending Among Indian Startups - Inc42

Media,” 2015. [Online]. Available: https://inc42.com/resources/startups-adopting-do-it-

yourself-models-diy-concept-trending-among-indian-startups/. [Accessed: 24-May-

2016].

[15] D. De Roeck, K. Slegers, J. Criel, M. Godon, L. Claeys, K. Kilpi, and A. Jacobs, “I

138

would DiYSE for it!,” Proc. 7th Nord. Conf. Human-Computer Interact. Mak. Sense

Through Des. - Nord. ’12, p. 170, 2012.

[16] L. J. Bannon, “Forgetting as a feature, not a bug: the dualityof memory and implications

for ubiquitous computing,” CoDesign, vol. 2, no. 1, pp. 3–15, 2006.

[17] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Comput.

Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[18] K. Gama, L. Touseau, and D. Donsez, “Combining heterogeneous service technologies

for building an Internet of Things middleware,” Comput. Commun., vol. 35, no. 4, pp.

405–417, Feb. 2012.

[19] L. Atzori, A. Iera, and G. Morabito, “From ‘smart objects’ to ‘social objects’: The next

evolutionary step of the internet of things,” IEEE Commun. Mag., vol. 52, no. 1, pp. 97–

105, Jan. 2014.

[20] C. Anderson, “Makers: The New Industrial Revolution,” Compet. Rev., vol. 24, no. 2, pp.

147–149, Mar. 2014.

[21] J. G. Tanenbaum, A. M. Williams, A. Desjardins, and K. Tanenbaum, “Democratizing

technology,” in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems - CHI ’13, 2013, p. 2603.

[22] H. Michael, Essential business process modeling. 2005.

[23] J. Barjis, “The importance of business process modeling in software systems design,” Sci.

Comput. Program., vol. 71, no. 1, pp. 73–87, 2008.

[24] D. (AccuProcess I. . Singh, “5 Key Benefits of Business Process Modeling > Business

Analyst Community & Resources | Modern Analyst.” [Online]. Available:

http://www.modernanalyst.com/Resources/Articles/tabid/115/ID/1728/5-Key-Benefits-

of-Business-Process-Modeling.aspx. [Accessed: 04-Jun-2016].

[25] M. Chinosi and A. Trombetta, “BPMN: An introduction to the standard,” Comput. Stand.

Interfaces, vol. 34, no. 1, pp. 124–134, 2012.

[26] R. Want, B. N. Schilit, and S. Jenson, “Enabling the internet of things,” Computer (Long.

Beach. Calif)., vol. 48, no. 1, pp. 28–35, 2015.

[27] S. Flowers, M.-G. Juan, J. Sapsed, P. Nightingale, A. Grantham, and G. Voss, “The New

Inventors: How users are changing the rules of innovation,” 2008.

[28] R. Kleinfeld, S. Steglich, L. Radziwonowicz, and C. Doukas, “Glue.Things: A Mashup

Platform for Wiring the Internet of Things with the Internet of Services,” Proc. 5th Int.

Work. Web Things, pp. 16–21, 2014.

[29] Roberto, “Introduction to Node RED | Sensetecnic,” 2015. [Online]. Available:

http://developers.sensetecnic.com/article/introduction-to-node-red/. [Accessed: 19-Apr-

2016].

[30] S. Heo, S. Woo, J. Im, and D. Kim, “IoT-MAP : IoT Mashup Application Platform for

the Flexible IoT Ecosystem,” in 5th International Conference on the Internet of Things

(IoT), 2015, pp. 163–170.

[31] C. Richardson, “Overview of POJO programming,” 2006.

139

[32] F. Pramudianto, C. A. Kamienski, E. Souto, F. Borelli, and L. L. Gomes, “IoTLink : An

Internet of Things Prototyping Toolkit,” in 11th International Conference on Ubiquitous

Intelligence & Computing, 2014, pp. 1–9.

[33] H. Nguyen, M. Quoc, and M. Serrano, “Super Stream Collider–Linked Stream Mashups

for Everyone,” in Semantic Web Challenge co-located with ISWC2012, 2012.

[34] D. Carlson, M. Mögerle, M. Pagel, S. Verma, and D. S. Rosenblum, “Ambient Flow: A

visual approach for orchestrating smart devices in the internet of things,” in 5th

International Conference on the Internet of Things (IoT), 2015.

[35] N. Kefalakis, J. Soldatos, A. Anagnostopoulos, and P. Dimitropoulos, “A Visual

Paradigm for IoT Solutions Development,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9001, pp. 169–182, 2015.

[36] J. Coutaz and J. L. Crowley, “A First-Person Experience with End-User Development for

Smart Homes,” IEEE Pervasive Comput., vol. 15, no. 2, pp. 26–39, 2016.

[37] M. M. Burnett and B. a. Myers, “Future of end-user software engineering: beyond the

silos,” Proc. Futur. Softw. Eng. - FOSE 2014, no. April 2016, pp. 201–211, 2014.

[38] A. Salihbegovic, T. Eterovic, E. Kaljic, and S. Ribic, “Design of a domain specific

language and IDE for Internet of things applications,” 2015 38th Int. Conv. Inf. Commun.

Technol. Electron. Microelectron. MIPRO 2015 - Proc., no. May, pp. 996–1001, 2015.

[39] “openHAB.” [Online]. Available: http://www.openhab.org/. [Accessed: 19-Apr-2016].

[40] J. Munoz, V. Pelechano, and C. Cetina, “Implementing a pervasive meeting room: A

model driven approach,” Int. Work. Ubiquitous Comput. (IWUC 2006), pp. 13–20, 2006.

[41] B. Bertran, J. Bruneau, D. Cassou, N. Loriant, C. Consel, B. Bertran, J. Bruneau, D.

Cassou, N. Loriant, and E. Balland, “DiaSuite : a Tool Suite To Develop Sense /

Compute / Control Applications,” Sci. Comput. Program., no. 4, 2012.

[42] M. Kovatsch, “CoAP for the Web of Things: From Tiny Resource-constrained Devices to

the Web Browser,” in 4th International Workshop on the Web of Things (WoT 2013),

2013.

[43] M. Butcher, “REST Without JSON: The Future of IoT Protocols - DZone IoT,” 2015.

[Online]. Available: https://dzone.com/articles/json-http-and-the-future-of-iot-protocols.

[Accessed: 23-May-2016].

[44] F. Wortmann and K. Fluchter, “Internet of Things,” Bus. Inf. Syst. Eng., no. JANUARY,

2015.

[45] H. S. Kang, J. Y. Lee, S. Choi, H. Kim, J. H. Park, J. Y. Son, B. H. Kim, and S. Do Noh,

“Smart Manufacturing : Past Research , Present Findings , and Future Directions,” Int. J.

Precis. Eng. Manuf. Technol., vol. 3, no. 1, pp. 111–128, 2016.

[46] K. Cheng, “Keynote presentation—2: Smart tooling, smart machines and smart

manufacturing: Working towards the Industry 4.0 and beyond,” Autom. Comput., pp. 1–

1, 2015.

[47] T. Qu, S. P. Lei, Z. Z. Wang, D. X. Nie, and X. Chen, “IoT-based real-time production

logistics synchronization system under smart cloud manufacturing,” Int. J. Adv. Manuf.

140

Technol., pp. 1–8, 2015.

[48] D. Zhang, J. Wan, C.-H. R. Hsu, and A. Rayes, “Industrial technologies and applications

for the Internet of Things.,” Comput. Networks, pp. 1–4, 2016.

[49] M. Xia, T. Li, Y. Zhang, and C. W. De Silva, “Closed-loop design evolution of

engineering system using condition monitoring through In- ternet of Things and cloud

computing,” Comput. Networks, no. 2016, 2015.

[50] M. Wei, S. Ho, and M. Alam, “An IoT-based energy-management platform for industrial

facilities,” Appl. Energy, vol. 164, pp. 607–619, 2016.

[51] R. Ramakrishnan and L. Gaur, “Application of Internet of Things (IoT) for Smart

Process Manufacturing in Indian Packaging Industry,” Inf. Syst. Des. Intell. Appl., pp.

339–346, 2016.

[52] J. Rivera and R. van der Meulen, “Gartner Says 4.9 Billion Connected ‘Things’ Will Be

in Use in 2015,” 2014. [Online]. Available:

http://www.gartner.com/newsroom/id/2905717. [Accessed: 05-May-2016].

[53] J. Brooke, “SUS - A quick and dirty usability scale,” Usability Eval. Ind., vol. 189, no.

194, pp. 4–7, 1996.

[54] A. Bangor, P. Kortum, and J. Miller, “The system usability scale (SUS): An empirical

evaluation,” Int. J. Hum. Comput. Interact., vol. 24, no. 6, pp. 574–594, 2008.

[55] A. Bangor, P. Kortum, and J. Miller, “Determining what individual SUS scores mean:

Adding an adjective rating scale,” J. usability Stud., vol. 4, no. 3, pp. 114–123, 2009.

[56] D. G. Korzun, S. I. Balandin, and A. V. Gurtov, “Deployment of Smart Spaces in Internet

of Things : Overview of the Design Challenges,” Internet Things, Smart Spaces, Next

Gener. Netw., no. August 2013, pp. 0–12, 2016.

[57] S. Helal and S. Tarkoma, “Smart Spaces,” PERVASIVE Comput., pp. 22–23, 2015.

[58] M. Carmen, “An overview of the Internet of Things for people with disabilities,” J. Netw.

Comput. Appl., vol. 35, no. 2, pp. 584–596, 2012.

[59] D. Zafra, J. Medina, L. Martinez, C. Nugent, and M. Espinilla, “A Web System for

Managing and Monitoring Smart Environments,” Bioinforma. Biomed. Eng., vol. 1, pp.

677–688, 2016.

[60] Y. Hsueh, N. Lin, C. Chang, W. Lie, and I. Engineering, “Abnormal Event Detection

Using Bayesian Networks at a Smart Home,” in 8th International Conference on Ubi-

Media Computing (UMEDIA), 2015, pp. 273–277.

[61] B. Chen, Z. Fan, and F. Cao, “Activity Recognition Based on Streaming Sensor Data for

Assisted Living in Smart Homes,” in International Conference on Intelligent

Environments Activity, 2015.

[62] W. S. Lima, E. Souto, T. Rocha, R. W. Pazzi, and F. Pramudianto, “User Activity

Recognition for Energy Saving in Smart Home Environment,” in 20th IEEE Symposium

on Computers and Communication (ISCC) User, 2015, pp. 751–757.

[63] T. Abiodun, M. Soliman, T. Abiodun, T. Hamouda, J. Zhou, and C. Lung, “Smart Home :

Integrating Internet of Things with Web Services and Cloud Computing,” in IEEE

141

International Conference on Cloud Computing Technology and Science Smart, 2013, no.

April 2016.

[64] J. Zhu, X. Jia, and X. Mei, “Smart home control system based on Internet of Things,”

Appl. Mech. Mater., vol. 738–739, pp. 233–237, 2015.

[65] R. Piyare, “Internet of Things : Ubiquitous Home Control and Monitoring System using

Android based Smart Phone,” Int. J. Internet Things, vol. 2, no. 1, pp. 5–11, 2013.

[66] J. Kim, “HEMS (Home Energy Management System) Base on the IoT Smart Home,”

Contemp. Eng. Sci., vol. 9, no. 1, pp. 21–28, 2016.

[67] A. Anvari-moghaddam, H. Monsef, and A. Rahimi-kian, “Optimal Smart Home Energy

Management Considering Energy Saving and a Comfortable Lifestyle,” IEEE Trans.

Smart Grid, vol. 6, no. 1, pp. 324–332, 2015.

[68] M. Choi, W. Park, and I. Lee, “Smart Office Energy-Saving Service Using Bluetooth

Low Energy Beacons and Smart Plugs,” in IEEE International Conference on Data

Science and Data Intensive Systems Smart, 2015, pp. 247–251.

[69] C. Rottondi, M. Duchon, D. Koss, G. Verticale, and B. Schätz, “An Energy Management

System for a Smart Office Environment,” in International Conference and Workshops on

Networked Systems (NetSys), 2015, pp. 1–6.

[70] J. Jin, J. Gubbi, and S. Marusic, “An Information Framework for Creating a Smart City

Through Internet of Things,” IEEE INTERNET THINGS J., vol. 1, no. 2, pp. 112–121,

2014.

[71] R. Jalali, K. El-khatib, and C. Mcgregor, “Smart City Architecture for Community Level

Services Through the Internet of Things,” in 18th International Conference on

Intelligence in Next Generation Networks, 2015, pp. 108–113.

	Abstract
	1. Introduction
	2. Related work
	2.1. Existing IoT composition research
	2.2. Issues with the existing solutions from the DIY perspective
	2.3. Existing IoT protocols

	3. Proposed DIY IoT System Architecture
	3.1. Virtual Object Layer
	3.2. Service Composition Layer
	3.3. Business Process Layer
	3.4. Development Process
	3.5. Data representations

	4. BPM based DIY IoT System Design
	4.1. Virtual Object Layer
	4.2. Service Composition Layer
	4.3. Business Process Layer

	5. BPM Based DIY IoT System Implementation
	5.1. Virtual Object Manager
	5.2. Service Composition Manager
	5.3. BPM Editor
	5.4. BPM Deployment Manager
	5.5. Performance Analysis

	6. Usability Study for Robotic Arm Use-case
	6.1. IoT in Industrial Robotics
	6.2. Implementation architecture for robotic arm use-case
	6.3. Robotic Arm prototype implementation
	6.4. Usability study for Robotic Arm use-case
	6.4.1.1. SCM usability assessment for Robotic Arm use-case
	6.4.1.2. SCM usability score based on SUS
	6.4.1.3. SCM usability from DIY perspective
	6.4.2. BPM Editor usability assessment for Robotic Arm use-case
	6.4.2.1. BPM Editor usability score based on SUS
	6.4.2.2. BPM Editor usability from DIY perspective

	7. Usability Study for Smart-Space use-case
	7.1. IoT enabled Smart-Spaces
	7.2. Implementation architecture for smart-space use-case
	7.3. Smart-space prototype implementation
	7.4. Usability study for Smart-Space use-case
	7.4.1. SCM usability assessment
	7.4.1.1. SCM usability score based on SUS
	7.4.1.2. SCM usability from DIY perspective

	7.4.2. BPM Editor usability assessment .
	7.4.2.1. BPM Editor usability score based on SUS
	7.4.2.2. BPM Editor usability from DIY perspective

	8. Conclusion
	References

<startpage>16
Abstract 1
1. Introduction 4
2. Related work 15
 2.1. Existing IoT composition research 15
 2.2. Issues with the existing solutions from the DIY perspective 21
 2.3. Existing IoT protocols 24
3. Proposed DIY IoT System Architecture 27
 3.1. Virtual Object Layer 27
 3.2. Service Composition Layer 29
 3.3. Business Process Layer 31
 3.4. Development Process 32
 3.5. Data representations 34
4. BPM based DIY IoT System Design 36
 4.1. Virtual Object Layer 36
 4.2. Service Composition Layer 40
 4.3. Business Process Layer 47
5. BPM Based DIY IoT System Implementation 57
 5.1. Virtual Object Manager 57
 5.2. Service Composition Manager 59
 5.3. BPM Editor 63
 5.4. BPM Deployment Manager 67
 5.5. Performance Analysis 70
6. Usability Study for Robotic Arm Use-case 75
 6.1. IoT in Industrial Robotics 75
 6.2. Implementation architecture for robotic arm use-case 76
 6.3. Robotic Arm prototype implementation 78
 6.4. Usability study for Robotic Arm use-case 81
 6.4.1.1. SCM usability assessment for Robotic Arm use-case 84
 6.4.1.2. SCM usability score based on SUS 87
 6.4.1.3. SCM usability from DIY perspective 88
 6.4.2. BPM Editor usability assessment for Robotic Arm use-case 93
 6.4.2.1. BPM Editor usability score based on SUS 96
 6.4.2.2. BPM Editor usability from DIY perspective 97
7. Usability Study for Smart-Space use-case 105
 7.1. IoT enabled Smart-Spaces 105
 7.2. Implementation architecture for smart-space use-case 106
 7.3. Smart-space prototype implementation 109
 7.4. Usability study for Smart-Space use-case 112
 7.4.1. SCM usability assessment 114
 7.4.1.1. SCM usability score based on SUS 116
 7.4.1.2. SCM usability from DIY perspective 118
 7.4.2. BPM Editor usability assessment . 123
 7.4.2.1. BPM Editor usability score based on SUS 125
 7.4.2.2. BPM Editor usability from DIY perspective 127
8. Conclusion 135
References 137
</body>

