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ABSTRACT 

Detection and classification of unmanned aerial vehicles (UAV) have been demanded to 

reduce many problems such as ground or midair collisions, privacy and security. It is 

difficult to detect UAV for radar since it is relatively small and flying at low altitude.  

However, sounds of engine and propeller can be measured easily by microphone. In this 

thesis, UAV sound detection and classification algorithms are proposed, which are based on 

harmonic spectral peaks of UAV. When two harmonic spectral peaks are mapped into a 

vector, it has a unique angle according to its harmonic orders. By pre-defining reference 

vectors based on known harmonic orders of target UAV and computing similarity of input 

vectors with the reference vectors, the UAV sound can be identified from non-harmonic 

sound. Inner product based algorithm and virtual array based algorithm are proposed to 

compute the similarities. Both algorithms show stable discrimination performance than 

Mel-frequency cepstral coefficient (MFCC). The under area of ROC curve was up to 0.975 

by using the virtual array based algorithm. Harmonic order detection algorithm for unknown 

signal is also studied. Probabilities of input vectors to be certain reference vectors are 

computed for all possible cases and extreme learning machine (ELM) are used as a classifier. 

By concatenating the order detection algorithm and another ELM classifier, multiclass 

classification can be possible. It shows better performance than MFCC for four different 

classes of measurement sound data. Proposed algorithms can be usefully applied for 
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detection and classification of other harmonic sounds as well as UAVs. 
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Chapter 1  

INTRODUCTION 

1.1 Background and previous study 

An increasing demand for usefulness of unmanned aerial vehicles (UAV) operation has 

been followed by growing number of the UAV in recent years.1 Global spending on 

commercial and civil UAVs reaches 550 million U.S. dollar in 2013. It has doubled in 6 years.2 

When military UAV is included in the survey, the global market can be estimated much larger 

than this. Unfortunately, there are negatives to the increased usage of UAV in both military 

and civil area. The UAV can pose significant threat such as ground collision, midair collision, 

and terrorism. Issues of invasion of privacy and security have been also emerged recently.3,4 

Therefore, prevention measures of these problems has been demanded, such as safety 

regulations for UAV operation. To control and manage UAV operation to be safety, in more 

practical point of view, the UAV should be detected and classified from the other objects.  

There are broad spectrum in UAV types as shown in Fig. 1.1. The following classes of 

UAVs are defined and primarily differentiated by mass: Micro, Mini, Tactical, Medium 

Altitude, and High Altitude/ UCAV (Unmanned Combat Air Vehicle).3 Among them, the 

high altitude and massive UAV can be detected by existing radar system. However, even 

though the market growth is mostly focused on micro and mini UAV, it is still difficult to 

detect the small-size, low-flying aircraft by using radio frequency (RF), electro-optical (EO),  
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Figure 1.1 spectrum of UAV according to weight and operation altitude 3 

 

 

Figure 1.2 (a) Harmonic spectrum generated by engine.6 (b) Harmonic 

spectrum generated by propeller.8 
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and infrared (IR) due to weak signal strength and high implementation cost. 5 However, the 

sound emitted by engine and propeller of UAV can be easily measured by a microphone. The 

engine sound is composed of both cylinder firing rate (CFR) and engine firing rate (EFR) as 

shown in Fig. 1.2. CFR is corresponding to the revolutions per minute (RPM) of engine and 

ERF is the CFR times the number of cylinder.6,7 Both CFR and EFR with their harmonics 

contributes to form one harmonic spectrum. On the other hand, propeller sound has blading 

passing frequency (BPF) which is related on the engine RPM as well as the number of 

propeller blades. BPF which is RPM times the number of blades also contributes to generate 

harmonic peaks.8 Therefore, both sound of engine and propeller gives rise to an enhanced 

harmonic spectrum according to engine RPM. The harmonic spectrum can be regarded as a 

significant sound characteristics of UAV.  

 There have been research to find direction of arrival (DOA) of the UAV using 

microphone array. 9 It was possible to find DOA using conventional method but it is limited to 

detect and classify UAV from the other sounds. Only a few researches tried to classify the 

sounds by using the characteristics of harmonics. A harmonic line association (HLA) is one of 

feature extraction algorithms for harmonic sound classification.10,11 It is greedy search based 

algorithm to find a best matched template subject to range constraint of fundamental 

frequency sound as shown in Fig. 1.3. It is very innovative and useful ideal to deal with 

harmonic sound. However, it requires expectation of fundamental frequency range, which is 

not practical due to not only unforeseeable motions yielding RPM variation but also diverse 



Chapter 1 

4 

 

types of UAV.  

 

 

Figure 1.3 Extraction process of HLA 
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1.2 Objective 

To overcome this limit, we suggest new feature extraction algorithm does not require any 

fundamental frequency information and greedy search. By adopting vector representation, 

input spectral peaks are converted into two dimensional vectors. Since any sets of two 

harmonic spectral peaks form unique directional vectors regardless of its fundamental 

frequency, harmonic sound can be detected and classified by measuring and comparing the 

vector directions of input signal.  

The first goal of this thesis is to identify whether unknown input signal is harmonic or 

non-harmonic. The achievement of this binary classification could be not only useful 

information for harmonic sound detection but also foundation of multiclass classification. 

The second goal is to recognize the harmonic orders of unknown signals. Moreover, types of 

the harmonic signals are to be classified by the proposed multiclass classification algorithm.  
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1.3 Thesis layout 

Thesis outline is as follows: Basic concept of frequency vectors and its angles are 

introduced in Chapter 2. A reference vector and a reference angle are also defined. Then the 

problem statement is followed. Two proposed algorithms are described and those are 

evaluated using both simulation data and measurement data. 

Chapter 3 deals with the harmonic order detector which gives the harmonic order 

information of unknown signals. By generalizing and integrating the multi-reference angle 

problem described in previous chapters, it is proved that the harmonic order can be identified 

using both simulation data and measurement data. 

Multiclass classification algorithm is proposed in Chapter 4. By applying harmonic 

order detector algorithm and using two stage extreme learning machine (ELM) classifier, 

spectral magnitude of each harmonic order can be estimated and it is used as feature vectors 

for the multiclass classification. The proposed algorithm is also evaluated using four-class 

measurement data.   

Lastly, this study is concluded with discussion and suggestion for future work. 
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Chapter 2  

BINARY CLASSIFICATION  

2.1 Problem statement 

In order to identify a harmonic signal from the unknown signals, it is reasonable to 

analyze a relationship of spectral peaks. Because they are equally spaced on the frequency 

axis according to the fundamental frequency while that of non-harmonic spectral peaks are 

not as shown in Fig. 2.1 (a) and (b). In addition, for the realistic signals, small variations on 

the spectral peaks can be considered including some measurement errors. Then, the harmonic 

spectral peaks can be modeled as follows: 

𝑓𝑖 = 𝑛𝑖𝑓0 + ∆𝑓,    𝑓𝑗 = 𝑛𝑗𝑓0 + ∆𝑓      (2.1) 

,where 𝑓0 and ∆𝑓 are fundamental frequency and variation of spectral peak and 𝑛𝑖 and 𝑛𝑗 

are integer orders of harmonics.  

A vector which is composed of 𝑓𝑖  and 𝑓𝑗  in a two-dimensional plane can be 

considered as shown in Fig. 2.1 (c). It is defined as 

𝒓𝑚 = [𝑓𝑖 𝑓𝑗]𝑇,         (2.2) 

where 𝑚 = 1,2,… ,𝑀 and 𝑀 is the number of vectors which are all possible combinations 

of 𝑓𝑖 and 𝑓𝑗. Then the angle of the vector 𝑟𝑚 is defined by 

𝜃𝑚 = tan−1 (
𝑓𝑗
𝑓𝑖
⁄ ) = tan−1 (

𝑛𝑗𝑓0 + ∆𝑓

𝑛𝑖𝑓0 + ∆𝑓
) =  tan−1 (

𝑛𝑗 + ∆𝑓/𝑓0

𝑛𝑖 + ∆𝑓/𝑓0
) .    (2.3) 
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If ∆𝑓 is assumed to be much smaller than the 𝑓0 so that ∆𝑓/𝑓0 is approach to zero, 

𝜃𝑚 becomes unique constant value with respect to 𝑛𝑖 and 𝑛𝑗. It is referred to reference 

angle in this thesis which is defined as  

𝜃𝑟𝑒𝑓 ≡ tan
−1 (

𝑛𝑗
𝑛𝑖⁄ )        (2.4) 

and a vector composed of the harmonic orders 𝑛𝑖 and 𝑛𝑗 is called as reference vector 

which is defined as 

𝒓𝑟𝑒𝑓 ≡ [𝑛𝑖 𝑛𝑗]𝑇.         (2.5) 

Assume that we already know that a target signal has the harmonic orders of 𝑛𝑖 and 𝑛𝑗. 

Then, by comparing the pre-defined 𝒓𝑟𝑒𝑓 or 𝜃𝑟𝑒𝑓 with 𝒓𝑚 or 𝜃𝑚 extracted from input 

unknown signal, we can identify whether the input signal is harmonic or non-harmonic. If an 

input signal has harmonic spectrum, 𝒓𝑚 or 𝜃𝑚 are well matched with 𝒓𝑟𝑒𝑓 or 𝜃𝑟𝑒𝑓  

 

 

Figure 2.1 (a) A waveform of unknown input signal. (b) Frequency spectrums and their peaks 

of noise spectrum and harmonic spectrum. (c) Vector representation of spectral peaks 
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and their distance is closer than the others which are from non-harmonic spectrums. 

However, if an input signal has non-harmonic spectrum such as ambient noise, the distance 

between them is larger than that of harmonic signals. 

 Therefore, the problem is to classify target signals and noise using statistical 

characteristics of a distance between 𝒓𝑟𝑒𝑓  or 𝜃𝑟𝑒𝑓  with 𝒓𝑚  or 𝜃𝑚 . Two distance 

measurement algorithms are proposed in this thesis. The first is to compare 𝒓𝑚 with 𝒓𝑟𝑒𝑓 

and the second is to compare 𝜃𝑚 with 𝜃𝑟𝑒𝑓. 
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2.2. Inner product based algorithm 

2.2.1. Algorithm 

Let 𝐹(𝑛) be a set of peak frequencies at 𝑛th frame of input signal as shown in Fig. 2.2 (a). 

It can be written as follow: 

𝐹(𝑛) = {  𝑓𝑞(𝑛)  |  𝑞 = 1,… , 𝑖, … , 𝑗, … , 𝑄 },              (2.6) 

where 𝑄 is the number of dominant peak frequencies. When 𝐹(𝑛) is obtained from harmonic 

signal, then two components of 𝐹(𝑛) can be modeled as  

𝑓𝑖(𝑛) = 𝑛𝑖𝑓0(𝑛) + ∆𝑓(𝑛),    𝑓𝑗(𝑛) = 𝑛𝑗𝑓0(𝑛) + ∆𝑓(𝑛).    (2.7) 

Assume that ∆𝑓 can be modeled as zero mean normal distribution with standard deviation 𝜎𝑓. 

Meanwhile, two component of 𝐹(𝑛) obtained from non-harmonic ambient noise can be 

modeled as 

𝑓𝑖 (𝑛) ~ 𝑈 (0,
1

2
𝑓𝑠),   𝑓𝑗(𝑛) ~ 𝑈 (0,

1

2
𝑓𝑠)     (2.8) 

where 𝑓𝑠 is sampling frequency and 𝑈(𝑎, 𝑏) represents uniform distribution of interval 𝑎 

and 𝑏.  

The key idea of this algorithm is to compute similarity between input frequency vectors 

and the reference vector. If we use the vectors 𝒓𝑚 and 𝒓𝑟𝑒𝑓 introduced by Eq. (2.2) and 

(2.5), the influence of 𝑓0 cannot be avoided. Therefore, both input frequency vectors and the 

reference vector should be normalized newly defined as 

𝑟𝑚 = 𝜂[𝑓𝑖 𝑓𝑗]𝑇 , 𝑚 = 1,2,… ,𝑀,      (2.9) 
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Figure 2.2. (a) Examples of frequency spectrum and its peaks. (b) Vector representation for 

combinations of spectral peaks. Note that the vectors are normalized to be compared. 

 

and 

𝑟𝑟𝑒𝑓 = 𝜂𝑟𝑒𝑓[𝑛1 𝑛2]𝑇 ,       (2.10) 

where 𝑀  = NC2 (2-combination from 𝑁  peak frequencies). 𝜂  and 𝜂𝑟𝑒𝑓  are the 

normalization factors of 𝑟𝑚  and 𝑟𝑚 , respectively, and they are defined as 𝜂 = (𝑓𝑖
2 +

𝑓𝑗
2)
−1/2

, and  𝜂𝑟𝑒𝑓 = (𝑛1
2 + 𝑛2

2)−1/2. As mentioned before, pre-defined 𝒓𝑟𝑒𝑓 is used as a 

reference to find the closest vector among 𝑀 of 𝒓𝑚. Fig. 2.2 (b) shows that the vector 𝒓2 

from harmonic spectral peaks has higher similarity with 𝒓𝑟𝑒𝑓 than 𝒓1 from non-harmonic 

peaks. 

2.2.1.1. Decision based on single frame 

Let 𝜔0 and 𝜔1are the class of harmonic signal and white Gaussian noise. Then, the 

similarity between the reference vector and input vector can be measured by square of scalar 
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product of them, which is denoted by  

{
𝜔0: 𝑤𝑀(𝑛) = max〈𝑟𝑟𝑒𝑓

𝑇𝑟0𝑚(𝑛)〉
2

𝜔1: 𝑤𝑀(𝑛) = max〈𝑟𝑟𝑒𝑓
𝑇𝑟1𝑚(𝑛)〉

2        (2.11) 

 

where 𝑟0𝑚(𝑛)  and 𝑟1𝑚(𝑛) are normalized spectral peaks vectors of non-harmonic 

noise and harmonic signal, respectively. Then we suggest to decide 𝜔1 by Bayesian classifier 

using log likelihood 𝑦 defined as 

𝑦(𝑥) = log(𝑝(𝑥|𝜔1)𝑝(𝜔1)) − 𝜆 log(𝑝(𝑥|𝜔0)𝑝(𝜔0)) > 0   (2.12) 

where 𝑥 = 𝑤𝑀.15,16 Suppose that both priori probability 𝑝(𝜔0) and 𝑝(𝜔1) are the same and 

𝜆  is 1 for the simplification. Both likelihood 𝑝(𝑥|𝜔0)  and 𝑝(𝑥|𝜔1)  follows gamma 

distribution with shape parameter 𝛼𝑧 and rate parameter 𝛽𝑧, which are described in appendix 

A. Then it can be written as 

𝑝(𝑥|𝜔𝑧)  ~  Gamma(𝛼𝑧, 𝛽𝑧),    z = 0 𝑜𝑟 1 ,    (2.13) 

where 𝛼0 = �̂�𝑛  , 𝛽0 = �̂�𝑛  and 𝛼1 = 1/2 , 𝛽1 = 2𝜎𝑓/(𝑛1
2 + 𝑛2

2)𝑓0
2

. �̂�𝑛  and �̂�𝑛  are 

gamma parameter estimation values by simulation of noise data generation. Their PDF is 

shown in Fig. 2.3 (a). 

 

2.2.1.2. Decision based on multiple frames 

Assuming that input harmonic sound can be measured for 𝑁 frames, mean and standard 

deviation of {𝑤𝑀(1),𝑤𝑀(2),… ,𝑤𝑀(𝑁)}  can be used for better performance on 
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classification. The distribution of mean 𝑤𝜇 and standard deviation 𝑤𝜎 corresponding to both 

target harmonic sound and ambient noise can be written as 

𝑤𝜇 =
1

𝑁
∑ 𝑤𝑀(𝑛)

𝑛

𝑛−𝑁

 ~ gamma(𝑁𝛼𝑧, 𝑁𝛽𝑧) 

𝑤𝜎 =
1

𝑁 − 1
∑(𝑤𝑀(𝑛) − 𝑤𝜇)

2
𝑛

𝑛−𝑁

  

~ Generalized gamma(2,
𝛼𝑧

𝛽𝑧
2 ,
𝛼𝑧

𝛽𝑧
4 {

2𝑁𝛼𝑧
(𝑁 − 1)2

+
6

𝑁
}) , 𝑧 = 0 𝑜𝑟1 

 

Derivation of Eq. (2.14) are presented in Appendix A. 

Shape parameter and rate parameter of new gamma distribution is changed according to 

number of samples 𝑁 in both 𝑤𝜇 and 𝑤𝜎 so that the advantage on discrimination of target 

signals from ambient noise can be given as shown in Fig. 2.3 (b) ~ (d). Now we can rewrite 

𝑥 = [𝑤𝜇 𝑤𝜎]
𝑇
 of Eq. (2.12).  

Until now, only a single reference vector 𝒓𝑟𝑒𝑓 has been considered but it is easily 

extended to the multiple reference problem to include additional reference vectors. A block 

diagram for the proposed algorithm is shown in Fig. 2.4.  

 

 

(2.14) 
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Figure 2.3 (a) distribution of 𝑤𝑀 of harmonic signal and white Gaussian noise. (b) Variation 

of PDF with number of frames 𝑁. (c) PDF of 𝑤𝜇 for 𝑁 = 10 . (d) PDF of 𝑤𝜎 for 𝑁 =

10 

 

 

Figure 2.4. Block diagram for multiple frames and multiple references 
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2.2.1.3. Joint distribution estimation and classifier 

In order to consider both 𝑤𝜇  and 𝑤𝜎  for 𝑥 , joint probability should be considered. 

However, theoretical bivariate generalized gamma distribution is not appropriate for the real 

time detection algorithm due to its iterative computation.22 Therefore, Gaussian mixture 

model (GMM) is used for estimation of joint probability function,14 which is written as 

𝑝(𝑥|𝜔𝑧) =∑𝑐𝑡

𝑇

𝑡=1

𝑝(𝑥|𝜇𝑡 , 𝜎𝑡) 

Fig. 2.5 (a) and (b) show joint pdf of 𝑤𝜇and 𝑤𝜎 by simulation and GMM estimation, 

respectively. Considering that 𝑥ℎ = [𝑤
ℎ
𝜇 𝑤

ℎ
𝜎]
𝑇
, which is random variable with respect to 

ℎth reference, we can easily carry out multi-order detection. Since 𝑥1,…, 𝑥𝐻 are independent 

where 𝐻 is number of reference, Naive Bayesian classifier can be applied as bellow 14 

𝑝(𝑥|𝜔𝑧) =∏𝑝(𝑥ℎ|𝜔𝑧)

𝐻

ℎ

, z = 0 𝑜𝑟 1 

Then, by using likelihood in Eq. (2.16), detection error is computed as follows:15 

𝑃𝑒 = 𝑝(𝜔1|𝜔0)𝑝(𝜔0) + 𝑝(𝜔0|𝜔1)𝑝(𝜔1).     (2.17) 

 

(2.15) 

(2.16) 

. 



Chapter 2 

16 

 

 

Figure 2.5. (a) Probability density by simulation using 𝜎𝑓  = 3, 𝑄 = 7  and 𝑟𝑟𝑒𝑓 =

[300 400]𝑇. (b) Probability density function by Gaussian mixture model. Number of Gaussian 

mixture 𝑇 is 3. 
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2.2.2 Results 

2.2.2.1. Simulation data 

Theoretical errors by Eq. (2.12) is computed using simulation data and they are shown in 

Fig. 2.6 ~ Fig. 2.8. Spectral peaks were modeled by Eq. (2.7) and Eq. (2.8). 𝑓𝑖 and 𝑓𝑗 are 

randomly generated in 10,000 times and they are used for input values of the proposed 

algorithm. 

Error according to 𝑄 is shown in Fig. 2.6 when 𝑛2/𝑛1 = 1.333 and 𝜎𝑓 = 3. The error 

rate of single frame and single reference shows 18% ~ 38% but it sharply increase while the 

number of frames and references increase. When ten spectral peaks are selected for this 

algorithm where 𝑁 = 10 and 𝐻 = 3, 2.5% of error rate can be expected.  

𝑛𝑗/𝑛𝑖 also affects to the error rate as shown in Fig. 2.7. It is computed when 𝑄 = 10 

and 𝜎𝑓 = 3. This results shows that the error rate can be controlled by selection of 𝑛2/𝑛1.  

Fig. 2.8 shows the error rate according to 𝜎𝑓  when 𝑛2/𝑛1 = 1.333  and 𝑄 = 10 . 

Smaller error rates can be expected when 𝜎𝑓 decreases. 
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Figure 2.6 Error rate according to number of peaks 𝑄 

 

 

Figure 2.7 Error rate according to 𝑛𝑗/𝑛𝑖 
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Figure 2.8 Error rate according to 𝜎𝑓 of target signal 

 

 

 

𝜎𝑓 
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2.2.2.2. Measurement data 

To show feasibility under real environment, the sound of flying UAV was recorded, 

which is equipped four cycle gasoline engine and flies back and forth near a microphone at 150 

altitude. Sampling frequency was 1024 Hz and noise whitening with band pass filtering of 

50~500 Hz was applied for preprocessing. For the comparison, ten Mel-frequency cepstral 

coefficients (MFCC) with twenty Mel-filter banks are extracted from the training data and 

GMM is applied for estimation of bivariate Gaussian pdf. Twenty data of UAV sound and 

ambient noise whose duration is 10 sec are used for training with 0.5 sec of window and 50 % 

of overlap.  

Fig. 2.5 (a) shows spectrogram of test data. UAV was approaching from 40 sec and it 

passed by the microphone 𝑡2  and it moved away at 𝑡3 . Before the UAV reached at 

measurement site, a car passed by the microphone at 𝑡1. Frequency spectrum corresponding to 

each time point 𝑡1, 𝑡2, and 𝑡3 is depicted in Fig. 2.5 (b).  

 𝑦 computed by MFCC becomes incorrectly positive during 8 sec at 𝑡1 because of the 

car sound as shown in Fig. 2.5 (c). On the other hand 𝑦 gives negative values even though 

UAV sound continued at 𝑡2 and 𝑡3, when the sound energy reduces. However, 𝑦 computed 

by proposed method stably shows negative values even when car passed by the microphone at 

𝑡1.  

Since 8th order of harmonic peak disappears from 80 sec, 𝑦 computed by 𝑛1 = 5 and 
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𝑛2 = 8 becomes negative at 80 sec. However, it still remain positive when 𝑦 computed by 

𝑛1 = 5 and 𝑛2 = 7 due to existence of harmonic orders. 𝑦 computed by multi-reference 

shows more stable results than that of single reference. 

 

 

Figure 2.9. (a) Spectrogram of measurement sound of UAV, (b) frequency spectrum at 

𝑡1, 𝑡2, 𝑡3 marked in Fig. 6 (a) 
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Figure 2.10 Detection results from proposed method and MFCC 
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2.3. Virtual array based algorithm 

2.3.1. Algorithm 

The second algorithm is to measure a similarity between 𝜃𝑚 and 𝜃𝑟𝑒𝑓. Basic idea is 

the same with last chapter as shown in Fig. 2.11 (a) and (b). As mentioned previously, the 

advantage of this idea is to remove the influence of 𝑓0 to find harmonics. In addition to this, 

vector normalization which is used in last chapter does not need to compare 𝜃𝑚 with 𝜃𝑟𝑒𝑓 

as shown in Fig. 2.11 (b). In order to measure a similarity between two angles, we adopted 

array signal processing. In this point of view, 𝜃𝑟𝑒𝑓 and 𝜃𝑚 are regarded as a desired 

direction and input signal direction. Let us 𝑋(𝜃𝑟𝑒𝑓 , 𝜃𝑚) be a similarity function between 

𝜃𝑟𝑒𝑓  and 𝜃𝑚 . Then, by following conventional array beamformer equation, we define 

function 𝑋(𝜃𝑟𝑒𝑓 , 𝜃𝑚) as follows: 

 

 

Figure 2.11 (a) Example of harmonic spectral peaks and non-harmonic spectral peaks (b) 

vector representation of spectral peak combination and its angles (c) Example of similarity 

function 𝑋(𝜃𝑟𝑒𝑓 , 𝜃𝑚) by beam pattern 
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𝑋(𝜃𝑟𝑒𝑓 , 𝜃𝑚) = 𝑤(𝜃𝑟𝑒𝑓)
𝐻𝑎(𝜃𝑚)       (2.18) 

, where 𝑎(𝜃𝑚) is array response vector and 𝑤(𝜃𝑟𝑒𝑓) = 𝑎(𝜃𝑟𝑒𝑓).  

For simplicity, uniform line array (ULA) with 𝐿 elements is considered so that 𝑎(𝜃𝑚) =

[1, 𝑒𝑗𝜋 sin𝜃𝑚 , … , 𝑒𝑗(𝐿−1)𝜋 sin𝜃𝑚]𝐻 where 𝐻 represents complex conjugate transpose12. Note 

that 𝑋(𝜃𝑟𝑒𝑓 , 𝜃𝑚) yields maximum output when 𝜃𝑚 = 𝜃𝑟𝑒𝑓 as shown in Fig 2.11 (c). At 𝑛th 

frame, beamformer output 𝑦(𝑛) can be written as  

𝑦(𝑛) = 𝑤(𝜃𝑟𝑒𝑓)
𝐻𝑢(𝑛)         (2.19)  

, where 𝑢(𝑛) = ∑ 𝑎(𝜃𝑚(𝑛))
𝑀
𝑚=1  12. To handle with 𝐾 reference angles of 𝜃𝑟𝑒𝑓1 , … , 𝜃𝑟𝑒𝑓𝐾 , 

we use LCMV beamformer described as follows 

min
𝑤
𝑤𝐻𝑅𝑢𝑤  subject to Cw = g      (2.20) 

, where 𝑅𝑢 = 𝐸{𝑢(𝑛)𝑢
𝐻(𝑛)} , 𝐶 = [𝑎(𝜃𝑟𝑒𝑓1)…  𝑎(𝜃𝑟𝑒𝑓𝐾)]

𝐻
, 𝑔 = [1…  1]𝐻  13. The 

well-known optimum weight can be found as  

𝑤 = 𝑅𝑢
−1𝐶(𝐶𝐻𝑅𝑢

−1𝐶)
−1
𝑔       (2.21) 

Note that the range of 𝜃𝑚 are [π/4, π/2] due to the condition of 𝑗 > 𝑖. It can be crucial 

limitation on array processing. Firstly, the PDF of noise is not uniform through the angles. 

Secondly, 𝜃𝑚 are distributed only limited range so that it is not proper for the LCMV 

beamforming. 

In case of the white Gaussian noise in eq. 2.8, the distribution of 𝜃𝑚 follows cosec2𝜃𝑚 

which can be obtained by coordinate transformation of random variable 𝑓𝑖  and 𝑓𝑗  from 

Cartesian to polar coordinate. It is proved in Appendix A. In order for angle whitening for the 
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noise, probability integral transform is applied.17 In addition, the range of 𝜃𝑚 is extended 

over [−
π

2
,
π

2
] by following process:  

�̃�𝑚 = 𝜋(−cot 𝜃𝑚 + 1/2).       (2.22) 

where �̃�𝑚 is whitened and expanded input angles.  

Note that since M is much greater than K at each frame, 𝑢(𝑛) can be treated as array 

response of multiple scatters and 𝑢(𝑛) can be assumed to be independent. Thus, we can 

assume 𝑅𝑢 = 𝐸{𝑢(𝑛)𝑢
𝐻(𝑛)} = 𝐼 and can have new weight vector described as 

𝑤 = 𝐶(𝐶𝐻𝐶)−1𝑔                      (2.23) 

where, 𝐶 = [𝑎(�̃�𝑟𝑒𝑓1)…  𝑎(�̃�𝑟𝑒𝑓𝐾)]
𝐻

 and 𝑔 = [1…  1]𝐻. 

Note that 𝑤 of Eq. (2.23) can be computed in advance with low complexity. In this paper 

we use the beamformer output 𝑦(𝑛) of Eq. (2.19) as features with respect to 𝑤 in Eq. (2.23).  

To evaluate detection performance, Bayes decision rule are used, which is described as 

follows: 

𝐶1𝑝(𝑦(𝑛)|𝜔1)𝑝(𝜔1) > 𝐶2𝑝(𝑦(𝑛)|𝜔2)𝑝(𝜔2),    (2.24) 

where 𝐶1 is cost of deciding ambient noise (𝜔2) when target signal (𝜔1) is true and 𝐶2 is cost 

of deciding 𝜔1  when 𝜔2  is true.16 The 𝑝(𝑦|𝜔1)  and 𝑝(𝜔1)  are likelihood and prior 

probability of UAV signal and 𝑝(𝑦|𝜔2) and 𝑝(𝜔2) are those probabilities of ambient noise. 
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2.3.2 Results 

2.3.2.1 Simulation data 

To show invariance to fundamental frequency, we consider simulation with which 

fundamental frequency changes from 50 to 120 Hz with fundamental frequency disappears at 

10 second as shown in Fig. 2.12 (a). ∆𝑓 is modeled by zero mean normal distribution with 

standard deviation 𝜎𝑓 . By using �̃�𝑟𝑒𝑓1 = tan
−1(2 1⁄ ) , �̃�𝑟𝑒𝑓2 = tan

−1(3 2⁄ ) , �̃�𝑟𝑒𝑓3 =

tan−1(4 3⁄ ), 𝑁 = 4 and 𝐿 = 30, the proposed 𝑦(𝑛) is shown in Fig. 2.12 (b). We can 

observed that the proposed algorithm performs well and is robust to frequency variation. 

 

2.3.2.2. Measurement data 

The sound of flying UAV at altitude of 150 m was recorded for 10 seconds with sampling 

frequency of 1024 Hz. For preprocessing, noise whitening and band pass filtering of 50 ~ 500 

Hz was applied. For training data, we use ten UAV data set and ten ambient noise set. For short 

time Fourier transform, frame length of 512 samples with 50 % overlap is used and seven peak 

frequencies (𝑁 = 7) are selected. 

For comparison with filter bank based feature, ten MFCCs are extracted by twenty 

Mel-filter banks. For decision criterion of MFCC, we use difference of Euclidean distance 

between input MFCC vector 𝑣(𝑛) with mean values of signal 𝜇𝑠 and noise  𝜇𝑛. It is defined  



Chapter 2 

27 

 

 

Figure 2.12 (a) Simulated harmonic spectrum whose fundamental frequency changes from 50 

to 120 Hz. The fundamental frequency disappears at 10 second. (b) Time series of virtual array 

beam former output 𝑦(𝑛) for Fig. 2 (a), where 𝑄 = 4, 𝐿 = 30 and 𝐾 = 3 of �̃�𝑟𝑒𝑓1 =

tan−1(2 1⁄ ), �̃�𝑟𝑒𝑓2 = tan
−1(3 2⁄ ), �̃�𝑟𝑒𝑓3 = tan

−1(4 3⁄ ). 

 

 

Figure 2.13 (a) Histogram of 𝜃𝑚’s by measurement data set which are closest to 𝜃𝑟𝑒𝑓; 

[1 2]𝑇 (b) ROC curve according to number of element 𝐿 computed using measurement 

data set (c) ROC curve according to number of element 𝐾 
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as 𝑧(𝑛) = 𝑧𝑛(𝑛) − 𝑧𝑠(𝑛), where 𝑧𝑠(𝑛) = |𝑣(𝑛) − 𝜇𝑠| and 𝑧𝑛(𝑛) = |𝑣(𝑛) − 𝜇𝑛|. To obtain 

optimum beam width, we investigate distributions of �̃�𝑚 from UAV and ambient noise by 

using �̃�𝑟𝑒𝑓 = tan
−1(2 1⁄ ). The distributions are shown in Fig. 2.13 (a), in which probability 

density of 𝜃𝑚’s from UAV are greater than that of ambient noise from -2.25° to 1.75°. With 

this information we obtain optimum beam width or the number of array element 𝐿=30 by 

using half power beam width (HPBW) 𝜃𝐻 = 2 sin−1(0.891/𝐿) 12.  

The influence of 𝐿 and 𝐾 on the discriminative performance by 𝑦(𝑛) in Eq. (2.19) is 

studied by evaluating receiver operating characteristic (ROC) curve as shown in Figs. 2.13 (b) 

and (c). Detection performance with 𝐾 = 1, increases as aperture size increases up to 𝐿 = 30 

elements and then decreases. The under area a ROC curve (UAC) with 𝐿 = 10, 20, 30, 

and 40 are obtained as 0.644, 0.838, 0.878 and 0.862, respectively.18 The increase of 𝐾 

yields substantial UAC performance increase up to 0.964 and 0.975. 

To show feasibility under real environment, we select test data, which contains sound of car 

passing at 𝑡1 and sound of UAV moving closer and passes away for approximately 60 seconds. 

The spectrogram of the data is shown in Fig. 2.14(a). The sound of UAV starts at 40 second 

and becomes gradually louder until 70 second, 𝑡2 with power and frequency fluctuations. 

After 70 second, the sound decreases slowly so that a few low order harmonics are left for last 

20 seconds, 𝑡3. The frequency spectrums at 𝑡1, 𝑡2 and 𝑡3 are shown in Fig. 2.14(b). At 𝑡1, 

no HSP can be observed and spectrum energy is little smaller than that of 𝑡2 and bigger than 

that of 𝑡3. At 𝑡2, HSPs are clearly observed while few peaks are visible at 𝑡3.  
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Figure 2.14 (a) Spectrogram of test data. UAV sound appears from 40 second and it emits 

largest energy at 70 second (𝑡2). It gradually decreases from 80 second while it loses high 

order harmonics (𝑡3). A car sound is ahead of UAV sound from 0 to 20 second (𝑡1) (b) 

frequency spectrums at (𝑡1), (𝑡2) and (𝑡3) (c) Normalized difference of Euclidean distance 

𝑦(𝑛) between MFCC centroid of test data and test data (d) Normalized beam former output 

𝑦(𝑛) where 𝑄 = 7, 𝐿 = 30 and 𝐾 = 3 which are [1 2]𝑇, [2 3]𝑇 and [3 4]𝑇. 

  

Normalized 𝑦(𝑛)s computed by MFCC and the proposed algorithm are shown in Fig. 

2.14 (c) and Fig. 2.14(d), respectively. Detection threshold for low incorrect detection is 

estimated by setting 𝐶1 = 10 and 𝐶2 = 1 in Eq. (2.24) and is shown as dashed dot line. 

Shaded area represents noticeable duration marked with duration number 𝑑1, … , 𝑑4. 

Comparing durations of strong ambient noise labeled 𝑑1 and 𝑑2, we can observe that 

proposed feature shows stable detection while MFCC false detection. Similar performance can 
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be observed at duration 𝑑3 in which spectrum energy drops. At duration 𝑑4 of low UAV 

sound, we can see the proposed algorithm exhibits stable detection while MFCC fails. 
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Chapter 3  

HARMONIC ORDER RECOENITION 

3.1 Preprocessing 

3.1.1. Cepstral analysis 

In the colored noise environment, unwanted noise peaks tend to appear in the particular 

frequency range. Since it is against the white Gaussian noise assumption, a bad influence can 

be given in angle whitening and make the performance deteriorate. Hence, we extract 

whitened spectral peaks from the colored input spectrum by adopting cepstral analysis.19 It is 

widely used in speech signal processing to find pitches or formants of human voice.  

The cepstrum 𝑐[𝑛] is defined as the inverse DFT of the log magnitude of the DFT of 

signal as follow 

{
 
 
 

 
 
 𝑋𝑝[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗

2𝜋

𝑁
𝑘𝑛

𝑁−1

𝑛=0

          0 ≤ 𝑘 ≤ 𝑁 − 1

�̂�𝑝[𝑘] = log|𝑋𝑝[𝑘]|                     0 ≤ 𝑘 ≤ 𝑁 − 1

𝑐[𝑛] =
1

𝑁
∑ �̂�𝑝[𝑘]𝑒

𝑗
2𝜋

𝑁
𝑘𝑛

𝑁−1

𝑘=0

       0 ≤ 𝑛 ≤ 𝑁 − 1

 

 

where 𝑋𝑝[𝑘], �̂�𝑝[𝑘], and 𝑐[𝑛] represent DFT, log magnitude of the DFT, and cepstrum, 

respectively. Those are depicted in Fig. 3.1 (a), (b), and (c). Variable 𝑛 of 𝑐[𝑛] is called as 

quefrency. Then a cepstral window is applied into the 𝑐[𝑛] to lifter out the high quefrency 

(3.1) 
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part of the cepstrum. By inversely transforming the liftered cepstrum, we can get the spectral 

peaks (high quefrency part) and spectral baseline (low quefrency part) as shown Fig. 3.1 (d) 

and (e). 

 

 

 

Figure 3.1 (a) Example of input frequency spectrum 𝑋𝑝[𝑘]  (b) Log magnitude of DFT 

�̂�𝑝[𝑘]  (c) Cepstrum 𝑐[𝑛]  (solid) and cepstral window for lifgering high quefrency 

component (dotted) (d) Inverse transform output of low quefrency components (solid) and 

log magnitude of DFT of original signal (e) Inverse transform output of high quefrency 

components 
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 Cepstral decomposition is applied into the UAV signal as examples. Fig. 3.2 (b) and (c) 

shows that the spectral baseline and spectral peaks, respectively, extracted from measured 

UAV sound which is shown in Fig. 3.1 (a). 

 

 

Figure 3.2 (a) Measured UAV sound (b) spectral baseline obtained from low-quefrency 

cepstral lifting (c) spectral peaks obtained from high-quefrency cepstral lifting 
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3.1.2. Harmonic to noise ratio (HNR) 

HNR is defined as the mean difference between the harmonic spectral peaks �̂�𝑝(𝑞) 

and the spectral baseline �̂�𝑏(𝑞) at these peak frequencies,20 which is written as 

𝐻𝑁𝑅 [𝑑𝐵] =
1

𝑄
∑10 log10(𝐹(𝑞))

𝑄

𝑞

 

where 𝐹(𝑞) = 𝑒(�̂�𝑝(𝑞)−�̂�𝑏(𝑞))  and 𝐹  and Q are DFT amplitude and number of peaks, 

respectively. In Fig. 3.3, dashed line is spectral baseline and circles and squares are �̂�𝑝(𝑞) 

and �̂�𝑏(𝑞), respectively. Since 𝐹(𝑞) from harmonic spectral peaks has higher values than 

that from noise peak generally, it can be considered as a weight factor with respect to the 

frequency vector representation. 

Let us introduce the weight 𝛾𝑚 as follows: 

𝛾𝑚 ≡ 𝐹(𝑖) 𝐹(𝑗)        (3.3) 

where 1 ≤ 𝑖 < 𝑗 ≤ 𝑄. There is no weighting for input angles which is from the spectral 

peaks as shown in Fig. 3.4 (a). By using Eq. (3.3), however, we can apply the weights for the 

input angles as shown in Fig. 3.4 (b). 

  

(3.2) , 
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Figure 3.3. Input spectrum of UAV sound (solind) with spectral baseline (dashed). Circles and 

squares represnet spectral peaks �̂�𝑝(𝑞) and baseline at these peak freqneies �̂�𝑏(𝑞). 

 

 

 

 

 

Figure 3.4. Diagrams for (a) no weights and (b) weights based on HNR 
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3.2 Algorithm 

3.2.1 Feature extraction 

Suppose that all expanded input angle �̃�𝑚 are from the harmonic spectral peaks where 

𝑚 = 1,⋯ ,𝑀, then each of them can be modeled as follows: 

�̃�𝑚 = �̃�𝑟𝑒𝑓𝑚 + ∆𝜃𝑚,        (3.4) 

where ∆𝜃𝑚~𝑁(0, 𝜎𝑚). Because some of �̃�𝑟𝑒𝑓𝑚 are overlapped when �̃�𝑟𝑒𝑓𝑚 = tan
−1(𝑎𝑛𝑗/

𝑎𝑛𝑖) where 𝑎 = 1,2,⋯, unique reference angle �̃�𝑟𝑒𝑓ℎ  should be considered where ℎ =

1,⋯ ,𝐻 and 𝐻 < 𝑀. For example, [𝑛𝑖  𝑛𝑗] = [1 2] and [𝑛𝑖  𝑛𝑗] = [2 4] have the same 

�̃�𝑟𝑒𝑓𝑚. Then we can rewrite Eq. (3.4) as 

�̃�𝑚 = �̃�𝑟𝑒𝑓ℎ + ∆𝜃𝑚.       (3.5) 

Let 𝜔ℎ represent ℎth class corresponding to �̃�𝑟𝑒𝑓ℎ. Then, the problem is to classify the 

�̃�𝑚 into the correct 𝜔ℎ.  

Proposed algorithm is depicted in Fig. 3.5. Given that we can model the all PDF 𝑓(�̃�𝑚 ) 

in advance, then input �̃�𝑚  can be classified as class 𝜔ℎ  by selecting the maximum 

probability 𝑃(𝜔ℎ|�̃�𝑚) based on the 𝑓(�̃�𝑚 ). Note that 𝑃(𝜔ℎ|�̃�𝑚) becomes large value when 

there are HSPs in the input spectrum according to modeled 𝑓(�̃�𝑚 ) but unwanted noise 

spectral peak can randomly contribute to the rising 𝑃(𝜔ℎ|�̃�𝑚)  such as in low SNR 

environment. Hence, we observe multiple frames and compute averaged probability to 

decrease the influence of noise peaks. In addition, we adopt the weight 𝛾𝑚 of Eq. (3.3) on to  
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Figure 3.5. Block diagram of feature extraction process for harmonic order detector. The 

process [A] is described in Table 3.1 

 

Table 3.1 Pseudo code for computing weighted probability of harmonics for [A] in Fig. 3.5  

𝑷𝑴(𝒍) = 𝐦𝐚𝐱  {𝑷(𝝎𝒉|𝜽𝒍)} 

�̂�(𝒍) = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒉

 {𝑷(𝝎𝒉|𝜽𝒍)} 

For 𝒉 = 𝟏 to 𝑯 

Find index 𝒊 subject to �̂�(𝒍) = 𝒉 

𝑪𝒉 = 𝐜𝐨𝐮𝐧𝐭 {𝒊}  

𝝃𝒋 = 𝝃𝒍(𝒊) and 𝑷𝒋
𝑴 = 𝑷𝑴(𝒊) where 𝒋 = 𝟏, 𝟐,⋯ 

𝜴(𝒉) =
𝟏

𝑪𝒉
∑ 𝝃𝒋𝑷𝒋

𝑴𝑪𝒉
𝒋=𝟏   

End 
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the probability to minimize the noise peak effect. Then, the average of weighted probability is 

used as a feature for the harmonic order detector. Let us denote 𝛺(ℎ) to be the weighted 

probability of harmonics (WPH) which is computed as Table. 3.1. Let 𝜃𝑙 and 𝜉𝑙  shows 

1-by- 𝑀𝑁 vector for all elements of �̃�𝑚 and 𝛾𝑚  of 𝑁 frames for the computation of 

𝛺(ℎ). More details about PDF estimation for �̃�𝑚 and probability computation is described in 

following paragraphs. 

3.2.2 Probability density 

Although some of �̃�𝑚  of HSP have common angles, each of them have different 

variation 𝜎𝑚
2  due to different Rician factors. Therefore GMM is utilized to get the 

comprehensive pdf for that angles. Fig. 3.6 (a) and (b) shows PDF of 𝜃𝑚 and �̃�𝑚 computed 

by simulation where 𝑚 = 1,⋯ ,𝑀 , 𝑁 = 10  and 𝑀 = NC2. The GMM for common 

reference angle �̃�𝑟𝑒𝑓ℎ with different variation 𝜎𝑚
2 is shown in Fig. 3.6 (c). GMM results 

shows good agreement with simulation results. Note that the normal distribution 

characteristics are preserved after conversion as shown in Fig. 3.7. 

 

  



Chapter 3 

39 

 

 

Figure 3.6. PDF of (a) 𝜃𝑚 and (b) �̃�𝑚 by simulation for 𝑓0 = 50 𝐻𝑧 and ∆𝑓 = 2 𝐻𝑧 

small window above (a) is view of –𝜋/2 ~ 𝜋/2. (c) PDF estimation using GMM for �̃�𝑚  

 

 

Figure 3.7. (a) Left end PDF and (b) right end PDF of 𝜃𝑚. (c) Left end PDF and (b) right end 

PDF of �̃�𝑚. Normal distribution characteristics are preserved after conversion. 



Chapter 3 

40 

 

3.2.3 Probability 

Decision criterion for 𝜔ℎ is as follow: 

𝑃(𝜔ℎ|�̃�𝑚) > 𝑃(𝜔ℎ′|�̃�𝑚)        (3.5) 

where ℎ′ = 1,⋯ , ℎ − 1, ℎ + 1,⋯ ,𝐻. Given that prior probability 𝑃(𝜔ℎ) is the same with 

𝑃(𝜔ℎ′), 𝑃(𝜔ℎ|�̃�𝑚) is regarded as likelihood function corresponding to PDF of �̃�𝑚. Hence, 

they have different amplitude when �̃�𝑚 = �̃�𝑟𝑒𝑓ℎ  as shown in Fig. 3.6. In order to assign the 

same probability to each 𝜔ℎ  for �̃�𝑚 = �̃�𝑟𝑒𝑓ℎ , new variable 𝑦 is introduced, which is 

defined as 

𝑦 = −|�̃�𝑚 − �̃�𝑟𝑒𝑓ℎ|.         (3.6) 

Cumulative density function (CDF) of eq. 3.6 is defined as  

𝑃(𝜔ℎ|�̃�𝑚) = 1 −
1

2
[erf (

−|�̃�𝑚−�̃�𝑟𝑒𝑓ℎ|

𝜎√2
) + erf (

−|�̃�𝑚−�̃�𝑟𝑒𝑓ℎ|

𝜎√2
)].    (3.7) 

Derivation of Eq. 3.7 from 3.6 is in the appendix B. Then CDF of 𝑦 has 1 when �̃�𝑚 is 

exactly matched with �̃�𝑟𝑒𝑓ℎ.  
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3.2.4 Classification 

Extreme learning machine (ELM) is used for classifier.21 It is single layer feed forward 

neural network classifier but gradient based back-propagation (BP) is not required, which is 

necessary for the training in convectional neural network. By calculating Moore-Pen-rose 

generalized inverse of the hidden layer output matrix with randomly selecting input weights 

and biases, ELM not only makes the learning fast but also produce good generalization 

performance. 

Target labels for ELM training is presented in Table 3.2. One of output nodes 

corresponds with a one class for the multiclass classification in general so that the number 

one is assigned to the node while zeroes are assigned to the other nodes. However, each 

harmonic order is connected with the output node in this study. Hence, multiple activation of 

harmonic orders can be considered by assigning multiple ones into the output nodes. For 

example, if all harmonic orders are observed, all output nodes should be assigned by ones. If 

there are only two overtones are measured, two output node can be activated. In case of 

noise or non-harmonic spectrum, zeroes are assigned to all output nodes. Table 3.1 is 

proposed on the assumption that the harmonic orders are generated consecutively. In this 

study, 46 different cases are used to consider ten of harmonics. 
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Table 3.2 Target label of ELM training for harmonic order detection 

Case 
Number of harmonic orders 

1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 1 1 1 1 1 1 

2 0 1 1 1 1 1 1 1 1 1 

3 0 0 1 1 1 1 1 1 1 1 

4 0 0 0 1 1 1 1 1 1 1 

5 0 0 0 0 1 1 1 1 1 1 

6 0 0 0 0 0 1 1 1 1 1 

7 0 0 0 0 0 0 1 1 1 1 

8 0 0 0 0 0 0 0 1 1 1 

9 0 0 0 0 0 0 0 0 1 1 

10 1 1 1 1 1 1 1 1 1 0 

11 1 1 1 1 1 1 1 1 0 0 

12 1 1 1 1 1 1 1 0 0 0 

13 1 1 1 1 1 1 0 0 0 0 

14 1 1 1 1 1 0 0 0 0 0 

15 1 1 1 1 0 0 0 0 0 0 

16 1 1 1 0 0 0 0 0 0 0 

17 1 1 0 0 0 0 0 0 0 0 

18 0 1 1 1 1 1 1 1 1 0 

19 0 0 1 1 1 1 1 1 1 0 

20 0 0 0 1 1 1 1 1 1 0 

21 0 0 0 0 1 1 1 1 1 0 

22 0 0 0 0 0 1 1 1 1 0 

23 0 0 0 0 0 0 1 1 1 0 

24 0 0 0 0 0 0 0 1 1 0 

25 0 1 1 1 1 1 1 1 0 0 

26 0 0 1 1 1 1 1 1 0 0 

27 0 0 0 1 1 1 1 1 0 0 

28 0 0 0 0 1 1 1 1 0 0 

29 0 0 0 0 0 1 1 1 0 0 

30 0 0 0 0 0 0 1 1 0 0 

31 0 1 1 1 1 1 1 0 0 0 

32 0 0 1 1 1 1 1 0 0 0 
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33 0 0 0 1 1 1 1 0 0 0 

34 0 0 0 0 1 1 1 0 0 0 

35 0 0 0 0 0 1 1 0 0 0 

36 0 1 1 1 1 1 0 0 0 0 

37 0 0 1 1 1 1 0 0 0 0 

38 0 0 0 1 1 1 0 0 0 0 

39 0 0 0 0 1 1 0 0 0 0 

40 0 1 1 1 1 0 0 0 0 0 

41 0 0 1 1 1 0 0 0 0 0 

42 0 0 0 1 1 0 0 0 0 0 

43 0 1 1 1 0 0 0 0 0 0 

44 0 0 1 1 0 0 0 0 0 0 

45 0 1 1 0 0 0 0 0 0 0 

46 0 0 0 0 0 0 0 0 0 0 
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3.3 Results 

3.3.1. Simulation data 

Harmonic order detection is conducted using the proposed feature and simulated signals. 

Fig. 3.8 (a) and (b) are the simulated signals including time variation of the peak frequencies. 

In the Fig 3.8 (a), 𝑓0 changes from 80 Hz to 140 Hz and six harmonic orders are observed 

from 𝑓0 to 5th overtone. On the other hand, 𝑓0 changes from 40 Hz to 110 Hz with six 

harmonics in Fig. 3.8 (b). However, 𝑓0 and 1st overtone are missed and other six harmonics 

from 3rd to 8th overtones are observed. ELM results are shown in Fig. 3.8 (c) and 3.8 (d) for 

the simulated signals of Fig. 3.8 (a) and 3.8 (b), respectively. Even though peak frequencies 

change with time, the ELM results show the harmonic orders correctly and stably in both 

cases. Absence and variation of 𝑓0 does not give any influence on the results as shown in 

Fig. 3.8 (d). 
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Figure 3.8. Simulated signals whose 𝑓0 and harmonic order changes with time. (a) 𝑓0 is 

from 80 Hz to 120 Hz and 6 harmonics are observed including 𝑓0. (b) 𝑓0 is from 80 Hz to 

120 Hz and 6 harmonics are observed without 𝑓0 and 1st overtone. 
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3.3.2 Measurement data 

To evaluate the proposed feature in practical situation, measurement signals are used for 

harmonic order recognition. Fig. 3.9 (a) ~ 3.9 (d) show spectrograms of a UAV, drone, 

motorcycle, and car, respectively. ELM results are shown in Fig. 3.10 (a) ~ 3.10 (d). The 

ELM output of UAV signal correctly presents the change of harmonics with time. The 

harmonics disappear from 1 sec to 8 sec and from the 10th to 7th harmonic, as in Fig. 3.9 (a) 

and Fig. 3.10 (a). Fig. 3.9 (b) shows the sound of motorcycle. Three harmonics are 

recognized by ELM as shown in Fig. 3.10 (b). Since the sound quality is not very clear, 3rd 

harmonic is lost few time to time but it shows good agreement with original sound overall. 

Harmonic peaks are not clearly observed in drone sound because of many propellers as 

shown in Fig. 3.9 (c). Despite of complexity of harmonics, ELM results shows its harmonic 

order correctly as shown in Fig. 3.10 (c). Fig. shows 3.9 (d) represent car passing sound. 

There is no harmonic peaks and mostly is broad band spectrum. ELM results for the car 

passing sound is shown in Fig. 3.10 (d). No harmonic orders are identified as intended. 
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Figure 3.8. Measurement sound of (a) UAV, (b) motorcyle, (c) drone, and (d) car. 

 

 

Figure 3.9. ELM results for the measurement sound of (a) UAV, (b) motorcyle, (c) drone, and 

(d) car. 
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Chapter 4  

MULTICLASS CLASSIFICATION 

4.1. Introduction 

We have seen that WPH (Weighted probability of harmonics) can be used as an 

effective feature for harmonic order detection. In this chapter ELM output of the WPH is 

analyzed in detail and a new algorithm is proposed by using it for a multiclass classification. 

The new algorithm is inherently based on the concept of HLA. As mentioned in Chapter 1, 

HLA is composed of spectral magnitudes of harmonic orders. The crucial problem of HLA is 

to find the fundamental frequency by greedy search process. The ELM output of WPH 

exactly shows the relative magnitudes of the harmonic orders as HLA does. However, it does 

not require the fundamental frequency as we presented through the Chapter 3. Fig 4.1 (b) 

shows frequency spectrums and its mean spectrum of 1.5 second interval of harmonic signals 

in Fig. 4.1 (a). The spectral magnitude of 6th and 7th orders of harmonics are larger than the 

others and it decreases gradually for smaller orders while it decrease more sharply for higher 

orders. Fig. 4.1 (c) shows the mean ELM output of WPH with its variances. It comes out just 

before the decision step and harmonic orders can be noticed using a specific threshold value. 

It shows that the ELM output represents the relative magnitude of spectral peaks even 

without any process to find the fundamental frequency. Therefore, we can expect that the 

ELM output can be successful alternatives in HLA for multiclass classification for harmonic 
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signals. 

 

 

Figure 4.1. (a) An example of harmonic signal. (b) Frequency spectrums with mean spectrum 

of 1.5 second interval the example of harmonic signal. (c) Means and standard deviations of 

ELM output using the WPH extracted from the given frequency spectrums. 
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4.2. Algorithm 

In order for the multiclass classification of harmonic signals, we propose a two stage 

ELM. It is composed of two consecutive ELM structure as shown in Fig. 4.2. The first ELM 

is the same as the harmonic order detector introduced in previous chapter but the output 

nodes are connected with the second ELM without final decision step using threshold value. 

Since the first ELM yields the unique characteristics of harmonic orders as described in the 

introduction, it takes a role of an additional feature extraction process and the second ELM is 

followed by the first ELM as a multiclass classifier. Since all weights of first ELM are 

trained by simulations, only second ELM need to be trained using real training dataset.  

To investigate performance of the proposed algorithm, three classes of harmonic signals 

and one non-harmonic broad-band signal are used. Since the number of all classes are four, 

the number of output nodes is set to be four. The number of input nodes of the second ELM 

can be variable considering characteristics of harmonics. In this study, 10 input nodes are 

considered as the same value of the harmonic order detector in Chapter 3. Parameters for the 

second ELM is summarized in Table. 4.1. 

For the comparison, single ELM classification using MFCC is used. Twenty Mel-filter 

banks and twelve cepstral coefficients are used for MFCC including log energy. Therefore, 

thirteen input nodes are used for ELM and the number of output nodes is the same as 

proposed one. 
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Figure 4.2. Two stage ELM for multiclass classification 

 

 

Table 4.1. Parameters of the second ELM for four-class classification 

 Parameters Values 

Input node 

10 (proposed) 

13 (MFCC) 

Hidden node 100 

Output node 4 
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4.3. Results 

4.3.1. Experimental data 

Three classes of harmonic signals and one non-harmonic broad-band signal is used for 

training and test. All data were downloaded or recorded from the websites. Fig. 4.3 shows 

representative experimental data of four classes which are used for training. Fig. 4.3 (a), (b), 

and (c) is sounds of UAV, drone, and motorcycle, respectively. Fig. 4.3 (d) is the sound of car 

passing in the road. Measured UAV sounds which are used in previous chapters are 

intentionally excluded in this study because their frequency spectrum shapes and magnitudes 

are totally different with drone and motorcycle signals. It yields trivial results so that we try 

to collect the sound data which have similar shape and level of spectrums with in frequency 

range. Collected data have 40 ~ 50 seconds of durations that is corresponding 640 ~ 800 

frames. 400 frames are used for training and the others are used for test. Sampling frequency 

of original data was 44100 Hz but it was down sampled for 1/20 scale to make it becomes 

2205 Hz of sampling frequency and band pass filtering is applied where its pass band is 50 ~ 

2150 Hz.  
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Figure 4.3. Sound of (a) UAV, (b) drone, (c) motorcycle, and (d) car passing 
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4.3.2. Results 

The results of multiclass classification are shown in Fig. 4.4. Fig. 4.4 (a) shows the 

results of typical ELM with MFCC. The UAV and motorcycle sound are correctly classified 

but there are some errors for drone and car sound. Overall recognition error rate is 22.9 %. 

Most of errors are from drone sound. Causes of the error is analyzed in detail in 4.3.3. 

Recognition error rate is 6.7 % for proposed algorithm. Most of data are correctly classified 

by the proposed one. 

 

 

Figure 4.4. (a) Classification result by typical ELM structure MFCC and (b) by the proposed 

two stage ELM with WPH 
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4.3.3. Analysis 

The fundamental frequency of drone sound used for training is nearly 250 Hz and it 

lasted as shown in Fig. 4.5 (a). However, the fundamental frequency and its overtones of test 

set are changed with time and some of them are 40 Hz lower than that of training sound as 

shown in Fig. 4.5 (b). According to the classification results in Fig. 4.4 (a), errors occur in 

0.5 ~ 7 seconds where the fundamental frequency and its overtones are lower than its 

training data.  

Fig. 4.6 (a) shows that the Mel-filter bank energies of training and test data. Filter bank 

energies are shifted by the frequency variation. The first peaks are located in 7th filter but it is  

 

 

Figure 4.5. (a) A part of training data of drone, (b) A part of test data of drone 
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moved to 6th. Variations of filter bank energies by overtones are more significant. The shift of 

filter bank energy is gives rise to the phase difference of MFCC between training data and 

test data as shown in Fig. 4.6 (b). The MFCC of test data of drone sound is rather similar to 

that of motorcycle so that it leads to the error in classification results. 

On the other hand, even though the fundamental frequency and its overtones of test data 

differ with training data, the first ELM output of proposed algorithm yields more stable 

 

 

Figure 4.6. (a) Filter bank energy of training data and test data of drone sound. (b) MFCC of 

training data and test data. (c) MFCC of training data of motorcycle and test data of drone. 
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features as shown in Fig. 4.7 (a). First four orders of harmonics are get higher values in both 

training and test data. It has unique values and shapes comparing the other classes as shown 

in Fig. 4.7 (b). The test drone signal was confused by the motorcycle training data for MFCC 

but they are obviously different in case of proposed method. 2 ~ 4th order of harmonics and 

8th order of harmonics are dominant. It follows the relative amplitude of spectral peaks as 

shown in Fig 4.7 (c). 

 

Figure 4.7. (a) First ELM outputs of training and test drone data. (b) First ELM output of 

trained data of motorcycle and test data of drone (c) spectrums and the mean spectrum of 

motorcycle
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Chapter 5  

CONCLUSIONS 

Sound detection and classification algorithm based on harmonic spectral peaks were 

studied in this thesis. Firstly, binary classification algorithm was presented for harmonic 

sound and noise. By adopting two dimensional vector representation of spectral peaks and 

evaluating similarity between the input vectors with the reference vectors, harmonic 

spectrum could be identified from the other non-harmonic sound. For the similarity 

computation, two algorithm was introduced: inner product based algorithm and virtual array 

algorithm. The Gaussian mixture PDF of inner product values computed by normalized input 

vectors and reference vectors was utilized for the training process of the former algorithm. It 

does not require complex processes but the measurement harmonic sound was successfully 

classified from the noise. Angles of the vectors were used for similarity function in the latter 

algorithm. By adopting array signal processing, the angle of input vectors could be compared 

with the reference angle. By evaluating detection probability using ROC and UAC comparing 

with MFCC, we shows that the proposed feature exhibits robust and stable performance. 

Secondly, vector representation was expended to harmonic order detection. By using 

PDF of all orders of harmonics and ELM, harmonic order information of unknown input 

signals could be estimated. We proposed WPH as a new feature vector to detect the order of 

harmonics. Its performance was proved by ELM classifier using both simulation data and 
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measurement data. 

Lastly, multiclass classification was performed and analyzed. Based on WPH, the two 

stage ELM structure was suggested. The multiple classes of harmonic sound could be 

successfully identified by proposed algorithm while it was partially failed by MFCC. This is 

based on the key idea of HLA which is useful and effective feature with using a set of 

spectral magnitude of harmonic orders. Even though HLA has crucial drawback of 

fundamental frequency dependence with greedy search process, it has presented that the 

proposed algorithm can overcome the limitations. 

Since the measurement data is required to train a classifier weights, unlike the binary 

classification which is used simulation data, sufficient data are needed. However, small 

amount of data is used in this thesis so that it is limited to generalize from this results. 

Therefore, more analytical study using sufficient data set is planned for the future work. Note 

that we present the potential for multiclass classification of harmonic signals in more 

practical way. Proposed algorithm can be applicable not only the vehicle sounds 

classification but also the other fields such as bubble cavitation detection in medical 

ultrasound area or the hornet sound recognition to protect honeybee from hornet’s attack for 

apiculture. Proposed algorithm can be widely used because harmonic sounds can be 

observed in many area of nature.
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APPENDIX A 

The scalar product of two unit vectors in eq. (6) can be expressed by cosine of angle 

difference 𝑑𝜃 , where 𝑑𝜃 = 𝜃𝑟𝑒𝑓 − 𝜃𝑚 . Since a 𝜃𝑚  which yields 𝑤𝑀  shows small 𝑑𝜃 

usually, small angle approximation can be applied into scalar product as bellow 

𝑤 = cos2𝑑𝜃 = (1 −
1

2
𝑑𝜃2 +⋯)

2
≅ 1 − 𝑑𝜃2    (A.1) 

Signal: According to the Rician fading theory in wireless communication, it is well known that 

𝜃𝑚 follows normal distribution when both 𝑓𝑖 and 𝑓𝑗 are normal distribution by virtue of the 

large Rician factor 𝑘 defined as 𝑘 = (𝑓𝑖
2 + 𝑓𝑗

2)/2𝜎𝑓.23 Then, 𝜃𝑚 can be written as follows 

normal distribution whose mean is 𝜃𝑟𝑒𝑓 and standard deviation is 𝜎𝑘, where 𝜎𝑘 = 1/√2𝑘. 

Therefore, it is obvious that 𝑑𝜃 has normal distribution with zero mean.  

𝑓𝑑𝜃(𝑑𝜃) ~ 𝑁(0, 𝜎𝑘)         (A.2) 

By Eq. (A1), cumulative distribution function (CDF) of 𝑤 can be expressed as 

𝐹𝑤(𝑤) = 𝑃(1 − 𝑑𝜃
2 ≤ 𝑤) = 𝑃(|𝑑𝜃| ≥ √1 − 𝑤)      

= {
𝐹𝑑𝜃(−√1 − 𝑤), 𝑑𝜃 < 0

1 − 𝐹𝑑𝜃(√1 − 𝑤), 𝑑𝜃 ≥ 0 
.       (A.3) 

Due to the symmetry of  𝑓𝑑𝜃, we can rewrite eq (A.3) as follow  

𝐹𝑤(𝑤) = 2𝐹𝑑𝜃(−√1 − 𝑤)        (A.4) 

By the hypothesis of Eq. (6), 𝑟𝑚 of target signal yields the largest 𝑤 so that we can 

regard 𝐹𝑤(𝑤) = 𝐹𝑤𝑀(𝑤). Hence, we conclude that PDF of 𝑤𝑀is written as follow 

 

(A5) 
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𝑓𝑤𝑀(𝑤𝑀) =
1

√2𝜋𝜎𝑘
2
(1 − 𝑤𝑀)

−
1

2𝑒
−
1−𝑤𝑀
2𝜎𝑘

2
 

 =
(1−𝑤𝑀)

−
1
2𝑒

−
1−𝑤𝑀
(2𝜎𝑘

2)

(2𝜎𝑘
2)
1
2Γ(

1

2
)

= gamma(1 − 𝑤𝑀 , 𝛼, 𝛽)    (A.5) 

where 𝛼 = 1/2 and 𝛽 = 2𝜎𝑘
2. 

 

Noise: Since 𝑓𝑖  and 𝑓𝑗 are uniform distribution subjected to 𝑓𝑗 > 𝑓𝑖 , their joint PDF is 

expressed as  

𝑓𝑓𝑖,𝑓𝑗(𝑓𝑖, 𝑓𝑗) = 2/𝑓𝑠
2
        (A.6) 

When we apply coordinate transformation from Cartesian to polar considering𝑙𝑚 =

√𝑓𝑖
2 + 𝑓𝑗

2 , 𝜃𝑚 = tan−1 (
𝑓𝑗
𝑓𝑖
⁄ )  and 𝐽(𝑙𝑚, 𝜃𝑚) = 𝑙𝑚 , where 𝐽  represent Jacobian. Then 

joint PDF in polar coordinate is written as follow:24 

𝑓𝑙𝑚,𝜃𝑚(𝑙𝑚, 𝜃𝑚) = 𝑙𝑚𝑓𝑓𝑖,𝑓𝑗(𝑓𝑖, 𝑓𝑗) = 2𝑙𝑚/𝑓𝑠
2
,     (A.7) 

where π/4 ≤ 𝜃𝑚 ≤ 𝜋/2 and 0 ≤ 𝑙𝑚 ≤ √(𝑓𝑠/2)
2 + 𝑓𝑖

2 = (𝑓𝑠/2)cosec𝜃. Then the marginal 

distribution of  with respect 𝜃𝑚 to is expressed by cosec2𝜃𝑚 . Therefore, PDF of 𝑑𝜃 is 

defined as  

𝑓𝑑𝜃(𝑑𝜃) =  cosec
2(𝜃𝑟𝑒𝑓 − 𝜃𝑚),      (A.8) 

which is not symmetry for 𝑑𝜃. When we apply Eq. (A.8) into Eq. (A.3), PDF of 𝑤 is yield as 

follow:  

 

(A9) 
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𝑓𝑤(𝑤) =

{
 
 

 
 

1

2√1 − 𝑤
cosec2(𝜃𝑟𝑒𝑓 − √1 − 𝑤), 𝑎 ≤ 𝑤 ≤ 𝑏

1 +
1

2√1 −𝑤
{cosec2(𝜃𝑟𝑒𝑓 + √1 − 𝑤)

+cosec2(𝜃𝑟𝑒𝑓 − √1 − 𝑤)}, 𝑏 < 𝑤 ≤ 1

 

where 𝑎 = 1 − (𝜃𝑟𝑒𝑓 − 𝜋/2)
2
and 𝑏 = 1 − (𝜃𝑟𝑒𝑓 − 𝜋/4)

2
 

According to extreme value theory, maximum value of 𝑓𝑤(𝑤)  follows Weibull 

distribution which belongs to exponential family as gamma distribution does.25 Therefore we 

treat 𝑓𝑤𝑀(𝑤) as gamma distribution using gamma parameter estimation. 

  

(A.9) 
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APPENDIX B 

As described in Appendix A, the frequency vector angles of harmonic spectral peaks 

follows normal distribution. We assume that the converted angles are also have normal 

distribution because variation of the normal distribution has small as followed: 

 �̃�𝑚~ 𝑁(�̃�𝑟𝑒𝑓ℎ , 𝜎ℎ),       (B.1) 

where �̃�𝑟𝑒𝑓ℎ is a unique reference angle and 𝜎ℎ is the standard deviation. Another variable 

𝑌 is adopted to measure a distance of �̃�𝑚 and �̃�𝑟𝑒𝑓ℎ. It is defined as  

𝑌 = −|�̃�𝑚 − �̃�𝑟𝑒𝑓ℎ|.        (B.2) 

Then, the cumulative distribution function (CDF) of 𝑌 can be computed as followed: 

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(−|�̃�𝑚 − �̃�𝑟𝑒𝑓ℎ| ≤ 𝑦) 

= 𝑃(|�̃�𝑚 − �̃�𝑟𝑒𝑓ℎ| ≥ −𝑦)       (B.3) 

= 1 − 𝐹
|�̃�𝑚−�̃�𝑟𝑒𝑓ℎ|

(−𝑦) 

Since �̃�𝑚 − �̃�𝑟𝑒𝑓ℎ  follows 𝑁(0, 𝜎ℎ), its absolute values are defined as 

|�̃�𝑚 − �̃�𝑟𝑒𝑓ℎ| ~ 𝐹𝑜𝑙𝑑𝑒𝑑 𝑁𝑜𝑟𝑚𝑎𝑙      (B.4) 

The CDF of folded normal distribution is given by 

𝐹𝑌(𝑦) = 1 −
1

2
[erf (

−𝑦

𝜎√2
) + erf (

−𝑦

𝜎√2
)] 

Finally, when we regard the probability of 𝜔ℎ given �̃�𝑚 which is defined as 𝑃(𝜔ℎ|�̃�𝑚) in 

(B.5) 



Appendix 

64 

 

Chapter 3 as the CDF of 𝑌 of eq. (B.2), it is defined as  

𝑃(𝜔ℎ|�̃�𝑚) = 1 −
1

2
[erf (

−|�̃�𝑚 − �̃�𝑟𝑒𝑓ℎ|

𝜎√2
) + erf (

−|�̃�𝑚 − �̃�𝑟𝑒𝑓ℎ|

𝜎√2
)] (B.6) 



Bibliography 

65 

 

BIBLIOGRAPHY 

1 J. R. Wilson, “UAV roundup 2013,” Aerospace America, 51(7), 26-36 (2013). 

2 INEA conulting, “Global commercial and civil uav market guide 2014-2015,” 

http://renewablemarketwatch.com/country-reports 

3 R. E. Weibel and R. J. Hansman, “Safety considerations for operation of different classes of 

UAVs in the NAS,” AIAA 4th Aviation Tehcnology, Integration and Operations 

Forum, AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit. 

1-11, (2004). 

4 E. B. Carr, "Unmanned Aerial Vehicles: Examining the Safety, Security, Privacy and 

Regulatory Issues of Integration into US Airspace,” National Centre for Policy 

Analysis (NCPA). Retrieved on September 23 (2013): 2014. 

5 E. E. Case, A. M. Zelnio, and B. D. Rigling, “Low-cost acoustic array for small UAV 

detection and tracking,” in Proceeding of Aerospace and Electronics Conference, 

NAECON, IEEE National, 110-113 (2008). 

6 D. Miljković, M. Maletić, and M. Obad, “Comparative Investigation of Aircraft Interior 

Noise Properties,” In 3rd Congress of the Alps Adria Acoustics Association, (2007). 



Bibliography 

66 

 

7 D. Miljković, J. Ivošević, and T. Bucak, “Two vs. Three Blade Propeller-Cockpit Noise 

Comparison,” In Proceedings 5th Congress of Alps-Adria Acoustics Association, 

12-14, (2012). 

8 G. Sinibaldi and L. Marino, “Experimental analysis on the noise of propellers for small 

UAV,” Applied Acoustics, 74(1), 79-88 (2013) 

9 T. Pham, N. Srour, “TTCP AG-6: acoustic detection and tracking of UAVs,” in Proceeding. 

SPIE 5417, Unattended/Unmanned Ground, Ocean, and Air Sensor Technologies and 

Applications VI, 24-30 (2004). 

10 M. Wellman and N. Srour, “Enhanced target identification using higher order shape 

statistics,” (No. ARL-TR-1723) Army research lab adelphi MD sensors and electron 

devices directorate, (1999). 

11 W. Shi, B. Bishop, G. Arabadjis, J. Yoder, P. Hill, and R. Plasse, “Detecting, Tracking, and 

Identifying Airborne Threats with Netted Sensor Fence,” INTECH Open Access 

Publisher, 139-158, (2011). 

12 H. L. Van Trees, “Detection, estimation, and modulation theory, optimum array processing,” 

John Wiley & Sons, (2004). 



Bibliography 

67 

 

13 S. S. Haykin and A. O. Steinhardt. “Adaptive radar detection and estimation,” Vol. 11. 

Wiley-Interscience, (1992). 

14 K. P. Murphy, “Machine learning: a probabilistic perspective,” MIT press, (2012). 

15 S. M. Kay, "Fundamentals of statistical signal processing, Vol. II: Detection Theory,” 

Signal Processing. Upper Saddle River, NJ: Prentice Hall (1998). 

16 J. L. Melsa, and D. L. Cohn, “Decision and estimation theory,” McGraw-Hill, (1978). 

17 G. G. Roussas, “A course in mathematical statistics,” Academic Press, (1997). 

18 Fawcett, Tom. “An introduction to ROC analysis,” Pattern recognition letters, 27(8), 

861-874 (2006). 

19 D. G. Childers, D. P. Skinner, and R. C. Kemerait, “The cepstrum: A guide to 

processing.” Proceedings of the IEEE 65(10), 1428-1443 (1977). 

20 Y. Qi and R. E. Hillman., “Temporal and spectral estimations of harmonics-to-noise ratio in 

human voice signals." The Journal of the Acoustical Society of America, 102(1), 

537-543 (1997). 

21 G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme Learning Machine: Theory and 

Applications”, Neurocomputing, 70, 489-501, (2006). 



Bibliography 

68 

 

22 T. Piboongungon, V.A. Aalo, C.D. Iskander, and G.P. Efthymoglou, “Bivariate 

generalised gamma distribution with arbitrary fading parameters,” Electronics Letters, 

41(12), (2005). 

23 J. K. Cavers, “Mobile Channel Characteristics,” Shady Island Press, (2004). 

24 A. Papulis and S. U. Pillaim "Probability, random variables and stocahstics processes,” 

fourth edition, McGraw-Hill (2002). 

25 H. Rinne, “The Weibull distribution: a handbook,” CRC Press, (2008). 

 


	Chapter 1Introduction
	1.1 Background and previous study.
	1.2 Objective
	1.3 Thesis layout

	Chapter 2Binary classification.
	2.1 Problem statement
	2.2. Inner product based algorithm.
	2.2.1. Algorithm.
	2.2.2 Results.

	2.3. Virtual array based algorithm
	2.3.1. Algorithm.
	2.3.2 Results.


	Chapter 3Harmonicorder recoenition.
	3.1 Preprocessing.
	3.1.1. Cepstral analysis.
	3.1.2. Harmonic to noise ratio (HNR)

	3.2 Algorithm.
	3.2.1 Feature extraction
	3.2.2 Probability density
	3.2.3 Probability.
	3.2.4 Classification.

	3.3 Results
	3.3.1. Simulation data.
	3.3.2 Measurement data.


	Chapter 4Multiclass classification.
	4.1. Introduction.
	4.2. Algorithm
	4.3. Results.
	4.3.1. Experimental data.
	4.3.2. Results
	4.3.3. Analysis


	Chapter 5Conclusions
	APPENDIX A
	APPENDIX B
	Bibliography


<startpage>13
Chapter 1Introduction 1
 1.1 Background and previous study. 1
 1.2 Objective 5
 1.3 Thesis layout 6
Chapter 2Binary classification. 7
 2.1 Problem statement 7
 2.2. Inner product based algorithm. 10
  2.2.1. Algorithm. 10
  2.2.2 Results. 17
 2.3. Virtual array based algorithm 23
  2.3.1. Algorithm. 23
  2.3.2 Results. 26
Chapter 3Harmonicorder recoenition. 31
 3.1 Preprocessing. 31
  3.1.1. Cepstral analysis. 31
  3.1.2. Harmonic to noise ratio (HNR) 34
 3.2 Algorithm. 36
  3.2.1 Feature extraction 36
  3.2.2 Probability density 38
  3.2.3 Probability. 40
  3.2.4 Classification. 41
 3.3 Results 44
  3.3.1. Simulation data. 44
  3.3.2 Measurement data. 46
Chapter 4Multiclass classification. 48
 4.1. Introduction. 48
 4.2. Algorithm 50
 4.3. Results. 52
  4.3.1. Experimental data. 52
  4.3.2. Results 54
  4.3.3. Analysis 55
Chapter 5Conclusions 58
APPENDIX A 60
APPENDIX B 63
Bibliography 65
</body>

