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1. Abstract 

Flavonoids are a class of secondary compounds produced by plants that contain 

various pharmacological properties. Our previous report showed that TMF, 

trimethoxyisoflavone, provided a good effect on wound healing by inducing 

keratinocyte migration. In this study, we screened derivatives of TMF for searching 

better pharmacological effects and found 2',6 Dichloro-7-methoxyisoflavone 

(DCMF) is better candidate for wound healing agents. We investigate the effects and 

possible action mechanism of 2',6 Dichloro-7-methoxyisoflavone (DCMF) on 

wound healing using keratinocyte HaCaT cell line and in excisional wound animal 

model.  We found DCMF markedly increased keratinocyte cell migrations but not 

proliferation. DCMF induced activation of ERK, AKT and p38 MAPK signaling 

pathways through Src kinase. We also found DCMF induced secretion of MMP-2 

and MMP-9, and partial epithelial-mesenchymal transition (EMT). Finally, effects 

induced by DCMF were abolished when Src was inhibited. In in vivo excisional 

wound model, DCMF treated mice showed improvement of wound closure and 

re-epithelialization. In conclusion, DCMF induces cell migration through activation 

Src, ERK, AKT, p38 signaling pathway. 

Key words: Flavonoid, Keratinocytes, Cell Migration, Wound healing 
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2. Introduction  

The main function of the skin is a protective barrier against the any harm effects 

from environment. Loss of this largest organ caused from injury for illness may lead 

to disability or even death (Kamel, Ong, Eriksson, Junker, & Caterson, 2013; Singer 

& Clark, 1999).  Wound healing is a dynamic and interactive process that requires 

both molecular and cellular event (Mendonça & Coutinho-Netto, 2009). 

Re-epithelialization is the restoration of an intact epidermal barrier through wound 

epithelialization that is an essential feature of a healed wound. The Migration, 

proliferation and differentiation of fibroblasts and Keratinocytes and interaction 

between these two cell types plays a crucial role in re-epithelialization and wound 

healing wound healing (Brun et al., 2014; Raja, Sivamani, Garcia, & Isseroff, 2007; 

Zhenxiang Wang, Wang, Farhangfar, Zimmer, & Zhang, 2012). 

Src and Src family are known as proto-oncogenes protein kinase that plays a crucial 

role in regulation of cell morphology, motility, proliferation, and survival (Roskoski, 

2004). The activation of Src is under the stimulation from plasma membrane 

receptors including receptor tyrosine kinase and integrins. The activation of  Src 

results in activation of several biochemical cascades that thereby propagate signals 

generated extracellularly along intracellular interconnected transduction pathways 

(Guarino, 2010). The interaction of Src and tyrosine kinase FAK to form a Src/FAK 

Complex plays significant role in activating many signaling pathways  to regulate 

cell adhesion and migration (Seong, Lu, & Wang, 2011). Moreover, Src/FAK 

complex is now identified as a crosstalk between integrin and cadherin-mediate 

adhesion of epithelial cells, particularly during the EMT process (Avizienyte & 

Frame, 2005). This complex also contributes to activating multiple downstream 

signaling pathways through phosphorylation of other proteins to regulate cellular 

function (Zhao & Guan, 2011). Three main MAPK cascades such as the extracellular 

signal-regulated kinases (ERK1/2), the c-Jun N-terminal kinases (JNK, also known 

as SAPK), and p38 are serine/threonine protein kinases that become phosphorylated 

both cytoplasmic and nuclear targets. (Chen et al., 2009; Rodriguez & Crespo, 2011). 

The activation of ERK and p38 was reported by Hoq et al., 2011a to be involved in 

catestatin mediated-keratinocyte migration. In addition, activation of ERK signaling 
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pathway is required for adiponectin mediated-keratinocyte migration and 

proliferation (S. Shibata et al., 2012). The activation of the p38 MAPK signaling 

pathway also involve in keratinocyte migration on collagen (W Li et al., 2001). 

Phosphatidylinositol-3-kinase (PI3K) is a lipid kinase and generates 

phosphatidylinositol-3,4,5-trisphosphate that is a second messenger essential for the 

translocation of Akt to the plasma membrane where it is phosphorylated and 

activated by phosphoinositide-dependent kinase (PDK) 1 and PDK2 to regulate 

central cellular functions including cell proliferation and survival by phosphorylating 

a variety of substrates (Osaki, Oshimura, & Ito, 2004).  In chicken embryo 

fibroblast (CEF) cells, expression of active forms of PI3K, v-P3k or Myr-P3k, was 

reported to be sufficiently induced actin filament remodeling result in increasing cell 

migration, as well as the activation of Akt (Qian et al., 2004).  

Flavonoids are plant pigments, phenolic substance, synthesized from phenylalanine. 

There are over 8000 individual compounds of flavonoids are known and isolated 

from wide range of vascular plants (Havsteen, 2002; Pietta, 2000). The Nobiletin, 

polymethoxy flavonoid, was shown to  prevented UVB-induced photoinflammation 

and photoaging by inhibiting production of PGE, in which not only by suppressing 

the expression of COX-2 but also by decreasing the activity of cPLA2 in human 

keratinocytes (Tanaka, Sato, Akimoto, Yano, & Ito, 2004). A flavonoid, luteolin was 

reported by Lodhi & Singhai, 2013 to induced wound healing in in vivo model. 

Moreover, our previous work demonstrated that isoflavone, TMF induced 

keratinocyte migration via induction of NOX2 pathway (Bui, Ho, Kim, Lim, & Cho, 

2014). In this study we focus on the effect of an isoflavone derivative, 2',6 

Dichloro-7-methoxyisoflavone (DCMF), that has a close chemical structure to TMF, 

on promotion of keratinocyte migration and wound healing. We demonstrated that 

DCMF promotes human keratinocyte migration via activating Src, ERK, AKT, p38 

MAPK signaling cascade that might be implicated in in vivo wound healing. 
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3. Material and Method 

3.1. Synthesized DCMF and Antibodies 

The 2',6Dichloro-7-methoxyisoflavone (DCMF) (Fig. 1B), was kindly provided by 

Professor Youngho Lim (Division of Bioscience and Biotechnology, Konkuk 

University, Seoul, Korea). The stock solution of DCMF was store at −20 °C, and 

20µM of final concentration was diluted before use. 

Phopho-FAK (Y97), FAK, Cyclin D1, Cyclin E, c-Src, Collage1A, and MMP-9 were 

obtained from Santa Cruz Biotechnology. Phopho-AKT (Y473), phopho-ERK1/2, 

phopho-Src (Y416), phopho-p38 MAPK, p38, Slug, Snail, Vimentin, MMP-2, and 

GAPDH were obtained from Cell Signaling and E-cadherin was obtained from BD 

Science,. The secondary antibodies used in the Western blotting were anti-mouse 

(PI-2000; Vector Laboratories) anti-rabbit (PI-1000; Vector Laboratories), and 

anti-goat (AP-107P; Millipore). 

3.2. Culture of HaCaT cells 

Briefly, the spontaneously immortalized keratinocyte cell line (HaCaT) was cultured 

in DMEM medium (GIBCO, Grand Island, NY, USA) supplemented with 10% fetal 

bovine serum (FBS; GIBCO) and 1% penicillin/streptomycin (PAA Laboratories 

GmBH, Strasse, Austria). Cells were maintained in a humidified 5% CO2 incubator 

at 37 °C. 

3.3. Scratch Wound Healing Assay 

HaCaT cells were seeded in a 48-well plate in 3.5.104/well and allowed to growth 

until reach 80% of confluence. The wound area was made using a sterile 200 µL 

pipette across the bottom of the culture plate. Culture medium were then removed 

and replaced with fresh medium containing tested material. Photographs were 

captured at 4× magnification using an OLYMPUS IX70 microscope equipped with a 

digital camera at 0 and 24 hours. The width of the scratch was measured by the 

distance from the both edge of scratch by ImageJ software.  

http://www.scbt.com/
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3.4. MTT 

Cells were seeded on 96-well with 200 μl of density of 3 × 104 cells/ml for each 

wells. Cell viability was assessed by using the conversion of 3-(4,5-dimethyl 

thiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) into formazan via 

mitochondrial oxidation. MTT solution (10 μl of 5 mg/ml solution; Amresco) was 

added to each well and incubated for 37 °C for 4 h. The medium was gently removed 

and replaced with 150 μl of DMSO and then incubated for 30 min with gentling 

shaking. The Absorbance at 570 nm was recorded with a spectrophotometer. 

3.5. Cell Counting  

HaCaT cells were seed on 6-well plates in serum-containing medium for 24 hours. In 

the next day, cells were treated with different concentration of DCMF. After growing 

two days, cells were trypsinized and directly counted using hemocytometer under 

light microscope. The medium was changed every two days until six days.     

3.6. Western Blot 

Protein from cells was lysed using RIPA buffer for 30 min on ice. The protein 

concentration was determined using the bicinchoninic (BCA) assay (Thermo 

Scientific, Rockford, IL, USA). The protein in conditional medium (serum-free 

medium) was concentrated by Amicon (Milipore, Darmstadt, Germany) centrifugal 

following manufacture instruction. The protein in medium after centrifugation was 

determined the concentration using Bradford assay(Bradford, 1976). Equal amounts 

of protein (30 μg) were resolved by 8–10% SDS-PAGE and transferred to PVDF 

membranes. The membranes then were blocked with TBST solution (10 mM 

Tris-HCl (pH 7.6), 150 mM NaCl, and 0.1% Tween-20) containing 5% skim milk at 

room temperature for 2 hours, and then incubated with indicated primary antibodies 

at 4 °C for overnight. After 3 washes with TBST, membranes were room 

temperature-incubated with peroxidase-conjugated secondary antibodies for 1 hour 

and then washed 3 times. Signal was detected with an ECL-kit. The signal 

quantification was performed using ImageJ program.  
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3.7. Wounding Experiment  

Briefly, 6-7 week old male ICR mice (n = 6 for each group) were chosen for the 

experiment. The hair was removed with an electronic hair clipper and removal 

cream. Dermal wound was made on the middle of a back using and 5 mm punch 

instrument. 200 μl of DCMF was applied to the wounds of the experimental group in 

concentrations of 200μM for 14 days. DMSO and Madecassol were used as negative 

and positive control respectively.  

3.8. Histological Analyses 

Wound tissues were isolated at day 7, 9 and 14 (two mice from each group) and then 

fixed in 10% buffered formalin saline embedded in paraffin wax. 4µM section of 

each tissue was stained with Hematoxylin and Eosin (H&E). Images were captured 

using an Olympus BX51 microscope (Olympus Corp., Tokyo, Japan) with the 

apochromatic objective lens and a 0.85 numeric aperture. The measurement of 

wound diameter and quantification of re-epithelialization. Was procedure as 

previously described by Liu et al., 2014 and Emmerson et al., 2012 respectively. 

3.9. Statistical analysis.  

All Statistical analyses were performed using GraphPad Prism 6 software (GraphPad 

Software). Data are expressed as mean value ± standard errors (S.E.). The significant 

of differences were analyzed using unpaired Student’s t test. Value P<0.05 was 

considered statistically significance 
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4. Result 

4.1. DCMF promotes HaCaT cell migration via activation of 

Src.  

We previously reported that an isoflavone flavonoid, TMF, has a high effect on 

promotion of Keratinocyte cell migration by activation of NOX2 (Bui et al., 2014). 

To increase our knowledge on the effect of isoflavone derivative compound on cell 

migration, we performed scratch wound healing assay treated with 20μM with 

several derivatives of isoflavone that have similar chemical structure to TMF. We 

found that 2',6 Dichloro-7-methoxyisoflavone (DCMF) highly induced cell migration 

compared to untreated control and other tested compounds. Therefore, we chose 

DCMF as our best candidate for further study on its effects on cell migration and 

wound healing (Fig. 1A and B). 
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Figure 1: Effect of several compounds from flavonoid on cell migration. 

(A) Relative migration from scratch assay is shown. Cells were incubated with of 

20μM of DCMF for 24h. P-value, versus untreated control. (B) Chemical structure of 

DCMF.  
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To further investigate the effect of DCMF on cell migration, we performed a 24h 

scratch wound-healing assay treated with different concentrations of DCMF on 

HaCaT Cells. The results showed that DCMF significantly enhanced migration of 

HaCaT cells with a dose dependent manner (Fig. 2).  

To verify whether increasing of cell migration induced by DCMF was not involved 

by cell proliferation, we performed MTT assay treated with DCMF (5–10μM) for 24 

hours. MTT data revealed DCMF slightly promoted HaCaT cell proliferation without 

dose dependent. However, there is no significant difference compared to untreated 

control (Fig. 3A). To confirm this finding, we directly counted cells treated with 

DCMF as the same concentration and time as MMT assay. We found no significant 

different of cell growth curve compared to control (Fig. 3B). 

Cyclin E and Cyclin D play significant role in regulation of cell cycle. (Kozar & 

Sicinski, 2005; Möröy & Geisen, 2004). To test effect of DCMF on cyclin E&D 

expression, we performed western blotting of total cells lysate treated with different 

dose of DCMF for 24.  There is no significant change on protein level of cyclin E 

and D (Fig. 4). Collectively, these data indicate that 267D7M strongly induces 

migration but has no effect on proliferation of keratinocytes. 
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Figure 2:  Effect of DCMF on HaCaT cell migration. 

Cells were incubated with different doses of DCMF (5–10μM) for 24h. Scratch 

wound healing assay of HaCaT cells treated with DCMF. Relative migration from is 

shown as graph. All Data represent means±S.E. ***P<0.001 versus untreated 

control. 
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Figure 3. Effect of DCMF on HaCaT cell proliferation. 

(A) Cells were incubated with different doses of DCMF (5–10μM) for 24h. The 

effect of DCMF was evaluated by MTT assay. (B) Cell were seed on 6-well plate for 

24h and then replaced with fresh medium contain tested material. Cells were 

trypsinized and counted with indicated time points. All Data represent means±S.E. 

N.S: no significant versus untreated control. 
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Figure 4:  Effect of DCMF on Cyclin D and Cyclin E 

Western blotting of cell cycle regulatory proteins from total cell lysate treated with 

different doses of DCMF (5–10μM) for 24hours. Ratio of relative intensity versus 

untreated control is shown. 
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To gain insight the molecular mechanism of keratinocyte migration induced by 

DCMF, we investigate the effect of DCMF on activation of FAK and Src. Focal 

adhesion kinase FAK is a cytoplasmic tyrosine kinase that plays important role in 

integrin-regulate signal transduction (Zhao & Guan, 2011). FAK-Src interaction is a 

dual complex. Activation of FAK-Src plays roles in the regulation of cell motility 

(Mitra & Schlaepfer, 2006). To elucidate the effect of DCMF on phosphorylation of 

Src and FAK, cells were treated with different doses and times of DCMF. The 

phosphorylation of Src and FAK was greatly elevated with a dose dependent manner 

in DCMF treated cells compared to un treated control (Fig. 5A and B). In addition, 

phosphorylation of FAK induced by DCMF peaked at 6 hours and Src did at 12 

hours (Fig. 5C -E). Saracatinib (AZD0530) is known as a potent c-Src/Abl kinase 

inhibitor that was previously reported by Hennequin et al., 2006. In HaCaT cells, we 

found that 1µM treatment of AZD0530 inhibited activation of Src induced by DCMF 

efficiently (Fig. 6A.) To verify whether activation of Src is required for 

DCMF-induced HaCaT cell migration, we performed wound healing assay of HaCaT 

cells pre-treated with 1µM of AZD530 30 min and then incubated with 10µM of 

DCMF for 24 hours. Result showed that DCMF-induced cell migration was 

abolished when Src was inhibited, indicating that Src is involved in DCMF-promoted 

cell migration (Fig. 6B). 
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Figure 5: DCMF promotes phosphorylation of FAK (Y397) and Src (Y416).  

(A) HaCaT cells were incubated with different doses of DCMF (5–10μM) for 24h. 

(B) Representative graph of relative expression from (A). (C) Cells were incubated 

with 10μM of DCMF for various time periods (0–24 hours). (D) Representative 

graph of relative expression from (C). (A and C) Total proteins were extracted and 

blotted with FAK (Y397) and Src (Y416) antibodies. Data represent means±S.E. 

***P<0.001 versus untreated control. 
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Figure 6: DCMF promotes cell migration via Src. 

(A) Cells were pre-treated with Src inhibitor AZD0530 for 1 h and then incubated 

with 10μM of DCMF for 2 h and the levels of phospho-Src were examined by 

western blotting with total cell lysates. Ratio of relative expression versus untreated 

control is shown. (B) Relative migration of Scratch wound healing assay of cells 

pre-treated with 1μM of AZD0530 for 1 h were incubated with 10μM of DCMF for 

24h. Data represent means±S.E. ***P<0.001 versus untreated control. 

 

 

 

 

 

 

 



 

16 

4.2. DCMF activates Src to mediate phosphorylation of ERK, 

AKT and p38 MAPK  

To increase our knowledge into molecular mechanism of DCMF-mediated cell 

migration, we investigated expression of ERK, p38 MAPK and AKT that were 

previously reported as major regulators of cell migration (Chen et al., 2009; Huang, 

Jacobson, & Schaller, 2004; Kakinuma, Roy, Zhu, Wang, & Kiyama, 2008). To 

determine the influence of DCMF on phosphorylation of ERK, AKT and p38 

MAPK, phosphorylated ERK1/2, AKT and p38 MAPK were evaluated by western 

blotting. As compared non-treated cells, DCMF greatly increased phosphorylation of 

ERK1/2, AKT and p38 MAPK with a dose dependent manner (Fig. 7A and B). 

Additionally, DCMF induced phosphorylation of ERK1/2 at 30 min and dramatically 

decreased until 24h while phosphorylation of AKT peaked at 2 h and p38 did at 6 h 

(Fig. 7C and D). 
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Figure 7: DCMF activates ERK, AKT, p38 MAPK. 

HaCaT cells were incubated with different doses of DCMF (5–10μM) for 24h. (B) 

Representative graph of relative expression from (A). (C) Cells were treated with 

10μM of DCMF for various time periods (0–24 hours). (D) Representative graph of 

relative expression from (C). (A and B) phopho-ERK1/2, AKT, and p38 were 

examined by western blot of total proteins from cell lysates. Data represent 

means±S.E. **P<0.01 and ***P<0.001 versus untreated control. 
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Previous reports showed that Src is necessary for the activation of ERK, p38 MAPK 

and AKT pathway as its downstream factors to regulate cell motility (Frey, Golovin, 

& Polk, 2004; Kim et al., 2008; Scapoli, Ramos-Nino, Martinelli, & Mossman, 2004; 

Vindis, Cerretti, Daniel, & Huynh-Do, 2003). To provide a clear evidence that 

phosphorylation of ERK1/2, AKT and p38 MAPK were involved in 

DCMF-mediated cell migration through activation of Src, cells were pre-treated with 

AZD0530 for 1 hours and then incubated with DCMF for 2 h. We found that the 

DCMF-induced phosphorylation of ERK1/2, AKT and p38 MAPK was significant 

abrogated by AZD0530 treatment (Fig. 8). We also found DCMF induced cell 

migration was abolished by treatment with ERK1/2, Pi3K and p38 inhibitors (Fig. 9).  

Taken together, the activation of ERK1/2, AKT and p38 MAPK are involved in 

DCMF-induced cell motility through the activation of Src.  
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Figure 8: DCMF activates ERK, AKT, and p38 MAPK via Src. 

Cells pre-treated with 1μM of AZD0530 for 60 min were incubated with 10μM of 

DCMF for 2 h. Total cell lysate were analyzed using phopho-ERK1/2, AKT, and p38 

antibodies. Ratio of relative expression versus untreated control is shown.  
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Figure 9: DCMF induces cell migration via ERK, AKT and p38 MAPK. 

10μM of PD98059 (ERK inhibitors), LY294002 (PI3K inhibitor), and SB203580 

(p38 inhibitor) were pretreated to HaCaT cells for 30 min before incubating 10μM of 

DCMF for 24h, and then their inhibitory effect on the DCMF-induced HaCaT cell 

migration was examined by scratch assay. Data represent means±S.E. *P<0.05, and 

***P<0.001 versus untreated control. 
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4.3. DCMF promotes MMP-2 and MMP-9 Secretion  

Matrix metalloproteinases (MMPs) are a large family of calcium-dependent 

zinc-containing endopeptidases that play crucial role in tissue remodeling and 

degradation of the extracellular matrix (ECM) proteins, including collagens, elastins, 

gelatin, matrix glycoproteins, and proteoglycan (Verma & Hansch, 2007). MMPs 

family is a key regulator of migration and invasion of cancer cells (Nabeshima, 

Inoue, Shimao, & Sameshima, 2002). We thought the secretion of MMPs protein 

into culture medium maybe involved in DCMF-mediated cell migration. To prove 

this, we investigated the secretion of MMPs induced by DCMF. HaCaT cells were 

treated with different concentration of DCMF and conditional media were 

concentrated as described in the method. The results showed that DCMF 

significantly induced secretion of MMP-2 and 9. Collagen type I is known as 

substrate of MMP-2. We thought increasing of MMP-2 level in the media may affect 

to collagen I. To check this, we concentrated conditional media from cells treated 

with DCMF for 24 hours. Interestingly, the level of collagen I in the medium was 

decreased in DCMF treated cells compared to untreated cells (Fig. 10). This finding 

could explain that the high level of MMPs secreted into the medium resulting in 

degradation of EMC molecules such as collagen I to regulate cell movement. 
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Figure 10: DCMF induces MMPs secretion. 

Cells were treated with different doses of (5-10μM) of DCMF in serum-free media. 

Conditioned media were removed and concentrated using Amicon centrifugation. 

Protein in the medium was analyzed by Western blot for MMP-2, MMP-9 and 

collagen I. Representative graph of relative expression is shown. Data represent 

means±S.E. **P<0.01 versus untreated control. 
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4.4. DCMF induces change EMT regulatory molecules via Src  

The epithelial-to-mesenchymal transition is involved in loss of cell-cell adhesion and 

enhancing cell migration (Byles et al., 2012).  We investigated the effect of DCMF 

on EMT process. We found that epithelial marker E-cadherin was down-regulated in 

DCMF treated cells compared to untreated control, whereas mesenchymal markers, 

such as Vimentin, Snail and Slug were increased with a dose dependent manner (Fig. 

11A and B). Interestingly, the expression of E-cadherin was increased by inhibition 

AZD530, a Src inhibitor, whereas EMT transcription factors Snail and Slug were 

decreased, indicating that Src is involved in DCMF-induced EMT changes (Fig. 

11C).  
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Figure 11: DCMF triggers Src to mediate EMT related gene expression. 

(A) Protein level of EMT related proteins of HaCaT cells incubated with different 

doses of DCMF (5–10μM) for 24h. (B) Relative expression from (A) is shown. (C) 

Cells were pretreated with AZD0530 1 μM for 1 h and then co-treated with 10μM of 

DCMF 24 hours. (A and C) Total proteins were extracted and blotted with indicated 

antibodies. Ratio of relative express versus untreated control is shown. All Data 

represent means±S.E. N.S: no significant, *P<0.05, and **P<0.01 versus untreated 

control.  
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4.5. DCMF improves wound healing and re-epithelialization 

Our in vitro data demonstrated that DCMF has a good effect in promotion of 

keratinocyte migration. This led us to ask whether effect of DCMF on keratinocyte 

cell migration contributed to in vivo wound healing. To prove this, we performed in 

vivo mouse-wound healing model. Full-thickness excisional wound was made on the 

dorsal of ICR mice using 5 mm punch biopsy. DCMF or DMSO or Madecassol were 

daily applied to wound sites topically. To confirm the effect of DCMF in promotion 

of wound healing and re-epithelialization, wound tissues were isolated with 

paraffin-embedded for histological study. We observed that DCMF treatment group 

exhibited significant reduction of wound diameter (determined by measuring the 

lengths between the wound margins) and increased re-epithelialization (determined 

by measuring the lengths newly formed epidermis) compared to control. In addition, 

there is no significant difference on both wound closure and re-epithelialization 

between DCMF and positive control Madecassol treated wounds (Fig. 12 A-C). This 

result indicates that DCMF may induce wound healing by promotion keratinocyte 

migration. 
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Figure 12: DCMF improves wound healing  

(A). Representative H&E–stained sections of incisional wounds at day 7. Arrows: 

wound margins, arrow head: epithelial leading edge, dotted line: newly formed 

epidermis. (B-C) Representative graphs of wound diameter and re-epithelialization 

respectively. ImageJ program was used to analyses both re-epithelialization and 

wound closure. Scale bar: 200µM. The values were expressed as means ± S.E., N.S: 

no significant, *P<0.05 versus untreated control. 
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5. Discussion 

In this study, we characterized the dynamic change of the cell migration induced by a 

synthetic compound from flavonoid.  We screened several derivatives of TMF to 

find a better candidate on promotion of cell migration and wound healing. We found 

that DCMF is on one of tested compounds that provided the most upregulated cell 

migration. Our results showed that DCMF highly induced cell migration with a dose 

dependent manner. On the one hand, DCMF induced activation of Src, ERK, AKT, 

and p38 MAPK to regulate cell migration. We also found DCMF induced wound 

healing in in vivo study.  

Our previous reports found that flavonoid induced HaCaT cell migration and wound 

healing with several signaling pathways (Cho et al., 2014; Ho et al., 2014; Seo et al., 

2015) However, in these studies, the mechanism involved on cell migration such as 

activation of Src or FAK were not yet studied. In the present study, we demonstrated 

that DCMF may enhance skin wound healing through the induction of keratinocyte 

migration, in which DCMF stimulates Src, ERK, AKT, and p38 MAPK signaling to 

regulate cell motility.  

Src and Src-family protein-tyrosine kinases are regulatory proteins that play a crucial 

role in cell differentiation, motility, proliferation, and survival (reviewed in ref. 

Roskoski, 2005)). Li et al., 2005 reported the Src-activating and signaling molecule 

mediated differentiation of keratinocytes in linking EGF receptor and 

SFK-dependent signaling. Another study by Zhenlian Wang et al., 2010 also found 

c-Src was involved in GPR48 mediates EGFR-induced cell keratinocyte proliferation 

and migration. Here we found that DCMF has an ability to induce cell migration with 

a dose dependent manner. The phosphorylation of Src was induced by treatment with 

DCMF in a dose and time dependent manner. Furthermore, the DCMF-promoted cell 

migration was abolished by Src inhibitor AZD0530. Src and FAK are known to 

cross-activation proteins. Inhibition of FAK/Src complex showed reduced cancer cell 

migration (Schaller, 2001; Slack et al., 2001). We found DCMF induced 

phosphorylation FAK (Y397). Y397 FAK phosphorylation is responsible for 

recruitment of Src and the generation of an activated FAK–Src complex reviewed by 

Mitra & Schlaepfer, 2006. This auto-phosphorylation of FAK Y397 is necessary for 
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its activity, Src phosphorylation of FAK Y576/Y577 is important in enhancing 

downstream signaling pathways (Parsons, 2003). Our finding showed that inhibition 

of Src by AZD0530 had no effect on phosphorylation of FAK (Y397) induced by 

DCMF (data not shown).  This is consistent with previous study that AZD0530 

targets Src but not FAK (Chang et al., 2008).  Indicating that DCMF induced 

activation of FAK/Src to regulate cell migration. 

ERK, AKT and p38 MAPK signaling pathways are known as major mediators of cell 

migration in many cell types (Du et al., 2010; Hoq et al., 2011b; Ryu et al., 2010; 

Segarra, Balenci, Drenth, Maina, & Lamballe, 2006). Shibata et al., 2012 reported 

that ERK signaling was involved in adiponectin regulated keratinocytes migration 

and proliferation (Sayaka Shibata et al., 2012).  Stoll, Kansra, and Elder 2003 also 

reported the inhibition of p38 MAPK resulted in the impairment of the formation of 

keratinocyte outgrowth in human skin explant cultures, as well as the migration of 

keratinocytes in an in vitro wound assay. In corneal wound healing model, the 

activation and prompt nuclear accumulation of phospho-p38 (p-p38) and -ERK1/2 

(p-ERK1/2) were rapidly activated by hepatocyte growth factor (HGF) and 

keratinocyte growth factor (KGF). Inhibition of either the ERK1/2 or p38 pathway 

resulted in delayed corneal epithelial wound healing by impairment cell migration 

and proliferation (Sharma, He, & Bazan, 2003). Our result showed that 

DCMF-incubated cells led to significantly increase phosphorylation of ERK1/2, 

AKT and p38, whereas inhibition of ERK, AKT and p38 MAPK by specific 

inhibitors led to impairment of cell migration induced by DCMF, indicating that 

ERK1/2, AKT and p38 MAPK are required in DCMF-mediated HaCaT cell 

migration. 

Activation of c-Src is known as upstream signaling cascade of ERK, AKT and p38 

activation (Frey et al., 2004; Zhang et al., 2012). We found that treatment with 

AZD0530 led to decreasing phosphorylation of ERK, AKT and p38 induced by 

DCMF, suggesting that Src to mediates phosphorylation of ERK, AKT and p38 

MAPK in DCMF-induced cell migration. MMPs is a family of proteolytic enzymes 

that is responsible for degradation of extracellular matrix proteins as well as 

non-matrix proteins, including cadherins to modulate tissue remodeling, cell 
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migration and proliferation (George & Dwivedi, 2004). MMP-13 plays a role in 

keratinocyte migration and contraction in wound healing, whereas MMP-9 is 

required for keratinocyte migration. Knockout MMP-9 and MMP-13 and double 

knockout MMP-9/13 showed delaying of wound closure and re-epithelialization 

compared to wile-type mice (Hattori et al., 2009). MMP-2 and MMP-9 were reported 

to be upregulated during TGF-β1-inuced keratinocyte migration (Seomun, Kim, & 

Joo, 2008) . In our data, MMP-2 and MMP-9 were upregulated in the DCMF 

treatment compared to untreated control. Interestingly, extracellular matrix, collagen 

I was significantly decreased in DCMF treated cells. This could explain that the 

upregulation of MMP-2 in the culture medium maybe affected to the degradation of 

collagen I and mediate cell motility (Nagase, 2001).   

Activation Src/FAK complex is a key regulator of EMT (Wilson et al., 2014). 

Transcription factors, such as Snail, Slug, and Twist, are known as pivotal activators 

of EMT (Sanchez-Tillo et al., 2012). Our finding showed that incubation of HaCaT 

cells with DCMF led to significantly increased expression of Snail, slug and 

Vimentin, whereas epithelial marker E-cadherin was down-regulated. We also found 

up-regulation of Slug and Snail were inhibited by AZD0530 and showed 

up-regulation of E-cadherin.  Indicating that Src is required for DCMF-mediate 

EMT related gene expression.  

The migration of keratinocyte is one the most important factors that responsible for 

regulation of wound healing and re-epithelialization mechanism (Raja et al., 2007; 

Yang et al., 2011). Our finding suggested that DCMF has a high effect in regulation 

of Keratinocyte migration in scratch wound healing model. This led us to think that 

that the migratory effect of DCMF on Keratinocyte maybe contributed to in vivo 

wound healing. As expected, typically treatment of DCMF was found to be enhanced 

wound healing by inducing wound contraction as well as wound re-epithelialization 

in in vivo mouse incisional wound healing model.  This finding indicates that the 

DCMF may induce wound healing and improve re-epithelialization via promotion of 

Keratinocyte migration. 
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Taken together, our finding suggests that the effect of DCMF on cell migration and 

wound healing may provide a new method to the future of drug development. In 

conclusion, DCMF promotes keratinocyte migration via activation of Src, ERK, 

AKT, p38 MAPK and may affect to MMPs activity and EMT to regulate cell 

migration that this mechanism maybe implicated in wound healing and 

re-epithelialization. 
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