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I. ABSTRACT

After renal injury, selective damage occurs in the proximal tubules as a result of 

inhibition of glycolysis; but the molecular mechanism is not known.  Poly(ADP-ribose) 

polymerase (PARP) activation plays a critical role of proximal tubular cell death in 

several renal disorders.  Here, we studied the role of PARP on glycolytic flux in pig 

kidney proximal tubule epithelial LLC-PK1 cells using XFp extracellular flux analyzer.  

Poly(ADP-ribosyl)ation by PARP activation was increased by 10 mM glucose in LLC-

PK1 cells, but treatment with 3-aminobenzamide as a PARP inhibitor does-dependently 

prevented the PARP activation induced by glucose.  Treatment with 1 mM 3-

aminobenzamide significantly enhanced extracellular acidification rate increased by 

glucose, but not oligomycin; indicating that PARP inactivation increases only glycolytic 

activity during glycolytic flux including basal glycolysis, glycolytic activity, and 

glycolytic capacity in kidney proximal tubule epithelial cells.  Glucose increased the 

activities of glycolytic enzymes including hexokinase, phosphoglucose isomerase, 

phosphofructokinase-1, glyceraldehyde-3-phosphate dehydrogenase, enolase, and 

pyruvate kinase in LLC-PK1 cells.  Furthermore, PARP inactivation selectively 

augmented the activities of hexokinase, phosphofructokinase-1, and glyceraldehyde-3-

phosphate dehydrogenase.  In conclusion, these data suggest that PARP activation 

regulates glycolytic activity through poly(ADP-ribosyl)ation of hexokinase, 

phosphofructokinase-1, and glyceraldehyde-3-phosphate dehydrogenase in kidney 

proximal tubule epithelial cells.

Key Word: Poly (ADP-ribose) polymerase, glycolysis, kidney proximal tubule, 

hexokinase, phosphofructokinase-1, glyceraldehyde-3-phosphate dehydrogenase
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II. INTRODUCTION

Poly(ADP-ribose) polymerase (PARP) is a nuclear protein that regulates gene 

transactivation as a transcription coactivator and protein function via poly(ADP-

ribosyl)ation (16).  Alternatively, PARP activation is important for DNA repair, but its 

excessive activation plays a prominent role in necrotic cell death (12).  The necrotic cell 

death via PARP activation is caused by NAD+-dependent poly(ADP-ribosyl)ation that 

leads to ATP depletion and metabolic collapse (5, 12).  Our previous reports and those 

by other researchers have demonstrated that either pharmacological or genetic inhibition 

of PARP is renoprotective against ischemia reperfusion injury (20, 25), cisplatin 

nephrotoxicity (14, 23), and obstructive nephropathy (15).  The kidney proximal tubule 

among renal tubules is most sensitive to lethal injury as a result of difference in their 

capacity to generate energy by glycolysis (18).  The proximal tubule has low capacity 

for glycolysis, as demonstrated by their failure to produce lactate under either control 

conditions or loss of oxidative phosphorylation using antimycin A (3).  Furthermore, the 

activity of hexokinase as a glycolytic enzyme is less in the proximal tubule than in the 

other tubules (24).

Glycolysis is the sequence of reactions that metabolizes one molecule of glucose to two 

molecules of pyruvate.  During glycolytic flux, two molecules of ATP and two molecule 

of NADH are produced under an anaerobic condition.  Phosphofructokinase-1 (PFK1) is 

one of the most important regulatory enzymes in the mammalian glycolytic pathway (6).  

The phosphorylation of fructose 6-phosphate to fructose 1,6-biphosphate by PFK1 is the 

first point of commitment of glucose to the glycolytic pathway (22).  Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) is also one of the most important regulatory 

enzymes in glycolysis and gluconeogenesis by reversibly catalyzing the oxidation and 
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phosphorylation of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate (7).  Recent 

reports indicate that poly(ADP-ribosyl)ation induced by PARP activation inhibits PFK1 

and GAPDH activities in brain-derived and endothelial cells, respectively (9, 10).  

However, the role of PARP in glycolysis in kidney proximal tubule epithelial cells 

remained unclear.  Therefore, we investigated the effect of treatment with a PARP 

inhibitor during glycolytic flux in kidney proximal tubule epithelial cells.
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III. MATERIALS AND METHODS

1. Cell culture 

The kidney proximal tubule epithelial cell line derived from pig (LLC-PK1) was obtained 

from American Type Culture Collection (Rockville, MD, USA).  The LLC-PK1 cells 

were maintained in Dulbecco’s modified Eagle’s medium (DMEM)/high-glucose medium 

containing 10% fetal bovine serum (FBS) at 37°C with 5% CO2.  The cells were grown 

until 70 % confluence on culture plates, and then changed to glucose- and serum-free 

DMEM medium.  After treatment with 0.01, 0.1, or 1 mM 3-aminobenzamide (3-AB; 

R&D Systems, Minneapolis, MN) in glucose- and serum-free DMEM medium (vehicle) 

for 30 minutes, the cells were incubated with 10 mM glucose in XF base medium 

(Seahorse Bioscience, Billerica, MA) with 4 mM glutamine for 30 minutes.

2. Enzyme activity

PARP activity in the pig kidney proximal tubule epithelial cells was measured using a 

universal PARP assay kit according to manufacturer’s instructions (Trevigen, 

Gaithersburg, MD, USA).  Activities of Hexokinase, phosphoglucose isomerase (PGI), 

GAPDH, enolase, and pyruvate kinase in the cells were measured using respective 

colorimetric assay kits purchased from BioVision Inc. (Mountain View, CA, USA) 

according to manufacturer’s instructions.  PFK1 activity in the cells was measured as 

previously described.  Briefly, the cells were homogenized in cold sucrose buffer (0.32 

M sucrose and 10 mM Tris-HCl, pH 7.4).  Homogenates were centrifuged at 13,000 rpm 

for 20 minutes.  The supernatants were incubated in 50 mM Tris-HCl buffer (pH 8.0) 

including 2.6 mM DTT, 2 mM MgCl2, 5 mM (NH4)2SO4, 1 mM EDTA, 40 units aldose, 

250 units triosephosphate isomerase, 40 units a-glycerophosphate dehydrogenase, 100 

mM fructose-6-phosphate, 100 mM ATP, and 16 mM NADH.  The decrease in optical 

density at 340 nm due to the oxidation of NADH was the measured for 60 seconds.
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3. Extracellular acidification rate

Extracellular acidification rate (ECAR) in the pig kidney proximal tubule epithelial cells 

was measured using the XFp extracellular flux analyzer (Seahorse Bioscience).  The 

cells were seeded in XFp cell culture miniplates (Seahorse Bioscience) at 4 x 105 per well 

in DMEM/high-glucose medium containing 10% FBS and incubated overnight.  The 

following day, the cells were treated with 1 mM 3-AB in glucose- and serum-free DMEM 

medium (vehicle) for 30 minutes, and then incubated at 37°C with XF base medium 

containing 4 mM glutamine in a CO2-free incubator for 60 minutes.  Glycolytic flux 

(basal glycolysis, glycolytic activity, and glycolytic capacity) as assessed by extracellular 

acidification rate (ECAR) was analyzed by the sequential injection of 10 mM glucose, 1 

mM oligomycin, and 50 mM 2-deoxyglucose.  ECAR was measured at 37°C with a 3-

minutes mix, 0-minute wait, and 3-minutes measurement protocol.  The levels of ECAR 

were made three times in respective phases, and expressed as units of milli-pH (mpH) per 

minute.

4. Oxygen consumption rate

The pig kidney proximal tubule epithelial cells seeded in XFp cell culture miniplates 

(Seahorse Bioscience) at 4 x 105 per well in DMEM/high-glucose medium containing 10% 

FBS were incubated overnight.  After that, the cells were treated with 1 mM 3-AB in 

glucose- and serum-free DMEM medium (vehicle) for 30 minutes; changed to XF base 

medium containing 4 mM glutamine, 1 mM pyruvate, and 25 mM glucose; and incubated 

at 37°C in a CO2-free incubator for 60 minutes.  Mitochondrial function (basal 

respiration, mitochondrial ATP production, and maximal respiration) as assessed by 

oxygen consumption rate (OCR) was analyzed by the sequential injection of 1 M 

oligomycin, 2 M carbonyl cyanide 4 -(trifluoromethoxy)phenylhydrazone (FCCP), and 

0.5 M rotenone plus antimycin A in the XFp extracellular flux analyzer (Seahorse 
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Bioscience).  OCR was measured at 37°C with a 3-minutes mix, 0-minute wait, and 3-

minutes measurement protocol.  The levels of OCR were made three times in respective 

phases, and expressed as units of picomoles (pmol) per minute.

5. Statistical analyses

Analysis of variance was used to compare data among groups using Systat SigmaPlot 

(Systat Software Inc., San Jose, CA, USA).  Differences between two groups were 

assessed by two-tailed unpaired Student’s t-tests.  P values of <0.05 were considered 

statistically significant.
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IV. RESULTS

1. Glucose increases PARP activation in kidney proximal tubule epithelial cells.

To study the role of PARP on glycolysis in kidney proximal tubule epithelial cells, PARP 

activity after incubation with glucose was measured in LLC-PK1 cells.  The cells 

incubated with glucose for 30 minutes showed the significant increase in the PARP 

activity, compared to that in glucose-starved control cells (Figure 1).  We also tested 

whether treatment with 3-AB, a PARP inhibitor, reduced the PARP activity increased by 

glucose.  Treatment with 3-AB at 30 minutes prior to incubation with glucose dose-

dependently diminished the increment in the PARP activity after 30 minutes of incubation 

with glucose (Figure 1).   However, treatment with 3-AB in glucose-starved control 

cells did not significantly alter the PARP activity (Figure 1).  These data indicate that 

PARP inhibition is efficacious against PARP activation induced by glucose in kidney 

proximal tubule epithelial cells.
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Fig. 1 Treatment with 3-AB attenuates PARP activation increased by glucose in 

kidney proximal tubule epithelial cells.

LLC-PK1 cells were maintained in DMEM/high-glucose medium containing 10% FBS at 

37°C with 5% CO2.  The cells were grown until 70 % confluence on culture plates; and 

then treated with 0.01, 0.1, or 1 mM 3-AB in glucose- and serum-free DMEM medium 

(vehicle) for 30 minutes.  After that, the cells were incubated with 10 mM glucose in XF 

base medium with 4 mM glutamine (control) for 30 minutes.  PARP activity in the cells 

measured using the universal PARP assay kit was expressed as units (U) per mg protein.  

Error bars represent SD (n=4 experiments).  *P<0.05 versus control; #P<0.05 versus 

vehicle.
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2. PARP inactivation increases glycolytic activity in kidney proximal tubule 

epithelial cells.

To analyze the effect of glucose-induced PARP activation on glycolysis in kidney 

proximal tubule epithelial cells, we investigated a comprehensive real-time analysis of 

glycolytic flux using XFp extracellular flux analyzer in LLC-PK1 cells treated with 

vehicle and 3-AB.  No significant difference in basal glycolysis as a basal ECAR rate 

reached by the cells during glucose starvation was found in cells treated with vehicle and 

3-AB (Figure 2, A and C).  To measure glycolytic activity, glucose was injected into 

culture wells.  The ECAR level was increased by glucose in cells treated with vehicle, 

and the level was more increased in cells treated with 3-AB (Figure 2A). The results 

indicates that glycolytic activity in cells treated with 3-AB is greater than that in cells 

treated with vehicle (Figure 2D).  To measure glycolytic capacity as a maximum ECAR 

rate reached by the cells, then oligomycin was injected into culture wells.  Oligomycin 

increased ECAR levels in both cell groups treated with vehicle and 3-AB, resulting in no 

significant difference of glycolytic capacity in cells treated with vehicle and 3-AB (Figure 

2, A and E).  These data indicate that PARP inactivation increases glycolytic activity in 

kidney proximal tubule epithelial cells. 
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Fig. 2 PARP1 inactivation augments glycolytic activity in kidney proximal tubule 

epithelial cells.

LLC-PK1 cells were treated with 1 mM 3-AB in glucose- and serum-free DMEM 

medium (vehicle) for 30 minutes, and then incubated at 37°C with XF base medium 

containing 4 mM glutamine in a CO2-free incubator for 60 minutes.  After that, ECAR 

in the cells was measured using the XFp extracellular flux analyzer.  Glucose (G), 

oligomycin (O), and 2-deoxyglucose (2-DG) were sequentially injected into the miniplate 

at a final concentration of 10 mM, 1 mM, and 50 mM, respectively.  The levels of 

ECAR were made three times in respective phases, and expressed as milli-pH (mpH) per 

minute.  (A) ECAR analysis in 3-AB-treated cells.  (B) Profile of ECAR analysis.  

BG, basal glycolysis; GA, glycolytic activity; GC, glycolytic capacity.  (C) Basal 

glycolysis indicates a basal ECAR rate reached by the cells during glucose starvation.  It 

was calculated by the average of three ECAR baselines before glucose injection minus 

the average of three non-glycolytic ECAR levels after 2-DG injection.  (D) Glycolytic 

activity indicates an ECAR rate reached by the cells after the injection of saturating 
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amounts of glucose.  It was calculated by the average of three ECAR levels after glucose 

injection minus the average of three ECAR baselines.  (E) Glycolytic capacity indicates 

a maximum ECAR rate reached by the cells.  It was calculated by the average of three 

ECAR levels after oligomycin injection minus the average of three non-glycolytic ECAR 

levels after 2-DG injection.  Error bars represent SD (n=4 experiments).  #P<0.05 

versus vehicle.
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3. Mitochondrial function is independent of PARP activation in kidney proximal 

tubule epithelial cells.

To determine whether PARP activation causes mitochondrial dysfunction in kidney 

proximal tubule epithelial cells, the OCR was monitored using XFp extracellular flux 

analyzer in LLC-PK1 cells.  No significant difference in basal respiration as an energetic 

demand of the cells under the baseline condition, mitochondrial ATP production as a 

FCCP-sensitive OCR rate, and maximal respiration as a maximum OCR rate of 

respiration that the cells can achieve was found in cells treated with vehicle and 3-AB 

(Figure 3, A to E).  These data suggest that PARP activation is not attributable to 

mitochondrial function in kidney proximal tubule epithelial cells.



15

Fig. 3 PARP1 is not involved in mitochondrial function during treatment with 

glucose in kidney proximal tubule epithelial cells.  

LLC-PK1 cells on an XFp cell culture miniplate were treated with 1 mM 3-AB in 

glucose- and serum-free DMEM medium (vehicle) for 30 minutes; and then incubated 

with XF base medium containing 25 mM glucose, 1 mM pyruvate, and 4 mM glutamine 

in a 37°C CO2-free incubator for 60 minutes.  After that, OCR was measured using the 

XFp extracellular flux analyzer.  Oligomycin (O), FCCP (F), and rotenone plus 

antimycin A (R&A) were sequentially injected into the miniplate at a final concentration

of 1 M, 2 M, and 0.5 M, respectively.  The levels of OCR were made three times   

in respective phases, and expressed as picomoles (pmol) per minute.  (A) OCR analysis 

in 3-AB-treated LLC-PK1 cells.  (B) Profile of OCR analysis.  BR, basal respiration; 

MA, mitochondrial ATP; MR, maximal respiration.  (C) Basal respiration indicates an 

energetic demand of the cells under the baseline condition.  It was calculated by the 

average of three OCR baselines before oligomycin injection minus the average of three 

OCR levels after R&A injection.  (D) Mitochondrial ATP indicates a level of ATP 
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produced by mitochondria.  It was calculated by the average of three OCR baselines 

before oligomycin injection minus the average of three ECAR levels after oligomycin 

injection.  (E) Maximal respiration indicates a maximum OCR rate of respiration that 

the cells can achieve.  It was calculated by the average of three OCR levels after FCCP 

injection minus the average of three OCR levels after R&A injection.  Error bars 

represent SD (n=4 experiments).
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4. PARP inactivation augments glycolytic enzyme activity induced by glucose in 

kidney proximal tubule epithelial cells.

To clarify the effect of PARP inactivation on glycolysis in kidney proximal tubule 

epithelial cells, we measured activities of glycolytic enzymes in LLC-PK1 cells.  

Glucose increased the activities of glycolytic enzymes including hexokinase, PGI, PFK1, 

GAPDH, enolase, and pyruvate kinase, compared to that in glucose-starved control cells 

(Figure 4, A to F).  Treatment with 3-AB in cells incubated with glucose markedly 

increased further the levels of activities in hexokinase, PFK1, and GAPDH (Figure 4; A, 

C, and D).  However, the enzyme activities were not significantly changed in glucose-

starved control cells after 30 minutes of treatment with 3-AB (Figure 4, A to F).  These 

data suggest that PARP activation regulates hexokinase, PFK1, and GAPDH activities 

increased by glucose in kidney proximal tubule epithelial cells.
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Fig. 4 PARP1 inactivation augments activities of glycolytic enzymes increased by 

glucose in kidney proximal tubule epithelial cells.

LLC-PK1 cells were treated with 1 mM 3-AB in glucose- and serum-free DMEM 

medium (vehicle) for 30 minutes; and then incubated with 10 mM glucose in XF base 

medium with 4 mM glutamine (control) for 30 minutes.  (A, B, D, E, F) Activities of 

hexokinase, PGI, GAPDH, enolase, and pyruvate kinase in the cells were measured by 

hexokinase, phosphoglucose isomerase, GAPDH, enolase, and pyruvate kinase 

colorimetric assay kits, respectively.  (C) PFK1 activity in the cells was measured as 

previously described (13).  All results were expressed as units (U) per mg protein per 

minutes.  Error bars represent SD (n=4 experiments).  *P<0.05 versus control; #P<0.05 

versus vehicle.
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V. DISCUSSION

The present study shows that PARP activation induced by glucose does not affect 

mitochondrial function in kidney proximal tubule epithelial cells.  Instead, PARP 

activation leads to inhibition of glycolytic activity as determined by the significant 

increment induced by the injection of glucose during glycolytic flux.  Furthermore, the 

inhibition of glycolytic activity is caused by the significant decrement of activity in 

glycolytic enzymes including hexokinase, PFK1, and GAPDH.

The activation of PARP is displayed by poly(ADP-ribose) polymerization because PARP 

builds up homopolymers of ADP-ribose units on various nuclear proteins as well as PARP 

itself (16).  The poly(ADP-ribosylated) proteins lose their affinity for DNA following 

genotoxic injury and then the proteins are inactivated (1).  In the metabolic pathway of 

glycolysis; hexokinase, PFK1, and GAPDH contain a poly(ADP-ribose)-binding domain 

such as poly(ADP-ribose)-binding motif, poly(ADP-ribose)-binding zinc finger domain, 

macro domain, and domain with conservative multiple sequence alignment of two 

tryptophan and a glutamate residues (10, 17).  Hexokinase is the first regulatory enzyme 

to initiate glycolysis by converting glucose to glucose-6-phosphate (19), and its activity is 

inhibited by PARP activation in primary mouse cortical neurons (2).  In support of this 

notion, hexokinase has been shown to contain a poly(ADP-ribose)-binding motif, and 

coimmunoprecipitate with poly(ADP-ribose) after PARP activation, indicating that it is a 

poly(ADP-ribose)-binding protein (2).  PFK1, one of the most important regulatory 

enzymes of glycolysis, contains a poly(ADP-ribose)-binding domain; and its activity 

increases when the ratio of ATP to AMP is lowered (6).  PFK1 activity is inhibited by 

poly(ADP-ribosyl)ation induced by PARP activation in brain-derived cells (10).  

GAPDH is also a key enzyme in the glycolytic pathway and has a susceptibility to 
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oxidative modifications of thiols that inhibits its activity (21).  It has been reported that 

GAPDH activity is also inhibited by poly(ADP-ribosyl)ation in kidney proximal tubule 

epithelial cells after ischemia reperfusion injury (8).  Poly(ADP-ribose) is detected in

GAPDH, and then its activity is subsequently decreased (10).  The previous findings are 

consistent with our present results, suggesting that PARP activation induced by injecting 

glucose into kidney proximal tubule epithelial cells generates poly(ADP-ribose) on its 

binding site in hexokinase, PFK1, and GAPDH; and reduces their activities.  The 

poly(ADP-ribose)-binding domain in other glycolytic enzymes including PGI, aldoase, 

triose phosphate isomerase, phosphoglycerate kinase, phosphoglyceromutase, enolase, 

and pyruvate kinase has not been reported.  In our present data, the activity of PGI, 

enolase, and pyruvate kinase has not been consistently altered by PARP inhibition, 

indicating that their enzymes may not contain the poly(ADP-ribose)-binding domain.

Glycolysis of glucose metabolism processes is the metabolic pathway that converts 

glucose into pyruvate in cytoplasm, which produces ATP (26).  Exogenous glucose, the 

most important energy-producing molecule of organisms, strictly induces activities of 

glycolytic enzymes in the whole pathway of glycolysis, containing 10 steps of chemical 

reactions with each catalyzed by a specific enzyme (11).  A recent report has 

demonstrated that PARP inhibits glycolysis in kidneys after ischemia reperfusion injury, 

as demonstrated by lactate production increased by PARP deficiency in injured tissues (8).  

Our present data using XFp extracellular flux analyzer have showed that glucose 

increases glycolytic activity during glycolytic flux in kidney proximal tubule epithelial 

cells.  Furthermore, treatment with the PARP inhibitor 3-AB in those cells has markedly 

lifted up glycolytic activity induced by glucose.  Intriguingly, the mitochondrial function 

containing basal respiration, mitochondrial ATP production, and maximal respiration has 

not been significantly different between treatment with 3-AB and vehicle in those cells.  
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This result contrasts with the previous data demonstrating increased mitochondrial 

function through SIRT1 in PARP-deficient myoblasts (4).  This result suggests that the 

alteration of mitochondrial function by PARP activation may be dependent on cell type.

Taken together, the results of our present study demonstrate that exogenous glucose 

increases PARP activation in kidney proximal tubule epithelial cells, and further, the 

PARP activation regulates glycolytic activity through poly(ADP-ribosyl)ation of 

hexokinase, PFK1, and GAPDH.  PARP may be a pivotal molecule involved in 

regulation of glucose metabolism.
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