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Summary 

Increasing the average rainfall and number of heavy rainfall events created the demand of 

rainfall-runoff characteristics estimation in Hancheon watershed of Jeju Island. This thesis paper 

considered the NRCS CN (Natural Resources Conservation Service-curve number), unit 

hydrograph method for understanding the runoff and developed L-moments method for rainfall 

frequency analysis. 

Firstly, the NRCS CN method application result of five years rainfall showed 18% to 44% 

runoff variation from the total annual rainfall and the 2012 year received maximum rainfall-

runoff volume. After that, unit hydrograph method was applied for estimation of peak runoff and 

peak time. To analyze observed rainfall-runoff and time, four storm events from 2012 were 

selected for calibration and typhoon Nakri of 2014 was used for validation. The HEC-hydrologic 

modeling system (HMS) simulation results showed the peak runoff varies from 151 to 546 

m
3
/sec and peak runoff time varies 8 to 27 hour. Meantime, a comprehensive relationship 

between Clark unit hydrograph parameters (time of concentration and storage coefficient) was 

also derived. The optimized values of hydrograph parameter were statistically verified by the 

analysis of variance (ANOVA) and the runoff comparisons were performed by r-square, root 

mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) method. The statistical 

performances of NSE, RMSE and r-square were found as 0.88, 37.52 and 0.76, respectively. The 

analysis results provide a decision for selecting rainfall-runoff event. 

Final analysis was on rainfall frequency estimation considering spatio-temporal variability. 

As a result, L-moments based statistical analysis techniques were shown the dependable results. 

In the study, the recorded hourly rainfall data series of five rainfall stations were sorted by 
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maximum consecutive hour rainfall (6-, 12-, 24-hour). Then, independence and stationary test of 

rainfall stations were analyzed using Mann-Kendal and autocorrelation function (ACF) analysis. 

Hereafter, cluster analysis and discordancy measure showed that the Hancheon watershed is 

belonging in three regions. Then, L-moments based heterogeneity measure identified that 

Gumbel and generalized extreme value (GEV) distribution as robust distribution for the study 

area. Afterwards, Monte Carlo simulation was applied to evaluate the accuracy of frequency 

estimation and the root mean square error (RMSE). In contrast, the RMSE values for watershed 

were seen as 0.014 to 0.237 for Gumbel and 0.115 to 0.301 for GEV distribution. The linear 

regression analysis of the frequency r-square value showed a variation of 0.842 to 0.974. 

In essence, the assessment of rainfall-runoff characteristics following the above methods 

can be provided reliable and accurate results. Thus, these study findings are being suggested for 

water resources planning of Hancheon watershed as well as for Jeju Island. 
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Chapter I:  Introduction 

1.1 Estimation of surface rainfall-runoff 

Rainfall-runoff linkage is one of the most important relationships in hydrologic analysis. 

Runoff needs to be estimated for assessment of water availability and functions, to underscore 

the modalities for efficient utilization of water. Rainfall, on the other hand, is a primary input for 

watershed level runoff computation. The estimation of rainfall-runoff plays a pivotal role in 

water resource management and feasibility level planning for resources distribution, as well as 

hydrologic and hydraulic design of structures. In term of importance, a prominent stream which 

contains most its rain has been considered. There are some lumped (HEC-HMS, HSIMHYD, 

IHMM, etc.) and distributed (SWAT, GIS, SWMM, HSPF, NRCS CN, etc.) models are available 

for calculating watershed runoff after a rainfall event. Among of them, NRCS curve number (CN) 

method using GIS tool have been chosen for watershed of Jeju Island due to the models 

flexibility, efficiency, accuracy and parametric availability (SCS 1972). 

The curve number (CN) is a combination of rainfall, land use and soil class.  In hydrology, 

CN is used to determine the infiltration of water into soil and the amount of water becomes 

surface runoff. A high runoff means the area contains of high CN value in urban areas and a low 

runoff means the low CN value in dry soil. In this study, geographical extent had confined within 

the watershed. A watersheds runoff for daily rainfall events represents its overall response, and is 

therefore, an effective way to determine its total water availability (runoff volume). Thus, the 

approach has implicated for planning of several conservative measures in South Korea (Hawkins 

1993; Kim et al. 2010). 
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1. 2 Assessment of unit hydrograph parameters and runoff responses 

Estimation of peak flood runoff and its timing is a fundamental issue for developing the 

design and controlling the functions of various flood protection and other hydrologic structures 

(Pegram and Parak 2004). The assessment of peak runoff depends on rainfall-runoff intensity, as 

well as the geomorphologic and climatic characteristics of a watershed. If the watershed area 

contains long temporal soaked rain, soil becomes saturated with water, for which no excess 

rainfall can enter it. Such cases are usually followed by the eventual draining out of excess 

rainfall into adjacent streams, resulting large amount of flow. These spatio-temporal variation of 

runoff largely constraints the pragmatic yet accurate estimation of peak flow, for which the 

concept of unique unit hydrograph is predominantly used. Unit hydrograph method is accepted 

procedure for transforming rainfall access to obtain runoff time distribution. 

The very first unit hydrograph introduced by Sherman (1932), which considers the 

physiographic factors of watershed to predict hydrograph. A similar effort has been made in this 

study, which attempts to use the unit hydrograph concept to simulate a peak flood runoff of a 

typical water-soaked watershed area, by analyzing the historical information on rainfall-runoff of 

multiple storm rainfall events. A typical watershed named Hancheon watershed from Jeju Island 

has been chosen in this regard. Over the years, Jeju Island has been hit by heavy rainfall events 

as well as tropical storms and the study area also contains small patches with mountainous 

characteristics.  

A total number of five rational models for determining the unit hydrograph have been 

inspected during this case study, the first of which was derived by Clark (1945). Clark unit 

hydrograph model works as a significant tool for rainfall-runoff simulation, where watersheds 
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are assumed to have large length-width ratios and a relatively complex geomorphology (Sabol 

1988). The model implies rainfall-runoff estimations using two major empirical parameters: time 

of concentration (Tc) and storage coefficient (R). The relationship between Tc and R was 

proposed by Johnstone et al. (1949), using major stream length and slope factor. The second 

rational method, developed by Snyder (1938), relates the time from centroid of the rainfall to the 

peak of unit hydrograph. The basic assumption of this method is that different watershed area 

having similar geometrical characteristics will have identical values of peak flood runoff and 

onset time. These regional parameters i.e. excess rainfall duration and area’s storage coefficients 

are determined using the watershed lag time. The method also allows for un-gauged watersheds 

of similar patterns rainfall. The third method is known as the soil conservation service (SCS 

1964) triangular unit hydrograph method, which developed a dimensionless hydrograph assumed 

by the relationship between accumulated total rainfall-runoff, infiltration and initial abstraction. 

However, implication of this method for high water levels is relatively difficult and the various 

antecedent moisture conditions (I, II and III) cannot handle rainfall-runoff problems accurately 

(Capece et al. 1988). The fourth method was the kinematic wave method (Wooding 1965) which 

investigated overland flow and created a stream hydrograph assuming gravity force. This is a 

physics based approach similar to the conventional hydrograph concept. The method requires the 

use of numerical methods in order to account for non-uniform rainfall and variable of watershed 

characteristics. The last method is Mod-Clark method, which inspected a computer aided model 

to incorporate grid cell data into detail hydrograph modeling (USACE 1995). This method is 

popular in rainfall-runoff modeling as it can very closely represent the torrential rainfall patterns 

and support to separate regression analysis using appropriate equations.  
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To understand the storm rainfall-runoff characteristics of Hancheon watershed, several 

significant recent articles had been studied. Kim et al. (2014) investigated the flood runoff 

characteristics using surface image velocimetry method by disaster monitoring technology and 

considering 2012 years’ storm rainfall events. The study gives an idea about observed runoff 

data measurement by Kalesto meter. Another study inferred that the Hancheon stream watershed 

runoff can be affected by the upstream reservoir operation (Moon et al. 2014). This study 

estimated peak runoff ‘with’ and ‘without’ reservoir operation scenarios, by considering typhoon 

Dianmu and typhoon Nari. Chung et al. (2011) developed threshold runoff simulation method 

(TRSM) to overcome the limitation of SWAT application for Jeju Island based on 2008-2010 

daily limit rainfall-runoffs. The study provides the calibration method techniques and NRCS 

curve number (CN) idea for Hancheon watershed. Another study has been carried out based on 

the process of unit hydrograph parameters’ estimation using stream water velocity, as developed 

by Jung et al. (2014), where the time of concentration and storage coefficient were estimated 

using Kraven II and Sabol formula respectively. The limitation of this study was unit 

hydrographs parameters range which could not be derived. Therefore, this study will present the 

parameters range along with peak runoff and time. 

1. 3 Spatial interpolation of rainfall by areal reduction factor (ARF) analysis 

Generally, design rainfall values are expressed from the fixed point rainfall, which is depth 

at a specific location. These require knowledge about spatial variability over a specified area. 

Concurrently, determine the amount of areal rainfall is also very important. Therefore, a spatial 

rainfall interpolation (point rainfall convert to areal rainfall) can be solved by areal reduction 

factor (ARF) estimation (Bell 1976; Coles and Tawn 1996; Michele 1999).  
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Areal reduction factor (ARF) is define as the factors when applied to point values for a 

specific return period and duration provide the areal rainfall for the same durations and return 

period (NERC 1975). The ARF concepts give spatial variability framework of various 

hydrological processes.  In mainland of South Korea, for dam design and operation, public safety 

and other surface water projects has been ARF for extreme hydrological events. In spite of the 

long term average rainfall and increasing extreme rainfall events, ARF estimation is also 

essential for Jeju Island’s water control structures. 

1.4 Development of L-moments approach by regional frequency analysis 

In addition of gusty wind, typhoon wrought from heavy rainfall considered as a 

fundamental component of water cycle which has a wide range of application in hydrological 

engineering. The coastal part of East Asia is extensively and continuously hit by climatic disaster 

that has a substantial affect on large extent to the social and economic condition of the country 

(Jun 1989; Shabri et al. 2011; Chang 2012; Cai et al. 2014). As such, extreme hydro-

meteorological occurrences are currently the lead research topics for its potentially dangerous 

phenomena (Bruce 1994; Obasi 1994). Attempts are therefore made to reliable estimation of 

extreme rainfall occurrence and corresponding frequency information accuracy to control the 

hydrologic systems design for Jeju Island. 

A typical watershed of Jeju Island (Hancheon watershed), South Korea has been 

considered as study area for developing regional frequency distribution using L-moments 

approach. The study area usually experiences by several typhoon events per decade. Specially, 

over past ten years (2005-2014), a number of typhoons (e.g. Typhoon Nari, Khanun, Dembin, 

Sanba, Nakri) hit to the Island due its tropical calamity and more than 11 people were died, 2 
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people were missing and 1.41 million USD property were looses. Due to short duration of data 

records, complex geographic and hydro-meteorological characteristics, a study need on regional 

frequency analysis (RFA) to improve the estimation process of extreme rainfall over the island. 

RFA approaches were widely applied for various spatial conditions. The idea was continuously 

developing and new approaches were further investigated by other researcher and hydrologists. 

Many researchers published paper on regional frequency analysis and they used L-

moments approach to determine regions as similar category rainfall and viewed as a modification 

of the probability moments (e.g. Bradley 1998; Parida et al. 1998; Fowler and Kilsby 2003; 

Kumar et al. 2005; Noto et al. 2009; Saf 2009; Shahzadi et al. 2013; Devi and Choudhury 2013; 

Liu et al. 2015). Previously, Um et al. (2010) studied on extreme rainfall in Jeju Island with 

respect to influential parameters including: elevation, latitude, longitude and five distribution 

models. They also proposed for the multiple non-linear forms, linear regression and established 

an intensity-duration-frequency (IDF) relationship curve that increased the model accuracy as 

18.31-86.27%.  Up to now, the working methods explored and published on regionalization for 

the estimation of rainfall includes: cluster analysis (Easterling 1989; Venkatesh and Jose 2007), 

L-moments analysis (Hosking 1990), L-moments associated with cluster analysis (Guttman 1993; 

Schaefer 1990; Satyanarayana and Srinivas 2008; Wallis et al. 2007), spatial correlation analysis 

(Gadgil et al. 1993), homogeneity test (Wiltshire 1986) and regional frequency analysis 

techniques (Eslamian and Feizi 2007; Ngongondo et al. 2011; Hossein and Arash 2014). 
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1.5 Objectives and scope of thesis 

To assess the rainfall-runoff characteristics and develop technique for rainfall frequency of 

Hancheon watershed, NRCS CN method, unit hydrograph method and L-moments approach has 

been addressed. The runoff volume, runoff intensity and rainfall return period analysis are the 

main objectives of this study. In addition, to design and prepare useful application from the 

limited observed data and distinct geomorphologic condition, the specific study activities are 

intent to: 

 Estimate rainfall-runoff volume by NRCS CN method using the semi distributed model. 

The watershed runoff for daily rainfall events represents its overall response and is 

therefore, NRCS CN method an effective way to determine yearly total amount of water 

availability. 

 Preliminarily investigate the temporal variations of peak runoff and hence establish Clark 

unit hydrograph parameters (Tc, R) range. 

 Assess the statistical relationship by ARF techniques for the 6-, 12-, 24-hour design storm. 

Furthermore, graphical representation of ARF will provide an outline for Jeju Island. 

 Develop an economical frequency estimation procedure for the extreme rainfall 

characteristics by the Hosking and Wallis (1997) method. The specific aim is to carry out 

the regional frequency analysis (RFA) method for 6-, 12-, 24-hour maximum consecutive 

rainfall series using L-moments approach. This information is expected to provide a 

suitable idea on the extreme rainfall probability distribution. 

The results of this thesis may provide valuable suggestion for rainfall-runoff characteristics 

assessment considering the temporal variability. 
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1.6 Structure of this thesis 

The thesis organized into five chapters as follows: 

Chapter I gives a brief introduction about the surface rainfall-runoff, unit hydrograph, 

spatial interpolation of rainfall by ARF, unit hydrograph and L-moments based frequency 

estimation with comprehensive literature review on rainfall assessment principles. 

Chapter II provides details about the selected study area and basic rainfall data 

information. Also, the land use and soil class properties for further analysis are presented. 

Chapter III describes the fundamentals of rainfall assessment techniques and equations 

used are presented. Specifically rainfall-runoff estimation by NRCS CN, unit hydrograph by 

Clark method, ARF ratio and L-moments approach for regional frequency analysis are obtained. 

Chapter IV represents the results and related discussion on rainfall-runoff volume, peak 

runoff and time along with the unit hydrographs parameters range, peak runoff, areal reduction 

factor (ARF) ratios and rainfall design estimation by L-moments. Also, the study showed the 

frequency analysis results for different returns periods in terms of regions. 

Finally, Chapter V summarizes the salient features of this present study, provides 

probable suggestion for study area and outlined with the future study directions. 
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Chapter II: Study Area and Data Selection 

2.1 Description of the watershed area and topography 

The Hancheon watershed shows the dynamic and distinct hydrological characteristics with 

an area of 37.39 sq. km, located in Jeju Island of South Korea (Figure 2.1). The watershed area 

is bounded by the north at latitude 32ᵒ54′ to 33ᵒ31′ and east longitude bounded at 126ᵒ30′ to 

126ᵒ33′. Although the study area covers 2.02% of the total area of Jeju Island, but the orographic 

condition significantly influences the variability of the rainfall amounts. The major stream of 

watershed is Hancheon stream, originated at Halla Mountain flows from south to north and 

directly enter into the ocean. The stream is most important due to wideness and prototypical 

significant which control the runoff after a continuous rainfall.  

 

Figure 2.1 Hancheon watershed in Jeju Island. 

The topography of study area has been generated in the form of a 30-meter resolution 

digital elevation model (DEM) using ArcGIS 10.3.1 software (which is available from 
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environmental system research institute, ESRI). Topographical characteristics, average width of 

stream and watershed shape calculated using 1/250,000 spatial digitize map of the Jeju Island. 

After analyzing in GIS, the stream length, watershed average width and form factor are seen as 

20.05 km, 1.86 km and 0.09. Table 2.1 carried out the basic topographical information of the 

watershed.  

Table 2.1 Watershed characteristics 

Area 

(sq. km) 

Stream length 

(km) 

Mean elevation 

(km) 

Average width 

(A/L), km 

Form factor 

(A/L
2
) 

37.393 20.052 0.688 1.860 0.088 

Considering the proto-typical significance of these study outputs, simplicity of the 

calculation methods, temporal variability and the overall appropriateness in connection with 

other uniform watershed, this study area is chosen. 

2.1.1 Elevation and slope analysis 

Watershed elevation considered as vital factor that affecting rainfall infiltration, runoff 

determination and evapo-transpiration of the area. Consequently, slope which effects on surface 

water velocity, flow and erosion features. The Hancheon watershed has an elevation of 10 m to 

1,950 m from the mean above sea level (Figure 2.2). The 0-600 m elevation with an area of 

18.68 sq. km (50%) falls on urban area. Meantime, 601-900 m covers 18.1 % area, 901-1,100 m 

elevation accounted in 10.1% area, 1,101-1,400 m elevation covers 15.09% area and 1,401-1,950 

m altitude covers 6.79% area of total watershed (Table 2.2). 
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Table 2.2 Elevation analysis result 

Elevation 

(m) 

Area 

(sq. km) 

Percentage 

(%) 

Cumulative area 

(sq. km) 

Cumulative 

percentage (%) 

0-300 8.113 21.694 8.113 21.694 

301-600 10.563 28.244 18.676 49.938 

601-900 6.767 18.096 25.444 68.033 

901-1100 3.764 10.079 29.213 78.112 

1101-1400 5.644 15.093 34.857 93.204 

1401-1950 2.541 6.796 37.393 100 

 

  

Figure 2.2 Digital elevation model (DEM) and slope analysis of the watershed. 

On the other hand, slope is very effective parameter for the study due to its steep 

characteristics. Average slope of Hancheon watershed is 10.8 degree. Slope analysis results 

shows that 0 to 20 degree covers 87.72% area and rest of 12.28% area covering 20.01 to 50 

degree slope (Figure 2.2 and Table 2.3). 
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Table 2.3 Slope analysis result 

Slope  

(degree) 

Area  

(sq. km) 

Percentage  

(%) 

Cumulative area 

(sq. km) 

Cumulative 

percentage (%) 

0-10 21.871 58.489 21.871 58.489 

10.01-20 10.931 29.233 32.802 87.722 

20.01-30 2.680 7.166 35.482 94.888 

30.01-40 1.495 3.999 36.977 98.887 

40.01-50 0.416 1.113 37.393 100 

2.1.2 Land use classification 

Land surface and its effective fineness are very important to estimate runoff of the study 

area. The land use classification of watershed shows that an area of 24.28 sq. km situated in 

forest and near to mountain that covers the 65% area. The northern part of the study area 

identified as urban area which covers 14.19% of total watershed has significance for analysis 

event rainfall and stream analysis. 

  
Figure 2.3 Land use and soil class map. 
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Table 2.4 Land use analysis result over the watershed 

Code Land use name 
Area  

(sq. km) 

Percentage 

 (%) 

110 Residential area 0.754 2.017 

130 Commercial area 0.189 0.504 

140 Entertainment facilities 0.154 0.412 

150 Traffic area 0.508 1.359 

160 Public facilities 0.126 0.336 

210 Paddy field 0.004 0.011 

220 Agriculture field 3.429 9.171 

230 House 0.025 0.067 

240 Orchard 1.676 4.481 

250 Other cultivated land 0.017 0.047 

310 Broadleaf forests 15.694 41.970 

320 Coniferous 8.583 22.954 

330 Mixed forest 0.369 0.986 

410 Natural grasslands 1.898 5.075 

420 Golf course 0.819 2.189 

430 Other grassland 2.769 7.405 

510 Inland wetlands 0.004 0.011 

520 Coastal wetlands 0.007 0.019 

620 Others lowland 0.260 0.695 

710 Inland waterways 0.103 0.275 

720 Marine 0.006 0.015 

Total 37.393 100 

2.1.3 Soil classification 

The effective of soil, infiltration characteristics, permeability and average clay content are 

influenced the hydrology of any watershed. Based upon the soil classification analysis of 

Hancheon watershed (Table 2.5) HEUGAG, GUNSAN, PYEONGDAE and Jeju appears as 
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28.89%, 12.09%, 10% and 9% area. This soil class data were collected from Korean society of 

agriculture engineering (1977) database. 

Table 2.5 Soil class and HSG analysis result in the watershed 

Soil class name 
Area 

(sq. km) 

Percentage 

(%) 
Hydrologic soil group (HSG) 

BRB 0.012 0.031 C 

DAEHEUL 0.025 0.067 A 

DONGGUI 1.651 4.416 C 

DONGHONG 1.964 5.251 C 

GAMSAN 0.387 1.035 A 

GANGJEONG 0.019 0.051 D 

GEUMAG 0.673 1.799 A 

GIMYEONG 0.074 0.197 B 

GUEOM 0.073 0.196 C 

GUNSAN 4.521 12.091 B 

GYORAE 0.066 0.177 C 

HANGYEONG 0.081 0.217 B 

HANRIM 0.140 0.375 A 

HEUGAG 10.801 28.886 A 

IDO 0.566 1.512 C 

JEJU 3.481 9.308 C 

JEOGAG 0.042 0.112 A 

JOCHEON 0.025 0.067 B 

JUNGEOM 0.105 0.281 B 

JUNGMUN 0.789 2.109 C 

MINAG 0.010 0.026 A 

MUREUNG 0.444 1.187 D 

NAMWEON 0.097 0.261 B 

ORA 3.787 10.127 C 

PYEONGDAE 4.017 10.743 C 



15 

Soil class name 
Area 

(sq. km) 

Percentage 

(%) 
Hydrologic soil group (HSG) 

RB 2.371 6.340 C 

Rock outcrop 0.098 0.263 B 

SARA 0.440 1.177 B 

SONGAG 0.345 0.923 C 

TOSAN 0.066 0.176 C 

Water 0.004 0.011 D 

YONGDANG 0.114 0.306 B 

YONGHEUNG 0.106 0.283 D 

Total 37.393 100 

 
2.1.4 Hydrological soil group (HSG) analysis 

The analysis of hydrological soil group (HSG) of Hancheon watershed is classified into 

four categories (A, B, C and D) based on the infiltration characteristics (Figure 2.4). Infiltration 

characteristics influenced by the soil class and effective depth of soil. Group A having high 

infiltration that indicates the low runoff potentiality of soil, group B shows the moderately low 

runoff potential, group C having moderately high runoff potential and group D clarifies the high 

runoff potential of soil. Classification of HSG category shows that group A, B, C and D values 

are 12.08, 5.56, 19.19 and 0.573 sq. km (Table 2.6). Therefore, 51.31% of total area showed 

moderately low infiltration. These soil classes have moderate rates of water transmission. 

Table 2.6 Hydrological soil group (HSG) classification 

HSG category Area (sq. km) Percentage (%) 

A 12.077 32.298 

B 5.556 14.859 

C 19.186 51.310 

D 0.573 1.532 

Total 37.393 100 
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Figure 2.4 Hydrological soil group (HSG) category. 

2.2 Rainfall data 

Generally, weather of Jeju Island shows seasonal variation due to monsoon climate. About 

43% of the total annual rainfall occurs in summer (June to August) and autumn (September to 

November). Every year, typhoon events are resulting from extreme consecutive hour rainfall and 

tropical wind to cause of flash flood. Due to the spatial and temporal variability of rainfalls, the 

Korean Meteorological Administration (KMA) of Jeju province collects hind casting 

meteorological data across the Hancheon watershed by tipping bucket system. In this study, we 

have used hourly rainfall data of five gauge station near the watershed which compiled by the 

automatic weather station (AWS) of Jeju regional meteorological administration. The data record 

length varies between 11 and 50 years. The annual average rainfall near coastal region shows 

1,560 mm and the rest of the watershed area shows about 2,061 mm rainfall (Jung et al. 2014). 
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Figure 2.5 Location of rainfall stations near Hancheon watershed in Jeju Island. 

2.2.1 Selection of rainfall station and available data 

The substantial differences in elevation and geographical location have created 

considerable variation in daily rainfall patterns over different place of the island. Prior to the 

availability of above mention high-quality data, there were found very few rainfall recording 

stations in Hancheon watershed. Among five rainfall stations, Witsaeorum station (near to the 

highest peak of the Jeju Island) receives the maximum daily rainfall of 1,396.5 mm (Table 2.7) 

in a single calendar day since AWS began tracking rainfall data. Figure 2.6 showing the daily 

maximum and annual total rainfall of each station which has the temporal and station-wise 

fluctuations. The maximum daily rainfall for Jeju station exists 615.6 mm, meanwhile total 
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annual rainfall shows 2,526.0 mm in 2012. Accordingly, in the case of Ara, Eorimok, 

Witsaeorum and Jindallaebat rainfall station maximum daily rainfall are 838.5 mm, 909.5 mm, 

1,396.5 mm and 1,183.5 mm for the year of 2012, total annual rainfall obtained as 3,461.5 mm, 

4,459.0 mm, 6,514.5 mm and 7,317.0 mm. In comparison with the other rainfall years, highest 

number of extreme rainfall events occurred in 2012. The potential reason could be the orographic 

rainfall effects with mountainous topography. 

Table 2.7 List and type of the five rainfall stations’ utilized for analysis 

Rainfall 

station 

GPS 

point 
Region 

Elevation 

(m) 

Period of 

data 

Record 

length 

1-day maximum 

rainfall (mm) 

Jeju 
33ᵒ31′ N 

126ᵒ31′ E 
Northern 20 1964-2013 50 615.6 

Ara 
33ᵒ27′ N 

126ᵒ33′ E 

North-

Eastern 
379 2001-2013 13 838.5 

Eorimok 
33ᵒ22′ N 

126ᵒ32′ E 
Mountain 972 1995-2013 19 909.5 

Witsaeorum 
33ᵒ23′ N 

126ᵒ29′ E 
Mountain 1673 2002-2013 12 1396.5 

Jindallaebat 
33ᵒ21′ N 

126ᵒ30′ E 
Mountain 1490 2003-2013 11 1183.5 
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Ara station (2001-2013) Eorimok station (1995-2013) 

  

Witsaeorum station (2003-2013) Jindallaebat station (2003-2013) 

Figure 2.6 Rainfall time series data availability over five rainfall stations. 

2.2.2 Thiessen polygon area analysis 

To establish any basic water resources plan and adopt with watershed area, the rainfall 

observatory station convert into the spatial rainfall is very useful tool. Thiessen polygon ratio 

was developed around the rainfall stations to take account of the close proximity of average 

rainfall at each station. The analysis results Ara station covering maximum 31% area wherever 

Jeju, Eorimok, Witsaeorum and Jindallaebat shows 26%, 20%, 14% and 9% (Figure 2.7 and 

Table 2.8). In Jeju Island, thiessen polygon ratio method shows the accurate spatial rainfall with 

compare to other method, which clarify that regional rainfall increases with the elevation. This 

analysis has done due to develop temporal runoff by NRCS CN method. 
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Figure 2.7 Thiessen polygon area for the Hancheon watershed. 

Table 2.8 Thiessen polygon area and their percentage 

Station name 
Area 

(sq. km) 

Percentage 

(%) 

Jeju 9.725 26 

Ara 11.590 31 

Eorimok 7.478 20 

Witsaeorum 5.235 14 

Jindallaebat 3.365 9 

Total 37.393 100 
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Chapter III: Methodology 

3.1 Rainfall-runoff relation 

3.1.1 National resources conservation service (NRCS) method 

Rainfall-runoff relationship was firstly developed (1972) among a watershed region by the 

U.S. Department of Agriculture (USDA) national resources conservation service (NRCS). For 

rainfall event, the excess rainfall Pe is always less than or same to the rainfall depth P (Figure 

3.1). If there have some initial abstraction of rainfall for which runoff will not occur, then the 

potential rainfall is P-Ia. 

 

Figure 3.1 Variables of the NRCS method of rainfall abstractions: P is total rainfall, Pe is rainfall excess, 

Ia denote the initial abstraction and Fa is continuing abstraction. (Source: Chow 1964) 

The NRCS methods assumes that the ratios of two actual and potential quantities are equal, 

which is, 

             
  

 
 

  

    
                                            

From continuity,                P = Pe + Ia + Fa                                   (3.2) 
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From the combination of equation 3.1 and 3.2, we found the Pe values as, 

   
      

 

      
                                               

Which consider as basic equation for the excess rainfall depth computation by the NRCS 

method. For small watershed like Jeju Island, initial abstraction (Ia) is empirically assume as 

0.4S, here S is the potential maximum retention.  

3.1.2 Curve number (CN) estimation 

Curve number (CN) is a function of land use, soil class (antecedent soil moisture) and 

others factor affecting runoff in watershed after a rainfall event occurred. In terms of 

dimensionless parameter CN defined as, 

    
     

    
                                                   

Here, CN = 100 for impervious water surface and CN < 100 for natural surface. 

Consequently, another important analysis is antecedent moisture conditions (AMC) that 

refers to presence of moisture content into the soil (Table 3.1). For practical application of AMC, 

three categories were grouped by NRCS: 

AMC-I: Low moisture (dry condition) 

AMC-II: Average moisture condition (normal condition) 

AMC-III: High moisture, sufficient rainfall occurred over the preceding few days (wet 

condition) 

For AMC-I and AMC-III condition following equations can be computed using, 
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Table 3.1 AMC classification for the NRCS method of rainfall abstraction (Sources: Mays 2012) 

AMC type 
Total five day antecedent rain (mm) 

Dormant season Growing season 

I Less than 13 Less than 35 

II 13 to 28 35 to 53 

III More than 28 More than 53 

3.1.3 Runoff estimation by NRCS method 

Five rainfall stations observed data, soil class and land use data has been used to determine 

the rainfall-runoff characteristics. The conventional land use/land cover map and soil map of 

watershed digitized by GIS and the attributed tables were linked accordingly. Afterwards, soil 

and land cover data have been intersected in GIS to determine the CN. As the watershed is 

positioned in the urban, semi urban and mountainous area of the Island, therefore a variation was 

seen. Among of them, lower elevation area (urban area) is contained a high curve number, 

indicating high runoff and low infiltration. Consequently, low curve number indicates the high 

infiltration and low runoff. 

The NRCS CN method (SCS 1972) developed a rainfall-runoff relation for watershed. As 

defined by NRCS soil scientists, soils are classified into four hydrologic groups i.e. A, B, C and 

D (SCS 1986), depending on infiltration, soil classification and other criteria. Land use 

classifications are used in the preparation of hydrological soil-cover content, which in turn are 

used in estimating runoff. Antecedent moisture condition (AMC) is an indicator that refers to the 

moisture content present in the beginning of the rainfall-runoff event and can have a significant 

effect on runoff volume. Recognizing its significance, NRCS developed a guide for adjusting CN 
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according to AMC based on the equation 3.5 and 3.6.  

3.2 Unit hydrograph analysis 

This study employs to develop the consistency of surface runoff hydrograph according to 

Clark unit hydrograph method. The following steps were carried out during the process. 

3.2.1 Storm events selection 

Viessman et al. (1989) described three characteristics of heavy rainfall events from a well-

defined unit hydrograph which are; the simple hydrograph structure with distinct peak, extended 

duration of rainfall and uniform spatial distribution. Following the above criterion, five 

independent heavy rainfall events (Table 3.2) from 2012 to 2014 have been clustered to be used 

in model calibration and validation. A study was carried out by Yang et al. (2014) which also 

considered heavy rainfall events for Hancheon watershed. In this study, without antecedent, the 

rainfall average lag time was found as around 1.5 hr, which increased notably by more than 45% 

following an antecedent rainfall event. The resulting temporal distribution of rainfall at five 

stations and consequent runoff was then assembled in HEC-HMS 2.2.2 version program 

(USACE 2000). 

Table 3.2 Summary of selected five storm rainfall events 

Storm events Data availability Average rainfall (mm) 

Heavy rainfall 21-22 April, 2012 314.96 

Typhoon Khanun 18-19 July, 2012 293.12 

Typhoon Dembin 22-23August, 2012 961.89 

Typhoon Sanba 16-17 September, 2012 659.38 

Typhoon Nakri 1-2 August, 2014 678.94 
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3.2.2 Initial value selection of Clark parameters 

In order to apply the Clark method in HEC-HMS model, it is necessary to estimate the 

time-area relationship between runoff travel times and watersheds contributed area. Travel time 

is the only independent variable in this case, which time is required from the most remote part of 

watershed outlet. Generally, it is assumed that travel time is proportional to the stream length 

from the watershed’s outlet point. A time-area relationship of watershed, which contributes 

runoff to the watershed outlet as a function of time is measured from the onset of rainfall excess. 

Initial time of concentration and storage coefficient has been computed with the following 

empirical formula of Kirpich (1940) and Clark: 

                                   
     

                                                

                        
  

  
                         

Here, L is the length of stream in km, S represents the land slope of watershed and α is 

coefficient (value varies from 0.4 to 1.4).  

3.2.3 Calibration of Clark parameters 

Consequential results of the Clark’s two parameters (Tc and R) were examined by 

sensitivity analysis. The sensitivity was performed based on trial-and-error method. Meantime, 

the numerical values (Tc and R) were always assumed in between 0.1 to 3. The optimal values of 

the parameters were also derived. Afterwards, an optimum pair (Tc, R) was used to compare 

between observed and simulated peak runoff information. Meanwhile, the rainfall loss was also 

investigated. When the peak runoff values start to change by an extremely minor quantity 
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following slight alterations of Tc and R (within 0.1 to 3), the values for Tc and R were 

acknowledged. The effort was also made to reduce the uncertainty of parameters. 

3.2.4 Model performance 

The calibrated parameters of four selected storm rainfall events were projected by trial-

and-error approach. These parameter values were firstly adjusted by analysis of variance 

(ANOVA) method (e.g. Gophen 2012). After calibration of parameters, Nash-Sutcliffe efficiency 

(NSE) model (Nash and Sutcliffe 1970) and peak weighted root mean square error (RMSE) 

(USACE HEC-HMS 1995, 1998) were used for testing the performance of runoff model results. 

       
          

    
   

           
   
   

                                                  

      
 

 
           

 

 

 

 
       

    

   

 
  

                              

Here, n is ordinate number, i is varying from 1 to n, Qoi is i-th ordinate observed runoff, Qsi 

is i-th ordinate simulated runoff and     is average observed runoff of the hydrograph. 

3.3 Areal reduction factors (ARF) fundamentals 

ARF factor is defined as, point rainfall values when which applied for a particular duration 

and return period provide areal rainfall for the same duration and return period. There are two 

types of ARF, which are geographically fixed and storm centered relationship (Miller et al. 1973; 

Srikanthan 1995). Geographically fixed ARFs are related to rainfall at any random point. The 

method estimated from average frequency based quantile estimates using annual maxima rainfall 

series observed in a fixed point (Osborn et al. 1980). These ARFs only originate from rainfall 
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statistics but not from any individual storms so as to refer as statistical reduction factors. The 

empirical equation can be represented as: 

    
                               

                                              
                                                            

Storm centered ARF’s are connected with the effective depth calculation for the discrete 

storm events. Following this method, the individual event ratio represents of contour lines depth 

and storms maximum depth. Due to the difficulty of implementation on multi centered storms, 

this ARF method is not widely used this kind of approach is very difficult to implement but can 

be used only for individual storms. 

This study has conducted by the Asquith and Famiglietti (2000) method considering the 

effective depths for watershed area. The ARF results are always between 0 and 1. The RFA’s are 

calculated upon the watershed characteristics, like as watershed shape and storm recurrence 

interval.  The approach has a best fit line that provides expected ratio. It does not require spatial 

averaging of rainfall. So, this technique could be applied there. The empirical equation is follows 

as: 

     
          

 
   

         
 
   

                              (3.12) 

Here,      is station rainfall i for the annual maximum areal rainfall occurred in year j,     is 

the annual maximum point rainfall, k is number of stations into the study area. From this method, 

6-, 12-, 24-hr ARF ratios are determined. Later, this estimated result can be applied into the 

frequency analysis of spatial rainfall. 



28 

3.4 L-moments based regional rainfall frequency analysis 

3.4.1 L-moments method: theoretical background 

The L-moments approach was firstly introduced by Hosking (1990) which is the suitable 

statistical modeling and facilitates the estimation process of probability distribution and 

frequency analysis. Recent years, rainfall extreme studies on statistical analysis are followed by 

method-of-moments estimator for annual maximum (viz. hourly, daily, monthly) time series, 

particularly in regional analysis. The L-moment provides a reasonable efficient estimation 

characteristic of hydrological data and distributions parameters. In practical, advantages of using 

L-moments includes: can be estimated from limited data samples, provide dispersion, skewness 

and kurtosis which have less bias than other ordinary moments of probability distributions. 

Hosking (1990) characterized the L-moments based on probability weighted moments (PWMs) 

and can be shown as: 

   
 

 
       

   

 
            

   

   

                     

Here,    is a linear function of r-th L-moment of a X distribution and r = 1, 2, 3,… is a 

non-negative integer. From equation (1), the first four resulting L-moment can be written as: 
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Hosking (1990) describes the utility of ratio estimators based on the L-moments ratios in 

hydrological extreme analysis and can be followed as: 

         
  

  
                                           

               
  

  
                            

                
  

  
                             

Where,    is the measure of covariance (scale),    is the measure of skewness (shape) and 

   is the measure of kurtosis (peakedness).  The value of    is constrained by 0 to 1 range. 

Notable, these ratio estimator equations and their graphical diagrams are particularly good to 

identify the distributional properties of highly skewed data. Thus, following the above equations 

rainfall of 6-, 12-, 24-hr L-moments ratio for each regions has shown in this study. 

3.4.2 Data screening by discordancy measure 

A discordancy measure,   , which is used to screen out the data from unusual sites and to 

check the appropriate data for regionalization. Let, a vector as            
   

   
   

 
 

 which 

restrained the L-moments ratios for site i (Hosking and Wallis 1993), than discordancy measure 

defined as: 
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Where,    = vector of L-CV, L-Skewness and L-Kurtosis; S is covariance matrix of     and 

   is mean vector of    . 

3.4.3 Regional heterogeneity test 

Homogeneous region identification is the significant step in regional frequency analysis. 

The statistics compare between the inter-site distributions of L-moments sample can be projected 

as homogeneous region. Hosking and Wallis (1993) proposed that derivation of statistical test for 

a homogeneous region is defined as heterogeneity measure (H). To determine the expected 

heterogeneity, Monte Carlo simulation of rainfall having record lengths equal to that of the 

observed data are performed which is familiar in hydrological analysis. The heterogeneity 

measure (H) can be obtained as: 

  
       

  
                                                                                    

Here,    and    are the mean and standard deviation of simulated data, respectively.      

is calculated from the regional data, which can be employed from three V-statistics (V1, V2, V3)  

as follows: 
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For H statistics criterion, Hosking and Wallis (1993) suggested that the region is 

reasonably homogeneous if H < 1, possibly homogeneous region if 1≤ H < 2 and absolutely 

heterogeneous region if H ≥ 2. 

3.4.4 Goodness-of-fit measure 

The regional frequency distribution L-moment ratio diagrams and goodness-of-fit measure 

are chosen based on sample regional average and theoretical L-Kurtosis. For a particular 

distribution, the goodness-of-fit measure is calculated as follows: 

      
  
    

    

  
                                                           

Here   
  is an average L-Kurtosis value from the data of a given region,   

     is a 

theoretical L-Kurtosis value for a fitted distribution and     is the standard deviation value that 

obtained from simulated data. For an approximate 90% confidence level, the acceptable 

goodness-of-fit is found at             . 

3.4.5 Estimation of regional rainfall frequency 

The frequency distribution procedure of maximum consecutive hour rainfall data in a same 

homogeneous region consist of similar frequency distribution (Dalrymple 1960). In the 

simulations, frequency estimated for various robust probability distributions has been calculated. 

If the frequency estimates consists of regional growth curve       , i site non-exceedance 

probability F and site scaling factor l1, then the T-year frequency of the normalized regional 

distribution is computed by:               where q is common dimensionless function. For 

simulation of a homogeneous region, the regions are having the same number of stations, data 

record length, heterogeneity and L-moments ratio as the observed data. During simulation, 
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frequency error, root mean square error (RMSE), 90% error bounds are estimated for the 

accuracy assessment. 

3.5 Using tools for the study 

During NRCS CN analysis, unit hydrograph, ARF ratio and regional frequency analysis 

ArcGIS 10.3.1, HEC-HMS 2.2.2, R language 3.2.0 and Origin 6.1 software tools were used 

(Figure 3.2). We also used the L-moment approach (lmomRFA 3.0-1 version) in R package, 

developed by Hosking (2009). 

 

Figure 3.2 Using analysis tools during this study. 
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Chapter IV: Results and Discussion 

4.1 Application of NRCS CN method for runoff volume 

4.1.1 Estimation of curve number (CN) 

Using the data soil class and infiltration rates, Hancheon watershed has been classified in 

four groups (A, B, C and D) with a mixture of soil and land cover characteristics (Table 4.1). 

Each land cover has a unique CN value obtained in Figure 4.1. In this analysis assumes that 

watershed’s drainage systems are directly connected with the impervious area. The impervious 

area was found 1.60 sq. km that is 4.28% of total watershed area. In methodology section 

narrated that infiltration and initial abstractions of soil are governed by AMC.  Following the 

equation 3.4, AMC-II was calculated for average condition of soil and slope. For this condition 

CN value was value estimated as 67.40 (Mays 2010). Meantime, the CN values for dry (AMC-I) 

and wet (AMC-III) conditions were found 47.50 and 82.90 respectively (Table 4.2). 

Table 4.1 CN values for land cover classification 

Code Area name A B C D 

110 Residential 58 73 82 86 

130 Commercial - 96 97 - 

140 Entertainment Facilities 95 96 97 - 

150 Traffic Area 89 91 93 94 

160 Public Facilities - 88 91 93 

210 Paddy Field - - 78  

220 Agriculture Field 64 75 82 86 

230 House - - 98 - 

240 Orchard 44 66 77 83 

250 Other Cultivated Land  74 82 - 

310 Broadleaf Forests 47 67 78 - 
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Code Area name A B C D 

320 Coniferous 46 68 79 86 

330 Mixed forest 47 68 79 - 

410 Natural Grassland 30 58 71 78 

420 Golf Course - - 80 - 

430 Other Grass Land 52 70 80 85 

510 Inland Wetland - 98 98 - 

520 Coastal Wetlands - - 98 98 

620 Others Lowland - 86 91 94 

710 Inland Waterways - 100 100 100 

720 Marine - - 100 - 

 

 

 

Figure 4.1 NRCS curve number (CN). 

Table 4.2 Runoff curve number in different antecedent moisture condition (AMC) of soil 

AMC I II III 

CN 47.50 67.40 82.90 
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4.1.2 Five years rainfall-runoff analysis results 

The runoff depth and runoff volume had been calculated based on NRCS CN method. The 

runoff in Hancheon watershed resulting from the given last five years rainfall, soil classification, 

infiltration rates and land use. After that, the runoff depth was multiplied by watershed area that 

conferred the total annual runoff volume. The calculations and results based on NRCS-CN 

method, infer the annual runoff depth for last five years in Hancheon watershed and the total 

volume of water (Table 4.3). From the analysis result, 2009 and 2013 year showed the lower 

runoff volumes (where the runoff depth was 385.73 mm and 536.19 mm) that indicating arid 

behavior of the watershed, experiencing very little rainfall events. But 2012 year, typhoon events 

and continues heavy consecutive rainfall resulting the huge volume of runoff occurred in the 

province. The runoff percentage values varied within a range of 18% to 44%, indicating the 

temporal (seasonal) effects of the rainfall in cumulative runoff. In essence, the analysis result 

provides runoff volume extends in relation to rainfall and the maximum rainfall-runoff receiving 

year. 

Table 4.3 Rainfall-runoff depth and volume of five years annual rainfall 

Year 
Annual rainfall 

(mm) 

Runoff depth 

(mm) 

Runoff percentage 

(%) 

Runoff volume 

(10
12

 Mm
3
) 

2013 2317.53 536.19 23.14 20048.144 

2012 4160.11 1820.63 43.76 68073.356 

2011 3185.19 992.33 31.15 37103.219 

2010 3186.08 1239.86 38.91 46358.365 

2009 2050.07 385.73 18.82 14422.445 
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4.2 Estimation of direct runoff from storm events 

From the runoff volume analysis by NRCS CN method, study came out a decision that the 

year of 2012 was received the maximum runoff volume. Therefore, the unit hydrograph study 

(Clark hydrograph method) was undertaken to analyze the heavy rainfall events. Also, average 

CN (67.40) and percentage of impervious area (4.28%) value were used as initial input of HEC-

HMS modeling. 

4.2.1 Data calibration for unit hydrograph parameters estimation 

The Kirpich equation had been used by many researchers’ in the recent past (Kumar et al. 

2002; Shaoo et al. 2006; Ahmad et al. 2009) research work, using time-area relationships and 

geomorphologic parameters of watershed. According to use the geomorphologic data, Kirpich’s 

time of concentration and Clark’s storage coefficient values was found 1.59 and 3.06. These 

initial values were used in the HEC-HMS model for peak data estimation of four different 

rainfall events (Peters 1993), but it showed an unstable relation between observation and 

simulation results. After that, trial-and-error method was applied to optimize the objective 

function i.e. peak weighted root mean square error (RMSE). Following the objective function 

and trial-and-error analysis of hydrograph parameters (Tc and R) nearest runoff simulation 

values were shown in Table 4.4 and Figure 4.2. 

During calibration of Clark unit hydrograph parameters, the peak runoff (Qp) and time of 

peak (Tp) were also being estimated. Optimized values were showing good coherence between 

observed and simulated results. Table 4.4 showing that, the observed peak runoff varied 162.26 

to 544.38 m
3
/sec, whereas maximum simulated runoffs varied by 151.89 to 545.36 m

3
/sec. On 

the other hand, observed peak time intervals were found from 9.0 hr to 20.83 hr, whereas the 
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simulated peak time showed 8.33 to 26.60 hr. The maximum observed and simulated runoffs 

were identified for typhoon Sanba. The typhoon Sanba showed observed runoff 544.38 m
3
/sec 

and simulated runoff 545.36 m
3
/sec where 9.0 hr and 8.33 hr peak times were found.  

Table 4.4 Calibration of Clark parameters and difference between peak runoff hydrographs 

Storm events 
Clark’s parameter Observed Simulated Error 

(%) Tc R Qp (m
3
/sec) Tp (hr) Qp (m

3
/sec) Tp (hr) 

Heavy rainfall 1.8 0.1 162.26 12.0 242.09 11.0 49.20 

Typhoon Khanun 1.05 0.4 172.65 20.83 151.89 20.67 12.02 

Typhoon Dembin 1.6 0.5 157.14 18.17 219.74 26.60 39.84 

Typhoon Sanba 1.3 0.32 544.38 9.0 545.36 8.33 0.18 

Noticeable that storm rainfall event’s rising limb to peak runoff was found within short 

duration (1-day). The error percentage for heavy rainfall, typhoon Khanun, typhoon Dembin and 

typhoon Sanba were seen at 49.2, 12.02, 39.84 and 0.18. Thus, typhoon Sanba and typhoon 

Khanun provides accuracy better than the other occurred events, for which, the study can be 

selected these two events for making decision. 

 
Heavy rainfall (21-22 April, 2012) 
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Typhoon Khanun (18-19 July, 2012) 

 
Typhoon Dembin (22-23 August, 2012) 

 
Typhoon Sanba (16-17 September, 2012) 

Figure 4.2 Comparison between observed and simulated runoff hydrograph. 

4.2.2 Statistical performance analysis for unit hydrograph parameters and runoffs 

The performance of four events in terms of parameters was determined based on ANOVA 

analysis. This analysis obtained a probability value of 0.00009 (below 5% significance level), 

which is statistically considerable (Table 4.5). The estimated variance of Tc and R was 1.44 and 
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0.33, respectively. Figure 4.3 shows a graphical representation with the observed and simulated 

runoff model comparison result where the determination factor (r-square), RMSE and NSE was 

0.76, 37.52 and 0.88, respectively. The following statistical analysis also provides the assurance 

of accuracy. 

Table 4.5 Statistical Analysis: ANOVA analysis for Clark parameters 

Source of 

variation 

Sum of 

squares 

Degree of 

freedom 

Mean 

square 
F-value 

P-value 

(below 5%) 

F critical 

(5%) 

Between groups 2.453113 1 2.453113 
35.58029 0.000995 5.987378 

Within groups 0.413675 6 0.068946 

Total 2.866788 7  

 

 
Figure 4.3 Comparison after calibration between observed and simulated runoff. 

4.2.3 HEC-HMS model validation 

The model has been developed for setting a reasonable pair value (Tc, R) to estimate unit 

hydrograph parameters. The average value of four storm events calibrated parameters (Tc, R) as 

(1.44, 0.33) was considered as initial value. After using trial-and-error values, the ANOVA 

0 

100 

200 

300 

400 

500 

600 

R
u

n
o

ff
 (

m
3
/S

ec
) 

Observed Runoff Simulated Runoff 

R2 = 0.76 

RMSE = 37.52 

NSE = 0.88 



40 

statistical method was again used, until the difference in probability was found insignificant. 

Unit hydrograph was derived by Clark method in HEC-HMS model and accordingly, excess rain 

and loss were derived to get the accurate hydrograph. After the trial-and-error based validation, 

Tc and R values were found at 1.4 and 0.27 respectively, for typhoon Nakri 2014. Subsequently, 

the probability (p-value) was found below 0.00005 (below 5% significance level) which gave 

goodness-of-fit statistics calculation. Thereafter, a unique hydrograph was drawn that shows the 

rainfall access, loss, observed and simulated runoff (Figure 4.4). The typhoon Nakri event 

hydrograph showed that observed and simulated peak runoffs was 278.86 m
3
/sec and 553.09 

m
3
/sec meanwhile time of peaks was seen 20.35 hr and 19.58 hr, respectively. After validation, 

observed and simulated runoff’s error percentage was found 49.6 wherever r-square value was 

0.68 that is near to the calibrated r-square value. Due to the complexity of rainfall-runoff process 

and geophysical characteristics, a single pair (Tc, R) sometimes doesn’t shows exact result, a 

significant deviation always be there. 

 

Figure 4.4 Validation of model considering typhoon Nakri (1-2 August, 2014). 

In this case study, the unit hydrograph model also showing (Figure 4.4) the significant 

deviation (274.76 m
3
/sec) between observed and simulated runoff for typhoon Nakri. The 

reasons behind this fluctuation were expected for runoff observation point which was at 
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downstream (doesn’t consider any upstream discharge data), flow diversion detention pond and 

reservoir in Hancheon stream. According to Jung (2013) study investigation, upper portion of 

stream two onsite detention ponds were constructed to reduce the velocity and flood frequency of 

stream flow storage considering an aesthetic value (around 133 m
3
/sec). Consequently, upstream 

reservoirs have also been developed to control the flood velocity in Hancheon stream which are 

considerably impacted on flood runoff. Furthermore, this Moon et al. (2014) study noted that 

without a reservoir operation, discharge can be obtained remarkable difference (150 m
3
/sec) after 

simulation. Above all discussions and statistical performance, the generated model result can be 

reasonably accepted. The main finding from this analysis is high runoff events reveals more 

accurate than the lower rainfall- runoff events. 

4.3 Estimation of areal reduction factor (ARF) ratio 

The main objective of ARF analysis was to find ratio values for different return period 

which will helpful to create spatio-temporal rainfall design. Generally, the ARF ratio derived 

from the analysis of equation 3.12 with respect to 6-, 12-, 24-hr temporal variation. Figure 4.5 

shows, all values were within 0 to 1. The Eorimok and Jindallaebat stations’ 12-hr and 24-hr 

ARF ratios are between 0 and 0.60. Also, it can be seen that 6-hr ARF values were scattered. The 

ARF ratios for 10 years return period represented various values for the watershed; therefore 

random ratios are not feasible smoothly. Following the analysis, the study results would not 

obtain any idea as how to values are difference from one to another station. Therefore, another 

statistical method (L-moments approach) has been applied in next section. 
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Jeju 

 
Ara Eorimok 

 
Jindallaebat Witsaeorum 

Figure 4.5 Variation of ARF values for each station (considering 6-hr, 12-hr, 24-hr rainfall). 
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4.4 Development of L-moments approach for rainfall frequency analysis 

4.4.1 Stationary and independence test 

The fundamental data execution was carried out using the Mann-Kendall test (Mann 1945; 

Kendall 1975) and auto-correlation function (ACF) analysis to verify the maximum 24 hour 

consecutive rainfall which is convenient for regional frequency analysis. The results of Mann-

Kendall trend test presented in Table 4.6 shows that all the stations values are constant over time. 

This is reasonable to infer that statistically stationary data do not have significant trends. In terms 

of insignificancy of maximum hour rainfall, data can be considered as of having a stationary 

series. 

Moreover, auto-correlation function (ACF) coefficient values are shown in Figure 4.6 for 

‘lag 1’ to ‘lag 13’ plotting. The ACF values show that each stations rainfall data experiences 

exist within critical bounds, thus maximum consecutive hour rainfall series can be considered as 

time-independent. Thereafter, spatial autoregressive calculation (Dong and Harris 2015) also 

showed that the stations’ cross correlations (probability, p-value) were not significant (up to 5%), 

for which data can be considered as spatially independent. 

Table 4.6 Summary of trend analysis of maximum hourly rainfall series using Mann-Kendall test 

Serial Station Trend value p-value 

1 Jeju 1.67 0.01 

2 Ara 1.28 0.02 

3 Eorimok 3.40 0.02 

4 Jindallaebat -0.47 0.04 

5 Witsaeorum -0.16 0.03 
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Jeju Ara 

  
Eorimok Jindallaebat 

 
Witsaeorum 

Figure 4.6 Autocorrelation function (ACF) analysis plot of five rain gauge stations (Dashed line 

indicating 95% confidence interval). 

4.4.2 Identification of homogeneous region by Cluster based analysis 

One of the initial yet sensitive steps of regional frequency analysis was the identification of 

homogeneous regions, as per methodological description. A cluster based algorithmic analysis, 

following Ward’s method (Ward 1963) was applied to identify such homogeneous regions. As 

such, hierarchical clustered dendrogram (tree) provided information on probable clusters and it 
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was seen that study area consists of homogeneous regions. The appropriateness of this choice 

was also tested by heterogeneity measures (H).  The identified three clustered region considered 

as different hydrometric homogeneous regions (Jeju and Ara station in region 1, Eorimok station 

in region 2 and region 3 is confined by Jindallaebat and Witsaeorum station) are illustrated in 

Figure 4.7 and 4.8.  

  

Figure 4.7 Dendrogram of clustered stations by 

Ward’s method. 
Figure 4.8 Location of three homogeneous 

regions in Hancheon watershed. 

The first region is formed by Jeju and Ara stations, situated in the urban portion of northern 

part of Jeju Island with an average elevation 253 m, recording an average annual rainfall of 

around 1,835 mm. The second region is located in middle portion of Hancheon watershed, which 

is a semi urban area. This region has only one station (Eorimok) with an average elevation 950 m 

and 2,436 mm of average rainfall. The third region is situated near Halla Mountain, covering the 

Witsaeorum and Jindallaebat stations. The area has an average elevation of 1,570 m from the 

mean above sea level and average rainfall is nearly 2,361 mm. Rainfall characteristics of this 

region are fully influenced by tropical and mountainous winds. 
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4.4.3 Estimation of L-moments, homogeneity test and best fitted distribution 

The L-moments approach, discordancy (Di) and heterogeneity measure (H) of each region 

were applied by the lmomRFA package in R statistical programming. Firstly, the scattered plots 

of yearly L-CV, L-Skewness and L-Kurtosis ratio values for each region have been shown 

(Figure 4.9). The L-moments ratio values were bounded from 0.1 to 0.4. For region 2 and region 

3, results indicated a parallel shift of values. This happened due to the abrupt daily and yearly 

rainfall occurrences. In particular, L-moments ratio for the three regions showed different values 

which show the increasing trend over the time period. 
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Figure 4.9 Yearly variation of average L-moments ratio for three regions. 

Hereafter, the discordancy (Di) has been computed from equation 3.21 and found as less 

than 3.0, suggesting that no region is discordant (Table 4.7). Also, heterogeneity measures (H) 

were computed using equations 3.22 to 3.25 and using 500 simulated values in R programming 

for estimation. From the heterogeneity measure it was found that each H-statistics values are 

lower than one (H<1.0), indicating that those regions are reasonably homogeneous. Following 

the homogeneous region identification, the subsequent distribution step had been best fitted in 

line with the statistical candidate distribution for each region, as well as the regional data. 

Consequently, the proposed Z
Dist

 measure (Hosking and Wallis 1993) was calculated by equation 

3.26. The best fitted distribution inferred Z
Dist

 as 0.54, 1.25 and 1.03 (which are below 1.64), 

showing significant criterion to be accepted as goodness-of-fit at 90% confidence level for 

individual homogeneous region. The difference of results is understandable due to the hydro-

geological distinctive conditions. Following the analysis, making a decision about Hancheon 

watershed frequency distribution for each homogeneous region using Gumbel and generalized 

extreme value (GEV) distribution is suggested. 
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Table 4.7 Discordance, heterogeneity measure and best fitted distribution for three regions 

Region Discordance (Di) 
Heterogeneity measure Best fitted 

distribution 
Z

Dist
 value 

H1 H2 H3 

1 Jeju (1.61), Ara (0.95) 0.64 -0.53 -1.97 Gumbel 0.54 

2 Eorimok (1.53) -0.36 0.72 -1.78 Gumbel 1.25 

3 
Jinadallaebat (1.37) 

Witsaeorum (1.28) 
-0.13 -1.40 -2.11 GEV 1.03 

4.4.4 Estimation of regional rainfall frequency and growth curves 

The regional frequency estimates were found reliable as those were always obtained by 

regional frequency analysis. Robust estimation was needed when the regional distribution was 

more than one. In such cases, Monte Carlo simulation was used to estimate the root mean square 

error (RMSE) at 90% confidence level.  The estimation of q(F), for different non-exceedance 

probabilities have been shown in Table 4.8 and regional growth curves for three regions have 

also been represented in Figure 4.10. The error bound values varies 1.046 to 2.303 (region 1), 

1.027 to 4.135 (region 2) and 0.960 to 7.829 (region 3). Furthermore, the RMSE values were 

found as 0.014 to 0.237 for Gumbel distribution and 0.115 to 0.301 for generalized extreme 

value distribution. As a result, the error value shows the accuracy of rainfall frequency. 
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Table 4.8 Simulation results of estimated regional frequency, RMSE and corresponding 90% 

error bounds values 

Region Distribution 
Return 

period 

Confidence 

interval (F) 
q(F) RMSE 

Error Bound 

Lower Upper 

1 Gumbel 

5 0.8 1.129 0.014 1.046 1.17 

10 0.9 1.347 0.032 1.263 1.481 

20 0.95 1.526 0.057 1.514 1.596 

50 0.98 1.721 0.072 1.608 1.739 

70 0.985 1.876 0.084 1.758 1.924 

80 0.987 2.039 0.094 1.982 2.145 

100 0.999 2.275 0.105 2.239 2.303 

2 Gumbel 

5 0.8 1.134 0.077 1.027 1.243 

10 0.9 1.632 0.148 1.522 1.801 

20 0.95 1.859 0.165 1.839 1.954 

50 0.98 2.102 0.174 2.01 2.227 

70 0.985 2.846 0.203 2.621 2.981 

80 0.987 3.64 0.218 3.105 3.764 

100 0.999 4.023 0.237 3.978 4.135 

3 GEV 

5 0.8 1.079 0.115 0.960 1.092 

10 0.9 1.923 0.197 1.799 2.163 

20 0.95 2.754 0.243 2.548 2.936 

50 0.98 3.628 0.266 3.332 3.847 

70 0.985 4.507 0.279 4.395 4.715 

80 0.987 5.706 0.285 5.389 5.902 

100 0.999 7.656 0.301 7.459 7.829 
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Figure 4.10 Estimated regional growth curve for three homogeneous regions (within 90% error 

bound). 

4.4.5 Frequency analysis for five rainfall station 

The present study is designed to derive rainfall patterns by L-moments based techniques 

for all station of Hancheon watershed.  The approach has been developed for 5, 10, 20, 50, 70, 80, 

100 years return period (Table 4.9). Various periods of rainfall data had been used to estimate 

the return period. As a result, Jeju station area shows 165.12 to 333.97 mm rainfall, when the 

other station’s rainfall show remarkable interval of rainfall depth. Near the Halla Mountain 

(Jindallaebat station) the rainfall range from a minimum of 183.46 mm to a maximum of 555.18 

mm. For all stations’ return period values, a statistical measure (linear regression) was done. The 

statistical measurement showed that the r-square values were found within 0.842 to 0.974 and the 

p-values were below 0.001, which indicate the results are statistically significant.  
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Table 4.9 Results of the consecutive hour (6-, 12-, 24-hr) regional rainfall frequency for five 

station 

Station 
Consecutive 

hour 

Non-exceedance probability (return period, year) 

5 10 20 50 70 80 100 

0.800 0.900 0.950 0.980 0.985 0.987 0.999 

Jeju 

6 165.12 193.32 224.38 251.88 272.88 279.92 283.32 

12 208.02 233.62 259.72 285.02 298.14 308.19 312.22 

24 246.17 268.19 289.24 308.31 326.35 341.05 344.65 

Ara 

6 252.05 282.02 303.39 323.27 328.85 330.85 333.97 

12 400.77 442.71 471.45 497.04 503.96 506.42 510.20 

24 548.88 621.50 672.30 708.57 731.33 735.89 742.94 

Eorimok 

6 163.23 181.40 199.52 211.81 224.15 230.93 235.11 

12 185.15 208.19 226.42 241.89 256.45 265.21 270.64 

24 227.03 253.18 272.91 288.67 301.06 307.18 311.03 

Witsaeorum 

6 243.76 267.47 287.90 306.16 321.45 332.16 337.09 

12 307.39 337.54 363.72 383.59 400.87 410.60 414.27 

24 418.49 452.76 478.54 498.62 518.11 531.48 539.54 

Jindallaebat 

6 183.46 209.58 229.37 244.70 257.49 268.84 276.60 

12 318.26 352.45 374.80 391.29 407.08 420.66 427.51 

24 452.03 484.46 509.57 530.73 544.10 551.75 555.18 

The station analysis showed that Eorimok stations probable rainfall (163.23 mm to 311.03 

mm) is lower than the other stations. Eorimok station situated in forest and near to hilly region 

which can be change due to the elevation and slope change. Above all, L-moments technique 

shows all kind of statistical analysis accurately, therefore, the study is suggested for decision 

making on hydrological design. 

  



52 

Chapter V: Conclusions and Future Work 

5.1 Conclusions 

In this thesis work, rainfall-runoff characteristics have been intensively studied for rainfall 

frequency analysis. The first method (NRCS CN) application reveals the 2009 and 2013 year 

showed lower runoff volumes and experiencing fewer rainfall events. Second method named unit 

hydrograph was conducted to estimate peak runoff and time. The values of selected model 

parameters (Tc, R) showed a range of Tc: 1.0 to 1.5 and R: 0.1 to 0.5 during calibration and 

validation. From the unit hydrograph analysis, peak time variation was seen 8 to 27 hour that 

discloses the 6 to 24 hour consecutive hour rainfall can select for rainfall frequency analysis. 

Therefore, L-moments based analysis need to quantify the hourly design rainfall (frequency). 

Accordingly, the L-moments approach was found best distribution for developing regional 

rainfall. This study amply indicates careful data screening from the historical rainfall events 

which carried out by cluster based tree analysis. From ward’s classification, three reasonably 

homogeneous regions were suggested for Hancheon watershed (Jeju and Ara in region 1, 

Eorimok in region 2 and Jindallaebat and Witsaeorum in region 3). Afterwards, the Gumbel 

distribution for region 1, region 2 and generalized extreme value (GEV) distribution for region 3 

was identified as best fitted models. These distributions provided lower bound (within 90% error) 

values during return period analysis. The return period analysis procedure can be used not only 

for the Jeju Island but also for other areas where the rainfall data records are limited and the land 

slope is high. 
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5.2 Recommendation for the future work 

 In this study, Thiessen polygon area ratio method applied for rainfall-runoff estimation. 

As, Jeju Island considered as high steep slope variation area therefore Isohyetal method 

could be applicable. Subsequently, estimation of last ten years or more available rainfall 

depth can be helpful to explain elaborately about rainfall-runoff characteristics of 

Hancheon watershed. 

 The HEC-HMS model requirements are very significant concern for unit hydrograph 

analysis. Therefore, other unit hydrograph methods (Kraven I, Kraven II and Sabol) could 

be applied to minimize the time and runoff accuracy.  

 The study considered only five rainfall stations during L-moments approach application 

and the watershed area was small (37.39 sq. km). Therefore, complete Jeju Island area 

and all rainfall (24 nos.) stations consideration could improve the understanding on 

rainfall frequency.  
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