SPECTRAL CRITERION FOR MEMBERSHIP IN $\mathbb{A}^2_{1,1}(r)$

HAE GYU KIM*

1. INTRODUCTION

Let \mathcal{H} denote a separable, infinite dimensional complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . A *dual algebra* is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $1_{\mathcal{H}}$ and is closed in the weak^{*} operator topology on $\mathcal{L}(\mathcal{H})$. For $T \in \mathcal{L}(\mathcal{H})$, let \mathcal{A}_T denote the smallest subalgebra of $\mathcal{L}(\mathcal{H})$ that contains T and $1_{\mathcal{H}}$ and is closed in the weak^{*} operator topology. Moreover, let $Q_{\mathcal{A}_T}$ denote the quotient space $\mathcal{C}_1(\mathcal{H})/\perp_{\mathcal{A}_T}$, where $\mathcal{C}_1(\mathcal{H})$ is the trace class ideal in $\mathcal{L}(\mathcal{H})$ under the trace norm, and $\perp_{\mathcal{A}_T}$ denotes the preannihilator of \mathcal{A}_T in $\mathcal{C}_1(\mathcal{H})$. For a brief notation, we shall denote $Q_{\mathcal{A}_T}$ by Q_T . One knows that \mathcal{A}_T is the dual space of Q_T and that the duality is given by

$$\langle A, [L] \rangle = \operatorname{tr}(AL), \quad A \in \mathcal{A}_T, [L] \in Q_T.$$

The Banach space Q_T is called a predual of \mathcal{A}_T . For x and y in \mathcal{H} , we can write $x \otimes y$ for the rank one operator in $\mathcal{C}_1(\mathcal{H})$ defined by

$$(x \otimes y)(u) = (u, y)x, \quad \forall u \in \mathcal{H}.$$

Before giving the main result, we recall some ideas introduced in [1], [2], [3], [4], [5] and [7]. Recall that any contraction T can be written as a direct sum $T = T_1 \oplus T_2$, where T_1 is a completely nonunitary contraction and T_2 is a unitary operator. If T_2 is absolutely continuous or acts on the space (0), T will be called an *absolutely continuous contraction*. We denote by $\mathcal{A} = \mathcal{A}(\mathcal{H})$ the class of all absolutely continuous contractions Tin $\mathcal{L}(\mathcal{H})$ for which the Sz.-Nagy-Foias functional calculus $\Phi_T : \mathcal{H}^{\infty} \to \mathcal{A}_T$ is an isometry ([2, Theorem 4.1]).

* 제주교육대학교 수학교육과 전임강사 .

If \mathcal{A} is a dual algebra and m, n are cardinal numbers such that $1 \leq m, n \leq \aleph_0$, then \mathcal{A} is said to have property $(\mathbb{A}_{m,n})$ if each $m \times n$ system of simultaneous equations of the form

$$[x_i \otimes y_j] = [L_{ij}], \quad 0 \le i < m, 0 \le j < n,$$

where $\{[L_{ij}]\}_{\substack{0 \le i < m \\ 0 \le j < n}}$ is an arbitrary $m \times n$ array from $Q_{\mathcal{A}}$, has a solution $\{x_i\}_{0 \le i < m}, \{y_j\}_{0 \le j < n}$ consisting of a pair of sequences of vectors from \mathcal{H} .

Let $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ be a dual algebra and let $\theta \in [0, 1)$. Then $\mathcal{E}^{\sigma}_{\theta}(\mathcal{A})$ denotes the set of all [L] in $Q_{\mathcal{A}}$ such that there exist sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ of vectors from \mathcal{H} satisfying

- (a) $\limsup_{i\to\infty} \|[x_i \otimes y_i] [L]\| \le \theta$,
- (b) $||x_i|| \le 1, ||y_i|| \le 1, 1 \le i < \infty,$
- (c) $||[x_i \otimes z]|| \to 0, \forall z \in \mathcal{H}$ and
- (d) $\{y_i\}$ converges weakly to zero.

If $0 \leq \theta < \gamma < +\infty$, then a dual algebra \mathcal{A} is said have property $E^r_{\theta,\gamma}$ if the closed absolutely convex hull of the set $\mathcal{E}^r_{\theta}(\mathcal{A})$ contains the closed ball $B_{0,\gamma}$ of radius γ centered at the origin in $Q_{\mathcal{A}}$:

$$\overline{aco}(\mathcal{E}_{\theta}^{r}(\mathcal{A})) \supset \{[L] \in Q_{\mathcal{A}} : \|[L]\| \leq \gamma\} = B_{0,\gamma}.$$

We shall employ the notation $C_{\cdot 0} = C_{\cdot 0}(\mathcal{H})$ for the class of all (completely nonunitary) contraction T in $\mathcal{L}(\mathcal{H})$ such that the sequence $\{T^{*n}\}$ converges to zero in the strong operator topology and is denoted by, as usual, $C_{0.} = (C_{\cdot 0})^*$, and $C_{00} = C_{0.} \cap C_{\cdot 0}$. Recall that every contraction Tin $\mathcal{L}(\mathcal{H})$ has a minimal coisometric extension $B = B_T$ that is unique up to unitary equivalence. Given such T and B, one knows that there exists a canonical decomposition of the isometry B^* as

$$B^* = S \oplus R^*,$$

corresponding to a decomposition of the space

$$\mathcal{K} = \mathcal{S} \oplus \mathcal{R}$$

where, if $S \neq (0), S$ is a unilateral shift operator of some multiplicity in $\mathcal{L}(S)$, and, if $\mathcal{R} \neq (0), R$ is a unitary operator in $\mathcal{L}(\mathcal{R})$. Of course, either S or \mathcal{R} may be (0) ([4]).

The following proposition gives a sufficient condition for a dual algebra to have property $\mathbb{E}_{\theta,1}^r$.

Lemma 1.1. ([4]) Suppose $T \in \mathbb{A}(\mathcal{H}), 0 \leq \theta < 1$, and $\Lambda \subset \mathbb{D}$ is dominating for \mathbb{T} . If for each $\lambda \in \Lambda$ there exists a sequence $\{x_n = x_n(\lambda)\}$ in the closed unit ball of \mathcal{H} such that

- (a) $\overline{\lim} \|[C_{\lambda}] [x_n \otimes x_n]\| \ge \theta$, and
- (b) $||[x_n \otimes z]|| \to 0, z \in \mathcal{H},$

then \mathcal{A}_T has property $\mathbb{E}^r_{\theta,1}$.

Definition 1.2. ([5]) Let m, n and l be any cardinal numbers such that $1 \leq m, n, l \leq \aleph_0$. We denote by $\mathbb{A}_{m,n}^l(\mathcal{H})$ the class of all sets $\{T_k\}_{k=1}^l$ such that T_k belongs to $\mathbb{A}(\mathcal{H})$ for all $k = 1, \dots, l$ and that every $m \times n \times l$ system of simultaneous equations of the form

$$[x_i \otimes y_j^{(k)}]_{T_k} = [L_{ij}^{(k)}]_{T_k},$$

where $\{[L_{ij}^{(k)}]_{T_k}\}_{\substack{0 \le i < m \\ 0 \le j < n}}$ is an arbitrary $m \times n$ array from Q_{T_k} for each $k = 1, \cdots, l$, has a solution consisting of a pair of sequences $\{x_i\}_{0 \le i < m}$ and $\{y_j^{(k)}\}_{\substack{0 \le j < n \\ 1 \le k \le l}}$ of vectors from \mathcal{H} . Furthermore, if for every doubly indexed family $\{[L_{ij}^{(k)}]_{T_k}\}_{\substack{0 \le i < m \\ 0 \le j < n}}$ of elements of Q_{T_k} for each $k = 1, \cdots, l$, such that the rows and columns of the matrix $(\|[L_{ij}^{(k)}]_{T_k}\|)$ are summable and r is a fixed real number satisfying $r \ge 1$, then we denoted by $\mathbb{A}_{m,n}^l(r)$ the class of all sets $\{T_k\}_{k=1}^l$ such that T_k belongs to $\mathbb{A}(\mathcal{H})$ for all $k = 1, \cdots, l$ and that every $m \times n \times l$ system of simultaneous equations of the form

$$[x_i \otimes y_j^{(k)}]_{T_k} = [L_{ij}^{(k)}]_{T_k},$$

has a solution consisting of a pair of sequences $\{x_i\}_{0 \le i < m}, \{y_j^{(k)}\}_{\substack{0 \le j < n \\ 1 \le k \le l}}$ of vectors from \mathcal{H} and also satisfy the following conditions, for every s > r,

$$||x_i||^2 \le s \sum_{0 \le j < n} ||[L_{ij}^{(k)}]_{T_k}||, \quad 0 \le i < m, 1 \le k \le l$$

and

$$\|y_j^{(k)}\|^2 \le s \sum_{0 \le i < m} \|[L_{ij}^{(k)}]_{T_k}\|, 0 \le j < n, 1 \le k \le l.$$

The theory of dual algebras is applied to the study of invariant subspaces, dilation theory, and reflexivity. The classes $\mathbb{A}_{m,n}$ were defined by H. Bercovici, C. Foias and C. Pearcy in [1]. Also these classes are closely related to the study of the theory of dual algebras. Especially, B. Chevreau and C. Pearcy [4] established property $E^{r}_{\theta,\gamma}$, and researched a relationship with the class $\mathbb{A}_{1,\aleph_{0}}$.

In Theorem 3.2.2 of [5] and Theorem 2.2 of [6], Hae Gyu Kim got a sufficient condition for the membership in the classes $\mathbb{A}^2_{1,1}(\rho)$ and $\mathbb{A}^2_{1,\aleph_0}(\rho)$, respectively. In a sequel to this study([5, Theorem 3.2.2] and [6, Theorem 2.2]), in this paper we obtain a spectral sufficient condition for membership in $\mathbb{A}^2_{1,1}(r)$ by using techniques in [3], [5] and [7].

2. MAIN RESULTS

Convention. In this paper we assume that \mathcal{R}_1 and \mathcal{R}_2 are either simultaneously (0) or simultaneously not (0) and so are S_1 and S_2 .

Lemma 2.1: ([6, Theorem 2.2]) For k = 1, 2, suppose $T_k (\in \mathbb{A}(\mathcal{H}))$ with minimal coisometric extension $B_k (\in \mathcal{L}(\mathcal{S}_k \oplus \mathcal{R}_k)), B_k \in C_{\cdot 0}(\mathcal{K})$, and for some $0 \leq \theta < \gamma \leq 1, \mathcal{A}_{T_k}$ has property $E_{\theta,\gamma}^r$. Suppose also that we are given scalar $\beta > 1, \delta > 0, [L_k] \in Q_{T_k}$ are given such that

$$||[L_k]_{T_k}|| < \delta, k = 1, 2,$$

Moreover if we set

$$\alpha = \frac{1}{\gamma^{\frac{1}{2}} - \theta^{\frac{1}{2}}},$$

Then there exist $\hat{a} \in \mathcal{H}, \hat{w}_k \in \int_k$ and $\hat{b}_k \in \mathcal{R}_k$ such that

$$\begin{split} [L_k]_{T_k} &= [\hat{a} \otimes P(\hat{w}_k + \hat{b}_k)]_{T_k}, \quad k = 1, 2, \\ & \|\hat{a}\| < 6\alpha \delta^{\frac{1}{2}}, \\ & \|\hat{w}_k\| < \alpha \delta^{\frac{1}{2}} \quad and \quad k = 1, 2, \end{split}$$

and

$$\|\hat{b}_k\| < lpha eta \delta^{rac{1}{2}} \quad and \quad k=1,2,$$

where P is the projection of \mathcal{K} onto the subspace \mathcal{H} . Moreover, the set $\{T_1, T_2\}$ is in the class $\mathbb{A}^2_{1,1}(6\sqrt{2\alpha^2})$. Inparticular, if \mathcal{A}_{T_k} has property $\mathbb{E}^r_{0,1}$, then the set $\{T_1, T_2\} \in \mathbb{A}^2_{1,1}(6\sqrt{2})$. The following theorem is immediate from Lemma 1.1 and Lemma 2.1.

Theorem 2.2. For k = 1, 2, suppose $T_k \in \mathcal{A}(\mathcal{H})$ with minimal coisometric extension $B_k (\in \mathcal{L}(\mathcal{S}_k \oplus \mathcal{R}_k)), B_k \in C_{\cdot 0}(\mathcal{K})$, and $\Lambda_k \subset \mathbb{D}$ is dominating for \mathbb{T} . If for each $\lambda_k \in \Lambda_k$ there exists a sequence $\{x_n^{\lambda_k}\}_{n=1,k=1}^{\infty, 2}$ in the closed unit ball of $\mathcal H$ such that

- (a) $\overline{\lim} \| [C_{\lambda_k}] [x_n^{\lambda_k} \otimes x_n^{\lambda_k}] \| \ge \theta$, and (b) $\| [x_n^{\lambda_k} \otimes z_k] \| \to 0, \quad z_k \in \mathcal{H}.$

Then, the set

$$\{T_1, T_2\} \in \mathbb{A}^2_{1,1}\left(\frac{6\sqrt{2}}{(1-\theta^{\frac{1}{2}})^2}\right).$$

Recall that if $T \in \mathcal{L}(\mathcal{H})$ and H is a hole in $\sigma_e(T)$ (i.e, H is a bounded component of $\mathbb{C} \setminus \sigma_e(T)$, then H is associated with a unique finite Fredholm index i(H), defined by choosing any λ in H and setting $i(H) = I(T - \lambda)$. If H is a hole in $\sigma_e(T)$ such that $i(H) \neq 0$, then $H \subset \sigma(T)$. On the other hand, if H is a hole in $\sigma_e(T)$ with i(H) = 0, then either $H \subset \sigma(T)$ or $H \cap \sigma(T)$ consists of a countable (possibly empty) set of isolated points. For each T in $\mathcal{L}(\mathcal{H})$ we write $\mathcal{F}_{-}(T)$ [resp. $\mathcal{F}_{+}(T)$] for the (possibly empty) union of all holes H in $\sigma_e(T)$ such that $i(H) \leq 0$ [resp. $i(H) \ge 0$] and $H \subset \sigma(T)$. Moreover, we write $\mathcal{F}'_{-}(T)$ [resp. $\mathcal{F}'_{+}(T)$] for the union of all holes H in $\sigma_e(T)$ such that i(H) < 0 [resp. i(H) > 0], and $\mathcal{F}(T) = \mathcal{F}_{-}(T) \cup \mathcal{F}_{+}(T)$. ([4])

We now present a spectral sufficient condition for membership in $\mathbb{A}^2_{1,1}(r)$.

Theorem 2.3. For k = 1, 2, suppose T_k is absolutely continuous contraction in $\mathcal{L}(\mathcal{H}), B_k \in \mathcal{L}(\mathcal{S}_k \oplus \mathcal{R}_k)$ is a minimal coisometric extension of $T_k, B_k \in C_{0}(\mathcal{K}), \text{ and } \Lambda_k = (\sigma_e(T_k) \cap \mathbb{D}) \cup \mathcal{F}_{-}(T_k) \text{ is dominating for } \mathbb{T}.$ Then, the set

$$\{T_1, T_2\} \in \mathbb{A}^2_{1,1}(6\sqrt{2}).$$

Proof. That $T_k \in \mathbb{A}$ is from [2, Proposition 4.6], and we will prove the theorem by proving that Theorem 2.2 can be applied with $\theta = 0$. But by using the properties in the proof of Theorem 5.3 of [4] and Theorem 2.2, the proof of the Theorem 2.3 is clearly completed.

The following corollary is immediate from Theorem 2.3.

Corollary 2.4. For k = 1, 2, suppose T_k is absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$, $B_k \in \mathcal{L}(\mathcal{S}_k \oplus \mathcal{R}_k)$ is a minimal coisometric extension of $T_k, B_k \in C_{\cdot 0}(\mathcal{K})$, and there exist dominating set $\Lambda_k \subset \mathbb{D}, k = 1, 2$, such that for all $\lambda_k \in \Lambda_k, T_k - \lambda_k$ is a Fredholm operator such that $i(T_k - \lambda_k) < 0$. Then, the set

$$\{T_1, T_2\} \in \mathbb{A}^2_{1,1}(6\sqrt{2}).$$

References

- 1. H. Bercovici, C. Foias and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I, Michigan Math. J. 30 (1983), 335-354.
- 2. _____, Dual algebras with applications to invariant subspaces and dilation theory, C.B.M.S. Regional Conference Series, no. 56, A.M.S., Providence, R. I.
- 3. B. Chevreau, G. Exner, and C. Pearcy, On the structure of contraction operators, III, Michigan Math. J. 36 (1989), 29-62.
- B. Chevreau, and C. Pearcy, On the structure of contraction operators, I, J. Funct. Anal., 76 (1988), 1-29.
- 5. Hae Gyu Kim, Ph.D. Thesis, Kyungpook National University, 1992.
- 6. _____, A note on common noncyclic vectors, J. of the Institute of Science Education(Cheju National University of Education) 13 (1997), 51-62.
- 7. B. Sz-Nagy and C. Foias, *Harmonic analysis of operators on Hilbert spaces*, North Holland Akademiai Kiado, Amsterdam/Budapest, 1970.

Department of Mathematics Education Cheju National University of Education Cheju 690 - 061, Korea