

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

A THESIS

FOR THE DEGREE OF MASTER OF PHILOSOPHY

A Study of CoAP Extension Based on ID for IoT Node

Registration and Message Queuing

(IoT 노드 등록 및 메시지 큐잉을 위한 ID기반

확장된 CoAP프로토콜 연구)

Wenquan Jin

Department of Computer Engineering

GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

February 2015

 A
 S

tu
d
y
 o

f C
o
A

P
 E

x
ten

sio
n
 B

ased
 o

n
 ID

 fo
r Io

T
 N

o
d
e R

eg
istratio

n
 an

d
 M

essag
e Q

u
eu

in
g
 W

en
q
u
an

 Jin
 2

0
1
5

A THESIS

FOR THE DEGREE OF MASTER OF PHILOSOPHY

A Study of CoAP Extension Based on ID for IoT Node

Registration and Message Queuing

(IoT 노드 등록 및 메시지 큐잉을 위한 ID기반

확장된 CoAP프로토콜 연구)

Wenquan Jin

Department of Computer Engineering

GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

February 2015

Copyright © 2015 Wenquan Jin

A Study of CoAP Extension Based on ID for IoT Node

Registration and Message Queuing

(IoT 노드 등록 및 메시지 큐잉을 위한 ID기반

확장된 CoAP프로토콜 연구)

Wenquan Jin

(Supervised by professor Do-Hyeun Kim)

A thesis submitted in partial fulfillment of the requirement for the

degree of Master of Computer Engineering

2015. 02.

This thesis has been examined and approved.

…...
Thesis Committee Chair

Khi-Jung Ahn, Professor of Computer Engineering, Jeju National University

…...
Wang-Cheol Song, Professor of Computer Engineering, Jeju National University

…...
Thesis Supervisor,

Do-Hyeun Kim, Professor of Computer Engineering, Jeju National University

Department of Computer Engineering

GRADUATE SCHOOL

JEJU NATIONAL UNIVERSITY

Acknowledgements

First of all, I offer my humble thanks God for giving me strength to finish my master

studies successfully. The LORD is my shepherd, I shall not be in want, He taught and

emphasized the importance of learning and seeking knowledge.

I am extremely grateful to my advisor Prof. Do-Hyun Kim for his guidance and support

during my studies in Jeju National University. Without his help, constant interaction, helpful

discussions and keen interest, this thesis would not have been possible.

I wish to offer my humble gratitude to Prof. Wang-Cheol Song and Prof. Khi-Jung Ahn

for their useful suggestions and extremely important comments during the process of my

thesis evaluation. I would like to express my sincere thanks to Prof. Sang-Joon Lee and all

the professors of my department for their king help and extended support in many ways to

fulfill my course work successfully. I also want to extend my thanks to my friends, lab

members and department secretaries for their help and cooperation.

i

Acronyms

API Application Programming Interface

CoAP Constrained Application Protocol

CoRE Constrained RESTful Environment

CRUD Create, Retrieve, Update and Delete

GIS Geographic Information System

HTTP Hyper Text Transfer Protocol

IETF Internet Engineering Task Force

IoT Internet of Things

M2M Machine to Machine

MQ Message Queue

RD Resource Directory

REST Representational State Transfer

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

ii

Abstract

Internet Engineering Task Force (IETF) presented Constrained Application Protocol

(CoAP) for the communication between sensor or actuator nodes by in a constrained

environment such as small amount of memory and low power. CoAP and HTTP protocol can

convert easily, and can use to monitor or control the infrastructure utility through low-power

sensor and actuator networks in Internet of Things (IoT) and Machine-to-Machine (M2M)

environment. In this thesis, we present CoAP extension based on ID for IoT service. The

CoAP node is used for constrained environment which works in constrained network using

CoAP, and it can be configured one or more units such as sensors and actuators. In order to

support IoT service for this kind of CoAP node, we design and implement improved

middleware and composite CoAP node, these elements interact with each other via CoAP in

the IoT. The middleware includes Resource Directory (RD) and Message Queue (MQ)

broker to interact with CoAP node for node registration and discovery, sleep scheduling and

context data collecting. Through the interaction of the middleware and the CoAP node, we

also propose an efficient sleepy and context data collecting mechanism building on RD and

MQ functionalities.

iii

요약문

인터넷 엔지니어링 태스크 포스 (IETF) 에서는 작은 메모리, 적은 에어지공급과

같은 제한된 자원을 가진 환경에서 작동하는 선서, 구동체 등 노드의 통신을

위한 Constrained Application Protocol (CoAP) 을 제안했다. CoAP 프로토콜은 HTTP

프로토콜과 서로 쉽게 변환 할 수 있고 사물인터넷 (IoT) 혹은 사물통신 (M2M)

환경에서의 저출력 센서 혹은 구동체 네트웍을 통하여 인프라 유틸리티를 모니터링

혹은 제어 할 수 있다. 본 논문에서 사물 인터넷 서비스를 위하여 ID 기반의 CoAP

프로토콜의 확장 기능을 제안한다. CoAP 노드는 CoAP 프로토콜을 통하여 제한된

자원을 갖는 환경에서 제한된 네트웍을 위하여 사용되며 이는 한개 혹은 여러개의

유닛을 포함 할 수 있다. 이런 복합노드에 관한 사물 인터넷 서비스를 제공하기 위하여

본 논문에서는 향상된 미들웨어와 복합 CoAP 노드를 설계하고 구현하여 CoAP

프로토콜을 통하여 사물인터넷상에서의 상호작용을 보여준다. 리소드 목록 (RD) 와

메시지 큐잉 (MQ) 브로커를 포함한 미들웨어는 CoAP 노드와의 상호작용을 통하여

노드 등록, 조회, 노드 수면 기능과 환경 데이터수집 등 기능을 갖고 있다. 미들웨어와

노드간의 상호작용을 통하여 우리는 RD 와 MQ 를 이용하여 효율적인 노드 수면

기능과 환경 데이터수집 기능을 제안한다.

iv

Table of Contents

1 Introduction .. 1

 1.1 Background .. 1

 1.2 Content of research ... 2

 1.3 Outline ... 3

2 Related work ... 4

 2.1 CoAP ... 4

 2.2 CoAP extensions .. 6

3 Improved RD and MQ based on unit ID .. 10

 3.1 IoT architecture based on unit ID .. 11

 3.2 Extended CoRE RD for IoT node.. 14

 3.3 Sleepy mechanism based on CoAP MQ .. 17

 3.4 Context data collecting mechanism based on CoAP MQ 20

4 Design of the IoT system based on unit ID .. 22

 4.1 IoT node based on unit ID... 23

 4.2 IoT middleware based on extended RD and MQ ... 25

 4.3 IoT node registration and discovery .. 29

 4.4 Sleepy scheme based on MQ .. 32

 4.5 Context data collection using buffer based on MQ .. 35

5 Implementation of the IoT system ... 38

 5.1 Basic IETF CoAP ... 38

 5.2 Registration and discovery using extended RD based on unit ID 42

 5.3 IoT middleware and IoT node based on extended RD and MQ 44

 5.3.1 Extended RD and MQ for sleep scheme ... 47

 5.3.2 Improved MQ for efficient context data collection 49

 5.4 IoT service for client application ... 52

v

6 Performance evaluation ... 57

7 Conclusion .. 60

References ... 61

vi

List of Figures

Figure 2.1. Message format .. 6

Figure 2.2. The resource directory architecture ... 7

Figure 2.3. CoAP MQ architecture ... 8

Figure 2.4. NodeId option definition .. 9

Figure 3.1. IoT system architecture based on unit ID .. 11

Figure 3.2. IP address and endpoint unit ID mapping architecture 12

Figure 3.3. Node ID and endpoint unit ID mapping architecture ... 12

Figure 3.4. Example of IoT node property profile based on unit ID..................................... 13

Figure 3.5. Endpoint unit ID and RD .. 15

Figure 3.6. Use case of composite CoAP node based on multiple unit ID............................ 16

Figure 3.7. An example of IoT resource discovery architecture... 17

Figure 3.8. Functionality of RD and MQ in IoT middleware for sleep mode 18

Figure 3.9. Business process model for synchronous sleepy scenario 18

Figure 3.10. Business process model for asynchronous sleepy scenario 19

Figure 3.11. Functionality of MQ in IoT middleware for context data collection................. 20

Figure 4.1. Overall functional architecture for interaction of IoT elements 22

Figure 4.2. Functional structure of IoT node ... 23

Figure 4.3. Use case for CoAP resources of IoT node ... 25

Figure 4.4. Database ER-Diagram for IoT middleware ... 26

Figure 4.5. Functional structure of IoT middleware .. 28

Figure 4.6. Use case for CoAP resources of IoT middleware .. 29

Figure 4.7. Sequence diagram for IoT node registration .. 30

Figure 4.8. Sequence diagram for IoT node discovery .. 31

Figure 4.9. Sequence diagram for synchronous sleepy scheme using HTTP 33

vii

Figure 4.10. Sequence diagram for asynchronous sleepy scheme based on MQ using HTTP

 .. 34

Figure 4.11. Sequence diagram for context data acquiring .. 35

Figure 4.12. Sequence diagram for collecting context data from IoT node 36

Figure 4.13. Sequence diagram for acquirement of context data from IoT middleware 37

Figure 5.1. Experiment environment for CoAP protocol ... 39

Figure 5.2. Basic type and structures definition for CoAP protocol 40

Figure 5.3 Method and responded codes definition ... 40

Figure 5.4. Experiment results of CoAP client .. 41

Figure 5.5. Experiment results of CoAP server ... 42

Figure 5.6. Prototype development for CoAP endpoint unit identification 43

Figure 5.7. Development of unit ID based CoAP node registration 44

Figure 5.8. Implementation environment of IoT middleware and IoT node 45

Figure 5.9. CoAP resource classes in IoT middleware .. 46

Figure 5.10. CoAP resource initialization in IoT node .. 47

Figure 5.11. Implementation of request for sleep command .. 47

Figure 5.12. Context data record list in the sleep of IoT node ... 48

Figure 5.13. Wake-up message mapping for IoT node and IoT middleware 49

Figure 5.14. Result of real time context data collection ... 50

Figure 5.15. Implementation of request for notify command ... 50

Figure 5.16. Result of context data notification... 51

Figure 5.17. Result of saved context data in database ... 52

Figure 5.18. Result of requesting notified context data ... 52

Figure 5.19. Service layer architecture for composited service .. 53

Figure 5.20. Client main page .. 55

Figure 5.21. Client total map page .. 56

Figure 5.22. Client room page .. 56

viii

Figure 6.1. Message transfer process for synchronous sleep scheme 58

Figure 6.2. Message transfer process for asynchronous sleep scheme 59

Figure 6.3. Result of context data and time estimation for synchronous sleep scheme 59

Figure 6.4. Result of context data and time estimation for asynchronous sleep scheme 59

ix

List of Tables

 Table 5.1. Implementation environment for CoAP protocol ... 39

1

1 Introduction

1.1 Background

In the Internet of Things (IoT) paradigm, many of physical and virtual things are

connected with each other through the internet to be a network infrastructure. The basic idea

of this paradigm is the pervasive presence around us of a variety of things which enables the

interconnections between people and machines, automobiles, mobile phones, sensors,

actuators and computational elements. Unquestionably, the concept of IoT will have several

aspects of everyday-life and behavior of potential users. For private users, the IoT will be

visible in both working and domestic fields and also will be visible in business field such as

industrial manufacturing, process management and automation [1]. All these things of

internet had been installed to run their own software. Therefore, all types of real-world

physical elements are able to interact with each other via own software in the IoT. Through

the interaction of these elements in the environment around us, we can collect information

and influence context from the environment. Accordingly, the IoT concept extends the

Machined to Machine (M2M) communications concept via interaction with physical systems

[2]. Machines exchange information and perform actions without any human interaction.

IETF (Internet Engineering Task Force) CoRE (Constrained RESTful environments)

Working Group started global standardization for Constrained Application Protocol (CoAP)

in 2010, and recently it announces RFC (Request for Comments) 7252. Therefore

researchers have been studying and developing for realize CoAP in limited sensor or actuator

network. CoAP is a specialized web transfer protocol for use with constrained nodes and

constrained networks [3]. The protocol is designed for M2M applications such as smart

energy and building automation. M2M interactions typically result in a CoAP

implementation acting in both client and server roles. CoAP proxies which can cache and

service requests for sleepy CoAP servers [4]. A client explicitly sends a CoAP request

2

(GET) to a forward proxy (identified by its IP address) while indicating the URI (of the

resource of interest) associated to a sleepy CoAP origin server. If the proxy has a valid

representation of the resource in its cache it can then respond directly to the client regardless

of the current sleep state of the origin server. Otherwise the proxy has to attempt to retrieve

(GET) the resource from the sleepy origin server. The attempt may or may not be successful

depending on the sleep state of the origin server. [RFC6690] and [I-D.ietf-core-resource-

directory] defines a Resource Directory (RD) mechanism where sleepy CoAP servers can

register/update (POST/PUT to "/.well-known/core") their list of resources on a central (non-

sleepy) RD server. This allows clients to discover the list of resources from the RD (GET

/rd-lookup/...) for a sleepy server, regardless of its current sleep state. Unlike a proxy, the RD

stores only the URIs for other nodes, and not the actual resource representation [RFC6690].

The client then may attempt to operate on (GET/PUT/POST/DELETE) the desired resource

at the sleepy origin server. This attempt may or may not be successful depending on the

sleep state of the origin server [5]. These objects in the M2M scenario, witch work in

constrained environment and working alone without human in long time. It need efficient

energy usage for being touched infrequently by administration [6]. The object may be a

sensor or actuator, which has program works on the machine by processors. The machine is

like a pc support interfaces to extend features. For example, there is a board which is Galileo

board [7]. Using the Galileo board, we can configure several sensors and actuators in a

board, and these units would be a part of the board.

1.2 Content of research

This thesis presents a conceptual architecture and design features of multiple unit IDs in

a node for registration and discovery. The concept of node ID has been presented previously

in [10]. We present the idea of nodes having multiple integrated sensing and/or actuating

devices. Each of these devices is separately identifiable via a unit ID. The unit ID for a

given resource must be unique among all the integrated resources in a single node while the

3

same ID can represent a resource integrated in another node [11]. The integrated resources

inside a node are separately identified by node IP and unit ID together. Every node has an IP

address through which it can communicate with clients or other modules of the system. A

detailed description of the purpose and features of Resource Directory has been presented

[8]. We design and implement an improved IoT middleware to include Resource Directory

(RD) and Message Queue (MQ) broker which interacts with IoT node for IoT node

registration and discovery, sleep scheduling and context data collecting. IoT middleware and

IoT node communicate via CoAP. Therefore, IoT middleware includes HTTP and CoAP

both protocol library for supporting HTTP based RESTful API and CoAP based RESTful

API. Using the system which we present, we test the performance of the message interaction

for sleepy schemes.

1.3 Outline

The outline of this thesis is organized as follows: Chapter 1 describes the Background

of the IoT elements and pervasive technologies. Chapter 2 discusses the IoT technologies in

the constrained environment. And chapter 3 proposes unit ID based IoT architecture and RD

and MQ based enhanced mechanisms. Chapter 4 presents design of IoT elements and

mechanism for the proposed scenario. Chapter 5 presents implementation of the proposed

scenario. In the chapter 6, we evaluate the performance of the system which are we present

and chapter 7 summarizes the contents of the thesis.

4

2 Related work

2.1 CoAP

IETF CoRE (Constrained RESTful Environments) Working Group develop a

framework for resource-oriented applications intended to run on constrained IP networks

which support a RESTful architectural style and POST, GET, PUT, DELETE (so-called

CRUD methods). It is stateless and exposes directory structure-like URIs and define

mappings to compact binary forms and transport over UDP.

CoRE is providing a framework for resource-oriented applications intended to run on

constrained IP networks. A constrained IP network has limited packet sizes, may exhibit a

high degree of packet loss, and may have a substantial number of devices that may be

powered off at any point in time but periodically "wake up" for brief periods of time. These

networks and the nodes within them are characterized by severe limits on throughput,

available power, and particularly on the complexity that can be supported with limited code

size and limited RAM per node. More generally, we speak of constrained networks

whenever at least some of the nodes and networks involved exhibit these characteristics.

Low-Power Wireless Personal Area Networks (LoWPANs) are an example of this type of

network. Constrained networks can occur as part of home and building automation, energy

management, and the Internet of Things.

The CoRE working group will define a framework for a limited class of applications:

those that deal with the manipulation of simple resources on constrained networks. This

includes applications to monitor simple sensors (e.g. temperature sensors, light switches, and

power meters), to control actuators (e.g. light switches, heating controllers, and door locks),

and to manage devices.

The general architecture consists of nodes on the constrained network, called Devices

that are responsible for one or more Resources that may represent sensors, actuators,

5

combinations of values or other information. Devices send messages to change and query

resources on other Devices. Devices can send notifications about changed resource values to

Devices that have subscribed to receive notification about changes. A Device can also

publish or be queried about its resources. (Typically a single physical host on the network

would have just one Device but a host might represent multiple logical Devices. The specific

terminology to be used here is to be decided by the WG.) As part of the framework for

building these applications, the WG defined a Constrained Application Protocol (CoAP) for

the manipulation of Resources on a Device.

CoAP is designed for use between Devices on the same constrained network, between

Devices and general nodes on the Internet, and between Devices on different constrained

networks both joined by an internet. CoAP targets the type of operating environments

defined in the ROLL and 6LOWPAN working groups which have additional constraints

compared to normal IP networks, but the CoAP protocol will also operate over traditional IP

networks.

CoAP provides a request/response interaction model between application endpoints,

supports built-in discovery of services and resources, and includes key concepts of the Web

such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for

integration with the Web while meeting specialized requirements such as multicast support,

very low overhead, and simplicity for constrained environments.

CoAP has the following main features:

1) Web protocol fulfilling M2M requirements in constrained environments

2) UDP binding with optional reliability supporting unicast and multicast requests.

3) Asynchronous message exchanges.

4) Low header overhead and parsing complexity.

5) URI and Content-type support.

6) Simple proxy and caching capabilities.

6

A stateless HTTP mapping, allowing proxies to be built providing access to CoAP

resources via HTTP in a uniform way or for HTTP simple interfaces to be realized

alternatively over CoAP.

Security binding to Datagram Transport Layer Security (DTLS) [3].

Figure 2.1. Message format.

There also may be proxies that interconnect between other Internet protocols and the

Devices using the CoAP protocol. The WG will define a mapping from CoAP to an HTTP

REST API; this mapping will not depend on a specific application. It is worth noting that

proxy does not have to occur at the boundary between the constrained network and the more

general network, but can be deployed at various locations in the unconstrained network.

CoAP will support various forms of "caching“. For example, if a temperature sensor is

normally asleep but wakes up every five minutes and sends the current temperature to a

proxy that as subscribed, when the proxy receives a request over HTTP for that temperature

resource, it can respond with the last seen value instead of trying to query the Device which

is currently asleep.

2.2 CoAP extensions

In many M2M applications, direct discovery of resources is not practical due to sleeping

nodes, disperse networks, or networks where multicast traffic is inefficient. These problems

can be solved by employing an entity called a Resource Directory (RD), which hosts

descriptions of resources held on other servers, allowing lookups to be performed for those

7

resources. This document specifies the web interfaces that a Resource Directory supports in

order for web servers to discover the RD and to register, maintain, lookup and remove

resources descriptions. Furthermore, new link attributes useful in conjunction with an RD are

defined [8].

A Resource Directory (RD) is used as a repository for Web Links about resources

hosted on other web servers, which are called endpoints (EP). An endpoint is a web server

associated with an IP address and port, thus a physical node may host one or more endpoints.

The RD implements a set of REST interfaces for endpoints to register and maintain sets of

Web Links (called resource directory entries), for the RD to validate entries, and for clients

to lookup resources from the RD. Endpoints themselves can also act as clients. An RD can

be logically segmented by the use of Domains. The domain an endpoint is associated with

can be defined by the RD or configured by an outside entity. Endpoints are assumed to

proactively register and maintain resource directory entries on the RD, which are soft state

and need to be periodically refreshed. An endpoint is provided with interfaces to register,

update and remove a resource directory entry. Furthermore, a mechanism to discover a RD

using the CoRE Link Format is defined. It is also possible for an RD to proactively discover

Web Links from endpoints and add them as resource directory entries, or to validate existing

resource directory entries. A lookup interface for discovering any of the Web Links held in

the RD is provided using the CoRE Link Format.

Figure 2.2. The resource directory architecture.

8

When a node registers itself to the Resource Directory server, the registration request

should contain its node identifier. This Option can be used to identify the node, either the

client or the server [10]. This node identifier MAY be included in the NodeId option in the

registration request, or MAY be included in the URI-Query option.

Figure 2.3. CoAP MQ architecture.

In the constrained environment, nodes with limited reachability to communicate using

simple extensions to CoAP and the CoRE Resource Directory [8]. The extensions enable

publish-subscribe communication using a Message Queue (MQ) broker node that enables

store-and-forward messaging between two or more nodes. The MQ functionality for CoAP

that extends the capabilities for supporting nodes with long breaks in connectivity and/or up-

time.

The NodeId option is used to identify the node. The value SHOULD be unique for each

node within a Resource Directory server. The value can be in the form of Binary bits, IMEI

(International Mobile Equipment Identity number), IEEE 802 MAC Address, or other

identifiers which can uniquely identify itself. Usually the value is pre-configured or pre-

previsioned in the node [10]. NodeId Option specification adds a new option NodeId to

CoAP. The main purpose is for a node to have a unique identity, named as NodeId. The

NodeId is used by the node, as a sender, to identify itself to the recipient, during registration

and communications.

9

Figure 2.4. NodeId option definition.

When a node registers itself to the Resource Directory server, the registration request

SHOULD contain its node identifier. This node identifier MAY be included in the NodeId

option in the registration request, or MAY be included in the URI-Query option [8].

This option MAY be used in a CoAP request or response. And it can be used to

correlate the messages for a node in case of IP address change. As long as a node changes its

IP address, the NodeId SHALL be included in the first request and response and sent in CON

message. Whenever the node reboots or moves, the NodeId must not change. And the node

SHOULD send the updated IP address with the NodeId to the RD server, using the update

interface [8]. This informs the RD server a mapping relation between the new IP address and

the NodeId identified node.

Endpoint is an entity participating in the CoAP protocol. Colloquially, an endpoint lives

on a "Node", although "Host" would be more consistent with Internet standards usage, and is

further identified by transport-layer multiplexing information that can include a UDP port

number and a security association.

There is Endpoint ID due to the mobile nature of some devices. E.g. smartphones, they

are often assigned new IP addresses because of a network change [12]. Thus, the IP address

of a CoAP server might change during an ongoing conversion. The Endpoint ID scenario

proposes a method to assign each communication partner with an identifier (endpoint ID)

which replaces the IP address as (partial) key to relate requests and responses. Besides the

common separated responses, the proposed method is also useful to handle IP address

changes, e.g. during an ongoing observation or a block wise transfer.

10

3 Improved RD and MQ based on unit

ID

The Constrained Application Protocol (CoAP) is a protocol intended towards devices

which are constrained in terms of memory, processing and power i.e. small low power

sensors, switches and valves etc. The CoAP allows such devices to interactively

communicate over the Internet. The CoAP is a specialized web transfer protocol for

constrained devices [12]. These devices typically have some combination of limited battery

power, small memory footprint and low throughput links. It is expected that in CoAP

networks there will be a certain portion of mode and temporarily suspend CoAP protocol

communication [4]. In this chapter, we propose an interaction of the concept of composite

IoT node and IoT middleware to illustrate a composited mechanism building on the IoT

middleware functionality which includes Resource Directory (RD) and CoAP Message

Queue (MQ) to enhance sleepy node support in CoAP networks.

As shown as figure 3.1, we present overall structure on this figure. In this structure,

there are three IoT Components which includes service layer, IoT middleware and IoT node.

IoT middleware links service layer and IoT nodes, It supports HTTP RESTful API to the

service layer and supports CoAP RESTful API to IoT nodes in the constrained environment.

We present composite CoAP node in the constrained environment in this structure. A CoAP

node integrates multiple CoAP resources such as sensors and actuators. In the service layer,

each service provider register to service registry to available in the internet. In the figure,

App Server is a service provider which combines GIS, Sensor Web and Actuator Web to

provider a new service. Service user can search IoT components from Service Registry to

access through Service Provider in the service layer.

11

Figure 3.1. IoT system architecture based on unit ID.

3.1 IoT architecture based on unit ID

A single CoAP node integrates multiple CoAP resources to enable their own function

such as sensor or actuator. The unit ID in the CoAP node, it enables the usage of composite

nodes consisting of multiple sensors and actuators while having a single IP address for

communication. The integrated resources can be individually or collectively communicated

with and/or controlled using CoAP messages.

12

Figure 3.2. IP address and endpoint unit ID mapping architecture.

Figure 3.2 presents a generalized architecture for IP and ID mapping in the proposed

Endpoint Unit ID scenario. The network IP and local IP addresses are used to access the

network of the node and the physical node respectively. We proposed that a single node may

have multiple integrated resources and each of these resources can be represented by

multiple sub-identifiers (IDs). The sub-identifier for the integrated resource is called as the

Unit ID and a node may have more than one Unit IDs.

Figure 3.3. Node ID and endpoint unit ID mapping architecture.

In the mobile network, it is quite common for a node change its IP address. After the

server or client changes its IP address, the peer of the other side will lose the connection. We

13

propose an IoT node which includes node ID and unit ID for identify several resources in the

IoT. Figure 3.3 shows the architecture of node ID and unit ID mapping for mobile network.

The node ID is fix for identify the node. The changed IP should be retrieved through the

node ID. And the resources can be controlled through the unit ID which are integrated in the

node.

Figure 3.4. Example of IoT node property profile based on unit ID.

Figure 3.4 show an example for IoT node property profile in the IoT node. The

information of the profile is formatted in JSON. It includes node’s information and unit’s

information which are included in the IoT node application. Node version is used for

synchronize the information between IoT node and IoT middleware. And another attributes

is used for functionality of the IoT node such as sleep state, sleep duration, notify enable and

notify interval. There can be multiple units of the node. The information of the units can be

appropriately different without id of the unit. Unit’s information includes resource type and

interface which are proposed in the RFC 6690 [5]. The resource type attribute is an opaque

string used to assign an application-specific semantic type to a resource. And the interface

description attribute is an opaque string used to provide a name or URI indicating a specific

interface definition used to interact with the target resource.

14

Each IoT node has own URI with IP address. But it is quite common for a node to

change its IP address due to rebooting. We design the IoT node seamless synchronize its

information with RD in the IoT middleware. Service Users of the IoT middleware, which

retrieve Node URI via Node ID to find IoT node in the network. For example, a service

provider need to send a command to actuate a unit of the IoT node, then the service provider

will get a Node ID which are related the requirement. Service Provider request a command

to the IoT middleware with Node ID and Unit ID which are parameters of query. And IoT

middleware sends the command to the IoT node via Node URI through CoAP with unit ID,

the Node URI is retrieved using node ID from database. Finally, IoT node receives the

command and actuates the unit by the unit ID.

3.2 Extended CoRE RD for IoT node

Once a complete path is obtained for a register function set in the RD, the CoAP server

may then register resources to the RD. The User then requests the RD to look up for

registered resources. The RD then returns the access paths for the registered resources

according to the request of the client. The returned resources may include simple or

composite resources and the user can communicate with these resources. If a single CoAP

node has multiple integrated sub devices, then the composite interaction with the resources is

based on Unit-ID(s). The user can interact with individual sub units or collectively interact

with all the sub units of a composite node. It is important to note that the description and

discovery of resources hosted by a constrained web server is specified by the CoRE Link

Format which is based on the web linking for the discovery of resources hosted by an HTTP

Web Server [5][13].

15

Figure 3.5. Endpoint unit ID and RD.

Figure 3.5 shows that a node may contain a single or multiple integrated resources i.e.

multiple sensors, multiple actuators or sensors and actuators in a single node. The nodes

register these resources with the RD in the IoT middleware. The etc. Once a node had

registered all its integrated resources with the RD, the users may lookup single or multiple

resources and may interact with them directly. The RD helps in the automated discovery and

lookup of resources while the multi-unit IDs provide an efficient utilization of a single IP for

interacting with multiple resources.

16

Figure 3.6. Use case of composite CoAP node based on multiple unit ID.

Figure 3.6 shows the use case scenario for a CoAP composite node which integrates a

light sensor and two switches to control the lights in a room. The composite node is accessed

via a single IP address assigned to it while the sub-resources of the composite node are

accessed with unit IDs. The composite node like a normal CoAP Endpoint, registers its

resources in the form of sub units with the RD. The RD, thus have a single IP address for the

composite node and unit IDs for the sub units of the composite node.

As a part of discovering the services is offered by IoT middleware, a service provider

has to learn about the IoT middleware. IoT middleware includes IoT node’s information

which is searched by client via service layer.

17

Figure 3.7. An example of IoT resource discovery architecture.

Figure 3.7 shows an example for discover an IoT resource by IoT service client. Client

searches IoT node using the search service which are provided by Service Registry. Then the

Service Registry retrieves service which are related, and using the service retrieves

information of IoT node. The information of IoT node is registered by IoT node in the

registration of IoT node. This information is synchronized in the time through the version

attribute.

3.3 Sleepy mechanism based on CoAP MQ

The IoT middleware is used for in constrained networks for several reasons such as to

improve performance, sleeping device scheduling. In CoAP networks there will be a certain

portion of devices that are sleepy and which may occasionally go into a sleep mode and

temporarily suspend CoAP protocol communication. We present a mechanism for looking

up sleepy nodes through interaction with IoT middleware in the IoT. The functionality of RD

and MQ are incorporated as part of the IoT middleware.

18

Figure 3.8. Functionality of RD and MQ in IoT middleware for sleep mode.

IoT middleware includes RD functionality to manage information of IoT node. RD

supports HTTP service to Web Client APP for discovering and looking up information of

IoT node which are registered by IoT node through CoAP service by RD. Functionality of

MQ is used for performs store-and-forward messaging [14]. MQ enables IoT node publishes

context data to the IoT middleware to be subscribed by Web Client App. In the same way,

Web Client App publishes a command to the IoT middleware and forward to IoT node when

the node is available.

Figure 3.9. Business process model for synchronous sleepy scenario.

19

Figure 3.9 show three processes in the model which are Web Client App, RD and IoT

node. This diagram show synchronous sleepy scenario using business process model. It

shows actions work in separated process for sleepy scenario. The process begin from Web

Client App part. It sends message to RD for get node’s data, then RD check node’s sleep

state by node ID. And RD returns sleep information to Web Client App. Web Client App

gets node’s sleep delay data and synchronize the sleep state information with IoT

middleware. When Web Client App knows node is awake, Web Client App can get the

contextual data of node.

Figure 3.10 shows asynchronous Sleepy scenario via Business Process Model. It shows

four processes in the model. There MQ part of the model which is used for save the

command and forward to IoT node when it is awake from sleep. A part of the model is

different with figure 3.8. Web Client App confirms sleep information of node from IoT

middleware and subscribe node’s contextual data. After IoT middleware receives the request,

it will wait node to be awake and get node’s contextual data to publish to Web Client App.

Figure 3.10. Business process model for asynchronous sleepy scenario.

20

3.4 Context data collecting mechanism based on CoAP

MQ

IoT node collects context data from the environment in real time or periodically. We

present tow way to collect the context data using the IoT middleware, which build on MQ

mechanism.

Figure 3.11. Functionality of MQ in IoT middleware for context data collection.

Figure 3.11 shows what the MQ do in the IoT middleware for collecting context data.

There are Web Client App, IoT middleware and IoT node to interact in the context data

collecting. Firstly, IoT node gets context data from environment around IoT node, and

publish the data to IoT middleware which subscribed the function before. And the IoT

middleware was subscribed by a Web Client App for context data, then the IoT middleware

can publish the the saved context data.

In the case for the mechanism, this scenario is difference with real time collection of

context data. In the case of the real time collection, each Web Client App need to send

commend to IoT middleware in real time, and IoT middleware also do same way to the IoT

21

node. It is not good for energy efficient. In the scenario that we presented, the context data is

saved in the IoT middleware and forward each Web Client App. That means the IoT node

don’s need to be request in real time. It is good for energy efficient for the CoAP node-IoT

node.

22

4 Design of the IoT system based on unit

ID

We design an IoT middleware to include RD and MQ broker which interacts with IoT

node for IoT node registration, Sleepy mode and environment data collection. In the IoT,

There are three IoT components which enables which are hardware such as made up of

sensors, actuators and embedded communication hardware, middleware such as on demand

storage and computing tools for data analytics and presentation such as novel easy to

understand visualization and interpretation tools which can be widely accessed on different

platforms and which can be designed for different applications. In this section, we present

design of IoT elements and interaction of elements for functionalities.

Figure 4.1. Overall functional architecture for interaction of IoT elements.

23

Figure 4.1 shows IoT elements that we proposed. There are IoT middleware and IoT

node using CoAP to communicate. IoT middleware include RD part and MQ Broker part to

implement Sleepy mode of IoT node. IoT node has CoAP library for working in constrained

Environment and constrained network. IoT node may be a small board attaching several

units such as sensor and actuator via the interface in the board. We design unit id for the IoT

node controls functionality of unit.

4.1 IoT node based on unit ID

We present IoT node for constrained environment for the IoT. IoT node works in

constrained network through CoAP. We design functionality of IoT node to support RESFful

API. IoT node uses a link format, which is used by constrained web servers to describe

hosted resources, their attributes, and other relationships between links. The CoRE Link

Format is carried as a payload and is assigned an Internet media type [5].

The discovery of resources hosted by a constrained server is very important in machine-

to-machine applications where there are no humans in the loop and static interfaces result in

fragility. We refer to the discovery of resources hosted by a constrained web server, their

attributes, and other resource relations as CoRE Resource Discovery in the IoT middleware.

Figure 4.2. Functional structure of IoT node.

24

Figure 4.2 shows IoT node’s functions for working in Constrained RESTful

Environment. There are 2 repository for save information. One is for saving Node

Information and another one is for saving Real Time Data from collection of environment

data. Node Information Manager has Get and PUT handler for control node’s information in

the Node. Sleepy Manager is use for update sleepy information and control node’s sleepy

state. When a request come to the part, it exist a method for falling asleep. Data Manager is

use for sending collected data to client. We use the Libcoap CoAP Framework to implement

the CoAP communication. Libcoap implements a lightweight application-protocol for

devices that are constrained their resources such as computing power, RF range, memory,

bandwith, or network packet sizes. This protocol, CoAP was standardized in the IETF as

RFC 7252 [3]. Libcoap is published as open-source software without any warranty of any

kind. Use is permitted under the terms of the GNU General Public License (GPL), Version 2

or higher, OR the revised BSD license [15]. In the process of the IoT node, all data

formatted in JSON format. Incoming data and out-going data formatted in JSON in the

interaction of IoT node and IoT middleware.

A CoAP resource provides a RESTful API to clients. IoT node includes 2 kind of

resources and several sub resources for implement its functionality. These resources make

itself accessible and modifiable by reacting to requests that carry one of the four request

codes defined in CoAP: GET, POST, PUT, or DELETE. Each server holds a tree structure

where each node is a resource. Each resource is identified by a URI that is composed of the

URI of its parent plus its own name. When a request arrives at the server, it searches the

resource tree for a resource that corresponds to the destination URI of the request. If the

server finds the resource, the resource processes the request and responds with an adequate

response code, options, and payload according to the CoAP protocol. If the server cannot

find the destination resource, it responds with a 4.04 (Not Found) error code [16].

25

Figure 4.3. Use case for CoAP resources of IoT node.

Figure 4.3 shows resources of IoT node. IoT node has 2 resources in the initialized

resources mainly. Resource “info” is use for manage information of the IoT node which

includes GET method and PUT method. GET method is use for retrieve node’s information

by search functionality of IoT middleware. PUT method is use for update node’s

information. Resource “units” has GET method and PUT method for control units of IoT

node. GET method is use for get real time context data and PUT method is use for control

unit by CoAP client via command.

4.2 IoT middleware based on extended RD and MQ

In the IoT environment, a system is required to join the heterogeneous components

together and to provide interoperability between them. This system should process, filter and

route events in a scalable manner, given the other challenges such as volatility of network

and massiveness of events. Given these requirements, a middleware is a very suitable

solution for routing and delivering events. A middleware offers common services for the

applications and eases application development [17]. In this thesis, we presented an IoT

middleware to include RD and Message Queuing broker which interacts with IoT node for

GET
retrive node
information

{node-uri}
/info

<<include>>

IoT Middleware

{node-uri}
/units

PUT
update node
infomation

GET
get real time

contextual data

<<include>>

<<include>>

PUT
send command

<<include>>

Node

26

IoT node registration, Sleepy mode and environment data collection. As devices become

connected and the Internet of Things becomes ubiquitous, the multitude of devices will

enable companies to improve customer service, offer newer products or streamline existing

processes. Middleware plays a key role in acting as a bridge between such edge devices or

things and enterprise applications. The role of middleware is to provide the infrastructure

and IoT services which in turn help drive innovation, enable new revenue streams, and

improve operational efficiencies [18]. In this part of IoT elements, there are some critical

functionalities, such as aggregating and filtering the received data from the hardware

devices, performing information discovery and providing access control to the devices for

applications [19]. The IoT middleware to support device identification, device registration

and look-up services for the IoT constrained environment. Different from all previous

scenario, our design support the client interact with the composite node, the information

regarding all its sub units is also provided to the client by the RD. We design IoT

middleware to include RD and MQ broker to deal with Sleepy mode and node information

management.

Figure 4.4. Database ER-Diagram for IoT middleware.

27

Figure 4.4 is database ER- diagram for database in the IoT middleware for save related

information of node. In this ER-diagram, there are Node table, Unit table and Data table.

Node table is use for save node information such as node ID, node’s URI and node’ state.

Unit table includes column of unit information such as ID, resource type, interface and state.

The unit Interface Description 'if' attribute is an opaque string used to provide a name or URI

indicating a specific interface definition used to interact with the target resource. One can

think of this as describing verbs usable on a resource. The Interface Description attribute is

meant to describe the generic REST interface to interact with a resource or a set of resources.

It is expected that an Interface Description will be reused by different Resource Types. For

example, the Resource Types "outdoor-temperature", "dew-point", and "rel-humidity" could

all be accessible using the Interface Description "http://www.example.org/myapp.wadl#

sensor". Multiple Interface Descriptions may be included in the value of this parameter, each

separated by a space, similar to the relation attribute. The unit Resource Type 'rt' attribute is

an opaque string used to assign an application-specific semantic type to a resource. One can

think of this as a noun describing the resource [5].

Data table includes context data values and inserted time for recording collection of

environment data by units of IoT node. These data from IoT node, which formatted in JSON

type and parsed in the IoT middleware and save to the databased. The real time data save in

the IoT node by collection of units such as sensors. The IoT middleware request to the IoT

node to get the data discontinuously. And we design the resource interface of the IoT node to

support respond period data. The IoT node save the real time environment data to the

repository of IoT node, and the IoT middleware can request the period data from IoT node.

In this case, the inserted time is same for all the data is inserted which from the request.

28

Figure 4.5. Functional structure of IoT middleware.

Figure 4.5 shows functional structure of IoT middleware. There are RD and MQ broker

mainly. RD includes Connection Manager to control registration of IoT node and manages

Sleepy information of IoT node and Node Information via Sleepy Information Manager and

Node Information Manager. MQ broker has Sleepy Manager to receive request from IoT

node. Sleepy Manager is a resource which has PUT method to handle request from IoT node.

In the IoT middleware includes tow kind of communication functionalities for support

service for HTTP and constrained environment. We use Californium (Cf) CoAP Framework

to implement CoAP communication with IoT node in constrained network [23]. And another

one is use for HTTP services. In the IoT middleware.

29

Figure 4.6. Use case for CoAP resources of IoT middleware.

Figure 4.6 shows resources of IoT middleware for CoRE. IoT middleware has three

resources in the initialized resources mainly. “conn” resource is use for registration of IoT

node. It support GET, POST and PUT method. GET method is use for select node’ ID from

database of IoT middleware by IoT node. POST method is use for create node information in

the time of registration. PUT method is use for update node information which is not

required. When node’s information version is changed and difference with data in the IoT

middleware, then IoT node use the PUT method access the resource. Resource “observer”

has “data” and “sleepy” sub resources to be accessed. “data” resource is use for accepting

context data from unit of IoT node such as collected environment data and actuator state

data.

4.3 IoT node registration and discovery

IoT node has automatic registration process in the software. It connects to IoT

middleware through configured IoT middleware URI to registry its information or update it.

Information of IoT node in the database of IoT middleware, which has been inserted may be.

In this case, the process is use for updating IoT node’s information or do nothing. IoT node

GET
select node id

POST
create node
information

PUT
update node
information

{server-uri}
/conn

<<include>>

<<include>>

<<include>>

{server-uri}
/observer/data

{server-uri}
/observer/sleepy

IoT Middleware

<<include>>
PUT

update sleepy state
to be awake

POST
post generated
contextual data

<<include>>

Node

30

synchronizes information of node with IoT middleware via version attribute of IoT node

profile (Section 3.1).

Figure 4.7. Sequence diagram for IoT node registration.

Figure 4.7 shows the sequence diagram for process of IoT node registration. Firstly, IoT

node sends a GET request with “ni” parameter to “conn” resource of IoT middleware. The

parameter is Node ID which is used for retrieve the IoT node in the database of IoT

middleware. If there is the information via the Node ID confirmed then IoT middleware

responds Node Version to IoT node. Else IoT middleware responds a string to notify IoT

node for there isn’t node information. After IoT node receives the response, it sends POST

31

request to IoT middleware with “ni” and payload which includes node’s information for

register a new IoT node. When there is same node information and difference version of the

information then IoT node sends a PUT request to IoT middleware to update the information.

And when there is same node and same version of the information then IoT node do nothing.

Figure 4.8. Sequence diagram for IoT node discovery.

Figure 4.8 shows sequence diagram for IoT node discovery by IoT Client App using

IoT service. In the service layer of IoT, IoT Client App gets node discovering service from

service provider. Firstly it gets web services from service registry which are registered. And

he IoT Client App uses the web service to retrieve nodes that the IoT Client App needs. Then

the service provider retrieves the nodes from IoT middlewares that enables to the service

provider. After the node list arrives user of IoT Client App, the user can request a specific

node to get detail information from RD of an IoT middleware.

32

4.4 Sleepy scheme based on MQ

The Sleepy information are changed in IoT middleware and IoT node both side. Sleep

state indicates whether the node is currently in sleep mode or not. Sleep duration indicates

the maximum duration of time that the node stays in sleep mode. There is notify process

which includes synchronous sleepy mode and asynchronous sleepy mode. We design the

mechanism using functionalities of RD and MQ for Web Client App is learned sleepy state

information of IoT node. Synchronous process is used for Web Client App needs to

synchronize the sleep time of the IoT node and asynchronous process is used for Web Client

App needs to subscribe the IoT node which falls asleep.

33

Figure 4.9. Sequence diagram for synchronous sleepy scheme using HTTP.

Figure 4.9 shows IoT node receive a PUT request from IoT middleware for change

sleepy state. When Web Client App requests for get node’s data then IoT middleware

34

respond a message with sleep information. And Web Client App gets node’s delay

information from IoT middleware to synchronize the sleep state information.

Figure 4.10. Sequence diagram for asynchronous sleepy scheme based on MQ using

HTTP.

35

Figure 4.10 shows a same process with figure 4.9 in first action for change sleep state

and synchronize sleep state information with Web Client App. But this scenario present

another way to notify the Web Client App. Web Client App can use the subscribe function to

request for get node’s data. When IoT middleware receive PUT request from IoT node for

update sleep state to be awake, then IoT middleware sends a GET request to get context data

from IoT node via CoAP. And IoT middleware sends the data to Web Client App via Publish

functionality.

4.5 Context data collection using buffer based on MQ

Figure 4.11. Sequence diagram for context data acquiring.

Figure 4.11 shows the Web Client App acquire context data from IoT node through IoT

middleware. Web Client App gets real time data from IoT node in this process. Firstly, Web

Client App retrieve node information from IoT middleware and get node list. And a node is

selected in the list to access for get context data of node. When IoT middleware receive a

36

request with selected node id for get node’ data then it send a GET request to IoT node via

CoAP and receive context data from IoT node. Finally, IoT middleware forward the received

data to Web Client App.

Figure 4.12. Sequence diagram for collecting context data from IoT node.

IoT middleware collects context data from IoT node for saving and support to Web

Client App. Figure 4.12 shows a sequence for collecting data from IoT node. Firstly, an IoT

node receive a command to change notify information from a IoT middleware. And the IoT

37

node sends context data to the IoT middleware periodically. Or the context of the IoT node is

changed, then the IoT node will sends the changed context date to the IoT middleware.

Figure 4.13. Sequence diagram for acquirement of context data from IoT middleware.

IoT middleware receive context data from IoT node periodically to save and support to

Web Client App. Figure 4.13 show a sequence diagram for acquirement of context data from

IoT middleware. Web Client App sends a request for get data to IoT middleware, and IoT

middleware respond a latest node data which are saved in database.

38

5 Implementation of the IoT system

We use a Java framework to implement IoT middleware and using a c library to

implement IoT node. IoT node is implemented in Linux C compile environment because of

IoT node working in the constrained environment. IoT middleware is implemented in java

compile environment. The IoT middleware is a web application which support web link to be

accessed by user such as web client and HTTP client. In the service layer, our service

provider supports SOAP web service which uses HTTP client to request the IoT middleware.

5.1 Basic IETF CoAP

We implement the CoAP protocol in the proposed different environment, and verify the

interoperability. The table 5.1 is IDE for implementing the CoAP protocol. The client is

made with Java Runtime Environment (JRE) in the Window OS. We used eclipse as a

development tool. The server is made with C language in the Ubuntu Linux environment,

and it is executed in GCC.

The CoAP protocol is application layer protocol and it can be executed to program. The

CoAP client is implemented with Java, and the CoAP server is implemented with C. The

CoAP client sends message to the CoAP protocol server through the CoAP protocol, and the

server parsing the received message, and execute that function then send a result to the

client. By using the CoAP protocol, the CoAP client request the context data and process the

received data then send to the user via a web service. The CoAP client is implemented with

the java language. The CoAP server is developed with C language to implement the CoAP

protocol to the sensor node. We, parsing and analyze it in the CoAP server by using the

CoAP request message format.

39

Table 5.1. Implementation environment for CoAP protocol.

Development environment

Environment Client Server

OS Windows 8.1

Ubuntu 12.4

(Linux)

Run environment Java 7 gcc

Tool eclipse gedit

Language Java c

Figure 5.1 shows environment for running CoAP client and CoAP server program. The.

CoAP client was written by Java, so it was executed in JRE environment. Only Java

environment has influence in execution. The CoAP server uses Linux C library and can be

executed where the Linux that GCC compiler is exist.

Figure 5.1. Experiment environment for CoAP protocol.

To implement the CoAP protocol in server and Linux environment, we use two

libraries. The CoAP client server uses Californium which is based on the Java language, and

the CoAP server uses Californium library which is based on the C language. The

Californium library is ETSI IoT CoAP protocol and it uses “3-clause BSD” license [23]. The

Libcoap protocol is implemented by using Linux C library, and it uses “BSD” license. Also,

the Libcoap protocol is potting in TinyOS.

40

Figure 5.2. Basic type and structures definition for CoAP protocol.

To implement the CoAP protocol stack, it is necessary to define of 8, 16, 32 bit data

type and the structure for message header and option header. This definition is shown in

figure 5.2. Similarly, the constant definition is necessary for getting value for method and

response code in Code field [21]. For this purpose, the Libcoap Framework defines the filed

name according to the familiar HTTP error code as shown as figure 5.3 [22].

Figure 5.3 Method and responded codes definition.

41

When the client send a message to the server, the server send the response message. The

CoAP protocol is UDP upper protocol, and when the response message is not reached to the

server in the pre-defined time, it sends message again. Repeat this again 5 times and if it is

not received response message, this means that the communication is failed.

The figure 5.4 shows the result of CoAP client execution. When the CoAP protocol

client send requirement message to the CoAP server via the CoAP protocol, the CoAP

protocol server processes it and sends message to the CoAP protocol client. This figure

shows message and response message. The value “CON” is the T (Type) value of the CoAP

protocol message format, and the “GET” is the method type of the CoAP protocol, and the

IETF defines 4 method type. In the “MsgId: 10658”, the “10658” means ID of message, and

this value can be created automatically or developer can define it. The “#Options: 1” means

the number of message attributes included in CoAP protocol message, and basically it is

“MsgId” attribute.

Figure 5.4. Experiment results of CoAP client.

Figure 5.5 shows experiment screen of node emulator in CoAP server. This program is

executed with Console in Linux environment, and receiving message from a CoAP protocol

node and collecting fictive temperature is shown as form of Console screen.

42

Figure 5.5. Experiment results of CoAP server.

5.2 Registration and discovery using extended RD based

on unit ID

We designed unit ID based CoAP in the IoT. For this mechanism, we develop a

prototype to show the CoAP interaction between each element of CoRE. In the interaction,

there are RD, CoAP client and CoAP server which enable registration and discovery of

CoAP Node. As shown as figure 5.6, the RD and CoAP server use Californium (Cf)

framework to implements and running in Java Runtime Environment. And CoAP client uses

Copper-CoAP user agent to interact with CoAP server and RD via Firefox (Web browser)

[24]. According to the mechanism, The IoT middleware includes CoAP server and RD, and

IoT node includes CoAP client.

43

Figure 5.6. Prototype development for CoAP endpoint unit identification.

Figure 5.7 shows request and response interaction between RD, CoAP client and CoAP

server. The process shows from registration to acquiring contextual data from CoAP server

sequentially. Firstly, it shows request and response for a node uses the RD's registration

function set and sends a CoAP POST message to the RD. The RD receives a valid request

from the node, the source IP address and Port number from the CoAP request parameters or

the message source address portion (default). The RD then extracts the Unit IDs from the

message payload and save the information and returns a response message to the node. And

it shows a client requesting for a specific type (Temperature) of resources registered with the

RD. For this purpose, it sends GET request to the RD with the Resource Type (rt). The RD

receives the message, checks if the message is a valid CoAP request and then gets the IDs

for all the registered resources with the resource type value equivalent to the one requested

by the CoAp client (Temperature). The RD then creates a response message with the list of

node IP address and resource IDs and sends it to the client. The client may then choose a

specific resource from this list and communicate with it directly using the CoAP protocol.

44

Finally, CoAP client sends request message to CoAP server for acquire contextual data

through the URI which are chosen in the resource list. There is a different case for data

acquisition. IoT middleware can response various data which includes multiple units.

Figure 5.7. Development of unit ID based CoAP node registration.

5.3 IoT middleware and IoT node based on extended RD

and MQ

Figure 5.8 show software of IoT middleware and IoT node. IoT middleware interacts

with Service Provider using HTTP and IoT middleware interacts with IoT node using CoAP.

Figure 4.3 and figure 4.6 show CoAP RESTful API in IoT middleware and IoT node. In this

section we present implementation scenario for interaction of IoT middleware and IoT node.

45

Figure 5.8. Implementation environment of IoT middleware and IoT node.

IoT middleware is a server which are provides computation, storing and

communication. We implement IoT middleware using Java with Californium (Cf) CoAP

framework. For supporting HTTP RESTful API, we use Apache Tomcat to run Servlet.

When the servlets run in the Apache Tomcat, there is initialization function for initialize

CoAP resources. Through CoAP resources, IoT middleware supports CoAP RESTful API to

IoT node. IoT middleware includes SQL server for manage data via Data Access Object

(DAO).

IoT node is used for constrained environment, therefore we implement it using Linux C

library. IoT node includes Libcoap CoAP library and cJSON library for develop the software

in IoT node [25]. We use Libcoap to implement CoAP resources for supporting CoAP

46

RESTful API, and cJSON is used for parsing JSON format. We use JSON in the

communication of IoT middleware and IoT node. IoT node includes text files as storages.

Node Profile is used for save information of node which includes state information and Unit

Information etc. And another one is used for save Contextual Data of Node.

Figure 5.9. CoAP resource classes in IoT middleware.

Figure 5.9 shows class outline for CoAP Resources in IoT middleware. These resource

classes extend CoapResouce in the Californium (Cf) CoAP framework. CoapResource is a

basic implementation of a resource. Extend this class to write specific resources. Instances of

type or subtype of CoapResource can be built up to a tree very easily. CoapResource uses

four distinct methods to handle requests, that includes handleGET(), handlePOST(),

handlePUT() and handleDELETE(). Each method has a default implementation that

responds with a 4.05. That means the method is not allowed. Each method exists twice but

with a different parameter, which are handleGET (Exchange) handleGET (CoAPExchange)

for instance. The class is used internally in Cf to keep the state of an exchange of CoAP

messages.

47

Figure 5.10. CoAP resource initialization in IoT node.

Figure 5.10 shows resource initialization function in IoT node. It invokes

coap_resource_init() function in Libcoap CoAP library to initialize CoAP resource. And for

the resource, using coap_register_handler() to register a handler function. For example,

handler hnd_get_info is invoked then the resource is accessed by a request using GET

method.

5.3.1 Extended RD and MQ for sleep scheme

Figure 5.11. Implementation of request for sleep command.

Figure 5.11 shows a sleep command request from Web Client App to IoT node through

IoT middleware. Web Client App send a request to the IoT middleware through HTTP with

node ID, sleep_state and sleep_duration as parameters. And IoT middleware retrieve the IP

48

address of IoT node via the node ID, and forward the sleep properties to IoT node through

CoAP. Then IoT node invokes do_sleep() function for falling asleep.

Figure 5.12. Context data record list in the sleep of IoT node.

Figure 5.12 shows a context data record list when the IoT node falls asleep which are

received a sleep command from IoT middleware. From figure 5.11, the IoT node received a

CoAP Message with a uri-query that explains sleep_duration is 15 seconds. In this period,

the IoT node will stop unit’s functions. The record list shows from “02:33:12” to “02:33:41”,

in the period the IoT node had slept 15 seconds and waked up.

If Web Client App don’t want to subscribe the sleep state of a node, the Web Client

App can request to IoT middleware for getting the sleep difference of the IoT node, and

processing by itself. But the Web Client App needs the IoT middleware and IoT node deal

with the task after the IoT node wakes up, then the Web Client App needs request to IoT

middleware for subscribing sleep state of the IoT node.

When the IoT node wakes up after 15minuits as shown as fugure 5.13, then the IoT

node will send a CoAP message to IoT middleware to update sleep information of the IoT

node in the IoT middleware. Figure 5.13 shows the message of wake up command in the IoT

node and IoT middleware. First window shows result of IoT node, which is sent by IoT node

49

to IoT middleware with node ID, and in the second window shows result of IoT middleware

it receive the message and update the sleep information of the IoT node. The CoAP resource

of IoT middleware is “notify/sleepy”, that receives the message for update the information.

Figure 5.13. Wake-up message mapping for IoT node and IoT middleware.

5.3.2 Improved MQ for efficient context data collection

We presented tow kind of scheme for context data collection. Web Client App gets the

context data from an IoT node through an IoT middleware. The Web Client App can gets

real time data which are collected from an IoT node and gets saved data from an IoT

middleware.

Figure 5.14 shows a result of real time context data collection. The first window shows

a web browser as Web Client App that receives a real time context data from an IoT node

through an IoT middleware. Second window shows a result of console in an IoT middleware.

The IoT middleware receives a request from a Web Client App for collecting real time

context data, and it requests to the IoT node which is acquiring by Web Client App.

50

Figure 5.14. Result of real time context data collection.

The other scheme for the context data collecting is getting saved data from an IoT

middleware. The Web Client App needs send a command to change notify mode for the IoT

middleware to collect context data from IoT node.

Figure 5.15. Implementation of request for notify command.

Figure 5.15 shows a notify command request from Web Client App to IoT node through

IoT middleware. Web Client App send a request to the IoT middleware through HTTP with

node ID, notify_enable and notify_interval as parameters. And IoT middleware retrieve the

51

IP address of IoT node via the node ID, and forward the notify properties to IoT node

through CoAP. Then IoT node changes the information of notification and began to send

context data to the IoT middleware.

Figure 5.16. Result of context data notification.

Figure 5.16 shows result of context data notification in the console of an IoT

middleware and an IoT node. There are corresponding information in the both side in the

figure such as “A” and ‘a’. The “A” means result of the IoT middleware that are requested

by the IoT node using CoAP in NON-confirmable type.

52

Figure 5.17. Result of saved context data in database.

Figure 5.17 shows data table in the SQL Server. These data are context data from IoT

node. The Web Client App can retrieve these data from the IoT middleware.

Figure 5.18. Result of requesting notified context data.

Figure 5.18 shows result of context data which are requested by a Web Client App such

as web browser. These data from an IoT middleware which are saved before.

5.4 IoT service for client application

In the service layer, we deploy sensor web provider, actuator web provider, app server

and GIS provider [20]. Service Registry includes information of deployed element in the

service layer. App server invokes service of sensor web provider, actuator provider and GIS

provider to combine for providing a new service. Sensor web provides service about sensor

web, Actuator web provides service about sensor web and GIS provides service about GIS.

These applications fit to their own application environment before. The IoT middleware

supports HTTP RESTful API to the Service Layer. We changed communication function to

HTTP Web Client from Socket Client in Service Provider which are interacted with IoT

middleware.

53

Figure 5.19. Service layer architecture for composited service.

In the sensor web provider, service Interface provides access interface to outside

service. The main services offered by Sensor-Web module are Sensor-Web Content Service,

Sensor-Web Provider Service and Sensor-Web Sensing Service.

Sensor-Web Content Service is used for middleware configuration Management and

Sensor Information Management. Middleware Configuration Management involves the

activities of saving and managing middleware ID, IP addresses and service access privilege

information. Sensor Information Management involves the creation and management of

sensor information such as node name, ID and sensing type. Sensor-Web Provider is utilized

for Sensor Searches, Sensor Information supply and Sensing Data supply. Sensor Searches

returns sensor ID list for a specific search keyword. Sensor Information supply provides

related information such as sensor node name, sensing type for a sensor ID. Sensing Data

supply for a sensor ID, provides the corresponding real time sensing data, the client referred

here means all objects that use supply service. Sensor-Web Sensing Service is used for

Sensor State management and as Sensing Data receiver. Sensor State management involves

keeping record of the sensing state of sensors. Sensing Data Receiver provides the facility of

receiving sensing data collected from sensor middleware and saving it. Service Control

involves the launching and closing of Provider Service, Sensing Service and Content

Service. Service State Viewer manages a service's state of execution. XML Configuration

54

provides WCF Service state. Database saves sensor related information such as name, ID and

sensing data.

Actuator Web provider consists of Actuator Web Content Service, Actuator Web

Provider Service and Actuator Middleware Service. Actuator Web Content Service is

composed of Actuator Middleware configuration management and Actuator information

management. Middleware configuration management involves the creation of middleware

ID, IP address and service access right information and management. Actuator information

management involves the creation of actuator node name, ID, sensing type information and

management. Actuator Web Provider Service offers actuator information, information search

and control service. Actuator Web Provider Service is composed of Actuator searcher,

Actuator info supply and Actuator control. Actuator Searcher returns actuator ID list in

response to the search keyword. Actuator Info Supply offers actuator node name, actuator

state information for a given actuator ID. Actuator control offers actuator remote control

interface. Actuator middleware service manages message parsing and sending the

middleware mapping table. Mapping Table Management saves actuator ID in memory and

manages actuator middleware address information. Message Parser converts the received

actuator middleware messages to pre-defined format. Service Control is composed of

Provider Service Control, Middleware Service Control and Content Service Control. It also

provides the start and stop control for Provider Service, Middleware Service and Content

Service. Service State Viewer shows service state (service interface for on / off information).

XML Configuration arranges WCF Service configuration. Database saves actuator node

information (actuator name, ID, model, Attribute) that the service offers. Actuator Mapping

Table saves actuator connect actuator ID and the video relation information between actuator

middleware address.

Service client Application is used for service registered user search service what the

user want and access the service. The client can see building information in GIS by means of

55

accessing service. In this view, the user can look over room status information and object

state.

Figure 5.20. Client main page.

Figure 5.20 shows the client application service search execution screen. When client

Web page is accessed, the service search screen like in the above figure is shown. The user

enters the search keyword and hits the search button. Service registry responds with a list of

application server provider services. The user then selects any of the services and can access

that. There is object binding service list and user select one of the list and click the “access”

button then user can use this service. There is a search function for user input the service

keyword and search services.

56

Figure 5.21. Client total map page.

Figure 5.21 is outdoor map viewer execution screen. The client accesses application

server using the service searcher which shows the total map information first. This view

shows the registered building information on the map. It shows floor list when we click a

building which are registered in database by user. This service is provided by GIS Service

Provider. It get the GIS information through the service from database of GIS Service

Provider. After this screen, we can see the object such as actuators and sensors.

Figure 5.22. Client room page.

57

Figure 5.22 is indoor map viewer execution screen. The indoor (floor) map viewer

shows room, sensor node and actuator node information for a specific floor. The map of the

floor shows indoor registered sensor and actuator nodes. The bottom of figure shows the

indoor comfort index and environment state for a selected (right-clicked) room. The right

part of figure shows the detailed information about a selected (right-clicked) actuator node.

In the part of screen, it also shows the screen which appears when a sensor node on the floor

map is selected (right-clicked). The window shows sensor node detailed information and

sensing data.

58

 6 Performance evaluation

We use a Java framework to implement IoT middleware and using a c library to

implement IoT node. IoT node is implemented in Linux C compile environment because of

IoT node working in the constrained environment. IoT middleware is implemented in java

compile environment. The IoT middleware is a web application which support web link to be

accessed by user such as web client and HTTP client.

Using the system which we implemented, we test the performance of the message

interaction for sleepy schemes. In this experiment, when an IoT node wakes up from sleep,

then a Web Client App will get context data of IoT node. There is tow kind of scheme for

sleep scheme (section 4.4).

Figure 6.1. Message transfer process for synchronous sleep scheme.

Figure 6.1 shows message transfer process for sleep scheme of synchronous. In the

synchronous scheme for sleepy IoT node, the state information of sleepy time is known by

the Web Client App. When the time of sleep is up in the Web Client App, then it sends a

request to the IoT middleware for acquiring context data of IoT node. Then the IoT

middleware sends a CoAP request message to the IoT node to get context data. And the IoT

middleware responds the context data to the Web Client App.

59

Figure 6.2. Message transfer process for asynchronous sleep scheme.

Figure 6.2 shows message transfer process for sleep scheme of asynchronous. In the

asynchronous scheme for sleepy IoT node, the Web Client App sends a request message to

IoT middleware for subscribe the IoT node. After the IoT node wakes up from sleep, it will

sends a request to notify the IoT middleware for the node state awake. And the IoT

middleware gets the context data from IoT node to publish the Web Client App. The

subscription and publication process that we use loop to implement.

Figure 6.3. Result of context data and time estimation for synchronous sleep scheme.

Figure 6.3 shows result of the test for sleep scheme of asynchronous. In this result, there

are result of context data of IoT node and time estimation for the process. The unit of time is

millisecond. From the result, the timestamp of the process is 26 ms.

Figure 6.4. Result of context data and time estimation for asynchronous sleep scheme.

60

Figure 6.4 shows result of the test for sleep scheme of asynchronous. In this result, there

are result of context data of IoT node and time estimation for the process. From the result,

the timestamp of the process is 42 ms. Therefore synchronous and asynchronous scheme for

sleep node takes same timestamp. But, from the figure 6.1, synchronous scheme has request

and response process in 3 and 4. In the asynchronous scheme, the IoT node pushes the data

to IoT middleware to simplify the process in the constrained environment.

61

7 Conclusion

Internet Engineering Task Force (IETF) presented CoAP for constrained environment in

the Internet of Things (IoT) and there are several extensions for CoAP. For CoAP node,

there is identification of node and solution for dynamic IP of node [10] [12]. We also

presented identification for multiple units in CoAP node [11]. In this study, we have

presented IoT node based on registration and discovery of multiple units, sleep scheduling

and context data collecting functionalities which are built on IoT middleware for interaction

of IoT elements. IoT node is a CoAP node, which works in constrained environment using

low power and limited RAM and ROM. So, we designed and implemented the IoT node to

fit the requirement. IoT middleware works with IoT node via CoAP in the Constrained

RESTful Environment (CoRE).

We proposed registration and discovery for unit ID based composite node in the

constrained environment using CoAP, and using Resource Directory (RD) and CoAP

Message Queue (MQ) mechanism to present an enhanced mechanism for management of

sleep node and context data collection. This mechanism is tested with IoT node and IoT

middleware based on CoAP. With service providers in the service layer, we used part of

implemented IoT system from previous work which included several service providers to

communicate with middleware using specific message format through TCP [20]. We also

presented IoT middleware, which supports HTTP web API for providers to implement

services to be used by client. Service provider can be an application in several platforms. The

middleware can be accessed heterogeneous applications to implement their own user service.

Using the system which we presented, we tested the performance of the message

interaction for sleepy schemes. From the result of the test, synchronous and asynchronous

scheme for sleep node takes almost same timestamp. However, the asynchronous scheme

based on MQ which simplifies the process in the constrained environment.

62

References

[1] Luigi Atzori, Antonio Iera, Giacomo Morabito, "The Internet of Things: A survey",

Computer Networks, Vol. 54, Iss. 15, pp. 2787-2850, 2010.

[2] Jamal N. Al-Karaki, Kwang-Cheng Chen, Giacomo Morabito, Jaudelice de Oliveira,

"From M2M communications to the Internet of Things:Opportunities and

challenges", Ad Hoc Networks, Vol. 18, pp. 1-2, 2014.

[3] Z. Shelby, K. Hartke, C. Bormann, "The Constrained Application Protocol (CoAP)",

RFC 7252, June 2014.

[4] A. Rahman, "Enhanced Sleepy Node Support for CoAP", Internet-Draft, draft-

rahman-core-sleepy-05, February 2014.

[5] Z. Shelby, "Constrained RESTful Environments (CoRE) Link Format", RFC 6690,

August 2012.

[6] M. Meddeba, M. Ben Alayaa, T. Monteila, A. Dhraiefc, K. Driraa, "M2M Platform

with Autonomic Device Management Service", Procedia Computer Science, Vol. 32,

pp. 1063-1070, 2014.

[7] Intel Galileo Board, <http://www.intel.com/content/www/us/en/do-it-

yourself/galileo-maker-quark-board.html>.

[8] Z. Shelby, C. Bormann, "CoRE Resource Directory", Internet-Draft, draft-ietf-core-

resource-directory-01, December 2013.

[9] M. Koster, A. Keranen, J. Jimenez, "Message Queueing in the Constrained

Application Protocol (CoAP)", Internet-Draft, draft-koster-core-coapmq-00, July

2014.

[10] K. Li, G. Wei, "CoAP Option Extension: NodeId", Internet-Draft, draft-li-core-coap-

node-id-option-01, June 2014.

63

[11] Y. Hong, Y. Choi, D. Kim, M. Khan, W. Jin, "CoAP Endpoint Unit Identification

for Multiple Sensor and Actuator in a Node", Internet-Draft, draft-hong-core-coap-

endpoint-unit-id-00, July 2014.

[12] O. Kleine, "CoAP Endpoint Identification", Internet-Draft, draft-kleine-core-coap-

endpoint-id-00, April 2014.

[13] M. Nottingham, "Web Linking", RFC 4287, October 2010.

[14] M. Koster, A. Keranen, J. Jimenez, "Message Queueing in the Constrained

Application Protocol (CoAP)", Internet-Draft, draft-koster-core-coapmq-00, July

2014.

[15] libcoap: C-Implementation of CoAP, <http://libcoap.sourceforge.net/>.

[16] Martin Lanter, "Scalability for IoT Cloud Services", Master Thesis, Department of

Computer Science, ETH Zurich, 2013.

[17] K. Paridel, E. Bainomugisha, Y. Vanrompay, Y. Berbers, and W.D. Meuter,

"Middleware for the Internet of Things, Design Goals and Challenges", ECEASST

Journal, Vol. 28, ISSN 1863-2122, 2010.

[18] An Oracle White Paper, "Internet of Things: Role of Oracle Fusion Middleware",

2014.

[19] Shirin Zarghami, "MIDDLEWARE FOR INTERNET OF THINGS", Master Thesis,

University of Twente, 2013.

[20] Chen Nan, "Design and Implementation of Actuator Web and Middleware for

Controlling Indoor Environment", Master Thesis, Jeju national university, Republic

of Korea, 2013.

[21] Jin Wen-Quan, Kim Do-Hyeun, "Implementation and Experiment of CoAP Protocol

Based on IoT for Verification of Interoperability", The Journal of the Institute of

Webcasting, Internet and Telecommunication, Vol. 14, Iss. 4, pp. 7-12, 2014.

[22] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.Masinter, P. Leach, T. Berners-Lee,

“Hypertext Transfer Protocol -- HTTP/1.1”, RFC 2616, June 1999.

64

[23] Californium (Cf) CoAP framework in Java, <http://people.inf.ethz.ch/mkovatsc

/californium.php>.

[24] Copper (Cu), <https://addons.mozilla.org/en-US/firefox/addon/copper-270430/>.

[25] cJSON, <http://sourceforge.net/projects/cjson/>.

	...

<startpage>16
...
</body>

