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요약문 

 

인삼은 동양사람들에게 널리 이용되어온 가장 오래 된 약초 중의 하나이고, 

이 인삼의 주요 성분인 진세노사이드는 30 여종이 알려져 있다. 감마선(γ-ray)이 

산삼 부정근의 성장 및 진세노사이드 함량에 미치는 영향을 평가하기 위해, 산삼 

뿌리 유래의 부정근에 25, 50, 75, 100, 125Gy 의 감마선을 조사하여 돌연변이를 

유도하였다. 감마선(60Co) 조사는 제주대학교 원자력과학기술연구소에서 

수행하였다. 감마선을 조사한 부정근은 30 일간 플라스크 배양한 후, 

형성된 secondary root 의 수를 조사하여 선발하였다. 감마선을 조사하지 않은 

야생형과 선발된 변이 부정근의 진세노사이드 (Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2 와 

Rd) 함량은 HPLC 와 PDA 검출기를 이용하여 측정하였으며, Digoxin 을 internal 

standard 로 사용하였다. 그 결과, 50Gy 이상의 방사선을 조사한 처리구에서는 

secondary root 의 수가 야생형에 비해 적었고, 50Gy 이하의 방사선을 조사한 

처리구에서 야생형보다 secondary root 의 수가 많은 변이 부정근을 선발할 수 

있었다. 따라서 진세노사이드의 생산성을 높이기 위한 방사선량으로는 50Gy 

이하가 적합함을 알 수 있었다. Secondary root 의 수가 야생형보다 많은 5 개의 

계통을 선발한 후, 한달 간 플라스크에 배양하여 건조중량을 측정한 결과, 

야생형은 0.31g 이었고, 선발한 1, 3, 9, 13 및 14 번 계통들은 각각 0.46g, 0.45g, 

0.29g, 0.34g, 0.48g 이었다. 생장율은 야생형이 4.42 였으며, 선발한 계통들인 1, 3, 9, 

13, 14 번은 각각 6.57, 6.48, 4.10, 4.90, 6.90 이었다. 선발한 1, 3, 14 번 계통들의 

생장율은 야생형에 비해 각각 49%, 47%, 57% 증가하였다.  
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총 진세노사이드 함량은 1 번 계통에서 가장 크게 증가하였고, 1 번 계통의 총 

진세노사이드 (Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2, Rd) 함량은 야생형과 비교하여 약 

1.6 배 증가하였다. 또한, 이 계통의 진세노사이드 중 Rg1, Re, Rh1 과 Rb2 의 

함량은 야생형에 비해 2-3 배 증가하였음을 알 수 있었다. 3 번 계통의 

진세노사이드 Re, Rh1, Rb2, Rc 와 Rd 함량은 야생형에 비해 1.6-2.3 배 

증가하였으며, 9 번 계통에서는 진세노사이드 Rg1, Re 와 Rh1 함량이 야생형에 

비해 1.7-2 배 증가하였다. 4 번 계통의 진세노사이드 함량은 야생형과 비슷하였고, 

13 번 계통의 진세노사이드 함량은 야생형에 비해 감소하였음을 알 수 있었다. 

이들 결과로부터, 선발한 변이 계통들 중 1 번 계통이 가장 높은 진세노사이드 

함량을 가지고 있음을 알 수 있었다. 

본 연구결과 우리는 biomass 생산성과 진세노사이드 함량이 크게 증가된 

돌연변이 세포주를 선발할 수 있었으며, 감마선 조사는 2 차 대사산물 특히 

진세노사이드의 생산량 증대에 있어 강력하고 유용한 수단임을 확인할 수 

있었다. 이 결과는 감마선 조사가 진세노사이드 합성에 필요한 효소의 활성 등에 

영향을 미쳤음을 시사한다. 

인삼은 성장이 느리고 긴 생산주기 (4-6 년)를 가지고 있는 다년생 식물이며, 

종자를 생산하기까지 3 년이상의 유년기가 필요하다. 이러한 특성 때문에 

전통육종에 의한 우수 유전자형의 창출은 매우 어려운 실정이다. 또한, 지금까지 

산삼의 부정근에 방사선을 조사한 후 그 돌연변이 부정근을 재분화한 보고는 

없다. 따라서, 본 연구에서는 인삼의 신품종 육성을 위해 진세노사이드 함량이 

증가된 변이 세포주를 이용한 식물 재분화계를 확립하였다. 여기서 확립된 
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재분화 시스템은 인삼식물의 형질전환에도 활용될 수 있을 것이다. 

 한국 산삼의 체세포배발생과 식물체 재분화를 위하여 부정근 유래의 

캘러스로부터 체세포배를 유도한 결과, 0.5 mg/L 2,4-D 가 포함된 배지에서 가장 

높은 빈도로 유도되었고, 야생형과 돌연변이 부정근의 체세포배 형성 빈도는 

각각 15.3% 와 14.7% 였다. 야생형과 돌연변이 부정근의 체세포배 형성수는 각 

캘러스 당 각각 25.6 개와 23.7 개였으며, 야생형과 돌연변이 부정근의 체세포배 

형성 빈도에는 유의 차가 없었다. Globular 형태의 체세포배는 배발생 캘러스의 

표면에 형성되었다. 

체세포배발생으로부터 식물체 재분화에 미치는 GA3 의 영향을 평가한 결과, 

GA3 무처리구에서는 36%의 재분화효율을 보였으나, 5 mg/L 의 GA3 처리구에서는 

85% 로 가장 높은 재분화효율을 보였다. 배의 성숙과 재분화는 GA3 의 농도에 

크게 영향을 받았으며, 발아한 배는 5 mg/L GA3 가 포함된 MS 배지에서 식물체로 

발달하여 성장하였다.  

뿌리가 형성되지 않은 식물체는 MS 또는 SH 기본 배지에 0.25 mg/L NAA 

혹은 0.5% 활성탄이 포함된 배지에 옮겨 약 1 달후 뿌리유도 효율을 평가하였다. 

그 결과, 유도된 뿌리의 질은, 0.25 mg/L NAA 와 1%의 sucurose 가 첨가된 1/3 SH 

배지에서 빠르고 두껍게 성장하여 가장 좋은 결과를 보였다. 0.5%의 활성탄과 

2% sucrose 가 첨가된 1/3 SH 배지에서 뿌리 유도 효율이 가장 높았으나, 이 

배지에서 유도된 뿌리는 잘 자라는 반면 약한 단점이 있었다. 따라서 뿌리유도를 

위한 최적 배지는 0.25 mg/L NAA 와 1%의 설탕을 첨가한 1/3 SH 배지였다. 

뿌리가 잘 발달한 산삼 재분화 식물체는 인공 혼합토 [peatmoss:vermiculite: 
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perlite=2:3:1(v/v)]를 넣은 플라스틱 화분 (10x18cm)에 이식하여 생장실에서 

순화하였다. 순화 3 개월 후 신초가 형성되어 성장하기 시작하였으며 생존율은 

약 30% 였다.  

본 연구에서는 중요한 약용식물인 산삼의 효율적인 재분화계를 확립하였고, 

이 프로토콜은 한국 산삼의 빠른 대량 생산을 가능하게 해줄 것으로 기대된다. 

산삼 부정근으로부터 캘러스를 유도하여 재분화 식물을 얻기까지는 약 

6-8 개월이 소요되었다. 본 연구에서는 방사선조사를 통해 얻은 돌연변이 

부정근으로부터 식물체를 재분화하였고, 감마선을 이용한 돌연변이 기술과 

조직배양에 의한 식물재분화 기술의 융합은 인삼 품종개량에 있어서 효과적인 

방법의 하나가 될 수 있을 것으로 생각된다.  

산삼 돌연변이 부정근의 진세노사이드 생산성을 개량하기 위하여 합성 

스쿠알렌 신타아제(PgSS2) 유전자를 35S 프로모터하에 도입한 후 산삼의 

돌연변이 부정근에 형질전환을 수행하였다. 형질전환은 돌연변이 산삼 부정근 

계통에서 선발한 배발생캘러스를 PgSS2 유전자와 bar 유전자를 포함하는 

아그로박테리움 EHA105 에 감염하여 수행하였다. 형질전환체는 phosphinothricin 

(PPT) 3mg/L 를 첨가한 MS 배지에서 선발하였다. 그 결과, 10 개체의 PPT-저항성 

식물을 선발하였고, 이 식물체들의 유전자 도입은 PAT strip test 와 Southern 

blot 분석을 통하여 확인하였다. 유전자의 도입이 확인된 산삼 형질전환 식물을 

이용하여 스쿠알렌 신타아제(PgSS2) 유전자가 진세노사이드의 생합성에서 어떤 

역할을 하는지를 조사하였다. 형질전환 산삼 식물 계통들에서 재분화시킨 

부정근을 한달 간 배양한 후 총 진세노사이드 함량을 분석한 결과, 형질전환 
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계통 1, 2, 5, 7, 8 번은 비형질전환 돌연변이 부정근보다 진세노사이드 함량이 약 

1.3-1.6 배 증가하였음을 확인하였다. 또한, 이들 형질전환 계통들 중 1 번과 8 번의 

진세노사이드 함량이 야생형 및 공벡터가 도입된 계통들보다 약 1.6 배로 가장 

높게 나타났다. 이들 결과로부터 형질전환 기술은 진세노사이드 축적이라는 

관점에서 인삼의 개량을 용이하게 해 줄 것으로 생각된다.  

감마선을 이용한 돌연변이 기술, 식물재분화 및 형질전환 기술의 융합은 

새로운 인삼 품종의 개발에 매우 효과적인 방법의 하나가 될 것이다. 
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ABBREVIATIONS  

 

NAA Naphthalene acetic acid 

IAA 

IBA 

GA 

Indole-3-acetic acid 

Indole-3-butyric acid 

Giberellic acid 

HPLC-PDA High performance liquid chromatography-photodiode array detector 

ACN Acetonitrile 

MS 

FW 

DW 

PD 

PT 
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Gy 
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MCL1 
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Murashige & Skoog 

Fresh weight 

Dry weight 

Panaxadiol 

Panaxatriol 

Methyl jasmonate 

Ultraviolet 

Gray 

Phosphinothricin acetyltransferase 

Phosphinothricin 

Mutant control line 

Cell line 

Squalene synthase 
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SPSS 
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Left border 
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CaMV 35S promoter 

Reverse transcriptase polymerase chain reaction 
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Diethylpyrocarbonate 

Standard error of mean 
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Limit of detection 

Limit of quantification 
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SUMMARY 

 

Panax ginseng (Korean wild ginseng) is one of the oldest and the most widely used 

herbal medicines for the oriental people. Ginsenosides are the major active components in 

the ginseng and more than 30 ginsenosides were identified from the plant. In order to 

evaluate effects of γ-irradiation on adventitious root growth and ginsenoside content, 

adventitious roots of Panax ginseng were treated with γ-ray of 25, 50, 75, 100 and 125Gy to 

induce mutation. The γ-irradiation was performed from 60Co source at the Applied 

Radiological Science Research Institute, Jeju National University. Cell lines irradiated by 

γ-ray were cultured in flask for 30 days and selected based on the secondary root numbers of 

the irradiated adventitious roots. The contents of ginsenosides Rg1, Re, Rf, Rh1, Rb1, Rc, 

Rb2 and Rd in wild type and the selected cell lines were evaluated by HPLC-PDA detector 

with digoxin as the internal standard. After irradiation, below 50Gy, secondary root number 

of irradiated adventitious root was more than that of non-irradiated adventitious root. 

Otherwise, over 50Gy, the secondary root number was less than that of non-irradiated control. 

Therefore, the dosage below 50Gy was considered as adequate for the induction of mutant 

cell lines of Panax ginseng. Five cell lines, CL1, 3, 9, 13, and 14, were selected according to 

the secondary root number. After 30 days culture in flask, dry weight of control was 0.31g 

and the selected cell lines CL1, 3, 9, 13 and 14 were 0.46g, 0.45g, 0.29g, 0.34 and 0.48g 

respectively. The value of growth ratio of control was 4.42 and the selected cell lines CL1, 3, 

9, 13, 14 were 6.57, 6.48, 4.1, 4.9 and 6.9, respectively. The values of growth ratio in cell 
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lines CL1, CL3 and CL14 were increased 49%, 47% and 57%, respectively, compared to the 

control. 

The contents of the eight ginsenosides were significantly enriched, especially in the cell 

line CL1. The content of total ginsenosides (Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2 and Rd) in the 

cell line CL1 was 1.6-fold higher than that of the control. In the cell line CL1, the level of 

ginsenoside Rg1, Re, Rh1and Rb2 contents were increased by 2-3 times than that of the 

control. In the cell line CL3, level of ginsenoside Re, Rh1, Rb2, Rc and Rd contents were 

increased by 1.6-2.3 times than that of the control. In the cell line CL9, level of ginsenoside 

Rg1, Re and Rh1 contents were increased by 1.7-2 times than that of the control. In the cell 

line CL14, level of ginsenoside contents were similar with that of the control. In case of the 

cell line CL13, the ginsenoside contents were affected negatively in ginseng adventitious 

root cultures. Overall, the highest ginsenoside contents were obtained in cell line CL1. 

In this study, I selected cell lines with a significantly increased biomass productivity and 

ginsenoside content. Based on the results obtained in this report, gamma irradiation is 

powerful and useful tool for the enhancement of production of secondary metabolites, 

especially for ginsenoside. This result suggests that gamma irradiation might have triggered 

the enzyme activities for the synthesis of ginsenosides.  

Ginseng is a perennial plant that grows slowly and has a long production cycle (4-6 

years). And juvenile period is required longer than three years for producing seeds. Thus, it 

is very difficult to make superior genotypes by conventional breeding. So, I used the mutant 

cell lines to establish the best conditions for regeneration system, and also to develop the 
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new cultivar of Panax ginseng. At present no information is available on the regeneration of 

mutant adventitious root line that has been selected from γ-irradiated P. ginseng adventitious 

roots. I report on an efficient procedure for the regeneration of wild-type and mutant cell 

lines of P. ginseng adventitious roots through somatic embryogenesis. This regeneration 

system was also used for genetic transformation. 

I established an efficient in vitro protocol for somatic embryogenesis and plantlet 

conversion of Korean wild ginseng (Panax ginseng Meyer).The highest induction frequency 

of somatic embryos was observed on the medium supplemented with 0.5 mg/L 2, 4-D. The 

frequency of somatic embryo formation in wild-type and the mutant cell line was15.3% and 

14.7%, respectively. The number of somatic embryos per callus was 25.6 and 23.7 in 

wild-type and the mutant cell line, respectively. There was no significant difference in 

somatic embryo formation frequency between wild-type and the mutant cell line. Globular 

shaped somatic embryos formed on the surfaces of embryogenic callus. 

The optimal concentration of GA3 in germination medium was 5 mg/L, yielding the 

highest germination frequency of 85%. Without GA3 treatment, the germination frequency 

was lowest at 36%. Maturation and germination of embryos were strongly influenced by the 

GA3 concentration. The germinated embryos were developed to shoots and elongated on MS 

medium with 5 mg/L GA3.  

The shoots without roots were excised and transferred to different rooting media, half or 

one-third strength MS, or SH basal medium supplemented with 0.25 mg/L NAA or with 

0.5% activated charcoal. Adventitious roots formed from the excised regions of the shoots. 
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After 1 month, the rate of root formation from the shoots was examined. As far as root 

quality is concerned, 1/3 SH medium with 0.25 mg/L NAA and 1% sucrose showed the best 

result among the tested rooting media; the roots grew fast and thickened on the medium. 

Although 1/3 SH medium with 2% sucrose and 0.5% activated charcoal was most effective 

in inducing roots, the roots grew well but weak. The optimal medium for rooting is therefore 

1/3 SH medium supplemented with 0.25 mg/L NAA and 1% sucrose among the tested 

rooting media in this study. In my comparative studies, SH medium was more effective than 

MS medium in root induction and proliferation. So, SH medium, especially 1/3 strength SH 

medium is suitable for root induction and growth of regenerated ginseng plants.  

Well-developed plantlets with both shoots and roots derived from adventitious roots were 

transferred to plastic pots (10×18cm) containing an artificial soil mixture of peatmoss, 

vermiculite and perlite (2:3:1 v/v) in a growth room. The survival rate of the plantlets was 

about 30% after 3 months of culture and new leaf began growing. 

I developed an efficient in vitro regeneration protocol for an important medicinal plant of 

P. ginseng. The protocol described here will allow a relatively rapid mass production of 

Korean wild ginseng plants. It takes 6-8 months from the callus induction of adventitious 

roots to the plantation of plants. In the present study, I also produced the regenerated plants 

from the mutant adventitious roots which were obtained by γ-irradiation. The combination of 

mutation technique by γ-irradiation and plant regeneration by tissue cultures may be an 

effective way to ginseng improvement. The protocol established in this study was used for 

the genetic transformation of this species. 
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With the purpose of improving ginsenoside production in Panax ginseng (Panax ginseng 

Meyer) mutant adventitious root lines, a synthetic gene encoding squalene synthase (PgSS2) 

was placed under the control of 35S promoter and transferred to Panax ginseng. The mutant 

lines used in this study generated by γ-irradiation (60Co) of ginseng adventitious roots. 

Transgenic plants were generated by Agrobacterium-mediated transformation. Embryogenic 

callus obtained from ginseng adventitious root lines were transformed by infection with A. 

tumefaciens strain EHA105 containing the PgSS2 gene and the phosphinothricin 

acetyltransferase (bar) gene as a selectable marker. Transformants were selected on 

Murashige Skoog medium containing 3mg/L phosphinothricin. Ten 

phosphinothricin-resistant plant lines were generated on selective medium, and the 

integration of the transgene in these plants was confirmed by PAT test strip, RT-PCR and 

Southern hybridization. Southern hybridization analysis suggested the insertion of one or 

multiple copies of T-DNA into ginseng genome. I am investigating the regulatory role of 

Panax ginseng squalene synthase (PgSS2) on the biosynthesis of ginsenoside by using the 

transgenic ginseng plant lines. The total contents of the 8 ginsenoside types were 

significantly enriched in the 5 transgenic lines compared to the mutant control (MCL1). The 

line SS 1 showed a 1.6-fold increase than the MCL1. The line SS 2 showed a 1.5-fold 

increase than the MCL1, and the line SS 5, SS 7 showed a 1.3-fold increase than the MCL1. 

The total contents of the 8 ginsenoside types (Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2 and Rd) 

obtained from the mutant control (MCL1), empty vector and the SS lines were 6.14 mg g-1, 

6.07 mg g-1, 9.82 mg g-1, 9.06 mg g-1, 5.01 mg g-1, 4.37 mg g-1, 8.22 mg g-1, 6.46 mg g-1, 8.05 
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mg g-1, 9.75 mg g-1, 4.56 mg g-1, respectively. Overall, the highest ginsenoside content was 

obtained with SS line 1 and 8. 

This transformation method may facilitate the improvement of Panax ginseng in terms of 

the accumulation levels of ginsenoside. The combination of mutation technique by 

γ-irradiation, plant regeneration by tissue cultures and genetic transformation may be an 

effective way to develop new ginseng cultivars. 
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Chapter I 

Improving ginsenoside content in Korean wild ginseng (Panax 

ginseng Meyer) mutant lines induced by γ-irradiation (60Co) of 

adventitious roots 
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INTRODUCTION 

 

There are several medicinal Panax species identified from all over the world. From a 

number of speices, Panax ginseng (Korean wild ginseng) is one of the oldest and the most 

widely used herbal medicines and this species is almost extinct in wild habitats. Fortunately, 

Panax ginseng is widely cultivated in Korea, China, Japan, and several countries in North 

America and Europe under special shade conditions (Hobbs 1996, Mabberley 1987, Toda et 

al. 2003, Nam et al. 2002). Depending on the species, growth condition and location etc, the 

ginsenoside contents vary widely which act on the central nervous system, cardiovascular 

system, endocrine system, and immune system. These active ingredients also increase 

endocrine secretion, promote immune function, and have anti-aging and stress relieving 

effects (Briskin 2000, Shibata 2001, Vogler et al. 1999). Panax ginseng (Korean ginseng) 

and Panax quinquefolius (American ginseng) are characterized well by phytochemistry 

(Mallol et al. 2001, Ngan et al. 1999) and more than 30 ginsenosides were identified from 

this genus. They can be classified into three groups based on their aglycones (Figure 1): the 

protopanaxadiol-type, protopanaxatriol-type, and oleanane type saponins (Jung et al. 2003, 

Nah 1997). 
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Figure 1. Structures of ginsenosides isolated from Panax ginseng.  

 

The both species are used for preparation of tonic, prophylactic and anti-ageing agents 

(Chang and But 1986). Some ginsenosides are used widely, such as Rg1, Re, Rb1 are used to 

determinate ginseng quality (Wu et al. 2007). Some ginsenosides, like Rg3, Rh2 and Rh1 are 

rarely detected in cultured ginseng. Ginsenoside Rb1, Re, Rg1 and Rb2 were the precursors 
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to form other ginsenosides by Human Intestinal Microflora and steaming. Different forms of 

ginsenosides showed several different functions. 

Ginsenoside Rg1: Ginsenoside Rg1 inhibits the rat brain cAMP phosphodiesterase 

activity, excitatory amino acids are involved in neuronal survival, synaptogenesis, neuronal 

plasticity, learning and memory processes, estrogen-like activity, and promoted functional 

neovascularization into a polymer scaffold in vivo (Stancheva et al. 1993, Balazs et al. 1998, 

Muller et al. 1998, Chan et al. 2002, Sengupta et al. 2004).  

Ginsenoside Rb1: Ginsenoside Rb1 successfully improved homocysteine-induced 

reduction of endothelial nitric oxide synthase expression and reduced homocysteine-induced 

oxidative stress (Zou et al. 2005). Preconditioning of Rb1 showed protective effects on 

myocardial ischemia and reperfusion injury (Wang et al. 2008). Rb1 promoted 

neurotransmitter release (Xue et al. 2006) and used to prevent or treat gastritis and gastric 

ulcers (Jeong et al. 2003).  

Ginsenoside Re: Some reports revealed that both Rb1 and Re decreased cardiac 

contraction in adult rat ventricular myocytes (Scott et al. 2001). Some reports says that 

treatment of both Rg1 and Re could be a novel group of nonpeptide angiogenic agents and 

may be useful for tissue regeneration (Yu et al. 2006). Compared with other gingenosides Re 

showed anti-diabetic activities (Xie et al. 2005) and free radical scavenging properties (Xie 

et al. 2006).  

Ginsenoside Rb2: The another form of gingenoside Rb2 is reported to stimulate protein 

and RNA synthesis and increases RNA polymerase activity (Yokozawa et al. 1993a, 1993b, 
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Yokozawa et al. 1990). Rb2 accelerates would healing effects like cell proliferation, 

expression of proliferation related factors, and epidermis formation (Choi, 2002). Rb2 can be 

used as anti-tumor or chemopreventive agents, especially acting on cancer promotional stage 

(Kang et al. 2000). 

Ginsenoside Rc: Ginsenoside Rb2 and Rc may have effects that prevent or limit the 

development of breast cancer, affects the motility of sperm (Chen et al. 2001, Lee et al. 

2003).  

Ginsenoside Rd: Ginsenoside Rd inhibiting 26S proteasome activity. Ginsenoside-Rd 

has been proved to decrease the severity of renal injury induced by cisplatin. Rd is Cytotoxic 

towards HeLa Cancer Cells and Induces Apoptosis (Chang et al. 2008, Yokozawa et al. 2000, 

Yang et al. 2006).  

Ginsenoside Rh2: Ginsenoside Rh2 has the anti-fatigue, anti-cancer effect, antiallergic 

and reduces ischemic brain injury in rats (Oh et al.1999, Nakata et al. 1998, Park et al. 2003, 

Park et al. 2004).  

Ginsenoside Rh1: Ginsenoside Rh1 and Rh2 inhibit the induction of nitric oxide 

synthesis in murine peritoneal macrophages. G-Rh1 acts as a functional estrogenic ligand in 

MCF-7 cells. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities (Park 

et al. 1996, Lee et al. 2003, Park et al. 2004). 

Ginsenoside Rg3: Ginsenoside Rg3 significantly inhibited growth and angiogenesis of 

ovarian cancer and inhibition of in vitro Tumor Cell Invasion (Xu et al. 2008, Shinkai et al. 

1996). Ginsenoside Rg3 is a body function balancer, long term taking Rg3 can get anti 
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senility effects. Because ginsenoside Rg3 can invigorate blood circulation and improve brain 

and body activity. It has obvious effects for anti wrinkle, would make skin fresh, bright and 

glossy. Ginsenoside Rg3 has obvious function for body tonic, improve muscle tone and 

prevent fatigue.  

Due to unavoidable limitations in Panax ginseng breeding, it is difficult to produce large 

amounts of roots under field conditions (Han et al. 2009). Hence, several scientists followed 

different biotechnological methods such as root culture, Agrobacterium-mediated hairy root 

production, bioreactor mediated large scale production. Jasmonic acid has been shown to be 

an effective elicitor for secondary metabolite induction in plant cell cultures (Ketchum et al. 

1999). Recently, MJ (Methyl jasmonate) mediates the reprogramming of cellular metabolism 

and cell cycle progression via the regulation of jasmonic acid biosynthesis (Pauwels et al. 

2008). The positive effect of MJ on ginsenoside production from ginseng cell suspension, 

hairy root and adventitious root cultures has been previously documented (Lu et al. 2001, 

Palazón et al. 2003, Choi et al. 2005, Bae et al. 2006). Mutation breeding is considered as 

one of the effective plant breeding methods for improved variety of crop production. Among 

several methods, γ-irradiation was used in several species for crop improvement program. 

Recent report showed that mutagenesis by g-irradiation gained rapid development in 

enhanced ginsenoside production of Panax ginseng. Callus were used for gamma irradiation 

and the cell lines selected from dosage 30Gy-treatment and ginsenoside content was 

significantly increased (Kim et al. 2009). Suspension culture of Lithospermum erythrorhizon 

cells was irradiated by gamma irradiation and significantly stimulated the shikonin 
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biosynthesis of the cells and increased the total shikonin yields by 400% at 16Gy (Chung et al. 

2006). For maize, grain yield for irradiated samples is increased to levels above the unirradiated 

yield at doses up to about 250Gy with the optimum yield occurring at 150Gy. The 

corresponding increase for groundnut is observed at doses up to about 930Gy with optimum 

yield at a dose of 300Gy (Mokobia et al. 2006). Grain yield of maximum production in 

barley was observed at the rate of 100Gy (Subhan et al. 2004). g-irradiation mediated 

mutagenesis of whole plants as well as roots yielded significant variations among the 

different mutated species, and 50Gy of γ-rays was determined to be the optimal dose for 

inducing mutations (Joseph et al. 2004).  

My present work is to investigate the effects of gamma irradiation on ginsenoside contents 

of ginseng adventitious root and to provide valuable information on the utilization of 

beneficial effects of gamma irradiation in root cell culture system of Panax ginseng.
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MATERIALS AND METHODS 

 

Plant materials 

Panax ginseng is Korean wild ginseng. Wild ginseng grows naturally within its natural 

habitat conditions (Figure 2). Adventitious roots were induced and proliferated from wild 

Panax ginseng root, and cultured in MS medium supplemented with NAA and IAA. 

 

 

Figure 2. Korean wild ginseng (Panax ginseng Meyer). 
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Establishment of adventitious root cultures 

Panax ginseng adventitious roots were proliferated on MS (MS, Murashige and Skoog 

1962) medium as follows (mg/L): NH4NO3 (687.5), KNO3 (1900), KH2PO4 (170), H3BO3 

(6.2), MnSO4.4H2O (23.3), ZnSO4.7H2O (8.6), KI (0.83), Na2MoO4.2H2O (0.25),  

CuSO4.5H2O (0.025), CoCl2.6H2O (0.025), CaCl2.2H2O (440), MgSO4.7H2O (370),  

Na2EDTA (37.3), FeSO4.7H2O (27.8), Nicotinic acid (5), Pyridoxine Hydrochloride (1), 

Thiamine Hydrochloride (2.5), Glycine (2). Supplemented with 10.87μmol Naphthalene 

acetic acid (NAA), 1.43μmol Indole-3-acetic acid (IAA) and 3% sucrose. The pH of the 

medium was adjusted to 6.0 before autoclaving at 121℃ and 1.2 Kgf/cm2 pressure for 15 

min. 

 

Petridish culture condition  

Adventitious roots were cut into 10 pieces, each 1-2 cm and cultured in petridish (10cm in 

diameter and 1.5 cm in height) with lid containing 50 mL MS solid medium was sealed with 

a wrap (Advantec, USA) and cultured at 23 ± 2℃ under dark condition. Adventitious roots 

were sub-cultured every 30 days. 

 

Flask culture condition  

Fresh roots (0.8g) were inoculated into a 100 mL erlenmeyer flask containing 50 mL MS 

liquid medium with 10.87 μmol NAA, 1.43 μmol IAA and 5% sucrose. Cultures were shaken at 

110 rpm in the light at 23 ± 2℃ for 30 days. 

 

Bioreactor culture condition  

The bioreactors were maintained at 23 ± 2℃ in a light condition until harvest. 

Adventitious roots were sub-cultured every 30 days in 15L bioreactor (Biopia, Korea) 
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containing 5L MS medium. Forty-five g fresh weight of adventitious roots was inoculated 

into bioreactor for proliferation. After 30 days, the proliferated adventitious roots were used 

as explants for further experiments. The culture system showed in figure 3. 

 

 

Figure 3. Culture system of Panax ginseng. (A) Root of Panax ginseng; (B) Explant of 

ginseng root; (C) Adventitious root proliferation; (D) Adventitious root culture in flask; (E) 

Adventitious root culture in bioreactor; (F) Harvest. 
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Gamma irradiation  

Adventitious roots (1-2cm) were placed in plastic petridishes (10 pieces adventitious 

roots per pertridish), grown at 23  and cultured ℃ for 5 days in MS medium with 10.87 μmol 

NAA, 1.43 μmol IAA and 3% sucrose. They were exposed to gamma radiation from cobalt 

(60Co) source using a γ-radiation apparatus at the Applied Radiological Science Research 

Institute, Jeju National University. Irradiation dosages were 0 (non-irradiated), 25, 50, 75, 

100 and 125Gy. For each dosage, 3 petridishes of the samples were exposed in triplicate. 

Effects of gamma irradiation on survival rate of adventitious roots were evaluated by 

measuring the number of survival adventitious roots after 5 weeks culture.   

 

Selection of cell lines from suspension culture 

Secondary roots of survival main roots were transferred into 50 mL liquid MS medium 

with NAA and IAA in flask. Cell line was selected according to the secondary roots number, 

length, diameter, growth ratio.  

 

Determination of root weight and growth ratio  

Fresh weight (FW) and dry weight (DW) were measured after 30 days growth in flask. 

FW and DW of roots were determined as follows. Roots were separated from the medium by 

passing through a 1 mm stainless steel sieve. Root FW was measured after rinsing once with 

tap water and blotting away surface water and root DW was recorded after roots were dried 

to a constant weight at 38℃ for several days (Kim et al. 2004). Root growth ratio was 
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calculated by using the following formula (Yu et al. 2002): 

 

 

 

Extraction of crude saponin 

Extraction and determination of ginsenosides were carried out by modifying the method 

of Kwon et al. (2003). Ultrasound-assisted extraction was performed with an ultrasonic 

water bath (Branson ultrasonics, USA). The output power is 117 volts and the frequency is 

50/60Hz. Sample powder 0.5 g was placed into a 100 mL conical flask, into which 30 mL of 

80% (v/v) methanol–water were added. Then the flask was sonicated for 1 h in an ultrasonic 

water bath. The extract obtained was evaporated using a rotary evaporator under vacuum at 

55℃. The evaporated residue (total extract yield) was dissolved in 20 mL of distilled water 

and washed twice with 20 mL of diethyl ether to remove the fat contents using a separatory 

funnel. The aqueous layer was extracted four times with 20 mL of water-saturated n-butanol. 

The butanol solution was washed twice with 30 mL of distilled water to remove the 

impurities, thereby obtaining crude saponins. The remaining butanolic solution was 

transferred to the tarred round bottom flask for the evaporation using a rotary evaporator 

under vacuum at 55℃ (Figure 4).  
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Figure 4. Extraction procedures of crude saponin in Panax ginseng. 

 

Determination of ginsenoside content by HPLC 

The HPLC conditions for ginsenoside assay was slightly modified the previous report 

(Park et al. 2007). Quantitative determinations were achieved by HPLC using a Capcell-pak 

C18 MG (4.6 × 250 mm) column (Shiseido, Japan), Waters 2998 Photodiode Array Detector, 

Waters 2690 Separations Module and Empower Program (Table 1).   
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Table 1. HPLC conditions for ginsenosides analysis. 

Parameter  Condition 

Instruments  

Waters 2690 Separations Module 

Empower Program  

Column  

Capcell-pak C18 MG (4.6 × 250 mm) column, 5µm 

(Shiseido, Japan) 

Mobile phase  Distilled water and Acetonitrile 

Flow rate  1 mL/min 

Detector   Wavelength: 203 nm (PDA) 

Scan wavelength  192 - 400 nm 

Column temperature  35℃ 

Sample injection  10 μL 

Run time  60 min 

 

The solvents of HPLC grade were used. The water used in this study was treated with a 

Milli-Q water purification system (Millipore, USA). The mobile phase of HPLC gradient 

was conducted as follows (Table 2). Ginsenosides Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2 and Rd 

standards were purchased from BTGin Co., Ltd (Daejeon, Korea). Digoxin was used as 

internal standard.  
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Table 2. Mobile phase of HPLC gradient condition for ginsenosides analysis. 

Retention time (min)              Solvent (A)               Solvent (B) 

0 

22 

32 

50 

55 

60 

82 

70 

55 

50 

82 

82 

18 

30 

45 

50 

18 

 18 

Solvent (A): Distilled water, Solvent (B): Acetonitrile. 

 

Stock solutions for the 4 ginsenosides were prepared separately in 100% MeOH. Digoxin 

stock solution was prepared in 70% MeOH. Working solutions were prepared in methanol 

by mixing known amount of all the ginsenosides together. Five concentrations were made 

for standard curves, each concentration was 60, 120, 240, 320, 480 ppm. Ginsenosides were 

detected at a wavelength of 203 nm with the peak areas corresponding to ginsenosides from 

the samples matching retention times as authentic ginsenoside standards.  

Analysis of ginsenosides contents was performed according to Son et al. (1999a) and Yu 

et al. (2000). The total ginsenoside content was calculated as the sum of individual 

ginsenoside fractions. 
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The ginsenoside content of ginseng adventitious roots was calculated as: 

(GC: ginsenoside content; SGC: sample ginsenoside concentration from HPLC; SV: sample 

volume; AR: adventitious root) 

 

 

Method validation and statistical analysis 

Stock solutions for the 8 ginsenosides were prepared separately in 100% methanol. 

Digoxin stock solution was prepared in 80% methanol. Working solutions were prepared in 

100% methanol by mixing known amounts of all the compounds. The linear range, limit of 

detection (LOD) and limit of quantification (LOQ) were studied for the developed method. 

The linearity of calibration curve was tested by standard analysis. The calibration curves of 

individual ginsenosides were constructed using a range of five concentrations of the standard, 

and LOD and LOQ for each analyte were evaluated at signal-to-noise ratios (S/N) of 3:1 and 

10:1, respectively.  

Statistical analysis was performed according to the SPSS system. Mean and standard errors 

were used throughout and statistical significance between the mean values was assessed by 

applying a Duncan’s multiple range tests. A probability of P < 0.05 was considered significant. 
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RESULTS AND DISCUSSION 

 

Effects of gamma irradiation on survival rate of adventitious roots  

In this experiment, I first determined the survival rate of adventitious roots at different 

dosage of γ-irradiation. The survival rates of adventitious roots declined with increasing 

dosage of irradiation (Figure 5). No survived adventitious roots were observed at 125Gy. The 

growth of adventitious roots is inhibited over 50Gy treatment and the LD50 was established 

by 30Gy irradiation of adventitious root based on the survival rates of main root. 

Panax ginseng was irradiated by 60CO gamma ray and the growth of hairy roots was 

inhibited over 30Gy (Choi et al. 2002). LD50 was established by irradiation of shoot tip 

explants at 30Gy based on the survival of explants and shoot proliferation (Ali, 2006). 

 

Effects of gamma irradiation on growth rate of cell lines  

Five cell lines were selected at last according to the phenotype (Figure 6). After 30 days 

culture in flask, dry weight of control was 0.31g and the selected cell lines CL1, 3, 9, 13 and 

14 were 0.46g, 0.45g, 0.29g, 0.34g and 0.48g respectively. The value of growth ratio of 

control was 4.42 and the selected cell lines CL1, 3, 9, 13, 14 were 6.57, 6.48, 4.1, 4.9 and 6.9, 

respectively (Figure 7). The values of growth ratio in cell lines CL1, CL3 and CL14 were 

increased 49%, 47% and 57%, respectively, compared to the control. 

Panax ginseng was irradiated by gamma ray and cell lines were selected according to the 

higher growth ratio at 30Gy (Kim et al. 2009). Lithospermum erythrorhizon S. was irradiated 



 41 

by gamma ray and the cell lines selected in terms of growth rate (similar with control) and 

appearance of shikonin (Chung et al. 2006). In this experiment, cell line CL1, 3 and 14 

showed higher growth ratio. 

 

Effects of gamma irradiation on ginsenoside production 

The spectrum of Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2 and Rd were 203nm. The calibration 

curves and the LOD for the ginsenosides are shown in Table 3 and Figure 8. The correlation 

coefficients are all better than 0.99, which show good linearity.  

The chromatograms for 8 major ginsenosides among each cell line and the internal 

standard shown in Figure 9, 10, 11, 12 and 13. The contents of the eight ginsenosides were 

significantly enriched, especially in the cell line CL1 (Figure 14). The total contents of 

ginsenosides (Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2 and Rd) in cell line CL1 were 1.6-fold higher 

than that of control. In the cell line CL1, the level of ginsenoside Rg1, Re, Rh1and Rb2 

contents were increased by 2-3 times than that of the control. In the cell line CL3, level of 

ginsenoside Re, Rh1, Rb2, Rc and Rd contents were increased by 1.6-2.3 times than that of 

the control. In the cell line CL9, level of ginsenoside Rg1, Re and Rh1 contents were 

increased by 1.7-2 times than that of the control. In the cell line CL14, level of ginsenoside 

contents were similar with that of the control. In case of the cell line CL13, the ginsenoside 

contents were affected negatively in ginseng adventitious root cultures. Overall, the highest 

ginsenoside contents were obtained in cell line CL1. 
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CONCLUSIONS 

 

In the present study, I investigated the influence of gamma irradiation on the content of 

ginsenosides of Korean wild ginseng in order to search for better application of ginseng as a 

health food. As it is known, in root cultures, the ginsenoside yield depends not only on the 

accumulation of the commercially useful compounds but also on their biomass production 

capability. In this study, I selected cell line CL1 as the best cell line. Because of the 

ginsenoside content and the growth ratio of the CL1 were highest compared to control and 

other cell lines. So, the ginsenoside productivity of CL1 is better than other cell lines. In the 

next study, I will use these mutant cell lines to establish the best condition for regeneration 

system of Panax ginseng and this system also use for genetic transformation. 
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Figure 5. Survival rate among gamma-ray irradiated adventitious roots of Panax ginseng. 

After irradiation, the adventitious roots were cultured in the petridish for 5 weeks on MS 

medium with NAA, IAA and 3% sucrose at 23℃ in light condition. Bar shown are means ± 

standard deviations of three replicates. 
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Figure 6. Phenotypic characteristics of secondary roots in the gamma-irradiated cell lines of 

Panax ginseng (scale bar = 1 cm). Control: non-irradiated adventitious roots, CL1-14: 

gamma-irradiated mutant cell lines. 
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Figure 7. Growth ratio of Panax ginseng adventitious root in the control and 

gamma-irradiated cell lines. The adventitious roots were cultured in the flask for 30 days 

with 50 mL MS medium. Bar shown are means ± standard errors of three replicates. Control: 

non-irradiated adventitious roots, CL1-14: selected mutant cell lines.  
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Table 3. Calibration curve, limit of detection (LOD), and limit of quantification (LOQ) for 

eight ginsenosides. 

 

a)y is the peak area and x is the concentration of analyte.  

 

 

 

 

 

 

 

 

 

Compound Calibration curvea R2  Linear range 

(mg/L) 

LOD 

(mg/L) 

LOQ 

(mg/L) 

Rg1 

Re 

Rf 

Rh1 

Rb1 

Rc 

Rb2 

Rd 

Y = 3762.2X-719.38 

Y = 2452.5X-22171 

Y = 9588.1X-10035 

Y = 14271X-32882 

Y = 2343.7X-1448.4 

Y = 6048.9X-12290 

Y = 1978.3X-27044 

Y = 6263X-1238.8 

0.9908 

0.9979 

0.9995 

0.9987 

0.9967 

0.9984 

0.9933 

1 

 25-150 

 30-180 

10-50 

10-50 

 30-150 

10-50 

 50-200 

10-50 

2.32 

1.0 

0.45 

0.32 

0.84 

0.5 

1.30 

0.08 

7.71 

3.06 

1.51 

0.98 

2.81 

1.67 

4.32 

0.27 
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Figure 8. Typical chromatograms obtained from the standard solution by UV detection at 

203 nm. IS: internal standard (digoxin).  
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Figure 9. Typical chromatograms and ginsenoside content obtained from the standard, 

control and cell line CL1. The ginsenosides were extracted from adventitious roots cultured 

in the flask. Control: non-irradiated adventitious root, CL1: selected cell line 1 from 

gamma-irradiated adventitious roots, IS: internal standard (digoxin).  
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Figure 10. Typical chromatograms and ginsenoside content obtained from the standard, 

control and cell line CL3. The ginsenosides were extracted from adventitious roots cultured 

in the flask. Control: non-irradiated adventitious root, CL3: selected cell line 3 from 

gamma-irradiated adventitious roots, IS: internal standard (digoxin).  
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Figure 11. Typical chromatograms and ginsenoside content obtained from the standard, 

control and cell line CL9. The ginsenosides were extracted from adventitious roots cultured 

in the flask. Control: non-irradiated adventitious root, CL9: selected cell line 9 from 

gamma-irradiated adventitious roots, IS: internal standard (digoxin).  
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Figure 12. Typical chromatograms and ginsenoside content obtained from the standard, 

control and cell line CL13. The ginsenosides were extracted from adventitious roots cultured 

in the flask. Control: non-irradiated adventitious root, CL13: selected cell line 13 from 

gamma-irradiated adventitious roots, IS: internal standard (digoxin).  
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Figure 13. Typical chromatograms and ginsenoside content obtained from the standard, 

control and cell line CL14. The ginsenosides were extracted from adventitious roots cultured 

in the flask. Control: non-irradiated adventitious root, CL14: selected cell line 14 from 

gamma-irradiated adventitious roots, IS: internal standard (digoxin).  
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Figure 14. Total ginsenoside content of the control and mutant cell lines of Panax ginseng 

adventitious root. Control: non-irradiated adventitious root, CL1-14: selected cell lines from 

gamma-irradiated adventitious roots.  
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Chapter ІI 

Plant regeneration of Korean wild ginseng (Panax ginseng 

Meyer) mutant lines induced by γ-irradiation (60Co) of 

adventitious roots 
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INTRODUCTION 

 

Panax ginseng Meyer is an important medicinal herb and is widely cultivated in Korea, 

China and Japan. The root has been used as a drug for over 2000 years in oriental countries. 

Its use is rapidly expanding in the Western countries as complementary and alternative 

medicine (Shim et al. 2007). Ginsenosides are the major pharmacologically active 

components in P. ginseng. More than 30 types of ginsenosides have been identified from the 

genus (Harrison et al. 1990, Nah et al. 1997). 

Ginseng is a perennial plant which grows slowly and has a long production cycle (4-6 

years). And more than 3 years of juvenile period are required for producing seeds (Ahn et al. 

1996, Choi et al.1998). This has made the generation of superior genotypes by conventional 

breeding very difficult. Because of these reasons, attempts have been made to achieve a 

more rapid and increased production of the ginsenosides using other methods such as 

classical tissue culture system (Wu et al. 2005), bioreactor culture system (Sivakumar et al. 

2005), Agrobacterium-mediated hairy root production (Yoshikawa et al. 1987, Mallol et al. 

2001), using elicitors in cell cultures (Lu et al. 2001, Palazon et al. 2003, Bae et al. 2006), 

and mutation breeding by γ-irradiation (Kim et al. 2009, Kim et al. 2013). The last method 

has been used in many other plant species and has provided a large number of variants useful 

for plant breeding (Subhan et al. 2004, Mokobia et al. 2006, Chung et al. 2006). 

Mutagenesis by γ-irradiation enhanced ginsenoside production in P. ginseng (Kim et al. 

2009, Kim et al. 2013). Recently, I have also generated mutant cell lines by applying 
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γ-irradiation on P. ginseng adventitious roots which were derived from Korean wild ginseng 

root (Zhang et al. 2011). Among the selected mutant cell lines, line 1 has showed the highest 

total ginsenoside content of 7 major ginsenosides (Rg1, Re, Rb1, Rb2, Rc, Rf, and Rd). The 

total ginsenoside content of the mutant line was 2.3 times higher than in the wild-type line 

(Zhang et al. 2011). Using γ-irradiation, I have created a useful mutant line for breeding of 

the ginseng plant. However, there are no reports on in vitro plant regeneration with mutant 

lines of ginseng adventitious root. 

Plant tissue culture system is considered a valuable tool in the plant improvement 

program. Somatic embryogenesis has been used as a preferred method for rapid in vitro 

propagation of many plant species (Guerra et al. 1988, Bhansali et al. 1990, Jimenez et al. 

2005). P. ginseng is a difficult species to manipulate in vitro; however, its regeneration has 

generally been accomplished using somatic embryogenesis in callus derived from mature 

root tissues (Chang et al. 1980, Cellarova et al. 1992, Lim et al. 1997), callus derived from 

zygotic embryo (Lee et al. 1990, Arya et al. 1993), protoplast derived from callus (Arya et al. 

1991), and cotyledons (Ahn et al. 1996, Choi et al. 1998, Choi et al. 1999, Kim et al. 2012). 

The development of efficient in vitro culture methods has facilitated the use of mutation 

technique for improvement of vegetative propagation of ginseng adventitious roots (Kim et 

al. 2009, Kim et al. 2013, Zhang et al. 2011). At present no information is available on the 

regeneration of mutant adventitious root line that has been selected from γ-irradiated P. 

ginseng adventitious roots. 

In this chapter, I report on an efficient procedure for the regeneration of wild-type and 
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mutant cell lines of P. ginseng adventitious roots through somatic embryogenesis. 
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MATERIALS AND METHODS 

 

Callus induction and proliferation 

Adventitious roots derived from Korean wild ginseng were provided by Sunchon 

National University. The adventitious roots were generated as described previously 

(Sivakumar et al. 2005, Yu et al. 2002, Kim et al. 2003) and have been maintained in my 

laboratory for over 10 years. A mutant adventitious root line has been generated from the 

wild type adventitious roots by γ-irradiation (Zhang et al. 2011). For embryogenic callus 

induction, wild-type and mutant adventitious roots were sectioned into 10 mm in length and 

were placed on MS solid medium supplemented with 2, 4-D, kinetin and 3% sucrose. The 

media were solidified with 0.3% Gelite. Callus induction frequency was tested on MS solid 

medium supplemented with various concentrations of 2, 4-D (0.5, 1, 1.5, 2 mg/L) and kinetin 

(0, 0.3, 0.5 mg/L). All media were adjusted to pH 5.8 before autoclaving. Thirty pieces of 

adventitious roots were placed on each petridish. Three replicates were prepared for each 

treatment. All cultures were incubated at 25℃ in the dark. Callus formation was observed 

after 4 weeks of culture. After 6 weeks of culture, the frequency of callus induction was 

estimated. The induced callus was subcultured at 3 week intervals on the same medium for 

induction of embryogenic callus and maintenance. 

 

Induction of somatic embryos 

Embryogenic callus induced from the segments of adventitious roots was used for 



 71 

induction of somatic embryos. Ten g of embryogenic callus was incubated in a 15 L airlift 

bioreactor containing 5 L MS liquid medium with 0.5 mg/L 2, 4-D and 3% sucrose for 

proliferation. After 3 weeks, the proliferated embryogenic callus was used as explants for 

induction of somatic embryogenesis. 

To examine the effect of 2, 4-D on somatic embryo induction, proliferated callus was 

placed on a solid MS medium supplemented with different concentrations of 2,4-D (0, 0.5, 1 

mg/L). Ten clumps of embryogenic callus (about 5mm in diameter) were cultured on 

petridishes containing 40 mL of medium and the experiment repeated three times. All 

cultures were incubated at 25℃ in the dark. The frequency of somatic embryo production 

was examined after 6 weeks of culture by counting cultured embryogenic callus that formed 

somatic embryos.  

When the callus produced globular stage embryos on MS solid medium with 2,4-D and 

3% sucrose, the globular embryos were removed and transferred to 500 mL-Erlenmeyer 

flasks containing 200 mL of liquid MS medium supplemented with 2,4-D and 3% sucrose 

for further growth. The liquid cultures were agitated at 100 rpm on a gyratory shaker in the 

dark. After 1 month of culture, the proliferated globular embryos in flasks were transferred 

to each petridish containing solid MS medium with GA3 and 3% sucrose for maturation and 

germination of embryos. 

 

Maturation and germination of somatic embryos  

The proliferated globular embryos in flasks were transferred to 40 mL MS solid medium 
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supplemented with GA3 and 3% sucrose in 100×20 mm plastic petridishes for maturation and 

germination. To investigate the effect of GA3 concentration on maturation and germination 

of somatic embryos, 150 globular embryos were transferred to germination medium 

containing 0, 1, 3, 5, 7, or 10 mg/L of GA3. Cultures were maintained at 23 ± 2℃ under dim 

light illumination (12 μmol m-2 s-1) with a 16/8 h (light/dark) photoperiod. After 6 weeks of 

culture, maturation and germination of embryos were examined. The experiment was 

repeated three times. 

 

Development of plantlets and acclimatization  

When shoots reached 0.5-1.0 cm in height, the plantlets were transferred from 

germination medium to elongation medium, 50 mL MS solid medium supplemented with 5 

mg/L GA3 in 100×40 mm plastic petridishes, for shoot elongation. When shoots grew 3.0-4.0 

cm in height, they were transferred to rooting medium, half or one-third strength MS, or SH 

basal medium supplemented with 0.25 mg/L NAA or with 0.5% activated charcoal, in 

75×130 mm glass bottles, one shoot per bottle. Cultures were conducted in a culture room 

and maintained in a 16/8 h (light/dark) photoperiod with white fluorescent light (30 μmol m-2 

s-1) at 23 ± 2℃.After 4 weeks, the results of rooting were examined. 

Plantlets with both shoots and roots were transferred to plastic pots (10×18cm) 

containing an artificial soil mixture of peatmoss, vermiculite and perlite (2:3:1 v/v) and 

covered with a transparent polyvinyl film. The potted plants were cultivated in a growth 

room (40 μmol m-2s-1, 16 h photoperiod, 25 ± 1℃). After 3 weeks, the plants were hardened 
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by removing the polyvinyl film gradually on a daily basis for one week, and then the film 

was removed. After 3 months of culture, the survived plants without wilting were counted. 

The acclimated plants were transplanted to glasshouse conditions or kept in the growth room 

for another 4-6 months. 

 

Data analysis 

Each of the treatments was performed three times. Statistical analyses were performed 

according to the one-way analysis of variance (ANOVA) using SPSS software (version 17.0) 

to assess significant differences in the mean values of different treatments. Comparisons 

between the mean values were assessed using Duncan’s multiple-range test (P < 0.05). 
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RESULTS AND DISCUSSION 

 

Induction of callus from adventitious roots 

Initiation of callus from adventitious root explants generally occurred after 3 weeks on 

media supplemented with different combinations of growth regulators. The highest 

frequency of callus induction was observed on the medium containing 0.5 mg/L 2,4-D and 

0.3 mg/L kinetin. The frequency of callus induction reduced dramatically as the 

concentration of 2, 4-D increased. Callus was not induced in the presence of 2 mg/L 2,4-D 

(Table 4; Figure 15). Similar results were reported with the cultures of hairy roots of P. 

ginseng that 2,4-D at more than 3 mg/L strongly suppressed callus induction (Kwon et al. 

2003). When the segments of adventitious roots (Figure 16A) of P. ginseng were incubated 

in MS solid medium with 0.5 mg/L 2,4-D and 0.3 mg/L kinetin, callus was induced from the 

cut sides of the adventitious roots after 6 weeks of culture (Figure 16B). The callus was 

subcultured on the same medium at 3-week subculture intervals. After three months, 

embryogenic callus was induced (Figure 16C) and the embryogenic callus showed high 

regenerative capacity and differentiated into somatic embryos and plantlets. Callus induction 

and growth from adventitious root explants was dependent upon 2,4-D as previously 

reported (Chang et al. 1980, Lim et al. 1997, Arya et al. 1991). When embryogenic callus 

was transferred to MS medium lacking kinetin, a small number of globular embryos formed 

after 3 weeks of culture (Figure 16D, E). Thus, it is essential to induce and maintain the 

embryogenic callus in the medium supplemented with 2,4-D in combination with kinetin. 
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Embryogenic callus has been maintained in the dark for more than 2 years through 3-week 

subculture intervals on MS solid medium with 0.5 mg/L 2,4-D and 0.3 mg/L kinetin.  

 

Induction of somatic embryos  

The embryogenic callus grows better in a liquid medium than a solid medium (data not 

shown). Therefore, we propagated the embryogenic callus in bioreactor to assess somatic 

embryo development and plantlet conversion. When embryogenic callus was inoculated into 

a 15 L airlift bioreactor containing 5 L MS liquid medium with 0.5 mg/L 2, 4-D, the 

embryogenic callus was propagated and a small number of globular shaped embryos were 

also formed after 3 weeks of culture (Figure 16D, E). The growth rate (final explant fresh 

weight/initial explant fresh weight) was about 1.8. Embryogenic cell clumps proliferated in 

bioreactor were transferred onto MS solid medium with different concentrations of 2,4-D (0, 

0.5 or 1.0 mg/L) for embryogenesis. The frequency of somatic embryo formation was 

significantly depended on the concentrations of 2, 4-D (Table 5; Figure 17). The highest 

induction frequency of somatic embryos was observed on the medium supplemented with 

0.5 mg/L 2, 4-D. The frequency of somatic embryo formation in wild-type and mutant cell 

line was15.3% and 14.7%, respectively. The number of somatic embryos per callus was 25.6 

and 23.7 in wild-type and mutant cell line, respectively. There was no significant difference 

in somatic embryo formation frequency between wild-type and mutant cell line (Table 5; 

Figure 17). Globular shaped somatic embryos formed on the surfaces of embryogenic callus 

(Figure 16F, G). 



 76 

Maturation and germination of somatic embryos 

These somatic embryos were transferred into 500 mL-Erlenmeyer flasks containing 200 

mL of liquid MS medium supplemented with 0.5 mg/L 2,4-D and 3% sucrose(Figure 16H) 

for proliferation. The growth rate (final explant fresh weight/initial explant fresh weight) was 

about 1.5. After 4 weeks of culture, the proliferated globular embryos were transferred to 

petridishes containing solid MS medium with various concentrations of GA3 and 3% sucrose. 

At 5 mg/L GA3, most of the globular embryos turned green and increased in size and 

developed into torpedo and cotyledonary stage embryos within one month. When the mature 

somatic embryos were transferred to a fresh medium with the same composition, most of the 

embryos germinated within 2 weeks of culture (Figure 16I). Adventitious shoots were 

induced from the mature somatic embryos. The optimal concentration of GA3 in germination 

medium was 5 mg/L, yielding the highest germination frequency of 85%. Without GA3 

treatment, the germination frequency was lowest at 36%. Maturation and germination of 

embryos were strongly influenced by the GA3 concentration (Table 6; Figure 18). This result 

suggests that GA3 is required for maturation and germination of somatic embryos. Similar 

results were observed in Eleutherococcus senticosus, that GA3 treatment was necessary to 

induce germination from somatic embryos (Choi et al. 1999). GA3 treatment is also 

commonly used for maturation and germination of somatic embryos from P. ginseng (Chang 

et al. 1980, Arya et al. 1993, Choi et al. 1998, Choi et al. 1999), from P. quinquefolius 

(Zhou et al. 2006) and from P. japonicus (You et al. 2007). 
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Development of plantlets and transplantation 

When shoots reached 0.5-1.0 cm in height on germination medium, the shoots were 

transferred to elongation medium, 50 mL MS solid medium supplemented with 5 mg/L GA3 

in 100×40 mm plastic petridishes, for further growth of shoots. After about one month of 

culture, the shoots developed to 3.0-4.0 cm in height, but most of the shoots had no visible 

roots. The shoots without roots were excised and transferred to different rooting media, half 

or one-third strength MS, or SH basal medium supplemented with 0.25 mg/L NAA or with 

0.5% activated charcoal, in 75×130 mm glass bottles, one shoot per bottle. Adventitious 

roots formed from the excised regions of the shoots. After 1 month, the rate of root 

formation from the shoots was examined (Table 7). As far as root quality is concerned, 1/3 

SH medium with 0.25 mg/L NAA and 1% sucrose showed the best result among the tested 

rooting media; the roots grew fast and thickened on the medium(Figure 16J; Figure 19A, B; 

Table 7). Although 1/3 SH medium with 2% sucrose and 0.5% activated charcoal was most 

effective in inducing roots, the roots grew well but weak (Table 7). The optimal medium for 

rooting is therefore 1/3 SH medium supplemented with 0.25 mg/L NAA and 1% sucrose 

among the tested rooting media in this study. In our comparative studies, SH medium was 

more effective than MS medium in root induction and proliferation. A very similar result 

was reported in American (Zhou et al. 2006) and Korean ginsengs (Kim et al. 2012). It was 

reported that the high level of ammonium nitrate in MS medium highly suppressed root 

development in carrot (Halperin et al. 1966). Choi et al reported that when the ammonium 

nitrate was omitted in MS medium, root growth of regenerated ginseng plants was enhanced. 
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The concentration of ammonium nitrate in SH medium was about 8 times lower than in MS 

medium. It seems that the different concentrations of ammonium nitrate in SH and MS 

medium may result in the different root induction efficiency between the two basal medium. 

From these observations, I suggest that SH medium, especially 1/3 strength SH medium is 

suitable for root induction and growth of regenerated ginseng plants.  

Well-developed plantlets with both shoots and roots derived from adventitious roots were 

transferred to plastic pots (10×18cm) containing an artificial soil mixture of peatmoss, 

vermiculite and perlite (2:3:1 v/v) in a growth room (Figure 20C). The survival rate of the 

plantlets was about 30% after 3 months of culture and new leaf began growing (Figure 19D). 

The plants regenerated from both wild-type and mutant cell line acclimatized in the growth 

room (Figure 20). 
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CONCLUSIONS 

 

I developed an efficient in vitro regeneration protocol for an important medicinal plant of 

P. ginseng. The protocol described here will allow a relatively rapid mass production of 

Korean wild ginseng plants. It takes 6-8 months from the callus induction of adventitious 

roots to the plantation of plants. In this study, I also produced the regenerated plants from the 

mutant adventitious roots which were obtained by γ-irradiation. The combination of mutation 

technique by γ-irradiation and plant regeneration by tissue cultures may be an effective way 

to ginseng improvement. The protocol established in this study was used for the genetic 

transformation of this species. 
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Figure 15. Effects of different concentration of 2,4-D and Kinetin on the frequency of callus 

formation from ginseng adventitious roots after 6 weeks of a culture (scale bar = 1 cm). A: 

2,4-D: 0.5, Kinetin: 0. B: 2,4-D: 0.5, Kinetin: 0.3. C: 2,4-D: 0.5, Kinetin: 0.5. D: 2,4-D: 1, 

Kinetin: 0. E: 2,4-D: 1, Kinetin: 0.3. F: 2,4-D: 1, Kinetin: 0.5. G: 2,4-D: 2, Kinetin: 0. H: 

2,4-D: 2, Kinetin: 0.3. I: 2,4-D: 2, Kinetin: 0.5. 
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Table 4. Effects of 2,4-D and kinetin on the frequency of callus formation from ginseng 

adventitious roots. 

2, 4-D 

(mg/L) 

Kinetin 

(mg/L) 

Number of 

root explants 

Number of root explants 

formed callus 

4.3 ±1.0de 0.5 0 

0.3 

0.5 

30 

30 

30 

16.2 ± 1.8a 

 9.1± 1.7de 

1 0 

0.3 

0.5 

30 

30 

30 

7.2 ± 1.2bc 

5.4 ± 1.1cd 

2.3 ± 0.8ef 

2 0 

0.3 

0.5 

30 

30 

30 

0.0 ± 0f 

0.0 ± 0f 

0.0 ± 0f 

 

The data were collected after 6 weeks of culture. 

The results represent the means ± SEM of values obtained from three experiments. 

Different corresponding letters within a column are significant different at P<0.05 by 

Duncan’s multiple range test.  
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Figure 16. Somatic embryogenesis and regeneration of plantlet from adventitious roots of 

Panax ginseng. (A) Adventitious roots derived from Korean wild ginseng root. (B) Callus 

induction from adventitious root explants. (C) Embryogenic callus derived from adventitious 

roots. (D) Proliferation of embryogenic callus in an airlift bioreactor. (E) Proliferated 

embryogenic cell clumpsfrom bioreactor culture. (F)Somatic embryos formed on 

embryogenic callus. (G) Magnified image from (F) (scale bar = 2 mm). (H) Proliferation of 

somatic embryos in conical flasks. (I) Maturation and germination of somatic embryos on 

MS medium supplemented with 5 mg/L GA3. (J) Well-developed plantlet derived from 

somatic embryo (scale bar = 0.8 cm). 
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Figure 17. Effect of 2,4-D on somatic embryogenesis from embryogenic callus of control 

and mutant cell line after 6 weeks of culture. A (control): 2,4-D: 0; B (control): 2,4-D: 0.5; C 

(control): 2,4-D: 1; D (mutant): 2,4-D: 0; E (mutant): 2,4-D: 0.5; F (mutant): 2,4-D: 1.  
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Table 5. Effects of 2,4-D on somatic embryo formation from embryogenic callus of 

wild-type and mutant adventitious roots. 

Cell line 2,4-D 

(mg/L) 

Frequency of somatic 

embryo formation (%) 

Number of somatic  

embryosper callus 

 

Wild-type 

0 

0.5 

1 

5.3 ± 0.73b 

15.3 ± 1.21a 

2.5 ± 0.46c 

10.0 ± 1.2b 

25.6 ± 2.3a 

4.7 ± 0.3c 

 

Mutant 

0 

0.5 

1 

5.8 ± 0.28b 

14.7 ± 0.45a 

2.2 ± 0.27c 

12.3 ± 1.9b 

23.7 ± 0.6a 

6.0 ± 1.4c 

 

The data were collected after 6 weeks of culture. 

The results represent the means ± SEM of values obtained from three experiments. 

Different corresponding letters within a column are significant different at P<0.05 by 

Duncan’s multiple range test.  
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Figure 18. Effects of GA3 concentration on somatic embryos germination frequency from 

150 somatic embryos after 5 weeks of culture on MS medium with 3% sucrose (scale bar = 1 

cm).  
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Table 6. Effects of GA3 on germination of somatic embryos. 

 

The data were collected after 6 weeks of culture on MS medium with 3% sucrose. 

The results represent the means ± SEM of values obtained from three experiments. 

Different corresponding letters within a column are significant different at P<0.05 by 

Duncan’s multiple range test.  

 

 

 

 

 

Concentration of GA3 

(mg/L) 

Number of somatic 

embryos inoculated 

Number of somatic 

embryos germinated 

Germination 

frequency 

(%) 

0 

1 

3 

5 

7 

10 

150 

150 

150 

150 

150 

150 

53 ± 6c 

60 ± 9c 

 66 ± 10bc 

127 ± 7a 

75 ± 6b 

65 ± 5bc 

36 ± 4c 

40 ± 6c 

 45 ± 7bc 

85 ± 5a 

50 ± 4b 

 44 ± 3bc 
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Figure 19. Development of ginseng plant and transplantation into soil. (A) Well-developed 

plantlet on rooting medium, 1/3 SH basal medium supplemented with 0.25 mg/L NAA. (B) 

Plant with a taproot just before transplantation into soil. (C) Regenerated plant hardened in 

soil. (D) New leaves (indicated by arrows) were produced from three-month old potted plant 

(scale bar = 0.8 cm).  
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Table 7. Comparison of rooting media for ginseng root development. 

Media No. of 

shoots 

Root frequency 

(%) 

No. of roots 

per plant 

Description on 

root quality 

1/2 MS 3% Sucrose 

1/2 MS + 3% Sucrose + 0.5% charcoal 

1/3 MS + 1% Sucrose + 0.25 mg/L NAA 

1/2 SH + 3% Sucrose 

1/2 SH + 2% Sucrose + 0.5% charcoal 

1/3 SH + 2% Sucrose + 0.5% charcoal 

1/3 SH + 1% Sucrose + 0.25 mg/L NAA 

30 

30 

30 

30 

30 

30 

30 

36 

45 

58 

71 

62 

80 

76 

1.6 

1.0 

1.0 

1.0 

1.0 

1.0 

1.2 

Grows slow, calluses 

Grows slow 

Grows fast, thin 

Grows slow 

Grows slow, calluses 

Grows fast, thin 

Grows fast, strong 
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Figure 20. Transplantation of regenerated ginseng plants into soil. (A-E) Plants derived from 

wild-type adventitious roots. (F-J) Plants derived from mutant adventitious roots. 
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Chapter III 

Improving ginsenoside content in Korean wild ginseng by 

Agrobacterium-mediated transformation with a squalene 

synthase gene 
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INTRODUCTION 

 

Panax ginseng Meyer is an important medicinal herb and is widely cultivated in Korea, 

China and Japan. The root has been used as a drug for over 2000 years in oriental countries. 

Its use is rapidly expanding in the Western countries as complementary and alternative 

medicine (Shim et al. 2009). Ttriterpene saponins are the major pharmacologically active 

components in P. ginseng. More than 30 types of triterpene saponins have been identified 

from the genus (Harrison et al. 1990, Nah et al. 1997). Triterpene saponins are produced in P. 

ginseng roots and they are referred to ginsenosides. They can be classified into three groups 

based on their aglycones: the protopanaxadiol-type, protopanaxatriol-type, and oleanane type 

saponins. The major groups of ginsenosides are Rb and Rg groups derived from the 

20(S)-protopanaxadiol and 20(S)-protopanxatriol structures, respectively. Among these, 

ginsenosides, Rb1, Rb2, Rc, and Rd from the Rb group, and Re, Rf and Rg1 from the Rg 

group are the main components (Harrison et al. 1990; Nah et al. 1997). Each ginsenoside has 

been shown to have different pharmacological effects, including antiallergic activity, 

estrogen-like activity, anti-ulcer, anti-cancer, immunological activity (Bae et al. 2002a, Chan 

et al. 2002, Jeong et al. 2003, Lee et al. 2003 , Wang et al. 2000). Overproduction of 

triterpene saponins by metabolic engineering might be an attractive strategy to produce a 

better quality of pharmacologically active medicinal plants (Lee et al. 2004). 

Attempts have been made to achieve a more rapid and increased production of the 

ginsenosides using other methods such as classical tissue culture system (Wu et al. 1999), 
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bioreactor culture system (Sivakumar et al. 2005), Agrobacterium-mediated transformation 

system (Yoshikawa et al. 1987, Mallol et al. 2001, Lee et al. 2004 ), using elicitors in cell 

cultures (Lu et al. 2001, Palazon et al. 2003), and mutation breeding by γ-irradiation (Kim et 

al. 2009, Kim et al. 2013). Agrobacterium-mediated transformation system and γ-irradiation 

have been used in many other plant species and has provided a large number of variants 

useful for plant breeding (Subhan et al. 2004, Mokobia et al. 2006, Chung et al. 2006, Lee et 

al. 2004). Agrobacterium-mediated transformation system and γ-irradiation enhanced 

ginsenoside production in P. ginseng (Lee et al. 2004, Kim et al. 2009, Kim et al. 2013). 

Recently, I have also generated mutant cell lines by applying γ-irradiation on P. ginseng 

adventitious roots which were derived from Korean wild ginseng root (Zhang et al. 2011). 

Among the selected mutant cell lines, line 1 has showed the highest total ginsenoside content 

of 7 major ginsenosides (Rg1, Re, Rb1, Rb2, Rc, Rf, and Rd). The total ginsenoside content 

of the mutant line was 2.3 times higher than in the wild-type line (Zhang et al. 2011). Using 

γ-irradiation, I have created a useful mutant line for breeding of the ginseng plant. However, 

there are no reports on in vitro Agrobacterium-mediated plant transformation with mutant 

lines of Panax ginseng adventitious root. 

Squalene synthase (SS, EC 2.5.1.21) is a membrane bound enzyme that catalyzes the first 

committed step in sterol and triterpenoid biosynthesis (Abe et al. 1993). The enzyme plays 

an important role in the regulation of isoprenoid biosynthesis (Wentzinger et al. 2002). Both 

phytosterols and triterpenes in plants are synthesized from the product of cyclization of 

2,3-oxidosqualene catalyzed by oxidosqualene cyclases (OSCs). The SS enzyme in 
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controlling sterol biosynthesis has been well characterized using SS mutant in animals and 

yeast (Karst et al. 1977, Tozawa et al. 1999). In plants, the gene has been isolated from 

species such as Lotus japonicus, Zea mays, etc. (Akamine et al. 2003, Lee et al. 2002). 

Enhanced expression of SS genes in plants such as Panax ginseng (Lee et al. 2004) and 

Eleutherococcus senticosus (Seo et al. 2005) resulted in increased levels of phytosterol and 

triterpene accumulation, thus depicting the important regulatory role of SS. Kim et al. (2011) 

studied that an increased expression of SS gene in Bupleurum falcatum resulted in an 

increased mRNA accumulation of the downstream genes of the pathway and enhanced 

production of phytosterol and saikosaponins in the plant. 

At present no information is available on the Agrobacterium mediated transformation of 

mutant adventitious root line that has been selected from γ-irradiated P. ginseng adventitious 

roots. In this chapter, I aimed to investigate the roles of PgSS2 on the biosyntheses of 

triterpenoids by using mutant cell lines of Panax ginseng adventitious roots through the 

Agrobacterium mediated transformation. 
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MATERIALS AND METHODS 

 

Plant materials 

Adventitious roots derived from Korean wild ginseng were provided by Sunchon National 

University. The adventitious roots were generated as described previously (Sivakumar et al. 

2005, Yu et al. 2002, Kim et al. 2003) and have been maintained in my laboratory for over 

10 years. A mutant adventitious root line has been generated from the wild type adventitious 

roots by γ-irradiation (Zhang et al. 2011). For embryogenic callus induction, mutant 

adventitious roots were sectioned into 10 mm in length and were placed on MS solid 

medium supplemented with 0.5 mg/L 2, 4-D, 0.3 mg/L kinetin and 3% sucrose. The media 

were solidified with 0.3% Gelite. All media were adjusted to pH 5.8 before autoclaving. 

Callus formation was observed after 4 weeks of culture. The induced callus was subcultured 

at 3 week intervals on the same medium for induction of embryogenic callus and 

maintenance. The embryogenic callus were used for Agrobacterium mediated 

transformation.  

For extraction of total RNA and genomic DNA, adventitious roots of Panax ginseng were 

harvested after one month of growing. The transgenic Panax ginseng adventitious roots were 

collected. The tissue samples were immediately frozen in liquid nitrogen and stored at -80℃ 

until use. 
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Total RNA extraction and cDNA synthesis 

Total RNA was extracted from adventitious roots of Panax ginseng using Trizol 

(Invitrogen, Carlsbad, CA, USA) reagent according to the manufacturer’s instructions 

(Figure 21). The purity and concentration of RNA was checked on UV-1800 (SHIMADZU). 

Ideally 1 μg of this extracted RNA was directly reverse transcribed with dNTPs using 

M-MLV reverse transcriptase and an oligo (dT) primer in a total volume of 13.5 μL for 1 h 

at 42℃. The resulting cDNA mixture was directly used as a template for PCR amplification. 

 

 

 

Figure 21. Total RNA extraction. Total RNA was isolated from adventitious roots of Panax 

ginseng using the trizol reagent and was dissolved in RNase free water treated with DEPC 

(Diethylpyrocarbonate).  
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TA Cloning of squalene synthase gene 

Based on the nucleotide sequencing (GQ468527) from reported squalene synthase of 

Panax ginseng, specific primers were designed from synthesized for the PCR amplification 

of the corresponding Panax ginseng cDNA. The forward (SSF1) and reverse (SSR1) primers 

were 5'- ATGGGAAGTTTGGGGGCAATTC -3' and 5'- TCACAGGCTATTTGGTAGT-3' 

respectively. PCR was carried out under the following conditions: 30 cycles of 95 ℃ for 1 

min, 60 ℃ for 30 s and 72 ℃ for 1 min using above cDNA as a template. An amplicon of 

expected size was recovered, cloned into pGEM-T Easy vector (Promega, USA) and 

transformed into E. coli Top10 competent cells. Plasmid DNA were isolated and subjected to 

nucleotide sequencing. 

 

Vector construction 

The entire coding region of squalene synthase (PgSS2) gene was amplified from P.ginseng 

cDNA by PCR with primers having BglII and PmlI restriction sites. The resulting 1248-bp 

PCR product was digested with BglII and PmlI, gel purified, and ligated into the same 

restriction sites cauliflower mosaic virus 35S promoter followed by alfalfa mosaic virus 

enhancer and NOS terminator, and then the expression cassette was ligated into the same 

restriction sites within pCAMBIA3301 (Cambia, Australia). Bar gene was used as a 

selective marker gene (Figure 22). The freeze-thaw method was used to introduce the binary 

vector into Agrobacterium tumefaciens EHA 105 (Chen et al. 1994). 
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Figure 22. Construct of binary vector plasmid pCAMBIA3301-PgSS2. LB, left border; RB, 

right border; p35S, CaMV 35S promoter; 35S poly-A, CaMV 35S terminator; nos Poly-A, 

NOS terminator; BAR, bialaphos resistance gene. 

 

Agrobacterium-mediated transformation protocol of Panax ginseng 

The transformation of Panax ginseng was performed as reported previously (Yang et al. 

2000) with slight modification.  

(Pre-culture)  Embryogenic callus were pre-treated in MS liquid medium for 1 day. 

(Agrobacterium culture) After an initial culture of A. tumefaciens in LB medium 

containing 75 mg/L kanamycin and 25 mg/L rifampicin for 24 h, 28°C, 200 rpm, the A. 

tumefaciens cells were collected using a centrifuge (3,000 rpm) and resuspended in MS 

(Murashige and Skoog 1962) liquid medium.  

(Infection) Pre-cultured embryogenic callus were immersed in the suspension of A. 

tumefacienes for overnight. 

(Co-culture) After overnight culture, the embryogenic callus were placed on sterilized 

filter paper for 10 min and transferred onto hormone-free MS medium containing 100 mg/L 

acetosyringone, 3% sucrose. The culture was performed at 25°C, in the dark, for 3 days.  

After that, washing the embryogenic callus by using SDW until the SDW is clear and at 

last washing again using SDW with 1000 mg/L cefotaxime, and then the explants were 
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placed on sterilized filter paper for 10 min.  

(Elimination) Thereafter, the callus was cultured on MS medium with 3% sucrose and 

300 mg/L cefotaxime for 3 weeks. 

And then the callus was transferred to selection MS medium with 3 g/L Gelite, 0.5 mg/L 

2,4-D, 0.3 mg/L kinetin , 300 mg/L cefotaxime and 3 mg/L phosphinothricin (PPT). 

When the callus had survived and formed embryos on the selection medium, the callus 

was transferred to shoot induction medium. 

(Shoot induction) Selected embryos were detached and transferred to MS medium 

(Murashige and Skoog 1962) supplemented with 5 mg/L GA3 and 3 mg/L PPT. 

(Root induction) Then, well developed shoots were transferred onto 1/3 strength SH 

medium with 1% sucrose and 0.25 mg/L NAA. 

Media used in the Panax ginseng transformation system was summarized in Table 8. 
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Table 8. Media used in the Panax ginseng transformation system. 

Medium Composition 

Callus induction MS medium with 30 g/L sucrose, 0.5 mg/L 2,4-D, 0.3 mg/L 

kinetin, 3 g/L Gelite, pH 5.8. 

Callus growth MS medium, 30 g/L sucrose, 0.5 mg/L 2,4-D, 0.3 mg/L 

kinetin, 3 g/L Gelite, pH 5.8. 

Somatic embryos induction MS medium, 30 g/L sucrose, 0.5 mg/L 2,4-D, 3 g/L Gelite, 

pH 5.8. 

Agrobacterium culture Yep medium, 75 mg/L kanamycin, 25 mg/L rifampicin, pH 

7.0. 

Agrobacterium resuspension MS medium, 100 mg/L acetosyringone, 30 g/L sucrose, pH 

5.8. 

Co-cultivation MS medium, 30 g/L sucrose, 3 g/L Gelite, 100 mg/L 

acetosyringone, pH 5.8. 

Elimination MS medium, 30 g/L sucrose, 3 g/L Gelite, 3 00 mg/L 

cefotaxime, pH 5.8. 

Selection MS medium, 30 g/L sucrose, 3 g/L Gelite, 0.5 mg/L 2,4-D, 

0.3 mg/L kinetin, 300 mg/L cefotaxime, 3 mg/L PPT, pH 

5.8. 

Shoot induction MS medium, 30 g/L sucrose, 3 g/L Gelite, 300 mg/L 

cefotaxime, 3 mg/L PPT, 5 mg/L GA3, pH 5.8.  

Root induction 1/3 SH medium, 10 g/L sucrose, 3 g/L Gelite, 300 mg/L 

cefotaxime, 0.25 mg/L NAA and 3 mg/L PPT, pH 5.8. 

 

Adventitious root induction from transgenic Panax ginseng  

To investigate the gene expression and analysis the ginsenoside content in transgenic 

Panax ginseng, leaf and hypocotyls segments of non-transgenic and transgenic plantlets 
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were cultured on the MS medium with 3% sucrose, 0.3% Gelrite and 3 mg/L indolebutyric 

acid (IBA). Adventitious roots developed around the excised portion of segments and 

subcultured onto the MS liquid medium with 2 mg/L NAA, 0.25 mg/L IAA and 3% sucrose. 

Cultures were conducted in a culture room and maintained in a 16/8 h (light/dark) 

photoperiod with white fluorescent light (30 μmol m-2 s-1) at 23 ± 2℃. 

 

Molecular characterization of transgenic plants 

Genomic DNA was isolated from adventitious roots of transgenic and wild-type plants 

according to CATB method (Saghai-Maroof, 1984) (Figure 23). 
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Figure 23. Extraction of genomic DNA. DNA from adventitious root of Panax ginseng 

extracted by CTAB method. 
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 To confirm the transgene integration in transgenic plants, 10 μg of genomic DNA was 

digested with BglII (TaKaRa, Japan), which cleaves only once outside the PgSS2 gene. The 

digoxigenin-labeled SS (340bp) and bar (443bp) gene specific probes were generated using a 

PCR DIG probe synthesis kit, according to the manufacturer’s protocol (DIG System, Roche, 

Germany). The digested genomic DNA was fractionated on a 0.8% (w/v) agarose gel, 

blotted onto nylon membranes (Hybond N+, Amersham, Little Chalfont, UK), and 

crosslinked. The membranes were hybridized with a Dig-labeled SS or bar DNA fragment as 

a probe. The membranes were hybridization was carried out at 45℃ overnight in a 

High-SDS buffer containing 50% formamide, 5xSSC, 50 mM sodium phosphate (pH 7.0), 

2% blocking reagent, and 0.1% N-lauroylsarcosine. The blots were washed twice with the 

2xSSC, 0.1% SDS for 10 min at room temperature, followed by 0.1xSSC, 0.1% SDS for 15 

min at 65℃. Hybridization signals were detected by chemiluminescence (CDS-star, 

Amersham, Little Chalfont, UK) using an alkaline phosphatase-conjugated antidigoxigenin 

antibody (Anti-Digoxigenin-AP Fab fragments, Roche, Mannheim, Germany), according to 

the manufacturer’s protocol. The membrane was exposed to an LAS4000 luminescent image 

analyzer (Fujifilm, Tokyo, Japan) for about 1 hour (Figure 24). 
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Figure 24. Scheme of Southern hybridization. 

 

RNA from wild-type and transgenic adventitious roots were isolated with a Trizol 

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. The primers 

used for amplifying the bar gene were 5′-GCG TGA CCT ATT GCA TCT CC-3′ and 

5′-TTC TAC ACA GCC ATC GGT CC-3′, and the primers for PgSS2 gene were 5′-ATG 

GGA AGT TTG GGG GCA ATT CT-′3 and 5′-GTT CTC ACT GTT TGT TCA GTA GTA 

GGT T-′3. The PCR mixture was incubated in a DNA thermal cycler under the following 
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conditions: one cycle of 95℃for 5 min, followed by 30 cycles of 94℃ for 30 s, 60℃for 30 s, 

and 72℃for 1 min, with a final 10-min extension at 72℃. Set of primers were summarized 

in Table 9. 

 

Table 9. Set of primers used for PgSS2 gene cloning and PCR.  

 

 

 

Extraction of crude saponin 

Extraction and determination of ginsenosides were carried out the method of Kwon et al. 

(2003) with slight modification. Ultrasonic-assisted extraction was performed with an 

ultrasonic water bath (Branson ultrasonics, USA). The output power is 117 volts and the 

frequency is 50/60Hz. Sample powder (0.5 g) was placed into a 100 mL conical flask, and 

then 30 mL of 80% (v/v) methanol–water were added. Then the flask was sonicated for 1 h 

in an ultrasonic water bath. The resultant extract was evaporated using a rotary evaporator 

under vacuum at 55℃. The evaporated residue (total extract yield) was dissolved in 20 mL 
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of distilled water and washed twice with 20 mL of diethyl ether to remove the fat contents 

using a separatory funnel. The aqueous layer was extracted four times with 20 mL of 

water-saturated n-butanol. The butanol solution was washed twice with 30 mL of distilled 

water to remove the impurities, thereby obtaining crude saponins. The remaining butanolic 

solution was transferred to the tarred round bottom flask for the evaporation using a rotary 

evaporator under vacuum at 55℃.  

 

Determination of ginsenoside contents by HPLC 

The HPLC conditions for ginsenoside assay was slightly modified the previous report 

(Park et al. 2007). Quantitative determinations were achieved by HPLC using a Capcell-pak 

C18 MG (4.6 × 250 mm) column (Shiseido, Japan), Waters 2998 Photodiode Array Detector, 

Waters 2690 Separations Module and Empower Program. 

The solvents used were of HPLC grade. The water used was treated with a Milli-Q water 

purification system (Millipore, USA). Ginsenosides Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2 and Rd 

standards were purchased from BTGin Co., Ltd (Daejeon, Korea). The HPLC conditions for 

ginsenoside isolation were as follows: mobile phase, water and acetonitrile; gradient elution, 

the eluents being 0 to 22 min, 18% acetonitrile; 22 to 32 min, 30% to 45%; 32 to 50 min, 

45% to 50%; 50 to 55 min, 50% to 18%; 55 to 60 min 18%; flow rate, 1 mL/min; column 

temperature, 35°C; detector wavelength, 203 nm; injection volume, 10 μL.  

Stock solutions for the 8 ginsenosides were prepared separately in 100% MeOH. Working 

solutions were prepared in methanol by mixing known amount of all the ginsenosides 
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together. 5 concentrations were made for standard curves, each concentration was 60, 120, 

240, 320, 480 ppm. Ginsenosides were detected at a wavelength of 203 nm with the peak 

areas corresponding to ginsenosides from the samples matching retention times as authentic 

ginsenoside standards.  

Analysis of ginsenoside contents was performed according to Son et al. (1999a) and Yu 

et al. (2000). The total ginsenoside content was calculated as the sum of individual 

ginsenoside fractions. 

 

The ginsenoside content of ginseng adventitious roots was calculated as: 

 

 

(GC: ginsenoside content; SGC: sample ginsenoside concentration from HPLC; SV: sample 

volume; AR: adventitious root) 
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RESULTS AND DISCUSSION 

 

Isolation of PgSS2 and vector construction for Panax ginseng transformation 

The cDNA of PgSS2 gene was 1248-bp long and carried an open reading frame of 416 

amino acids. The amino acid sequence of the PgSS2 gene showed complete identity to 

previously registered squalene synthase (ACV88718). To further identify the function of 

PgSS2, functional expression of the gene was attempted. PgSS2 cDNA was inserted into the 

vector pCAMBIA3301 and expressed under the control of the 35S promoter in Panax 

ginseng (Figure 25). 

 

Establishment of an effective in vitro transformation system 

Embryogenic callus were selected from mutant adventitious root line (MCL1) that 

recently reported by Zhang et al. (2014) and were used for Agrobacterium infection (Figure 

26A, B). The genetic transformation method for Panax ginseng in my study was slightly 

modified the previous report (Chen et al. 2002, Choi et al. 2001). The binary vectors, 

pCAMBIA3301 and pCAMBIA3301 vector with both PgSS2 gene and the bar gene, were 

integrated into the chromosomal genome of plant cells, so that only transformed cells could 

survive and then further differentiate in differentiation medium supplemented with 3 mg/L 

phosphinothricin (PPT). Within 2 weeks of co-culture (Figure 26B), the infected callus 

produced somatic embryos on embryo selection medium (Figure 26C, D). The selected 

somatic embryos were transferred into shoot selection medium with 3 mg/L PPT (Figure 

26E), and then, the selected shoots were transferred into root induction medium with 3 mg/L 
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PPT (Figure 26F). To produce independent transgenic Panax ginseng lines, somatic embryos 

were detached from the transgenic embryogenic callus and cultured on shoot induction 

medium as described by Choi et al. (2001) and Lee et al. (2004). Ten PPT-resistant plant 

lines were generated on selection medium (Figure 27) and the integration of the transgene in 

these plants was confirmed by PAT test strip (Figure 28). 

 

Production of transgenic adventitious roots 

To investigate the transgene integration and the ginsenoside content in transgenic Panax 

ginseng, leaf and hypocotyl segments of non-transgenic and transgenic plantlets were 

cultured onto MS medium with 3% sucrose, 0.3% Gelrite and 3 mg/L indolebutyric acid 

(IBA), as previously reported by Lee et al. (2004). Transgenic adventitious roots were 

formed directly on the surfaces of leaf and hypocotyl segments after four weeks of culture 

(Figure 29). The induced transgenic adventitious roots were proliferated in flask culture 

(Figure 30). 

 

Molecular analysis of putative transgenic adventitious root 

The expression of PgSS2 and bar genes in transgenic adventitious roots was confirmed 

by RT-PCR. The PCR analysis showed clear bands for SS gene (340 bp) and bar gene (443 

bp) but no bands in the wild-type (Figure 31). Ten selected transgenic lines were analyzed by 

Southern hybridization (Figure 32). In case of SS probe, hybridization signal was detected in 

non-transgenic control plants and transgenic plants, because SS gene is endogenous gene and 
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might be consisted with a multicopy gene and/or large gene with several introns (Lee et al. 

2004). In case of bar probe, all of the 10 transgenic lines showed the hybridization signal but 

not in the non-transgenic control plants. The genomes of two of the transgenic plants carried 

one copy of the bar gene, and the other plants contained at least two copies of the gene. 

These results showed that the foreign genes are successfully integrated into the P. ginseng 

genome. In dicotyledonous plants, T-DNA integrates either at one locus or at several 

independent loci. In addition, multiple T-DNA copies frequently are formed at one locus, in 

either direct or inverted repeats (Kim et al. 2003). 

 

Accumulation of ginsenoside content (Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2 and Rd) in 

Panax ginseng overexpressing squalene synthase (PgSS2) gene 

The total ginsenoside contents in adventitious roots of transgenic P. ginseng were 

analyzed by HPLC. The chromatogram for 8 major ginsenosides among each transgenic cell 

lines was shown in Figure 33-42. The total contents of the 8 ginsenoside types were 

significantly enriched in the 5 transgenic lines compared to the mutant control (MCL1). The 

line SS 1 and 8 showed a 1.6-fold increase than the MCL1 (Figure 34; Figure 41). The line 

SS 2 showed a 1.5-fold increase than the MCL1 (Figure 35), and the line SS 5, SS 7 showed 

a 1.3-fold increase than the MCL1. However, in the line SS 4 and 5, the total contents of 

ginsenosides were less than that of the MCL1. The total contents of the 8 ginsenoside types 

(Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2 and Rd) obtained from the mutant control (MCL1), empty 

vector and the SS lines were 6.14 mg g-1, 6.07 mg g-1, 9.82 mg g-1, 9.06 mg g-1, 5.01 mg g-1, 
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4.37 mg g-1, 8.22 mg g-1, 6.46 mg g-1, 8.05 mg g-1, 9.75 mg g-1, 4.56 mg g-1, respectively. 

Overall, the highest total ginsenoside content was obtained in line SS 1 and 8 (Figure 43). 

   This study demonstrated that it is available to induce the hyperaccumulation of triterpene 

saponins by molecular breeding. The Agrobacterium-mediated transformation of SS gene in 

Panax ginseng showed that the total ginsenoside content of the transgenic plants was 

increased a 2-3 fold compared to the control (Lee et al. 2004). SS gene plays an important 

regulatory role in the biosynthesis of ciwujianosides in E. senticosus (Seo et al. 2005). 

Overexpression of PgSS2 gene by genetic transformation should be useful for the efficient 

production of pharmacologically important ginsenosides in Panax ginseng. 
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CONCLUSIONS 

 

The production of transgenic ginseng plants through somatic embryogenesis by using 

adventitious root explants can be applied to genetic transformation of Panax ginseng, 

although long time (about 8 months) is required for the production of transgenic plantlets 

from the explants. Improving the yield and quality of medicinal plants and crops that are the 

source of triterpene saponins has become an important issue. In this study, I established the 

Agrobacterium-mediated transformation of PgSS2 gene into Panax ginseng by using mutant 

adventitious roots as explants. Overexpression of PgSS2 gene should be useful for the mass 

production of ginsenosides of triterpene saponins in Panax ginseng by genetic 

transformation. Metabolic engineering of Panax ginseng through the transgenic adventitious 

root culture can be an important technique to upgrade medicinal value of roots and efficient 

production of secondary metabolites from roots. This transformation method may facilitate 

the improvement of Panax ginseng in terms of the accumulation levels of ginsenoside. The 

combination of mutation technique by γ-irradiation, plant regeneration by tissue cultures and 

genetic transformation may be an effective way to develop new cultivars of Panax ginseng. 
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Figure 25. TA cloning of squalene synthase gene from Panax ginseng adventitious root and 

T-DNA region of binary vector (pCAMBIA3301-PgSS2) construct used for 

Agrobacterium-mediated transformation. 
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Figure 26. Transformation procedure of Panax ginseng adventitious root. (A) Embryogenic 

callus induced from mutant adventitious roots; (B) Infected and co-cultivated embryogenic 

callus; (C) Embryo induction from embryogenic callus; (D, E) Germination and shoot 

elongation (D, scale bar = 2mm); (F) Root induction (scale bar = 1cm). 
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Figure 27. Phosphinothricin-resistant plant lines generated from Panax ginseng adventitious 

roots. WT, non-transgenic control plant; Empty vector , transgenic plants with empty vector; 

SS1-SS9, transgenic plant lines (Scale bar = 1cm).  
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Figure 28. PAT test strip analysis of transformants. WT, non-transgenic control plant; Empty 

vector , transgenic plants with empty vector; SS1-SS9, transgenic plant lines. 
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Figure 29. Adventitious root induction from transgenic Panax ginseng shoot on MS medium 

supplemented with 3 mg/L IBA. WT, non-transgenic control plant; Empty vector , transgenic 

plants with empty vector; SS1-SS9, transgenic plant lines. 
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Figure 30. Adventitious root proliferation from transgenic Panax ginseng shoot on MS 

medium supplemented with 2 mg/L NAA and 0.25 mg/L IAA. WT, non-transgenic control 

plant; Empty vector , transgenic plants with empty vector; SS1-SS9, transgenic plant lines. 
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Figure 31. Transgene expression in wild type and transgenic plant lines of P. ginseng. WT, 

non-transgenic control plant; Empty vector , transgenic plants with empty vector; SS1-SS9, 

transgenic plant lines. 
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Figure 32. Southern blot analysis of transgenic P. ginseng. Genomic DNAs extracted from 

ten different transgenic P. ginseng lines. Genomic DNA (10 μg) was digested with the 

restriction enzymes (BglII), separated on 1% agarose gel, transferred to nylon membrane, 0.3 

kb SS gene and 0.4 kb bar gene fragment was used as a probe for Southern blot hybridization. 

WT, non-transgenic control plant; Empty vector , transgenic plants with empty vector; 

SS1-SS9, transgenic plant lines. 
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Figure 33. Typical chromatograms and ginsenoside content obtained from the standard, 

mutant control (MCL1) and transgenic Panax ginseng with empty vector.  
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Figure 34. Typical chromatograms and ginsenoside content obtained from the standard 

solution, mutant control (MCL1) and transgenic Panax ginseng line SS-1. The ginsenosides 

were extracted from adventitious roots cultured in the flask.  
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Figure 35. Typical chromatograms and ginsenoside content obtained from the standard 

solution, mutant control (MCL1) and transgenic Panax ginseng line SS-2. The ginsenosides 

were extracted from adventitious roots cultured in the flask.  
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Figure 36. Typical chromatograms and ginsenoside content obtained from the standard 

solution, mutant control (MCL1) and transgenic Panax ginseng line SS-3. The ginsenosides 

were extracted from adventitious roots cultured in the flask.  
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Figure 37. Typical chromatograms and ginsenoside content obtained from the standard 

solution, mutant control (MCL1) and transgenic Panax ginseng line SS-4. The ginsenosides 

were extracted from adventitious roots cultured in the flask.  
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Figure 38. Typical chromatograms and ginsenoside content obtained from the standard 

solution, mutant control (MCL1) and transgenic Panax ginseng line SS-5. The ginsenosides 

were extracted from adventitious roots cultured in the flask.  
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Figure 39. Typical chromatograms and ginsenoside content obtained from the standard 

solution, mutant control (MCL1) and transgenic Panax ginseng line SS-6. The ginsenosides 

were extracted from adventitious roots cultured in the flask.  
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Figure 40. Typical chromatograms and ginsenoside content obtained from the standard 

solution, mutant control (MCL1) and transgenic Panax ginseng line SS-7. The ginsenosides 

were extracted from adventitious roots cultured in the flask.  
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Figure 41. Typical chromatograms and ginsenoside content obtained from the standard 

solution, mutant control (MCL1) and transgenic Panax ginseng line SS-8. The ginsenosides 

were extracted from adventitious roots cultured in the flask.  
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Figure 42. Typical chromatograms and ginsenoside content obtained from the standard 

solution, mutant control (MCL1) and transgenic Panax ginseng line SS-9. The ginsenosides 

were extracted from adventitious roots cultured in the flask.  
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Figure 43. Total ginsenoside content of the mutant control (MCL1) and transgenic lines of 

Panax ginseng. MCL1: non-transformed mutant control, Empty vector: transgenic Panax 

ginseng with empty vector, SS-1 – SS-9: transgenic Panax ginseng lines.  
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