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<Abstract>

TERM RANK PRESERVERS

BETWEEN DIFFERENT
FUZZY MATRIX SPACES

In this paper we consider linear transformations from m×n fuzzy matrices

into p× q fuzzy matrices that preserve term rank. We study linear transfor-

mation that preserve term rank between different fuzzy matrix spaces. This

results extend the results on the linear transformation from m × n binary

Boolean matrices into p×q binary Boolean matrices that preserve term rank.

The term rank of a matrix A is the minimal number k such that all the

nonzero entries of A are contained in h rows and k − h columns. The term

rank of a matrix A is denoted by τ(A).

Let R be the field of reals, let F = {α ∈ R|0≤ α ≤1} denote a subset of

reals. Define a + b = max{a, b} and a · b = min{a, b} for all a, b ∈ F . Thus

(F , +, ·) is a commutative antinegative semiring. Then (F , +, ·) is called a

fuzzy semiring.

For a linear transformation T : Mm,n(F) → Mp,q(F) , first, we say that

T preserves term rank k if τ(T (X)) = k whenever τ(X) = k for all X ∈
Mm,n(F). Second, T strongly preserves term rank k provided that τ(T (X)) =

k if and only if τ(X) = k for all X ∈ Mm,n(F). Finally, we say that T

preserves term rank if it preserves term rank k for every k(≤ m).

We characterize the linear transformation that preserves term rank of

fuzzy matrices. The following is the main theorem:

Theorem. Let T : Mm,n(F) →Mp,q(F) be a linear transformation. Then

the following are equivalent:

1. T preserves term rank;

2. T preserves term rank k and term rank h, with 1 ≤ k < h ≤ m ≤ n

and k + 1 ≤ m;

3. T strongly preserves term rank g, with 1 ≤ g ≤ m ≤ n;

4. T is of the form : T (X) = P [(X ◦B)⊕O]Q or P [(X ◦ B)t ⊕O]Q for

some permutation matrices P and Q.



1 Introduction

There are many papers on linear operators on a matrix space that preserve matrix

functions over various algebraic structures. But there are few papers of linear

transformations from one matrix space into another matrix space that preserve

matrix functions over an algebraic structure. In this paper we consider linear

transformations from m×n fuzzy matrices into p×q fuzzy matrices that preserve

term rank.

A semiring [2] is a set S equipped with two binary operations + and · such

that (S, +) is a commutative monoid with identity element 0 and (S, ·) is a monoid

with identity element 1. In addition, the operations + and · are connected by

distributivity of · over +, and 0 annihilates S.

Hereafter, S will be denote an arbitrary commutative and antinegative semir-

ing. For all x, y ∈ S, we supress the dot of x · y, and simply write xy. Let

Mm,n(S) and Mp,q(S) be the set of all m×n and p× q matrices respectively with

entries in a S. Algebraic operations on Mm,n(S) and Mp,q(S) are defined as if the

underlying scalars were in a field.

The term rank, τ(A), of a matrix A is the minimal number k such that all

the nonzero entries of A are contained in h rows and k − h columns. Term rank

plays a central role in combinatorial matrix theory and has many applications in

network and graph theory (see [4]). And the line means rows or columns.

From now on we will assume that 2 ≤ m ≤ n. It follows that 1 ≤ τ(A) ≤ m

for all nonzero A ∈Mm,n(S).

Let N(r,s)
k denote the set of all matrices in Mr,s(S) whose term rank is k.
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Let T : Mm,n(S) → Mp,q(S) be a linear transformation. If f is a function

defined onMm,n(S) and onMp,q(S), then T preserves the function f if f(T (A)) =

f(A) for all A ∈ Mm,n(S). If X is a subset of Mm,n(S) and Y is a subset of

Mp,q(S), then T preserves the pair (X,Y) if A ∈ X implies T (A) ∈ Y. Further,

T strongly preserves the pair (X,Y) if A ∈ X if and only if T (A) ∈ Y. Further,

we say that T (strongly) preserves term rank k if T (strongly) preserves the pair

(N(r,s)
k ,N(p,q)

k ).

Beasley and Pullman ([2]) have characterized linear operators on the m×n

Boolean matrices that preserve term rank, and the following are main results of

their work: for a linear operator on the m×n Boolean matrices,

T preserves term rank if and only if T preserves term ranks 1 and 2; (1.1)

T preserves term rank if and only if T strongly preserves term rank 1 or m.

(1.2)

Kang, Song and Beasley ([5]) also have characterized linear operators on the m×n

matrices over commutative antinegative semiring that preserve term rank, and

the following are main results of their work: for a linear operator on the m×n

commutative antinegative semiring matrices,

T preserves term rank if and only if T preserves term ranks 1 and k. (1.3)

Song and Beasley ([7]) have obtained the characterizations of the linear trans-

formation from the m× n Boolean matrices into p× q Boolean matrices.

Note that if 1 ≤ k ≤ m ≤ n and T : Mm,n(S) → Mp,q(S) preserves term rank

k then necessarily k ≤ min(p, q).

In this paper, we extend the results of Song and Beasley ([7]) to the fuzzy

matrices. A sectional summary is as follows: Some definitions and preliminaries
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are presented in Section 2. Section 3 generalizes the result in ([7]) by showing

that linear transformation T from m×n fuzzy matrices into p× q fuzzy matrices

preserves term rank if and only if T preserves term ranks k and h, where 1 ≤ k <

h ≤ m ≤ n. And we have other characterizations.
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2 Preliminaries

In this section, we give some definitions and basic results for our main results.

Definition 2.1. A semiring S consist of a set S and two binary operations,

addition and multiplication, such that ;

• S is an Abelian monoid under addition (identity denoted by 0) ;

• S is a semigroup under multiplication (identity, if any, denoted by 1);

• multiplication is distributive over addition on both sides ;

• s0 = 0s = 0 for all s ∈ S

In particular, a semiring S is called antinegative if 0 is the only element to

have an additive inverse.

The following are some examples of antinegative semirings which occur in

combinatorics. Let B = {0, 1}. Then (B, +, ·) is an antinegative semiring (the

binary Boolean semiring) if arithmetic in B follows the usual rules except that

1 + 1 = 1. And Z+, the nonnegative integers, is an antinegative semiring too.

Definition 2.2. Let R be the field of reals, let F = {α ∈ R|0≤ α ≤1} denote a

subset of reals. Define

a + b = max{a, b} and a · b = min{a, b}
for all a, b ∈ F . Thus (F , +, ·) is a commutative antinegative semiring. Then

(F , +, ·) is called a fuzzy semiring.

Let Mm,n(F) denote the set of all m × n matrices with entries in a fuzzy

semiring F . We call a matrix in Mm,n(F) as a fuzzy matrix.
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Definition 2.3. The matrix A(m,n) denotes a matrix in Mm,n(F), O(m,n) is the

m × n zero matrix, In is the n × n identity matrix, I
(m,n)
k = Ik ⊕ Om−k,n−k, and

J (m,n) is the m × n matrix all of whose entries are 1. Let E
(m,n)
i,j be the m × n

matrix whose (i, j)th entry is 1 and whose other entries are all 0, and we call

E
(m,n)
i,j a cell. An m× n matrix L(m,n) is called a full line matrix if

L(m,n) =
n∑

l=1

E
(m,n)
i,l or L(m,n) =

m∑

k=1

E
(m,n)
k,j

for some i ∈ {1, . . . , m} or for some j ∈ {1, . . . , n}; R
(m,n)
i =

n∑
l=1

E
(m,n)
i,l is the

ith full row matrix and C
(m,n)
j =

m∑
k=1

E
(m,n)
k,j is the jth full column matrix. We

will suppress the subscripts or superscripts on these matrices when the orders

are evident from the context and we write A, O, I, Ik, J , Ei,j, L, Ri and Cj

respectively.

Definition 2.4. A line of matrix A ∈ Mm,n(F) is a row or a column of the

matrix A.

Definition 2.5. A matrix A ∈ Mm,n(F) has term rank k (τ(A) = k) if the

least number of lines needed to include all nonzero elements of A is equal to k.

Lemma 2.6. For matrices A and B in Mm,n(F), we have τ(A + B) ≤ τ(A) +

τ(B).

Proof. If τ(A) = r, τ(B) = s, then there exist r lines for A and s lines for B

which covers all nonzero entries of A and B respectively. If these lines are all

different, then τ(A+B) = r+s. But if there were the same lines for the covering
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of the nonzero entries for A and B, then τ(A + B) < r + s = τ(A) + τ(B). Thus

τ(A + B) ≤ τ(A) + τ(B).

Lemma 2.7. For matrices A and B in Mm,n(F), we have τ(A) ≤ τ(A + B).

Proof. If τ(A) = r, then there exist r lines that cover all nonzero entries of A.

If these lines cover all nonzero entries of B, then τ(A) = τ(A + B). But if not,

τ(A) < τ(A + B). Thus, τ(A) ≤ τ(A + B)

Definition 2.8. If A and B are matrices in Mm,n(F), we say that B dominates

A (written A v B or B w A) if bi,j = 0 implies ai,j = 0 for all i and j. This

provides a reflexive and transitive relation on Mm,n(F).

Lemma 2.9. For matrices A and B in Mm,n(F), A v B implies that τ(A) ≤
τ(B).

Proof. If τ(B) = r, then there exist r lines that cover all nonzero entries of B.

Since A v B, these lines cover all nonzero entries of A. Thus τ(A) ≤ r = τ(B).

Definition 2.10. For any matrix A and lists L1 and L2 of row and column indices

respectively, A(L1 | L2) denotes the submatrix formed by omitting the rows L1 and

columns L2 from A and A[L1 | L2] denotes the submatrix formed by choosing the

rows L1 and columns L2 from A.
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Definition 2.11. For matrices A and B in Mm,n(F), the matrix A ◦ B denotes

the Hadamard or Schur product. That is, the (i, j)th entry of A◦B is ai,jbi,j.

Definition 2.12. If F is a fuzzy semiring, 1 ≤ m,n and 1 ≤ p, q, and T :

Mm,n(F) → Mp,q(F), then T is a (P, Q, B)-block-transformation if there are

permutation matrices P ∈ Mp(F) and Q ∈ Mq(F), and B ∈ Mm,n(F) with bi,j

are nonzero, such that

• m ≤ p and n ≤ q, and T (A) = P [(A ◦B)⊕O]Q for all A ∈Mm,n(F) or

• m ≤ q and n ≤ p, and T (A) = P [(A ◦B)t ⊕O]Q for all A ∈Mm,n(F).

Definition 2.13. If T : Mm,n(F) →Mp,q(F) is a (P, Q, B)-block-transformation

and B = J , then T is a (P,Q)-block-transformation.

7



3 Characterizations of term rank preservers of

fuzzy matrices.

In this section, we give the lemmas and theorems for the linear transformation

that preserve term rank of fuzzy matrices. We also give suitable example. As

their results, we have characterization of term rank preservers of fuzzy matrices

between different fuzzy matrix spaces, which are contained in Theorem 3.18.

These results extend those results Boolean matrix in [7].

Definition 3.1. For a linear transformation T : Mm,n(F) → Mp,q(F) , we say

that T

(1) preserves term rank k if τ(T (X)) = k whenever τ(X) = k for all X ∈
Mm,n(F), or equivalently if T preserves the pair (N(r,s)

k ,N(p,q)
k );

(2) strongly preserves term rank k if τ(T (X)) = k if and only if τ(X) =

k for all X ∈ Mm,n(F), or equivalently if T strongly preserves the pair

(N(r,s)
k ,N(p,q)

k );

(3) preserves term rank if it preserves term rank k for every k(≤ m).

Example 3.2. Let T : M2,3(F) → M3,4(F) is a (P, Q,B)-block-transformation,

and

P =




0 0 1

1 0 0

0 1 0




, Q =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




, B =




1
4

1
3

1
2

1
5

1
2

1
6


 .
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Then for A =




1
2

1
3

1

0 1
5

1
3


 ∈M2,3(F), we have A ◦B =




1
4

1
3

1
2

0 1
5

1
6




and T (A) = P [(A ◦B)⊕O]Q = P [




1
4

1
3

1
2

0 1
5

1
6


⊕ [O]1×1]Q

=P




1
4

1
3

1
2

0

0 1
5

1
6

0

0 0 0 0




Q =




0 0 0 0

1
4

1
3

0 1
2

0 1
5

0 1
6




.

Thus τ(A) = 2, and τ(T (A)) = 2.

Lemma 3.3. Let 1 ≤ m,n and 1 ≤ p, q and T : Mm,n(F) →Mm,n(F). If T is a

(P,Q, B)-block-transformation, then T strongly preserves term rank k.

Proof. Assume that T is a (P,Q, B)-block-transformation, and A∈ Mm,n(F)

with τ(A) = k with 1 ≤ k ≤ m. Then T (A) = P [(A ◦ B) ⊕ O]Q or T (A) =

P [(A ◦B)t ⊕O]Q.

Case 1. Let T (A) = P [(A◦B)⊕O]Q. Since B has no zeros, τ(A◦B) = τ(A).

And τ((A ◦B)⊕O) = τ(A ◦B). Moreover the permuting rows and columns does

not change the term rank, τ(T (A)) = τ(P [(A◦B)⊕O]Q) = τ((A◦B)⊕O). Thus

T preserves term rank k. If τ(T (A)) = k, then τ(T (A)) = τ(P [(A ◦B)⊕O]Q) =

τ((A ◦B)⊕O) = τ(A ◦B) = τ(A).Thus τ(A) = k. That is, T strongly preserves

term rank k.

Case 2. Let T (A) = P [(A ◦ B)t ⊕ O]Q. As in Case 1, a parallel argument

shows the same results. That is, T strongly preserves term rank k.

Theorem 3.4. Let 1 ≤ m,n and 1 ≤ p, q and T : Mm,n(F) →Mm,n(F). Then T

strongly preserves term rank 1 if and only if T is a (P, Q,B)-block-transformation.

(Necessarily, either m ≤ p and n ≤ q, or m ≤ q and n ≤ p.)

9



Proof. If T is a (P, Q, B)-block-transformation, then T strongly preserves term

rank 1 by Lemma 3.3.

Assume that T strongly preserves term rank 1. Then, the image of each line

in Mm,n(F) is a line in Mm,n(F). We may assume that either T (R
(m,n)
1 ) v R

(p,q)
1

or T (R
(m,n)
1 ) v C

(p,q)
1 .

Case 1. T (R
(m,n)
1 ) v R

(p,q)
1 . Suppose that T (C

(m,n)
j ) v R

(p,q)
i . Then, since

E
(m,n)
1,j is in both R

(m,n)
1 and C

(m,n)
j and since T (E

(m,n)
1,j ) 6= O, we must have

i = 1. But then, for j 6= k T (E
(m,n)
2,j + E

(m,n)
1,k ) v R

(m,n)
1 and hence, has term

rank 1. But τ(E
(m,n)
2,j + E

(m,n)
1,k ) = 2, a contradiction. Thus the image of any

column is dominated by a column. Similarly, the image of any row is dominated

by a row. Further, since the sum of two rows (columns) has term rank 2, the

image of distinct rows (columns) must be dominated by distinct columns. Let

φ : {1, · · ·m} → {1, · · · , p} be a mapping defined by φ(i) = j if T (R
(m,n)
i ) v R

(p,q)
j

and define θ : {1, · · ·n} → {1, · · · , p} by θ(i) = j if T (C
(m,n)
i ) v C

(p,q)
j . Then, it

is easily seen that φ and θ are one-to-one mappings, and hence, m ≤ p and n ≤ q.

Let φ′ : {1, · · · , p} → {1, · · · , p} and θ′ : {1, · · · , q} → {1, · · · , q} be one-to-one

mappings such that φ′ |{1,···m}= φ and θ′ |{1,···n}= θ. Let Pφ′ and Qθ′ denote the

permutation matrices corresponding to the permutations φ′ and θ′.

In this case we have that m ≤ p and n ≤ q, there is some nonzero bi,j ∈ F
such that B = [bi,j] , T (Ei,j) = bi,j(Pφ′ [Er,s ⊕O]Qθ′) for every cell Ei,j. Thus,

T (A) = T

(
m∑

i=1

n∑
j=1

ai,jEi,j

)
=

m∑
i=1

n∑
j=1

ai,jT (Ei,j)

=
m∑

i=1

n∑
j=1

ai,jbi,j(P [Ei,j ⊕O]Q) = P [(A ◦B)⊕O]Q

for every A ∈Mm,n(F). That is, T is a (P, Q, B)-block-transformation.

Case 2. T (R
(m,n)
1 ) v C

(p,q)
1 . As in case 1, a parallel argument shows that

10



m ≤ q and n ≤ p. Then we have T (Ei,j) = bi,j(Pφ′ [Ei,j ⊕ O]tQθ′) for all Ei,j.

Thus

T (A) = T

(
m∑

i=1

n∑
j=1

ai,jEi,j

)
=

m∑
i=1

n∑
j=1

ai,jT (Ei,j)

=
m∑

i=1

n∑
j=1

ai,jbi,j(P [Ei,j ⊕O]tQ) = P [(A ◦B)t ⊕O]Q

for every A ∈Mm,n(F), and consequently that T is a (P, Q, B)-block-transformation.

Lemma 3.5. Let 2 ≤ k ≤ m ≤ n. If T : Mm,n(F) →Mm,n(F) is a linear trans-

formation that preserves term rank k and term rank 1, then T strongly preserves

term rank 1.

Proof. Case 1. Assume that k=2. For A ∈Mm,n(F) with τ(A) = 1, τ(T (A)) = 1.

For B ∈Mm,n(F) with τ(T (B)) = 1, assume τ(B) 6= 1. Then τ(B) ≥ 2. But

τ(B) 6= 2 since τ(B) = 2 implies τ(T (B)) = 2, a contradiction. Thus τ(B) ≥ 3.

Let B1 v B such that τ(B1) = 2 and B = B1+B2 with τ(B2) ≥ 1. Then T (B1) v
T (B1) + T (B2) = T (B1 + B2) = T (B). Thus 2 = τ(T (B1)) ≤ τ(T (B)) = 1 by

Lemma 2.9. It leads a contradiction. That is, T strongly preserves term rank 1.

Case 2. Assume that k ≥ 3. Suppose a term rank 2 matrix is mapped to

a term rank 1 matrix. Without loss of generality, τ(T (E1,1 + E2,2)) = 1. But

then, since T preserves term rank 1, τ(T (E1,1 + E2,2 + E3,3 + · · · + Ek,k)) =

τ(T (E1,1 + E2,2) + T (E3,3) + · · · + T (Ek,k)) ≤ τ(T (E1,1 + E2,2)) + τ(T (E3,3)) +

· · ·+ τ(T (Ek,k))) = 1 + (k − 2) < k, a contradiction. Thus, T strongly preserves

term rank 1.
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Corollary 3.6. Let 1 < k ≤ m,n and 1 ≤ p, q and T : Mm,n(F) → Mm,n(F) be

a linear transformation. Then T preserves term rank 1 and term rank k if and

only if T is a (P,Q, B)-block-transformation.

Proof. By Lemma 3.5, T strongly preserves term rank 1. By Theorem 3.4, the

corollary follows.

Lemma 3.7. Let 2 ≤ k ≤ m ≤ n. Let T : Mm,n(F) → Mm,n(F) be a linear

transformation that preserves term rank k. If T does not preserve term tank 1,

then there is some term rank 1 matrix whose image has term rank at least 2.

Proof. Suppose that T does not preserve term rank 1 and τ(T (A)) ≤ 1 for all

A with τ(A) = 1. Then, there is some cell Ei,j such that T (Ei,j) = O. Without

loss of generality, assume that T (E1,1) = O. Since τ(E1,1 + E2,2 + · · ·+ Ek,k) = k

and T preserves term rank k, we have τ(T (E2,2 +E3,3 + · · ·+Ek,k)) = τ(T (E1,1 +

E2,2 + · · · + Ek,k)) = k. Let X = T (E2,2 + · · · + Ek,k) then we can choose a

set of cells C = {F1, F2, · · · , Fk} such that X w Fi for all i = 1, · · · , k, and

τ(F1 + F2 + · · · + Fk) = k. Since T (E2,2 + · · · + Ek,k) = X, there is some cell in

{E2,2, · · · , Ek,k} whose image under T dominates two cells in C, a contradiction.

This contradiction establishes the lemma.

Lemma 3.8. Let 1 ≤ k ≤ m ≤ n. Let T : Mm,n(F) → Mm,n(F) be a linear

transformation that preserves term rank k. If A ∈ Mm,n(F) and τ(A) ≤ k then

τ(T (A)) ≤ k.

Proof. If τ(A) = k, then τ(T (A)) = k since T preserves term rank k. Suppose

that τ(A) = h < k, and τ(T (A)) > k. Then there exist a matrix B such that
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τ(A+B) = k and hence τ(T (A+B)) = k, but by Lemma 2.7, k = τ(T (A+B)) =

τ(T (A) + T (B)) ≥ τ(T (A)) > k, a contradiction. Thus τ(T (A)) ≤ k.

Recall that the matrix J is the matrix whose entries are all ones.

Lemma 3.9. Let 2 ≤ k ≤ m ≤ n and T : Mm,n(F) → Mm,n(F) be a linear

transformation that preserves term rank k. If T does not preserve term rank 1,

then τ(T (J)) ≤ k + 2.

Proof. By Lemma 3.7, if T does not preserve term rank 1, then there is some term

rank 1 matrix whose image has term rank 2 or more. Without loss of generality,

we may assume that T (E1,1 + E1,2) w b1,1E1,1 + b2,2E2,2 with all bi,j is nonzero.

Suppose that τ(T (J)) ≥ k + 3. Then, τ(T (J)[3, · · · , p|3, · · · , q]) ≥ k −
1. Without loss of generality, we may assume that T (J)[3, · · · , p|3, · · · , q] w
b3,3E3,3 + b4,4E4,4 + · · · + bk+1,k+1Ek+1,k+1, all bi,j are nonzero. Thus, there are

k−1 cells, F3, F4, · · · , Fk+1 such that T (F3+F4+· · ·+Fk+1) w b3,3E3,3+b4,4E4,4+

· · ·+bk+1,k+1Ek+1,k+1. Then, T (E1,1 +E1,2 +F3 +F4 + · · ·+Fk+1) w D ◦Ik+1 with

di,i are entries of D and nonzero. But, τ(E1,1 + E1,2 + F3 + F4 + · · ·+ Fk+1) ≤ k

while τ(T (E1,1 + E1,2 + F3 + F4 + · · · + Fk+1)) ≥ k + 1, a contradiction. Thus,

τ(T (J)) ≤ k + 2.

Lemma 3.10. Let 1 ≤ k, k + 3 ≤ h ≤ m ≤ n. Let T : Mm,n(F) → Mm,n(F)

be a linear transformation that preserves term rank k and term rank h, then T

preserves term rank 1.

Proof. Suppose that T does not preserve term rank 1. By Lemma 3.7, there is

some term rank 1 matrix whose image has term rank at least 2. Let A be such

13



a term rank 1 matrix. Then, A is dominated by a row or column and the image

of the sum of two cells in that line has term rank at least two. Without loss of

generality, we may assume that T (E1,1+E1,2) w b1,1E1,1+b2,2E2,2, bi,j are nonzero.

Now, by Lemma 3.9, if B = T (C) is in the image of T , τ(B) ≤ k + 2 < h. But if

we take B = T (Ih), then T (Ih) must have term rank h, a contradiction.

That is, τ(T (A)) ≤ 1. Since A was an arbitrary term rank 1 matrix, T

preserves term rank 1.

Lemma 3.11. Let 1 ≤ k ≤ m ≤ n. If T : Mm,n(F) → Mm,n(F) is a linear

transformation that preserves term rank k and term rank k + 2, then T strongly

preserves term rank k + 1.

Proof. Let A ∈Mm,n(F).

Case 1. Suppose that τ(A) = k+1 and τ(T (A)) ≥ k+2. Let A1, A2, · · · , Ak+1

be matrices of term rank 1 such that A = A1 + A2 + · · ·+ Ak+1. Without loss of

generality we may assume that T (A) w b1,1E1,1 + b2,2E2,2 + · · ·+ bk+2,k+2Ek+2,k+2

with all bi,j are nonzero, and since the image of some Ai must have term rank

at least 2, we may assume that τ(T (A1 + A2 + · · · + Ai)) ≥ i + 1, for every

i = 1, 2, · · · k + 1. But then τ(A1 + A2 + · · ·+ Ak) = k while τ(T (A1 + A2 + · · ·+
Ak)) ≥ k + 1, a contradiction, Thus if τ(A) = k + 1, τ(T (A)) ≤ k + 1.

Case 2. Suppose that τ(A) = k + 1 and τ(T (A)) = s ≤ k. Without loss of

generality, we may assume that A = b1,1E1,1 + b2,2E2,2 + · · · + bk+1,k+1Ek+1,k+1

and T (A) w b1,1E1,1 + b2,2E2,2 + · · · + bs,sEs,s. Then there are s members of

{T (b1,1E1,1), b2,2T (E2,2), · · · , T (bk+1,k+1Ek+1,k+1)} whose sum dominates b1,1E1,1+

b2,2E2,2 + · · ·+ bs,sEs,s. Say, without loss of generality, that T (b1,1E1,1 + b2,2E2,2 +

· · ·+bs,sEs,s) w b1,1E1,1+b2,2E2,2+· · ·+bs,sEs,s. Now, τ(A+bk+2,k+2Ek+2,k+2) = k+
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2 so that τ(T (A+bk+2,k+2Ek+2,k+2)) = k+2. But since τ(T (A+bk+2,k+2Ek+2,k+2)) =

τ((T (A) + T (bk+2,k+2Ek+2,k+2)) ≤ τ(T (A)) + τ(T (bk+2,k+2Ek+2,k+2)), it follows

that τ(T (bk+2,k+2Ek+2,k+2)) ≥ k + 2− s and there are s members of {T (b1,1E1,1),

T (b2,2E2,2), · · · , T (bk+1,k+1Ek+1,k+1)} whose sum together with T (bk+2,k+2Ek+2,k+2)

has term rank k+2, say τ(T (b1,1E1,1+b1,1E2,2+· · ·+bs,sEs,s+bk+2,k+2Ek+2,k+2)) =

k + 2. Since s ≤ k, τ(b1,1E1,1 + b2,2E2,2 + · · ·+ bs,sEs,s + bk+2,k+2Ek+2,k+2) ≤ k + 1

and τ(T (b1,1E1,1 + b2,2E2,2 + · · · + bs,sEs,s + bk+2,k+2Ek+2,k+2)) = k + 2. By Case

1, we again arrive at a contradiction.

Therefore T strongly preserves term rank k + 1.

Lemma 3.12. Let 1 ≤ k ≤ r, s. If τ(b1,1E1,1 + · · · + bk,kEk,k + A) ≥ k + 1

with all bp,q are nonzero and A[k + 1, · · · , r|k + 1, · · · , s] = O, then there is some

i, 1 ≤ i ≤ k, such that τ(b1,1E1,1 + · · · + bi−1,i−1Ei−1,i−1 + bi+1,i+1Ei+1,i+1 + · · · +
bk,kEk,k + A) ≥ k + 1.

Proof. Suppose that B = b1,1E1,1 + · · · + bk,kEk,k + A with all bp,q are nonzero

and τ(B) ≥ k + 1. Then there are k + 1 cells F1, F2, · · · , Fk+1 such that B w
F1 +F2 + · · ·+Fk+1 and τ(F1 +F2 + · · ·+Fk+1) = k +1. If F1 +F2 + · · ·+Fk+1 w
Ik ⊕O then one cell Fj must be a cell Ea,b where a, b ≥ k + 1, which contradicts

the assumption A[k + 1, · · · , r|k + 1, · · · , s] = O. Thus F1 + F2 + · · · + Fk+1

does not dominate Ik ⊕ O. That is, there is some i, 1 ≤ i ≤ k, such that

τ(b1,1E1,1 + · · ·+ bi−1,i−1Ei−1,i−1 + bi+1,i+1Ei+1,i+1 + · · ·+ bk,kEk,k + A) ≥ k + 1.

Lemma 3.13. Let 2 ≤ k + 1 ≤ m ≤ n. If T : Mm,n(F) → Mm,n(F) is a linear

transformation that preserves term rank k and term rank k + 1, then T preserves

term rank 1.
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Proof. If k = 1, the lemma holds. Suppose that k ≥ 2.

Suppose that T does not preserve term rank 1. Then there is some matrix of

term rank 1 whose image has term rank at least 2. Without loss of generality, we

may assume that T (E1,1 + E1,2) w b1,1E1,1 + b2,2E2,2 with all bi,j are nonzero. By

Lemma 3.9 we have that τ(T (J)) ≤ k + 2. Since T preserves term rank k + 1,

τ(T (J)) ≥ k + 1.

Thus, τ(T (J)) = k + i for either i = 1 or i = 2. Now, we may assume

that for some r, s with r + s = k + i, T (J)[r + 1, · · · , p|s + 1, · · · , q] = O. Fur-

ther, we may assume, without loss of generality, that there are k + i term rank

1 matrices c1F1, c2F2, · · · , ck+iFk+i with all ci are nonzero such that T (clFl) w
b1,k+i−l+1El,k+i−l+1 for l = 1, · · · , k+i. Suppose the image of one of the term rank

1 matrices in c1F1, c2F2, · · · , ck+iFk+i dominates more than one cell in {b1,k+iE1,k+i,

b2,k+i−1E2,k+i−1, · · · , bk+1,iEk+1,i}. Say, without loss of generality, that T (c1F1) w
b1,k+iE1,k+i+b2,k+i−1E2,k+i−1, then, T (c1F1+c3F3+· · ·+ck+1Fk+1) w b1,k+iE1,k+i+

b2,k+i−1E2,k+i−1 + · · · + bk+1,iEk+1,i, a contradiction since τ(c1F1 + c3F3 + · · · +
ck+1Fk+1) ≤ k, and hence τ(T (c1F1+c3F3+· · ·+ck+1Fk+1)) ≤ k, and τ(b1,k+iE1,k+i+

b2,k+i−1E2,k+i−1+· · ·+bk+1,iEk+1,i) = k+1. It follows that for each j = 1, · · · , k+1,

if T (clFl) w bj,k+i−j+1Ej,k+i−j+1 then l = j since T (cjFj) w bj,k+i−j+1Ej,k+i−j+1 is

unique. Further, by permuting we may assume that

c1F1 + c2F2 + · · ·+ ckFk v




Jk Ok,n−k

Om−k,k Om−k,n−k


.

Now, let O 6= A ∈Mm,n(F) have term rank 1, and suppose that

A[1, 2, · · · , k|1, 2, · · · , n] = O and A[1, · · ·m|1, · · · , k] = O.

So that A =




Ok Ok,n−k

Om−k,k A1


.

If T (A)[k + 1, · · · , p|k + 1, · · · , q] = O, then, since τ(c1F1 + · · ·+ ckFk + A) =
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k+1, τ(T (c1F1+· · ·+ckFk+A)) = k+1. Applying Lemma 3.12, we have that there

is some j such that τ(T (c1F1 + · · · + cj−1Fj−1 + cj+1Fj+1 + · · · + ckFk + A)) =

k + 1. But τ(c1F1 + · · · + cj−1Fj−1 + cj+1Fj+1 + · · · + ckFk + A) = k while

τ(T (c1F1+ · · ·+cj−1Fj−1+cj+1Fj+1+ · · ·+ckFk +A)) = k+1, a contradiction. So

we can say that T (bk+1,k+11Ek+1,k+1)[k+1|k+1] 6= O and T (bk+1,k+2Ek+1,k+2)[k+

1|k + 2] 6= O. If T (bk,k+1Ek,k+1)[k + 1, · · · , p|k + 1, · · · , q] 6= O then τ(T (c1F1 +

· · · + ckFk + bk,k+1Ek,k+1)) ≥ τ(b1,k+1E1,k+1 + b2,kE2,k + b3,k−1E3,k−1 + · · · +

bk−1,3Ek−1,3 + bk,2Ek,2 + T (Ek,k+1)) ≥ k + 1, a contradiction since τ(c1F1 + · · ·+
ckFk + bk,k+1Ek,k+1) = k. Thus, T (bk,k+1Ek,k+1)[k + 1, · · · , p|k + 1, · · · , q] = O.

Suppose that (k, 1), (k, 2)and(k, k + 2), · · · , (k, q) entries of T (bk,k+1Ek,k+1) is

nonzero, then, τ(T (c1F1+· · ·+ck−1Fk−1+bk,k+1Ek,k+1+bk+1,k+1Ek+1,k+1)) ≥ k+1,

a contradiction, since τ(c1F1+· · ·+ck−1Fk−1+bk,k+1Ek,k+1+bk+1,k+1Ek+1,k+1) = k.

Consider T (c1F1 + · · ·+ck−1Fk−1 +bk,k+1Ek,k+1 +bk+1,k+2Ek+1,k+2). This must

have term rank k + 1 and dominates b1,k+1E1,k+1 + b2,kE2,k + · · ·+ bk−1,3Ek−1,3 +

bk+1,k+2Ek+1,k+2. Thus, by Lemma 3.12, there is some term rank 1 matrix in

{c1F1, · · · , ck−1Fk−1}, say cjFj such that τ(T (c1F1 + · · ·+ cj−1Fj−1 + cj+1Fj+1 +

· · · + ck−1Fk−1 + bk,k+1Ek,k+1 + bk+1,k+2Ek+1,k+2)) = k + 1. But τ(c1F1 + · · · +
cj−1Fj−1 + cj+1Fj+1 + · · · + ck−1Fk−1 + bk,k+1Ek,k+1 + bk+1,k+2Ek+1,k+2) = k, a

contradiction.

It follows that T must preserve term rank 1.

Lemma 3.14. Let 2 ≤ k ≤ m ≤ n. If T : Mm,n(F) → Mm,n(F) is a linear

transformation that strongly preserves term rank k, Then T preserves term rank

k − 1.

Proof. If k = 2, the lemma holds. Suppose that k ≥ 3.
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Let A ∈ Mm,n(F) and τ(A) = k − 1, and suppose that τ(T (A)) = s < k − 1.

Without loss of generality, we may assume that τ(T (E1,1 + · · ·+Ek−1,k−1)) = s <

k−1. Since τ(T (E1,1+· · ·+Ek,k)) = k, we have that τ(T (Ek,k)) ≥ k−s. Without

loss of generality we may assume that T (E1,1+· · ·+Ek,k) w b1,1E1,1+· · ·+bk,kEk,k

with all bi,j are nonzero and that T (Ek,k) w bt+1,t+1Et+1,t+1 + · · · + bk,kEk,k for

some t ≤ s. Then, there are t cells {Ei1,i1 , · · · , Eit,it} in {E1,1, · · · , Ek,k} such

that T (Ei1,i1 + · · ·+ Eit,it) w b1,1E1,1 + · · ·+ bt,tEt,t. Then T (Ei1,i1 + · · ·+ Eit,it +

Ek,k) w b1,1E1,1 + · · · + bk,kEk,k. Thus τ(T (Ei1,i1 + · · · + Eit,it + Ek,k)) = k. But

τ(E1,1 + · · · + Et,t + Ek,k) = t + 1 ≤ s + 1 < (k − 1) + 1 = k, which contradicts

the assumption of T . Hence τ(T (A)) ≥ k− 1. Further, τ(T (A)) ≤ k− 1, since T

strongly preserves term rank k. Thus, T preserves term rank k − 1.

Lemma 3.15. Let 2 ≤ k ≤ m ≤ n. If T : Mm,n(F) → Mm,n(F) is a linear

transformation that strongly preserves term rank k, then T preserves term rank

1.

Proof. By Lemma 3.14, T preserves term rank k−1. By Lemma 3.13, T preserves

term rank 1.

Lemma 3.16. Let 1 ≤ k < h ≤ m ≤ n and k + 1 ≤ m. If T : Mm,n(F) →
Mm,n(F) is a linear transformation that preserves term rank k and term rank h,

then T is a (P,Q, B)-block-transformation.

Proof. Case 1. If h = k + 1, T preserves term rank 1 by Lemma 3.13.

Case 2. Assume h = k + 2. By Lemma 3.11, T preserves term rank k + 1.

Thus, T preserves term rank 1 by Lemma 3.13.
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Case 3. If h ≥ k + 3, T preserves term rank 1 by Lemma 3.10.

Then T preserves term rank 1 by Cases 1,2 and 3. Thus, by Lemma 3.5, T

strongly preserves term rank 1. By Theorem 3.4, the lemma follows.

Lemma 3.17. Let 1 ≤ k ≤ m ≤ n. If T : Mm,n(F) → Mm,n(F) is a linear

transformation that strongly preserves term rank k, then T is a (P, Q,B)-block-

transformation.

Proof. By Lemma 3.15, T preserves term rank 1. By Lemma 3.5, T strongly

preserves term rank 1. By Theorem 3.4, the lemma follows.

This is the main theorem :

Theorem 3.18. Let T : Mm,n(F) → Mp,q(F) be a linear transformation. Then

the following are equivalent:

1. T preserves term rank;

2. T preserves term rank k and term rank h, with 1 ≤ k ≤ h ≤ m ≤ n and

k + 1 < m;

3. T strongly preserves term rank g, with 1 ≤ g ≤ m ≤ n;

4. T is a (P, Q,B)-block transformation.

Proof. It is obvious that 1 implies 2 and 3. And 4 implies 1, 2 and 3 by Lemma

3.3. In order to show that 2 implies 4, assume that T preserves term rank k and

term rank h, with 1 ≤ k < h ≤ m ≤ n. Thus, by Lemma 3.16, T is a (P,Q, B)-

block transformation. In order to show that 3 implies 4, if we apply Lemma 3.17,

T is a (P, Q, B)-block transformation.
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