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⟨Abstract⟩

Generalized Obata theorem

on a foliated Riemannian manifold

Let (M,gM ,F) be a complete, connected Riemannian manifold with a foliation F of

codimension q ≥ 2 and a bundle-like metric gM . Then (M,F) is transversally isometric

to (Sq(1/c),G), where Sq(1/c) is the q-sphere of radius 1/c in (q + 1)-dimensional

Euclidean space and G is a discrete subgroup of the orthogonal group O(q), if and only

if there exists a non-constant basic function f such that ∇Xdf = −c2fXb for all normal

vector fields X, where c is a positive constant. Moreover, when M admits a transversal

conformal field Ȳ , i.e., θ(Y )gQ = 2fY gQ, (fY ≠ 0), we study several applications of the

generalized Obata theorem.



1 Introduction

Let (M,gM) be a compact Einstein manifold of dimesion n ≥ 2 with constant

sectional curvature c2. Then M. Obata ([13]) proved that the following conditions (C1) ∼

(C4) are equivalent to each other:

(C1) M is isometric to a sphere Sn(1/c) with radius 1/c in the (n+1)-dimensional

Euclidean space.

(C2) M admits an infinitesimal non-isometric conformal transformation.

(C3) M admits a non-constant function f satisfying

∇2f = −c2fgM .

(C4) M admits a non-constant function f satisfying

∆f = nc2f.

In 2002, J. M. Lee and K. Richadson ([8]) proved that the equivalence between the

above conditions (C1) and (C4) for Riemannian foliations. That is,

Theorem 1.1 ([8]) Let (M,gM ,F) be a closed, connected Riemannian manifold with

a foliation F of codimension q and a bundle-like metric gM . Suppose that there exists

a positive constant c such that the transversal Ricci operator ρ∇ satisfies ρ∇(X) ≥

c2(q − 1)X for every normal vector field X. Then the smallest nonzero eigenvalue λB

of the basic Laplacian satisfies

λB ≥ c2q.
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The equality holds if and only if: (M,F) is transversally isometric to (Sq(1/c),G),

where G is the discrete subgroup of the orthogonal group O(q) acting on the q-sphere

Sq(1/c) with radius 1/c.

In 2008, S. D. Jung and M. J. Jung ([5]) proved the equivalence between (C1) and

(C2) for Riemannian foliations. That is,

Theorem 1.2 ([5]) Let (M,gM ,F) be as in Theorem 1.1 and ρ∇(X) ≥ σ∇

q X(σ∇ ≠ 0)

for any normal vector field X, where σ∇ is the transversal scalar curvature. If M admits

a transversal non-isometric conformal field, then (M,F) is transversally isometric to

(Sq(1/c),G), where G is the discrete subgroup of the orthogonal group O(q) acting on

the q-sphere Sq(1/c) with radius 1/c, where c2 = σ∇

q(q−1) .

In this thesis, we discuss the relationship between (C1) and (C3) for Riemannian fo-

liations, so called a generalized Obata theorem. Moreover, we study several applications

related to the generalized Obata theorem.

The thesis is organized as following: In Section 2, we review definitions and prop-

erties of a Riemannian foliation. In Section 3, we define the tensors E∇ and Z∇ on the

normal bundle Q as follows: E∇(X) = ρ∇(X) − σ∇

q X and Z∇(X,Y )Z = R∇(X,Y )Z −

σ∇

q(q−1)(gQ(Y,Z)X − gQ(X,Z)Y ) for any normal vector fields X,Y,Z. When M admits

a transversal conformal field, we prove the integral formulas about E∇ and Z∇, respec-

tively. In Section 4, we prove the equivalence between (C1) and (C3) for Riemannian

foliations. That is,
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Theorem 1.3 Let (M,gM ,F) be a complete, connected Riemannian manifold with a

foliation F of codimension q ≥ 2 and a bundle-like metric gM , and let c be a positive

real number. Then the following are equivalent:

(1) There exists a non-constant basic function f such that ∇Xdf = −c2fXb for all

normal vectors X, where Xb is the gM -dual form of X.

(2) (M,F) is transversally isometric to (Sq(1/c),G), where G is the discrete subgroup

of the orthogonal group O(q) acting on the q-sphere Sq(1/c) with radius 1/c in Euclidean

space Rq+1.

Consequently, we have the following theorem.

Theorem 1.4 Let (M,gM ,F) be a compact Riemannian manifold with a transversally

Einstein foliation of codimesion q ≥ 2 and a bundle-like gM . Then following conditions

(F1) ∼ (F4) are equivalent to each other:

(F1) (M,F) is transversally isometric to (Sq(1/c),G), where G is the discrete subgroup

of the orthogonal group O(q) acting on the q-sphere Sq(1/c) with radius 1/c in Euclidean

space Rq+1.

(F2) M admits a transversal non-isometric conformal field.

(F3) M admits a non-constant basic function f satisfying

∇Xdf = −c2fXb

for all normal vectors X, where Xb is the gM -dual form of X.
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(F4) M admits a non-constant basic function f satisfying

∆Bf = qc2f.

In the last Section, we study several applications of the generalized Obata theorem.
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2 Riemannian foliation

In this section, we review definitions and properties of Riemannian foliation. Let Mn+q

be a smooth manifold of dimension n + q. For the readers who study the foliated man-

ifolds, we give the proofs of theorems which are already known.

Definition 2.1 A family F ≡ {lα}α∈A of connected subsets of a manifold Mn+q is called

a n-dimensional (or codimension q) foliation if

(1) M = ∪αlα,

(2) lα ∩ lβ = ∅, for any α ≠ β,

(3) for any point p ∈ M , there exist a Cr−chart (ϕi, Ui) such that if Ui ∩ lα ≠ ∅, then

the connected component of Ui ∩ lα is homeomorphic to Ac, where

Ac = {(x, y) ∈ Rn ×Rq ∣y = constant}.

Here (ϕi, Ui) is called a distinguished (or foliated) chart.

Remark. From (3) in Definition 2.1, we know that on Ui ∩ Uj ≠ ∅, the coordinate

change ϕ−1
j ○ ϕi ∶ ϕ−1

i (Ui ∩Uj)→ ϕ−1
j (Ui ∩Uj) has the form

ϕ−1
j ○ ϕi(x, y) = (ϕij(x, y), γij(y)), (2.1)

where ϕij ∶ Rn+q → Rp is a differential map and γij ∶ Rq → Rq is a diffeomorphism.

Let (M,gM ,F) be a (n + q)-dimensional Riemannian manifold with a foliation F of

codimension q and a Riemannian metric gM . Let TM be the tangent bunlde of M , L

the tangent bundle of F and then L is the integrable subbundle of TM , i.e.,

X,Y ∈ ΓLÔ⇒ [X,Y ] ∈ ΓL.
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Let Q = TM/L be the corresponding normal bundle of F . Then the metric gM defines

a splitting σ in the exact sequence of vector bundles

0 // L // TM σ
// Qπoo // 0 , (2.2)

where π ∶ TM → Q is a projection and σ ∶ Q→ L⊥ is a bundle map satisfying π ○σ = id.

Thus gM = gL ⊕ gL⊥ induces a metric gQ on Q , that is,

gQ(s, t) = gM(σ(s), σ(t)) (2.3)

for any s, t ∈ ΓQ. So we have an identification L⊥ with Q via an isometric splitting

(Q,gQ) ≅ (L⊥, gL⊥).

Definition 2.2 A Riemannian metric gQ on Q of a foliation F is holonomy invariant

if

θ(X)gQ = 0 (2.4)

for any X ∈ ΓL. Here θ(X) is the transverse Lie derivative, which is defined by θ(X)s =

π[X,Ys], where Ys = σ(s).

Definition 2.3 A foliation F is Riemannian if there exists a holonomy invariant metric

gQ on Q. A metric gM is a bundle-like metric with respect to F if the induced metric

gQ is holonomy invariant.

Theorem 2.4 ([21]) Let F be a foliation on (M,gM). Then the following conditions

are equivalent:
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(1) F is Riemannian and gM is a bundle-like metric.

(2) There exists an orthonomal adapted frame {Ei,Ea} such that

gM(∇MEaEi,Eb) + gM(∇MEbEi,Ea) = 0,

where ∇M be the Levi-Civita connection on M .

(3) All geodesics orthogonal to a leaf at one point are orthogonal to each leaf at every

point.

Definition 2.5 The transverse Levi-Civita connection ∇Q on the normal bundle Q is

defined by

∇QXs =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π([X,Ys]) ∀X ∈ ΓL,

π(∇MX Ys) ∀X ∈ ΓL⊥,

(2.5)

where Ys = σ(s).

Theorem 2.6 ([20]) The transverse Levi-Civita connection ∇Q ≡ ∇ is metrical and

torsion-free with respect to ∇. That is, ∇XgQ = 0 for all X ∈ ΓTM and T∇ = 0, where

for any Y,Z ∈ ΓTM ,

T∇(Y,Z) = ∇Y π(Z) −∇Zπ(Y ) − π[Y,Z] = 0.

Proof. For all X ∈ ΓTM and s, t ∈ ΓQ,

2gQ(∇Xs, t) = XgQ(s, t) + YsgQ(t, π(X)) − YtgQ(π(X), s)

+ gQ(π([X,Ys]), t) − gQ(π([Ys, Yt]),X) + gQ(π([Yt,X]), s),
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where Ys = σ(s) and Yt = σ(t).

Then by a direct calculation, we have

(∇XgQ)(s, t) =XgQ(s, t) − gQ(∇Xs, t) − gQ(s,∇Xt) = 0.

Now, we prove the torsion-freeness. For X ∈ ΓL, Y ∈ ΓTM we have π(X) = 0 and

T∇(X,Y ) = ∇Xπ(Y ) − π[X,Y ] = 0.

For Y,Z ∈ ΓQ, we have

T∇(Y,Z) = π(∇MY Z) − π(∇MZ Y ) − π[Y,Z] = π(T (Y,Z)) = 0,

where T is the (vanishing) torsion of ∇M . Finally the bilinearity and skew symmetry

of T∇ imply the desired result. ◻

Let the transversal curvature tensor R∇ of ∇ is defined by

R∇(X,Y ) = [∇X ,∇Y ] −∇[X,Y ] (2.6)

for any X,Y ∈ ΓTM .

Proposition 2.7 ([21]) Let (M,gM ,F) be a complete, connected Riemannian manifold

with a foliation F of codimension q and a bundle-like metric gM .

(1) i(X)R∇ = 0, (2) θ(X)R∇ = 0

for any X ∈ ΓL, where i(X) is the interior product.
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Proof. (1) Let Y ∈ ΓTM and s ∈ ΓQ. Then

R∇(X,Y )s = ∇X∇Y s −∇Y∇Xs −∇[X,Y ]s

= θ(X)∇Y s −∇Y θ(X)s −∇θ(X)Y s

= (θ(X)∇)Y s = 0.

(2) Let Y,Z ∈ ΓTM and s ∈ ΓQ. Then

(θ(X)R∇)(Y,Z)s

= θ(X)R∇(Y,Z)s −R∇(θ(X)Y,Z)s −R∇(Y, θ(X)Z)s −R∇(Y,Z)θ(s)

= θ(X){∇Y∇Xs −∇Z∇Y s −∇[Y,Z]s} − {∇θ(X)Y∇Zs −∇Z∇θ(X)Y s −∇[θ(X)Y,Z]s}

− {∇Y∇θ(X)Zs −∇θ(X)Z∇Y s −∇[Y,θ(X)Z]s} − {∇Y∇Zθ(X)s −∇Z∇Y θ(X)s −∇[Y,Z]θ(X)s}

= −∇θ(X)[Y,Z]s +∇[θ(X)Y,Z]s +∇[Y,θ(X)Z]s = (−∇[X,[Y,Z]]) +∇[[X,Y ],Z] +∇[Y,[X,Z]])s = 0.

◻

Definition 2.8 The transversal Ricci operator ρ∇ and the transversal scalar curvature

σ∇ with respect to ∇ are defined by

ρ∇(s) =∑
a

R∇(s,Ea)Ea, σ∇ = gQ(ρ∇(Ea),Ea),

where {Ea} is a local orthonomal basic frame of Q.

Definition 2.9 The foliation F is said to be (transversally) Einsteinian if

ρ∇ = 1

q
σ∇ ⋅ id (2.7)

with constant transversal scalar curvature σ∇.
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Definition 2.10 The mean curvature form κ of F is given by

κ(X) = gQ(
n

∑
i=1

π(∇MEiEi),X) (2.8)

for any X ∈ ΓQ, where {Ei}i=1,⋯,n is a local orthonormal basis of L. The foliation F is

said to be minimal (or harmonic) if κ = 0.

Definition 2.11 Let F be an arbitrary foliation on a manifold M . A differential form

ω is basic if for any X ∈ ΓL,

i(X)ω = 0, θ(X)ω = 0. (2.9)

Locally, the basic r−form ω is expressed by

ω = ∑
a1<⋯<ar

ωa1⋯ardy
a1 ∧⋯ ∧ dyar , (2.10)

where
∂ωa1⋯ar
∂xj = 0 for all j = 1,⋯, n. Let Ωr

B(F) be the space of all basic r–forms. Then

([1])

Ω∗(M) = Ω∗
B(F)⊕Ω∗

B(F)⊥.

Let ωB be the basic part of the form ω. From now on, κB is the basic part of the mean

curvature form κ.

Theorem 2.12 ([1]) For a Riemannian foliation F on a compact manifold, κB is

closed, i.e., dκB = 0.

Definition 2.13 The basic Laplacian ∆B acting on Ω∗
B(F) by

∆B = dBδB + δBdB, (2.11)
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where δB is the formal adjoint operator of dB = d∣Ω∗
B(F), which are locally given by

dB =∑
a

θa ∧∇Ea , δB = −∑
a

i(Ea)∇Ea + i(κ♯B), (2.12)

where κ♯B is the gQ–dual vector of κB, {Ea} is a local orthonormal basic frame of Q

and θa is a gQ–dual 1–form to Ea.

Definition 2.14 A vector field Y ∈M is an infinitesimal automorphism of F if

[Y,Z] ∈ ΓL ∀Z ∈ ΓL.

Let V (F) be the space of all infinitesimal automorphism, i.e.,

V (F) = {Y ∈ TM ∣[Y,Z] ∈ ΓL, ∀Z ∈ ΓL}.

Now we put

V̄ (F) = {Ȳ = π(Y )∣Y ∈ V (F)}.

It is trivial that an elements s of V̄ (F) satisfies ∇Xs = 0 for all X ∈ ΓL.

Theorem 2.15 ([22]) (Transversal divergence theorem) Let (M,gM ,F) be a closed,

oriented Riemannian manifold with a transversally oriented foliation F and a bundle-

like metric gM with respect to F . Then

∫
M

div∇X̄ = ∫
M
gQ(X̄, κ♯B) (2.13)

for all X ∈ V (F), where div∇X denotes the transversal divergence of X with respect to

the connection ∇.
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Proof. Let {Ei} and {Ea} be orthonormal basis of L and Q, respectively. Then for

any X ∈ V (F),

divX = ∑
i

gM(∇MEiX,Ei) +∑
a

gM(∇MEaX,Ea)

= −∑
i

gQ(X̄, π(∇MEiEi)) +∑
a

gQ(π(∇MEaX),Ea)

= −gQ(X̄, κ♯B) + gQ(∇EaX̄,Ea)

= −gQ(X̄, κ♯B) + div∇X̄,

where X̄ = π(X). By the divergence theorem, we have

0 = ∫
M

divX = ∫
M

div∇X̄ − ∫
M
gQ(X̄, κ♯B).

This completes the proof of this Theorem. ◻

Now we define an operator AY ∶ ΓQ→ ΓQ for any Y ∈ V (F) by

AY s = θ(Y )s −∇Y s. (2.14)

Then it is proved ([7]) that, for any vector field Y ∈ V (F),

AY s = −∇Ys Ȳ , (2.15)

where Ys is the vector field such that π(Ys) = s. So AY depends only on Ȳ = π(Y ) and

is a linear operator. Moreover, AY extends in an obvious way to tensors of any type on

Q ([19]). In particular, for any basic 1-form φ ∈ Ω1
B(F), the operator AY is given by

(AY φ)(s) = −φ(AY s) (2.16)

for any s ∈ ΓQ. We define ∇∗
tr∇tr ∶ Ωr

B(F)→ Ωr
B(F) by

∇∗
tr∇trφ = −∑

a

∇2
Ea,Eaφ +∇κ♯Bφ, (2.17)
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where ∇2
X,Y = ∇X∇Y −∇∇MX Y for any X,Y ∈ ΓTM .

Proposition 2.16 ([4]) The operator ∇∗
tr∇tr is positive definite and formally self ad-

joint on the space of basic forms, i.e.,

∫ < ∇∗
tr∇trϕ,ψ >= ∫ < ∇trϕ,∇trψ >,

where < ∇trϕ,∇trψ >= ∑
a
< ∇Eaϕ,∇Eaψ > .

Proof. Fix x ∈M and choose an orthonormal basic frame {Ea} with the property that

(∇Ea)x = 0 for all a. Then we have at the point that for any ϕ and ψ,

< ∇∗
tr∇trϕ,ψ > = −∑

a

< ∇Ea∇Eaϕ,ψ > + < ∇κ♯Bϕ,ψ >

= −∑
a

Ea < ∇Eaϕ,ψ > +∑
a

< ∇Eaϕ,∇Eaψ > + < ∇κ♯Bϕ,ψ > .

Now, we define v ∈ V̄ (F) by gQ(v,w) =< ∇wϕ,ψ > for all w ∈ ΓQ. Then

div∇(v) =∑
a

gQ(∇Eav,Ea) =∑
a

EagQ(v,Ea) =∑
a

Ea < ∇Eaϕ,ψ > .

By the transversal divergence theorem on the foliated Riemannian manifold, we have

∫ div∇(v) = ∫ < v, κ♯B >= ∫ < ∇κ♯Bϕ,ψ > .

Hence the proof follows. ◻

Theorem 2.17 ([4]) Let (M,gM ,F) be a Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gM . Then for any basic form φ ∈ Ωr
B(F),

∆Bφ = ∇∗
tr∇trφ + F (φ) +Aκ♯Bφ, φ ∈ Ωr

B(F), (2.18)

where F (φ) = ∑
a,b
θa ∧ i(Eb)R∇(Eb,Ea)φ. If φ is a basic 1–form, then F (φ)♯ = ρ∇(φ♯).
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For any vector field X ∈ V (F), if we put ∆BX̄ = (∆Bφ)♯, where φ♯ = X̄, then we have

the following corollary.

Corollary 2.18 ([5]) Let (M,gM ,F) be a Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gM . Then for any vector field X ∈ V (F),

∆BX̄ = ∇∗
tr∇trX̄ + ρ∇(X̄) −Atκ♯BX̄, (2.19)

where At is an adjoint operator of A.

Proof. Let φ♯ = X̄. From (2.16), we have

(Aκ♯Bφ)
♯ = −Atκ♯Bφ

♯ = −Atκ♯BX̄.

From Theorem 2.17, the proof follows. ◻
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3 Integral formulas

In this section, we define the tensors E∇ and Z∇ on the normal bundle Q. Also, we have

prove the integral formulas for E∇ and Z∇. Let (M,gM ,F) be a (n + q)-dimensional

closed, oriented Riemannian manifold with a foliation F of codimension q and a bundle-

like metric gM .

Lemma 3.1 ([5]) Let (M,gM ,F) be a closed, oriented Riemannian manifold with a

foliation F and a bundle-like metric gM such that δBκB = 0. Then for any basic function

f , we have

∫
M
f rκ♯B(f) = 0 (3.1)

for any integer r ≠ −1. For r = −1, it holds only if f > 0 or f < 0.

Proof. In case of r ≠ −1, we have

∫
M
f rκ♯B(f) = ∫

M
f rgQ(κB, dBf) =

1

r + 1
∫
M
gQ(κB, dBf r+1)

= 1

r + 1
∫
M
gQ(δBκB, f r+1) = 0.

In case of r = −1, we have for any basic function f > 0

∫
M

1

f
κ♯B(f) = ∫

M
gQ(κ♯B, dB ln f) = 0,

which completes the proof. ◻

Proposition 3.2 ([5]) Let (M,gM ,F) be a closed, oriented Riemannian manifold with

a foliation F of codimension q and a bundle-like metric gM . Then for any vector field
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X ∈ V (F),

gQ(∆BX̄, X̄) − 2Ric∇(X̄, X̄) − 1

2
∣θ(X)gQ −

2

q
div∇X̄ ∣2

+ q − 2

q
(div∇X̄)2 + gQ(Aκ♯BX̄, X̄) − div∇(AXX̄) − div∇((div∇X̄)X̄) = 0,

where Ric∇(X,Y ) = gQ(ρ∇(X), Y ) for any vector fields X,Y ∈ ΓQ.

Lemma 3.3 ([5]) Let (M,gM ,F) be a closed, oriented Riemannian manifold with a

foliation F of codimension q and a bundle-like metric gM . Then for any vector field

X ∈ V (F),

∫
M

{gQ(Aκ♯BX̄, X̄) + div∇(AXX̄)} = −∫
M
XgQ(κ♯B, X̄), (3.2)

∫
M

divv∇((div∇X̄)X̄) = ∫
M

(div∇X̄)gQ(X̄, κ♯B). (3.3)

Proof. From (2.13) and (2.15), equation (3.2) is proved. Equation (3.3) follows from

the transversal divergence theorem (2.13). ◻

Proposition 3.4 ([3]) Let (M,gM ,F) be a closed, oriented Riemannian manifold with

a foliation F of codimension q and a bundle-like metric gM . Then for any basic function

f , we have

∫
M

[gQ(∆B∇f,∇f) − 2Ric∇(∇f,∇f) − 2∣∇∇f + 1

q
{∆Bf − κ♯B(f)}gQ∣2

+ q − 2

q
{∆Bf − κ♯B(f)}2 + 2gQ(Aκ♯B∇f,∇f) + 2κ♯B(f)∆Bf − κ♯B(f)2] = 0,

where ∇f is the transversal gradient of f .
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Proof. We first compute θ(∇f)gQ = 2∇∇f . Let {Ea} be a local orthonormal basic

frame of Q. Then

(θ(∇f)gQ)(Ea,Eb) = gQ(∇a∇f,Eb) + gQ(∇b∇f,Ea)

= ∑
c

{gQ(∇a(∇cf)Ec,Eb) + gQ(∇b(∇cf)Ec,Ea)}

= ∑
c

{(∇a∇cf)gQ(Ec,Eb) + (∇b∇cf)gQ(Ec,Ea)}

= 2∇a∇bf,

where ∇a = ∇Ea . Since ∫M Y (f) = ∫M f(δBφ) for any Y ∈ V (F) and φ♯ = Y , we have

∫
M

(∇f)gQ(κ♯B,∇f) = ∫
M
κ♯B(f)∆Bf.

Note that div∇∇f = −δTdBf = −∆Bf + κ♯B(f), where δTφ = −∑a i(Ea)∇Eaφ. So if we

put X̄ = ∇f in (3.3), then

∫
M

div∇((div∇∇f)∇f) = ∫
M

(div∇∇f)gQ(∇f, κ♯B)

= −∫
M

{∆Bf − κ♯B(f)}κ♯B(f).

If we put X̄ = ∇f in Proposition 3.2, then the proof follows. ◻

Lemma 3.5 ([3]) Let (M,gM ,F) be a closed, oriented Riemannian manifold with a

foliation F of codimension q and a bundle-like metric gM . Then for any basic function

f , we have

∫
M
gQ(Aκ♯B∇f,∇f) = −∫M κ♯B(f)∆Bf +

1

2
∫
M
κ♯B(∣dBf ∣2).
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Proof. Note that for any basic 1-form φ,

(AY φ)♯ = −AtY φ♯

for any vector field Y ∈ V (F).

From (2.15), we have

∫
M
gQ(Aκ♯B∇f,∇f) = −∫

M
gQ(∇f, (Aκ♯BdBf)

♯) = −∫
M
gQ(dBf,Aκ♯BdBf)

= −∫
M
gQ(θ(κ♯B)dBf, dBf) + ∫

M
gQ(∇κ♯BdBf, dBf).

Since θ(κ♯B)dBf = dBi(κ♯B)dBf , we have

∫
M
gQ(θ(κ♯B)dBf, dBf) = ∫

M
gQ(dBi(κ♯B)dBf, dBf)

= ∫
M
gQ(i(κ♯B)dBf,∆Bf)

= ∫
M
κ♯B(f)∆Bf,

which completes the proof. ◻

Theorem 3.6 ([3]) Let (M,gM ,F) be a closed, oriented Riemannian manifold with a

foliation F of codimension q and a bundle - like metric gM such that δBκB = 0. If a

basic function f satisfies (∆B − κ♯B)f = λf , then

q − 1

q
λ∫

M
∣∇f ∣2 − ∫

M
Ric∇(∇f,∇f) − ∫

M
∣∇∇f + λ

q
fgQ∣2 = 0. (3.4)
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Proof. Since ∆BdBf = dB∆Bf , we have

∫
M
gQ(∆B∇f,∇f) = ∫

M
gQ(∆BdBf, dBf) (3.5)

= ∫
M
gQ(dB∆Bf, dBf)

= ∫
M
gQ(dB(λf + κ♯B(f)), dBf)

= λ∫
M

∣dBf ∣2 + ∫
M
κ♯B(f)∆Bf.

From Lemma 3.5 and (3.5), we have

∫
M

{gQ(∆B∇f,∇f) + 2gQ(Aκ♯B∇f,∇f) + 2κ♯B(f)∆Bf − κ♯B(f)2}

= λ∫
M

∣dBf ∣2 + λ∫
M
fκ♯B(f) + ∫

M
κ♯B(∣dBf ∣2).

Since ∆Bf − κ♯B(f) = δTdBf , we have

∫
M

{∆Bf − κ♯B(f)}2 = ∫
M
gQ(δTdBf, λf) = ∫

M
λ∣dBf ∣2.

From Proposition 3.4, we have

2(q − 1)
q

λ∫
M

∣∇f ∣2 + λ∫
M
fκ♯B(f) + ∫

M
κ♯B(∣dBf ∣2) − 2∫

M
Ric∇(∇f,∇f)

− 2∫
M

∣∇∇f + λ
q
fgQ∣2 = 0.

(3.6)

Since δBκB = 0, from Lemma 3.1, we have

∫
M
fκ♯B(f) = 0 = ∫

M
κ♯B(∣dBf ∣2).

Hence the proof follows from (3.6). ◻

Definition 3.7 If a vector field Y ∈ V (F) satisfies θ(Y )gQ = 2fY gQ, for a basic scale

function fY depending on Y , then Ȳ is called a transversal conformal field of F with a
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scale function fY . In particular, if fY = 0, then Ȳ is called a transversal killing filed of

F .

Remark. 1. If Ȳ is a transversal conformal field of F with a scale function fY , then

fY = 1

q
div∇Ȳ . (3.7)

2. Note that Ȳ is a transversal conformal field with a scale function fY if and only if

gQ(∇X Ȳ , Z) + gQ(∇Z Ȳ ,X) = 2fY gQ(X,Z) (3.8)

for any X,Z ∈ Q.

Lemma 3.8 ([5]) Let (M,gM ,F) be a Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gM . If Ȳ ∈ V̄ (F) is a transversal conformal

field with a scale function fY , then

gQ((θ(Y )R∇)(Ea,Eb)Ec,Ed) = δdb∇afc − δcb∇afd − δda∇bfc + δca∇bfd, (3.9)

(θ(Y )Ric∇)(Ea,Eb) = −(q − 2)∇afb + (∆BfY − κ♯B(fY ))δba, (3.10)

θ(Y )σ∇ = 2(q − 1)(∆BfY − κ♯B(fY )) − 2fY σ
∇, (3.11)

where ∇a = ∇Ea , fa = ∇afY and Ric∇(X,Y ) = gQ(ρ∇(X), Y ) for any X,Y ∈ Q.

Now we define the tensors E∇ and Z∇ respectively by

E∇(X) = ρ∇(X) − σ∇

q X, (3.12)

Z∇(X,Y )Z = R∇(X,Y )Z − σ∇

q(q−1)(gQ(Y,Z)X − gQ(X,Z)Y ) (3.13)

for any fields X,Y,Z ∈ ΓQ. Then we have the following lemma (cf. [3]).
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Lemma 3.9 Let (M,gM ,F) be a Riemannian manifold with a foliation F of codimen-

sion q and a bundle-like metric gM . Then

trE∇ = 0, (3.14)

∑aZ∇(X,Ea)Ea = E∇(X) ∀X ∈ ΓQ, (3.15)

∣E∇∣2 = ∣ρ∇∣2 − (σ∇)2
q , (3.16)

∣Z∇∣2 = ∣R∇∣2 − 2(σ∇)2
q(q−1) , (3.17)

div∇E
∇ = q−2

2q ∇σ
∇, (3.18)

where trE∇ = ∑a gQ(E∇(Ea),Ea).

Proof. From (3.12), we have

∣E∇∣2 = ∑
a

gQ(E∇(Ea),E∇(Ea))

= ∑
a

gQ(ρ∇(Ea) −
σ∇

q
Ea, ρ

∇(Ea) −
σ∇

q
Ea)

= ∣ρ∇∣2 − (σ∇)2

q
.

From (3.13), we have

∣Z∇∣2 = ∑
a,b,c

gQ(Z∇(Ea,Eb)Ec, Z∇(Ea,Eb)Ec)

= ∣R∇∣2 − 2σ∇

q(q − 1) ∑a,b,c
{(gQ(R∇(Ea,Ec)Ec,Ea) − gQ(R∇(Ec,Eb)Ec,Eb))}

+ 2(σ∇)2

q2(q − 1)2 ∑
a,b

(δaaδbb − δbaδba)

= ∣R∇∣2 − 2(σ∇)2

q(q − 1) .
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Since Y (σ∇) = 2∑a gQ((∇Eaρ∇)(Y ),Ea) for any Y ∈ ΓQ, we have

div∇E
∇ = ∑

a

(∇EaE∇)(Ea) =∑
a

∇EaE∇(Ea)

= ∑
a

∇Eaρ∇(Ea) −
1

q
∑
a

(∇Eaσ∇)Ea

= 1

2
∇σ∇ − 1

q
∇σ∇ = q − 2

2q
∇σ∇.

From (3.12) and (3.13), others follows. ◻

Lemma 3.10 Let (M,gM ,F) be a Riemannian manifold with a foliation F of codi-

mension q and a bundle-like metric gM . If Ȳ ∈ V̄ (F) is a transversal conformal field

with a scale function fY , then

(θ(Y )E∇)(Ea,Eb) = −(q − 2)[∇afb +
1

q
{∆BfY − κ♯B(fY )}δba], (3.19)

gQ((θ(Y )Z∇)(Ea,Eb)Ec,Ed) = δdb∇afc − δcb∇afd − δda∇bfc + δca∇bfd (3.20)

− 2

q
(∆BfY − κ♯B(fY ))(δdaδcb − δdb δca),

∑
a

gQ(E∇(θ(Y )Ea),E∇(Ea)) = −fY ∣E∇∣2, (3.21)

θ(Y )∣E∇∣2 = −2(q − 2)gQ(∇∇fY ,E∇) − 4fY ∣E∇∣2, (3.22)

∑
a,b,c

gQ(Z∇(θ(Y )Ea,Eb)Ec, Z∇(Ea,Eb)Ec) = −fY ∣Z∇∣2, (3.23)

θ(Y )∣Z∇∣2 = −8gQ(∇∇fY ,E∇) − 4fY ∣Z∇∣2. (3.24)

22



Proof. From (3.10), (3.11) and (3.12), we have

(θ(Y )E∇)(Ea,Eb) = θ(Y )E∇(Ea,Eb) −E∇(θ(Y )Ea,Eb) −E∇(Ea, θ(Y )Ea)

= θ(Y ){Ric∇(Ea,Eb) −
σ∇

q
gQ(Ea,Eb)}

−Ric∇(θ(Y )Ea,Eb) +
σ∇

q
gQ(θ(Y )Ea,Eb)

−Ric∇(Ea, θ(Y )Eb) +
σ∇

q
gQ(Ea, θ(Y )Eb)

= (θ(Y )Ric∇)(Ea,Eb) −
1

q
(θ(Y )σ∇)δba −

2

q
fY σ

∇δba

= −(q − 2)[∇afb +
1

q
{∆BfY − κ♯B(fY )}δba].

From (3.13), we have

(θ(Y )Z∇)(Ea,Eb)Ec = θ(Y )Z∇(Ea,Eb)Ec −Z∇(θ(Y )Ea,Eb)Ec

−Z∇(Ea, θ(Y )Eb)Ec −Z∇(Ea,Eb)Ec

= (θ(Y )R∇)(Ea,Eb)Ec −
1

q(q − 1)(θ(Y )σ∇)(δcbEa − δcaEb)

− 2fY σ
∇

q(q − 1)(δ
c
bEa − δcaEb).

Then (3.20) follows from (3.9) and (3.11).

By a direct calculation, we have

∑
a

gQ(E∇(θ(Y )Ea),E∇(Ea)) = ∑
a,b

gQ(θ(Y )Ea,Eb)gQ(E∇(Ea),E∇(Eb))

= ∑
a,b

{−2fY δ
b
a − gQ(Ea, θ(Y )Eb)}gQ(E∇(Ea),E∇(Eb))

= −2fY ∣E∇∣2 −∑
a

gQ(E∇(θ(Y )Ea),E∇(Ea)),
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which proves (3.21).

From (3.19), (3.21) and trE∇ = 0, we have

θ(Y )∣E∇∣2 = ∑
a

θ(Y )gQ(E∇(Ea),E∇(Ea))

= 2∑
a

gQ((θ(Y )E∇)Ea,E∇(Ea))

= 2∑
a,b

gQ((θ(Y )E∇)Ea,Eb)gQ(E∇(Ea),Eb)

= 2∑
a,b

{(θ(Y )E∇)(Ea,Eb) − (θ(Y )gQ)(E∇(Ea),Eb)}gQ(E∇(Ea),Eb)

= −2(q − 2)∑
a,b

[(∇afb) +
1

q
{∇BfY − κ♯B(fY )}δba]gQ(E∇(Ea),Eb) − 4fY ∣E∇∣2

= −2(q − 2)gQ(∇∇fY ,E∇) − 4fY ∣E∇∣2,

which proves (3.22).

By a direct calculation, we have

∑
a,b,c

gQ(Z∇(θ(Y )Ea,Eb)Ec, Z∇(Ea,Eb)Ec)

= ∑
a,b,c,d

gQ(θ(Y )Ea,Ed)gQ(Z∇(Ed,Eb)Ec, Z∇(Ea,Eb)Ec)

= ∑
a,b,c,d

{−(θ(Y )gQ)(Ea,Ed) − gQ(Ea, θ(Y )Ed)}gQ(Z∇(Ed,Eb)Ec, Z∇(Ea,Eb)Ec)

= −2fY ∣Z∇∣2 − ∑
a,b,c

gQ(Z∇(θ(Y )Ea,Eb)Ec, Z∇(Ea,Eb)Ec),

which proves (3.23).

From (3.20) and trE∇ = 0, we have

∑
a,b,c

gQ((θ(Y )Z∇)(Ea,Eb)Ec, Z∇(Ea,Eb)Ec)

= ∑
a,b,c,d

gQ((θ(Y )Z∇)(Ea,Eb)Ec,Ed)gQ(Z∇(Ea,Eb)Ec,Ed)
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= ∑
a,b,c,d

[δdb∇afc − δcb∇afd − δda∇bfc + δca∇bfd −
2

q
{∆BfY − κ♯B(fY )}(δcbδda − δcaδdb )]

gQ(Z∇(Ea,Eb)Ec,Ed)

= −4∑
a,c

∇afcgQ(Z∇(Ea,Eb)Eb,Ec) −
4

q
{∆BfY − κ♯B(fY )}∑

a

gQ(E∇(Ea),Ea)

= −4gQ(∇∇fY ,E∇).

Therefore

θ(Y )∣Z∇∣2 = ∑
a,b,c

θ(Y )gQ(Z∇(Ea,Eb)Ec, Z∇(Ea,Eb)Ec)

= ∑
a,b,c

(θ(Y )gQ)(Z∇(Ea,Eb)Ec, Z∇(Ea,Eb)Ec)

+2 ∑
a,b,c

gQ((θ(Y )Z∇)(Ea,Eb)Ec, Z∇(Ea,Eb)Ec)

+2 ∑
a,b,c

gQ(Z∇(θ(Y )Ea,Eb)Ec, Z∇(Ea,Eb)Ec)

+2 ∑
a,b,c

gQ(Z∇(Ea, θ(Y )Eb)Ec, Z∇(Ea,Eb)Ec)

+2 ∑
a,b,c

gQ(Z∇(Ea,Eb)θ(Y )Ec, Z∇(Ea,Eb)Ec)

= −8gQ(∇∇fY ,E∇) − 4fY ∣Z∇∣2,

which proves (3.24). ◻

Proposition 3.11 ([3]) Let (M,gM ,F) be a closed, oriented Riemannian manifold

with a foliation F of codimension q ≥ 2 and a bundle-like metric gM such that δBκB = 0.

Assume that the transversal scalar curvature σ∇ is constant. If M admits a transversal

conformal field Ȳ with a non-zero scale function fY , then

∫
M

{gQ(E∇(∇fY ),∇fY ) + ∣∇∇fY +
σ∇

q(q − 1)fY gQ∣
2} = 0. (3.25)
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Proof. Since σ∇ is constant, from (3.11), (∆B −κ♯B)fY = σ∇

q−1fY . If we let λ = σ∇

q−1 , then

(3.25) follows from Theorem 3.6. ◻

Lemma 3.12 ([3]) Let (M,gM ,F) be a closed, oriented Riemannian manifold with a

foliation F of codimension q and a bundle-like metric gM . Assume that the transversal

scalar curvature σ∇ is constant. Then for any function f ,

div∇(E∇(f∇f)) = gQ(E∇(∇f),∇f) + fgQ(E∇,∇∇f), (3.26)

where E∇(X,Y ) = gQ(E∇(X), Y ) for all X,Y ∈ ΓQ.

Proof. Since σ∇ is constant, div∇E
∇ = 0. Hence

div∇(E∇(f∇f)) = ∑
a

gQ(∇Ea(E∇(f∇f)),Ea)

= ∑
a

gQ((∇EaE∇)(f∇f),Ea) +∑
a

gQ(E∇(∇Ea(f∇f)),Ea)

= ∑
a

gQ((∇EaE∇)(Ea), f∇f) +∑
a

gQ(E∇(Ea),∇Ea(f∇f))

= ∑
a

gQ(E∇(Ea),∇Eaf∇f) + f∑
a

gQ(E∇(Ea),∇Ea∇f)

= gQ(E∇(∇f),∇f) + fgQ(E∇,∇∇f).

◻

Proposition 3.13 ([3]) Let (M,gM ,F) be a closed, oriented Riemannian manifold

with a foliation F of codimension q ≥ 2 and a bundle-like metric gM . Assume that the

transversal scalar curvature σ∇ is constant. If M admits a transversal conformal field
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Ȳ with a non-zero scale function fY , then

(q − 2)∫
M
gQ(E∇(∇fY ),∇fY ) = ∫

M
{2fY

2∣E∇∣2 + 1

2
fY θ(Y )∣E∇∣2} (3.27)

+(q − 2)∫
M
gQ(E∇(fY κ♯B),∇fY ).

Proof. From (3.26) and the transversal divergence theorem, we have

∫
M
gQ(E∇(∇fY ),∇fY ) = ∫

M
gQ(E∇(fY κ♯B),∇fY ) − ∫

M
fY gQ(E∇,∇∇fY ). (3.28)

From (3.22), we get

(q − 2)∫
M
fY gQ(∇∇fY ,E∇) = −2∫

M
fY

2∣E∇∣2 − 1

2
∫
M
fY θ(Y )∣E∇∣2.

Hence the proof follows from (3.28). ◻

Proposition 3.14 Let (M,gM ,F) be a closed, oriented Riemannian manifold with a

foliation F of codimension q and a it bundle-like metric gM . Assume that the transversal

scalar curvature σ∇ is constant. If M admits a transversal conformal field Ȳ with a

non-zero scale function fY , then

∫
M
gQ(E∇(∇fY ),∇fY ) = ∫

M
{1

2
fY

2∣Z∇∣2 + 1

8
fY θ(Y )∣Z∇∣2} (3.29)

+∫
M
gQ(E∇(fY κ♯B),∇fY ).

Proof. From (3.24), we have

∫
M
gQ(∇∇fY ,E∇) = −1

2
∫
M
fY ∣Z∇∣2 − 1

8
∫
M
θ(Y )∣Z∇∣2.

Hence the proof follows from (3.28). ◻
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4 The generalized Obata theorem

Definition 4.1 Let G be a discrete group. A Riemannian foliation (M,F) is transver-

sally isometric to (W,G), where G acts by isometries on a Riemannaian manifold

(W,gW ), if there exists a homeomorphism η ∶ W /G → M/F that is locally covered by

isometries. That is, given any x ∈M , there exists a local smooth transversal V contain-

ing x and a neighborhood U in W and an isometry φ ∶ U → V such that the following

diagram commutes

U
φÐÐÐ→ V

P○i
×××Ö

×××Ö
P̃○j

W /G ηÐÐÐ→ M/F

where i ∶ U →W and j ∶ V →M are inclusions and P ∶W →W /G and P̃ ∶M →M/F

are the projections.

Now, we prove the generalized Obata theorem.

Theorem 4.2 Let (M,gM ,F) be a complete, connected Riemannian manifold with a

foliation F of codimension q ≥ 2 and a bundle-like metric gM , and let c be a positive

real number. Then the following are equivalent:

(1) There exists a non-constant basic function f such that ∇Xdf = −c2fXb for all

vectors X ∈ L�, where Xb is the gM -dual form of X.

(2) (M,F) is transversally isometric to (Sq(1/c),G), where G is the discrete subgroup

of the orthogonal group O(q) acts by isometries on the last q coordinates of the q-sphere

Sq(1/c) of radius 1/c in Euclidean space Rq+1.
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Proof. It is clear that the second condition implies the first, because if f is the first

coordinate function in Rq+1 considered as a function on the sphere Sq(1/c), it satisfies

the first condition.

Conversely, assume that the first condition is satisfied for the basic funtion f . This

implies that for each x ∈M ,

−c2f(x)gL�x = ∇
2f ∣L�x , (4.1)

where L�x is the normal space to the leaf through x ∈M and gL�x = gL� ∣L�x is the metric

restricted to L�x. For any unit speed geodesic γ ∶ [0, β)→M that is normal to the leaves

of the foliation,

−c2(f ○ γ) = −c2(f ○ γ)gM(γ′, γ′)

= gM((∇2f)(γ′), γ′) = gM(∇γ′∇f, γ′)

= gM(∇f, γ′)′ − gM(∇f,∇γ′γ′)

= (f ○ γ)′′,

where ∇f is the transversal gradient of f . Thus

(f ○ γ)(t) = A cos(ct) +B sin(ct)

for some constants A and B.

Let γ(0) = x0 ∈ M be either a global maximum or global minimum of f on M . Then

A = f(x0) and B = 0. Thus

f(γ(t)) = f(x0) cos(ct) (4.2)
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for any unit speed geodesic γ orthogonal to the leaf lx0
through x0, and the maximum

and minimum values along γ must have opposite signs. Suppose that we choose the

geodesic so that it connects an absolute maximum x0 with an absolute minimum x1;

such a normal geodesic can always be found (see [9]). Since the metric is bundle-like,

every geodesic with initial velocity in L� is guaranteed to be orthogonal to L� at all

poinis ([18]).

We prove the theorem by four Steps. Let Ms = {ly ∣dist(lx0
, ly) = s} for any non-negative

real number s.

Step 1. M0 = {lx0
} and Mπ

c
= {lx1

}.

Since the nondegeneracy of the normal Hessian implies that each maximum and min-

imum of f ○γ occurs at an isolated closed leaf of (M,F), the set f−1(−f(x0)) must be a

discrete union of closed leaves, and lx1
⊂ f−1(−f(x0)). Note that f−1([f(x0),−f(x0)]) =

M and the normal exponential map is surjective ([9]). Hence f−1(−f(x0)) is a single

closed leaf, say lx1
, so that all normal geodesics through x0 meet lx1

at the exact distance

π
c . Similarly, f−1(f(x0)) = lx0

.

Step 2. Ms (0 < s < π/c) is diffeomorphic to the unit normal sphere bundle of lx0
⊂M .

Given any leaf l of M that is neither lx0
nor lx1

, there exists a minimal normal

geodesic connecting it to lx0
by completeness. In fact, there exists such a minimal

normal geodesic through x0, and its initial velocity lies in L�x0
. By equation (4.2),

the gradient of f is nonzero at each γ(t) for 0 < t < π/c and is parallel to γ′(t).

Since geodesics are determined by velocity at a single point, it is impossible that two
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geodesics with initial velocities through x0 meet at the same point unless that point

has distance at least π/c from x0. Thus, the normal exponential map exp�x0
∶ L�x0

→M

is injective on the ball Bπ/c ∶= Bπ/c(x0) ⊂ L�x0
. This discussion is independent of the

initial point of lx0
chosen, because for a bundle-like metric the distance from a point x0

on one leaf closure to another is independent of the choice x0 ∈ lx0
(see [9]). We have

⋃x∈lx0 exp�x (Bπ/c(x)) = M . By the preceding discussion, ⋃x∈lx0 exp�x ∂(Bs(x)) = Ms.

Since ∂Bs(x) is the unit sphere on q-dimensional Euclidean space, Ms (0 < s < π/c) is

diffeomorphic to the unit normal sphere bundle of lx0
⊂M .

Let B+
π/c denote the one-point compactification of Bπ/c and G be an orthogonal trans-

formaitons at x0 on L�x0
([12]).

Step 3. M/F is homeomorphic to S/G, where S = B+
π/c is a sphere.

Since G at x0 acts by orthogonal transformations on L�x0
, Ms⋂ exp�x0

(L�x0
) is iso-

metric to ∂Bs(x0)/G by the indeced metric gL� on L�x0
, and so leaf space Ms/F is

diffeomorphic to ∂Bs(x0)/G, for 0 ≤ s < π/c. Then (M ∖ lx1
)/F is diffeomorphic to

Bπ/c/G by the map

η ∶ Bπ/c/G→ (M ∖ lx1
)/F

defined by η(Oξ) = lexp�x0(ξ)
, where ξ in Bπ/c ⊂ L�x0

, Oξ is the G-orbit of ξ in Bπ/c and

lexp�x0(ξ)
is the leaf containing exp�x0

(ξ). Now, we define

η ∶ B+
π/c/G→M/F

by η̄ ∣Bπ
c
/G = η and η̄(∞) = lx1

. Then M/F is homeomorphic to S/G.
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Step 4. M/F is transversally isometric to Sq(1/c)/G.

Let v and w be any two nonzero orthonormal vectors in L�x0
, and let Ws denote

the L�-parallel translate of w =W0 along the geodesic γ(s) with initial velocity v; thus

Ws ∈ L�γ(s) is a well-defined vector at each γ(s) for 0 ≤ s < π/c. We see that Ws is

tangent to Ms for s ∈ (0, π/c).

First, we prove the following.

(ⅰ) csW0(yj) = sin(cs)Ws(yj), for 0 < s < π/c.

Let (yj) be geodesic normal coordinates for the normal ball exp�x0
(Bπ/c(x0)). Sup-

pose that these coordinates are chosen at x0 such that y1(γ(s)) = s and each of ∂
∂yj

for

j > 1 is orthogonal to v = γ′(0) at x0 = 0. We extend s to be the function s(y) =
√
∑ y2

j

and write yj = sθj , so that each θj is independent of s. Thus, γ′(s)(θj) = 0 and

Ws(s) = 0. Further, we let ∂
∂s denote the radial vector field, which agrees with γ′(s)

along γ. In the calculations that follow, we extend yj , θj ,
∂
∂s to be well-defined and ba-

sic in a small neighborhood of the transversal exp�x0
(Bπ/c). From the calculation of f

above, we see that ∇f = −c sin(cs)f(x0) ∂∂s .

Since ∇ is torsion-free and ∇γ′(s)Ws = 0 by construction,

π [ ∂
∂s
,Ws] = −∇Ws

∂

∂s
= 1

c sin(cs)f(x0)
∇Ws

∇f

= − c2

c sin(cs)f(x0)
f(γ(s))Ws

= −c cos(cs)
sin(cs) Ws.
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On the other hand, since θj is locally defined basic function, for 0 < s < π/c,

d

ds
Ws(θj) =

∂

∂s
Ws(θj) = [ ∂

∂s
,Ws] (θj) = π [ ∂

∂s
,Ws] (θj) = −

c cos(cs)
sin(cs) Ws(θj).

Solving the differential equation above, we have

Ws(θj) =
1

sin(cs)Wπ/2c(θj), 0 < s < π/c. (4.3)

Since Ws(s) = 0 and yj = sθj , we have

Ws(yj) = sWs(θj)

for 0 < s < π/c. Then, for all j,

W0(yj) = lim
s−>0

Ws(yj) =
1

c
W π

2c
(θj)

= sin(cs)
c

Ws(θj) =
sin(cs)
cs

Ws(yj).

Next, we prove the isometry property.

(ⅱ) η∗gL� = gs, where gs is the standard metric metric of Sq(1/c). Note that since

the vectors ∂
∂θj

for j > 1 form a basis of the tangent space for Ms⋂ exp�x0
(Bπ/c) at γ(s)

with s > 0, the equation above uniquely defines the vector Ws in terms of W0. Since

the metric of the sphere Sq(1/c) satisfies the same hypothesis, a corresponding fact is

true for geodesic normal coordinates on Sq(1/c).

We now show that the equation above implies that the pullback of the metric gL� to

Bπ/c is the same as the standard metric gS corresponding to geodesic normal coordinates

on Sq(1/c). As above, let Ws denote the parallel displacement of W0 along γ(s), and
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let Ws denote the parallel displacement of W0 along the geodesic in (Bπ/c, gS) with

unit tangent vector v. Then

dη(Ws)(θj) =Ws(θj ○ η) =
c

sin(cs)W0(sθj ○ η) =
c

sin(cs)W0(sθj) =Ws(θj).

Namely we have dη(Ws) =Ws. Thus we have

∣dη(Ws)∣ = ∣Ws∣ = ∣W0∣ = ∣Ws∣.

We may reverse the roles of x0 and x1 and obtain a similar result.

Now, given any point x ∈M , there is a minimal geodesic connecting this point to a

point x′0 on the leaf containing x0. If x ∉ lx1
, the above analysis shows that the map exp�x′0

restricted to (Bπ/c(x′0), gS) is an isometry onto its image, and that image contains x.

Further, the map exp�x′0
locally covers the map η ∶ (B+

π/c/G,gS)→ (M/F , gL�). If x ∉ lx0
,

a similar fact is true for exp�x′1
. Thus the map η is locally covered by isometries, and we

conclude that (M,F) is transversally isometric to (Sq(1/c),G). ◻
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5 Applications of the generalized Obata theorem

In this section, we give several applications of the generalized Obata theorem.

Theorem 5.1 ([3]) Let (M,gM ,F) be a closed, oriented Riemannian manifold with

a foliation F of codimension q ≥ 2 and a bundle-like metric gM such that δBκB =

0. Assume that the transversal scalar curvature σ∇(≠ 0) is constant. If M admits a

transversal conformal field Ȳ with a non-zero scale function fY such that

∫
M
gQ(E∇(∇fY ),∇fY ) ≥ 0, (5.1)

then (M,F) is transversally isometric to a sphere (Sq(1/c),G), where c2 = σ∇

q(q−1) and

G is a discrete subgroup of O(q).

Proof. From Proposition 3.11, we have

∇∇fY = − σ∇

q(q − 1)fY gQ.

Since σ∇ is constant, the transversal scalar curvature σ∇ is non - negative ([5]). There-

fore, σ∇

q(q−1) is positive. By the generalized Obata theorem, the proof is completed. ◻

Theorem 5.2 ([3]) Let (M,gM ,F) as in Theorem 5.1, except that F is minimal. If

M admits a transversal conformal field Ȳ with a non-zero scale function fY such that

θ(Y )∣E∇∣2 = 0, (5.2)

then (M,F) is transversally isometric to a sphere (Sq(1/c),G), where c2 = σ∇

q(q−1) and

G is a discrete subgroup of O(q).
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Proof. From Proposition 3.13, the minimality of F and θ(Y )∣E∇∣2 = 0 imply that

(q − 2)∫
M
gQ(E∇(∇fY ),∇fY ) = 2∫

M
fY

2∣E∇∣2.

For q ≥ 3, the proof follows from Theorem 5.1. For q = 2, ∣E∇∣2 = 0. So F is transversally

Einstein. Hence the proof follows from Theorem 1.4. ◻

Corollary 5.3 ([3]) Let (M,gM ,F) as in Theorem 5.1, except that F is minimal. If

M admits a transversal conformal field Ȳ with non-zero scale function fY such that

θ(Y )∣ρ∇∣2 = 0, (5.3)

then (M,F) is transversally isometric to a sphere (Sq(1/c),G), where c2 = σ∇

q(q−1) and

G is a discrete subgroup of O(q).

Proof. Since σ∇ is constant, θ(Y )σ∇ = 0. From (3.12), we have

θ(Y )∣E∇∣2 = θ(Y )∣ρ∇∣2 = 0.

Hence the proof follows from Theorem 5.2. ◻

If ∣ρ∇∣2 is constant, then θ(Y )∣ρ∇∣2 = 0 . Hence we have the following corollary from

Corollary 5.3.

Corollary 5.4 Let (M,gM ,F) as in Theorem 5.1, except that F is minimal. If M

admits a transversal conformal field Ȳ with a non-zero scale function fY such that

∣ρ∇∣2 is constant, then (M,F) is transversally isometric to a sphere (Sq(1/c),G), where

c2 = σ∇

q(q−1) and G is a discrete subgroup of O(q).

36



Theorem 5.5 Let (M,gM ,F) as in Theorem 5.1, except that F is minimal. If M

admits a transversal conformal field Ȳ with a non-zero scale function fY such that

θ(Y )∣E∇∣2 = tfY ∣E∇∣2 (t > −4), (5.4)

then (M,F) is transversally isometric to a sphere (Sq(1/c),G), where c2 = σ∇

q(q−1) and

G is a discrete subgroup of O(q).

Proof. From Proposition 3.13, we have

2(q − 2)∫
M
gQ(E∇(∇fY ),∇fY ) = (4 + t)∫

M
fY

2∣E∇∣2.

Since t > −4, 2(q − 2) ∫M gQ(E∇(∇fY ),∇fY ) ≥ 0. For q ≥ 3, the proof follows from

Theorem 5.1. For q = 2, ∣E∇∣2 = 0. So F is transversally Einstein. Hence the proof

follows from Theorem 1.4. ◻

Theorem 5.6 Let (M,gM ,F) as in Theorem 5.1, except that F is minimal. If M

admits a transversal conformal field Ȳ with a non-zero scale function fY such that

θ(Y )∣R∇∣2 = 0, (5.5)

then (M,F) is transversally isometric to a sphere (Sq(1/c),G), where c2 = σ∇

q(q−1) and

G is a discrete subgroup of O(q).

Proof. Since θ(Y )∣Z∇∣2 = θ(Y )∣R∇∣2 = 0. From Proposition 3.14, we have

∫
M
gQ(E∇(∇fY ),∇fY ) = 1

2
∫
M
fY

2∣Z∇∣2 ≥ 0.
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Hence the proof follows from Theorem 5.1. ◻

If ∣R∇∣2 is constant, then θ(Y )∣R∇∣2 = 0. Hence we have the following corollary from

Theorem 5.6.

Corollary 5.7 Let (M,gM ,F) as in Theorem 5.1, except that F is minimal. If M

admits a transversal conformal field Ȳ with a non-zero scale function fY such that

∣R∇∣2 is constant, then (M,F) is transversally isometric to a sphere (Sq(1/c),G), where

c2 = σ∇

q(q−1) and G is a discrete subgroup of O(q).

Theorem 5.8 Let (M,gM ,F) as in Theorem 5.1, except that F is minimal. If M

admits a transversal conformal field Ȳ with a non-zero scale function fY such that

θ(Y )∣Z∇∣2 = tfY ∣Z∇∣2 (t ≥ −4), (5.6)

then (M,F) is transversally isometric to a sphere (Sq(1/c),G), where c2 = σ∇

q(q−1) and

G is a discrete subgroup of O(q).

Proof. From Proposition 3.14, we have

∫
M
gQ(E∇(∇fY ),∇fY ) = 4 + t

8
∫
M
fY

2∣Z∇∣2.

Since t ≥ −4, ∫M gQ(E∇(∇fY ),∇fY ) ≥ 0. Hence the proof follows from Theorem 5.1. ◻

Theorem 5.9 Let (M,gM ,F) be a closed, oriented Riemannian manifold with foli-

ation F of codimension q and a bundle-like metric gM . Assume that the transversal

scalar curvature σ∇(≠ 0) is constant. If M admits a transversal conformal field Ȳ with
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a non-zero scale function fY , then

fY
2(σ∇)2 ≤ q(q − 1)2∣∇∇fY ∣2. (5.7)

Equality holds if and only if (M,F) is transversally isometric to a sphere (Sq(1/c),G),

where c2 = σ∇

q(q−1) and G is a discrete subgroup of O(q).

Proof. Since σ∇ is constant, (∆B − κ♯B)fY = σ∇

q−1fY from (3.11). Hence, we have

0 ≤ ∣∇∇fY +
σ∇

q(q − 1)fY gQ∣
2

= ∣∇∇fY ∣2 + 2σ∇

q(q − 1)fY ∑a,b
∇a∇bfY δba +

(σ∇)2

q(q − 1)2
fY

2

= ∣∇∇fY ∣2 − (σ∇)2

q(q − 1)2
fY

2,

which proves (5.7). Equality holds if and only if

∇∇fY = − σ∇

q(q − 1)fY gQ.

By the generalized Obata theorem, the proof is completed. ◻

Proposition 5.10 Let (M,gM ,F) be a closed, oriented Riemannian manifold with

foliation F of codimension q and a bundle-like metric gM . Assume that the transversal

scalar curvature σ∇(≠ 0) is constant. If M admits a transversal conformal field Ȳ with

a non-zero scale function fY , then

∫
M

∣∇fY ∣2 = σ∇

q − 1
∫
M
fY

2 + ∫
M
κ♯B(fY )fY . (5.8)

Proof. By a direct calculation, we have

1

2
∆BfY

2 = (∆BfY )fY − ∣∇fY ∣2 = σ∇

q − 1
fY

2 + κ♯B(fY )fY − ∣∇fY ∣2. (5.9)
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Since for any basic function f ,

∫
M

∆Bf = 0,

by integrality (5.9), the proof follows. ◻

Theorem 5.11 Let (M,gM ,F) as in Theorem 5.1. If M admits a transversal confor-

mal field Ȳ with a non-zero scale function fY , then

∫
M

Ric∇(∇fY ,∇fY ) ≤ (σ∇)2

q(q − 1) ∫M fY
2 + σ

∇

q
∫
M
κ♯B(f)f. (5.10)

Equality holds if and only if (M,F) is transversally isometric to a sphere (Sq(1/c),G),

where c2 = σ∇

q(q−1) and G is a discrete subgroup of O(q).

Proof. From Proposition 3.11, we have

∫
M
gQ(E∇(∇fY ),∇fY ) ≤ 0. (5.11)

By definition of E∇, (5.11) can be rewritten as

∫
M

Ric∇(∇fY ,∇fY ) − σ
∇

q
∫
M

∣∇fY ∣2 ≤ 0.

From Proposition 5.10, (5.10) is proved. Equality holds if and only if

∇∇fY = − σ∇

q(q − 1)fY gQ.

By the generalized Obata theorem, the proof is completed. ◻

Remark. The existence of the bundle-like metric gM for (M,F) such that κ is basic,

i.e., κ ∈ Ω1
B(F), is proved in ([2]). In ([10,11]), for any bundle-like metric gM with
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κ ∈ Ω1
B(F), it is proved that there exists another bundle-like metric g̃M for which the

mean curvature form κ̃ is basic-harmonic. Hence all theorems in section 5 hold without

the condition δBκB = 0.
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<국문초록>

엽층 리만 다양체에서의 일반화된 Obata 정리

(    ℱ)는 엽층 ℱ의 여차원이 ≧ 이고 bundle-like 계량 을 가지는 완비 

연결 리만 다양체라고 하자. (  ℱ)이  차원인 유클리드 공간에서 직교그룹 

의 이산 부분그룹 에 대하여 반지름 인 -구면    와 횡단적 등

장사상일 필요충분조건은 임의의 법벡터장 와 양의 상수 에 대하여 

∇   
 를 만족하는 상수가 아닌 기본 함수 가 존재할 때이다. 더욱이 

이 횡단적 등각장 를 허용할 때, 즉,     ≠ 인 경우에 대하여 

일반화된 Obata 정리의 응용을 연구하였다.
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