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(Abstract)

Generalized Obata theorem

on a foliated Riemannian manifold

Let (M, gar, F) be a complete, connected Riemannian manifold with a foliation F of
codimension ¢ > 2 and a bundle-like metric gj;. Then (M, F) is transversally isometric
to (S9(1/c),G), where S%(1/c) is the g-sphere of radius 1/c in (g + 1)-dimensional
Euclidean space and G is a discrete subgroup of the orthogonal group O(q), if and only
if there exists a non-constant basic function f such that V xdf = —c?fX? for all normal
vector fields X, where c is a positive constant. Moreover, when M admits a transversal
conformal field Y, i.e., (Y )gq = 2fy g, (fy #0), we study several applications of the

generalized Obata theorem.



1 Introduction

Let (M, gn) be a compact Einstein manifold of dimesion n > 2 with constant
sectional curvature c2. Then M. Obata ([13]) proved that the following conditions (Cy) ~
(C4) are equivalent to each other:

(C1) M is isometric to a sphere S™(1/c) with radius 1/c¢ in the (n+1)-dimensional
Euclidean space.

(C3) M admits an infinitesimal non-isometric conformal transformation.

(C3) M admits a non-constant function f satisfying

Vif=-cfgum.

(C4) M admits a non-constant function f satisfying

Af =nc?f.

In 2002, J. M. Lee and K. Richadson ([8]) proved that the equivalence between the

above conditions (C1) and (C4) for Riemannian foliations. That is,

Theorem 1.1 ([8]) Let (M, g, F) be a closed, connected Riemannian manifold with
a foliation F of codimension q and a bundle-like metric gyr. Suppose that there exists
a positive constant ¢ such that the transversal Ricci operator pV satisfies pV(X) >
c2(q-1)X for every normal vector field X. Then the smallest nonzero eigenvalue A

of the basic Laplacian satisfies



The equality holds if and only if: (M,F) is transversally isometric to (S9(1/c), @),
where G is the discrete subgroup of the orthogonal group O(q) acting on the q-sphere

S9(1/¢) with radius 1/c.

In 2008, S. D. Jung and M. J. Jung ([5]) proved the equivalence between (C) and

(Cy) for Riemannian foliations. That is,

Theorem 1.2 ([5]) Let (M, gn, F) be as in Theorem 1.1 and p¥(X) > %X(O’v +0)
for any normal vector field X, where oV is the transversal scalar curvature. If M admits
a transversal non-isometric conformal field, then (M,F) is transversally isometric to
(S9(1/c),G), where G is the discrete subgroup of the orthogonal group O(q) acting on

the q-sphere S(1/c) with radius 1/c, where ¢* = q(il)'

In this thesis, we discuss the relationship between (C7) and (C3) for Riemannian fo-
liations, so called a generalized Obata theorem. Moreover, we study several applications
related to the generalized Obata theorem.

The thesis is organized as following: In Section 2, we review definitions and prop-
erties of a Riemannian foliation. In Section 3, we define the tensors EV and ZV on the
normal bundle Q as follows: E¥(X) = p¥(X) - Z-X and ZV(X,Y)Z = RV(X,Y)Z -
%(QQ(Y, Z)X - g9o(X,Z)Y) for any normal vector fields X,Y,Z. When M admits
a transversal conformal field, we prove the integral formulas about EV and ZV, respec-
tively. In Section 4, we prove the equivalence between (C) and (Cj3) for Riemannian

foliations. That is,



Theorem 1.3 Let (M, gy, F) be a complete, connected Riemannian manifold with a
foliation F of codimension q > 2 and a bundle-like metric gpr, and let ¢ be a positive
real number. Then the following are equivalent:

(1) There exists a non-constant basic function f such that Vxdf = —-c?fX° for all
normal vectors X, where X® is the gnr-dual form of X.

(2) (M,F) is transversally isometric to (S9(1/c),G), where G is the discrete subgroup
of the orthogonal group O(q) acting on the q-sphere S1(1/c) with radius 1/c in Euclidean

space RIT,

Consequently, we have the following theorem.

Theorem 1.4 Let (M, gy, F) be a compact Riemannian manifold with a transversally
Einstein foliation of codimesion q > 2 and a bundle-like gprr. Then following conditions
(F1) ~ (Fy) are equivalent to each other:

(F1) (M, F) is transversally isometric to (SY(1/c),G), where G is the discrete subgroup
of the orthogonal group O(q) acting on the q-sphere S9(1/c) with radius 1/c in Euclidean
space R,

(Fy) M admits a transversal non-isometric conformal field.

(F3) M admits a non-constant basic function f satisfying

Vxdf = -2fX°

for all normal vectors X, where X is the gar-dual form of X.



(Fy) M admits a non-constant basic function f satisfying

Apf =qc’f.

In the last Section, we study several applications of the generalized Obata theorem.



2 Riemannian foliation

In this section, we review definitions and properties of Riemannian foliation. Let A"
be a smooth manifold of dimension n + ¢q. For the readers who study the foliated man-

ifolds, we give the proofs of theorems which are already known.

Definition 2.1 A family F = {l, }aea of connected subsets of a manifold M"*4 is called
a n-dimensional (or codimension q) foliation if

(1) M = Ugyla,

(2) lanlg =@, for any a # 3,

(3) for any point p € M, there exist a C"—chart (¢;,U;) such that if U; nl, # &, then

the connected component of U; N, is homeomorphic to A., where
Ac={(z,y) e R" x R|y = constant }.

Here (p;,U;) is called a distinguished (or foliated) chart.
Remark. From (3) in Definition 2.1, we know that on U; nU; # @&, the coordinate
change 90]’-1 ot (U;nU;j) — gp;-l(Ui N Uj) has the form

e o piley) = (i (2.9), 75 (), (2.1)
where @;; : R"™ — RP is a differential map and 7;; : R? = R is a diffeomorphism.
Let (M, gy, F) be a (n + g)-dimensional Riemannian manifold with a foliation F of

codimension ¢ and a Riemannian metric gps. Let T M be the tangent bunlde of M, L

the tangent bundle of F and then L is the integrable subbundle of T'M, i.e.,

X,)Yel'L=— [X,Y]eTlL.



Let Q = TM/L be the corresponding normal bundle of F. Then the metric gy defines

a splitting o in the exact sequence of vector bundles

0—>L—>TM<Z=Q—>0, (2.2)

where m: TM — @ is a projection and o : Q — L* is a bundle map satisfying 7 oo = id.

Thus gar = g1, ® g1+ induces a metric gg on @ , that is,

9(s,t) = gu(o(s),0(t)) (2.3)

for any s,t € I'Q. So we have an identification L* with @ via an isometric splitting

(@,90) = (L, g1+)-

Definition 2.2 A Riemannian metric gg on @ of a foliation F is holonomy invariant
if

0(X)gq =0 (2.4)
for any X e I'L. Here (X)) is the transverse Lie derivative, which is defined by 0(X)s =

w[X,Ys], where Y = o(s).

Definition 2.3 A foliation F is Riemannian if there exists a holonomy invariant metric
gg on Q. A metric gar is a bundle-like metric with respect to F if the induced metric

9@ is holonomy invariant.

Theorem 2.4 ([21]) Let F be a foliation on (M, gnr). Then the following conditions

are equivalent:



(1) F is Riemannian and gpr is a bundle-like metric.

(2) There exists an orthonomal adapted frame {E;, E,} such that
g (VE Ei, By) + g (Vi Ei, By) =0,

where VM be the Levi-Civita connection on M.
(3) All geodesics orthogonal to a leaf at one point are orthogonal to each leaf at every

point.

Definition 2.5 The transverse Levi-Civita connection V¥ on the normal bundle Q is

defined by

m([X,Y]) VX elL,
Vs = (2.5)

r(V¥Y,) VX eTL,

where Y = o(s).

Theorem 2.6 ([20]) The transverse Levi-Civita connection V¢ = V is metrical and
torsion-free with respect to V. That is, Vxgg =0 for all X e TTM and TV =0, where

forany Y, Z eT'TM,
TV(Y,Z)=Vyn(Z)-Vzr(Y)-=[Y,Z] =0.
Proof. For all X e 'T'M and s,t € 'Q,

299(Vxs;t) = Xgo(s,t) +Ysgq(t, (X)) - Yigo(n(X),s)

+ gQ(W([Xv}/;])at) _gQ(Tr([YYS?YE])?X) +gQ(7T([Y;ﬁaX])as)a



where Yy = 0(s) and Y; = o(t).

Then by a direct calculation, we have

(VXQQ)(Svt) = XgQ(S7t) - QQ(VXS,t) _gQ(87 VXt) =0.

Now, we prove the torsion-freeness. For X e 'L, Y e 'T'M we have 7(X) =0 and

TV(X,Y)=vxn(Y)-7[X,Y]=0.

For Y, Z e I'QQ, we have

TY(Y,Z) = n(V¥' Z) - (VYY) ~[Y,Z] = n(T(Y, Z)) = 0,

where T is the (vanishing) torsion of V. Finally the bilinearity and skew symmetry
of TV imply the desired result. O

Let the transversal curvature tensor RV of V is defined by

RY(X,Y) =[Vx,Vy]-Vixy] (2.6)

for any X, Y e I'T'M.

Proposition 2.7 ([21]) Let (M, gar, F) be a complete, connected Riemannian manifold

with a foliation F of codimension q and a bundle-like metric gy .

(1) i(X)RV =0, (2) (X)RV=0

for any X € UL, where i(X) is the interior product.



Proof. (1) Let Y e I'T'M and s € I'Q. Then

RY(X,Y)s VxVys=VyVxs—-V[x,y]s

0(X)Vys—Vyl(X)s- Vox)ys

(0(X)V)ys=0.
(2) Let Y, Z e I'T'M and s € I'Q. Then
(0(X)RV)(Y, Z)s
— O(X)RV(Y, Z)s - R¥(0(X)Y. Z)s - RV (Y.0(X)Z)s - R¥ (Y, Z)6(s)
= 0(X){VyVxs-VzVys—Vv,z15} — {Vex)yVzs — VzVax)ys — Vie(x)v,z]5}
- {VyVexyzs = Vox)zVys - Vivex)z18t —{VyVz0(X)s - VzVy0(X)s - Viy,7)0(X)s}

= Vo [v,2]8 + Viex)y,z18 + Vivex) 218 = (=Vix,v,211) + Vix,v1,2] + Vv,[x,2]])s = 0.

Definition 2.8 The transversal Ricci operator p¥ and the transversal scalar curvature

oV with respect to V are defined by
p¥(s) =2 RY(5, Ea)Ea, 0" =gq(p" (Ea), Ea),
where {E,} is a local orthonomal basic frame of Q.

Definition 2.9 The foliation F is said to be (transversally) Einsteinian if

with constant transversal scalar curvature oV.



Definition 2.10 The mean curvature form s of F is given by

K(X) = gQ<f21w<v%Ei>,X> (2.8)

for any X e I'Q, where {E;}i1,...,, is a local orthonormal basis of L. The foliation F is

said to be minimal (or harmonic) if k = 0.

Definition 2.11 Let F be an arbitrary foliation on a manifold M. A differential form

w is basic if for any X e 'L,
i(X)w=0, 6(X)w=0. (2.9)
Locally, the basic r—form w is expressed by

W= Y Wayea, dy™ A Ady™, (2.10)

a;<-<a,

where awa—;] =0 for all j=1,---,n. Let Q5 (F) be the space of all basic r—forms. Then

([1)

Q (M) =Qp(F) e Qp(F)*.

Let wp be the basic part of the form w. From now on, kg is the basic part of the mean

curvature form k.

Theorem 2.12 ([1]) For a Riemannian foliation F on a compact manifold, kg is

closed, i.e., dkp = 0.
Definition 2.13 The basic Laplacian Ap acting on Q5 (F) by

AB:dB(SB"'(SBdBa (2.11)

10



where dp is the formal adjoint operator of dg = d|Q*B (F), which are locally given by
dp=Y.0°AVE,, ©6p=- i(E,)Vg, +i(xk), (2.12)

where £k is the gg—dual vector of kg, {E,} is a local orthonormal basic frame of Q

and 6% is a gg—dual 1-form to E,.

Definition 2.14 A vector field Y € M is an infinitesimal automorphism of F if
[Y,Z]eTL VZeTL.
Let V(F) be the space of all infinitesimal automorphism, i.e.,
V(F)={Y eTM|[Y,Z]eTL, VZeTL).

Now we put

V(F)={Y =n(Y)|[Y e V(F)}.
It is trivial that an elements s of V(F) satisfies Vys =0 for all X e 'L.

Theorem 2.15 ([22]) (Transversal divergence theorem) Let (M, gpr, F) be a closed,
oriented Riemannian manifold with a transversally oriented foliation F and a bundle-

like metric gy with respect to F. Then

fMdiVVX:AgQ(X,MB) (2.13)

for all X € V(F), where divy X denotes the transversal divergence of X with respect to

the connection V.

11



Proof. Let {E;} and {E,} be orthonormal basis of L and @, respectively. Then for

any X € V(F),

divX

ZQM(VAE{Xa E)+ Y. gu(Vy X, Eq)
= _Zi:gQ(Xvﬂ'(VAE/IiEi))+§9Q(W(VAE{X)JEQ)
= —90(X,rh) + 90(VE, X, Ea)
= —gQ(X',m%)+diva',

where X = 7(X). By the divergence theorem, we have

o:fd'Xzfd' X—f X, kb).
. iv . vy MgQ( K'3)

This completes the proof of this Theorem. a

Now we define an operator Ay : T'Q — I'Q for any Y € V(F) by
Ays=0(Y)s—Vys. (2.14)
Then it is proved ([7]) that, for any vector field Y € V (F),
Ays=-VyY, (2.15)

where Y is the vector field such that 7(Y;) = s. So Ay depends only on Y = 7(Y’) and
is a linear operator. Moreover, Ay extends in an obvious way to tensors of any type on

Q ([19]). In particular, for any basic 1-form ¢ € QL (F), the operator Ay is given by
(Ay¢)(s) = -¢(Ays) (2.16)
for any s € I'Q. We define V.V, : Q5 (F) - Q(F) by
VirVird ==V, 5,0+ Vi, 6, (2.17)

12



where V%QY = VxVy = Vyuy for any X,V eT'T'M.

Proposition 2.16 ([4]) The operator V;.Vy, is positive definite and formally self ad-

joint on the space of basic forms, i.e.,
/ <V Virp, Y >= / <Vire, Virh >,
where < Vi, Virth >= Y <V, 0, Vg, >.
a

Proof. Fix x € M and choose an orthonormal basic frame {E,} with the property that

(VE,)z =0 for all a. Then we have at the point that for any ¢ and 1,

< Vfrvtr%lﬁ > - Z < an,an,(paw >+< VMBCPW >
a

=Y Ey<VE,p, 0 >+Y <Vg @, Vg >+< Vit 00>
a a
Now, we define v € V(F) by go(v,w) =< Vyp, 1 > for all w e ['Q. Then
divy(v) = za:gQ(VEav,Ea) = Za:EagQ(v,Ea) = Za:Ea <VE, 0,0 >.
By the transversal divergence theorem on the foliated Riemannian manifold, we have

fdivv(v)zf<v,n%>:/<v,ig3g0,1/}>.

Hence the proof follows. a

Theorem 2.17 ([4]) Let (M, g, F) be a Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gyr. Then for any basic form ¢ € Qp(F),
Apd=ViVud+ F(6) + Ay 6, 6 Up(F), (2.18)
where F(¢) = ¥ 0% Ai(Ey)RY (Ey, E,)é. If ¢ is a basic 1-form, then F(¢)' = pV(o").
a,b

13



For any vector field X € V(F), if we put AgX = (Ag¢)*, where ¢! = X, then we have

the following corollary.

Corollary 2.18 ([5]) Let (M, gn,F) be a Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gyy. Then for any vector field X € V(F),
ApX =V, VyuX +p¥(X) - A,iuBX7 (2.19)
where At is an adjoint operator of A.
Proof. Let ¢! = X. From (2.16), we have
(Anljg¢)u = ‘Aigsw = _AZI}BX'

From Theorem 2.17, the proof follows. O

14



3 Integral formulas

In this section, we define the tensors EV and ZV on the normal bundle Q. Also, we have
prove the integral formulas for EV and ZV. Let (M, gy, F) be a (n + g)-dimensional
closed, oriented Riemannian manifold with a foliation F of codimension ¢ and a bundle-

like metric gay.

Lemma 3.1 ([5]) Let (M, g, F) be a closed, oriented Riemannian manifold with a
foliation F and a bundle-like metric gy such that Sprp = 0. Then for any basic function

f, we have
"k (f) =0 3.1
[ k() (3.1)
for any integer r + =1. For r = -1, 4t holds only if f >0 or f <O0.

Proof. In case of r # -1, we have

forgQ(HB’dBf) - ﬁ fMgQ(HB,dBfM)

1
r+1

[ e

[MQQ(‘SB"‘fBa fhy=o.
In case of r = -1, we have for any basic function f >0
[ b= [ galeds.dping) =0
mfP M B ’

which completes the proof. a

Proposition 3.2 ([5]) Let (M, g, F) be a closed, oriented Riemannian manifold with
a foliation F of codimension q and a bundle-like metric gar. Then for any vector field

15



X e V(F),

_ - 1 2 >
gQ(ABX7X) - QRICV(XaX) - §|9(X)9Q - _diVVX|2
q

_9 _ _ _ _
+ L2 (dive X)2 + go(A,y X, X) - dive (Ax X) - divy ((diveX)X) =0,
q B
where Ric¥ (X,Y) = go(p¥(X),Y) for any vector fields X,Y € TQ.

Lemma 3.3 ([5]) Let (M, gn,F) be a closed, oriented Riemannian manifold with a
foliation F of codimension q and a bundle-like metric gas. Then for any vector field

X e V(F),

[ {90(A, X, %)+ dive(Ax X)) == [ Xgo(sh, %), (3.2

fM divog ((divg X)X) = fM (dive X)go(X, k). (3.3)

Proof. From (2.13) and (2.15), equation (3.2) is proved. Equation (3.3) follows from

the transversal divergence theorem (2.13). ]

Proposition 3.4 ([3]) Let (M, gnr, F) be a closed, oriented Riemannian manifold with
a foliation F of codimension q and a bundle-like metric gyr. Then for any basic function

f, we have
J 80859 1.9) =BT (V191) =2V + ~{Anf - b(1)}aof

+ %{AB]C — ()} + 29Q(Awy, VI,V )+ 265 (F)Apf - ks (f)2] =0,

where V f is the transversal gradient of f.

16



Proof. We first compute 6(Vf)gg = 2VVf. Let {E,} be a local orthonormal basic

frame of Q). Then

(H(Vf)gQ)(EmEb) = gQ(vavnyb)+gQ(vbvf7Ea)

Z{QQ(Va(vcf)Em Eb) + gQ(vb(vcf)Ea Ea)}

Z{(VaVCf)gQ(E& Eb) + (vbvcf)gQ(Eca Ea)}

= 2vavbf7
where V, = Vg, . Since [,,Y(f) = [, [(0p¢) for any Y € V(F) and ¢! =Y, we have
[ (@Dgath v = [ wh(HABS.

Note that divyVf = =d7dpf = —-Apf + ks (f), where dr¢ = - ¥, i(Ea)VE, ¢. So if we

put X = Vf in (3.3), then

[ dive((@ivev V) = [ (diveTNga(T S k)
=~ [ {Bnf - Rb(DIRh().
If we put X = Vf in Proposition 3.2, then the proof follows. O

Lemma 3.5 ([3]) Let (M, g, F) be a closed, oriented Riemannian manifold with a
foliation F of codimension q and a bundle-like metric gyr. Then for any basic function

f, we have

[ o0 w590 = [ wh(Hapf+3 [ wbldnsP).

17



Proof. Note that for any basic 1-form ¢,

(Ayg)t = -AL ¢!

for any vector field Y € V(F).

From (2.15), we have

[ 90 V1YD = = [ 90(v (A dnN)) =~ [ so(dnf Ay ds))

- [ 90(0(<s)dns.da)) + [ 90(Ve,dsf.dzf).

Since 0(rk)dpf = dpi(rl)dp f, we have

[ 900 dst.dzf) = [ go(dpitel)dsf.dzf)
= [AJQQ(i(HﬂE;)dBf,ABf)
= [ sh(NAnf.
which completes the proof. a

Theorem 3.6 ([3]) Let (M, gnr,F) be a closed, oriented Riemannian manifold with a
foliation F of codimension q and a bundle - like metric gy; such that éprp = 0. If a

basic function f satisfies (Ap — kl5)f = \f, then

q-1 2 . A 2 _
T NP [ RO~ [ 997+ fga =0 (3.4

18



Proof. Since Agdpf =dgApf, we have

/MQQ(ABVﬁ vf) fMQQ(ABdBﬁ dgf) (3.5)

[ 9a(dnrns.dnf)

| 90(ds(\f + k(1)) ds )

/\f d 2 + [ / f A .
| Bf| M ’QB( ) Bf
From Lemma 3.5 and (3.5), we have

fM{gQ(ABVf, V) +29Q(Aw, VI V) + 265 (F)ApSf - k()

A JdnfPen [ gk + [ b(dosP).

Since Apf — k% (f) = 0rdpf, we have

[ (8ps =D = [ 90GrdsfAf) = [ NdsfP.
From Proposition 3.4, we have

A [ wsPen [ a(n)+ | wblans) -2 [ RicT(vr,90)

(3.6)
Ay o
-2 / |VVf + —ng| =0.
M q
Since dgrp =0, from Lemma 3.1, we have

(1) =0= [ wbdss?).

[ res(n=0= [ wh(desP)
Hence the proof follows from (3.6). ]

Definition 3.7 If a vector field Y € V(F) satisfies 0(Y )gq = 2fy gq, for a basic scale
function fy depending on Y, then Y is called a transversal conformal field of F with a

19



scale function fy. In particular, if fy- = 0, then Y is called a transversal killing filed of

F.
Remark. 1. If Y is a transversal conformal field of F with a scale function fy, then
1. -
fy = =divyY. (3.7)
q
2. Note that Y is a transversal conformal field with a scale function fy if and only if
9o(VxY,Z)+90(V2Y,X) =2fygo(X, Z) (3.8)
for any X, Z € Q.

Lemma 3.8 ([5]) Let (M, g, F) be a Riemannian manifold with a foliation F of
codimension q and a bundle-like metric gyr. If Y € V(F) is a transversal conformal

field with a scale function fy, then
9Q((O(Y)RY)(Ea, Ey)Ee, Eq) = 03V afe — 6V afa— 64V fe+ 05Vofa,  (3.9)
(O(Y)RicY)(Eq, Bp) = ~(q - 2)Vafy + (Apfy - s (fr))dh, (3.10)
0(Y)oV =2(q-1)(Apfy - cl(fy)) -2fvaY, (3.11)
where Vo = Vg, , fa = Vafy and RicV (X,Y) = 9o(pV(X),Y) for any X,Y € Q.
Now we define the tensors EV and ZV respectively by
EY(X)=p"(X)-ZX, (3.12)
ZV(X,Y)Z =RV(X,Y)Z - q(Z—Yl)(gQ(Y, Z2)X -g99(X,2)Y) (3.13)

for any fields X,Y, Z € I'Q. Then we have the following lemma (cf. [3]).

20



Lemma 3.9 Let (M, gy, F) be a Riemannian manifold with a foliation F of codimen-

ston q and a bundle-like metric gar. Then

trEV =0,

ZaZV(X7Ea)Ea = EV(X) VX el'Q,

O’v 2
[BY = o7 - L2,

V2 _pv2 _ 2(cY)?
29 = |RYP - 207

divg BV = %VUV,
where trEYV =¥, go(EV (E,), E,).

Proof. From (3.12), we have

BV = Y 9o(EY (Ed), E¥ (Ea))

\Y oV v a¥
ZgQ(p (Ea) - 7Eaap (Ea) - 7Ea)
a

|pv|2 _ (UV)Q'
q

From (3.13), we have

1ZV* = Y 9o(ZY(Eu, By)Ee, Z¥ (Eq, Ey)E,)

a,b,c

( )abc
oV
A T

v 2(0Y )2
] q(g-1)
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(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

’Rv|2 20 i Z{(QQ(RV(E(ME )ECaE ) gQ(RV(ECaEb)EaEb))}



Since Y(oV) =2%,90((VE,pV)(Y), E,) for any Y € I'Q, we have

divy EY

> (Ve EV)(Ea) = 3 Ve, EY (E,)

a

1
Z VEQPV (Eq) - E Z(VEGUV)Ea

1 1
—VoV -ZvoV =1 "voV.
2 q 2q

From (3.12) and (3.13), others follows.

Lemma 3.10 Let (M, gy, F) be a Riemannian manifold with a foliation F of codi-

mension q and a bundle-like metric gy If Y € V(F) is a transversal conformal field

with a scale function fy, then

(OV)VEY)(Ea, By) = ~(q-2)[Vafy + g{Any ()1,

(3.19)

QQ((Q(Y)ZV)(EM Eb)ECa Ed) = 5l§lvafc - 5gvafd - 6svbfc + 5zczvbfd (320)

- §<A3fy — il (fyr)) (8955 - 6769),

2. 9Q(EY (0(Y)Eq), EY (Ea)) = - fy|EVP,

O(Y)|EV] =-2(¢-2)90(VVfy,EV) - 4fy|EV P,

> 9(ZY(0(Y) Ea, Ey) Ee, ZY (Ea, Ey) Ee) =~ fy| 27,

a,b,c

OY)|ZV? = -89o(VV fy, EV) —4fy|ZV .
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(3.21)

(3.22)

(3.23)

(3.24)



Proof. From (3.10), (3.11) and (3.12), we have

(O(Y)EV)(Eq, Ey) = 0(Y)EY(Eq, Ey) — EV(0(Y)Eq, Ey) - EV(E,,0(Y)E,)

- BRI (B F2) - g (s )
~RicY(0(Y)E,, Ey) + %gQ(G(Y)Ea, Ey)
~RicY(E,,0(Y)Ey) + %QQ(E(I, 6(Y)Ey)

= (OO)RicY)(Ey, By) - $<9<Y>UV>62 - zfyavaz

= —(q-2)[Vafs+ é{Any -kl (fy)}on].

From (3.13), we have

(O(Y)ZV)(E,, Ey)E, O(Y)ZV(E,, Ey)E. - ZV(0(Y)E,, Ey)E.

—ZV(EG, H(Y)Eb)Ec - Zv(Eaa Eb)Ec

= (0(Y)RY)(Ea, Ep)Ee— ———(0(Y)o" )55 Ea - 65Ey)
q(g-1)
_2fyo? (6SE, - S Ep).

q(g-1)

Then (3.20) follows from (3.9) and (3.11).

By a direct calculation, we have

> 9o(EV(6(Y)E,), EY(E,)) Z;gQ(e(Y)Ea,Eb)gQ(EV(Ea),EV(Eb))
= Z;{—%yéz—gQ(Ea,0(Y)Eb)}gQ(EV(Ea>,EV<Eb))

= 2f|EVP - Y go(EY (0(Y)E,), E¥ (E,)),
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which proves (3.21).

From (3.19), (3.21) and trEVY = 0, we have

OIET = 200V )go(EY (Ea). B (Ea))
= 2200((0)EY) Es, B (Eu)
- 2%gg((e(Y)EV)Ea,Eb)g@(EV(Ea),Eb)
= 2 %{(G(Y)EV)(Ea, Ey) = (0(Y)90)(E¥ (Ea), Ey)}go(EY (E.), Ey)

- 2D TU(Ta) é{vay iy () 10800 (B (Ea), By) - Afy|EV 2

= -2(q- 2)gQ(Vny,EV) - 4fY’Ev|27

which proves (3.22).

By a direct calculation, we have

> 90(ZY(0(Y)E,, Ey)E., ZV (E,, Ey)E.)

a,b,c

= Z gQ(G(Y)EaaEd)gQ(Zv(EdyEb)EaZv(anEb)Ec)
a,b,c,d

= bZ d{_(e(Y)gQ)(Eaa Ed) - gQ(Em G(Y)Ed)}gQ(Zv(Eda Eb)Ew Zv(Em Eb)EC)

= _2fY’Zv’2_ Z gQ(Zv(H(Y)EaaEb)EuZv(EaaEb)Ec)7

a,b,c

which proves (3.23).

From (3.20) and trEY =0, we have

> 9Q((O(YV)ZY)(Eq, Ey)Ee, ZV (Eq, Ey) Ee)

a,b,c

= Z QQ((H(Y)ZV)(EM Ey)EL, Ed)gQ(Zv(Eaa Ey)E., Eq)
a,b,c,d
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2
S [08Vafe—05Vafa— 0Ny fe+ 05V fa— Q{ABfY -kl (fy) }(6504 - 6561)]
a,b,c,d

gQ(ZV(Em Eb)Ec> Ed)

= -4 Vafe9o(ZY (Ea, By)Ey, E;) - g{ABfY -k ()} Y 90(EV (EJ), Ed)

a,c

= —4gq(VVfy,EV).
Therefore

ONZVP = > 0(Y)go(ZY (Ea, Ey)Ee, Z¥ (Eq, Ey) E)

a,b,c

= Y (0)gQ)(ZY (Ea, By) Ee, Z¥ (Ea, Ey) Ee)

a,b,c

+2 Y 9o((0(Y)ZY)(Ea, Ey) Ec, 2 (Eq, Ey) E.)

a,b,c

+2 Z gQ(Zv(e(Y)Ea; Eb)EC7 Zv(Em Eb)Ec)

a,b,c

+2 Z gQ(ZV(Em H(Y)Eb)Ew ZV(ECM Eb)Ec)

a,b,c

+2 Z gQ(ZV(Eaa Eb)H(Y)Ew ZV(ECU Eb)EC)

a,b,c

= 89o(VVfv,EV) -4fy|ZV ],
which proves (3.24). ]

Proposition 3.11 ([3]) Let (M,gn,F) be a closed, oriented Riemannian manifold
with a foliation F of codimension q > 2 and a bundle-like metric gas such that dprp = 0.
Assume that the transversal scalar curvature oV is constant. If M admits a transversal

conformal field Y with a non-zero scale function fy, then

oV

q(qg-1)

| (90(EY (Vi) 94v) V9 fy + —Z—<fraql’} =0. (3:25)
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Proof. Since ¢V is constant, from (3.11), (Ap - k) fy = gTvl y. If we let \ = ;_—vl, then

(3.25) follows from Theorem 3.6. ]

Lemma 3.12 ([3]) Let (M, g, F) be a closed, oriented Riemannian manifold with a
foliation F of codimension q and a bundle-like metric gas. Assume that the transversal

v

scalar curvature oV is constant. Then for any function f,

divy (EY (V1)) = 9Q(EY(Vf),Vf) + f9o(EY,VV ), (3.26)
where EV(X,Y) = go(EV(X),Y) for all X,Y €T'Q.

Vv

Proof. Since oV is constant, divg EY = 0. Hence

divy (EY(fV[))

> 90(Ve (EV(fVf)),Ea)

22 90((VE,EYV)(fV), Ea) + 3 9BV (VE,(fV)), Ed)

2 9((VE,EV)(Ea), fVf) + 3. 90(EY (Ea), Ve, (fV]))

> 90(EY(E.), Ve, V) + [, 90(EY(E.),VE, V)

9o(EV(Vf),Vf)+ fao(EY,VVf).

Proposition 3.13 ([3]) Let (M,gn,F) be a closed, oriented Riemannian manifold

with a foliation F of codimension q > 2 and a bundle-like metric gyr. Assume that the

v

transversal scalar curvature oV is constant. If M admits a transversal conformal field
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Y with a non-zero scale function fy, then

(q—2)[MgQ(Ev(ny),ny) - [M{ny2|Ev|2+%fyO(Y)|EV|2} (3.27)

+(0-2) [ 90(E"(fywh). V).

Proof. From (3.26) and the transversal divergence theorem, we have

[ 9BV 1).95) = [ (BT (vrh), V) - [ froa(ET, 9V).  (3.29)

From (3.22), we get

1
—2/ EY :—2] 2EV2—-f 6(Y)|EV 2.
(¢-2) | froo(VV iy, EY) L IET =5 Y O(Y)IEY
Hence the proof follows from (3.28). ]

Proposition 3.14 Let (M, g, F) be a closed, oriented Riemannian manifold with a
foliation F of codimension q and a it bundle-like metric gyr. Assume that the transversal
scalar curvature oV is constant. If M admits a transversal conformal field Y with a

non-zero scale function fy, then

[ B @) = [ R eIz (329

v [ 0BV (fy k). V).
Proof. From (3.24), we have
[ a5 BN =3 [ wizTP - [ o)z
M 2JIMm 8 JIMm

Hence the proof follows from (3.28). ]
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4 The generalized Obata theorem

Definition 4.1 Let G be a discrete group. A Riemannian foliation (M, F) is transver-
sally isometric to (W,G), where G acts by isometries on a Riemannaian manifold
(W, gw), if there exists a homeomorphism 7 : W/G — M /F that is locally covered by
isometries. That is, given any x € M, there exists a local smooth transversal V contain-
ing x and a neighborhood U in W and an isometry ¢ : U — V such that the following

diagram commutes

v -2, v

Pozl lfvoj
w/G —1> M|F
where i: U - W and j: V — M are inclusions and P: W — W/G and P: M - M/F

are the projections.

Now, we prove the generalized Obata theorem.

Theorem 4.2 Let (M, gy, F) be a complete, connected Riemannian manifold with a
foliation F of codimension q > 2 and a bundle-like metric gy, and let ¢ be a positive
real number. Then the following are equivalent:

(1) There exists a non-constant basic function f such that Vxdf = —c2fX° for all
vectors X € L*, where X is the gar-dual form of X.

(2) (M, F) is transversally isometric to (S9(1/c),G), where G is the discrete subgroup
of the orthogonal group O(q) acts by isometries on the last q coordinates of the q-sphere

S4(1/c) of radius 1/c in Euclidean space RI*L.
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Proof. It is clear that the second condition implies the first, because if f is the first
coordinate function in R%*! considered as a function on the sphere S%(1/c), it satisfies
the first condition.

Conversely, assume that the first condition is satisfied for the basic funtion f. This

implies that for each x € M,

~f(2)grs =V flLe, (4.1)

where L; is the normal space to the leaf through € M and gr: = gr«|r: is the metric
restricted to L:. For any unit speed geodesic ~ : [0, 3) - M that is normal to the leaves

of the foliation,

—*(foy) = =A(fov)gu(v.Y)

= gu((V2 ()7 = 9m (VY £:7")
= gu(VEY) = 9m(VE, V)
= (fom)",

where Vf is the transversal gradient of f. Thus

(fovy)(t)=Acos(ct) + Bsin(ct)

for some constants A and B.
Let v(0) = xg € M be either a global maximum or global minimum of f on M. Then

A = f(z9) and B =0. Thus

F(r(@)) = f(zo) cos(ct) (4.2)
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for any unit speed geodesic v orthogonal to the leaf [, through z¢, and the maximum
and minimum values along v must have opposite signs. Suppose that we choose the
geodesic so that it connects an absolute maximum zg with an absolute minimum z1;
such a normal geodesic can always be found (see [9]). Since the metric is bundle-like,
every geodesic with initial velocity in L* is guaranteed to be orthogonal to L* at all
poinis ([18]).

We prove the theorem by four Steps. Let M, = {l,|dist(l4,,l,) = s} for any non-negative
real number s.

Step 1. Mo = {ly,} and M= = {l,, }.

Since the nondegeneracy of the normal Hessian implies that each maximum and min-
imum of f o~ occurs at an isolated closed leaf of (M, F), the set f~1(~f(xo)) must be a
discrete union of closed leaves, and I, ¢ f~1(~f(z0)). Note that f~1([f(x0), - f(z0)]) =
M and the normal exponential map is surjective ([9]). Hence f~1(-f(z0)) is a single
closed leaf, say [, , so that all normal geodesics through o meet [, at the exact distance
T Similarly, f~(f(20)) = lu,-

Step 2. M, (0 < s < 7/c) is diffeomorphic to the unit normal sphere bundle of l,, c M.

Given any leaf [ of M that is neither /,, nor [, , there exists a minimal normal
geodesic connecting it to [;, by completeness. In fact, there exists such a minimal
normal geodesic through g, and its initial velocity lies in L; . By equation (4.2),
the gradient of f is nonzero at each ~(t) for 0 < ¢t < 7/c and is parallel to 7'(¢).

Since geodesics are determined by velocity at a single point, it is impossible that two
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geodesics with initial velocities through zg meet at the same point unless that point
has distance at least 7/c from x. Thus, the normal exponential map expy : Ly — M
is injective on the ball By, = Br/.(x0) ¢ L . This discussion is independent of the
initial point of [, chosen, because for a bundle-like metric the distance from a point z
on one leaf closure to another is independent of the choice xg € I, (see [9]). We have
Uzet,, expjﬁm = M. By the preceding discussion, Uy, exps 8@ = M,.
Since Om is the unit sphere on g-dimensional Euclidean space, My (0 < s < m/c) is
diffeomorphic to the unit normal sphere bundle of I, c M.
Let B Je denote the one-point compactification of B/, and G be an orthogonal trans-
formaitons at xo on Ly ([12]).
Step 3. M/F is homeomorphic to S/G, where S = B;/C s a sphere.

Since G at g acts by orthogonal transformations on Ly , MsNexp; (Lz, ) is iso-

metric to 0Bs(xo)/G by the indeced metric gr. on L3 , and so leaf space M;/F is

Zo?

diffeomorphic to dBs(xz¢)/G, for 0 < s < w/c. Then (M ~I,,)/F is diffeomorphic to

Br/./G by the map
N Brye/G = (M N 1y,) [ F

defined by 1(O¢) = lexps (¢), Where § in By, c Ly, O¢ is the G-orbit of £ in By, and

lexps, (¢) 1s the leaf containing expy (§). Now, we define

by 7 |B, /¢ =n and (o) = l;,. Then M/F is homeomorphic to S/G.
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Step 4. M/F s transversally isometric to S?(1/c)/G.

Let v and w be any two nonzero orthonormal vectors in Ly , and let W, denote
the L*-parallel translate of w = W} along the geodesic 7(s) with initial velocity v; thus
Ws € Lf/(s) is a well-defined vector at each v(s) for 0 < s < 7/c. We see that Wy is
tangent to M for s € (0,7/c).

First, we prove the following.

(1) esWo(y;) =sin(es)Ws(y;), for 0 < s <7/e.

Let (y;) be geodesic normal coordinates for the normal ball exp; (Br/.(x0)). Sup-
pose that these coordinates are chosen at xy such that y;(v(s)) = s and each of % for
j > 1 is orthogonal to v =+'(0) at zg = 0. We extend s to be the function s(y) = \/Z_yjz
and write y; = s0;, so that each 6; is independent of s. Thus, ¥'(s)(#;) = 0 and
Ws(s) = 0. Further, we let % denote the radial vector field, which agrees with +'(s)
along 7. In the calculations that follow, we extend y;, 0;, % to be well-defined and ba-
sic in a small neighborhood of the transversal expy (Bgr/.). From the calculation of f
above, we see that Vf = —csin(cs)f(:):o)%.

Since V is torsion-free and V.5 W5 = 0 by construction,

0 d 1
"l - e e
2
= —mf(’Y(S))Ws
__ccos(cs)
- sin(es)
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On the other hand, since 6; is locally defined basic function, for 0 < s < 7/e,

d 0 0 0 ccos(cs)
—Ws(0;) = =Ws(0;) = | =, Ws|(0;) =7 | =—,Ws|(0;) = ———Ws(6,).
ds 2 Os 03 [83 ](j) 7T[as ](J) sin(cs) (%)
Solving the differential equation above, we have
Wi6;) = ——— W, e(0:), 0 < 5 <7/c (4.3)
s\Uj) = —= 7/2¢\Y3 ) T/C. '
77 sin(cs) /2375
Since W,(s) =0 and y; = s6;, we have
Wi(y;) = sWs(65)
for 0 < s <m/c. Then, for all j,
) 1
Woly;) = lim Wi(y;) = -Wz(6;)
sin(cs) sin(cs)
= Ws(0;) = Ws(y;)-
c cs

Next, we prove the isometry property.

(i) n*grs = gs, where g5 is the standard metric metric of S9(1/c). Note that since
the vectors a% for j > 1 form a basis of the tangent space for My M expy (Br/c) at v(s)
with s > 0, the equation above uniquely defines the vector Wy in terms of Wy. Since
the metric of the sphere S%(1/c) satisfies the same hypothesis, a corresponding fact is
true for geodesic normal coordinates on S9(1/c).

We now show that the equation above implies that the pullback of the metric gz. to
By /. is the same as the standard metric gg corresponding to geodesic normal coordinates

on S9(1/c). As above, let W denote the parallel displacement of Wy along ~(s), and
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let W, denote the parallel displacement of Wy along the geodesic in (Br/c,g9s) with

unit tangent vector v. Then

A(TT) (05) =Wl 0m) = e STl 0m) = oo sWo(s6;) = We(0)

Namely we have dn(W,) = W,. Thus we have
|dn(Ws)| = [W| = [Wo| = [W.

We may reverse the roles of xy and z1 and obtain a similar result.

Now, given any point x € M, there is a minimal geodesic connecting this point to a
point x, on the leaf containing . If = ¢ I, , the above analysis shows that the map expig
restricted to (Br/.(x(),gs) is an isometry onto its image, and that image contains x.
Further, the map expglcg locally covers the map 7 : (B;/C/G, 9s) > (M|F,gr.). Ifx ¢y,
a similar fact is true for exp;,1 . Thus the map 7 is locally covered by isometries, and we

conclude that (M, F) is transversally isometric to (S9(1/c), Q). o
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5 Applications of the generalized Obata theorem

In this section, we give several applications of the generalized Obata theorem.

Theorem 5.1 ([3]) Let (M, g, F) be a closed, oriented Riemannian manifold with
a foliation F of codimension q > 2 and a bundle-like metric gy such that dprkp =
0. Assume that the transversal scalar curvature oV (# 0) is constant. If M admits a

transversal conformal field Y with a non-zero scale function fy such that

'/]\\/AIQQ(EV(VfY)?va) 207 (51)

then (M, F) is transversally isometric to a sphere (S1(1/c),G), where ¢ = —Z— and

G is a discrete subgroup of O(q).

Proof. From Proposition 3.11, we have

oV
VV /iy = “ala- 1)fng.

\4 \Y

Since ¢V is constant, the transversal scalar curvature ¢V is non - negative ([5]). There-

fore is positive. By the generalized Obata theorem, the proof is completed. O

oV
7 a(g-1)
Theorem 5.2 ([3]) Let (M, gy, F) as in Theorem 5.1, except that F is minimal. If

M admits a transversal conformal field Y with a non-zero scale function fy such that
O(Y)IEV =0, (5-2)

then (M, F) is transversally isometric to a sphere (S1(1/c),G), where ¢? = q(‘;—:) and
G is a discrete subgroup of O(q).
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Proof. From Proposition 3.13, the minimality of 7 and 8(Y)|EV|?> = 0 imply that

(q—2)fMQQ(EV(VfY),VfY)=2foY2|EV|2-

For g > 3, the proof follows from Theorem 5.1. For ¢ = 2, |[EV|? = 0. So F is transversally

Einstein. Hence the proof follows from Theorem 1.4. a

Corollary 5.3 ([3]) Let (M,gnr,F) as in Theorem 5.1, except that F is minimal. If

M admits a transversal conformal field Y with non-zero scale function fy such that
o(Y)|p"[* =0, (5.3)

then (M, F) is transversally isometric to a sphere (S%(1/c),G), where ¢* = q(‘;—:) and

G is a discrete subgroup of O(q).
Proof. Since ¢V is constant, (Y )aV = 0. From (3.12), we have
O(Y)[EV] =0(Y)|p" [ = 0.

Hence the proof follows from Theorem 5.2. m|
If |pV|? is constant, then 6(Y)|pV|? = 0 . Hence we have the following corollary from

Corollary 5.3.

Corollary 5.4 Let (M, gy, F) as in Theorem 5.1, except that F is minimal. If M

admits a transversal conformal field Y with a non-zero scale function fy such that

|pV|? is constant, then (M, F) is transversally isometric to a sphere (S9(1/c), G), where

= q(‘;:) and G is a discrete subgroup of O(q).
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Theorem 5.5 Let (M, gy, F) as in Theorem 5.1, except that F is minimal. If M

admits a transversal conformal field Y with a non-zero scale function fy such that

OY)EVP =tfy|EV*  (¢t>-4), (5.4)

then (M, F) is transversally isometric to a sphere (S1(1/c),G), where ¢ = —7— and

G is a discrete subgroup of O(q).

Proof. From Proposition 3.13, we have

2a-2) [ 9o (Vi) Vhr) = (@+) [ BBV,

Since t > -4, 2(q - 2) [, 90(EV(Vfy),Vfy) > 0. For ¢ > 3, the proof follows from
Theorem 5.1. For q = 2, |EV|2 = 0. So F is transversally Einstein. Hence the proof

follows from Theorem 1.4. m]

Theorem 5.6 Let (M, gy, F) as in Theorem 5.1, except that F is minimal. If M

admits a transversal conformal field Y with a non-zero scale function fy such that
0(Y)|RV* =0, (5.5)

then (M, F) is transversally isometric to a sphere (S4(1/c),G), where ¢* = -2

G is a discrete subgroup of O(q).

Proof. Since §(Y)|ZV[> = 0(Y)|RV|*> = 0. From Proposition 3.14, we have

[ B @) 95) =5 [ A2 20

37



Hence the proof follows from Theorem 5.1. a
If |[RV|? is constant, then 6(Y)|RV|* = 0. Hence we have the following corollary from

Theorem 5.6.

Corollary 5.7 Let (M, gy, F) as in Theorem 5.1, except that F is minimal. If M
admits a transversal conformal field Y with a non-zero scale function fy such that

|RY|? is constant, then (M, F) is transversally isometric to a sphere (S4(1/c),G), where

= q(‘;—:) and G is a discrete subgroup of O(q).

Theorem 5.8 Let (M, gy, F) as in Theorem 5.1, except that F is minimal. If M

admits a transversal conformal field Y with a non-zero scale function fy such that
O(Y)ZVP =tfy|ZVF  (t=-4), (5.6)

then (M, F) is transversally isometric to a sphere (S1(1/c),G), where ¢ = —— and

G is a discrete subgroup of O(q).

Proof. From Proposition 3.14, we have

[ 0BT @) v = [ Rzt

Since ¢ > -4, [, 90(EV(V fy),V fy) > 0. Hence the proof follows from Theorem 5.1. O

Theorem 5.9 Let (M,gy,F) be a closed, oriented Riemannian manifold with foli-
ation F of codimension q and a bundle-like metric gasr. Assume that the transversal

scalar curvature oV (# 0) is constant. If M admits a transversal conformal field Y with
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a non-zero scale function fy, then
20V <q(g-1)?[VV ]’ (5.7)

Equality holds if and only if (M,F) is transversally isometric to a sphere (S4(1/c),G),

2 _

where ¢ = % and G is a discrete subgroup of O(q).

\%

Proof. Since oV is constant, (Ap - kk) fy = ;—Vlfy from (3.11). Hence, we have

oV

q(g-1)

oV

0 < |[VVfy+ fraol®

O'v2
Iy Y VeV fy ol + (") fy?

q(¢-1)"" o3 q(q-1)?
(UV)Q f 2
a(q-1)2""

= |[VVfy+

VY fy | -

which proves (5.7). Equality holds if and only if

oV
VVfy = “ala- 1)fng.

By the generalized Obata theorem, the proof is completed. a

Proposition 5.10 Let (M, gy, F) be a closed, oriented Riemannian manifold with
foliation F of codimension q and a bundle-like metric gyr. Assume that the transversal
scalar curvature oV (# 0) is constant. If M admits a transversal conformal field Y with

a non-zero scale function fy, then

4
S viP = [ [ ey (5.5)

Proof. By a direct calculation, we have

v
%AB]CY2 = (Apfy)fy - |V = (;_—1fY2 + k() fy = IV (5.9)
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Since for any basic function f,

[ apf-o,

by integrality (5.9), the proof follows. ]

Theorem 5.11 Let (M, gn, F) as in Theorem 5.1. If M admits a transversal confor-

mal field Y with a non-zero scale function fy, then

' (UV)Q oV
fMRlcv(vfy,vfy)smefy%?anﬁB(f)f. (5.10)

Equality holds if and only if (M,F) is transversally isometric to a sphere (S9(1/c),G),

2:

where ¢ % and G is a discrete subgroup of O(q).

Proof. From Proposition 3.11, we have
fMgQ(EV(vfy), Vfy) <O0. (5.11)
By definition of EV, (5.11) can be rewritten as

\Y
,[MRiCV(VfY’ Viy)- % ,/M |ny|2 <0.

From Proposition 5.10, (5.10) is proved. Equality holds if and only if

oV
VV /[y = “ala- 1)ngQ'

By the generalized Obata theorem, the proof is completed. a
Remark. The existence of the bundle-like metric gy; for (M, F) such that s is basic,
ie., k € QL(F), is proved in ([2]). In ([10,11]), for any bundle-like metric gp; with
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K € QL (F), it is proved that there exists another bundle-like metric gy; for which the
mean curvature form & is basic-harmonic. Hence all theorems in section 5 hold without

the condition dgrpg = 0.
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