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I . Introduction

Magnetophonon resonance (MPR) arises from an electron resonant scattering due to
absorption and emission of phonons when the energy separation between two of
Landau levels is equal to a phonon energy. Since the pioneer work by Gurevich and
Firsov [1], this effect has been extensively studied as a powerful spectroscopic tool
for investigating transport behavior of electrons in bulk[2,3] and low-dimensional
semiconductor systems[4-10]. The MPR enables us to obtain information on band
structure parameters, such as the effective mass and the energy levels, and on the
electron-phonon interaction. The vast majority of work on the MPR has been done on
the transport properties of semiconductors, usually the magnetoresistance, which
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inevitably involves a complicated average of scattering processes. The oscillations in
the magnetoresistance are the results of a combination of scattering and broadening
processes that can lead to a quite complicated dependence of the resonance amplitudes
on doping, sample structure, carrier concentration, and temperature. However, the MPR
can also be observed directly through a study of the electron cyclotron resonance
(CR) linewidth and effective mass, i.e., the so-called optically detected MPR (ODMPR),
as was demonstrated in three-dimensional (3D) semiconductor systems of GaAs by
Hai et al. [11] and in two-dimensional (2D) semiconductor systems of

GaAs/Al,Ga | _,As heterojunctions by Barnes et al. [12] The ODMPR allows one

to make quantitative measurements of the scattering strength for specific Landau
levels and yields direct information on the nature of the electron-phonon interaction in
semiconductors.

The purpose of the present work is to obtain a general form of
frequency-dependent magnetoconductivity, by using the Mori-type projection operator
technique presented by one of the present authors[13], and to present the explicit
expressions of the lineshape function and the linewidth closely related to the optically
detected magnetophonon resonances due to various transitions including intraband,
intervalley, and interband transition in bulk semiconductors, which are expressed in
two different ways for a weak coupling and an arbitrary and/or strong one.

The present paper is organized as follows : In Sec. II, we will describe the model of
the system. The frequency-dependent magnetoconductivity for the system modeled in
the previous section is evaluated in Sec. IIl. The conductivity is closely related to the
lineshape function due to the collision process. In Sec. IV, the general expressions of
lineshape functions for a weak electron-phonon interaction and an arbitrary and/or
strong one are obtained by using the Mori-type projection operator technique. The
explicit expressions of the lineshape function and the linewidth for a weak coupling
and an arbitrary and/or strong one are given in Sec. V, which is related to the
optically detected magnetophonon resonances due to various transitions including
intraband, intervalley, and interband transition in bulk semiconductors. Qur results are
summarized in the last section.

II. Model of the system

Consider a system of many non-interacting electrons /N, iIn interaction with

phonons, initially in equilibrium with a temperature T. Then, in the presence of a
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static magnetic field tilted with an angle of @ from the 2z axis chosen to be parallel

to the principal axis of an ellipsoidal energy surface, B = B(sin8, 0, cos@), the

time-independent Hamiltonian $H$ of the system can be written as

H = H,+V+H,

. . (2.1)
= ;Z,(Asl(he%-v)lrl s>afa,;, +H,
1
= 0 0
he= %(ﬁeA) 0 L 0 |(ptean) (2.2)
m
0 0 m%
v = Zq:[ bty b ) (23)
1
H,= Zaﬁwq(b:bq+§), (2.4)
7,=C.,expliqg- 7) (25)

where [As) means the electron state in the sband or valley : A denotes the Landau
state (N, k), N(=0,1,2,---) and sare the Landau-level index and band or valley
index, respectively. a,‘{s(a i) is the creation (annihilation) operator for an electron
with momentum p, A denotes the vector potential, m, and m,; represent the
transverse and longitudinal mass components of the ellipsoidal energy surface of the

conduction band, respectively, b:(b q) is the creation (annihilation) operator for a

phonon with momentum h ¢ and energy hw ,, C _ is the interaction operator, and

qQ

7 is the position vector of an electron. By taking into account the Landau guage of
vector  potential A= B(—ycosb,0, ysin) the one-electron normalized
eigenfuncitons (< 7| As>) and eigenvalues ( E}) in thes band or valley are given,

respectively, by

Cr|As>=C 7N, by, by, 50 = Uy( n)F( 7), (26)
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E5=Eike, k)= (N+1/2) hw,+ h2( k- B/B)?2m} (2.7)

where k&, and %, are, respectively, the wavevector component of the electron in the
x and z direction, w,(= eB/m,') is the cyclotron frequency in the s band or valley,

and mpg means the effective mass in the magnetic field direction. Here

2 .2
12 - cos?0+ sin 8' (28)
m, my mmm,;
my = m,cos 0+ m,sin’8 (2.9)

Also, in Eq. (26), Uy( 7) denotes the Bloch function of the sband or valley at

k=0 and Fj( ) means the envelope function given by

Fly) = Ll,_ (v — v3)exp (ik,x+ ik.2) (2.10)
with
yi = Ls[m,kzsinﬁ— m k. cos §], (21D
eBmB

where @{(v) in Eq. (2.10) are the eigenfunctions of the simple harmonic oscillator

and L, and L, are, respectively, the x- and z-directional normalization lengths. We

assume that the Bloch function Uj( ) and the envelope function F3( ) are.

respectively, normalized in the crystal as

fCU[;"( DU ndr=6, .. (2.12)

LFi*( T)Fi( T)da‘)”: 6}_,{' = 8N,N'8k,,k,'6k,‘k,' (2.13)

where C is the volume of the unit cell and (= L,L .L,) is the crystal volume in

the real space.
If we apply the energy eigenvalues of Eq. (2.7) to many-valley model and

multiband model, we can get the energy eigenvalues
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E5= Eilk, k)= (N+1/2) ho,+ h*( k- B/B)%[2m}, (2.14)

Ei=E%(k/ k)= (N+1/2ho,+ h*(k - B/B)*/2mj (2.15)
for s and s valleys, respectively, and

E{=E$ k) =E,+(N+1/2) hw.+ R?( k- B/B)*/2m3, (2.16)

EY = EY (k' kY= —(N'+1/2) hwy,— h*( k¥ - B/B)?*/2my, (2.17)

for the conduction and valence bands, respectively, where E, is the energy gap,

we=eB/m¢ and @y=eB/my. C and V in the superscript or subscript indicate the
conduction and valence bands, respectively. We see from Eqs. (2.16) and (2.17) that in
the presence of the magnetic field, the conduction and valence bands separated at

k=0 by the direct-band-gap E, are split into Landau subbands specified by the

Landau level indices NM(N')=0,1,2,---, in which the energies of the single-electron
in the conduction and valence bands are quantized in the y-direction and

quasi-continous in the x-z plane. It is interesting to note from Eqs. (2.14)-(2.17) that
the energy separation of two Landau levels in the s valley are different from that of
two Landau levels in the s valley, as in the conduction band and the valence band,
and that the slopes of the energy band in two different valleys are same each other

whereas those of the energy band in two different bands are different. The minimum
of the lowest subband of the conduction band occurs at the energy Hh w/2above the
energy band minimum in zero fields, and the maximum of the highest subband in the
valence band occurs at the energy A wy/2 below the valence band maximum in zero
fields, thus the band gap is given by E,+ A (wc+ wy)/2. In addition, it is to be
noted that MPR or ODMPR effects of interest to us can be observed in zero-gap

materials, such as HgTe, because these effects do not take place in the case where

the band gap is larger than the longitudinal optical phonon energy.
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M. Theory of Optically Detected Magnetophonon

Resonance

When a linearly polarized electromagnetic wave of amplitude E and frequency w

given by
E.=0, E,=FEcoswt, E,=0 (3.1

is applied along the line tilted with an angle of & from the z axis in the zx-plane,
the absorption power delivered to the system is given for the Faraday configuration
(EL B) as [14]

P=(E*/4) Reo ,(w)+ 0,,(— w)] (3.2)

where Re means “the real part of’, w= w—id (6 —=07") and OW(Z)) {or

g ”.(—Z))) is the complex optical conductivity corresponding to the right(or

left)-circularly polarized wave, which can be e)ipressed in the Kubo formalism [15] as

05(0) = 27 [ dtexp(~iat) [ B Tal oot~ ik BIDI(HED]
, (3.3)

- lim 2
- !;l)n}o du,

@7 [ dtexp(— iat) Telp o BN (AHD]

where Orepresents the volume of the system defined in Eq. (2.13), T, means the
many-body trace, J, is the y-component of the total current operator in the
many-body formalism, and J,(#|H) is the time-dependent total current operator in the

Heisenberg representation.

In order to express Eq. (33) in the single electron representation for an
electron-phonon system we assume that the statistical operator Pl Hin Eq. (33) is

factorized as [13]

Y eq( P) =p ph(Hp).D[ Zhe(o __l: : _.7] (3.4)

and the many--body trace Tr is  reduced to tr- T,g” ® " Here

o w(H,) = exp(—BH,)/ T¥*"[exp(—BH,)] and the symbols #r and T ™ mean

the single electron trace and the many--body trace over the phonon scatterings,
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respectively. Then, the frequency--dependent conductivity formula, Eq. (3.3), can be

expressed in terms of the single electron trace as
0(0) = 27" [ “dtexp(—iwt)<tr lim (L) (et v+ B> (35)
u,- ¥y

where <---) ,, denotes the average over the phonon scatterings and f is the modified

Fermi--Dirac operator given by

f=lexp Alh,+ u- j—O+1] "L (36)

In order to rewrite Eq. (35) in more convenient form, we represent the interaction

term in the phonon average as

A B 1 e
tr{ L‘,“},(*Lau, )i (Hho+ v+ H,)} = 2 o  d2f2) ASR,RIA"s">

» (3.7)
X <A's'|djy(4he+v+H,)l/ls)
where we have used
. a . ——-> . - 1 — s
Llﬂ:lo A, (z—h,— u- j) R R, (38)

with R,=(z—h;"' and Az) is defined by Az) =[exp Az—&)+1] "L The |isd

in Eq. (3.7) denotes the single electron state given in Eq. (2.6).
Then, by considering Egs. (3.5) and (3.7) the frequency-dependent conductivity for
the right~circularly polarized wave is reduced to

o6,{w)=0"! Ags,@d Y IS YAS T )As> o, (3.9)
where  j, ) is the Fourier-Laplace transform (FLT) of ,(¢|h,) defined by

7@ =FLTj(thq) = fo dtexp(— i ik (3.10)
with hr=h,+ v+ H, and

AED—RES)
E;—E}

CAs| Y s> = Asl j, {A7s™). (3.11)

Here Ej is the energy eigenvalue of the Hamiltonian k. given in Eq. (2.7).
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Then, the frequency--dependent conductivity formula for the right-circularly
polarized wave can be rewritten from Egs. (3.9) and (3.11) as

RE)—RE )
As,A's E; —E iy

6w =27! CAs| gl As> XS | T @) | As> . (312)

It should be noted that the conductivity formula for the left-circularly polarized

wave given in Eq. (3.2) can be obtained from replacing @ in Eq. (3.12) by — @. The
central problem of Eq. (3.12) is the evaluation of the configuration over the phonon

fields. Especially, the main task is then to give a suitable expansion method for the
operators <A's"| 7.(w)|As> , in Eq. (3.12), which will be outlined in the following

section.

M. Lineshape Function

In order to obtain the lineshape function we will present two representations using
the Mori-type projection operator technique [13]. a closed--form representation and a

continued--fraction form representation.

A. The closed form

For the calculation of <A’s"| 7;.(2)) | As> , in Eq. (3.12), we define the projection

operators P, and P, for the states [A's’> and |As> as
P()’—_—]._P[), (4.2)

where X ;= <A's"| X|As> , for any operator X.
Following Mori [16], we separate j.(t|h7) into the projective and vertical

components with respect to the j,-axis as

itlhy) = Pyltlhe)+Piltlhr)

t
= Zyiltlhp)j,+ fo dhZ oty |hp)f (=t L hp)
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where
Zolt\hp) = 7,5t k)i s (4.4)
fi'(tihg) = expGL ¢/ R)fY, (45)
fi' =iyl h, (4.6)
L,=P/ L (4.7)
Lry=L,+LA4L (4.8)

Here L, L, and L, are Liouville operators corresponding to the single electron

Hamiltonian #,, the scattering potential v, and the phonon Hamiltonian, respectively.

In order to obtain j,;(@) or Zys( @), we differentiate Eq. (44) as

t
L Zotlhn = iwoZoi(tlhr)+ [ dtid o= 1hDZ ot | ) (49a)

t
= dwyZ oyt hp)+ fo At Z \(t— ty | hp)d o Z oty LR 7). (4.9b)

Here

wop=(Lyi h)sliss =(E;—E)/ R, (4.10)
Ayl tl o) = it N ] jos = Zis(t ] B osdos, (4.11)
fiol k) = iLofi"(tL R/ R, (4.12)
Z it hp = Fra(tlhD]fis (4.13)
Aos = f14l 7 s (4.14)

where E, and E, correspond to E; and E3 given by Egs. (2.14) and (2.15),
respectively, and we have used v z— v ;=0 in Eq. (4.10).
Then, the FLT of Egs. (4.9a) and (4.9b) leads to

Zo/, (Z) = })fi(?l))/jm =[liw-— wos T }:oﬁ(Z))] -1 (4.15)

Here Z‘Oﬁ-(c_u), often called the frequency--dependent self--energy operator, is

__289-



DEUSAT WE =5 HM6H M23

defined as

Tuilow) = — Ay:(w) (4.16a)

= — Zi(w) Do, (4.16b)

where 210,,-(70) and Z ,ﬁ(—a—)) are the Fourier-Laplace transform of Eqs. (4.11) and
(4.13), respectively. Considering Egs. (4.5)-(4.8), (4.11), (4.12) and (4.16a), and taking
into account the relation Py(L.+ L )GoPy'X = [(L,+ L ;)G oPy’ X1 = 0 we

obtain

Zos(@) i) ™' ¢ B ILGowP) i1 5

where  Gou= (Khw—L,~L,) ' and we have wused the relation
(A-B " '=A4"" ZO(BA 1™ for any operators A and B. Now the

self-energy operator Z‘Oﬁ(—g)) has been expanded with respect to L, corresponding
to the scattering potential. Eq. (4.17) is the general formula for the
frequency-dependent self-energy operator given in a closed expansion form for

electron-phonon systems, which is applicable to the weak coupling case since we have
taken the relation (A—B) ' = A"! Z=IO(BA )™ Eq. (417) is identical with

Choi et al’ result {17] obtained by Argyres-Sigel’s projection operator method [18] in

the cyclotron resonance transition problem. According to their result, L in Eq. (4.17)

has been replaced by L under the assumption that PyL.X = (0 for any operator X.

Note that this assumption is not always satisfied and it can give us different results
of the lineshape function. For example, for intraband transition, the lineshape function
obtained to the second order scattering strength gives us same results irrespective of
whether the assumption i1s used or not while for interband transition the lineshape
function obtained to the second order scattering strength gives us different results.
The detailed thing will be discussed in Sec. V.
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B. The continued-fraction form

In order to obtain Z V,-(Z)) of Eq. (416b) we define the projection operators P,

and P, as
P]X = (X/,‘/flﬁ)fl, (418)
P’ =1-P. 4.19)

By utilizing these operators we separate fj,| 27) into the projective and vertical

components with respect to the fj-axis as

fiulkny = Py hp+ P At hy)

, (4.20)
= ZultIhA+ [ Zokh Ly (1= 1 Rt
where
' (t1 hp) = exp(iLyt/ RS, 421)
fo=ilofi/ i, (422)
L,=P/'LPy, (4.23)
In order to obtain Z,;( ), we differentiate Eq. (4.13) as
%lei(t lhr) = dwZ1i(tlhy)+ ﬁtdtld w(t—t hpZ (4 | hy o
= w52 4(tlhp)+ fofdfxzm(f— t kDA \sZ (b LhT)
where
w1 = (LrPy il K) 5l f 15 (4.25)
A1 (t hy) = foi(tlhpyy, = Zy(tl hDd (4.26)
fael ) = AL Py fy (¢ D/ K, (427
Zyt1 k) = fo( D] f s (4.28)
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Then the FLT of Eq. (4.24) leads to

Zl/,'(?l)) = fu(ED)fii= [i w—iw vt Em’(?v)] - (4.30)

Here EM(Z) is the first-order frequency--dependent self--energy operator in the

continued--fraction forms given by
z’1/1‘(;)) = - Zm(z) (4.31a)
= - Z;ﬁ(—(l—))d 1/ (4.31b)

We now see that ZU,-(Z)), the FLT of Eq. (4.26), is given in a closed--form
expansion as in Eq. (4.17) while sz,-(_a—)), the FLT of Eq. (4.28), can be given in a
continued-fracton manner via the successive projection operators onto the f», f3, f3

- axes as follows.

In order to obtain the general form for Z ,ﬁ(Z)) we define the projection operators

P; and P; onto the f; axis as

P)X= (X/,/fjf,)f] (4.32)
P/ =1-P; (4.33)

Thus we have

fildhn = Ll 20P, f (L hp) o= Py (tl hy) + P f(t] hy)

(4.34)
= Zy(tlhpy+ fOtZ)ﬁ(tl | hp)f o) (¢— | hp)dh
where the notation /7%, 2P, 'means PoP,'Py"--P,_," and
Z(t\hy) = fitlhplf s (4.35)
fiv1 (tlhp) = exp(iL jo 1t/ R )f 4. (4.36)
fiwi' =il jafyh, (4.37)

- 292 -



Theoretical study on the optical detection of magnetophonon rescnance in semiconductors in tited magnetic fields

L= P /LT P, (4.38)

Then the time derivative of Z ;(¢| A7) leads to

t
%z,,,mhr) = z'w,,,-z,-,,.(t|hr)+f0dtl4,.ﬁ(t— b RDZ At | hy) o

t
= icuj,,-Zjﬁ(tIhT)+fodtlZ,»Hﬁ(t— 8\ hp)d 45Z 4t | hy)

where
© ;5 = (Ll 2oPw Fy 1) 4l F s (4.40)
At k) = st DI = Z 1, B 5 (441)
fimltlhy) = iLplm2oPw'f it (tl by 1, (4.42)

4= fioilf i

The FLT of Eq. (4.39) leads to

Z,‘/;(Z)) = ]jfi(z))/f;ﬁ'z [i;)_iwjfi_ Z}ﬁ(?u)] - (4.44a)
= [i—Z)_i(Ujﬁ_ Z,‘+1ﬁ(_65)djﬁ] _1, (0 <;< 00) (4.44b)

where Zm‘(?}) and Z,‘+1ﬁ'(—a_)) are the FLT of Egs. (4.41) and (4.43), respectively.

Equation (4.44a) is given in a closed--form expansion in the $j$--th
continued--fraction representation, as in Egs. (4.16a) and (4.31a). By considering Eqgs.
{4.13), (4.16b), (4.30), (4.31b) and (4.44b), we obtain the general frequency--dependent

self--energy operator given in a continued-fraction :

iw—ilw lfi+ E]ﬁ(w)

Fosta) = (4.45)

lw—iwy;—

lo—iw 26
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where Az 44 - and @4 @gh - can be easily obtained from Egs. (4.40)

and (443). Note that 2% 1/,»(70) in Eq. (445) is given in two forms expressed by the

infinite closed-form expansion of the finite continued fraction order and the infinite
continued fraction representation. We see that Eq. (4.45) is applicable to the strong
coupling case.

Considering Egs. (3.12), (4.10), and (4.15) we can express the frequency--dependent
magnetooptical conductivity tensor for the right-circularly polarized wave as

— _ _h f(E/)'"f(Ei) |j,-ﬁ|2
(@) = LQ; E~E, hw—EAE—if 3w

(4.46)

It should be noted that the |:> (=]|As>)and the E;( =E}) are, respectively, the
eigenstates and eigenvalues of A, given in Eqgs. (26) and (2.7). The lineshape

function, zhk EO,;(Z)), results in the lifetime broadening, which is responsible for the
spectral broadening of lineshape. Therefore, the real and imaginary part of
it 3os(w) defined by

are the lineshift and linewidth, respectively, for the transition arising from the
resonant absorption of a single photon of frequency w and of a single phonon of

frequency @ , between states |7> and /. Real and imaginary parts of Eq. (4.47) are

of basic interest and are related to the quantities measured experimentally. The real
part provides the resonance shifting whereas the imaginary part gives directly the
average value of the relaxation time, the inverse of which then measures the
resonance broadening of the absorption spectrum. It shoud be noted that both of these
quantites are given by a function of temperature, the strength and/or the tilt angle of
magnetic field, the incident photon frequency, the difference in the effective mass
between initial and final states of the intervalley or interband scattering by phonon,
and the involved phonon energy. The self-energy results in the lifetime broadening,
which is responsible for the spectral broadening of lineshapes. Therefore, the collision
broadening effect by scattering are studied theoretically by examining the real part of
the conductivity tensor.

The remarkable thing here is that Eq. (4.46) has different forms for various

transitions including intraband, intervalley, and interband transitions. For intraband
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transition, the selection rule is given by <A's17,JAsd> = j,2+116s0424+41 In Ea.
(446). E; and E; in Eq. (446) are replaced by E;(=E)and E 4 (=E%:)),
respectively. For intervalley transition, the selection rule is given by
CA'S |7, | As> = jue® 42 in Eq. (446). E; and E; in Eq. (446) are replaced by E}
and FE ,f' given by Eqs. (2.14) and (2.15), respectively. Furthermore, for interband
transition the selection rule is given by <A’s|j,|As> = j 40 y1 in Eq. (446). E; and
E; in Eq. (446) are replaced by E; and E; given by Egs. (2.16) and (2.17),
respectively.

IV. Explicit Expression for the Lineshape Function

In this section we shall derive an explicit expression of the lineshape function for
various transitions in the case of both weak coupling and strong coupling given in
Eqgs. (4.17) and (4.45), respectively. The central interest in the evaluation of Eqgs. (4.17)
and (4.45) is averaging over the phonon configurations.

A. Weak coupling case

For the second order of the scattering potential in Eq. (4.17) we obtain the
lineshape functions for both intraband transition and intervalley and/or interband
transition, respectively, as follows :

(74)1+la{(7:_)a/1+1—(7;)a—ll-im—1/jy/l+ll}
ho—E+E,—how,

i Tues@ = a3,

{(rp xa—(_?’,,) a+1a+1iya+1a/jy1+1x}(7’:)u]
PN ho-EntEtho,

+Zn Z (7:) x+1a{(7‘q_)wx+1—(7'q) a—l/ljyaa—l/jy/l+1/l}
b H(£THD ho—E+E+ho,

{(D) ,la_(_y:) i1art sat1alF e 1}(7 P w ]
4) h G)_E,H.l‘l'Ea_'h(l)a

q

+ (5.1a)
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N N — ()’ q) As'as’ {(7 :) as'As (7 :) asAsj yas'as/j _‘./15'/15}
th Z‘O,is.’,is(a))—zq ( l+nq)[ ag) ﬁZ)_ES_}_Ei__

+ {(74)45115 (7 )Asas]}asas/]ylsns}(y )aA]
A w— E’+E$+hw

+ Z (7:) As'as’ { (7_q) asas’ —(r q) asis] yas'as/j y&s’/ls}
)7 ol how—E;+E+tho,
n {(7 q) Asas __(7 q) Af’as’j yas'as/j y/ls'/ls}( 14 q) asls ]
how—E+E,—ho,
{(E5 - E)— (E5— E3))
T e+ B
[ (7 q) Eas’ (7:) asis! yas'as/] yAS'As (}' ) As'as’ (7 ) asﬂs] yas as/] yAs'As ]
hw—E,+E;-ho, how— E‘+E5+ﬁw
{(E; - E) - (E5— EY)
+ - s s
ang/l)nq (h wo—E;+E) (5.1b)
[ (7’ ;) As'as’ (7 q) asns] yas'as/jyks',is (7 :) As'as’ (7 ) as/ls] yas as/] YAS'As ]

ho—E+E+ho, Aow— EﬁEf—fm
where n = [exp(Bhw-;)—1] ~! is the phonon distribution function and E,=F;
in Eq. (5.10). To obtain Eq. (5.1), we have used the relations

;(P"JX) da = A(§+1)X’“" (62)
%(PO'X) isas = AEG)X As'as) (6.3)
@HCuX) 510> = _<Z;‘|X1;ﬁ'qu§+ TS (5.4)
=(ho—L.~L,)"" (55)

for the phonon state
l>=1n g.n .m0 om gD (56)
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and for any operator X. Here the matrix element is given with respect to both the

electron states (|#>,|7>) and the phonon states (] g>,| ¢ >). Eq. (5.1a) is identical
with Choi et al’ result [17] obtained by Argyres-Sigel’s projection operator method
[18] and with Ryu et al’ result [19] obtained by Kawabata’s projection operator
method [20] in the cyclotron transition. Equation (5.1) is good for sufficiently weak
scattering which neglects the many-body coherence effect. Note that for interband
transition, the fifth and sixth terms on the right-hand side of Eq. (5.1b) appear

because of (E; —E3) # (ES — E5) whereas for intervalley transition, the fifth and
sixth terms on the right-hand side of Eq. (5.1b) do not exist because of
(Ef —E5) = (ES — ES). If the fifth and sixth terms on the right-hand side of Eq.

(5.1b) are neglected, Eq. (5.1b) is identical with that of Choi et al. [21] and Yi et al.
[14] obtained in the theory of interband magnetooptical transition.

B. Strong coupling case

By considering Eq. (4.45) given in a continued--fraction manner we can obtain the

general formula in the strong coupling case. In order to obtain the lineshape function
ih o ), we must evaluate the quantities dg; and @ s given in Egs. (4.14)
and (4.25), respectively :

doi=fialii= —(LoPy Lyjul 5% 4li s (6.7

wii = (LePy A R) sl frs = —(LrPyLPy L/ h ) Wl (5.8)

These quantities are contained in Eq. (4.45) and should be averaged over the

phonon configurations. The results for various transition cases are given by

— S,/ h* (forintraband transition)
(gldyila> = . (59
—S /K% (forintervalley and/or interband transition)

S 4/ £ S, (for intraband transition)
(qgloyle> = . (5.10)
S 4/ £ S, (for intervalley and /o7 interband transition)

where
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2 (1+n )[ ; (y )/l+la (7 )a,i+l (yz)a—l)jyaa—l/j}vl+ll}
+ agx)( (7 q) Aa (7 q) A+la+y] 5'a+la/j)vl+1,i}(7:) a/]]
+ anq[a(§+l)(7:)/l+la{(7q)a]+1_(7q)a—llljyaa—l/jy/l-é-l,i]

. s , (5.11)
agx){ (r D 2a= (7 QD a1+t yar1al F i 1af(7 ) i
sz = Zq (l +n q)[ a(§+l)( Y q) As'as'{ (7 :) as’ds’ ( 14 :) aszls] ,\'as'as/j y/ls'lls}
ag/l){ (7 q) Asas (7 q) ,is'as’j _ms'as/j‘yls',{s}( Y :) ayls]
+ —_— ' . ) ; .
+ an q [ a(§+1)( 14 q) /Is'as{( 4 q) ais — (7 q) asis/ yas asl y/ls/ls}, (5.12)

+ A){ (7’ :) Asas ( 14 :) /ls'as'j yas'as/j yAs'As}( 4 q) as/ls]

24 (I+=n ) a(§+])(Eq_EA+ Ro X7 and (D) ai—(r?) a1 yea—117 i+ 12)
+ EA)(E‘,—EA— B X7 Qae= (7 ) atiastisar 1ol i 17 ) ]

+ zﬂ:n q[ a(gn)(E“l —E,~fow ,,)(7:) /1+1a{(7 q) wl+1_(7 a) a—lkiwa——l/j)vl+l/l}(5
+ G;A)(EA+1_ Ect 7o (2 ) ia=(r ) is1ae1fsaerali i 1al(7 o) ail
Sm = Zq (1 +n q)[ a(§+l)(E§—E;+ hw q)(r q) As'as'{ (7:) as'ds’ —(7:) as,{s’.yas'as/jyfls’/k}
t B E B 1o X ) = (7 ) s sl i (7 ) ]
+ an ol a(gﬂ)(Ei_Ei“ ho r7) as'as{(Y Dasis = (7 ) asAsfyas'as/f;uls’As}

+ a;i)(Ei - Efz+ ha q){ ( Y :) Asas T (7 :) As'as’j yas'as/j yis'/ls}( 7 q) as&s]

13)

. (6.14)

To derive Egs. (56.11)-(5.14) we have used Egs. (5.2)-(5.4) and utilized the fact that
all terms including odd number of $v$ disappear in the phonon average. Then taking
into account Eqs. (4.45) and (59)-(5.14) we obtain the lineshape function for both

intraband transition and intervalley and/or interband transition:
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Z (71)14-15!{(7;)a/l+l—(7:)a—lu.m—l/j,wl+ij}
a4 ) R w—EAE—hw,+8:—ik Tuu(o)
_{(74)/la_(rq)A+la+ljya+la/jy/l+l/l}(7:)a/l_ ]
A h w—E,1+l+Eq+ha)q+52_—ih 214+11(W)

ith EO/HIA(Z)) = Zq(1+nq)[

+

+2n [ (YE)A+1¢7{(7§)a/l+l_(7q)a—l/ljyaa—l/jyk+—l_/l}
7 7 d§+l) h w—Ea+E4+ﬁa)q+El_—iﬁ E],H.“(CU)

_{(7‘:) xa—(7+q) A+la+ljya+la/j,wl+ltl}(7q) A ] (5.15)
agﬂ) how—FE, ., +E,—h wq+52+—ih EX/H-H(‘U) ’ )

— (7 ) as '{(7’+) '/1_(7+)as&sj asl] x'/z}
. . —_ + _g as g’/ as4As q as as: JAS S_
Hh EOASB(“)) Zq ( 1 nq)[ agl) h w—Ef,+Ej—hwq+53+—ih Eus'gs(w)
__{ (7 q)' Asas (7 q) As'asj yas'as/j yAs’As}( 7-:) a/l_
hw—E+E+ o, +5_—ih ()

+ 2 z ” [ (_7:) As‘zfs' { (74) as'/ls'—(yq) as&sjyas'as/jy/ls'/lsl
e «FT) ¢ R o—E+E+ R, +5_—if Ty o)
L( 7’:) '/Isas_(‘r-;) As'as'jyas’as/jyxs'ks}(yq) aszls_ ]
ho—E+E—ho +5.—ih Ty

+ (5.16)

where ifi T+ @) andih X pe( @) in the denominator of Egs. (5.15) and
(5.16) are the high-order collision term given in Eq. (4.45) and

g = {(Ea_E,i-'—'hw q)Slp—S;;p}/slp, (517)
Ey ={(Eip1—Etho q)Slp"'Ssp}/Sxp, (5.18)
3. = {(E5—Eitho )Sy—Su}/Su (5.19)
Eu = {(E5—Eixho )Sy»—Su)/Sa (5.20)

Egs. (5.15) and (5.16) are the general formula of lineshape function for the strongly
interacting electron-phonon scattering case. If the high order collision terms

(i X 13412( @) ) in the denominator of Eq. (5.15) are approximated by the lineshape

functions ( th }.’0“1 A(?u)) as on the left-hand side of the equation, we can obtain
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an infinite number of coupled equations for the lineshape functions, which is similar to
those of Shin et al. [22] based on the Nakajima profection operator method [23], of
Lodder et al. [24] based on the proper connected diagram approach, and of Prasad [25]
based on the coherent potential approximation approach obtained in the cyclotron

resonance transition. If the quantities Z',, (i=1,2) and the high order collision terms

ih 3 :01:( @) are neglected, Eq. (5.15) is reduced to Eq. (5.1a) obtained up to the

second order terms for the weak coupling case. Real and imaginary parts of Egs.
(5.1), (5.15), and (5.16) give the lineshift and linewidth, respectively. By using Egs.
{(4.46) and (4.47), the frequency-dependent conductivities for both intraband transition

and intervalley and/or interband transitions are, respectively, given by

Re{dyy(?u)} = (ﬁz/_Q)Z“yA?”lZ f(E ;. ))—{(E))

Eii—E, , (5.21)
% T0a+u(w)
[Ao—Ei +Ei~h V()P +r°Th 0 (0)]
— . f(E5) —f(E3)
Re{o'yy( CU)) = (hZ/AQ) I]ys'/lslz—s'—s—
; A E/] _E/l ) (522)

« ] Tm+u(w)
[ h CU—Ei+E§— h ‘5 O,is',is(w)]2+ h 2 T()A’S'/(SU((U)]

where Re means ‘‘the real part of’’. T’O and 50, respectively, can be calculated

from Eq. (5.1) for a weak coupling case and from Egs. (5.15) and (5.16) for a strong
coupling case. The results of linewidth for intraband transition and intervalley and/or

interband transitions in the case of weak coupling are, resepectively, given by

[ Tori()ly = In{in 3o ()
= ﬁ2;1+71)[dg;“(yﬂx+u{(7;)ﬂ‘l_(V;)mJJymAMjﬁ+u}
*(hw—E+E~hw,)
+ 2 0D = (7 inraciisarialivic 1)) i

XN h o= E;n+E+ ho,)l
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+7[an q[ M§+l)(7:)a+la{(7q) a/l+l_(ya) a—l/ljyaa—l/jy/l-f-lli}
XN h o—EANE+ho,)

+ ag/l) {()’:) Aa™ ( 7-;) R+lﬂ+lj ya+la/jy/1+lA'}(7 q) A , (5.23)
X h w—E;s+E;~hw)l

[ Toiss (@]

Im{ih 2 g0 ()

= n2(1+n I Z (7 ) asas {7 2) asas— (7 3) asid sasrasl 7 yasas)
X5 ha—ES+E-hao,)

+ (7 ) 2= (7 Q) ssad savasl F yasasd (7 ) aa

x h o—Ei+E+hw,)]

+ Zq a(§+1)n a[ (7:) isas’ { (7q) as'As’ ( ' q) msiyag'as/j y/ls'ls}
&k w—Es+Eitho,)
+ { (7;) Asas ( 7;) Xs'as'j yas'as/j y/ls'/!s}( 7 q) asis

“& h o—E;+Ei—ho,)l

(E5 -~ E)—(ES+E)
+zq: agx)(l+n“) Ei—E,—ho, (

x {0 A w—E;+E)~& i o~ E;+Ei~ i o))

Y q) As'as'( 7:) asksj yas'as/j yAs'As

(E; — E) —(E. + E) S
Al;s' __AE; +ho (7 q) Rs'as'( 7:) asis/ yas’as/] ¥As'As

+Zq aﬂ)(l+nq)

{8 hw—E;+E)—& i o—Ei+Ext ko))

EA) (ES+E) . S
GEA) Ef'-f- hw . (7 q) AS'US'( 14 q) asis/ yas'as/] yAs'As

>‘{3( h w—E2+E2)—8( ho—Es+E+ ho)
(E‘ E})—(E.+E) o
+ Z ZA) ES' —fw (72) Rs'as’(')' q) asis/ yas'as/] yAS As

7 , (5.24)
{8 h w—Ef,+Ef,)~8( ho—Ei+E;— ho,)
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where the symbol Im in Egs. (523) and (5.24) denotes the imaginary parts of the
quantity.  The  lineshifts, RV g (@) = Re{ifi Xy ( Z))}] and and

Vool =Re{ih Tyl )}] can be  calculated through a

Kramers-Kronig relation :

~ > Ty '
Vg 0) = %Pf_w"—“”) dw’, (5.25)

w—w

where T (@’) is given by Egs. (5.23) and (524). To obtain Egs. (5.23) and (5.24),

we have used the Dirac identity

li,ron'(xiz's) = P(1/x) F ind(x), (5.26)

where P denotes Cauchy’s principle value integral.

By taking the real part and the imaginary part of Eqgs. (5.15) and (5.16) for strong
coupling case, we can obtain the linewidths ( Tg1 (@), Toie12(®)) and the

lineshifts ( ¥V (@), V g3412(®)) for both intraband transition and intervalley

and/or interband transitions. The results of the linewidths for both intraband transition
and intervalley and/or interband transitions are, respectively, given by

h Toriz (@) =qu(1+n,,)[ a(gﬂ)

(yq)/!+la{(7:)a/l+l—(7:)a—l/tjwa~l/jyi+l/1}ﬁ Tyia(w)
[ﬁ w—Ea+E1—ﬁwq+51++h $M+“(U))]2+ﬁ2 ?IIH'H(G))

n; {(yq)la_(rg)A+la+1jm+la/jyl+ll}(r-:)a/lh Tl/l+l/l(a)) ]
A

V(A 0Bt Ect w4 h V(o)) + 52 12 0(0)
+ 2n [

@ @ a#Tr (5.27)
(7’:)a+1a{(7’q) a,l+l—(74) a—-lljyaa—l/j_wl+1/l}h Tl/l+l/l(w)

[ﬁ Q)_EG+E,{+ h (Uq‘l" El—+ h % 1/(+1/1(a))]2+ h 2 FI,H.“(G))
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A Ty (@) = qu ,g,;)(l +n,)

(7 ) wwas {(72) aszs =7 3) awd sosasl i) B T racas (@)
[h o—EAE—fho,+5.:+h ¥ (0 + 87 TP (o)

x[

{(7 q) Asas (7,1) as'ls'j)us'as/jyls'ls}(‘r;) Mﬁ TlAs'is(w)
[ho—E+E+ho +5_+h Y pu(@l+ i T o)

]

+24"§")n°[ [h 0o—E+E+ho +5-+h V(o) + 52 T (o)

(G~ (1") i yasasl sasisf(  atsh T iasac(@)
[h 0o—E+E—ho +5,+h Y p(@0))?+ 82 I (o)

1, (628

where '51 and T in Egs. (527) and (5.28), respectively, are the real part and
imaginary part of the high order self-energy ( —ih X (@) in Eq. (4.45). If T
and V¥, of Egs. (527) and (5.28) for a strong coupling are approxiamted for $ T,

and 30, respectively, we obtain an infinite number of coupled equations for the
linewidths and the frequency shifts, which is similar to those of Suzuki [26]. It is
interesting to note that the J&-functions in Egs. (5.23) and (5.24) express the law of
energy conservation in one-phonon collision (emission and absorption) processes. The
energy-conserving ¢ functions imply that when electron undergoes a collision by
absorbing the energy from the incident photon, its energy can only change by an
amount equal to the energy of a phonon involved in the transition. This in fact leads
to the optically dected magnetophonon resonance. In addition, we see from Eqgs.
(2140)-(217), (5.23), (5.24), (6.27), and (5.28) that the linewidths which is closely
related to the ODMPR are given as a function of temperature, the tilt angle and the
strength of magnetic field, the incident photon frequency, the difference in the effective
mass between initial and final states of the intervalley or interband scattering by
phonon, and the involved phonon energy.
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V. Conclusions

So far we have presented a theory of optically detected magnetophonon resonance
arising from various transitions including intraband transition and intervalley transition
as well as interband transition due to the interaction with phonons in semiconductors
in tilted magnetic fields . The perturbation has been dealt with two techniques based
on the Mori-type method of calculation. One is a closed-form representation which is
applicable to the weak scattering case and the other is a continued-fraction form
representation which is applicable to the strong scattering case. It is interesting to
note that the continued-fraction representation can be expressed by both the infinite
expansion of the finite continued-fraction order and the infinite continued-fraction
representations.

For sufficiently weak electron-phonon coupling, our results of lineshape function for
the intraband transition are identical with Choi et al’ result [17] obtained by
Argyres-Sigel’s projection operator method [18] and with Ryu et al.’ result [19]
obtained by Kawabata’s projection operator method [20] in the cyclotron transition.
However, the present results for interband transition have extra terms together with
those of Choi et al. [21] and Yi et al. [14] obtained in the magnetooptical transition
problem, as shown in Eq. (5.1b). It seems that the main difference results in the

approximation that L1 of Eq. (4.17) is replaced by L,under the assumption that

Py(L.+ L)X =0 for any operator X. For strong electron-phonon coupling, the
results obtained for the intraband transition are similar to those of some other authors
[22-26] otained by using the renormalization of the superpropagators to include many
body coherence effects in the cyclotron resonance transition problem. These results are
given in the iterative manner while our result is given in the continued-fraction
representation. Moreover, the results obtained by the interband transition are similar to
those of Suzuki et al. [26] obtained by resolvent superoperator method. Unfortunately,
we don’t know any results to be compared with our results for intervalley transition.
Thus we may claim that applying the Mori-type projection approach we can obtain
the lineshpe functions and linewidths closely related to the ODMPR arising from
various transitions including the intraband transition and the intervalley transition, as
well as the interband transition.

From the d-functions in Egs. (523) and (524) giving the law of energy
conservation in one-phonon collision (emission and absorption) processes, strong

oscillations of the linewidth due to various transitions including the intraband
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transition in a 3D system such as GaAs and the intervalley transition in materials
having many-valley structure such as Si and Ge, as well as the interband transition
in zero-gap materials such as HgTe are expected, which indicate that the ODMPR
should also be observed experimentally in such bulk semiconductors. The detailed
works for the understanding of the physical characteristics on the ODMPR due to
such transitions will be left for publication in a separate paper.

In conclusion, we have obtained a general form of frequency-dependent
magnetoconductivity, by using the Mori-type projection operator technique presented
by one of the present authors, and presented the explicit expressions of the lineshape
function and the linewidth related to the optically detected magnetophonon resonances
due to various transitions including intraband, intervalley, and interband transition in
bulk semiconductors, which are expressed in two different ways for a weak coupling

and an arbitrary and/or strong one.
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<Abstract>

Theoretical study on the optical detection of
magnetophonon resonance in semiconductors in tilted

magnetic fields

Sang-Chil Lee - Jeong-Woo Kang

On the basis of the Kubo formalism for linear response, a theory of optically
detected magnetophonon resonance in tilted magnetic fields is presented for the
Faraday configuration. The frequency-dependent magnetoconductivity of the system is
evaluated by using the Mori-type projection technique. The general lineshape functions
which are applicable to both a weak coupling and an arbitrary and/or strong
electron-phonon coupling cases are introduced in two different ways. Explicit
expressions of the lineshape functions and linewidths closely related to the optically
detected magnetophonon resonance are obtained for various transitions including
intraband, intervalley, and interband transitions. The results obtained here are in good

agreement with those available in the literature.

Keywords : Frequency-dependent magnetoconductivity, Magnetophonon resonance,

Optically detected magnetophonon resonance
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