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Abstract 

 
This thesis research achieved its primary scientific objective to perform robust, automatic 

detection and classification of moving targets using seismic sensor and pulse doppler radar on a sta-

tionary platform. Detection and classification algorithm using seismic sensor and pulse doppler ra-

dar signal is a problem of current interest. The purpose is to detect and classify the moving target 

without human aid. The target classes were included human running, human walking and animal. 

Evaluation of theory on realistic experimental data is vital to the advancement of knowledge. The 

data can be used to rigorously evaluate new classification, detection, and feature selection algo-

rithms. Computer simulation analysis also plays a crucial role in theoretical development. The expe-

rimental data collected by this thesis research can be utilized to improve the accuracy of computer 

models. 

This thesis contributed a novel set of high-performance seismic and doppler based features. 

The Fisher used for selecting a feature set. In addition, the feature set included both statistical and 

the linear predictive coding (LPC) residual energy feature. The selected feature set was shown to 

perform well on the seismic sensor and doppler radar based target classification problem.  

The design and detailed analysis of target classification algorithms based on support vector 

machine (SVM) and binary tree architecture (BTA) classifiers were designed to accomplish high-

performance target classification. The importance of both classifier selection and feature selection 

was analyzed in detail.  

In order to process the complex-valued signals from pulse doppler radar, complex-valued 

SVM classifier was derived. Complex-valued SVM classifier processes the complex-valued signals 

measured by PDR to identify moving targets from the background. 
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Chapter 1. Introduction 

 

1.1 Background 

Personnel detection deals with the prevention, detection, and response to unauthorized per-

sons from crossing an established perimeter [1]. It is required in a variety of military and civilian 

situations. Personnel detection is an important aspect of intelligence, surveillance, and reconnais-

sance (ISR). It plays a vital role in perimeter and camp protection and in curtailing illegal border 

crossings by people from neighboring countries, to name few [2] [3]. All these applications involve 

deployment of sensors for a prolonged time and often camouflaged to avoid discovery by others. 

Due to the low power requirement, the sensors used consist of non-imaging sensors such as acous-

tic, seismic, magnetic, E-field, passive infrared, ultrasonic, and radar. If imaging sensors are used, 

they are used to take a snapshot of the target to corroborate the findings by other modalities. In this 

paper, we consider a subset of the sensors listed above, namely, acoustic, seismic [4] [5] [8], and 

ultrasonic sensors [6] [7]. It will be clear throughout the paper that these three sensors are adequate 

to detect and identify people and distinguish them from other targets such as animals. However, no 

single sensor is adequate for the job. Fusion of the outputs or features from these sensors is the key 

for detection and classification with high confidence.  

Detection and classification of any target should be approached via phenomenology of the 

target and sensor’s ability to capture the phenomenology properly. This implies that the characteris-

tics of the sensor should be adequate to capture the phenomenon being observed. For example, us-

ing a microphone with 1 kHz bandwidth will not do justice to music with 20 kHz bandwidth. Selec-

tion of the features for classification should represent the phenomenon being observed. 

The main focus of this thesis is to develop algorithms for detection of people, by understand-

ing the underlying phenomenology of the signatures generated by humans and animals, and the de-
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tection of these signatures using multiple sensor modalities. Furthermore we process the data ob-

tained by different non-imaging sensors to extract the phenomenology based features and apply al-

gorithms to detect personnel.  

 

1.2 Thesis outline 

This thesis is organized as follows: in chapter 2, target detection and classification using 

seismic sensor data. chapter 3 include the target detection and classification using pulse doppler 

sensor data. Sensors modalities and target phenomenology are discussed in each chapter. The paper 

is concluded in Section 4. 
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Chapter 2. Seismic sensor signal processing 

 

 Unattended ground sensors (UGS) are widely used in industrial monitoring and military op-

erations. Such UGS are usually lightweight devices that automatically monitor the activities at a 

site, and transfer target detection and classification reports to some higher level processing center. 

Commercially available UGS systems make use of multiple sensing modalities (e.g., acoustic, seis-

mic, passive infrared, magnetic, electrostatic, and video). Efficacy of UGS systems is often limited 

by high false alarm rates because the onboard data processing algorithms may not be able to correct-

ly discriminate different types of targets (e.g., humans from animals) [9]. Acoustic and seismic sen-

sors are the most common modalities used in UGS systems. In this chapter, seismic sensors are cho-

sen for target detection and classification because they are less sensitive to Doppler effects (e.g., 

noise originating from moving vehicles), and atmospheric and terrain variations, as compared to 

acoustic sensors [10]. In a target detection and classification problem, the targets usually include 

human running, human walking , and animals(difference of size). Discriminating human footstep 

signals from other targets and noise sources is a challenging problem, because the signal to noise 

ratio (SNR) of footsteps decreases rapidly with the distance between the sensor and the pedestrian. 

Furthermore, the footstep signals vary greatly for different persons and environments. Recent litera-

ture has shown detection of heavy vehicles that radiate loud signatures [11]. However, the signa-

tures of humans and light vehicles are usually weak and contaminated with the sensor noise. 
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2.1 Target detection using single seismic sensor 

2.1.1 Preprocessing 

In the real world, measurement signal has noise, so before the signal processing preprocess-

ing should be done. In this section, for preprocessing the seismic sensor data, band pass filter and 

envelope detector are briefly explained.  

 

2.1.1.1 Band pass filter 

Every system has noise, especially measure data from real world. Figure 2.1 (a), (b), (c) 

show the raw data from seismic sensor. Each raw data occurred when human is running(a) and 

walking(b) across of sensor and dog passes the sensor(c). In the FFT of the raw data, there are two 

significant noise frequency. One is the power noise near 60Hz, and the other is unknown noise near 

10Hz. In this thesis, every signal processing use the band pass filter which cut-off frequency are 

10Hz and 50Hz for remove the noise. Figure 2.1 (d), (e), (f) show the band pass filtered data of (a), 

(b), (c). 

 

2.1.1.2 Envelope detector 

Most practical envelope detectors use either half-wave or full-wave rectification of the 

signal. For the higher signal level, use absolute value of filtered data. Figure 2.2 show the filtered 

signal and envelope detected signal. Filtered signal is thin line, and its envelope marked with thick 

line. The output of envelope detector is 

 

exp toutput input
RC
∆ = × −  

                                      2.1 

 

Where the input  is band pass filtered data, t∆  is sampling time and RC  is time con-

stant. 

http://en.wikipedia.org/wiki/Rectifier�
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                   (a)                                    (d) 

 

                   (b)                                    (e) 

 

             (c)                                    (f) 

Figure 2. 1 Raw data from seismic sensor and band pass filtered data. 

(a)raw data of human running (b)raw data of human walking (c)raw data of dog(d) fil-

tered data of human running (e)filtered data of human walking (f) filtered data of dog 



- 6 - 

 
(a) 

 
(b) 

 
(c) 

Figure 2. 2 raw data from seismic sensor and the envelope detected signal 

(a)human running (b)human walking (c)dog 
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2.1.2 Detection theory 

2.1.2.1 Hypothesis 

Signal detection is a classical problem of binary hypothesis testing. Under the null hypothe-

sis 0H , the received signal ( )y t  is composed of noise alone. The envelope of the random Gaus-

sian noise is Rayleigh distribution. 

 

0 : ( ) ( )H y t n t=    where 2
0( ) (0, )n t N σ                        2.2 

 

( )
0

2

0 2 2
0 0

exp
2X H

x xp x H
σ σ

 
= − 

 
                                 · 2.3 

 

where 2
0σ  is the conditional variance and ( )

0
0X Hp x H  is the conditional probability 

density function of X  given that the received signal is only noise ( 0H ). Equation(2.3) depends on 

the signal parameter 2
0σ . Estimation of facilitated by the following relation 

 

0 0
2 E X Hσ
π

=                                                · 2.4 

 

where 0E X H    is the conditional expected value of X  given 0H . 

 

Under hypothesis 1H , the received signal ( )y t  is the sum of the transmitted signal and 

noise. In the footstep signal, there are the noise n(t) and the signal s(t). In some cases, it is able to 

detect signals in the presence of noise by detecting the change in the mean of a test statistic. This 

was because the signal was assumed deterministic, and hence it's presence altered the mean of the 

received data. In some cases a signal is more appropriately modeled as a random process. In seismic 
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sensor, for which the waveform of a given footstep depends on the identity of the target, the context 

in which the running human, walking human, and dog. It is therefore, unrealistic to assume that the 

signal is know [12]. The noise and signal are the random Gaussian distribution in the seismic sen-

sor. If both random signals n(t) and s(t) are statistically independent Gaussian distributed with the 

same zero mean and the different variance ( 2 2
0 1,σ σ ), then the variance of their sum equals the 

sum of their variance, i.e., if 

 

2
0
2

1

( ) (0, )

( ) (0, )

n t N
s t N

σ

σ





 

 

then 

 

1 : ( ) ( ) ( )H y t s t n t= +    where 2 2 2
0 1( ) ( ) ( ) (0, ) (0, )y t n t s t N Nσ σ σ= + +   

 

( )
1

2

1 2 2exp
2X H

x xp x H
σ σ

 
= − 

 
                                   2.5 

 

Here 2σ is the conditional variance and ( )
1

1X Hp x H  is the conditional probability densi-

ty function of X given that the received signal is a random signal plus noise. Figure 2.3 shows the 

probability density functions under 0H  and 1H . 
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Figure 2. 3 Probability density functions of noise and signal-plus-noise 
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2.1.2.2 Likelihood ratio test 

In statistics, a likelihood ratio test is a statistical test used to compare the fit of two 

hypothesis, one of which ( 0H ) is a special case of the other ( 1H ). The test is based on the 

likelihood ratio, which expresses how many times more likely the data are under one hypothesis 

than the other. 

 

1 0

0 1

( ) ( )( )
( ) ( )

p x H P HL x
p x H P H

γ= > =                                  2.6 

 

The function ( )L x is termed the likelihood ratio since it indicates for each value of x  the 

likelihood of 1H  versus the likelihood of 0H . The threshold is determined by the prior probabili-

ties. If, as is commonly the case, the prior probabilities are equal, LRT decide 1H  if  

 

1 0( ) ( )p x H p x H>                                             2.7 
 

Using equation 2.3 and 2.4, solving for threshold yields 

 

1

0

0 2

ln2
1

H

T

H

x Vαασ
α

=
−

>
<

                                       2.8 

 

where 
2 22

2 0 1
2 2

0 0

variance of ( ) ( ) 1
variance of ( )

s t n t SNR
n t

σ σσα
σ σ

++
= = = = + . 

 

 

http://en.wikipedia.org/wiki/Statistics�
http://en.wikipedia.org/wiki/Statistical_test�
http://en.wikipedia.org/wiki/Likelihood�
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2.1.2.3 Receiver operating characteristic 

In signal detection theory, a receiver operating characteristic (ROC), or simply ROC curve, 

is a graphical plot which illustrates the performance of a binary classifier system as its 

discrimination threshold is varied. It is created by plotting the probability of detection( DP ) vs. the 

probability of false alarm( FAP ) at various threshold settings. In general, if both of the probability 

distributions for detection and false alarm are known, the ROC curve can be generated by plotting 

the Cumulative Distribution Function of the detection probability in the y-axis versus the 

Cumulative Distribution Function of the false alarm probability in x-axis. 

The ROC is also known as a relative operating characteristic curve, because it is a 

comparison of two operating characteristics ( DP  and FAP ) as the criterion changes [13].  

Using equation 2.5, if the prior probabilities are not equal, 

 

1 0

0 1

( ) ( )( ) 1
( ) ( )

p x H P HL x
p x H P H

γ= > = ≠                              2.9 

 

1

0

2 2
0

2 2
0 0

2 2 ln ln

H

T

H

x Vσ σ σ γ
σ σ σ

 
+ = −  

>
<

                          2.10 

 

Or  

( )
1

0

2
0 2

2 ln
1

H

H

x ασ α γ
α −

>
<

                                    2.11 

 

 

http://en.wikipedia.org/wiki/Graph_of_a_function�
http://en.wikipedia.org/wiki/Binary_classifier�
http://en.wikipedia.org/wiki/Cumulative_Distribution_Function�
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where 
2 22

2 0 1
2 2

0 0

variance of ( ) ( ) 1
variance of ( )

s t n t SNR
n t

σ σσα
σ σ

++
= = = = +  

As shown in Figure 2.4, the probability of detection is the area under the signal-plus-noise 

curve above the detection threshold, and the probability of false alarm is the area under the noise-

only curve above the threshold level TV . Using equation 2.3, 2.5 and 2.10, DP  and FAP are 

present as equation 2.12 and equation 2.13. 

 

( ) 2
122

2 1
2 2 2exp exp

2 2
T

T
D

V

Vx xP dx αα γ
σ σ σ

∞
−

−
  

= − = − =  
   

∫            2.12 

 

( )
2

2
22

2 1
2 2 2

0 0 0

exp exp
2 1

T

T
FA

V

Vx xP dx
α
αα γ

σ σ σ

∞
−

−
   

= − = − =   −   
∫        2.13 

 

Figure 2.4 plots the ROC curve solutions to equation 2.12 and 2.13 with various SNR. The 

circle in Figure 2.4 refer to the same prior probabilities, 1γ = . For calculating the threshold vol-

tage, parameters of probability density function are needed. Figure 2.5 shows the detection result 

using the threshold. In the top graph, the blue line is envelope detected data of the seismic sensor 

data, and the red line is the calculated threshold voltage. The middle graph is the detection result. If 

the envelope detected signal is higher than the threshold, then the signal is detected. The last graph 

is the spectrogram of the seismic sensor signal.   
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Figure 2. 4 Receiver operating characteristic curve 

 

 

Figure 2. 5 Envelope detector result, detection result and spectrogram of the signal 
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2.2 Background adapted threshold 

An accurate analysis of a system's detection performance is often difficult to obtain for sev-

eral reasons. Predicting performance under operational conditions add additional complexity due to 

wide variation in target and noise statistics. Especially, performance of the seismic sensor depends 

on the characteristic of background. This section will focus on reduce the false alarm by considering 

the characteristics of the random noise on the detection system [18]. 

 

The theory developed in Chapter 2.1 provides acceptable results for target detection. In this 

section the Neyman-Pearson detection criterion was used to calculate the threshold level. In the 

Neyman-Pearson detector, the probability of false alarm FAp  can fixed. The detection threshold is 

easily obtained once the probability of false alarm is set. The false alarm happens when no signal is 

present but the noise level exceeds the detection threshold. As seen in Figure 2.3, the probability of 

false alarm is the area under the noise-only curve above the threshold level TV . 

 

0

22

0 2 2 2
0 0 0

( ) exp exp
2 2

T T

T
FA X H

x V x V

Vx xP p x H dx dx
σ σ σ

∞ ∞

= =

   
= = − = −   

   
∫ ∫  2.14 

 

Solving for TV  yields 

 

0
12 lnT
FA

V
P

σ
 

=  
 

                                            2.15 

 

As shown in Figure 2.3, the probability of detection is the area under the signal-plus-noise 

curve above the detection threshold. 
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1

22

1 2 2 2( ) exp exp
2 2

T T

T
D X H

x V x V

Vx xP p x H dx dx
σ σ σ

∞ ∞

= =

  
= = − = −  

   
∫ ∫    2.16 

 

where 2 2 2
0 1σ σ σ= + , 2

0σ is the variance of the noise and 2
1σ is the variance of the sig-

nal. Solving for SNR gives below equation. 

 

2 2
1

2 2
0 0

variance of signal 1
variance of noise

SNR σ σ
σ σ

= = = −                      · 2.17 

 

Figure 2.6 shows the probability of detection versus SNR and probability of false alarm. 

Figure 2.6(a) provides a quick view impact of varying system requirements on the required SNR. 

Lowering the false alarm rate results in higher required SNRs for the same probability of detection. 

Also, if the required probability of detection is reduced while maintaining the same false alarm rate, 

lower SNRs are required. 

 

In this thesis we choose the 10% false alarm, using equation 2.14 

 

22

2 2 2exp exp 0.1
2 2

T

T
FA

x V

Vx xp dx
β β β

∞

=

  
= − = − =  

   
∫                · 2.18 

 

2.145966 2.146TV β β=                                        2.19 
 

Figure 2.8 shows the data flow chart. Adaptive threshold is calculated using Equation 2.19.  
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Figure 2. 6 (a)Probability of detection versus SNR, and (b)receiver operation curve 
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If the noise statistics are not time-varying, the threshold TV  maintains the specified proba-

bility of false alarm. However, the noise statistics depend on the component of soil. And even the 

same location, hence the same soil component, the noise statistics varying with temperature and 

humidity of the soil and even the air. Figure 2.X shows that the statistical characteristic of back-

ground noise depends on the temperature and humidity of the air. 

 

 

Figure 2. 7 Probability density function of noise with various temperature and humidi-

ty 

(-: 29.6℃, humidity 44% ,  --: 29.6℃, humidity 44% ,  dot:  29. 6℃, humidity 44% ) 

 

In order to maintain a constant probability of false alarm in the presence of non-stationary 

noise, an adaptive threshold method is required. In this section, for guarantee the performance of 

detection, the algorithm update the parameter of background noise every 1000 samples and recalcu-

late the threshold.    
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Figure 2. 8 Flow chart of the algorithm using background adapted threshold 
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(a) 

 

(b) 

 

Figure 2. 9 Detection result (a)using background adapted threshold (b)using fixed thre-

shold 
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2.3 Target classification using seismic sensor 

Classification is the process of separating objects into groups by comparing their attributes. 

The human body is an example of a complex classification system. Our eyes, skin, tongue, ears and 

nose constantly deliver raw information to our brains about the world around us. The brain is tasked 

with sorting through these raw signals and extracting important features for a given classification 

task. Due to the ability of the human brain to excel at classification under widely varying condi-

tions, many classification systems today still incorporate a human operator at some point in the sys-

tem. In fully-automatic classification systems, a computer performs all steps of the classification 

procedure with no assistance from a human operator. This dissertation involves the design of fully-

automatic target classifiers. Figure 2.10 illustrates the procedural block diagram of a typical classifi-

cation system. 

The classification procedure begins with the acquisition of a frame of raw data. Basic pre-

processing steps such as band pass filtering are performed in this stage. The data are then fed into a 

target detection algorithm. If the detection algorithm decides that a target is present, the target fea-

tures are extracted from the data. In the feature extraction stage, the data is processed to quantify the 

various target features used for classification. In the training phase, feature selection would follow 

feature extraction. After feature extraction, the classification stage utilizes statistical models and 

thresholds created during the training procedure for discrimination. The classification step produces 

the estimated target class, and then the cycle repeats for subsequent data.  

Data acquisition and target detection were discussed in earlier sections of this dissertation. 

Feature extraction, feature selection, classifier training, and classifier performance evaluation will 

be the topics of the remainder of this dissertation. 
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Figure 2. 10 Data flow chart for the target classification 
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2.3.1 Data acquisition 

In order to measure the data of moving object, we design the movement path as shown in 

figure 2.11. At the first, we set movement as horizontal movement. Distance between the target and 

the sensors(Seismic sensors and PDR sensors) is 2m to 6m each 2meters. Type of movement are 

human running, human running, and the animals which are difference kinds of dogs. data measured 

date is 15th October in 2011.  

 

 

Figure 2. 11 Data measurement path 
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2.3.2 Feature extraction 

The goal of this section is to introduce the features and feature extraction method for ca-

dence analysis of temporal gait patterns. Obtaining robust feature vectors through the process of 

feature extraction and selection is vital to the design of any classification system. The chosen 

feature set must maintain reasonable class separability under adverse conditions (low SNR, 

high interference, background variation, system configuration changes, etc.) to be of practical 

use. Unfortunately, there is no single feature set that performs well (or is appropriate) for all 

classification tasks. In contrast to statistical learning theory, the mathematical framework of fea-

ture extraction and selection is quite limited. The majority of feature extraction and selection 

algorithms in practice today are based on ad-hoc, heuristic methods. In this section, features are 

extracted by footstep interval and the statistical method. After that, select the important features us-

ing Fisher's score. 

 
2.3.2.1 Frequency of footstep intervals 

Whenever a person or an animal walks, the footfalls make audible sounds. One can analyze 

the signatures of human and animal footfalls and classify them into respective classes. It is esti-

mated that the cadence of the humans walking lies between 2 to 3 Hz while the cadence of animals 

walking is around 2.5 - 3 Hz. figure 2.12 shows the generated frequency for each human(act running 

and walking) and animal(dog). Moreover, these footfalls are impulsive in nature and result in sever-

al harmonics. Even if many people are walking in a file (on a path), they tend to synchronize their 

stride with others and walk more or less at the same cadence. This gives a way to estimate the ca-

dence and then classify it. Cadence estimation and classification is similar to the algorithm for seis-

mic data and is presented in the seismic data analysis section.  
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Figure 2. 12 Seismic signal and frequency generated by  

(a)human running (b)human walking (c)dog 
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Figure 2. 13 Foot step interval for human running, human walking and dog 

 

Figure 2.13 shows the frequency generated by human running, human walking and dog. 

Each of them have the specific frequency. When person is running or walking, it is 100% to classi-

fy. However, frequency of dog has bad behavior. Next section discuss about the other features like 

statistical features from one each pulse of the seismic data. 
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2.3.2.2 Single footstep  

This section details the statistical features in one gait of targets. Seismic signals have specif-

ic characteristic when the target is moving. Figure 2.14 shows the one pulse for human running, 

human walking, and dog moving. Compare figure 2.14 (a) and (b), the waveform in time domain 

have different because of the gait. When human is walking, 2 kinds of vibration are occurred. One is 

heel drop vibration and the other is toe off vibration. Otherwise, when human is running, only toe 

off vibration is present. Shown in figure 2.14 (b), one pulse of walking has more vibration than run-

ning in figure2.14 (a). Dog has 4 legs, means there are more vibration than human. Even we know 

there are difference among the one pulse signal of targets, it should be visualized. In this section, 

feature extracted from one pulse signal each target using statistical features proposed by Ridge [14]. 

The statistic feature using amplitude is not good feature, because it depend on the distance 

between targets and the sensor. The goal of this thesis is classification of the moving target with any 

distance, so frequency related statistical features are extracted. 6 kinds of feature are extracted such 

as total power over all frequency, the weighted mean of the frequency of the event, measure of the 

frequency bandwidth, standard deviation of the power in frequency, skew of the power in frequen-

cy, kurtosis of the power in frequency. The features is in equation 2.20-2.25. 

 

 

Total power: f
f

P p=∑                                              2.20 

where fp  denotes the power at frequency f. 

 

Mean frequency: 
ff

f p
f

P

⋅
=
∑

                                     · 2.21 

where P  denotes the total power. 
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RMS Bandwidth: 
2

2
* ff

f p
B f

P
= −
∑

                              2.22 

where * indicated element-wise Multiplication. 

 

Power SDF: 
2

2_ 1ff
F p

P SDF
P

= −
∑

                                 2.23 

where F denotes the maximum frequency. 

 

Power skewF: 
( )3

3

1
ff

p P
FPSF

P

−
=
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                                2.24 

 

Power kurtosisF: 
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(c) 

Figure 2. 14 single footstep waveform and fft spectrum of (a)human running, (b)human 

walking, (c)dog. (spectrum is normalized by the energy) NFFT=512, Fs=2000Hz 
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2.3.3 Feature selection 

Feature selection is the process of pruning features acquired in the feature extraction stage 

into an efficient set for classification. Due to the inescapable limitations of finite sample size and 

finite computational resources, feature selection is a critical step in the classification process. The 

larger the selected feature set becomes, the harder it is for a classifier to accurately model a given 

class with a fixed training set size. This “curse of dimensionality” effect must be balanced with the 

need to include enough classification features for high-performance discrimination. Feature selec-

tion may be motivated by either the need to reduce the computational burden on the feature extrac-

tor or the desire to optimize classification performance.  

This dissertation utilizes a Fisher score [15] for the feature selection. The fisher score is de-

fined as the ratio of the between-class scatter matrix BS  to the average within-class scatter matrix 

WS . For the k-class problem, the average within-class scatter matrix is defined as 

 

1

1 k

W i
ik =

= ∑S S                                                   2.26 

 

Where 

 

( )( )
i

T
i i i

D∈

= − −∑
x

S x m x m                                        2.27 

 

and 

1

i

i
Din ∈

= ∑
x

m x                                                   2.28 

 

where ni is the size of the feature vector set Di that makes up class i. Likewise, the between-

class scatter matrix is defined as 
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1
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B i i i
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n
=

= − −∑S m m m m                                     2.29 

 

and 

 

1
n

= ∑
x

m x                                                    · 2.30 

 

where n is the total number of feature vectors and m is the mean vector of the entire feature 

set. The one-dimensional Fisher score is then 

 

( )Fisher score (1D) = 
( )

B

W

diag
diag

S
S

                                  · 2.31 

 

where diag(.) extracts the diagonal elements of a matrix. The vital feature extracted using 

calculated Fisher's score. Figure 2.15 shows the Fisher score of the 6 extracted features. The peak in 

the Fisher score is from the RMS bandwidth feature and second peak is total power in frequency. In 

table 2.1 indicate the feature number, feature name, and the details. 

Figure. 2.16 shows the RMS bandwidth and total power in frequency of 3 targets. Dots are 

RMS bandwidth and total power when the target is dog, cross are human walking, and stars are hu-

man running. Shown in figure 2. 16 dog is separable with human, but human running and human 

walking is non-separable. In figure 2. 13, human running and human walking can divide using foot-

step interval or frequency of gait. Figure 2.17 shows that combine 2 kinds of feature from Fisher 

score and footstep interval. 
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Figure 2. 15 Fisher's score of 6 kinds of statistical features 

 

 

 

Table 2. 1 Feature number and feature name 

Feature Number Feature name  

1 Total power Total power over all frequency. 

2 Mean frequency The weighted mean of the frequency of the event. 

3 RMS bandwidth A measure of the bandwidth. 

4 Power SDF Standard deviation of the power in frequency. 

5 Power SkewF Skew of the power in frequency. 

6 Power KurtF Kurtosis of the power in frequency. 
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Figure 2. 16 Total power and RMS bandwidth 

 

 

 

Figure 2. 17 Total power, footstep interval and RMS bandwidth 
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2.3.4 Classifier training 

This section discuss about the classification. In the previous section, feature extrac-

tion and Fisher score are discussed. Every data analysis previous procedures, i.e band pass 

filtering, feature extract and dimension reduction using Fisher score. The data flow chart in 

Figure 2.18.   

 

 

Figure 2. 18 Data flow chart for classification 

 

In Figure2.18, the training vector for the classify is the mean value of each feature vectors. 

There are 2classes, human running, human walking and dog. In this section, the simplist classifying 

algorithm is used. The test data which belongs to a class determination of whether the average of the 

feature vectors of each class that you want to test and compare the distance to the feature vectors of 

the class represented by the minimum distance. Wherein one element of the feature vector by 

calculating the distance by determining the most frequent class classifies the high class. 
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2.3.5 Classifier performance 

In this section, we present experimental results. There are 3 classes, each class has 

30 data which distance between the sensor and the target is 2m, 4m and 6m. Class1 is the 

running action, class2 is walking action and class3 is a dog. Human cannot control the ac-

tivity of dog, means activity of dog is walking or running. The classification result is in ta-

ble 2.2.  

Table 2. 2 Classification result with 7 features 

 
Chosen class  

Human 
running 

Human  
walking Dog Total 

Actual 
class 

Human 
running 27 3 0 30 

Human  
walking 14 15 1 30 

Dog 
 12 6 12 30 

 

Table 2. 3 Classification result with 3 features using Fisher score 

 
Chosen class  

Human 
running 

Human  
walking Dog  

Actual 
class 

Human 
running 27 3 0 30 

Human  
walking 10 20 0 30 

Dog 
 9 2 19 30 

 

Table 2.2 is the classification result with 7 kinds of features. When use all features, 

the accuracy is 90% from human running, 50% from human walking, 40% from dog and 

totally 60%. After feature dimension reduced using Fisher score, use 3 kind of features, the 

accuracy of human running is same as 90%, human walking is 66% , dog is 63.33%. Total-

ly the accuracy is 73.33%, it improve than use all features. The result is in table 2.3. 
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Chapter 3. PDR signal processing 

 

3.1 Introduction 

Chapter 2 dealt the problem of detection and classification using seismic sensor. This chap-

ter uses the Doppler information for detection and classification using pulse doppler radar(PDR). In 

this chapter, a support vector machine (SVM) is proposed for classifying dog, running hu-

man and walking human subject using Doppler information. SVM is a binary classifier that 

is popularly used in a machine learning area to construct a maximal-separating hyperplane. 

SVM has been used extensively for many diverse classification problems for its superior 

performance over other classification methods, such as the Fisher linear discriminator and 

the Bayesian decision method. In the radar signal-processing community, SVM has been 

used mostly for the target recognition in synthetic aperture radars [19–22]. The considered 

classified classes in this study are dog, running human and walking human. In order to rec-

ognize the classes, the time-varying Doppler signatures are examined knowing that differ-

ent motions generate different Doppler signatures. The features of Doppler information are 

extracted from spectrogram. For the generation of training data set of SVM, 3 subjects are 

measured. After a training process, the SVM classifies its class based on the input features. 

A multi level SVM is implemented using a decision tree structure and binary SVM. The 

training process and the resulting classification accuracy are reported.  

In PDR applications the used signals are complex-valued. In order to process them, 

the classifier should deal with complex data. Last of this chapter, for the advanced topic, 

support vector machines in the complex plane is developed [23, 24]. 
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3.2 Pulse Doppler Radar signal 

The basic Doppler radar transmits a signal at a single frequency and when the wave 

is reflected off a moving object, the frequency of the transmitted signal is Doppler shifted. 

The resulting frequency received by the radar can be used to determine the radial velocity 

of the moving target. For this reason, Doppler-based radars are excellent for detecting 

movement while suppressing any stationary clutters in the background. Low-cost Doppler 

radars using off-the-shelf components or even single-chip modules are available due to the 

recent advances in microelectronics. Unique and interesting aspect of Doppler returns from 

humans is the appearance of microDoppler features. Micro Dopplers are generated from the 

limb motions of humans, and they contain valuable information related to human motions 

like running, walking and clawing[16-18]. 

 

3.3 Target detection using PDR signal 

Figure 3.1 is a spectrogram of human target walking across the pulse doppler radar at a range of 

2m. In Figure 3.1 (a) the detection threshold is set to -15dBm. No pixels false alarm within this 

detection, but numerous missed detections occurs. In Figure 3.1 (c) a much higher threshold of 

-37dBm is used. This threshold dramatically increase the false alarm pixels but considerably 

decreases the number of missed detection. The threshold of -23dBm used in Figure 3.1 (b) 

achieves an acceptable balance between the number of false alarm pixels and missed detection 

pixels. 
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(a) -15 

 
(b)-23 

 
(c)-30 

Figure 3. 1 Waveform and spectrogram for human target walking detection threshold level: 

(a)-15dBm, (b)-23dBm, (c)-30dBm 
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3.4 Target classification using PDR 

 

3.4.1 Feature extraction 

Obtaining robust feature vectors through the process of feature extraction and selection is vi-

tal to the design of any classification system. The chosen feature set must maintain reasonable class 

separability under adverse conditions to be of practical use. Unfortunately, there is no single feature 

set that performs well for all classification tasks. In contrast to statistical learning theory, the ma-

thematical framework of feature extraction and selection is quite limited. The majority of feature 

extraction and selection algorithms in practice today are based on ad-hoc, heuristic methods. One 

could potentially use the time-frequency (spectrogram) coefficients directly as a feature set. Al-

though spectrograms contain fine detail that is useful for visual classification, they fail to provide a 

compact data representation for efficient computation. A typical spectrogram-based feature vector 

might contain around 16,000 elements—far too large for small or even moderately large training 

sets to appropriately model the resulting high-dimensional feature space. 

The discrete-time real cepstrum is defined as the inverse discrete Fourier transform of the 

log-magnitude spectrum of sequence, [ ]c n . 

 

[ ] [ ]( )IDFT log DFTc n x n =                                   3.1 

 

Filter-bank methods and linear predictive coding(LPC) are the two primary approaches to 

calculating the cepstral coefficients. Linear predictive coding is an all-pole system that models a 

signal [ ]x n  as the linear combination of the previous p  samples 
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where ka are the LPC coefficients. In this thesis, 16th order of LPC coefficients are used as 

feature vector as shown in Figure 3.2. 

 

 

Figure 3. 2 Feature extraction using 16th order LPC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 40 - 

3.4.2 Classifier 

3.4.2.1 Support vector machine 

This section will introduce the basic ideas behind support vector machines (SVMs) as devel-

oped by V. Vapnik, et al. The approach will follow the developments in the classical SVM work [25] 

and the excellent tutorial in [26]. Support vector machines (SVMs) are quite general learning ma-

chines introduced to solve problems in the fields of pattern recognition, regression estimation, and 

density estimation. The development presented here will focus on the pattern recognition problem.  

 

 

Figure 3. 3 Support vector machines 

 

Figure 3.3 illustrates the basic concepts of support vector machines. Support vector ma-

chines take a set of input features that are typically not linearly separable and transform the features 

into a higher dimensional feature space. In this new space, the data are separated by a linear hyper-

plane. In Figure 3.3, the support vectors are the feature vectors lying on the two dashed hyperplanes. 

The support vectors provide the most information for the classification task but they are also the 

feature vectors that are hardest to classify. Many hyperplanes can separate the data in Figure 3.3. 

However, the goal of support vector machines is to find the optimal hyperplane so that the classifier 

will perform well on both the training set and unseen test samples.  

Support vector machines are a supervised learning technique. The supervisor provides a set 

of l labeled training data vectors (each of dimension d ) 
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( , ) 1, , { 1,1}d
i i i iy i l y= ∈ ∈ −x x R                          3.3 

 
where the are the training data vectors and the ix , iy  are the class labels assigned by a su-

pervisor (note the use of bold font for vectors). The general goal of SVMs is to find the optimal 

hyperplane (decision rule) that separates the training data well and also generalizes appropriately for 

unseen test data.  

The support vectors lie on planes defined by the equations ( ) 1i iy b⋅ + =x w . Thus, the 

“hard” margin is equal to 
2
w

. Support vector machines provide the optimal separating hyperplane 

by maximizing the margin. In the case of separable data, the hard margin is maximized which in-

volves minimizing w , minimizing the norm of the hyperplane’s normal vector. For non-separable 

data, the concept of a “soft” margin is introduced [19]. A soft margin is created by adding the non-

negative slack variables iζ . The slack variables represent the shortest distance between an incor-

rectly classified training vector and its correct classification region 2( )i i iy bζ = − ⋅ +x w . Slack 

variables help the SVM to minimize training set errors.  

Maximizing the soft margin requires minimizing the following objective function  

 

2

1

1
2

l

p i
i

L C ζ
=

= + ∑w                                             3.4 

 

subject to the following constraints  

 

1i ib ζ⋅ + ≥ −x w  for 1iy =                                      3.5 

1i ib ζ⋅ + ≤ −x w  for 1iy = −                                    3.6 

0i iζ ≥ ∀                                                      3.7 
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The first term on the right hand side of equation 3.4 is the margin maximizing term respon-

sible for the well-known generalization capability of SVMs. The second term on the right hand side 

of equation 3.4 is related to the empirical risk. Minimizing the empirical risk is tantamount to mini-

mizing the training set error. The number of errors on the training set can be brought down to zero 

by utilizing a highly complex classifier. However, overly complex classifiers rarely perform well on 

unseen test samples. The cost parameter C controls the number of support vectors used to model the 

decision boundary. The greater the number of support vectors, the more complex the decision boun-

dary. As the number of support vectors gets smaller, the decision boundary becomes progressively 

smoother. A balance must be achieved between using not enough support vectors to model the inhe-

rent complexity of the problem, and using too many support vectors which will over-train the model 

and perform poorly on unseen test data. Obtaining the optimal model complexity is the subject of 

structural risk minimization as developed in [25]. 

Returning now to the optimization problem, constraint equations 3.5 and 3.6 can be com-

bined into a single equation  

 

( ) 1i i iy b ζ⋅ + ≥ −x w                                             3.8 
 

The method of Lagrange multipliers will be used to perform this inequality constrained op-

timization problem. The primal Lagrangian formed from objective function 3.4 and constraint equa-

tions 3.7 and 3.8 is 

 

{ }2

1 1 1

1 ( ) 1
2

n n n
T

p i i i i i i i
i i i

L C y bζ α ζ β ζ
= = =

= + − + − + −∑ ∑ ∑w w x           3.9 

 

where iα  and iβ  are the non-negative Lagrange multipliers. The primal Lagrangian is 

now minimized with respect to w . To find the minimizer w , start by solving the following set of 

simultaneous equations 



- 43 - 

1 1
0 : 0

n n
p pd

i i i i i i
i i

L L
y yα α

= =

∂ ∂
= = − = ⇒ =

∂ ∂ ∑ ∑w x w x
w w

            · 3.10 

1 1
0 : 0 0

n n
p pd

i i i i
i i

L L
y y

b b
α α

= =

∂ ∂
= = − = ⇒ =

∂ ∂ ∑ ∑              3.11 

0 : 0p
i i i i

i

L
C Cα β β α

ζ
∂

= − − = ⇒ = +
∂

            3.12 

 

The last equation constrains the iα  to a hypercube 0 i Cα≤ ≤ . The dual Lagrangian can 

now be formed by substituting equations 3.10~3.12 back into the primal Lagrangian. The following 

dual Lagrangian and its associated constraints are found by substitution of equations 3.10~3.12. 

 

1 1 1

1
2

n n n
T

d i i j i j i j
i i j

L y yα α α
= = =

= −∑ ∑∑ x x                                3.13 

1
0

n

i i
i

yα
=

=∑ ,  0 fori iα α≥ ∀                                    3.14 

 

Note that (by a clever choice) the slack variables iζ  do not show up in the dual Lagran-

gian. To minimize the objective function of equation 3.4, the dual Lagrangian must be maximized 

with respect to the iα . 

The resulting decision function to be applied to test data is 

 

1
( )

n
T

i i i
i

f y bα
=

= +∑x x x                                         3.15 

 

where 

1 1
 

n n
T

i i i k i i i k
i i

y b y yα α
= =

= = −∑ ∑w x x x for any 0kα > .             3.16 
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3.4.2.2 Non-linear support vector machines for non-separable training data 

So far, only linear decision functions have been considered. The key idea of support vector 

machines is to transform the input space (which is likely non-separable) into a higher dimensional 

feature space where the training data are linearly separable. The linear decision functions in the fea-

ture space are typically non-linear in the input space. 

Define a mapping Φ  which maps the d -dimensional input space into a higher-

dimensional (potentially infinite-dimensional) feature space H . 

 

: d HΦ →R                                                   3.17 
 

With this mapping, the inner products i j⋅x x  in input space become ( ) ( )i jΦ ⋅Φx x  in the 

feature space. Defining the precise form for Φ  is often difficult and/or costly. Thus, we seek a 

kernel function ( , ) ( ) ( )i j i jK = Φ ⋅Φx x x x  so that defining Φ  is unnecessary. Mercer’s Theo-

rem provides us the answer. Mercer’s Theorem states that the mapping and the kernel function 

( , ) ( ) ( )i j i j
i

K = Φ ⋅Φ∑x x x x  exist if and only if [26] 

 

( )g∀ x  with 2( )g d < ∞∫ x x                                     3.18 

 

then 

 

( , ) ( ) ( ) 0K g g d d ≥∫ x y x y x y                                     3.19 

 

Therefore, for all pairs of mappings and kernels that satisfy Mercer’s Theorem, the kernel 

function ( , )i yK x x  takes the place of i j⋅x x  in the non-linear optimization problem. Thus, the 
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results from linear SVMs can immediately be extended to the non-linear case as follows 

 

1
( ) ( , )

n

i i i
i

f y K bα
=

= +∑x x x                                     3.20 

 

Again, note that only the support vectors contribute to the sums. The support vector ap-

proach allows us to perform the inner products in high-dimensional feature space using a kernel 

with complexity determined by the number of support vectors. 

There is no known method for selecting the most appropriate kernel function for a given 

classification task. SVM practitioners typically begin by trying kernels that have been known to 

produce good results. Some of the most common kernel functions are  

 

Polynomial: [ ]( , ) ( ) d
i iK γ δ= ⋅ +x x x x                              3.21 

Radial Basis Function(RBF) or Gaussian: 2( , ) expi iK γ = − ⋅ x x x x    3.22 

Sigmoid: [ ]( , ) tanh ( )i iK γ δ= ⋅ −x x x x .                           3.23 

 

The kernel function parameters γ , d  and δ  are typically chosen by heuristic methods. 

Although SVMs were presented here for solving pattern recognition problems, SVMs have 

shown promise in solving the more general problems of regression estimation and density estima-

tion. Readers who wish to further investigate the theory of support vector machines should consult 

the classic work [25] and the comprehensive tutorial in [26].  
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3.4.3 Classifier performance 

The radial basis function (RBF) was chosen for the support vector machine kernel. The RBF 

kernel is well-behaved mathematically, uses only a single free parameter γ , and performs well on 

many classification tasks. When using the RBF kernel, the SVM designer must provide appropriate 

values for the cost parameter C and the RBF kernel parameter γ . 

In this section, binary classifier discuss after that multi-level SVM using binary tree archi-

tecture. First, 3kinds of binary classifier (dog, human walking), (dog, human running), and (human 

running, human walking) is discussed and then (human running, human walking, dog) using binary 

tree architecture and binary SVM classifiers. 

  

3.4.3.1 Binary classifier 

This section will analyze the performance 3 kinds of binary classifier (dog, human walking), 

(dog, human running), and (human running, human walking). The feature set utilized in this section 

is 16th order LPC coefficient and window size is 128 samples. For the training 20% of data was 

used. SVM parameters are C = ∞ and 0.5γ = . 

Figure 3.4 shows the training result when the classes are dog and human walking. The clas-

sification result is in table 3.1. Even training 2~8m distance, the classification results are 100% with 

16m distance for dog and 10m distance for human walking. Table 3.1 indicated that dog and human 

walking can be separate perfectly using SVM classifier.  

Dog, human running case is in figure 3.5 for the training result and the classification result is 

in table 3.2. The classification performance is around 85% for dog and 70% for human running.  

For classifying human running and human walking, the training result is in figure 3.6 and the 

classification result is in table 3.3. The target is human but the activity is different as running and 

walking. Performance of the classifier is 100% for human walking and over 95% for human run-

ning.  
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Figure 3. 4 Training result, Dog=1 and Human Walking=-1 

 

Table 3. 1 Classification result of Dog versus Human walking 

Test data Dog Human walking 

Trained distance 

(2,4,6m B/F, 8m B) 

35/35 (100%) 35/35 (100%) 

Total distance 

(D 2:2:16, H: 2:2:10m) 

80/80 (100%) 50/50 (100%) 
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Figure 3. 5 Training result, Dog = 1and Human running = -1 

 

Table 3. 2 Classification result of Dog versus Human running 

Test data Dog Human running 

Trained distance 

(2,4,6m B/F, 8m B) 

30/35 (85.71%) 25/35 (71.43%) 

Total distance 

(D 2:2:16, H: 2:2:10m) 

69/80 (86.25%) 35/50 (70%) 
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Figure 3. 6 Training result, Human running = 1and Human walking = -1 

 
 

Table 3. 3 Classification result of Human running versus Human walking 

Test data Human running Human walking 

Trained distance 

(2,4,6m B/F, 8m B) 

45/45 (100%) 44/45 (97.78%) 

Total distance 

(D 2:2:16, H: 2:2:10m) 

50/50 (100%) 48/50 (96%) 
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3.4.3.2 Binary tree architecture classifier 

 

 

Figure 3. 7 Binary tree architecture classifier using SVM 

 

Previous section dealt only 2 classes classifier, binary classifier. Dog and human walking are 

perfectly classified. Human activity such as running and walking are classified over 95% perfor-

mance. But dog and human running classifier performance is not enough. For improve the perfor-

mance of dog and human classifier, in this section will consider special classifier using binary tree 

architecture (BTA) and SVM. The classifier is in figure 3.7. First tree, SVM21, classify the activity 

running and walking even it is dog or human. Usually dog is classified the running class, because 

dog has four legs. After that, second tree, SVM22, classify human and dog. Both of SVM parame-

ters are C = ∞ and 0.5γ = and Gaussian kernel is used. The training result is shown in figure 3.8. 

The classification performance is in table 3.4. Accuracy is 93.33% for dog and 97.78% for human. 
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(a)                               (b) 

Figure 3. 8 Training result.  

(a)SVM21(Run=1, Walk=-1), (b)SVM22(Dog=1, Human=-1) 

 

 

 

Table 3. 4 Classification result of Figure 3.7 

  Predicted class   

  Dog Human % correct 

Actual class Dog 84 6 93.33 % 

 Human 4 176 97.78 % 
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3.5 Target classification using complex-valued SVM 

In PDR applications the used signals are complex-valued. In order to process them, it is not 

a good idea to use two separate processors for real and imaginary parts, since there is cross-

information that cannot be ignored. In this section complex-valued SVM classifier which process 

the complex-valued signals measured by PDR to identify moving targets from the background [23].  

  

3.5.1 complex-valued SVM 

SVM is widely applied in the field of pattern recognition, but features which used to classify 

are almost real valued data. Complex-valued SVM can classify the moving target using real valued 

data, imaginary valued data, and cross-information data. To design complex-valued SVM, consider 

slack variables of real and complex axis, and use the Karush-Kuhn-Tucker (KKT) conditions for 

complex data. Also, apply radial basis function (RBF) as a kernel function which use a distance of 

complex values. This section presents a summarized derivation of the complex-valued SVM clas-

sifier, but similar derivations hold true for other SVM approached. Also, using the kernel function, 

the result is directly applicable to nonlinear machines. Figure 3.9 illustrates the basic concept of 

complex-valued SVM with two slack variables ζ and ξ .  

 

Figure 3. 9 Complex-valued support vector machine 
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Derivation of the complex-valued SVM is similar with real-valued SVM. Maximizing the 

margin requires minimizing the follow objective function 

 

2

1 1

1
2

n n

p i i
i i

L C Cξ ζ
= =

= + +∑ ∑w                                    3.24 

 

subject to the following constraints 

 

Re[ ( )] 1 , 0T
i i i iy b ξ ξ+ ≤ − ≥w x                               3.25 

Im[ ( )] 1 , 0T
i i i iy b ζ ζ+ ≤ − ≥w x                               3.26 

 

where iξ is the slack variable in the real part of the real part analogously for iζ  in the im-

aginary part.  

The prime-dual Lagrange functional can be written with Lagrange multipliers 

, , , 0n n n nα β λ η ≥ . 

 

2

1 1 1 1

1 (Re[ ( )] 1 )
2

n n n n
T

pd i i i i i i i i
i i i i

L C C y bξ ζ α ξ λξ
= = = =

= + + − + − + −∑ ∑ ∑ ∑w w x
 

1 1
(Im[ ( )] )

n n
T

i i i i i i
i i

y b j jβ ζ η ζ
= =

− + − + −∑ ∑w x                   3.27 

 

Besides, the KKT conditions are equation 3.28~3.31. 

 

1 1
0 : 0

n n
pd pd

i i i i i i
i i

L L
y j yα β

= =

∂ ∂
= = − − =

∂ ∂ ∑ ∑w x x
w w

                 3.28 
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1 1 1
0 : 0 ( ) 0

n n n
pd pd

i i i i i i i
i i i

L L
y j y y

b b
α β α β

= = =

∂ ∂
= = − − = ⇒ + =

∂ ∂ ∑ ∑ ∑  3.29 

0 : 0pd
i i i i

i

L
C Cλ α λ α

ξ
∂

= − − = ⇒ = +
∂

                     3.30 

0 : 0pd
i i i i

i

L
C C jη β η β

ζ
∂

= − − = ⇒ = +
∂

                    3.31 

, , , 0i i i iα β λ η ≥                                                 3.32 

(Re[ ( )] 1 ) 0T
i i i i iy y bα ξ+ − + =w x                                 3.33 

(Im[ ( )] 1 ) 0T
i i i i iy y bβ ζ+ − + =w x                                 3.34 

0, 0i i i iλξ η ζ= =                                              3.35 

 

Applying equation 3.28~3.35 to equation 3.XX, we obtain an optimal solution for the com-

plex-valued SVM classifier weights 

 

1

n

i i i
i

yψ ∗ ∗ ∗

=

=∑w x                                                3.36 

 

where i i iψ α β= + . This result is analogous to the one for the real-valued SVM classifier 

problem, except that now Largrange multipliers iα  and iβ  for both the real and the imaginary 

components have been considered. 

The norm of the complex-valued coefficients can be written as 

 

0

2

1

n n
H H H

i j i j i j
i j n

y y Y RYψ ψ∗ ∗

= =

= = Ψ Ψ∑∑w x x                        3.37 
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where H
ij i jR = x x . 

The functional for complex-valued SVM classifier model has exactly the same form as real-

valued SVM. For complex-valued SVM classifier, the expression for the functional is simply 
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1

1

1

1 1: ( )
2 2

: 0 , 0 (1 )

1: ,
2

: 0 , 0 (1 ) .

n
H H
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∑
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Figure 3.9 illustrates the basic concept of complex-valued SVM. SVM is widely applied in 

the field of pattern recognition, but features which used to classify are almost real valued data. 

Complex-valued SVM can classify the moving target using real valued data, imaginary valued data, 

and cross-information data. To design complex-valued SVM, consider slack variables of real and 

complex axis, and use the Karush-Kuhn-Tucker (KKT) conditions for complex data. Also, apply 

radial basis function (RBF) as a kernel function which use a distance of complex values. 
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3.5.2 Feature extraction 

Figure 3.10 shows inphase component and quatradure component from the PDR when hu-

man move across the PDR 4m distance. Spectrogram using inphase or quadrature component only is 

shown in figure 3.11(a). Figure 3.11(b) shows the spectrogram using both of inphase and quadrature 

component as a complex value. There is no negative frequency in spectrogram of real value, so fig-

ure 3.11 (a), the spectrogram is symmetric long the frequency axis. Compare two of figure 3.11 (a) 

and (b), spectrogram of complex value has more information than real value. Previous section ig-

nored the complex information. 

In this section, 16th order LPC coefficients used as feature vector, same reason as previous 

section but the spectrogram is different. Section 3.4 used real value of LPC coefficients, in that case 

cross information in real and complex LPC coefficient is ignored. Section 3.5 used complex value 

of LPC coefficients 
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Figure 3. 10 Data from the PDR 

 

 

 

(a) 

 

(b) 

Figure 3. 11 Spectrogram of (a)real value, (b)complex value 
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3.5.3 Classifier performance 

To evaluate the performance of the complex-valued SVM, complex valued data from PDR 

were classified using real-valued SVM and complex-valued SVM. Data is collected 10 times each 

distance(2, 4, 6, 8, 10m ) between the target and PDR. Target limited human and animal(dog). 

Movement path of the targets is across the PDR. Each target have 50 data, 7% of them used for 

training and last of them used for the performance of the classifier. The radial basis function (RBF) 

was chosen for the support vector machine kernel. The RBF kernel is well-behaved mathematically, 

uses only a single free parameter γ , and performs well on many classification tasks. When using 

the RBF kernel, the SVM designer must provide appropriate values for the cost parameter C and the 

RBF kernel parameter γ . SVM parameters are 2048C =  and 0.5γ =  for the real-valued 

SVM, 1448C =  and 0.5γ =  for the complex-valued SVM.  

Table 3.5 shows the classification result of the real-valued SVM and the complex-valued 

SVM is shown in Table 3.6. Complex-valued SVM classification was improved compared to real-

valued SVM for dog and human, respectively 8%, 10% have been improved.  

 

Table 3. 5 Performance of the real-valued SVM 

  Predicted class   

  Dog Human % correct 

Actual class Dog 35 15 70 % 

 Human 16 34 68 % 

 

Table 3. 6 Performance of the complex-valued SVM 

  Predicted class   

  Dog Human % correct 

Actual class Dog 39 11 78 % 

 Human 11 39 78 % 
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Chapter 4. Conclusion 

 

4.1 Conclusion 
 

This thesis research achieved its primary scientific objective to perform robust, automatic 

detection and classification of moving targets using seismic sensor and pulse doppler radar on a sta-

tionary platform. 

A major contribution of this thesis was the collection, processing, and analysis of a diverse 

seismic and doppler signature database. The database included datasets with targets moving at nu-

merous ranges, different of targets and activities. The target classes included were human running 

human walking and animal. Evaluation of theory on realistic experimental data is vital to the ad-

vancement of knowledge. The data can be used to rigorously evaluate new classification, detection, 

and feature selection algorithms. Computer simulation analysis also plays a crucial role in theoreti-

cal development. The experimental data collected by this thesis research can be utilized to improve 

the accuracy of computer models. 

This thesis contributed a novel set of high-performance seismic and doppler based features. 

The Fisher score used for selecting a feature set. In addition, the feature set included both statistical 

and the linear predictive coding (LPC) residual energy feature. The selected feature set was shown 

to perform well on the seismic sensor and doppler radar based target classification problem.  

The design and detailed analysis of target classification algorithms based on support vector 

machine (SVM) and binary tree architecture (BTA) classifiers were designed to accomplish high-

performance target classification. In order to process the complex-valued signals from pulse doppler 

radar, complex-valued SVM classifier was derived. Complex-valued SVM classifier processes the 

complex-valued signals measured by PDR to identify moving targets from the background. 
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4.3 Future work 
 

Although the scientific objectives of this thesis were met, more research can be performed to 

further improve our knowledge of seismic sensor and pulse doppler radar based classification. One 

of the first priorities for continued research would be fusion multi-sensors data and analysis them. 

One more is collecting more datasets. Acquiring more data is important for several reasons. First, 

collecting a wider variety of target types improves our understanding of seismic and doppler signal. 

especially, target doppler responses can be used to improve radar simulation models and to study 

various electromagnetic scattering phenomena. In addition to increasing our knowledge of doppler, 

expanding the micro-Doppler signature database is vital for improving classification results.  

The results of this thesis support the argument that feature selection is often more critical 

than classifier selection. Classification performance is fundamentally limited by the inherent sepa-

rability of the feature set. The Fisher score initialized sequential backward selection algorithm uti-

lized in this dissertation performed well. However, other feature selection algorithms such as those 

incorporating genetic algorithms (GA) may perform better. In addition to feature selection, improv-

ing feature extraction is also vital for obtaining better performances. Perhaps the most important 

feature to add would be in the one pulse of signal. Signals from seismic sensor consist of several 

footsteps, each footstep has one pulse of seismic.   
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