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<Abstract>

COLUMN RANK PRESERVERS
BETWEEN DIFFERENT BINARY BOOLEAN
MATRIX SPACES.

Matrix theory on the semirings has been developed by many linear alge-
braists containing Beasley and Pullman since 1981. Moreover there are many
papers on linear operators on a matrix space that preserve matrix functions
over various algebraic structures. But there are few papers of linear trans-
formations from one matrix space into another matrix space that preserve
matrix functions over an algebraic structure.

Let IF be a field and M, ,,(IF) denote the vector space of all m x n matrices
over [F. Over the last century, a great deal of effort has been devoted to the
following problem.:

Characterize those linear operators 7' : M, ,,(F) — M,, ,,(F) which leave
a function or set invariant. We call this a Linear Preserver Problem.

The study of these operators began in 1897 when Frobenius characterized
the linear operators that preserve the determinant over complex matrices and
over real symmetric matrices.

In this thesis we consider linear transformations from m x n Boolean ma-
trices into p x ¢ Boolean matrices that preserve column rank. We characterize
linear transformations that preserve column rank between different Boolean
matrix spaces. This results extend the results on the linear operators from
m X n Boolean matrices into itself that preserve column rank. The main
theorem is the following:

Theorem: Let 1 < Kk <l < m <nand k+1 < m. Assume T :
M, »(B) — M, ,(B) is a linear transformation that preserves column rank
k and column rank [, or if T" strongly preserves column rank k, then 7" has
the form T(A) = P[A @ O]Q with permutation matrices P and @ of orders
p and ¢, respectively. And the converse holds.
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1 Introduction

Matrix theory on the semirings has been developed by many linear algebraists
containing Beasley and Pullman since 1981 ([9]). Moreover there are many papers
on linear operators on a matrix space that preserve matrix functions over various
algebraic structures ([9]). But there are few papers of linear transformations from
one matrix space into another matrix space that preserve matrix functions over

an algebraic structure([12]).

Let IF be a field and M,,, ,,(F) denote the vector space of all m xn matrices over
F. Over the last century, a great deal of effort has been devoted to the following
problem. Characterize those linear operators T : M,, ,(F) — M,, ,(F) which
leave a function or set invariant. We call this a Linear Preserver Problem ([8],

[9]). The most typical and oldest type of linear preserver problem is as follows :

Let f be a function on M, ,,(F). Characterize those 7" on M,, ,,(F) such that
f(T(A)) = f(A) for all A € M,,,(F).

The study of these operators began in 1897 ([9]) when Frobenius characterized
the linear operators that preserve the determinant over complex matrices and over
real symmetric matrices. Frobenius proved that the linear operators that preserve

the determinant consists of linear transformations of the form

T(A)=UAV or T(A) = UA'V
for all A € M, ,(C), where C' is complex field and det(UV) = 1.

We now turn our attention to matrices over semirings, in particular Boolean

algebra.

Boolean algebra is named after the British Mathematician George Boole (1813
- 1864). The Boolean algebra of two elements is most frequently used in com-
binatorial applications, and all other finite Boolean algebras are direct sums of
copies of it ([7]).

Applications of the theory of Boolean matrices are of fundamental importance

in the formation and analysis of many classes of discrete structural models which



arise in the physical, biological, and social sciences. The theory is also intimately
related to many branches of mathematics, including relation theory, logic, graph

theory, lattice theory and algebraic semigroup theory ([5], [7]).

Boolean matrices have different properties from matrices over a field, due to
the fact that addition in a Boolean algebra does not make it a group. Boolean
matrices may arise from graphs or from nonegative real matrices by replaceing all
positive entries by 1, but their most frequent occurence is in the representation

of binary relation.

The study of the characterization of linear operators that preserve invariants
of matrices over semirings is a counterpart for the study of preservers over fields,
and it has its own importance.

In [2], Beasley and Pullman established analogous results over Boolean algebra

to many preserver problems for matrices over field.

In this paper we consider linear transformations from m x n Boolean matrices
into p x ¢ Boolean matrices that preserve column rank. We study linear transfor-
mation that preserve column rank between different Boolean matrix spaces. This
results extend the results on the linear operators from m x n Boolean matrices

into itself that preserve column rank.



2 Preliminaries and Definitions

Definition 2.1. [3] A semiring is a set S equipped with two binary operations
+ and - such that (S,+) is a commutative monoid with identity element 0 and
(S,-) is a monoid with identity element 1. In addition, the operations + and -

are connected by distributivity of - over 4+, and 0 annihilates S.

Definition 2.2. [3] A semiring S is called antinegative if O is the only element

to have an additive inverse.

The following are some examples of antinegative semirings which occur in
combinatorics. Let B = {0,1}. Then (B, +,) is an antinegative semiring (the
binary Boolean semiring) if arithmetic in B follows the usual rules except that
1+1=1. If Pis any subring of R with identity, the reals (under real addition
and multiplication), and P* denotes the nonnegative part of P, then P* is an an-
tinegative semiring. In particular Z*, the nonnegative integers, is an antinegative
semiring.

Hereafter, S will denote an arbitrary commutative and antinegative semiring.

Definition 2.3. Let M, ,,(S) and M, ,(S) be the set of allmxn and pxq matrices
respectively with entries in a semiring S. Algebraic operations on My, ,(S) and

M, ,(S) are defined as if the underlying scalars were in a field.

Definition 2.4. [3] The column rank, c(A), of A € M, ,,(B) is the dimension of

the column space of A.

From now on we will assume that 2 < m < n. It follows that 1 < ¢(A) <n
for all nonzero A € M, ,,(B).

Definition 2.5. Let CIET’S) denote the set of all matrices in M, (B) whose column

rank 1s k.



Let T : M, ,(B) — M, ,(B) be a linear transformation. If f is a function
defined on M, ,,(B) and on M, ,(B), then T" preserves the function f if f(T'(A)) =
f(A) for all A € M, ,(B).

If X is a subset of M, ,,(B) and Y is a subset of M, ,(B), then T" preserves
the pair (X,Y) if A € X implies T(A) € Y. T strongly preserves the pair (X,Y)
if A € X implies T(A) € Y. T strongly preserves column rank k if T strongly
preserves the pair (C,gm’n),Clgp ’q)).

Song [11] has characterized linear operators on M, (B) that preserve column
rank as follows:

T is a column rank preserver if and only if 7" preserves column ranks 1, 2 and
3. (1.1)

T is a column rank preserver if and only if 7" has the form of T'(X) = PXQ

where P, () are permutation matrices. (1.2)

In this paper, we study linear transformations that preserve column rank

between different matrix spaces.

Definition 2.6. The matriz A™™ denotes a matriz in M, ,(B), O™™ is the
m X n zero matriz, I, is the n X n identity matrix, I,gm’n) =1; ® Op—k -k, and
Jmn) s the m x n matriz all of whose entries are 1. Let EZ(T") be the m x n
matriz whose (i,j)th entry is 1 and whose other entries are all 0, and we call

El(?;"”n) a cell. An m x n matriz L™ is called a full line matriz if

Limn) = Z B or LM = Z B

=1

or some 1 € \1,...,m; or for some 3 € {1,...,ny; R, = 2718 the
=1

ith full row matriz and C](m’n Z Ekm ™ s the jth full column matriz. We
will suppress the subscripts or superscrzpts on these matrices when the orders
are evident from the context and we write A, O, I, Iy, J, E;;, L, R; and C}

respectively.

The following is obvious by the definition of column rank of matrices over

antinegative semirings.



Lemma 2.7. For matrices A and B in M, ,(B), we have

c(A+ B) < c(A) + c(B).

Example 2.8. If A and B are matrices in M;3(B),

100 011
A=|1010]|, B=]101
0 01 110
we have
111
A+B=1]11 1
1 11

but ¢(A) > c(A+ B).
Definition 2.9. If A and B are matrices in M,, ,(S), we say that B dominates
A (written AT B or B 3 A) if b;j = 0 implies a;,; = 0 for all i and j. This

provides a reflexive and transitive relation on M, ,(S).

Example 2.10. If A and B are matrices in M 3(B),

1 00 1 11
A=101 0|, B=|111
0 01 111

Then AC B, but ¢(B) < ¢(A).

Definition 2.11. As usual, for any matriz A and lists Ly and Ly of row and
column indices respectively, A(Ly | Ly) denotes the submatriz formed by omitting
the rows Ly and columns Ly from A and A[Ly | Ls] denotes the submatriz formed

by choosing the rows Ly and columns Ly from A.

Definition 2.12. [12] If 1 < m,n and 1 < p,q and T : M,, ,(B) — M, ,(B)
is a linear transformation, then T is a (P, Q)-block-transformation if there are
permutation matrices P € M,(B) and Q) € My(B) such that

e m<pandn<gq, and T(A) = P[A® O]Q for all A € M,, ,(B).



3 A characterization of column rank preservers

of Boolean matrices.

Definition 3.1. [4] For a linear transformation T : ML, ,,(B) — M, ,(B) , we say
that T

(1) preserves column rank k if ¢(T(X)) = k whenever ¢(X) = k for all X €

M., .(B), or equivalently if T preserves the pair (C,gm’n),C’,gp’q));

(2) strongly preserves column rank k if ¢(T(X)) = k if and only if ¢(X) =
k for all X € M,,,(B), or equivalently if T strongly preserves the pair
(C,gm’n) C«}ip,q)).

(3) preserves column rank if it preserves column rank k for every k(< n).

In this section we provide characterizations of linear transformations T :
M, »(B) — M, ,(B) that preserve column ranks k and [, where 1 < k < [ <

m < n.

Example 3.2. Let

_— O R
e = )
_ == O
o O

be a matriz in My(B). And T(A) = A'. Then the columns of A are linearly
independent. Hence ¢(A) = 4. But c(A') = 3 since the first three columns of
Al compose a basis of the column space of A'. Therefore, T does not preserves

column rank.

Theorem 3.3. Let 1 <m,n and 1 <p,q and T : M,,, ,(B) — M, ,(B) be a linear
transformation. Then T strongly preserves column rank 1 if and only if T is a
(P, Q)-block-transformation.



Proof. If T is a (P, Q)-block transformation, then
c¢(T(A)) =c(P[A® O]Q) = c(Ad O) = c(A).

Thus T strongly preserves column rank 1.

Assume that T strongly preserves column rank 1. Then, the image of each
line in M, ,,(B) is a line in M, ,(B). For since if not, 7" does not preserves column
rank 1.

Case 1. T(R{™™) T RP?.

Suppose that T(C(m’")) C RP%_ Then, since E(m’") is in both R{™™ and C;m’”)
and since T( ) =# O, we must have i = 1. But then, for j # k

T(E(m n) + E(m n)) |: R(p )
and hence, has column rank 1. But
C(E(m ,n) + E(m n)) 2,

a contradiction. Thus the image of any column is dominated by a column. Fur-
ther, since the sum of two columns may has column rank 2, the image of distinct

columns must be dominated by distinct columns. Let

¢{17m}_>{1, ’p}
be a mapping defined by ¢(i) = j if T(R™™) C R;p’@ and define

0:{1,--n}— {1, ,p}
by 0(i) = j if T(C’i(m’n)) C CJ(-p’Q). Then, it is easily seen that ¢ and 6 are injective
mappings, and hence, m < p and n < ¢. Let ¢' : {1,--- ,p} — {1,--- ,p} and
¢ :{1,--- ¢} — {1,---,q} be injective mappings such that ¢ |(1 ...y= ¢ and
9" |f1,.ny= 0. Let Py and Qg denote the permutation matrices corresponding to
the permutations ¢’ and 6.

In this case we have that m < p and n < ¢, and
for all A € M, ,(B), that is T" is a (P, Q)-block-transformation.

Case 2. T(Rgm’n)) C C’fp’Q).
The transposing transformation 7' does not preserve column rank by Example

3.1. So we have not this case. n



Lemma 3.4. Let 3 < k < m <n. IfT : M,,([B) - M,,B) is a linear
transformation that preserves column rank k and column rank 1, then T strongly

preserves column rank 1.

Proof. If k = 2 then clearly T strongly preserves column rank 1. Assume that
k > 3. Suppose a column rank 2 matrix is mapped to a column rank 1 matrix.
Without loss of generality, ¢(T'(E11 + F22)) = 1. But then, since T preserves
term rank 1,

c(T(Ey1+ Eyo+ Es3+ -+ Egy))

= c(T(Evg + Bag) + T(Ess) 4+ -+ T(Erg))
< c(T(Evq+ Bag)) +c(T(Es3)) + -+ (T (Exy))
=14+(k—2) <k,

a contradiction. Thus, T strongly preserves column rank 1. |

Corollary 3.5. Let2 <k <m,n and 1 < p,q and T : M, ,(B) — M, ,(B) be a
linear transformation. Then T preserves column rank 1,2 and column rank k if
and only if T is a (P, Q)-block-transformation.

Proof. By Lemma 3.4, T strongly preserves column rank 1. By Theorem 3.3, the

corollary follows. m

We now come to the main theorem of this section:

Theorem 3.6. Let 1 < k <l < m < nand k+1 < m. Assume T :
M, »(B) — M, (B) is a linear transformation that preserves column rank k
and column rank 1, or if T strongly preserves column rank k, then T is a (P, Q)-

block-transformation.

The proof of this theorem relies upon eight lemmas which now follow.

Lemma 3.7. Let 2 < k < m < n. Let T : M,,,,(B) — M, ,(B) be a linear
transformation that preserves column rank k. If T does not preserve column rank

1, then there is some column rank 1 matriz whose image has column rank at least

2.



for all

Proof. Suppose that T does not preserve column rank 1 and ¢(7'(A)) <1
= 0. Without

A with ¢(A) = 1. Then, there is some cell E; ; such that T(E; ;)
loss of generality, assume that T'(E; ;) = O. Since

c(Brg+FEog+ -+ Epy) =k
and T preserves column rank k, we have
c(T(Eyo+ Ess+ -+ Ey))
=c(T(Eig+ Esp+ -+ Epyp))
= k.

Let X = T(Ey2+- - -+ Ej ) then we can choose aset of cells Y = {Fy, Fy, - - - , F}.}
such that X 3 Fy + Fy + -+ + F}, with ¢(Fy + F, + -+ + Fy) = k. Since
T(Eys + -+ + Epx) = X, there is some cell in {Ey9,---, Ejx} whose image
under 7" dominates two cells in Y, a contradiction. This contradiction establishes

the lemma. n
Recall that the matrix J is the matrix whose entries are all ones.

Lemma 3.8. Let 2 < k < m < n and T : M,,,(B) — M, ,(B) be a linear
transformation that preserves column rank k. If T does not preserve column rank

1, then ¢(T'(I)) < k.

Proof. By Lemma 3.7, if T" does not preserve column rank 1, then there is
some column rank 1 matrix whose image has column rank 2 or more. Without
loss of generality, we may assume that T(E, ;) J Ey; + Es5. Suppose that
¢(T(I)) > k + 1. Then,

C<T(I)[37 7p|37"' aQD >k—1

Without loss of generality, we may assume that T'(I)[3,--- ,p|3, -+ ,q] J E33 +
Eyy + -+ 4+ Eiy1p41. Thus, there are & — 1 cells, F3, Fy,---, Fy1 such that
T(Fs+Fy+ -+ Fry1) D Es3+ Egg+ - + Egi1641. Then,

T(Evg+Fs+Fy+ -+ Frpr) 3 D

But, ¢(E11+F3+Fy+- - -+ Fp1) = kwhile ¢(T(Ey 1+ F3+Fy+- - -+ Fp1)) > k+1,
a contradiction. Thus, ¢(T'(1)) < k. n



Lemma 3.9. Let 1 <k <l <m <mn. Let T : M,;, ,(B) — M, ,(B) be a linear
transformation that preserves column rank k, column rank [, then T preserves

column rank 1.

Proof. Suppose that T does not preserve column rank 1. By Lemma 3.7, there
is some column rank 1 matrix whose image has column rank at least 2. Let A
be such a column rank 1 matrix. Without loss of generality, we may assume that
T(E11) d Ei1q + Ess. Now, by Lemma 3.8, if B = T'(I) is in the image of T,
¢(B) < k < l. But if we take B = T'(I;), then T'({;) must have column rank /, a
contradiction.

That is, 0 < ¢(T'(A)) < 1. Since A was an arbitrary column rank 1 matrix, T

preserves column rank 1. |

Lemma 3.10. Let 1 < k < m < n. IfT : M,,,(B) — M,,B) is a linear
transformation that preserves column rank k, column rank k+ 2 and T maps cell

into cell, then T strongly preserves column rank k + 1.

Proof. Let A € M, ,(B).
Case 1. Suppose that ¢(A) = k+1and ¢(T(A)) > k+2. Let Ay, Ao, -+, Apt1
be matrices of column rank 1 such that A = A; + Ay + -+ + A1. Without loss

of generality we may assume that
T(A) D Ey1+Esg+ -+ Eipopio

and, since the image of some A; must have column rank at least 2, we may assume
that ¢(T (A1 + As + -+ A;)) > i+ 1, for every i = 1,2,--- k + 1. But then

(A1 +As+ -+ Ap) =k

while
o(T(A1+ Ao+ -+ Ay)) > k+1,

a contradiction, Thus if
c(A)=k+1,

o(T(A)) <k + 1.

Case 2. Suppose that ¢(A) = k+ 1 and ¢(T'(A)) = s < k. Without loss of
generality, we may assume that A = Fy 1+ FEs o+ -+ Ejpi1 441 and T(A) J By, +

10



Eso+---+E; . Then there are s members of {T'(E1 1), T(E22), -, T(Egs1441)}
whose sum dominates Ey ;1 + Ey o+ - -+ Ej 5. Say, without loss of generality, that

T(Eyvy+Eso+ -+ Ess) JE 1+ Eyo+ -+ Ess.
Now, ¢(A + Egioxi2) =k + 2 so that ¢(T(A + Exiox42)) = k + 2. But since
o(T(A+ Eyyok+2))

=c((T(A) + T(Eri2,1+2))
< (T(A)) + (T (Eprapr2)),

it follows that ¢(T(Ekiok+2)) > k + 2 — s and there are s members of
{T(E11), T(E22), -+, T(Egs1x+1)} whose sum together with 7'( Ej2 x12) has col-

umn rank k + 2, say
c(T(Eig+ Eoo+ -+ Ess+ Epyogio) =k + 2.

Since s <k, ¢(E11+ Eapg+ -+ Es s+ Exiopi2) < k+1and ¢(T(E1 1 + Eqys +
o+ By g+ Eiiokt2)) = k+ 2. By Case 1, we again arrive at a contradiction.

Therefore T' strongly preserves column rank & + 1. |

Lemma 3.11. Let 1 < k < r,s. Ifc(Eyq+ -+ Epp +A) > k+1 and
Ak + 1, rlk+1,---,s] = O, then there is some i,1 < i < k, such that
c(Brp+-+E i+ B+ + B+ A)>k+ 1L

Proof. Suppose that B = Ey 1 + -+ Ej; + A and ¢(B) > k+ 1. Then there are
k+ 1 cells Fi, Fy, -+ | Fiyq such that

BIF+F,+- -+ Fen

and

c(Fy+Fy+ -+ Fep) =k + 1.

If Fi +Fy+ -+ Fypr 3 I, © O then one cell F; must be a cell E,;, where
a,b >k + 1, which contradicts the assumption

Alk+ 1, ok +1,-- 8] = O.

11



Thus Fy + F5 + -+ + Fjy1 does not dominate [ & O. That is, there is some
1,1 <1 < k, such that

c(Bip+- 4B+ B+ + B+ A) >k + 1

Lemma 3.12. Let 2 < k+1<m <n. If T : M, ,(B) — M, ,(B) is a linear
transformation that preserves column rank k, column rank k+ 1 and T maps cell

into cell, then T preserves column rank 1.

Proof. 1f k = 1, the lemma vacuously holds.
Suppose that k > 2.

Suppose that T" does not preserve column rank 1. Then there is some matrix
of column rank 1 whose image has column rank at least 2. Without loss of

generality, we may assume that
T(Eyv1+ Esy) JE1 1+ Es.

By Lemma 3.8 we have that ¢(T(J)) < k4 2. Since T preserves column rank
k1,
co(T(J)) > k+ 1.

Thus, ¢(T(J)) = k+ for either i = 1 or i = 2. Now, we may assume that for

some r,s with r +s =k + 1,
T(J)[T_'_l? 7p’8+17 7q]:O

Further, we may assume, without loss of generality, that there are k + i cells
F\,Fy, -+, Fyy; such that T(F) J Ejjyi—i+1 for I =1,--- k4 1i. Suppose the
image of one of the cells in F, Fy,--- , Fi,; dominates more than one cell in

{E1 k+i, Bajrio1, -+ s Egg1, ). Say, without loss of generality, that
T(F1) 2 By i + By,
then,
T(Fi+ P+ Fs+ -+ Fop1) D By + Eoprior + -+ By,

12



a contradiction,

since
C(F1+F2+F3+"'+Fk+1) SI{Z,
and hence
C(T(Fl + F2 + Fg + -+ Fk+1)) S ]{7,
and

By pyi + Bojicr + -+ Eg1i) = b+ 1.

It follows that for each j = 1,--- k + 1, if T(F}) 3 Ej41i—j+1 then | = j since

T(F;) 3 Ejgyi—j+1 is unique. Further, by permuting we may assume that

F+F+-+FC

Jk Okn—k ]

m—k,k Om—k,n—k
Now, let O # A € M, ,(B) have column rank 1, and suppose that
AlL,2,--+ Jk|1,2,--+ ,n] =0 and A[l,---m|1,--- k] = O. So that

Or  Opn—i
Om—k,k Al

A:

If T(A)k+1,---,p|l,i = O, then, since
c(Fi+-+F+A)=k+1,
c(T(Fi+--+F,+A)=k+1.
Applying Lemma 3.11, we have that there is some j such that
c(T(Fi+-+F 1+ Fu+-+F+A)=k+1

But
cFi+-+Fa+Fa++FR+A)=k

while
(TP +-+FatFipn+-+F+A)=k+1,

a contradiction. So we must have that

T(Ek+171)[k+ L ap|172} 7é 0.

13



If T(Ek—i—l,l)[k + 1, ce ,p|1,l] 7é O then
C(T(Fl + -+ Fk + Ek+1,1)) = k' + ].,

a contradiction since ¢(Fy + -+ - + Fy + Ex111) = k. Suppose that the (k,i + 1)

entry of T'(Ej x+1) is nonzero, then,
c(T(Fi+ -+ Fea+Erpn + Erip)) =k + 1,
a contradiction, since
c(Fi+ -4 Fooi + Ep g1 + Er 1) = k.

Consider T(Fy+ -+ -+ Fy—1+ Eg g1+ Ex+1.5+2). This must have column rank
k+1 and dominates E i+ Eo jyi—1+- - -+ Ex_1,i42+ Exr1; for some j € {1,4}.
Thus, by Lemma 3.11, there is some cell in {F},---, Fy_1}, say F} such that

C(T(Fl + e 4 F}_1 + F}'+1 4+t B+ Ek,k-‘,—l + Ek+1,k+2)) =k+1

But
c(Fi+-+Fa+ i+ + P+ Epn + Eraere) = F,

a contradiction.

It follows that T" must preserve column rank 1. |

Lemma 3.13. Let 2 < k < m < n. IfT : M, ,(B) — M,,(B) is a linear
transformation that strongly preserves column rank k, then T preserves column
rank k — 1.

Proof. 1f k = 2, the lemma holds. Suppose that k > 3.
Let A € M, ,(B) and ¢(A) = k — 1, and suppose that ¢(T'(A)) =s < k — 1.

Without loss of generality, we may assume that
C(T(ELl + -+ Ekz—l,k—l)) =s<k-—1.

Since ¢(T'(E11+ -+ -+ Egx)) = k, we have that ¢(T'(Egx)) > k — s. Without loss

of generality we may assume that
T(Eig+- 4 Epp) DB+ + By

14



and that
T(Epg) D Eprpn + -+ B

for some ¢ < s. Then, there are t cells { F; By in {Eyq,- -+, Egi} such

1,819 "

that
T(Eiyiy+--+Ei:) 3E 1+ + Ey.
Then
T(Eiml + o+ By, + Ek,k) JE+ -+ B
Thus
c(T(Ei i+ -+ Eii,+ Epg)) =k
But

C(ELI—F+Et,t+Ek’k):t+1§S+1<(k—1)+1:k,

which contradicts the assumption of 7. Hence ¢(T(A)) > k — 1. Further,
c¢(T(A)) < k — 1, since T strongly preserves column rank k. Thus, T preserves

column rank k — 1. ™

Lemma 3.14. Let 2 < k <m < n. IfT : M,,,(B) — M,,(B) is a linear
transformation that strongly preserves column rank k, then T preserves column

rank 1.

Proof. By Lemma 3.13, T' preserves column rank & — 1. By Lemma 3.9, T

preserves column rank 1. ]
We are now ready to prove the main theorem of this section.

Proof of Theorem 3.6. Case 1. Suppose T preserve column rank k and 1. Then
by Lemma 3.9 T preserves column rank 1. By Lemma 3.4, T" strongly preserves
column rank 1. By Theorem 3.3, T is a (P, Q)-block-transformation. Case 2.
Suppose T' strongly column rank k. Then by Lemma 3.14, T preserve column
rank 1. By lemma 3.4 T strongly preserves column rank 1. By Theorem 3.3, T

is a (P, Q))-block-transformation. n

As a concluding remark, we have the characterization the linear transforma-
tions that preserve column rank between m x m Boolean matrices and p X ¢

Boolean matrices.

15
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