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FUNCTION SPACES IN SEQUENTIAL CONVERGENCE
SPACES OVER VARIABLE BASE SPACES

JIN WoN PARK* AND BYuNG Sik LeEg*

1. Introduction

Since I. M. James has been promoting the fibrewise viewpoint sys-
tematically in topology [5-7], fibrewise topology has been emerged as
a subject in its own right. As a matter of fact in many directions in-
terests in research on fibrewise theory are growing now. Many of the
familiar definitions and theorems of ordinary topology can be general-
ized, in a natural way, so that one can develop a theory of topology
over a base space. On the other hand, the theory of fibration have been
developed in the situation of having variable base spaces. In particu-
lar, given fibrations p: X -+ A and ¢ : Y — B, the construction and
properties of a function space Cap(X,Y) and an associated fibration
p-q:Cap(X,Y) - A x B are mainly concerned. In this case, fibrewise
exponential laws play crucial role.

And sequential language is useful as an alternative in first countable
spaces, so there seems to be a reason for direct study of sequential con-
vergence. From these points of view, it is considered to be meaningful to
study the exponential laws in sequential convergence spaces over variable
base spaces.

In this paper, we introduce sequential convergence spaces over variable
base spaces and construct a function space structure which will allow us
some exponential laws.
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2. Function spaces in sequential convergence spaces over

variable base spaces

For any set X, let XN be the set of all sequences on X. A sequential
convergence space is an ordered pair (X, £) of sets, where £ C XN x X
is a specified relation between sequences (u,) € X" and points z € X
subject to the following three axioms:

(1) If up = z for all n, then ((u,),z) € &.
(2) ¥ ((un),z) € &, then for any subsequence (u,(n)) of (un), (ts(n),7) €

3

(3) If (up) € XV is such that every subsequence (uy(n)) has a further
subsequence (ugs(n)) With (gs(n), ) € &, then ((un),z) € £

In what follows we will express the statement ((u,),z) € £ by writing
(uy) converges to z in (X, £).

Let (X, &) and (Y, 7n) be sequential convergence spacesand f : X =Y
be a map. Then f is called a sequentially continuous map if (f(un))
converges to f(z) in (Y,7n) whenever (u,) converges to z in (X,§).

The class of all sequential convergence spaces and sequentially contin-
uous maps form a category which is denoted by Seq. Then the followings
are well known results.

Proposition 2.1. Seq has initial structures over Set.
Proposition 2.2. Seq has final structures over Set.

Let p: X — A be a sequentially continuous map. In this case, we say
that X is a sequential convergence space over A and p is a projection.
Let p: X - A and ¢ : Y — B be sequentially continuous maps where
X,Y, A and B are sequential convergence spaces.

Let

Cap(X,Y)= |J C(Xa,Vh)
a€cA,beB
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as a set, where C(X,,Y}) is the set of all sequentially continuous maps
from X, to Y. On Cap(X,Y), define ((f,), f) € £, where £ C Cup(X,Y)N
xCap(X,Y) and f € C(X,,Ys), if
(1) for any subsequence ( fs(n)) of (fn) and any sequence (z,,) in X which
converges to z € X, the sequence (f,(,)(z,)) which is defined by

f(z) otherwise

£ (an) = {

converges to f(z) in Y and
(2) the sequence ((p-q)(fn)) converges to (p-q)(f), where p-q : Cap(X,Y)
— A x B is the map defined by (p- ¢)(g) = (a,b) for g € C(X,,Y3).
From now on, the sequence (£,(,)(z)) is called the sequence induced
by (fa(n)) and (zn).

Proposition 2.3. (C4p(X,Y),£) is a sequential convergence space over
A x B.

Proof. Let f, = f for all n € N, where f € C(X,,Y;). Then if (zn)
converges to z € X,, for any subsequence (f,(,,)) of (f,), the sequence
(£4(n)(2zn)) induced by ( fs(n)) and (z,) which is defined by

f,(,,) (zp) ifit is defined
f(=z) otherwise

fuim n) = {

is the image of some mixed sequence of some subsequence of (z,,) and a
constant sequence (z) under f. Hence (£,(,)(z)) converges to f(z) in
Y, since f is sequentially continuous, . Moreover, (p - ¢)(f.) = (a, b) for
all n € N and hence ((p - ¢)(fr)) is a constant sequence in 4 x B. So
((p- )(fn)) converges to (p- g)(f). Therefore ((fa), f) € &.

Suppose (fn) converges to f in Cap(X,Y) and f € C(X,,Y,). Let
(fs(n)) be a subsequence of (f,). We have to show that for any subse-
quence (fig(n)) of (fo(n)) and a sequence (z,,) which converges to z € X,
in X, the sequence induced by (f;s(n)) and (z,) converges to f(z). Note
that (fis(n)) is also a subsequence of (f,). So, since (f,) convergesto f in
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Cap(X,Y), the sequence induced by (f;5(n)) and (z,) converges to f(z).

And, since ((p- q)(fs(n))) is a subsequence of ((p-q)(fn)), ((p- @) (fs(n)))
converges to (p- q)(f). Therefore, ((fsn)), f) € €.

Let (f») be a sequence in Cap(X,Y) such that any subsequence of
(fa) contains a further subsequence which converges to f € C(Xa, Y:).
We have to show that for any subsequence (fy(n)) of (fn) and a se-
quence (z,) which converges to £ € X, in X, the sequence (f,(n)(Zn))
induced by (fy(n)) and (z) converges to f (z) in Y. Since Y is a se-
quential convergence space, it is enough to show that each subsequence
of (£4(n)(zn)) contains a further subsequence which converges to f(=).
Let (f45(n)(Z4(n))) be a subsequence of (f4(n)(zn)). Note that this is a
sequence induced by (fis(n)) and (zy(n)). Since ( fts(n)) i8 a subsequence
of (fn), (fes(n)) has a further subsequence (fwts(n)) Which converges
to f. Hence the sequence (fyts(n)(Zwi(n))) induced by (fwts(n)) and
(Zwe(n)) converges to f(z) in Y. But this sequence is a subsequence of
(£ta(n) (Te(n))s 185 (Fis(n) (Z4(n))) contains a further subsequence which
converges to f(z). So (fn) converges to f. By the similar argument,
((p- q)(fn)) converges to (p- ¢)(f), since A x B is a sequential conver-
gence space. Therefore, ((fn), f) € &.

Note that p-q is sequentially continuous by definition. In all, (Cap(X,

Y),£) is a sequential convergence space over A x B.

If A= B = {*}, then this structure is equal to the function space
structure in sequential convergence spaces defined in [9]. And, the sub-
space structure on C(X,, Y}) with respect to Cap(X,Y) is the sequential
convergence structure defined in [9].

3. Exponential laws

In this section, we introduce some exponential laws in sequential con-
vergence spaces over variable base spaces.

The function p- ¢ : Cap(X,Y) = A x B and the function p-; ¢ :
Cap(X,Y) = A, where p-q = pr1 o (p- g), are sequentially continuous.
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So we can take Cag(X,Y) to be either an object over A x B or an object
over A.

Proposition 3.1. The evaluation map ev : X x4 Cap(X,Y) - Y
defined by ev(z, f) = f(z) is sequentially continuous.

Proof. Let (zn, fn) be a sequence in X x 4 Cap(X,Y) which converges
to (z, f), where z € X, and f € C(X,,Y;). Then (z,) converges to z
in X and (f,,) converges to f in Cap(X,Y). So, the sequence (f,(z,))
induced by (f») and (z,) converges to f(z) in Y. But, since f, : X, =
Yy and 7, € X, for all n € N, this sequence is equal to (ev(zyn, fn)).
Hence (ev(zy, fn)) converges to f(z) = ev(z, f) in Y. Therefore, ev is
sequentially continuous.

Theorem 3.2. Letp: X — A,q:Y — B andr: Z - D be sequentially
continuous maps. Then the map

¢:Capp(X xY,Z) = Capp(X,Csp(Y, Z))

which is defined by ¢(f)(z)(y) = f(z,y) is an isomorphism, where f :
XoxYy 2 Zy,z€ X, andy e Ys.

Proof. For f: X, x Yy = Z4, ¢(f) is a function from X, to C(Y}, Zy).
Thus ¢ is well defined and it is easy to show that ¢ is a bijection.
First, we want to show that ¢ is continuous. Let (f,) converges to
fin Capp(X x Y, Z). We need to show that (¢(f,)) converges to ¢(f)
in Capp(X,Cpp(Y, Z)), ie., for any subsequence (@(f,(n))) of (¢(fn))
and a sequence (r,) in X which converges to z € X,, the sequence
(#(£5(n))(zn)) induced by (¢(fs(n))) and (zn) which is defined by

& (fe(m))(zn) if it is defined

Patm)(zn) = { #(f)(z)  otherwise

converges to ¢(f)(z) in Csp(Y,Z). Hence we have to show that for
any subsequence (¢(£¢5(n))(Zt(n))) of the sequence (¢(f ,(n))(z»)) and a
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sequence (y,) in Y which converges to y € Y}, the sequence induced by
(@(£ts(n))(Ze(n))) and (yn) converges to ¢(f)(z)(y) in Z. This sequence
is given by

¢(fta(n))(xt(n))(yn) if it is defined
o(Fz)y) otherwise

Note that (zy(n),yn) converges to (z,y) € X, x Y;. Hence, since (fy)

¢(fta(n) ) (zt(n) ) (yn) = {

converges to f in Capp(X x Y, Z), the sequence induced by a subse-
quence {fyy(n)) of (fn) and (2y(n),yn) converges to f(z,y). That is, the
sequence

fts(n)(Te(ny, Yn) if it is defined

f ’ =
ta(n) (‘”t(n) Yn) { fz,y) otherwise

converges to f(z,y). But, this sequence is the same as above induced
sequence. Hence the sequence induced by (@(£is(n))(Z(n))) and (yn)
converges to f(z,y) = #(f)(z)(y) in Z. Therefore, ¢ is sequentially
continuous. It is easy to show that (((p- q) - r){¢(fn))) converges to
(- 9) - T)@)).

For the converse, let ¢ be the inverse of ¢. Then ¢(f)(z,y) = f(z)(y)
for f: X, = C(Ys, Z4) and (z,y) € X, xY;. Note that ¢ is well defined.
Suppose (f,) converges to f in Capp(X, Cep(Y, Z)). We need to show
that (¢(fn)) converges to ¢(f) in Capp(X x Y, Z). Let (p(fyn))) be a
subsequence of (¢(f,)) and (z,,yn) be a sequence in X x Y which con-
verges to (z,y) € X, X Y,. Note that (z,,) converges to z € X, and (yn)
converges to y € Y}. Since (fy,) converges to f in Capp(X, Cep(Y, Z)),
the sequence (£,(,)(Zs)) induced by (fs(n)) and (z,,) converges to f(z)
in Cgp(Y,Z). And hence, (f,(n)(2n)(yn)) converges to f(z)(y) in Z.
This sequence is given by

Fsn)(@n)(yn) if it is defined

fa(n) (zn)(yn) = { f(fl?)(‘y) otherwise

But, this sequence is the same as the sequence induced by (¢(f,(n))) and
(Zn,yn)- So the sequence induced by (¢(fe(n))) and (zn,yn) converges
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to f(z)(y) = ¢(f)(x,y) in Z. Hence yp is sequentially continuous. More-

over, the fact that (((p x ¢) - r)(¢(fn))) converges to (((p x q) -r)e(f))
is easily proved.

In all, ¢ is an isomorphism.
Forgivenp: X 5 Bandgq:Y — B, let
Co(X,Y) = | JC(X,, V)
beB

as a set, where C'(X,,Y}) is the set of all sequentially continuous maps
from X, to Y. Define ((fy), f) € &, where £ C Cp(X,Y)N x C(X,Y)
and f € C(X,,Y,), if
(1) for any subsequence (fy(n)) of (f,) and any sequence (zn) in X which
converges to z € X3, the sequence
£ oy (@0) = { fony(zn) ifitis fieﬁned
flz) otherwise
converges to f(z) in Y,
(2) the sequence ((p-q)(fn)) converges to (p-q)(f), where p-q : Cp(X,Y) =
B is the map defined by (p- ¢)(g) = b for g € C(X3, V3).

Then it can be proved that (Cp(X,Y),£) is a sequential convergence
space and we can get the following isomorphism.

Corollary 3.3. Letp: X + B,q:Y - Bandr:2Z - B be sequen-
tially continuous maps. Then there is an isomorphism

¢:Cp(X xpY,Z) - Ca(X,Cs(Y, 2))

Proof. 1t is enough to consider the following commutative diagram

Co(X xpY,2) —2 4 Cp(X,Ca(Y,Z2))

jl lj

CBBB(X X Y, Z) _d:—) CBBB(X,CBB(Y,Z))
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where @ is the restriction and corestriction of ¢.

Now, we will consider another type of exponential law. Let p : XA
and ¢ : Y — B be sequentially continuous maps. A fibre preserving map
from X to Y is a pair of sequentially continuous maps g : X = Y and
h: A — B such that go g = hop, i.e., the following diagram

X 45y

ST
A ——h—> B
commutes. We write this map by (g, h) : p — ¢. For the case of A = B,
the sequentially continuous map f : X = Y such that go f =pis called
a sequentially continuous map over B.

Letp: X = B,q:Y — B and r : Z = D be sequentially continuous
maps. Let Mpp(Y, Z) = {(g,h)|(g,h) : ¢ = r}. We consider Mpp(Y, Z)
as a subspace of C(Y, Z) x C(B, D). And let Mp(X,Y) ={f: X = Y|f
is sequentially continuous map over D}. We give Mp(X,Y) the sub-
space structure of C(X,Y). Mp(X,Y) can be considered as a sub-
space of Mpp(X,Y). In fact, Mp(X,Y) is isomorphic to a subspace of
Mpp(X,Y) in which fo is fixed as 1p.

Consider Mxp(X xpY,Z) and Mp(X,Cpp(Y,Z)). In this case,
X xg Y is considered as a space over X with natural projection and
Cpp(Y, Z) as a space over B with projection prio(g-r). Define a function
¥ : Mxp(X xpY,Z) - Mg(X,Cgp(Y,Z)) as follows. For (g,h) €
Mxp(X xpY,Z), the rule y(g, h)(z)(y) = g(z,y) defines 1(g, h)(z) as
a function from Y} to Z; where p(z) = q(y) = b, fo(x) = d. For such
z € X, ¥(g, h)(z) is the composite morphism Y, = {z} x ¥} EN X %
Y, 25 Z4, where (f1)s is the appropriate restriction and corestriction of
f. Thus (g, h) is a function, from X to Cpp(Y, Z), that is clearly over
B.
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Proposition 3.4. The map
1/} : MXD(X XRB Y, Z) — MB(X, CBD(Y, Z))

13 sequentially continuous.

Proof. Let (fn,gn) converge to (f,g) in Mxp(X xp Y, Z). Then (f,)
converges to f in C(X xpY, Z). We want to show that ((fa,gn)) con-
verges to ¥(f,g) in Mp(X,Cpp(Y,Z)). Let (x,) converge to z € X,
and (yn) converges to y € Y,. We have to show that for any subsequence
(¥(fan)s 9a(n))) Of (¥(fn,9n)), the sequence (Y(£,(n),&y(n)) (2n)) in-
duced by (¥(fs(n), 96(n))) and () converges to ¥(f, g)(z) in Cpp(Y, Z).
So we have to show that for any subsequence (¥(E14(n)> 8to(n)) (Ze(n)));
the sequence (¥(£14(n), B45(n) ) (Zt(n) ) (¥n)) induced by (1 (£;5(n), 8ta(n)) (Ze(n)))
and (yn) converges to ¥(f, g)(z)(y). Note that this sequence is given by

P(fean)» ta(n))(Te(n) ) (yn)
w(f“(")’gta(n))(xt(n))(yn) = ¢ if it is defined
¥(f,9)(z)(y) otherwise

Consider the sequence (:z:;(n)) defined by x’t(n) = Zy(n) if Ty(n) € Xp and
z;(n) = z if Zy(n) ¢ X and similarly for (y},). Since (f,) convergesto f in
C(X xpY, 2), (‘”Q(n)) converges to z € X, and (y],) converges to y € Y3,
(fts(n) (x;(n), ¥,,)) converges to f(z,y) in Z. But this sequence is the same
as the above sequence. Hence (¥(£2s(n) s Bra(m) ) (Tt(n) ) (yn)) converges to
f(z,¥) = ¥(f,9)(z)(y). Therefore, v is sequentially continuous.

Next consider the function ¢: Mg(X,Cpp(Y, Z))=C(X xpY,Z) x
C(X, D) defined by o(f) = (g,h) for f € Mp(X,Cpp(Y, Z)), where
9(z,y) = f(z)y) and h(z) = (pr2 o (p- r))(f()).

Proposition 3.5. The map

¢ : Ma(X,Crp(Y, 2)) » C(X xg Y, Z) x C(X, D)
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i3 sequentially continuous.

Proof. Let (f,) converge to f in Mp(X,Cgp(Y,Z)). Let o(fa) =
(gn, hn) and @(f) = (g,h). We want to show that (gn) converges to
gin C(X xp Y, Z) and (h,) converges to h in C(X,D). Let (zn,yn)
converges to (z,y) in X xp Y. Note that g,(z,y) = fa(z)(y) and
hn(z) = (pr2 o (p - r))(fn(z)). First, we have to show that for any sub-
sequence (gy(n)) Of (gn), (gs(n)(Zn,yn)) converges to g(z,y) in Z. Since
(fn) converges to f in Mp(X,Cgp(Y, Z)) and (z,) converges to z € X,
(fo(m)(zn)) converges to f(z) in Cpp(Y, Z). So, since (yn) converges to
y € Ya, (futm)(@a)(un)) converges to f()(y) = g(z,y) in Z. Bu, this
sequence is the same aS gy(n)(Zs(n),Yn). Hence (gn) converges to g in
C(X xp Y, Z).

And, since (f,) converges to f in Mp(X,Cgp(Y,Z)) and prao(g-r)
is sequentially continuous, (h,) converges to h in C(X, D).

In all, ¢ is sequentially continuous.

Using the above propositions, we can prove the following theorem.
Theorem 3.8. Letp: X - B, q:Y — Bandr : Z = D be sequen-
tially continuous maps. Then

Y:Mxp(X xpgY,Z) = Mp(X,Csp(Y, Z))

which is defined by ¥(f1, fo)(z)(y) = fi(z,y) 13 an isomorphism.

Proof. Note that the image of ¢ is contained in Mxp(X xgY, Z),ie,¢:
Mg(X,Cpp(Y,Z)) - Mxp(X xgY,Z) is well defined. This function
is the inverse of 9. Hence the result follows.

The following is a special case of the above theorem.
Corollary 3.7. Letp: X -5 B, q:Y = B andr: Z —+ B be sequen-

tially continuous maps. Then there is an isomorphism

E: MB(X XB Y,Z) — MB(X,CB(Y,Z))
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Proof. It is entough to consider the following commutative diagram

M(X xpY,Z2) —Y Mg(X,Cy(Y,2))

i |

Mxg(X xgV,Z) — Mp(X,Cgg(Y, Z))

where 1 is the restriction and corestriction of %. In this case, we consider
Mgp(X xpY,Z) as a subspace of Mxg(X xp Y, Z) in which fo is fixed
as p.
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