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Summary

Rock bream (Oplegnathus fasciatus), is an important delicacy in Korea and Japan.
High mortality rates and economic losses in aquaculture urge the need for understanding fish-
pathogen interactions and fish responses against microbes to fight back the diseases. In order
to develop a sustained disease free-state of art rock bream aquaculture, techniques are needed
to combat disease and stress related mortalities. Immune defense mechanism of rock bream is
to be well understood in order to develop novel strategies to prevent diseases and improve the

sustainability of rock bream.

In the first part of this study, a pattern recognition receptor, melanoma differentiation
associated 5, involved in the recognition of dsRNA viruses, is characterized. The genome
organization, protein structure analysis, spatial and temporal expression analysis, and
antiviral activity of the recombinant protein have been demonstrated. MDADS is a cytosol
residing protein which is structurally similar to another PRR namely, retinoic acid inducible
gene | (RIG-1). Rock bream MDA5 (RbMDAS5) cDNA possessed an open reading frame
(ORF) of 2976 bp, coding for 992 amino acids with molecular mass of 112 kDa. RoMDA5
genome possessed 16 exons split by 15 introns and putative promoter analysis revealed
significant transcription factor binding sites like AP-1, AP-4, IRF-1 and 2, c-Rel, Lyf-1, Sp1,
Oct-1, ISRE and AML-1a. RoMDAS protein possessed two N-terminal CARD regions, a
Reslll site, a central DEXD/H box RNA helicase domain, an MDAJS insert domain, a HELIc
domain, a RIG-I_C-RD (C-terminal repressor domain (RD) embedded within the C-terminal
domain (CTD). There were six helicase motifs and an RNA binding loop present in
RbMDAS. RbMDAS shared highest identity with orange spotted grouper MDAS.
Quantitative RT-PCR was employed to analyze the mRNA expression in the normal and
challenged tissues. RoOMDA5 mRNA was ubiquitously expressed in all the analyzed tissues

obtained from healthy rock bream with the highest expression in blood, followed by liver.
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RbMDA5 mRNA expression in vivo was elevated upon poly I:C challenge in gill, liver,
spleen, head kidney and blood. Overexpression of RbMDAGS in rock bream heart cells
prevented marine birnavirus infection, thus confirming the innate immune antiviral defense

role of MDAS.

In the second part of the study, a second PRR, Laboratory of Genetics and Physiology
2 (LGP2), was characterized. LGP2 is also a cytosol residing protein involved in both the
recognition of viral dsSRNA and regulation of the viral PAMP recognition and downstream
signaling pathway. Rock bream LGP2 (RbLGP2) cDNA possessed an ORF of 2043 bp
coding for 681 amino acids with molecular mass of 77 kDa. RbLGP2 genome derived from
the BAC clone revealed a 12 exon-11 intron structure. Putative promoter analysis revealed
various significant transcription factor binding sites like AP-1, AP-4, IRF-1 and 2, CRE-BP,
Oct-1, HSF and AML-1a which may play a vital role in the regulation of RbLGP2 expression.
RbLGP2 possessed one DExDc (DEAD/DEAH box helicase domain) in the N-terminal
region, one Reslll region, one HELICc (helicase superfamily c-terminal domain), RIG-1_C-
RD (C-terminal domain of RIG-I/ regulatory domain/ repressor domain), one MDA5_ID
(insert domain of MDAJS helicase and similar proteins), RNA binding loop. There were two
predicted zinc binding motifs. RbLGP2 protein portrayed the presence of six significant
motifs including DEDxD/H box for RNA helicase activity. Pairwise alignment of RbLGP2
shared highest identity and similarity of 79 and 90%, respectively with the olive flounder
LGP2. Quantitative RT-PCR analysis of tissues isolated from normal healthy rock bream fish
revealed ubiquitous expression of RbLGP2 with highest expression in blood followed by liver,
similar to the rock bream MDA5 expression. RoLGP2 expression analysis after poly I:C
challenge in vivo, revealed significant elevation in tissues including gill, liver, head kidney,

spleen and blood, suggesting their activation upon viral encounter. Overexpression of the
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recombinant RbLGP2 protein in vitro prevented marine birnavirus infection, further

affirming the antiviral role of RbLGP2 in rock bream innate immune system.

In the third part of this thesis, Mitochondrial antiviral signaling protein (MAVS), also
known as IFN-B promoter stimulator-1 (IPS-1), VISA and Cardif, is a mitochondrial adaptor
protein which plays a key role in the signal transduction of the RIG-I/MDA5 pathway to
induce the production of interferons (IFNs) and other cytokines was characterized. Rock
bream MAVS (RbMAVS) cDNA possessed an ORF of 1758 bp coding for a protein of 586
amino acids with molecular mass of 62 kDa. RbMAVS protein analysis revealed a CARD
domain, a proline rich domain and a transmembrane domain. RbMAVS protein also
possessed a putative TRAF2 binding motif, ***PVQDT**. RbOMAVS shared the highest
identity and similarity with the flounder MAVS homologue when the full protein and CARD
region were compared. Spatial expression analysis performed with multiple tissues isolated
from healthy rock bream using quantitative RT-PCR revealed ubiquitous expression of
RbMAVS with maximum level of expression observed in blood, followed by liver. After poly
I:C challenge in vivo, RoMAVS mRNA were elevated in various tissues like blood, liver,
spleen and head kidney suggesting their upregulation during a viral attack. In vitro
overexpression of RbOMAVS inhibited viral replication suggesting its function of antiviral

defense in rock bream.

TBK1 and IKKe are non-canonical kinase family members involved in immune
defense mechanism through phosphorylation of transcription factors which drive the
transcription of significant effector molecules. Rock bream (TBK1) cDNA possessed an ORF
of 2169 bp coding for 723 amino acids with molecular mas of 83 kDa. RbIKKg cDNA
possessed an ORF of 2163 bp coding for 721 amino acids with molecular mass of 82 kDa.

RbTBK1 and RbIKKe protein revealed the presence of conserved protein kinases (PK),
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catalytic (c) domain (PKc domain) in their N -terminal region [(RbTBKL1: residues 15-293)
and (RbIKKe: residues 19-327)]. Both the protein revealed ubiquitin-like domain [(RbTBK1.:
residues 297-385) and (RbIKKe: residues 300-388)], characteristic of the similar kinase
family proteins. RbTBK1 shared the highest identity with predicted TBK1 protein of Nile
tilapia (identity 96% and similarity 98%) and more than 70% identity with that of human and
mouse TBK1. RbIKKe shared the highest identity with IKKe homologue of Nile tilapia (86%)
and similar percentage of similarity with Zebra Mbuna and Nile tilapia (94%). RbTBK1
genome possessed 21 exons intervened by 20 introns. Tissue distribution analysis of RbTBK1
and RbIKKe in tissues isolated from normal unchallenged rock bream revealed ubiquitous
presence of RbTBK1 and RbIKKe in all the examined tissues. RbTBK1 was highly expressed
in blood followed by liver. RbIKKe was detected most in liver followed by blood. Temporal
modifications of RbTBK1 and RbIKKe expression could be observed post poly I:C challenge

in liver and head kidney, suggesting their significant regulation during a viral encounter.

Transcription factors are a family of proteins which play a pivotal role in the
regulation of expression of IFNs and IFN-stimulated genes. IRF3 and IRF7 play a crucial role
in the transcriptional activation of type | IFN and ISGs. IRF3 is constitutively expressed in
the cytosol in latent form. Upon viral infection, it undergoes phosphorylation at key serine
residues in the regulatory domain and dimerization. Rock bream IRF3 (RbIRF3) cDNA
consists of an ORF of 1386 bp coding for a protein of 462 amino acids with molecular mass
of 51 kDa. In silico characterization of the RbIRF3 protein revealed the conserved IRF
tryptophan pentad repeat DNA-binding domain (DBD) at the N-terminal region, an IRF-
associated domain (IAD) and a serine-rich domain at the C-terminal region, similar to the
other IRF3 proteins. Pairwise alignment showed that RbIRF3 had the highest identity and

similarity of 87 and 92%, respectively with Dicentrarchus labrax. The genomic structure of
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RbIRF3 derived from the BAC clone revealed 11 exon -10 intron structural organizations,
revealing closer homology to Japanese flounder IRF3. Putative promoter analysis revealed
various transcription factor binding sites namely AP-1, AP-4, C/EBP -a and -, Lyf-1, HSF,
Spl, Oct-1 Sox-5, E2F, RORa, AML-1a, GATA-1, suggesting their regulation upon various
stimuli. Tissue distribution profiling of RbIRF3 performed in 11 different tissues isolated
from healthy rock bream maintained under normal conditions using quantitative RT-PCR
revealed ubiquitous expression with highest expression in liver, followed by skin. The kinetic
transcriptional pattern of RbIRF3 analyzed by RT-PCR from blood, liver and head kidney
isolated from rock bream following in vivo challenge with poly I:C revealed up-regulation
during different phases of the experiment. The conservation of the domains coupled with the
temporal modifications of RbIRF3 suggests its active involvement in antiviral defense of rock

bream.

Finally, the genes involved in selected antiviral signaling pathway of rock bream,
Oplegnathus fasciatus have been identified and characterized. The modulations of gene
expression and their coordinated function together can combat the viral infection and help in

the survival of the organism against the pathogenic threats.
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CHAPTER |

An introduction to innate antiviral signaling mechanisms
in fish

General introduction



1.0 An introduction to innate antiviral signaling mechanisms in fish

General introduction

The overarching goal of this thesis is to explore selected antiviral signaling
mechanisms in rock bream, Oplegnathus fasciatus. Antiviral defenses in fish are relatively
less investigated. Understanding antiviral mechanisms in fish could help us in improving
aquaculture and aid in the development of disease free, quality enriched fish. This section of
the thesis gives an overall understanding of the antiviral signaling mechanisms, particularly
in mammals and a brief introduction about the antiviral signaling molecules characterized

from teleosts. The primary objective of this work is described at the end of this introduction.

1.1 Aquaculture and viruses infecting fish aquaculture

1.1.1 Aquaculture

Aquaculture is a fast growing animal husbandry, which provides nutritional security
to the food basket. It is a major source of income in many parts of the world, providing a
source of living, food security, and poverty alleviation through mechanisms such as income
generation, employment, use of local resources, diversified farming practices, and
domestic/international trade (Bostock et al., 2010). Like any other farming, aquaculture is
plagued with diseases, and a major concern in fish aquaculture is to escort fish from
pathogenic microorganisms like virus, bacteria and parasites (Rimstad, 2011; Stewart C.

Johnson and Kabata, 2004; Toranzo et al., 2005; Walker and Winton, 2010).
The disease situation in aquaculture can be attributed to various reasons as follows:

¢ Increased globalization of trade in live aquatic animals and their products.
¢ Intensification of aquaculture through the translocation of broodstock, post larvae, fry

and finger lings.



e Development and expansion of ornamental fish trade.

e Misunderstanding and misuse of specific pathogen free (SPF) stocks.
e Negative interactions between cultured and wild fish populations.

e Poor or lack of biosecurity measures.

e Climate change and slow awareness on emerging diseases (Bondad-Reantaso et al.,

2005).

Viruses are obligate parasites which can infect cells of all living organisms. Viral diseases
which result in 100% mortality are a primary constraint in aquaculture impeding both
economic and social development in many countries. The only recourse is to quarantine and
destroy the infected stock. All over the world, viruses belonging to different families
including Rhabdoviridae, Iridoviridae, Birnaviridae, Nodaviridae are known to infect
different varieties of fish species (Crane and Hyatt, 2011). Viruses belonging to Flaviviridae,
Parvoviridae, and Poxviridae families are not known to infect teleost fish (Essbauer and Ahne,
2001). Aquaculture throughout the world encounter challenges of viral infections. South
Korean peninsula with a far-stretching coastline is well enriched with natural resources that
facilitate aquaculture. South Korea produces 91,123 tons of fish, accounting for 15.2% of the
total marine production. In South Korea, viral infections leading to mass mortalities have
been reported in rock bream, olive flounder, black rock fish, red and black sea breams and
grey mullet (Park, 2009). Mass mortalities in other parts of the world including Europe,
United States of America, Indo-Pacific and Mediterranean regions have been reported

(lwamoto et al., 2001; King et al., 2001; Meyers et al., 1999; Mortensen et al., 1999).

High mortality rates and economic losses urge the need for understanding fish-
pathogen interactions and fish responses against viruses to combat the diseases. Innate

immunity is the antecedent defense weapon present in all forms of life. Lower vertebrates



like fish are like cross roads between the invertebrates which possess only innate immune
system and mammals which have well developed adaptive immune system (L. Tort, 2003).
Fish rely extensively on innate immune system, for their defense against the pathogens
because their adaptive immune system shows poor immunological memory and short-lived
secondary response (Du Pasquier, 2001). An added advantage of the innate immune system is
that they portray non-specific responses regardless of the type of viruses and quick enough to
avoid time lag between infection and immune response. In the war between the virus and the
host, the victory of the host lies in combating the infection as quick as possible while the
victory of the virus lies in utilizing its virulent factors in replicating faster and or using
immune evasion mechanisms that allows replication of virus in the presence of a potent
immune response (Yokota et al., 2010). In many fish species, the infected fish would be dead
before antibodies specific for the viruses could be produced, if it solely relied on the adaptive
immune system. The constitutively expressed innate immune molecules including
complement proteins and physical barriers such as mucous and integument play a vital role to
combat viral infections. Recent evidences of the fish interferon system, which includes the
virus induced type | IFN production and subsequent induction of interferon stimulated genes
suggest that it is similar to the mammalian interferon system (Zou and Secombes, 2011).
However, studies on the complete antiviral signaling pathways in fish are still lagging.
Gaining knowledge on antiviral signaling pathways in fish, type | interferon expression and
its effects in fish provides us insights into fish antiviral mechanisms and suggest new avenues

to be pursued to combat viral infections.

1.1.2 Fish viruses

Teleost fish are susceptible to a wide variety of viruses, belonging to families of

vertebrate viruses that infect humans and livestock (Crane and Hyatt, 2011; Essbauer and



Ahne, 2001). Monitoring mortality in wild stocks is difficult due to insufficient monitoring
techniques and practices. Speculations based on declined wild fish harvests than expected or
sparse identification of viral symptoms by chance are the opportunities of virus epizootics
reports. Unlike the wild stocks, viral diseases and mortality associated with those diseases are
more easily monitored in aquaculture, where fish are constantly kept under observation. Viral

diseases may result in 100% mortality.

Viral infections are easily spread in aquaculture facilities, because of overcrowding
and environmental impacts such as salinity and temperature. Modifications of the temperature
play a significant role in spread of viral diseases as it facilitate the infection by decreasing the
immune status of fish (Walker and Winton, 2010). Failure to monitor food for viral infections
coupled with negligence of hygiene conditions contribute to major outbreaks in hatcheries
and fish farms (Munday, 1997). Identification and characterization of the new infectious viral
agents has seen a new era after the availability of cell lines for the in vitro propagation and
isolation of viruses are available. The different viruses infecting fish are tabulated in Table 1

and their families shown in Fig.1.
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Fig. 1. Different families of viruses infecting teleosts.
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Viruses are unable to replicate on their own and require the host cellular machinery
for their replication and survival. Virus entry into the host begins by binding to cellular
receptors and penetration of the plasma membrane, to gain access to the cellular synthetic
machinery. The mechanism of transfer of genome and accessory proteins across the barrier of
the cellular membrane into the cytosol involves membrane fusion in case of enveloped
viruses and pore formation or membrane lysis in case of non-enveloped viruses. Inside the
host cell, the viral nucleo-protein will be used to transcribe the virus genes for expression of
viral proteins. This process of transcription/replication results in the synthesis of viral nucleic
acids such as dsRNA and ssRNA. The dsRNA is not a common cellular nucleic acid form;
also cellular mMRNAs are capped while viral RNAs have a 5' phosphate that can be recognized
by cellular PRRs. Thus ssSRNA, dsRNA, and viral glycoproteins constitute the basic VAMPs
through which PRRs recognize an invading virus. Viruses enter the cells through pH
dependent or -independent pathways. Some viruses enter the cell through endosomes,
wherein the low pH facilitates viral genome entry into the cell in a pH dependent manner. A
few other viruses fuse their membranes with the host cell membrane directly, using a pH
independent mechanism (Kielian and Jungerwirth, 1990). Studies have proved ISAV entry
into salmon cells via sialoglycoprotein residues present on the cell membrane using a pH-

dependent mechanism (Eliassen et al., 2000).

Although many viral diseases result in death, in some cases there occurs a persistent
infection, known as a ‘carrier state’. Fish in the carrier state neither reveal symptoms of the
disease nor detectable virions in their tissues. However, they are capable of shedding high
concentrations of viruses into the water, into their ovarian or seminal fluid during spawning,
thus infecting other fish (Kocan et al., 1997). This concept of carrier fish can probably
explain how geographically distant and separated fish species can be affected by the same

virus, through a highly migratory carrier fish species (Curtis et al., 2001).



1.2 Antiviral immunity in fish

Antiviral defenses comprises of a complex signaling network. Antiviral immune
defense is activated initially through recognition of virus and signaling by the host cell to
ultimately result in the induction of innate defenses that limit virus replication and destruction
of the infected cells. These virus-host interactions also determine the extent to which the
interferons are produced during the course of infection. The two principal mechanisms of

antiviral immune defense are interferon system and apoptosis.

1.2.1 Antiviral signaling in mammals

Antiviral signaling pathways have been extensively characterized in mammals.
Nucleic acid-based recognition of viruses can sense either virion-associated viral genome
(replication independent) including the whole genome, replication intermediates or
replication products, or viral transcripts (Yoneyama and Fujita, 2010). Antiviral signaling
primarily included TLRs (2, 3, 4, 7, 8 and 9) which recognize distinct types of virally-derived
nucleic acids and activate signaling cascades that result in the induction of type I IFNs. Later,
retinoic acid-inducible gene | (RIG-I)-like receptors (RLRs), were identified as a cytosolic
receptors for intracellular dsRNA. RIG-I induces IFN in response to intracellular viral
dsRNA in a TLR-independent manner. Thus, there are two receptor systems in place to detect
the presence of virus and mount an immune response (Takeuchi and Akira, 2009). These
receptors are localized to different compartments within a cell and recognize different ligands.
TLR 3, 7, 8 and 9 are intracellular and reside in the endosomal compartments inside the cell.
TLR 7 and 8 are structurally conserved and are responsible for the recognition of sSRNA,
while TLR 3 and 9 are involved in the recognition of dsSRNA and CpG DNA, respectively.
TLR 2 and 4 reside on the cell surface and are responsible for the recognition of viral

envelope components including envelope proteins and hemagglutinin. The RNA PAMP



recognition might be directed by specific stretches of uridine-rich motifs within the RNA
molecule. Except for TLR3, all TLRs utilize MyD88 as an adaptor protein to recruit
downstream signaling molecules including the protein kinases IRAK4 and IRAK1, and the
RING domain ubiquitin ligase TRAF6. TRAF6 functions together with a dimeric ubiquitin
conjugating enzyme complex Ubcl3-UevlA to catalyze the synthesis of Lys63-linked
polyubiquitin chains that lead to the activation of a protein kinase complex consisting of
TAK1, TAB1 and TAB2. The activated TAK1 kinase phosphorylates IKKf in the activation
loop, resulting in the activation of IKK and subsequent nuclear translocation of NF-kB. The
TIR domains of TLR3 and TLR4 bind to another adaptor protein TRIF, which binds directly
to TRAF6 and RIP1 to activate NF-xB. TRIF can also bind to TBK1, which phosphorylates
and activates IRF3 and IRF7. Recent studies have also shown that TRIF and MyD88 can bind
to TRAF3, which activates IRFs to induce type | IFNs, but inhibits NF-xB to suppress the
induction of proinflammatory cytokines. The extracellular, vacuolar and cytosolic
compartments of a cell are collectively monitored by these receptors, for infectious signs

(Medzhitov, 2001).

The cytosol represents a critical subcellular niche in the life cycle of the majority of
RNA viruses and limited number of DNA viruses. Hence intensive investigation has unveiled
new receptors that patrol the cytosolic compartment and enlightened their role in antiviral
immunity. The cytosolic receptors include RLRs, NLRs, the more recently identified ALRs
and an expanding family of DLRs, which together serve as pathogen sensors. RLRs are
primarily involved in the recognition of dSRNA. NOD2 identifies sSSRNA whereas ALRs and
DLRs recognize viral DNAs. During viral infection, viral RNAs or DNAs that arise from the
viral genome are accumulated in the cytosol. Hence these viral nucleic acids serve as VAMPs,
for the identification by the sensors. The recognition of these VAMPs results in the elaborate

program of gene expression like antiviral inflammatory cytokines, interferons and
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chemokines. The most extensively studied among these cytokines is the interferon

(Yoneyama and Fujita, 2007Db).

1.2.2 Cytosolic sensors and interferon production in mammals

RLRs comprising of RIG-1 and MDA5 are members DEXD/H box-containing RNA
helicase family of proteins that unwind dsRNA in an ATPase dependent manner. The
helicase domain of RIG-I and MDAS can bind both synthetic dSRNA [poly (I:C)] and viral
dsRNA. RLR activation triggers the formation of an IPS-1 (MAVS) antiviral signaling
complex or signalosome anchored at mitochondria-associated membranes, mitochondria, and
peroxisomes. MAVS recruits various signaling molecules to transduce downstream signaling.
One of the proposed pathway is that MAVS binds to TRAF2 and TRAF3 through TRADD
and TANK and promotes phosphorylation of TBK1- and IKKe- mediated phosphorylation of
IRF3. MAVS then recruits various signaling molecules to transduce downstream signaling,
such as TRAF6 and TRAF5. TRAF6, along with TRADD, activates canonical NF-xB
signaling via RIP1 and FADD. Canonical NF-xB signaling occurs as the IKK complex
consisting of IKKa, IKKB and IKKy phosphorylates IkBa, resulting in the proteasomal
degradation of IkBa and thus liberating NF-xB to translocate into the nucleus and initiate
pro-inflammatory cytokine gene expression. These molecules participate in distinct signaling
responses which drive the bifurcation of IRF and NF-xB (Fig. 2). The two distinct pathways
of signaling results in the activation of IRFs 3 and 7 or NF-xB. The activation of IRF
pathway is similar to the TLR3 pathway after MAVS activation, whereas the activation of
NF-xB is similar to the other TLR (7, 8) pathways. NF-kB sequestered inactive in the
cytoplasm, after activation migrates to the nucleus and is involved in the regulation of a wide

array of genes including proinflammatory cytokines like TNF-a, interleukins and chemokines.
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Phosphorylation of inactive IRF3 at conserved serine residues mediated by TBK1 and IKKE,
results in nuclear localization and association with the co-activator CBP/p300. Inactive IRF-
3 constitutively shuttles into and out of the nucleus, whereas phosphorylation-dependent
association with CBP/p300 retains IRF-3 in the nucleus and induces transcription of IFN-f
and other genes. The IFN-B gene is activated by the cooperative binding of three transcription
factor families (NF-«xB, IRFs, and ATF-2/c-Jun) (Baum and Garcia-Sastre, 2011; Kato et al.,

2006; Yoneyama and Fujita, 2007b).
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Fig. 2. Schematic representation of RLR signaling pathway.



1.2.3 Interferon system in mammals

Interferons are a class of structurally related cytokines which possess multiple
functions like antiviral, antitumor, activity and immunomodulatory effects. The interferon
system comprises of interferons (IFNs), the signaling pathways triggered by IFNs by binding
to their receptors, the transcription factors activated by the pathways, the genes whose
expressions are altered by the transcription factor activation and finally, the change in cellular
function (De Andrea et al., 2002; Takaoka and Yanai, 2006). The IFN system triggers the
induction of numerous antiviral genes during viral infection and is a formidable barrier

against viral multiplication in the infected host.

Type I IFNs (IFN - o, B, o, , d, T, , €) are induced in virally infected cells to confer
an antiviral state on uninfected cells. Type Il IFN comprises solely IFN-y has antiviral
activity and is strongly produced by activated T cells or NK cells but not by virus infected
cells (Kontsek et al., 2003). The cellular source of type | interferon is subtype dependent.
IFN-B is mostly produced by non-hematopoietic cells namely fibroblasts, while IFN-o and
IFN-o are mainly produced by hematopoietic cells. Pre-implantation embryos of some
ruminants produce high amounts of IFN-t, while IFN-k is produced by keratinocytes. IFN-¢
plays a role in the reproductive function of placental mammals, while IFN-3 is associated
with porcine trophoblasts (Pestka et al., 2004). All type | IFNs are secreted as monomeric
proteins (Sen, 2000). IFN -o and -p are the most extensively studied of the type I IFNs

because of their antiviral characteristics.

IFN o/B interact with the same receptor complex, known as IFN-a/ receptor
(IFNAR), which consists of two subunits, IFNAR-1 and IFNAR-2. The intracellular domains
of these subunits, IFNAR-1 and IFNAR-2, are associated with Janus protein tyrosine kinases
(Jak PTKSs), Tyk2 and Jak, respectively. In the case of type Il IFN, IFNy binds to IFN-y
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receptor complex (IFNGR), comprising IFNGR-1 and IFNGR-2; the IFNGR1 subunit is
constitutively associated with Jakl, whereas IFNGR2 with Jak2. The binding of both types of
IFNs to their respective receptor complex results in the cross-activation of these Jak PTKSs.
The activated Jak PTKs then phosphorylate their downstream Stat substrates, namely Statl
and Stat2, at tyrosine residues. This phosphorylation of the Stats leads to the formation of
transcriptional activator complexes, IFN-a-activated factor [AAF; also termed IFN-y-
activated factor (GAF) and ISGF3. AAF/GAF is a homodimer of tyrosine-phosphorylated
Statl, whereas ISGF3 is a heterotrimeric complex of tyrosine-phosphorylated Statl, Stat2 and
another transcription factor member, IRF-9/p48/ISGF3y. Type | IFNs more strongly activate
the formation of ISGF3 than type Il IFN, whereas type Il IFN mainly activates GAF/AAF.
The complexes translocate to the nucleus and AAF and ISGF3 bind to their specific DNA
sequences containing each of the common motifs, the GAS and the ISRE respectively. The
IFN stimulation of promoters containing ISRE and GAS results in the transcriptional
induction of a large number of target genes (ISGs) to evoke versatile biological activities
(Platanias, 2005; Takaoka and Yanai, 2006). There are other pathways identified in mammals,
resulting in the activation of the downstream signaling molecules after IFN binds to their
receptors. Type | interferons have been shown to inhibit every stage of viral replication. This
includes viral entry and uncoating, transcription, RNA stability, initiation of translation,

maturation, assembly and release (Stark et al., 1998).

1.2.4 Recognition of double stranded (ds) RNA in mammals and IFN induction

As described earlier, the expression of type | IFNs is cell type specific. After viral
infection, the virus begins replicating its genome, which produces dsRNA during its
replicative cycle. In reoviruses, which possess dsSRNA genomes, the genomes are protected

by the inner viral capsid throughout their cycle and they are never exposed outside. However,
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there are instances where small amounts of dsRNA can be incorrectly packaged or uncoated,
thus being exposed to dsRNA-sensitive host sensors. In the case of sSRNA viruses, their
genomes are transcribed in both sense and antisense directions resulting in a dsRNA
replicative intermediate. DNA viruses can produce dsRNA late during infection cycle, where
transcription fails to terminate at the end of the gene. Thus mMRNAs are produced that contain
complementary sequence from incorrectly transcribed gene sequences read in sense and
antisense directions. These mRNs can complex with each other and produce dsRNA (Jacobs

and Langland, 1996).

In humans, viral dsSRNA has been demonstrated to induce the assembly of an
“enhancesome”, composed of transcription factors NF-xB, IRF3 and the ATF-2/c-Jun
heterodimer (Goodbourn et al., 2000). This enhancesome is known to control the
transcription of IFN-B and IFN-04. However, the mechanism of enhancesome formation by
dsRNA is not clear (Goodbourn et al., 2000). The secreted IFN-B functions in autocrine
fashion to stimulate the expression of IRF7 and induce IFN-o synthesis. The synthesis of
IFN-o requires IFN-a-f expression in fibroblasts (Erlandsson et al., 1998) whereas in human
leukocytes IFN-a expression is independent of IFN-B expression. This synthesis of IFNS
results in the downstream second wave of cytokines which include TNFa, IL-6, IL-12 and

IFN-y(Sen, 2000).

1.2.5 Antiviral signaling in teleosts

Antiviral signaling in teleosts begins with the pattern recognition of the viruses.
Pattern recognition in fish is likely similar to that observed in that of mammals (Zou et al.,
2010). Studies related to receptor binding activity and signaling are limited in fish (Takashi
Aoki et al., 2008). However, structurally conserved TLR families similar to mammals,

together with a set of unique non-mammalian TLR genes and gene variants are observed in
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fish. Fish are known to possess orthologues to typical anti-viral TLRs including TLR3, TLR7
and TLR8 (Palti, 2011; Rebl et al., 2010b). In addition to novel TLRs like TLR22, which can
bind different forms of RNA, they also have cytosolic sensors like MDAS5, LGP2 and the
associated signaling MAVS protein. This phenomenon suggests the conservation in the
recognition of viral nucleic acids. Most fish lack or possess highly divergent TLR4 genes.
Thus, the phenomenon of viral glycoprotein recognition ascribed for TLR4 in mammals may
not be conserved among fish species (Purcell et al., 2006). While gene identification and
characterization studies in fish are performed based on the studies in mammals, conservation
in the structure of the signaling molecules suggests a similar function in fish. Identification of
several common sensors like TLRs and cytosolic receptors coupled with the downstream
signaling molecules in fish, suggests interferon production mechanism may be similar to that
of mammals. Studies of the cytosolic receptors MDA5, LGP2 and MAVS activate the IFN
system when overexpressed in fish cells, which correlates protection against several viruses

(Biacchesi et al., 2009; Chang et al., 2011; Ohtani et al., 2011; Simora et al., 2010).

1.2.6 Interferon system in teleosts

Interferon was first discovered by lIsaacs and Lindemann in 1957 as a non-
haemagglutinating molecular particle, interfering with viral infection. Thereafter, various
studies in fish were carried out to identify similar genes in fish employing cell lines. The
initial studies were based on determining IFN activity in vitro following virus infection using
cell lines. Later in vivo studies were performed and antiviral activity was detected in rainbow
trout (de Kinkelin and Dorson, 1973; Dorson et al., 1975). Later, it was determined that the
synthetic analog of dsRNA, poly I:C was able to induce an antiviral IFN-like response in fish
(Eaton, 1990). Only recently, in 2003, the first fish type | IFN was cloned by independent

groups in zebrafish, Atlantic salmon and pufferfish (Zou and Secombes, 2011). IFN genes
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have also been reported from different fish species like catfish, common carp, rain-bow trout,
sea bass and three spined stickleback, and also elephant shark (Zou and Secombes, 2011).
Recently two cysteine duplicated IFN genes were identified from rock bream (Wan et al.,
2012). Fish type | genes possess unique genomic organization, consisting of five exons and
four introns. Interestingly, all the four introns separating the IFN coding region among fish
species are phase 0 introns and presence of multiple AT rich mRNA instability motifs
(ATTTA) in the 3' UTR reveals the highly inducible nature of the IFNs. The zebrafish IFN
sequence revealed very less similarity to other known mammalian and avian sequences;
however zebrafish sequence possessed two cysteine residues and a phenylalanine that are
important for IFN function. The identification and characterization of fish IFNs renders us

hope in identifying the pathways initiated by this cytokine.

1.2.7 IFN signaling pathways in fish

Unlike the mammalian signaling pathways, IFN signaling pathway is less
characterized. The mammalian signaling molecules like janus kinases and STATSs have also
been identified from fish. Jakl and Tyk2 have been identified in pufferfish (T. fluviatilis)
(Leu et al., 2000), and STAT 1 has been cloned from zebrafish and crucian carp (Zhang and
Gui, 2004). In rainbow trout, STAT1 was upregulated after IHNV infection (Hansen and La
Patra, 2002)and in carp following poly I:C and GCHYV infection (Zhang and Gui, 2004).
STATL gene identified from olive flounder, showed ubiquitous expression in all tissues by
real time RT-PCR and ISH, with high expression in gill, spleen, kidney, and heart (Park et al.,

2008).

IRFs play a major role in the regulation of IFN expression during viral challenge.
A number of IRFs have been characterized from fish species including rainbow trout (Collet

et al., 2003; Holland et al., 2010), rock bream (Bathige et al., 2012), Japanese flounder (Hu et
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al., 2011b; Hu et al., 2010), crucian carp (Zhang et al., 2003)and pufferfish (Richardson et al.,
2001). IRF3 identified from flounder was proven to induce type | IFN promoter and was
upregulated upon poly I:C and LCDV treatment (Hu et al., 2011b). IRF7 was identified from
turbot and shown to be induced upon infection of turbot with TRBIV (Hu et al., 2011a). IRF
3 and 7 was also identified from large yellow croaker. Japanese flounder IRF10 was
upregulated by Edwardsiella tarda, Streptococcus iniae and VHSV infection in kidney
(Suzuki et al., 2011). Although a number if IRFs have been identified, it has been only
suggested that IRFs in fish function similarly to their mammalian homologues and their exact

mechanisms of action needs to be delineated.

Mammalian IFNs are demonstrated to stimulate the expression of ISGs, which in turn
confer an antiviral state in uninfected cells. IFNs are known to alter the expression of many
genes which tend to constrain virus infection either by limiting virus replication directly or
regulate cell cycle and cell death. These ISGs employ programmed cell death as a strategy to
control viral replication. The expression of ISGs is dependent on cell and IFN type. They
include enzymes, chemokines, antigen presentation proteins, transcription factors, heat shock
proteins and apoptotic proteins. Most of them are enzymes which are expressed in an inactive
form until exposed to dsRNA, ensuring an antiviral state that remains dormant and harmless
until the cell is infected. Among the different ISGs available in mammals, the best
characterized are dsRNA-dependent protein kinase (PKR), Mx proteins, and the 2’-5’

oligoadenylate synthetase (OAS)/RNaseL pathway.

The probability of similar IFN mechanism in teleosts has brought fish I1SGs to
limelight only in recent years. The various fish innate immune molecules identified till date
include Mx proteins (Das et al., 2007; Leong et al., 1998; Lin et al., 2006; Zenke and Kim,
2009), virus induced gene-1 (vig-1) and vig-2 (Boudinot et al., 1999; Verrier et al., 2011), a

host of vigs whose functions are yet to be determined (O'Farrell et al., 2002), and PKR,
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PKZ(Hu et al., 2004; Rothenburg et al., 2005), 1SG-15(Huang et al., 2013; Yasuike et al.,

2011; Zhang et al., 2007) , 1ISG-56(Wan and Chen, 2008).

1.3 Aims of this work

The goal of this thesis is to provide molecular evidence for the existence of selected and
conserved antiviral signaling pathways in rock bream, Oplegnathus fasciatus. The various
innate immune signaling molecules involved in antiviral immunity of rock bream are

investigated from the genome to proteome. The thesis will focus on the following works

e Molecular characterization of the genes involved in antiviral defense.

e Genomic structural characterization of the antiviral genes

e Biological activities of the proteins, providing insights into the function of the genes.
e Transcriptional expression analysis of the various genes induced upon

immunostimulant challenges.
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2.0 Characterization of cytosolic sensor Melanoma Differentiation

Associated gene 5 (MDADS)

Abstract

Pattern recognition receptors (PRRs) play a vital role in the recognition of microbial ligands.
Melanoma differentiation associated factor 5 is a PRR known to recognize viral RNAs in the
cytoplasm and initiate the downstream activation of genes involved in antiviral signaling
mechanisms. Rock bream MDAS designated as RoMDAS is a highly conserved protein
revealing the genome structure with 16 exons similar to that of flounder MDAS. Proximal
region of RoMDAS revealed the presence of various putative transcription factors involved in
the regulation of the gene. RbMDADS protein possessed the characteristic CARD and helicase
domains involved in viral recognition and interaction with the downstream molecules.
RbMDAS protein shared highest identity with the fish homologues while sharing a
reasonable range of identity with the mammalian orthologues. Tissue distribution profiling of
RbMDAS revealed ubiquitous presence with highest expression in blood. Temporal
expression analysis in vivo post poly I:C challenge showed upregulation in various tissues
like gill, liver, spleen, head kidney and blood cells. Finally, the recombinant protein exhibited
antiviral activity against marine birnaviurs. Thus, RoOMDAGS is an antiviral protein involved in

the recognition and signaling of antiviral defense mechanism in rock bream.
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2.1 Introduction

Innate immune surveillance for viral infections is primarily performed by germ-line
encoded by pattern recognition receptors (PRRs), which comprises of Toll-like receptors,
RIG like receptors and NOD-like receptors (Drutskaya et al., 2011; Takeuchi and Akira,
2009). The recognition of viral infections by these sensors initiates various reactions in cells
collectively called antiviral innate responses. The production of cytokines like interferons
(IFNs) and subsequent synthesis of antiviral enzymes, which are responsible for the
impairment of viral replication and promoting adaptive immune responses, are the principal

mechanisms of antiviral signaling responses (Takaoka and Yanai, 2006; Yan and Chen, 2012).

RNA viruses generate RNA-RNA strand pairs in the process of RNA-dependent RNA
synthesis and some DNA viruses also produce dsRNA during their life cycle. Thus non-self
RNA serve as a PAMP for the cytosolic sensors to activate signals against virus infection and
elicit a prompt antiviral response (Jensen and Thomsen, 2012). Immune patrolling of the
cytoplasm for virus entry is performed by the cytosolic sensors of the RLR-family
comprising of three DExD/H box helicases, termed retinoic acid-inducible gene | (RIG-I),
melanoma differentiation-associated antigen 5 (MDADS5), and laboratory of genetics and
physiology 2 (LGP2) (Bruns and Horvath, 2012; Jensen and Thomsen, 2012; Yoneyama and
Fujita, 2007b). The three members exhibit primary structure conservation in their helicase
domain. The first identified member of this family RIG-1 was initially characterized as a
dsRNA binding protein which triggered IFN induction and viral signaling as a response to
synthetic dSRNA (poly I:C) and was then identified to be involved in antiviral defense against

hepatitis C virus (Yoneyama et al., 2004). MDAS5 (also known as Helicard and interferon
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induced with helicase C domain 1(IFIH1)) is a structural homologue of RIG-I, involved in

viral PAMP recognition (Takeuchi and Akira, 2008).

MDAS5 possesses two CARD regions, a helicase domain, a DExD/H box RNA
helicase region (consisting of two RecA-like helicase domains, Helland Hel2 and an insert
domain, Hel2i), a C-terminal regulatory domain and an RNA binding loop similar to RIG-I.
Despite structural conservation between RIG-1 and MDADS, each sensor has differential
preference for viral recognition (Baum and Garcia-Sastre, 2011; Kato et al., 2006). RIG-I and
MDAD5 recognize different ligands and distinct viruses. RIG-I receptor limits infection by
rhabdoviruses (vesicular stomatitis virus and rabies virus), paramyxoviruses (Sendai virus,
respiratory syncytial virus, and Newcastle disease virus), orthomyxoviruses (influenza A and
B) and filoviruses (Ebolavirus and Marburgvirus), whereas MDAS5 preferably recognizes
picornaviruses (EMCV, coronavirus, and murine hepatitis virus, and murine norovirus-1 type
). Flaviviruses (Dengue virus and West Nile viruses) and reoviruses (rotavirus) can signal
through both RIG-1 and MDAS (Kato et al., 2006; Loo and Gale, 2011). These variations
could be attributed to the differences in dsSRNA recognition as MDAS can be activated by
long dsRNA, whilst RIG-1 could be activated by RNA containing 5'ppp and shorter dsSRNAs.
Comparative studies of ligand recognition by MDAS5 and RIG-1 suggests that MDAS
preferentially recognizes high molecular weight poly I:C fragments, while RIG-I exhibits a

preference for shorter RNA fragments and can also bind to sSRNA (Kato et al., 2008).

In normal uninfected cells, RIG-I adopts a “closed” inactive conformation in the
absence of RNA and the CARD is masked (Kowalinski et al., 2011). The binding of virus
specific RNA species (dsRNA or 5'-triphosphate ssRNA) to the RNA binding domain and
ATP to the helicase domain change RIG-I conformation and release CARD (Jiang et al., 2011;
Luo et al., 2011). The CARDs relay signals to the downstream CARD containing molecule

IPS-1 [alternatively termed MAVS, VISA, and Cardif] (Berke et al., 2013; Kowalinski et al.,
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2011). Contrastingly, MDAGS does not sequester its CARDs and are not likely to interact with
the HEL2i or other domains within MDAS5. MDAS5 cooperatively forms dimers and ATP-
sensitive filaments on dsSRNA. Moreover, MDA5 CTD/RD is required for filament assembly
but not for RNA binding (Berke and Modis, 2012; Berke et al., 2012; Li et al., 2009a; Peisley
et al.,, 2011; Takahasi et al., 2009a). The CARDs on MDAS5 have also been proposed to
nucleate the assembly of MAVS into its active polymeric form. The self-propagating ‘prion-
like or amyloid-like’ properties of MAVS polymers amplify signaling. These findings
suggest that MDAS and RIG-I may be regulated in different ways (Hou et al., 2011; Jiang et

al., 2011, Jiang et al., 2012).

Although extensive studies have been performed on human MDAS, teleost MDA5S
have been of focus in the recent years. MDAS have been identified and characterized from
grass carp (Su et al., 2010; Wang et al., 2012), Japanese flounder (Ohtani et al., 2011),
Rainbow trout (Chang et al., 2011). In this study, an MDA5 gene has been identified from
rock bream Oplegnathus fasciatus and designated as RbMDAS5. The genome structure,

transcriptional expression analysis and antiviral function of RoMDAGS have been investigated.

2.2 Materials and methods

2.2.1 Animal rearing, cDNA library construction and RbMDAS5 gene identification

Healthy rock bream fish with average weight of ~50 g, procured from the Ocean and
fisheries Research institute (Jeju, Republic of Korea) were adapted to the laboratory
conditions (salinity 34 £ 1%o, pH 7.6 £ 0.5 at 24 £ 1 °C) in 400 L tanks. Blood samples were
harvested from the caudal fin of healthy, unchallenged fish using a 22 gauge needle and
centrifuged immediately for 10 min at 3000 x g at 4 °C, to collect the hematic cells. Gill,

liver, brain, kidney, head kidney, spleen, intestine, muscle, heart and skin tissues were
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harvested on ice from three healthy animals and immediately flash-frozen in liquid nitrogen
and stored in -80 °C, until RNA extraction. Tri Reagent” (Sigma, USA) was employed to
obtain total RNA from tissues. The concentration and purity of RNA were evaluated using a
UV-spectrophotometer (BioRad, USA) at 260 and 280 nm. Purified total RNA samples were
subjected to MRNA purification using Micro-FastTrack 2.0 mRNA isolation kit (Invitrogen).
First strand cDNA was synthesized from 1.5 pg of mRNA using Creator SMART "~ cDNA
library construction kit (Clontech, USA); amplification was performed with Advantage 2
polymerase mix (Clontech) under conditions of 95 °C for 7 s, 66 °C for 30 min and 72 °C for
6 min. Over-representation of the most commonly expressed transcripts was excluded by
normalizing the synthesized cDNA using Trimmer-Direct cDNA normalization kit (Evrogen,
Russia). A cDNA GS-FLX shotgun library was created from the sequencing data obtained by
using the GS-FLX titanium system (DNA Link, Republic of Korea). A cDNA contig showing
high homology to the earlier identified MDA5 homologues was identified using BLAST and

designated as RbMDADb.

2.2.2 BAC library creation and identification of RoMDA5 BAC clone

Rock bream obtained from the Jeju Special Self-Governing Province Ocean and
Fisheries Research Institute (Jeju, Republic of Korea) were accustomed to the laboratory
conditions. Blood was harvested aseptically from the caudal fin using a sterile 1 mL syringe
with 22 gauge needles, and a BAC library was constructed from the isolated blood cells
(Lucigen Corp., USA). Briefly, genomic DNA obtained from blood cells was randomly
sheared and the blunt ends of large inserts (>100 kb) were ligated to pPSMART BAC vector to
obtain an unbiased, full coverage library. Around 92160 clones, possessing an average insert

size of 110 kb, were arrayed in 240 microtiter plates with 384 wells.
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A two-step PCR based screening method was used to identify the clone of interest
based on manufacturer’s instructions. Primers were designed based on the cDNA sequence
identified from the cDNA database. A gene specific clone was isolated and purified using
Qiagen Plasmid Midi Kit (Hidden, Germany). The sequence was confirmed by pyro-
sequencing (GS-FLX titanium sequencing, Macrogen, Republic of Korea). The gene specific
primers employed in the identification of the clone from the BAC library are tabulated in

Table 2.

Table 2. Primers used in RoMDADS characterization and gRT-PCR.

The restriction sites are in small letters.

Gene Purpose Orientation  Primer sequences (5'-3')

RbMDAS5  BAC screening & qRT-PCR  Forward ATCAAGCGGACTACGACAAACGGA

RbMDAS5  BAC screening & qRT-PCR  Reverse TCTCGCTCTTCAAGCCTTTCTGCT

RbMDA5  pcDNA cloning Forward GAGAGAgaattcTATGGCGTCCGATAACGATGACGAAAA

RbMDA5  pcDNA cloning Reverse GAGAGACctcgagCTACGTAGTTGACGTTGATTCTGTTTCATCATCATCAT
[B-actin gqRT-PCR amplification Forward TCATCACCATCGGCAATGAGAGGT

B-actin gqRT-PCR amplification Reverse TGATGCTGTTGTAGGTGGTCTCGT

2.2.3 Sequence characterization, genome structure and phylogenetic analysis of
RbMDAJ5

A cDNA sequence portraying domain similarity with the MDA5 homologues
available in NCBI, was identified by BLAST and was subjected to DNAssist2.2 to predict the
open reading frame (ORF) and translate nucleotide to protein. The conserved domains were

identified using Expasy (http://www.expasy.org/), SMART (http://smart.embl-heidelberg.de/)

and conserved domain database search (CDD). Pairwise alignment and multiple sequence
alignment were executed using ClustalW (Thompson et al., 1994). A phylogenetic tree was
reconstructed using minimum evolution method available in MEGA 5.0, with bootstrap

values calculated with 5000 replications to estimate the robustness of internal branches
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(Tamura et al., 2011). The amino acid identity percentages were calculated by MatGAT
program using default parameters (Campanella et al., 2003). The exon-intron structure was
determined by aligning mRNA to the genomic sequence of RoMDADS using Spidey available

on NCBI (http://www.ncbi.nlm.nih.gov/spidey/) (Wheelan et al., 2001). The complete

genomic structure and putative promoter region were determined from the BAC sequencing
data. The genomic structures used for comparison were obtained from exon view of Ensembl
genome database. The transcription factor binding sites (TFBS) in the promoter region were

predicted using TFSEARCH, TESS and TRANSFAC.

2.2.4 Transcriptional profile of RoMDAS gene in challenged and normal tissues

2.2.4.1 Poly I:C challenge

In order to monitor the transcriptional changes of RoMDAS post dsRNA injection in
vivo, poly I:C was employed as an immunostimulant. Sterile poly I:C stock was prepared by
dissolving poly I:C at the rate of 1.5 mg/ml in PBS and filtered through a 0.2pm filter. A time
course experiment was performed by intraperitoneally injecting the animals with 100 pL
suspension of poly I:C stock. The control animals were injected with an equal volume of PBS.
Liver, gill, spleen, head kidney tissues and whole blood cells were harvested from the un-
injected, PBS-injected and immune challenged animals at time points of 3, 6, 12, 24, and 48 h

post injection/infection (p.i.).

2.2.4.2 RNA isolation and cDNA synthesis

In order to perform the tissue distribution profiling of RoMDADS, qills, liver, brain,
kidney, head kidney, spleen, intestine, muscle, heart and skin tissues and whole blood cells
were harvested from un-injected fish. After challenge with PBS and poly I:.C, gill, liver,

spleen, head kidney tissues and whole blood cells were harvested from challenged animals at
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the corresponding time points. Total RNA was obtained from tissues using Tri Reagent™
(Sigma, USA). The concentration and purity of RNA were evaluated using a UV-
spectrophotometer (BioRad, USA) at 260 and 280 nm. The RNA was diluted to 1ug/uL and
cDNA was transcribed from 2.5 pg of RNA from each tissue using a PrimeScript  first
strand cDNA synthesis kit (TaKaRa). Concisely, RNA was incubated with 1 uL of 50 uM
oligo(dT)z and 1 pL of 10 mM dNTPs for 5 min at 65 °C. After incubation, 4 pL of 5X
PrimeScript " buffer, 0.5 pL of RNase inhibitor (20 U), 1 pL of PrimeScript" RTase (200 U),
were added and incubated for 1 h at 42 °C. The reaction was terminated by adjusting the
temperature to 70 °C for 15 min. Finally, synthesized cDNA was diluted 40-fold before

storing at -20 °C for further use.

2.2.4.3 Tissue distribution

Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was used to
examine tissue distribution of RoMDAS5 mRNAs in various tissues of healthy fish. gqRT-PCR
was performed in a 15 pL reaction volume containing 4 pL of diluted cDNA, 7.5 pL of
2x SYBR Green Master Mix, 0.6 puL of each primer (10 pmol/uL) and 2.3 pL of PCR grade
water and subjected to the following conditions: one cycle of 95 °C for 3 min, amplification
for 40 cycles of 95 °C for 20 sec, 58 °C for 20 sec, 72 °C for 30 sec. The baseline was
automatically set by the Thermal Cycler Dice” Real Time System software (version 2). In
order to confirm that a single product was amplified by the primer pair used in the reaction, a
dissociation curve was generated at the end of the reaction by heating from 60 °C to 90 °C,
with a continuous registration of changes in fluorescent emission intensity. The Ct for the
RbMDAS (target gene) and p-actin (internal control) were determined for each sample.

RbMDAS gene expression was determined by Livak comparative Ct method. The relative
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expression level calculated in each tissue was compared with respective expression level in

muscle.

2.2.4.4 Temporal RoMDA5 mRNA expression analysis post poly 1:C challenge

gRT-PCR was performed with cDNA prepared from RNA obtained from gill, liver,
spleen, head kidney tissues and whole blood cells isolated from PBS and poly I:C challenged
animals. gRT-PCR conditions were the same as used for tissue distribution profiling. The ACt
for each sample was determined by the method described above. The relative expression of
RbMDAS was determined by the Livak method. The relative fold change in expression after
immune challenges was obtained by comparing the expression to corresponding PBS-injected

controls. The expression normalized to PBS-injected controls is represented in the figures.

All experiments were performed in triplicate. All data have been presented in terms of
relative mMRNA expressed as means * standard deviation (S.D.). Statistical analysis was
performed using un-paired two-tailed Student’s t-Test. Statistical significance was accepted

at a P-value below 0.01.

2.2.5 Construction of expression vector and antiviral assay

2.2.5.1 Cell lines and viruses

Rock bream heart cells were established as previously described (Wan et al., 2012).
Concisely, heart tissue was aseptically isolated from healthy rock bream fish (n=3). The
tissue was minced into small pieces (approximately 1 mm?in size) and washed thrice with
HBSS (Sigma) containing antibiotics (400 IU/mL penicillin and 400 pg/mL streptomycin).
Then, the tissue was digested in 0.2% collagenase Il (Sigma) solution for 2 hours at 20 °C.
The digestion mixture was filtered through a cell strainer (70 um mesh size), centrifuged at

1000 rpm for 10 min. The cells were resuspended in Leibovitz’s L-15 medium supplemented
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with 20% FBS, 100IU/mL penicillin and 100pg/mL streptomycin, and inoculated into 75 cm?
cell culture flask. The cells were sub-cultured more than three times and adapted to growth
medium containing 10% FBS. Cells’ susceptibility to marine birnavirus (MABYV) infection
was tested. The 80% confluent monolayer cells were treated with serially diluted MABV and
the plates were kept at room temperature (RT) for 2 h for adsorption and facilitate viral
infection. The plates were then incubated at 24 °C for 72 h. The susceptibility of rock bream
heart cells for MABYV infection was confirmed by observing the cytopathic effect (CPE) and
the maximal non-cytotoxic concentration was determined and used for the subsequent
antiviral activity assay. MABV was kindly provided by Prof. Sung-Ju Jung (Department of

Agualife Medicine, Chonnam National University, and Republic of Korea).

2.2.5.2 Construction of expression vector

The full length ORF of RbMDA5 (2979 bp) was amplified from liver cDNA using
gene specific primers (Table 2.) and PCR and cloned into TA vector (Takara, Japan). The
orientation and sequence was confirmed by restriction digestion and sequencing, respectively.
The RoMDA5 ORF cloned into TA vector was used as the template and the amplified PCR
product was digested with EcoRI and Xhol. The digested PCR products were purified using
Gel purification kit (Bioneer) and ligated overnight at 4 °C with EcoRI and Xhol digested
pcDNA™ 3.1/His B vector (Life Technologies). The ligation mixture was transformed into E.
coli DH5a cells and the clone harboring the recombinant plasmid was sequenced. The
affirmed clone harboring the recombinant RoMDAS was selected and named as pcDNAS3.1-

RbMDADS.

2.2.5.3 Antiviral assays

A monolayer of rock bream heart cells were cultured in 24 well plates at 24 °C, 24 h

prior to transfection. Before transfection, cells were washed once with sterile PBS, and then
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replaced with Opti-MEM (Life technologies). The transfection procedure was performed with
Lipofectamine™2000 (Life technologies), as per manufacturer’s instructions. Briefly, 1.5 ug
of pcDNA vectors (empty pcDNA3.1 and pcDNA3.1-RbMDAS5) were mixed with 1uL of
Lipofectamine™2000 and transfected into the heart cells in 100 pL Opti-MEM, and then
cultured at 24 °C for 48 h. After 48 h, cells were infected with MABYV and left at RT for 1 h
for adsorption. The cells were then cultured with Leibovitz’s L-15 medium and observed for
the appearance of CPE. The cells transfected with empty pcDNA3.1 and pcDNAS3.1-
RbMDADS, but not infected with virus served as the mock infection control. After 7 days of
MABY infection, the cells were washed once with PBS, fixed with 4% paraformaldehyde

(PFA) and stained with 3% crystal violet for visualizing live cells.

2.3 Results
2.3.1 RbMDAS identification, sequence characterization, phylogenetic analysis

A cDNA sequence portraying similarity to the MDAS homologues submitted in NCBI
was identified while delving our rock bream cDNA library for genes involved in antiviral
immunity. RoMDA5 cDNA was 3379 bp with ORF of 2976 bp, 5' untranslated region (UTR)
of 6 bp and 3' UTR of 397 bp. There were two mRNA instability motifs ****ATTTA®***and
SZIZATTTA™®) present in the 3' UTR. The ORF coded for a protein of 992 amino acids with
molecular mass of 112 kDa and isoelectric point of 5.6. Protein motif analysis of RoOMDAS5
protein through conserved domain database and SMART, revealed conserved structures
including two N-terminal CARDs (residues 10-95 and 108-189), a ResllI site (residues 284-
477), a central DEXD/H box RNA helicase domain (DEAD/DEAH box helicase domain;
residues 302-392), an MDAGS insert domain (residues 522-647), a HELIc domain (helicase
superfamily c-terminal domain; residues 644-786) and a RIG-1_C-RD (C-terminal repressor

domain (RD) embedded within the C-terminal domain (CTD) (residues 854-973)). ATP
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binding site *GSGKT?"® was found in the DExD helicase domain. There were six helicase
domain motifs (I: *®LPTGSGKTRV®, I1I: “°lIDECHHT*"; 1I: *®°GLTAS*® IV:
HIFTKTRR®: V: ™ TTVAEEGLDI™; VI: "°QALGRGRA’"") and an RNA binding loop
(®®TSPPERLLDY®) present in RoOMDAS (Fig. 3). In order to study molecular evolution
and compare the sequence identities, MDAS5, LGP2 and RIG-I sequences were obtained from
NCBI and aligned using clustalW and phylogenetic tree was constructed (Fig. 4). RoMDAS
was placed contiguous to orange spotted grouper MDADS, with which it shared the highest
identity and similarity (full protein: 74 and 84% and CARD region: 64 and 75%, respectively)
(Table 3. and 4). Multiple sequence alignment of RoMDAS5 with other MDAS proteins
revealed conservation explicitly in the domain regions, sharing moderate conservation in the

domain flanking regions (Fig. 3).
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Fig. 3. Multiple sequence alignment of RoMDAS with other homologues.

The amino acid sequence derived from RbMDAS was submitted to GenBank under the
accession ID. KF267452). The rock bream species name is written on the top of all sequences.
The homologous MDAS sequences were obtained from NCBI and GenBank and the
accession numbers are given in Table 3.. Identical residues are indicated by “*”. Highly
conserved and semi-conserved residues are indicated by “:” and “.”, respectively. The CARD

regions are boxed. The Res Il domain (284-477) is red underlined. The DExDc helicase
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domain (302-392) is grey shaded and the helicase motifs (I: *®*LPTGSGKTRV®Y, II:

201 IDECHHT*": 111;

SGLTASY: |v: YIFTKTRR®L: v: "™TTVAEEGLDI™: VI:

"MQALGRGRA"") are indicated by a black bar with the corresponding numbers written on it.

ATP binding site **GSGKT**is red, bold and grey shaded. MDAS5 insert domain (residues

522-647) is split underlined. The HELIc domain (residues 644-786) is red and bold. RNA

binding loop (**®*TSPPERLLDY®”) is boxed. RIG-1_C-RD (residues 854-973) is grey shaded,

red wave underlined. The Zn®** motifs (**CRGC®®® and *>CKDC*®) indicated with a black

bracket and name written on the top.

Table 3. Pairwise alignment of RoMDAS

Pairwise alignment of RoMDAJS, accomplished using MatGat program with complete amino

acid and CARD region sequences of MDA5 homologues obtained from different organism.

Identity percentage is denoted by “I”” and similarity by “S”.

Species Taxonomy Fl;ll protesln CAIRD reglson Accession No. Database
Rock bream Actinopterygii 100 100 100 100 KF267452

Orange spotted grouper  Actinopterygii 74 84 64 75 AEX01716 GenBank
Olive flounder Actinopterygii 72 83 61 74 ADUS87114 GenBank
Rainbow trout Actinopterygii 65 78 53 67 NP_001182108 NCBI
Gold fish Actinopterygii 58 75 46 64 AEN04473 GenBank
Grass carp Actinopterygii 56 72 45 62 FJ542045 GenBank
Human Mammalia 47 65 42 60 AAG34368 GenBank
Chicken Aves 48 66 39 59 BAJ14020 GenBank
House mouse Mammalia 47 67 42 62 AAM21359 GenBank
Frog Amphibia 46 66 34 54 XP_002933320  NCBI
Norway Rat Mammalia 46 66 40 60 NP_001102669  NCBI
Pacific oyster Bivalvia 25 43 16 33 EKC38304 GenBank
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Table 4. Conservation of helicase domain motifs in MDAS orthologues.

Species

Helicase domain motifs

I I I v \Y% VI
Rock bream LPTGSGKTRV HIDECHHT GLTAS IIFTKTRR TTVAEEGLDI  QALGRGRA
Orange spotted grouper LPTGSGKTRV IVIDECHHT GLTAS IIFTKTRR TTVAEEGLDI QARGRGRA
Olive flounder LPTGSGKTRV IIDECHHT GLTAS IIFTKTRR TTVAEEGLDI QARGRGRA
Rainbow trout LPTGSGKTRV IVIDECHHT GLTAS IIFTKTRR TTVAEEGLDI QARGRGRA
Gold fish LPTGSGKTRV  MVIDECHHT GLTAS IIFTRTRL TTVAEEGLDI QARGRGRA
Grass carp LPTGSGKTRV MVIDECHH GLTAS IIFTRTRL TTVAEEGLDI QARGRGRA
Human LPTGSGKTRV HIDECHHT GLTAS IIFTKTRQ TTVAEEGLDI QARGRGRA
Chicken LPTGSGKTRV HIDECHHT GLTAS IIFTKTRQ TTVAEEGLDI QARGRGRA
House mouse LPTGSGKTRV HIDECHHT GLTAS IIFTKTRQ TTVAEEGLDI QARGRGRA
Frog LPTGSGKTRV HNIDECHHT GLTAS IIFTKTRQ TSVAEEGLDI QARGRGRA
Norway Rat LPTGSGKTRV HNIDECHHT GLTAS IIFTKTRQ TTVAEEGLDI QARGRGRA
Consensus % 100% 96% 100% 97% 99% 99%
48 —Rock bream {>
HOrange spotted grouper
93 55 Rainbow trout
9 Japanese flounder
i( Goldfish MDAS5
Frog
7 Chicken
73 |House mouse
Norway rat <2
% Human
Rock bream 6
68 — Rainbow trout

73

sol—— Atlantic salmon

|: Grass carp
73 Zebrafish

Japanese flounder

LGP2
Chicken

54 Cow

85 -Human

[Norway rat

79 72 |House mouse <.>
Frog

99— Human

L House mouse
RIG-I

Atlantic salmon
Zebrafish

0.35 0.30

0.10 0.05 0.00
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Fig. 4. Phylogenetic analysis of RoMDAS with LGP2, RIG-1 and MDADS sequences.

The tree was constructed by the minimum evolution method in MEGA 5.0 using the full-
length amino acid sequences. The RIG-1 and LGP2 sequences were obtained from GenBank.
The accession numbers of LGP2 sequences are Rainbow trout: CAZ27718, Japanese flounder:
ADI75503, Atlantic salmon: NP_001133649, Grass carp: ACY78116, Zebrafish:
NP_001244086; Chicken: AEK21509, Cow: NP_001015545, Human: NP_077024, Norway
rat: NP_001092258, House mouse: NP_084426, Frog: NP_001085915. The accession
numbers of the RIG sequences are Human: AF038963, House mouse: AY553221, Atlantic
salmon: NP_001157171, zebrafish. ENSDART00000058176. The accession numbers of the
MDADS5 sequences are tabulated in Table 3.. Numbers above the line indicate percent

bootstrap confidence values derived from 5000 replications.

2.3.2 Genomic characterization of RoMDAS

The BAC PCR using cDNA specific oligos yielded a clone that spanned the entire
MDAS5 genome with additional 5 and 3' flanking sequences. The genome of RbMDA5S
(10689 bp) possessed 16 exons split by 15 introns (Fig. 5). The exon-intron junctions were
consistent with the GT/AG rule. The RbMDAS5 genome size was nearly similar to that of
flounder MDADB, with shorter introns compared to the human MDADB. Although the number of
exons (16) and introns (15) were similar to those present in other vertebrates, variations could
be observed in the sizes of coding exons. The domain distribution among the exons was
similar to that of flounder and human MDAS. The two CARDs were coded by 1% exon and 2™
exon. The helicase domains and RD were coded by nucleotides in exons 5 to 13 and 14 to 16,
respectively. The nucleotides present in exons 5 and 7 codes for the ATPase A motif

CTGSGK?®™) and ATPase B motif (**?DECH*?), respectively. The RNA destabilizing motif
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(*SGLTAS) locates to 7" exon and positive charge cluster for potential RNA binding

(""QALGRGRA) to 13™ exon.
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2.3.3 Promoter analysis of RoOMDA5

The putative promoter and 5' flanking region analysis revealed the presence of
putative binding sites for various transcription factors. Proximal region revealed the presence
of activator protein-1 and -4 (AP-1 and -4), interferon regulatory factor-1 and -2 (IRF-1 and -
2), c-Rel, Lyf-1, Spl, cAMP response element binding protein (CREB), Interferon-sensitive
response element (ISRE), Oct-1, AML-1a and heat shock factor 2 (HSF2) while CCAAT-
enhancer binding protein-a, -f (C/EBPa and ), HNF-3b, and P300 could be observed

distantly (Fig. 6).
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AGTTGTGTCACTGGATTTCCCTTTTTTAAGTCCATATAGGTGTGTTTACAATGAAAACAC
c-Rel IRF-2

-1500

TGTTGGTACTTCTGCAGTATGTACGGACTAAGAGAGACATGATGATGTGAATTGTCCAGG —-1440
CGATGAAAGGCCAGGTATCATTATATTGTACATACTTTGTTGCTGGTGTTAGTAGCAGTA -1380
GAGTTGTTGGGTGGGTTTGGGGGATGAGCTGTTGTCAGGGAGCCCAGAAACCACCACTTG —-1320
AP-4
AATGAAACTATGCTGTAGTATGAATTGAGAGAATAATGTGGGATACTCATGTGAAGGACA —-1260
Lyf-1
GGGGATATAAATTAGGCCATGTATAGTGTAATATCAATAA?ATAACATATATTTTATACT -1200
C/EBPB
TAGCTTTGAGGTGATTATGTATATACCATTGACTGGCAAATGTAGTTTTGATTGTTGTCT -1140
AML-1a
TAGGAAAAACAGAACTAGGCATTCACTACACATTACTAAGCAGTGGTAAAAGGAGGATAG -1080
C/EBPB
AAATCCTAGTGGCAAACCCACAATCAGAAGATACTCCAATCAAAGTAATTCTCGCACTGA -1020
c-Rel HSF2
CAATTTTACTCAGATAAGTAAAAAAACACATATATATGTATTTGCATAAAAACATTCTTA -960
HNE-3b
CAATAAGTATCAACAGTGGCGTTTTTTTCCCTTTCATAGTCTTAAATTATTGATAAACTA -900
C/EBPa
ATCCTAACCCATTGTAATGTTGTAGGGATCCATGTCTGACTACTGCCTCACGTTGCTGGG -840
AML-1a AP-1
TGTCCATGGCAATATATCATATTTCATGAGTTTTCAGTTCATCTCACTGGCATGTCTTGA -780
C/EBPB
TCTGCAAAGTAACTACAGTTGTTGATAAATGTAATGGAGTAGGGAGTATGATATTTCCCT -720
P300
CTCAGTGGAGTATTTCTGCTCCTGCACAAAATAAAAAAAAAAGAACGGTACTTAAAGGCC -660
CTGCCCTGCTCACCAACACAAGTGTTTTTAATTACTCTGGCTGATATGAGCTATGCTGGG -600
Spl
AATTAAATGAGGTCACCAAAGTCAGTGTACCAATAACAATGGTAGAGGTGCAAGTTGTCC -540
CREB
CGCCTTTACAGCTGAGACAGTGAGAGTGAGGGAGGTGTCAATCAAATGGTCTGCACACGC —-480
AP-1
CCACACCGTCCTAATCAGAAAACGTGTGTAGGGCCTTTAACTAAATGTGCTGACACTCAC —-420
AML-1a AML-1a
CTCTAAATAAAGTACCTAAAATACTTTTATAATCATTTTTATAATTATTGCACAAATGCA -360
Oct-1
ACGCCCCTATTAACAGCTGAATACTCACAGTCCTTATGGTTCACTGTTGGAATATTAGAA -300
AML-1a HSF2
GCATGTGTCTTTAAAAATAGAAAACAGCTGTAAATGCCTCTGTCACCGGTGTACGTGCAG —-240
AGACCTACTCACTATGCTCCAATACTGACACCTAGCGGTCACTTTAATTGTTAAAGAGTT -180
AP-1
TTGGAAAAACGAAAGTAAAAGAGTTTCTTTTTCCTCCACACAGTGAATCATCGTTTTATT -120
IRF-1/IRF-2 ISRE AP-1
CTGCCAGTAAGTTTGCAGCTACGCAGGAGTCAGCCATCATCAGTGTTATTGATAAGGTGG -060
AP-1 AP-1
GTCGTAATG
* *M

Fig. 6. Analysis of the RoMDAS gene 5'-flanking region.

The transcription factor binding sites are red colored, bold, underlined and denoted with the

corresponding name below. The transcription initiation site (G) is denoted by an upward-

facing arrow. The start codon is purple colored and indicated by a

residue written below.

2.3.4 Spatial expression analysis of RoOMDAS

33 £0)

with a methionine

41



RbMDA5 mRNA was analyzed in various tissues to understand its physiological
significance. ROMDAS was observed to be ubiquitously expressed in all the examined tissues.
Highest level of expression could be found in blood. Relatively similar levels of expression
could be observed in liver and heart. Moderate level of expression could be observed in

spleen and gill (Fig. 7).
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Fig. 7. Tissue distribution analysis of RoOMDAS5.

RbMDAS5 tissue-specific expression in muscle, head kidney, brain, skin, kidney, spleen,
intestine, gill, liver, heart tissues, and blood collected from unchallenged rock bream was
analyzed using quantitative RT-PCR. Relative mRNA expression was calculated using the 2°
AACt method, with B-actin as the invariant control gene. In order to determine the tissue-
specific expression, the relative mMRNA level was compared with muscle expression. Data are

presented as mean values (n=3) with error bars representing SD. Data shown with “*”

indicates significant expression levels at P<0.01.

2.3.5 Temporal expression analysis of RoMDAS after poly I:C challenge

In vivo modulation of RoMDA5 mRNA after poly I:C challenge was detected in blood,

gill, liver, spleen and head kidney. In blood and head kidney, induction of RoMDAS could be
42



observed from early 3 h to 12 h p.i., with highest level of modulation at 12 h (blood: 7.6-fold
and head kidney: 6.1-fold). In blood, upregulation could be observed at 24 h p.i, whereas in
head kidney, expression reached the basal level at 24 h p.i. In gill and spleen, similar pattern
of expression could be observed from 6 h to 24 h p.i., with highest transcriptional change at 6
h p.i. (gill:2.8-fold and head kidney: 6- fold). However, in spleen upregulation was seen t ill
24 h p.i. In liver, up-regulation was observed from 3 h p.i. which existed till 12 h p.i,

revealing highest expression at 6 h p.i. (6.4-fold) (Fig. 8).
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Fig. 8. RbMDAGS expression analysis after poly 1:C challenge.

RbMDAS expression was analyzed in liver, blood, spleen, gill and head kidney post poly I:.C
challenge. Relative mRNA expression was calculated by the 2**“* method relative to PBS-
injected controls and normalized with the same, with -actin as the reference gene. Data are
Gk

presented as mean values (n=3) with error bars representing SD. Data shown with

indicates significant expression levels at P<0.01.
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2.3.6 Antiviral activity of RoMDAbS

In order to demonstrate the antiviral function of the RbMDAS5, rock bream heart cells
were transiently transfected with either the empty vector (pcDNA™ 3.1/His B vector) or the
pcDNA3.1-RbMDAS5 and then infected with MABV. Infection of heart cells transfected with
empty vector did not show any inhibition of virus similar to the virus infected control, where
more than 90% of the cells showed CPE and were killed. Cells transfected with pcDNA3.1-
RbMDADS revealed strong inhibition of virus infection and cell protection. These results

suggest the antiviral defense role of RbMDAGS against MABV (Fig. 9).

Control pcDNA  MDAS

MABV
(100TCID,,)

MABV
(500TCIDs,)

Mock

Fig. 9. Antiviral activity of RoMDADS.

The empty pcDNA 3.1 vector and pcDNA3.1-RbMDAS were transfected into rock bream
heart cells. After 48 h of transfection, at 24 °C, the cells were infected with MABV at
indicated densities. After 7 days of infection, cells were fixed with 4% PFA and stained with

3% crystal violet.

2.4 Discussion
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Innate immune defense against pathogenic infections commences with the
identification of pathogen conserved non-self-molecular patterns named PAMPs. The
extracellular, vacuolar and cytosolic compartments are under continuous screening for signs
of infection. Viruses in particular accumulate viral RNAs or DNAs in the cytoplasm that
originates from the incoming viral genome, viral transcripts, or transcription and replication
intermediates (Thompson and Locarnini, 2007). Consequently, the viral nucleic acids become
the major PAMPs for the cytosolic sensors. This recognition of viral PAMPs by the cytosolic
sensors leads to the downstream activation of a robust program of gene expression that
includes antiviral inflammatory cytokines, chemokines and IFNs. The early synthesis of IFNs
not only prevents viral infection but also primes the subsequent development of antigen-

specific T cell and antibody responses (Takaoka and Yanai, 2006).

RbMDAGS protein characterization revealed conserved motifs including CARDs,
helicase domains, and RD. In mammals, RIG-I activation is initiated by binding of RNA to
the RD, after which it attains the “active open” conformation and the CARDs interact with
the CARDs of MAVS to induce the signaling cascade for IFN synthesis. According to this
model, initiation of RIG-I signaling in part is controlled through a combination of RNA
binding which initiates conformational changes that alter self-interactions, leading to
signaling induction or suppression. Unlike RIG-1 where the CARDs are sequestered before
RNA binding, MDA5 does not sequester CARDs and MDA5 CARDs are involved in
cooperatively assembling sensitive filaments on dsSRNA and nucleate the assembly of MAVS
into its active polymeric form (Berke et al., 2013). These data suggest that RIG-I and MDAS5
may be regulated through different mechanisms, which needs further investigation in teleosts.
MDAJS possesses a central DEXD/H box RNA helicase domain (consisting of two RecA-like
helicase domains, Helland Hel2 and an insert domain, Hel2i) to bind and possibly unwind

RNA with the energy generated by ATP hydrolysis. The RNA helicases belong to helicase
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superfamily 1, which is divided into three subfamilies DEAD, DEAH and DExH box
containing helicases. MDA5 possesses conserved signatures belonging to the DExH
subfamily of RNA helicases (Kang et al., 2004; Kang et al., 2002). MDADS5 contain a C-
terminal domain (CTD) which is proposed to be involved in autoregulation in RIG-I, but
MDAS5 CTD is not required for RNA binding but for assembling filaments (Berke et al.,
2013). RbMDADS revealed conservation in the functional domains with other homologues
suggesting a similar function and regulatory mechanism in rock bream. The phylogenetic
analysis revealed closer association of RoOMDAGS with the fish homologues. Contrary to the
presence of RIG-1 only in Atlantic salmon and zebrafish, MDAS5 is found in many fish

species indicating that MDAS5 might have evolved before RIG-1 (Zou et al., 2009).

The genome of RoMDAS comprising 16 exons and 15 introns was similar to that of
other vertebrates. However, the length of RbOMDAS genome was similar to that of Japanese
flounder MDAS while shorter than that of human (Ohtani et al., 2011). The coding region of
RbMDAS5 was also highly similar to that of flounder MDAS5, while little variation could be
observed in the first four coding exons of zebrafish. The promoter analysis of RbMDAS5
revealed putative IRF and ISRE biding sites. MDAS is an early response gene whose
expression requires JAK/STAT signaling of the IFN pathway and is induced by IFN and
TNFa (Gitlin et al., 2006; Kang et al., 2004). IRF-1 plays a vital role in controlling RIG-I
expression (Su et al., 2007). MDAGS and RIG-I are IFN-inducible genes, creating a positive
feedback-loop generating a potent anti-viral state (Kang et al., 2002). This suggests that
MDAS5 may be a target of regulation at the transcriptional level by the ISGF3 complex and
presence of IRF and ISRE biding sites in the promoter of RoMDA5 suggests a similar

mechanism in rock bream.

Spatial expression analysis revealed ubiquitous expression in all the analyzed tissues

with highest expression in blood, followed by liver and heart. Japanese flounder MDA5 was
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strongly detected in kidney, heart and muscle (Ohtani et al., 2011). Northern blot analysis
employed to determine the human MDAS expression revealed high expression in spleen and
placenta, while low levels of expression was determined in other tissues (Kang et al., 2004).
Rainbow trout MDAS5 was constitutively produced in fibroblast and macrophage cell lines
(Chang et al., 2011). MDAS5 from grass carp was highly expressed in gill, skin and spleen of
healthy fish (Su et al., 2010). The ubiquitous and continuous expression in all the tissues

suggests their constant role of surveillance for viral infections.

DsRNA is the genetic component of viruses with double stranded genomes and part
of ssRNA with secondary structures. It can be generated during viral replication and RNA
metabolism, making it the primary target for host PRRs. The synthetic analog of viral dsSRNA,
poly I:C triggers the innate immune system to secrete antiviral cytokines like IFNa/p and
inflammatory cytokines. Temporal modulations of RbMDAS expression in vivo after poly I:C
challenge revealed up-regulation mostly in the early phase of infection, in all the examined
immune related tissues. Japanese flounder MDA5 was induced in kidney and peripheral blood
leukocytes after treatment with lipopolysaccharide (LPS) and poly I:C (Ohtani et al., 2011).
Rainbow trout MDA5S was also upregulated in fibroblast and macrophage cell lines post poly
I:C treatment (Chang et al., 2011). Grass carp MDA5 was induced in liver and spleen after
Grass Carp Reovirus (GCRV with dsRNA as genome) administration (Su et al., 2010; Wang
et al., 2012). Recently identified RIG-1 homologue from grass carp also revealed upregulation
post bacterial and viral stimulations (Chen et al., 2012). These data together with our results
suggests that MDAS expression is induced by virus and viral mimics like poly I:C like the

mammalian MDADS and play a defensive role against viral infections.

In vitro antiviral assays revealed that the rock bream heart cells transfected with
RbMDAS5 and infected with MABYV show delay in the appearance of CPE compared to the

empty controls. MDAS5 portrayed potential antiviral activity against a variety of viruses
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including ss(+)RNA viruses (Picornaviridae, Caliciviridae and Flaviviridae), ss(—)RNA
viruses (Paramyxoviridae, Orthomyxoviridae and Rhabdoviridae), and dsRNA virus
(Reoviridae) (Kato et al., 2006; McCartney et al., 2008; Siren et al., 2006). RIG-I1 and MDAS5
shows preferential inhibition of viruses in mice (Kato et al., 2006). Japanese flounder MDA5
exhibited inhibition against both ssSRNA (VHSV, HIRRV) and dsRNA viruses (IPNV). Our
results suggest that RoMDADS inhibits the replication of a dsSRNA virus MABYV, and stands as
an affirmation for the RLR pathway in rock bream, with RboMDAS added as a new member

of the teleost RLR family.

In conclusion, this study affirmed the existence of an ancestral PAMP recognition
receptor: MDAS in rock bream through genomic and functional characterization. Our results
demonstrate the induction of MDAS5 by poly I:C and MDAJS inhibits the MABYV infection.

This study stands as an averment for the positive regulatory role of MDADS in teleosts.
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CHAPTER 111

Characterization of the cytosolic sensor Laboratory of

Genetics and Physiology 2 (LGP2)
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3.0 Characterization of the cytosolic sensor Laboratory of Genetics and Physiology 2

(LGP2)

Abstract

Innate cytosolic surveillance for viral pathogen associated molecular patterns is
performed by cytosolic receptors comprising of Laboratory of Genetics and Physiology 2
(LGP2) as one of the receptors. Rock bream LGP2 (RbLGP2) genome possessed 12 exons
intervened by 11 introns. Putative promoter analysis revealed the presence of significant
transcription factor binding sites. RobLGP2 protein revealed the conserved domains like
DEXD domain, regulatory domain and helicase domain. RbLGP2 did not possess CARD
similar to the other LGP2 orthologues. RbLGP2 shared its highest with a teleost homologue,
Olive flounder. Phylogenetic analysis revealed its closer association with fish homologues.
Spatial expression analysis revealed ubiquitous presence in all the examined tissues with
highest expression in blood. Temporal expression analysis post poly I:C challenge, revealed
upregulation in various immune related tissues like gill, liver, spleen, head kidney and blood
cells. Recombinant RbLGP2 protein prevented rock bream cells from infection against
marine birnavirus revealing its antiviral activity. Thus, RbLGP2 is an evolutionarily

conserved protein involved in defense against viruses in rock bream.

50



3.1 Introduction

Innate immunity is the primitive defense barrier against pathogenic invasion in all
organisms, ranging from invertebrates to vertebrates. The initiation of anti-pathogenic
responses begins with the recognition of conserved pathogen associated molecular patterns
(PAMPs) including proteins, lipids and nucleotides characteristic of the pathogens but not the
host, by pattern recognition receptors (PRRs) (Kawai and Akira, 2010; Kumar et al., 2011,
Rathinam and Fitzgerald, 2011). The extracellular and cytoplasmic surveillance of pathogen
invasion is executed by PRRs including Toll-like receptors (TLRs), retinoic acid induced
RIG-like receptors and nucleotide oligomerization domain containing (NOD-like) receptors
(Rathinam and Fitzgerald, 2011). Inside the cell, TLRs 3, 7, 8 and 9 localize to the endocytic
compartments, where TLRs 3, 7, and 8 scan for the presence of double stranded (ds) RNA
and single stranded (ss) RNA viruses, while TLR9 is involved in non-methylated CpG DNA
recognition. The RIG-I like receptors (RLRs), comprising of three members, retinoic acid-
inducible gene 1 (RIG-I, also called DEAD (Asp-Glu-Ala-Asp) box polypeptide 58
(DDX58)), melanoma differentiation-associated gene 5 (MDADS, also called interferon
induced with helicase C domain 1(IFIH1)), and laboratory of genetics and physiology 2
(LGP2, also called DExH (Asp-Glu-X-His) box polypeptide 58 (DHX58)), are crucial in
triggering interferon (IFN) response against intracellular RNA virus (Rathinam and
Fitzgerald, 2011; Yoneyama and Fujita, 2007a). NLRs are primarily involved in bacterial

detection (Rosenstiel et al., 2007).

The members of RLR family are structurally conserved in sharing a common
functional RNA helicase domain near the C terminus (HELICc) which specifically binds to
the RNA molecules of viral origin. The members of this family also hold a distinct core ATP

dependent DExD/H domain, containing a conserved motif Asp-Glu-X-Asp/His (DExD/H),
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involved in ATP-dependent RNA or DNA unwinding. RIG-1 and MDAGS proteins possess
two tandem arranged caspase activation and recruitment domains (CARDs) involved in
protein-protein interactions, at the N terminal region, while CARD domain is absent in LGP2.
Regarding the specificity of viral detection, RIG-I is sensitive to a wide range of viruses
including paramyxoviruses, orthomyxoviruses, and the rhabdovirus vesicular stomatitis virus
(Hornung et al., 2006; Kato et al., 2005; Kato et al., 2006; Pichlmair et al., 2006) whilst
MDAD5 is evoked by picornaviruses (Gitlin et al., 2006; Kato et al., 2006). RLRs recognize
distinct patterns of viruses (Loo et al., 2008). MDAGS exclusively binds long, capped di- or
mono-5' phosphate dsSRNAs whilst RIG-1 possesses high binding affinity for short dSRNA or

5'ppp uncapped ssRNA (Kato et al., 2006).

The viral nucleic acids accumulated in the cytosol during viral infection, serve as
potential PAMPs recognized by the cytosolic sensors like RLRs. Specific binding of the virus
specific RNA species (dsSRNA or 5'-triphosphate sSRNA) to the RNA binding domain in the
sensors RIG-I/MDAS change their “closed” structure confirmation, releasing the CARD. The
CARD relays signals to the downstream signaling molecule MAVS present on the outer
membrane of mitochondria, through CARD-CARD interactions. The signaling bifurcates at
MAVS, resulting in the activation of NF-xB and IRF3/IRF7. The latter pathway involves the
TNF (tumor necrosis factor) receptor-associating factor 3 (TRAF3) and the protein kinases,
IxB kinase-l (IKK-i (¢)) or TANK-binding kinase-1 (TBK-1), responsible for the
phosphorylation and activation of latent IRF-3 and -7. IRF3, essential for the primary
activation of IFN genes is phosphorylated at specific serine residues by two members of the
IxB kinase (IKK) family, TANK-binding kinase 1 (TBK1) and IKKi/IKKg culminating in the
induction of IFN and other antiviral effector genes in the nucleus. IRF7 is also known to be
regulated by these kinases and is involved in the secondary induction of IFN genes (Matsui et

al., 2006; Pichlmair and Reis e Sousa, 2007; Yoneyama and Fujita, 2007a).
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LGP2 is a virus inducible gene belonging to the RLR family and sharing structural
similarity of 30-40% with RIG-1 and MDADS, except for the CARD domain. Its role in
antiviral defense is contradictory as it was first discovered that RIG-I/MDAS directed IFN
response was negatively regulated by LGP2 (LGP2 lack CARD domain and hence unable to
interact with MAVS) (Diperna, 2005) and later additional evidence indicated that LGP2 is
required for virus recognition by RIG-1 and MDA5 (Satoh et al., 2010). The negative
regulation of LGP2 is performed either by binding of LGP2 to dsRNA and preventing RIG-I-
and MDAJS5-mediated recognition or by inhibiting multimerization of RIG-1 and its interaction
with MAVS via the RD of LGP2 or by competing with IKK-¢ for a common interaction site
on MAVS (Komuro and Horvath, 2006; Vitour and Meurs, 2007; Zou et al., 2009). In
teleosts, LGP2 homologue has been identified and demonstrated to play a significant role in
antiviral defense in rainbow trout (Chang et al., 2011), grass carp (Huang et al., 2010b),
Atlantic cod (Seppola et al., 2009), and Olive flounder (Hikima et al., 2012; Ohtani et al.,

2010).

In this study, we have identified an LGP2 homologue from rock bream (designated as
RbLGP2) and characterized from the genomic to proteome level. We have demonstrated the
antiviral activity of the RoLGP2 gene using rock bream cells and analyzed the transcriptional

modifications in vivo after poly I:C challenge.

3.2 Materials and methods

3.2.1 Animal rearing, cDNA library construction and RbLGP2 gene identification

Healthy rock bream fish with average weight of ~50 g, procured from the Ocean and
fisheries Research institute (Jeju, Republic of Korea) were adapted to the laboratory
conditions (salinity 34 £ 1%o, pH 7.6 £ 0.5 at 24 £ 1 °C) in 400 L tanks. Blood samples were

harvested from the caudal fin of healthy, unchallenged fish using a 22 gauge needle and
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centrifuged immediately for 10 min at 3000 x g at 4 °C, to collect the hematic cells. Gill,
liver, brain, kidney, head kidney, spleen, intestine, muscle and skin tissues were harvested on
ice from three healthy animals and immediately flash-frozen in liquid nitrogen and stored in -
80 °C, until RNA extraction. Tri Reagent " (Sigma, USA) was employed to obtain total RNA
from tissues. The concentration and purity of RNA were evaluated using a UV-
spectrophotometer (BioRad, USA) at 260 and 280 nm. Purified total RNA samples were
subjected to MRNA purification using Micro-FastTrack 2.0 mRNA isolation kit (Invitrogen).
First strand cDNA was synthesized from 1.5 pg of mRNA using Creator SMART "~ cDNA
library construction kit (Clontech, USA); amplification was performed with Advantage 2
polymerase mix (Clontech) under conditions of 95 °C for 7 s, 66 °C for 30 min and 72 °C for
6 min. Over-representation of the most commonly expressed transcripts was excluded by
normalizing the synthesized cDNA using Trimmer-Direct cDNA normalization kit (Evrogen,
Russia).

A cDNA GS-FLX shotgun library was created from the sequencing data obtained by
using the GS-FLX titanium system (DNA Link, Republic of Korea). A cDNA contig showing
high homology to the earlier identified LGP2 homologues was identified using BLAST and

designated as RbLGP2.

3.2.2 BAC library creation and identification of RbLGP2 BAC clone

Rock bream obtained from the Jeju Special Self-Governing Province Ocean and
Fisheries Research Institute (Jeju, Republic of Korea) were accustomed to the laboratory
conditions. Blood was harvested aseptically from the caudal fin using a sterile 1 mL syringe
with 22 gauge needles, and a BAC library was constructed from the isolated blood cells
(Lucigen Corp., USA). Briefly, genomic DNA obtained from blood cells was randomly

sheared and the blunt ends of large inserts (>100 kb) were ligated to pPSMART BAC vector to
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obtain an unbiased, full coverage library. Around 92160 clones, possessing an average insert

size of 110 kb, were arrayed in 240 microtiter plates with 384 wells.

A two-step PCR based screening method was used to identify the clone of interest
based on manufacturer’s instructions. Primers were designed based on the cDNA sequence
identified from the cDNA database. A gene specific clone was isolated and purified using
Qiagen Plasmid Midi Kit (Hidden, Germany). The sequence was confirmed by pyro-
sequencing (GS-FLX titanium sequencing, Macrogen, Republic of Korea). The gene specific
primers employed in the identification of the clone from the BAC library are tabulated in

Table 5..

Table 5. Primers used in RbLGP2 characterization and gRT-PCR.

The restriction sites are in small letters.

Gene Purpose Orientation Primer sequences (5'-3')

RbLGP2  BAC screening & qRT-PCR Forward TCGATGAGTGTCACCACACCAACA

RbLGP2  BAC screening & qRT-PCR Reverse TGACTGAATCCAGGTTGGCACAGA

RbLGP2  pcDNA cloning Forward GAGAGAgaattcTATGGCAGAATTTGAACTGTACGCATACCA
RbLGP2  pcDNA cloning Reverse GAGAGACctcgagT TAGTCGAAGATGTTAGGGAAGTGGTCTTGG
[-actin qRT-PCR amplification Forward TCATCACCATCGGCAATGAGAGGT

[B-actin gqRT-PCR amplification Reverse TGATGCTGTTGTAGGTGGTCTCGT

3.2.3 Sequence characterization, genome structure and phylogenetic analysis of
RbLGP2

A cDNA sequence homologous to earlier identified LGP2 sequences in NCBI was
identified by BLAST and was subjected to DNAssist2.2 to predict the open reading frame
(ORF) and translate nucleotide to protein. The conserved domains were identified using

Expasy (http://www.expasy.org/), SMART (http://smart.embl-heidelberg.de/) and conserved

domain database search (CDD). Pairwise alignment and multiple sequence alignment were

executed using ClustalW (Thompson et al., 1994). A phylogenetic tree was reconstructed
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using minimum evolution method available in MEGA 5.0, with bootstrap values calculated
with 5000 replications to estimate the robustness of internal branches (Tamura et al., 2011).
The amino acid identity percentages were calculated by MatGAT program using default
parameters (Campanella et al., 2003). The exon-intron structure was determined by aligning

MmRNA to the genomic sequence of RDLGP2 using Spidey available on NCBI

(http://www.ncbi.nlm.nih.gov/spidey/) (Wheelan et al., 2001). The complete genomic
structure and putative promoter region were determined from the BAC sequencing data. The
genomic structures used for comparison were obtained from exon view of Ensembl genome
database. The transcription factor binding sites (TFBS) in the promoter region were predicted

using TFSEARCH, TESS and TRANSFAC.

3.2.4 Transcriptional profile of RoLGP2 gene in challenged and normal tissues

3.2.4.1 Poly I:C challenge

In order to monitor the transcriptional changes of RbLGP2 post dsRNA injection in
vivo, poly I:C was employed as an immunostimulant. Sterile poly I:C stock was prepared by
dissolving poly I:C at the rate of 1.5 mg/ml in PBS and filtered through a 0.2um filter. A time
course experiment was performed by intraperitoneally injecting the animals with 100 uL
suspension of poly I:C stock. The control animals were injected with an equal volume of PBS.
Liver, gill, spleen, head kidney tissues and whole blood cells were harvested from the un-
injected, PBS-injected and immune challenged animals at time points of 3, 6, 12, 24, and 48 h

post injection/infection (p.i.).

3.2.4.2 RNA isolation and cDNA synthesis

In order to perform the tissue distribution profiling of RbLGP2, gills, liver, brain,

kidney, head kidney, spleen, intestine, muscle and skin tissues and whole blood cells were
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harvested from un-injected fish. After challenge with PBS and poly I:C, qill, liver, spleen,
head kidney tissues and whole blood cells were harvested from challenged animals at the
corresponding time points. Total RNA was obtained from tissues using Tri Reagent " (Sigma,
USA). The concentration and purity of RNA were evaluated using a UV-spectrophotometer
(BioRad, USA) at 260 and 280 nm. The RNA was diluted to 1pg/ul. and cDNA was
transcribed from 2.5 pg of RNA from each tissue using a PrimeScript first strand cDNA
synthesis kit (TaKaRa). Concisely, RNA was incubated with 1 uL of 50 uM oligo(dT)zo and

1 pL of 10 mM dNTPs for 5 min at 65 °C. After incubation, 4 pL of 5> PrimeScript" buffer,

0.5 uL of RNase inhibitor (20 U), 1 pL of PrimeScript” RTase (200 U), were added and
incubated for 1 h at 42 °C. The reaction was terminated by adjusting the temperature to 70 °C
for 15 min. Finally, synthesized cDNA was diluted 40-fold before storing at -20 °C for

further use.

3.2.4.3 Tissue distribution

Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was used to
examine tissue distribution of RoLGP2 mRNAs in various tissues of healthy fish. gqRT-PCR
was performed in a 15 pL reaction volume containing 4 plL of diluted cDNA, 7.5 pL of
2x SYBR Green Master Mix, 0.6 puL of each primer (10 pmol/uL) and 2.3 pL of PCR grade
water and subjected to the following conditions: one cycle of 95 °C for 3 min, amplification
for 40 cycles of 95 °C for 20 sec, 58 °C for 20 sec, 72 °C for 30 sec. The baseline was
automatically set by the Thermal Cycler Dice Real Time System software (version 2). In
order to confirm that a single product was amplified by the primer pair used in the reaction, a
dissociation curve was generated at the end of the reaction by heating from 60 °C to 90 °C,
with a continuous registration of changes in fluorescent emission intensity. The Ct for the

RbLGP2 (target gene) and f-actin (internal control) were determined for each sample. The
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differences between the target and internal control Ct, called ACt were calculated to
normalize the differences in the amount of total cDNA added to each reaction and the
efficiency of the RT-PCR. The ACt for each sample was subtracted from ACt of the calibrator
and this difference was called AACt and the RbLGP2 gene expression was determined by
Livak comparative Ct method. The relative expression level calculated in each tissue was

compared with respective expression level in muscle.

3.2.4.4 Temporal RbLGP2 mRNA expression analysis post poly I:C challenge

gRT-PCR was performed with cDNA prepared from RNA obtained from gill, liver,
spleen, head kidney tissues and whole blood cells isolated from PBS and poly I:C challenged
animals. gRT-PCR conditions were the same as used for tissue distribution profiling. The ACt
for each sample was determined by the method described above and subtracted from ACt of
the un-injected control and this difference was called AACt. The relative expression of
RbLGP2 was determined by the Livak method. The relative fold change in expression after
immune challenges was obtained by comparing the relative expression to corresponding
PBS-injected controls. The expression normalized to PBS-injected controls is represented in

the figures.

All experiments were performed in triplicate. All data have been presented in terms of
relative mMRNA expressed as means * standard deviation (S.D.). Statistical analysis was
performed using un-paired two-tailed Student’s t-Test. P-values of less than 0.01 were

considered to indicate statistical significance.

3.2.5 Construction of expression vector and antiviral assay

3.2.5.1 Cell lines and viruses
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Rock bream heart cells were established as previously described (Wan et al., 2012).
Concisely, heart tissue was aseptically isolated from healthy rock bream fish (n=3). The
tissue was minced into small pieces (approximately 1 mm?®in size) and washed thrice with
HBSS (Sigma) containing antibiotics (400 IU/ml penicillin and 400 pg/ml streptomycin).
Then, the tissue was digested in 0.2% collagenase Il (Sigma) solution for 2 hours at 20 °C.
The digestion mixture was filtered through a cell strainer (70 pm mesh size), centrifuged at
1000 rpm for 10 min. The cells were resuspended in Leibovitz’s L-15 medium supplemented
with 20% FBS, 100IU/ml penicillin and 100pg/ml streptomycin, and inoculated into 75 cm?
cell culture flask. The cells were sub-cultured more than three times and adapted to 15%
FBS. Cells’ susceptibility to MABYV infection was tested. The 80% confluent monolayer cells
were treated with serially diluted MABYV and the plates were kept at room temperature (RT)
for 2 h for adsorption and facilitate viral infection. The plates were then incubated at 24 °C
for 72 h. The susceptibility of rock bream heart cells for MABV infection was confirmed by
observing the cytopathic effect (CPE) and the maximal non-cytotoxic concentration was
determined and used for the subsequent antiviral activity assay. MABV was kindly provided
by Prof. Sung-Ju Jung(Department of Aqualife Medicine, Chonnam National University,

Republic of Korea).

3.2.5.2 Construction of expression vector

The full length ORF of RbLGP2 (2046 bp) was amplified from liver cDNA using
gene specific primers (Table 5.) and PCR and cloned into TA vector (Takara, Japan). The
orientation and sequence was confirmed by restriction digestion and sequencing, respectively.
The RbLGP2 ORF cloned into TA vector was used as the template and the amplified PCR
product was digested with EcoRI and Xhol. The digested PCR products were purified using

Gel purification kit (Bioneer) and ligated overnight at 4 °C with EcoRI and Xhol digested
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pcDNA™ 3 .1/His B vector (Life Technologies). The ligation mixture was transformed into E.
coli DH5a cells and the clone harboring the recombinant plasmid was sequenced. The

affirmed clone harboring the rRbLGP2 was selected and named as pcDNA3.1-RbLGP2.

3.2.5.3 Antiviral assays

A monolayer of rock bream heart cells were cultured in 24 well plates at 24 °C, 24 h
prior to transfection. Before transfection, cells were washed once with sterile PBS, and then
replaced with Opti-MEM (Life technologies). The transfection procedure was performed with
Lipofectamine™2000 (Life technologies), as per manufacturer’s instructions. Briefly, 1.5 ug
of pcDNA vectors (empty pcDNA3.1 and pcDNA3.1-RbLGP2) were mixed with 1uL of
Lipofectamine™ 2000 and transfected into the heart cells in 100 pL Opti-MEM, and then
cultured at 24 °C for 48 h. After 48 h, cells were infected with MABYV and left at RT for 1 h
for adsorption. The cells were then cultured with Leibovitz’s L-15 medium and observed for
the appearance of CPE. The cells transfected with empty pcDNA3.1 and pcDNA3.1-RbLGP2,
but not infected with virus served as the mock infection control. After 7 days of MABV
infection, the cells were washed once with PBS, fixed with 4% paraformaldehyde (PFA) and

stained with 3% crystal violet for visualizing live cells.

3.3 Results

3.3.1 RbLGP2 identification, sequence characterization and phylogenetic analysis

A search of rock bream cDNA library for genes involved in antiviral immunity
resulted in a cDNA contig which when subjected to BLASTX shared highest homology with
the Olive flounder LGP2 and revealed conserved DEXDc and HELICc domains. The
identified cDNA sequence was named as RbLGP2. The cDNA comprised of a 5" untranslated
region (UTR) of 105 bp, coding region of 2046 bp and 3' UTR of 718 bp. The ORF encoded

for a protein of 681 amino acids with a molecular mass of 77 kDa and isoelectric point of 6.7.
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The 3' UTR revealed two mRNA instability motifs. The RbLGP2 protein length was three
amino acids excess than the human and mouse homologues. Subjecting the derived RbLGP2
protein to the CDD in NCBI revealed several conserved motifs common among the other
homologues. RbLGP2 possessed one DExDc (DEAD/DEAH box helicase domain) (residues
1-174) in the N-terminal region, one Reslll (conserved restriction domain of bacterial type 11l
restriction enzyme; residues 3-223), one HELICc (helicase superfamily c-terminal domain;
residues 339-507), RIG-1_C-RD (C-terminal domain of RIG-I/ regulatory domain/ repressor
domain; residues 552-675), one MDAS_ID (insert domain of MDADS helicase and similar
proteins; residues 230-309), RNA binding loop (residues 596-607). There were two predicted
zinc binding motifs (residues 556-561 and 610-618). RbLGP2 protein portrayed the presence
of six significant motifs including DEDxD/H box for RNA helicase activity (Fig. 10).
Pairwise alignment of RbLGP2 shared highest identity and similarity of 79 and 90%,
respectively with the olive flounder LGP2. RbLGP2 shared more than 60% of identity with
fish homologues while 46 to 51% identity with the other vertebrates. However, RobLGP2
DEXD/H (69-85% identity) and HELIc domains (68-80% identity) possessed high percentage
of identity with the respective domains of fish homologues (Table 6. and 3.3). Multiple
sequence alignment showed high degree of conservation in the domain specific regions. In
particular, the DExDc and HELICc domains showed higher conservation with the vertebrate
homologues. The cysteine residues forming a disulfide-bond in the C-terminal portion were
evolutionarily preserved in all the analyzed species (Fig. 10). The phylogenetic analysis
performed to unravel the evolutionary relationship of RbLGP2 revealed its closer homology
and association with the fish homologues with the other vertebrates forming a separate cluster
and the MDAS homologues separated as a distinct branch and grouped together. Owing to the

highest identity shared, rock bream associated closer with that of olive flounder (Fig. 11).
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Rock bream
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Fig. 10. Multiple sequence alignment of RbLGP2 with other homologues.

The amino acid sequence derived from RbLGP2 was submitted to GenBank under the
accession ID. KF267451). The rock bream species name is bold and red wave underlined.
The homologous LGP2 sequences were obtained from NCBI and GenBank and the accession
numbers are given in Table 6. Identical residues are indicated by “*”. Highly conserved and
semi-conserved residues are indicated by “:” and “.”, respectively. The DExDc helicase
domain (1-174) and DExDc helicase motifs are grey and blue shaded (with numbers on the
top), respectively. The Res Il domain (3-223) was red underlined. The MDAS5_ID (230-309)
is indicated by purple residues which are pink wave underlined. The HELICc domain (339-
507) was red bold and double underlined. The RIG-I_C_RD (RD domain: 552-675) is
indicated in a pink dash lined box. The RNA binding loop is denoted by a red box. The Zn®*
binding motifs are enclosed in a black box and the cysteine residues forming a disulfide-bond

are indicated as purple colored bold residues.

Table 6. Pairwise alignment of RboLGP2 protein with LGP2 homologues.

Identity and similarity percentages were derived using the whole protein sequence of
RbLGP2 and homologues.

Species Taxonomy Identity Similarity Length Accession No. Database
Rock bream Actinopterygii 100 100 681 KF267451

Olive flounder  Actinopterygii 79 90 682 ADI75503 GenBank
Rainbow trout  Actinopterygii 71 84 677 CAZ27718 GenBank
Atlantic salmon  Actinopterygii 71 84 678 NP_001133649  NCBI
Grass carp Actinopterygii 64 78 680 ACY78116 GenBank
Zebrafish Actinopterygii 64 77 679 NP_001244086  NCBI
Frog Amphibia 51 71 682 NP_001085915 NCBI
Chicken Aves 52 67 674 AEK21509 GenBank
Cow Mammalia 49 67 680 NP_001015545 NCBI
Human Mammalia 47 67 678 NP_077024 NCBI
Norway Rat Mammalia 46 68 678 NP_001092258 NCBI
House mouse Mammalia 46 67 678 NP_084426 NCBI
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Table 7. Percentage of identity and similarity of DExD and HELI1Cc domains of

RbLGP2 with that of the other homologues.

DExD domain DExD domain HELICc domain HELICc domain

Species (Identity %)  (Similarity %)  (Identity %) (Similarity %)
Rock bream 100 100 100 100
Olive flounder 85 92.5 79.5 88.8
Rainbow trout 74.5 83.7 78.8 87
Atlantic salmon 76.7 85.1 78.1 86.4
Grass carp 71.8 83.7 73.1 40.8
Zebrafish 69.4 80.9 68.4 78.1
Frog 58.3 76.7 57.9 72.2
Chicken 58 72.6 53.7 65.7
Cow 52.8 72.9 52.9 66.9
Human 52.1 73 50.3 66.3
Norway Rat 49.8 74 51.7 68.8
House mouse 50.2 74 51.1 68.8
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Fig. 11. Phylogenetic analysis of RbLGP2 with LGP2, RIG-1 and MDADS5 sequences.

The tree was constructed by the minimum evolution method in MEGA 5.0 using the full-
length amino acid sequences. The RIG-1 and MDADS sequences were obtained from GenBank.
The accession numbers of MDAS5 sequences are Orange spotted grouper: AEX01716,
Rainbow trout: NP_001182108, Japanese flounder: ADU87114, Goldfish: AEN04473, Frog:
XP 002933320, Chicken: BAJ14020, House mouse: AAMZ21359, Norway rat:
NP_001102669, Human: AAG34368. The accession numbers of the RIG sequences are
Human: AF038963, House mouse: AY553221, Atlantic salmon: NP_001157171, zebrafish:

ENSDARTO00000058176. The accession numbers of the LGP2 sequences are tabulated in
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Table 6.. Numbers above the line indicate percent bootstrap confidence values derived from

5000 replications.

3.3.2 Genomic characterization of RbLGP2

The genome of RbLGP2 was derived from the BAC clone using gene specific primers.
RbLGP2 genome possessed 12 exons intervened by 11 introns (Fig. 12). Exons 2 to 12
comprised the coding region while the first exon contained untranslated nucleotides in its
entirety. The exon 12 harbored the 3' untranslated nucleotides. The DExDc domain was
distributed in the 2", 3" and a part of 4™ exon. The coding part for the HELICc domain was
present in the 8" and 9™ exon. The RbLGP2 genome shared its high similarity with that of
olive flounder, except for the 6™ exon where olive flounder LGP2 showed three nucleotides
in excess, accounting for the extra amino acid than that of RbLGP2. Next to flounder,
RbLGP2 shared high similarity with the genome of stickleback. Both olive flounder and

stickleback had the first exon with untranslated region in its entirety.
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3.3.3 Promoter analysis of RbLGP2

The putative promoter and 5' flanking region analysis revealed the presence of several
TFBs common to that of olive flounder. Proximal region revealed the presence of activator
protein-1 and -4 (AP-1and -4), CCAAT-enhancer binding protein-a, - (C/EBP -a and -3),
interferon regulatory factor-1 and -2 (IRF-1 and -2), nuclear factor-kappa (NF-kappa), CAMP
response element binding protein (CRE-BP/CREB), Oct-1, AML-1a, heat shock factor (HSF),

Brn-2, Sterol Regulatory Element-Binding Protein (SREBP), and CdxA (Fig. 13).
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ACTTTGTACCTTAGTATAATAGTGAGTCAGAAAGTTCATCTGTGGCCAAATAGGTGCCTG
AP-1
TCATGGGGCATCTGTGTAAAATGCTCTTTCTAGTACCAAACACTTCTCCTGTTCCTGTTC
TTGAGTGTGTAGCTTGAGGCAGTAGGTTTCGCTTTCCTGATGTAATGAAAAGTAGGCAGG
IRF-1/IRE-2 Oct-1
ACCCAGTTAGAGTATACAGCATCCAGAACCCAAAGTTTGCGGTGGCCTCTCTCTTTTCAG
AML-1a

TTTCAATAAACCACCTTGACTGTAAGCCACATATACAGTTTAAGATATATATATATAAGC
CATATGACCCATGGCTAGATTATAAAGGGTTTGTAAAAGACTTGTTGTCAGTGAAGTTCA
GGCTTCCCCTGTCACTGCATAGTGAAGACTTGCTGTCGTTCCTCTAGAGCCTCCCTCAGT
AGTGCCACTGTGCTGGCAGAGTGAACAGAGCTTTAAGTTTTGTTTCTCTGCATGACACAG

AML-1a
AGGATCATAACCAGATTTAAAACACCACCTAAAACCACACAGTGAACACTGAGTGCTGTC

AML-1a
TGCATGGAAGCAACTTGTGTGAATGCCTTGAACAGCCAAATCATGGTTAATACTGTATAC
Brn-2
AGTATGTATACTTGGTGAAGAATACAGAATACAGAAGGTATTTTATGTATTGTATTGAAT
GCAATATATTTATCGTATACTTTTTCATTATCCCGTGATTTGTCTTTCACCCATCTTTTT
SREBP
ATATAGAGGTAGAGGTAATTCAGCTTTTTACAGAGGTGTATGGGCATGTATTTTTCCTGC
TTATATAGGATATATGGATATTTGAATATTATTCATTGTTGTGTATAAGTATAGAGCTTC
TGAATTTTATTCAGGTTATTAATATTGATATTATTTCTTGGATAATTTGTGCATCTGGTT
GCTCCAAAAGCTATTTACAAGATGTTATTCTTCATTACTTATTACTTTATCGCTTTGAAA
AAGGATGTATTGCCAAAATGTTGCTAATTTGATCAAGTCTATGCTGCATATCTGTAAATG
C/EBPa
TACAGTGCTTCTGCTTTTTATCAAGTTATAATACCATTATGCATTGTCTGTACAGCTTCA
HSF Oct-1
CTCAAATTCTGTTTAGCTCGAGAGCTTACGCTTAAGAGTCTTGCAAAACAACCATTTGCA
C/EBPa.
ACTGAAATCAAACAGCTGCTGAATAACCGGAGGGCAGAAAACATCAAGTTAGACAAGTTG
AP-4
ATGTTAAAACAGTCACGGGGATCCCTGCGTCAACACAAGCAACTACAGGTTTTGCTTTCC
CRE-BP NF-kap CREB IRF-1
TGATGCAATCATGAACAACAGATTGGACCCAGTTAGGGTGCATACAAAAACTCAGGAAGT
TTTCAACACTCAGCTATAAGCTACTAATAGAGTATATATATAGATAAGATGTAAATCTTA
CATGCCCTTATTARAAAAAGGTTGTGAAAGACCGATTTTTATGTCAGTGTAGTCAGACTTC
C/EBPp CdxA
CTCTGTCACTGCATAGTGAAGACTATCTGTTGTTCCTCCAGAGCCTCCCTCAGTGGGGCCATTT
TTCAGTTCACAGGGCTTTTACTTTCGTTTCCCTGTCTCCGCGTCAC%CAGCTGATCACAACAGAA
HSF
TAAAACCCCATCCACCTAAACTGTGTGGTGGCAGTGGACAAGGAGAAGCTGAGAACACCACACAG
CTGACCGE~intronJGAGGAAAGTGTAGGATG
*M

Fig. 13. Analysis of the RbLGP2 gene 5' -flanking region.
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The transcription factor binding sites are colored, bold, underlined and denoted with the

corresponding name below. The transcription initiation site is bold, red and denoted by an

upward-facing arrow. The intron between the UTR and the start codon is denoted by a box.

The start codon is indicated by a “*” with a methionine residue written below.
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3.3.4 Spatial expression analysis of RbLGP2

In order to delineate the physiological distribution of RoOLGP2 mRNA, various tissues
from healthy rock bream were isolated and analyzed using RT-PCR. Although ubiquitous
expression was found in all the examined tissues, RboLGP2 mRNA was highly detected in

blood, followed by liver. Gill showed almost half the expression as detected in liver (Fig. 14).
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Fig. 14. Tissue distribution analysis of RoLGP2.

RbLGP?2 tissue-specific expression in muscle, intestine, skin, kidney, head kidney, spleen,
gill, brain, liver tissues, and blood, collected from unchallenged rock bream was analyzed
using quantitative RT-PCR. Relative mRNA expression was calculated using the 244
method, with B-actin as the invariant control gene. In order to determine the tissue-specific
expression, the relative mRNA level was compared with muscle expression. Data are
presented as mean values (n=3) with error bars representing SD. Data shown with “*”

indicates significant expression levels at P<0.01.

3.3.5 RbLGP2 temporal expression analysis post poly 1:C challenge
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Since LGP2 is known to recognize dsRNA, poly I:C which is a synthetic analog of
dsRNA was employed to understand the modifications of the RbLGP2 mRNA level in rock
bream. Poly I:C administered in vivo altered the RbLGP2 expression in the major immune
organs including blood, gill, liver, spleen and head kidney. In gill, liver and spleen,
modulations of expression could be observed at all time-points of study, whereas in blood,
changes could be observed from 6 h to 24 h. In head kidney, stimulation could be observed
from 3 h to 12 h p.i. In gill (12-fold), liver (9-fold), spleen (14-fold) and head kidney (13-
fold), maximum level of expression was observed at 6 h p.i, whereas in blood, highest
expression was observed a little later at 12 h (4.4-fold) p.i. (Fig. 15).

18

15 *

12

Relative mRNA expression

Fig. 15. RbLGP2 expression analysis after immune challenges.

RbLGP2 expression was analyzed in liver, blood, spleen, gill and head kidney post poly I:C
challenge. Relative mRNA expression was calculated by the 2" method relative to PBS-
injected controls and normalized with the same, with -actin as the reference gene. Data are
presented as mean values (n=3) with error bars representing SD. Data shown with “*”

indicates significant expression levels at P<0.01.

3.3.6 Antiviral assays
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In order to demonstrate the antiviral function of the RbLGP2, rock bream heart cells
were transiently transfected with either the empty vector (p)cDNA™ 3.1/His B vector) or the
pcDNA3.1-RbLGP2 and then infected with marine birnavirus. After 7 days post infection of
the cells with the virus, CPE could be observed followed by cell death. The cells transfected
with empty vector were completely killed while the cells transfected with pcDNAS3.1-
RbLGP2 revealed complete protection against infection. The cells in which the RobLGP2 was
overexpressed led to the activation of the downstream signaling pathways and synthesis of
IFNs and ISGs. These results affirmed the antiviral function of RoLGP2 and the existence of

RLR signaling pathway in teleosts (Fig. 16).

MABV
(100TCIDy,)

MABV
(500TCIDy,)

Mock

Fig. 16. Antiviral activity of RoLGP2 against MABV.
The empty pcDNA 3.1 vector and pcDNA3.1-RbLGP2 were transfected into rock bream

heart cells. After 48 h of transfection, at 24 °C, the cells were infected with MABV at
indicated densities. After 7 days of infection, cells were fixed with 4% PFA and stained with

3% crystal violet.

3.4 Discussion

Innate immune recognition of viruses is the preliminary step in the initiation of innate
immunity/cell protection against infection and triggering of adaptive immunity. Multitude of
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signal transduction events are involved in the activation and production of proinflammatory
cytokines with IFN being the hallmark of antiviral responses. The cytosolic surveillance and
induction of antiviral immunity is exclusively performed by cytosolic receptors of the RLR
family, comprising of RIG-lI, LGP2 and MDA5. LGP2 was first described as gene
neighboring the STAT3 and STATS5 loci on 11" chromosome of mouse, by Laboratory of
genetics and Physiology (Cui et al., 2001). LGP2 is a virus inducible protein, first identified
to be a negative regulator of RIG-mediated dsSRNA recognition (Diperna, 2005; Rothenfusser
et al., 2005).

Unlike the grass carp LGP2, RbLGP2 sequence possessed only two mRNA instability
motifs (Huang et al., 2010b). In silico characterization of RbLGP2 protein revealed the
presence of an N-terminal DExXD/H-box helicase domain and a C-terminal RD but lacked any
CARD, similar to the other LGP2 members (Yoneyama et al., 2005). RbLGP2 possessed
conserved domains including DExD/H-box helicase domain, RD, Reslll domain, and
HELICc domain similar to other fish species (Chang et al., 2011; Huang et al., 2010b; Ohtani
etal., 2010). The RLRs (RIG-I, MDAS and LGP2) are members of large helicase superfamily
I1 (SFII), which participate as ubiquitous group of energy-dependent, nucleic acid remodeling
proteins in many cellular pathways involving nucleic acids. Similar to the other SF2 members,
the RLRs harbor a catalytic core comprising of two RecA-like domains which contains eight
helicase domain motifs. The highly conserved helicase domain sequence motifs, motif I-VI
function to co-ordinate RNA binding and ATP hydrolysis. The DEXD/H box, alternatively
called as Walker B motif corresponds to “DECH” in the RLR proteins. Mutations in these
motifs of RLR proteins resulted in defective ATP hydrolysis activity and hence antiviral
signaling (Bruns and Horvath, 2012). The regulatory domain was identified as an auto-
inhibitory domain for RIG-I. Deletion of RD in RIG-I increased basal signaling activity. This

auto-inhibition plays a vital role in RIG-I regulation, which is generally inactive in the
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absence of an activating ligand. Mammalian LGP2 is known to bind (+) sSRNA, ssSRNA(-)
and dsRNA viruses (Satoh et al., 2010). The mammalian RD with two Zn** binding motifs
and an RNA-binding loop plays a significant role in binding to viral RNAs (Li et al., 2009b;
Takahasi et al., 2009b). The RD of LGP2 was also shown to interact with the RD of RIG-I
and suppress its self-association (Venkataraman et al., 2007). LGP2 RD possess higher
affinity for RNA compared to the RIG-I RD and MDA5 RD (Takahasi et al., 2009a). The
lysine and phenyl alanine residues are determined to be significant in RNA binding (Takahasi
et al., 2009b). In RbLGP2, although the phenyl alanine (F) residue was present, the lysine
residue (K) was replaced by arginine (R). The two cysteines in the Zn?* binding motif (CxxC
motif) are required for LGP2 binding of RNA (Cui et al., 2008). Similar to the second
flounder CxxxxxxC motif, RoLGP2 also revealed an extra residue forming a CxxxxC motif,
instead of the conserved CxxC motif. RD in flounder was proven to be necessary for antiviral
activity (Ohtani et al., 2010). The structural conservation of RbLGP2 RD suggests that
RbLGP2 may recognize ds-and ss-RNA viruses in a similar fashion. CARD domain hidden in
the inactive conformation of RIG-I is activated upon the recognition of viral ligands by RD
(Bruns and Horvath, 2012). CARD proteins are involved in protein-protein interactions. The
tandem CARDs located in the N-termini of RIG-1 and MDAS are the primary effector
domains in transducing signals to MAVS. The absence of CARDs in LGP2 determined it to
have an alternative role in antiviral signaling as a negative regulator of RIG-1 mediated IFN
response (Diperna, 2005). However, later it was dissolved to be a positive regulator of viral
signaling upstream of RIG-1 and MDAS5. The common structural features among the RLR
family members reveal functional similarity, yet a controversial view persists on exact
function of LGP2. However, in teleosts, LGP2 homologues had been proven to induce IFN
signaling and possess antiviral functions (Chang et al., 2011; Huang et al., 2010b; Ohtani et

al.,, 2010). The multiple sequence alignment and phylogenetic analysis, revealing

74



conservation and closer relationship of RbLGP2 with the teleost and human homologues are
expected to possess similar antiviral functions.

The genomic structure of RbLGP2 composed of 12 exons is similar to that of flounder
and stickleback. Tetraodon genome revealed 12 coding exons, contrary to the 11 coding
exons in RbLGP2 and flounder LGP2. The 7™ coding exon in RbLGP2 was split into two
exons in Tetraodon. Although a few coding exons seemed to be conserved with the human
and mouse homologues, certain degree of variation could be observed. Similar to the flounder
LGP2, the 9" exon in RbLGP2 corresponded to two exons (10" and 11™ exons) in human
LGP2. The two exons at the 5' end of human LGP2 were composed of only untranslated
regions, making the number of exons higher than the teleosts. The functional significance of
intron insertion between the UTRs and coding exons needs to be delineated. The structural
conservation of RbLGP2 with the teleosts suggests that the separation of the coding exons
and insertion of introns would have happened later in evolution whose significance is still not
understood.

The promoter and 5' flanking region analysis revealed the presence of several
canonical motifs that bind transcription factors. However, RbLGP2 did not possess any
TATA box upstream of the transcription initiation site. A comparative computational analysis
performed with the upstream sequence of humans, medaka and Tetraodon revealed that
human sequence possessed very few motifs significant for binding of transcription factors,
compared to teleosts. The presence of IRF-motifs signifies their regulation during viral
infection. However, RbLGP2 flanking region revealed only six IRF biding sites compared to
flounder LGP2 which possessed 12 IRF motifs (Hikima et al., 2012). Earlier studies on the
putative cis regulatory elements suggested that although the disposition and clustering of the
motif elements were not conserved in the promoter structure among teleosts and human, the

types of canonical motifs including IRFs were conserved. The presence of IRF and NF-kappa
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binding sites in the promoter of RbLGP2, similar to those present in the type | IFN and IFN
inducible proteins (like Mx and ISG15), which are regulated by TLRs and RLRs suggests
RbLGP2 regulation by similar factors.

Spatial expression analysis of RbLGP2 showed constitutive expression in all the
examined tissues with highest expression level in blood and liver. Constitutive expression in
all the tissues signifies the immunosurveillance function of RbLGP2. Blood is a major
immune organ and recently the significance of liver as an immune organ is being highlighted
(Gao et al., 2008; Nakashima et al., 2012; Seki et al., 2012). Gill is a mucosa-associated
lymphoid tissue, under constant exposure to the environment is always under threat of
infection. However, the low levels of RbLGP2 in immune tissues like head kidney, skin, and
spleen suggest their tight regulation. Flounder and grass carp LGP2 were also highly
expressed in immune related tissues (Huang et al., 2010b; Ohtani et al., 2010).

Poly I:C and RNA viruses are known to induce LGP2 expression (Kato et al., 2008;
Rothenfusser et al., 2005). In this study, in vivo poly I:C challenge modulated the expression
of RbLGP2 at the early phase suggesting its involvement in innate antiviral immune defense
against RNA viruses. Further, similar to the grass carp LGP2 which was stimulated after
GCRYV infection, up-regulation of RbLGP2 transcripts could be observed during the early
phase in spleen. However, RoLGP2 showed different pattern of expression in liver. Grass
carp LGP2 was elevated to the maximum at 48 h p.i. whereas RbLGP2 showed highest
expression level at 6 h p.i. (Huang et al., 2010b). Atlantic cod LGP2 was induced at 6 h in
spleen after poly I:C stimulation, similar to RboLGP2 (Rise et al., 2008). LGP2 is known to
exert a feedback control at the early steps of IFN synthesis (Vitour and Meurs, 2007). In
mammals, under different experimental conditions, contrary roles had been expressed on the
function of LGP2 as both a negative and positive regulator (Bruns and Horvath, 2012). LGP2

may play both roles in IFN induction and there may be distinct effects depending on the type
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of virus and whether it is recognized by RIG-1 or MDA-5 (Childs et al., 2012). LGP2 is
proposed to work upstream of RIG-I and MDA5 and helps in  RNA recognition by
unwinding or stripping nucleoproteins of viral RNA, thereby making the nucleic acid PAMP
accessible for binding (Schmidt et al., 2012). LGP2 sequesters RNA and prevents its binding
to MDAS or RIG-I and hence controlling the IFN level when viral infection diminishes.
However, in teleosts, LGP2 has been demonstrated to be positively involved in antiviral
immunity (Chang et al., 2011; Hikima et al., 2012; Ohtani et al., 2010). The high expression
of immune genes resulting in synthesis of proinflammatory cytokines and apoptotic related
proteins is normally kept under low level to prevent host damage because of excessive
inflammatory responses. The induction of RbLGP2 after poly I:C injection suggests its
activation after viral stimulation and its role in antiviral defense.

In mammals, both positive and negative regulatory aspects of RIG-I/MDADS signaling
have been attributed for LGP2. Studies with LGP2 deficient mice showed impaired IFN
production in dendritic cells and embryonic fibroblasts against RNA viruses recognized by
MDAS5 (e.g., picornaviruses), but not for influenza virus RNAs recognized by RIG-I.
However, LGP2 was necessary for IFNP production against Sendai virus, Japanese
encephalitis virus, and reo viruses, which are recognized by RIG-I, providing evidence for
LGP2 as a positive regulator of both RIG-I and MDA5 mediated antiviral responses. In
teleosts, LGP2 has been demonstrated to enhance antiviral immunity and play a positive
regulatory role in RLR signaling cascade (Chang et al., 2011; Hikima et al., 2012; Ohtani et
al., 2010). This study revealed the antiviral protection activity of RoLGP2 against an ssSRNA
virus, MABYV, thus expanding the family of viruses which could be recognized by the RLR
family proteins and confer protection.

In conclusion, this study affirmed the existence of an ancestral PAMP recognition

receptor: LGP2 in rock bream through genomic and functional characterization. Our results
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demonstrate the induction of LGP2 by poly I:C and LGP2 inhibits the MABYV infection. This

study stands as an averment for the positive regulatory role of LGP2 in teleosts.
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CHAPTER IV

Characterization of the signaling adaptor Mitochondrial

AntiViral Signaling protein (MAVS)
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4.0 Characterization of the signaling adaptor Mitochondrial AntiViral Signaling protein

(MAVS)

Abstract

Mitochondrial antiviral signaling protein (MAVS), also termed as VISA (virus-
induced signaling adapter), IPS-1 and Cardif, is a mitochondrial resident protein involved in
the activation of downstream signaling molecules after recognition of viruses by cytosolic
receptors. Aggregated MAVS form protease resistant prion-like aggregates that activate IRF3
dimerization. Rock bream MAVS (RbMAVS) protein harbored a CARD and a
transmembrane domain. Pairwise alignment and phylogenetic analysis revealed the closer
relationship of RbMAVS with the fish homologues. ROMAVS tissue distribution analysis
showed ubiquitous presence with maximum level of expression being determined in blood
and transcriptional modulations analyzed in immune related tissues like liver, spleen, head
kidney and blood cells revealed upregulation after poly I:C challenge. The recombinant
RbMAVS protein showed protection of cells against marine birnavirus infection. Thus
RbMAVS is a new member of the MAVS family of proteins playing a significant role in the

defense of rock bream against viruses.
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4.1 Introduction

Innate immune recognition of the viral PAMPs through the germ-line encoded pattern
recognition receptors (PRRS) activates multiple signaling cascades resulting in the induction
of interferons (IFNs) and several other cytokines. The innate immune system plays a vital
role in the early control of infection and induction of adaptive immunity. The three main
families of PRRs involved in PAMP detection are toll-like receptors (TLRs), retinoic acid
inducible gene | (RIG-I)-like receptors (RLRs), and nucleotide oligomerization domain-like
receptors (NLRs) (Hayashi et al., 2011; Kumagai and Akira, 2010). The TLR orthologues
have been characterized from teleosts. A few orthologues which were identified from teleosts

need to be characterized from humans (Rebl et al., 2010a; Rebl et al., 2010b).

The RLR family comprises of three structurally homologous members namely,
retinoic acid-inducible gene I (RIG-I, also called DEAD (Asp-Glu-Ala-Asp) box polypeptide
58 (DDX58)), melanoma differentiation-associated gene 5 (MDAJS, also called interferon
induced with helicase C domain 1(IFIH1)), and laboratory of genetics and physiology 2
(LGP2, also called DExH (Asp-Glu-X-His) box polypeptide 58 (DHX58)) (Loo and Gale,
2011). Ever since the recognition of RIG-I’s role in antiviral immunity, studies on structural
and regulatory aspects of these receptors have burgeoned in recent years (Yoneyama and
Fujita, 2007b; Yoneyama et al., 2004). RIG-1 and MDAS possess a helicase and CARD
domains. LGP2 harbors a helicase domain while it differs from RIG-1 and MDAG5 in lacking a
CARD domain (Leung and Amarasinghe, 2012). This structural variation confers LGP2 a
controversial role in antiviral immunity (Diperna, 2005; Satoh et al., 2010). RIG-1 and MDA5
show variation in viral PAMP recognition; while RIG-I binds preferentially to ssSRNA
phosphorylated at the 5' end, MDAS5 recognizes long dsRNA that do not require 5'

phosphorylation (Yoneyama et al., 2005). The difference in the ligand specificity of the

81



receptors determines the type of viruses being recognized. Studies from knock-out mice
provided evidence for the RLR pathway being the central innate immune pathway against
viral infection (Kato et al., 2006; Kumar et al., 2006). IFN signaling has been understood to
induce an amplification loop in the innate immune response that further increases immune
activation (Foy et al., 2005). In addition to that, IFN-o/f signaling drives the maturation of
dendritic cells and other antigen presenting cells, supports the differentiation of specific
immune effector cells as well as induces the production of localized proinflammatory
cytokines, which together serve to control cell-mediated defenses and modulate the adaptive
immune response to virus infection (Biron, 1999). Fish are also determined to have virus
induced receptors like RIG-1, MDA5S and LGP2 and also downstream signaling molecules
like IFNSs, interferon stimulated genes (ISGs), suggesting the conservation of the RLR system

in vertebrates (Robertsen, 2006; Zou et al., 2010; Zou and Secombes, 2011).

The RIG-I and MDADS signaling bifurcates in the cytosol at a mitochondrial resident
protein, called mitochondrial antiviral signaling protein (MAVS), also known as IFN-f
promoter stimulator 1 (IPS-1), virus-induced signaling adaptor (VISA), and CARD adaptor
inducing IFN-B (Cardif) (Kumar et al., 2006). The recognition of virus by RIG-I results in an
ATP-dependent conformational change, exposing its two N-terminal CARDs and induces
oligomerization. The exposed CARD domains of RIG-I interact with the CARD domain of
the MAVS, and subsequently activate inhibitors of kB kinase (IKK)-a, -B, -g, and TANK
binding kinase 1 (TBKZ1) resulting in the phosphorylation and activation of NF-«xB and
IRF3/IRF7. The signaling process culminates in the induction of IFN promoters and

synthesis of IFNs and inflammatory cytokines (Loo and Gale, 2011).

Human MAVS possesses an N-terminal CARD, a proline-rich (Pro) region, and a C-
terminal mitochondrial transmembrane (TM) sequence. Extensive studies about location,

structure, functions, enhancer, inhibitor and other mechanisms have been performed on
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human MAVS (Jia et al., 2009; Onoguchi et al., 2010; Tang and Wang, 2009). Teleosts
MAVS have been identified from grass carp (Su et al., 2011), green-spotted pufferfish (Xiang
et al.,, 2011), Atlantic salmon and zebrafish (Biacchesi et al., 2009). Functional
characterization of fish MAVS has proven it to be a mediator for IFN gene activation and
plays a major role in innate immune response against viruses (Biacchesi et al., 2009; Simora
et al., 2010; Xiang et al., 2011). In this study, we have cloned MAVS gene from rock bream

and proven to possess antiviral function against an RNA virus, marine birnavirus (MABV).

4.2 Materials and methods

4.2.1Animal rearing, cDNA library construction and RbMAVS gene identification
Healthy rock bream fish with average weight of ~50 g, procured from the Ocean and
fisheries Research institute (Jeju, Republic of Korea) were adapted to the laboratory
conditions (salinity 34 = 1%, pH 7.6 + 0.5 at 24 £ 1 °C) in 400 L tanks. Blood samples were
aseptically harvested from the caudal fin of healthy, unchallenged fish using a 22 gauge
needle and centrifuged immediately for 10 min at 3000 x g at 4 °C, to collect the hematic
cells. Gill, liver, brain, kidney, head kidney, spleen, intestine, muscle and skin tissues were
harvested on ice from three healthy animals and immediately flash-frozen in liquid nitrogen
and stored in -80 °C, until RNA extraction. Tri Reagent (Sigma, USA) was employed to
obtain total RNA from tissues. The concentration and purity of RNA were evaluated using a
UV-spectrophotometer (BioRad, USA) at 260 and 280 nm. Purified total RNA samples were
subjected to mMRNA purification using Micro-FastTrack 2.0 mRNA isolation kit (Invitrogen).
First strand cDNA was synthesized from 1.5 pug of mRNA using Creator  SMART" cDNA
library construction kit (Clontech, USA); amplification was performed with Advantage 2
polymerase mix (Clontech) under conditions of 95 °C for 7 s, 66 °C for 30 min and 72 °C for

6 min. Over-representation of the most commonly expressed transcripts was excluded by
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normalizing the synthesized cDNA using Trimmer-Direct cDNA normalization kit (Evrogen,
Russia).

A cDNA GS-FLX shotgun library was created from the sequencing data obtained by
using the GS-FLX titanium system (DNA Link, Republic of Korea). The cDNA library was
searched for genes involved in antiviral immunity using BLASTX. A cDNA contig when
subjected to BLASTX was identified to reveal high homology to Tetraodon nigroviridis and
was found to contain the conserved domains present in the other homologues. The cDNA was

named RbMAVS and taken for further work.

4.2.2 Sequence characterization, genome structure and phylogenetic analysis of
RbMAVS

The RbMAVS cDNA sequence identified by BLAST was subjected to DNAssist2.2 to
predict the open reading frame (ORF) and translate nucleotide to protein. The conserved

domains were identified using Expasy (http://www.expasy.org/), SMART (http://smart.embl-

heidelberg.de/) and conserved domain database search (CDD). ClustalW was employed to
execute pairwise and multiple sequence alignment (Thompson et al., 1994). A phylogenetic
tree was reconstructed using minimum evolution method available in MEGA 5.0, with
bootstrap values calculated with 5000 replications to estimate the robustness of internal
branches (Tamura et al., 2011). The complete amino acid and CARD region identity and
similarity percentages were calculated by MatGAT program using default parameters

(Campanella et al., 2003).

4.2.3 Transcriptional profile of RoMAVS gene in challenged and normal tissues

4.2.3.1 Poly I:C challenge
In order to understand the transcriptional modifications of RbMAVS in vivo after dsRNA

administration, poly I:C which is a viral mimic was employed. Sterile poly I:C stock was
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prepared by dissolving poly I:C at the rate of 1.5 mg/ml in PBS and filtered through a 0.2um
filter. A time course experiment was designed, wherein 100 uL of the poly I:C stock was
intraperitoneally administered to the fish. The control animals were injected with an equal
volume of PBS. Liver, spleen, head kidney tissues and whole blood cells were harvested from
the un-injected, PBS-injected and immune challenged animals at time points of 3, 6, 12, 24,

and 48 h post injection/infection (p.i.).

4.2.3.2 RNA isolation and cDNA synthesis

In order to perform the tissue distribution profiling of RbMAVS, gills, liver, brain,
kidney, head kidney, spleen, intestine, muscle and skin tissues and whole blood cells were
harvested from un-injected fish. After challenge with PBS and poly I:C, liver, spleen, head
kidney tissues and whole blood cells were harvested from challenged animals at the
corresponding time points. Total RNA was obtained from tissues using Tri Reagent  (Sigma,
USA). The concentration and purity of RNA were evaluated using a UV-spectrophotometer
(BioRad, USA) at 260 and 280 nm. The RNA was diluted to 1pg/ul. and cDNA was
transcribed from 2.5 pg of RNA from each tissue using a PrimeScript  first strand cDNA
synthesis kit (TaKaRa). Concisely, RNA was incubated with 1 uL of 50 uM oligo(dT) and

1 pL of 10 mM dNTPs for 5 min at 65 °C. After incubation, 4 pL of 5> PrimeScript" buffer,

0.5 uL of RNase inhibitor (20 U), 1 uL of PrimeScript™ RTase (200 U), were added and
incubated for 1 h at 42 °C. The reaction was terminated by adjusting the temperature to 70 °C
for 15 min. Finally, synthesized cDNA was diluted 40-fold before storing at -20 °C for

further use.

4.2.3.3 Tissue distribution
Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was used to

examine tissue distribution of RbOMAVS mRNAs in various tissues of healthy fish using gene
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specific primers (Table 8.). qRT-PCR was performed in a 15 uL reaction volume containing
4 uL of diluted cDNA, 7.5 puL of 2x SYBR Green Master Mix, 0.6 pL of each primer (10
pmol/uL) and 2.3 uL of PCR grade water and subjected to the following conditions: one
cycle of 95 °C for 3 min, amplification for 40 cycles of 95 °C for 20 sec, 58 °C for 20 sec,
72 °C for 30 sec. The baseline was automatically set by the Thermal Cycler Dice " Real Time
System software (version 2). In order to confirm that a single product was amplified by the
primer pair used in the reaction, a dissociation curve was generated at the end of the reaction
by heating from 60 °C to 90 °C, with a continuous registration of changes in fluorescent
emission intensity. The RbMAVS gene expression was determined by Livak comparative Ct
method. The relative expression level calculated in each tissue was compared with respective

expression level in muscle.

4.2.3.4 Temporal RoMAVS mRNA expression analysis post poly 1:C challenge
gRT-PCR was performed with cDNA prepared from RNA obtained from gill, liver,
spleen, head kidney tissues and whole blood cells isolated from PBS and poly I:C challenged
animals. gRT-PCR conditions were the same as used for tissue distribution profiling. The
relative expression of ROMAVS with respect to the un-injected controls was determined by
the Livak method. The relative fold change in expression after immune challenges was
obtained by comparing the relative expression to corresponding PBS-injected controls. The

expression normalized to PBS-injected controls is represented in the figures.

All experiments were performed in triplicate. All data have been presented in terms of
relative mRNA expressed as means * standard deviation (S.D.). Statistical analysis was
performed using un-paired two-tailed Student’s t-Test. P-values of less than 0.01 were

considered to indicate statistical significance.
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Table 8. Primers used in RoMAVS characterization and gRT-PCR.

The restriction sites are in small letters.

Gene Purpose Orientation Primer sequences (5'-3')

RbMAVS  BAC screening & qRT-PCR Forward TAATGGTCCATCTGCCTTGCCTGA

RbMAVS  BAC screening & qRT-PCR Reverse TGTTCACACGCCTCAAGTGCTTTG

RbMAVS  pcDNA cloning Forward GAGAGAgaattcTATGTCGTTTGCCAGTGACAAACTGTACA
RbMAVS  pcDNA cloning Reverse GAGAGACtcgagTTAATTCTTAAACTTCCACGCCATCAGCAGTG
B-actin qRT-PCR amplification Forward TCATCACCATCGGCAATGAGAGGT

[B-actin qRT-PCR amplification Reverse TGATGCTGTTGTAGGTGGTCTCGT

4.3 Construction of expression vector and antiviral assay

4.3.1 Cell lines and viruses

Rock bream heart cells were established as previously described (Wan et al., 2012).
Concisely, heart tissue was aseptically isolated from healthy rock bream fish (n=3). The
tissues were minced into small pieces (approximately 1 mm? in size) and washed thrice with
HBSS (Sigma) containing antibiotics (400 IU/ml penicillin and 400 pg/ml streptomycin).
Then, the tissue was digested in 0.2% collagenase Il (Sigma) solution for 2 hours at 20 °C.
The digestion mixture was filtered through a cell strainer (70 um mesh size), centrifuged at
1000 rpm for 10 min. The cells were resuspended in Leibovitz’s L-15 medium supplemented
with 20% FBS, 100IU/ml penicillin and 100ug/mL streptomycin, and inoculated into 75 cm?
cell culture flask. The cells were sub-cultured more than three times and adapted to 15%
FBS. Cells’ susceptibility to MABYV infection was tested. The 80% confluent monolayer cells
were treated with serially diluted MABV and the plates were kept at room temperature (RT)
for 2 h for adsorption and facilitate viral infection. The plates were then incubated at 24 °C
for 72 h. The susceptibility of rock bream heart cells for MABV infection was confirmed by
observing the cytopathic effect (CPE) and the maximal non-cytotoxic concentration was

determined and used for the subsequent antiviral activity assay. MABV was kindly provided
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by Prof. Sung-Ju Jung (Department of Aqualife Medicine, Chonnam National University,

Republic of Korea).

4.3.2 Construction of expression vector

The full length ORF of RbMAVS (1761 bp) was amplified from liver cDNA using
gene specific primers (Table: 4.1) and PCR and cloned into TA vector (Takara, Japan). The
orientation and sequence was confirmed by restriction digestion and sequencing. The
RbMAVS ORF cloned into TA vector was used as the template and the amplified PCR
product was digested with EcoRI and Xhol. The digested PCR products were purified using
Gel purification kit (Bioneer) and ligated overnight at 4 °C with EcoRI and Xhol digested
pcDNA™ 3 1/His B vector (Life Technologies). The ligation mixture was transformed into E.
coli DH5a cells and the clone harboring the recombinant plasmid was sequenced. The

affirmed clone harboring the rRobMAVS was selected and named as pcDNA3.1-RbMAVS.

4.3.3 Antiviral assays

A monolayer of rock bream heart cells were cultured in 24 well plates at 24 °C, 24 h
prior to transfection. Before transfection, cells were washed once with sterile PBS, and then
replaced with Opti-MEM (Life technologies). The transfection procedure was performed with
Lipofectamine™2000 (Life technologies), as per manufacturer’s instructions. Briefly, 1.5 pg
of pcDNA vectors (empty pcDNA3.1 and pcDNA3.1-RbMAVS) were mixed with 1uL of
Lipofectamine™ 2000 and transfected into the heart cells in 100 uL Opti-MEM, and then
cultured at 24 °C for 48 h. After 48 h, the expression of transfected RoOMAVS was assessed by
RT-PCR. The cells were then infected with MABYV and left at RT for 1 h for adsorption. The
cells were then cultured with Leibovitz’s L-15 medium and observed for the appearance of
CPE. After 7 days of MABYV infection, the cells were washed once with PBS, fixed with 4%

paraformaldehyde (PFA) and stained with 3% crystal violet for visualizing live cells.
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4.4 Results

4.4.1 RbMAVS identification, sequence characterization and phylogenetic analysis

A 2281bp cDNA contig was identified as a homologue of MAVS when subjected to
BLASTX. The RbMAVS cDNA possessed an ORF of 1758 bp coding for a protein of 586
amino acids with molecular mass of 62 kDa and isoelectric point of 4.6. RoOMAVS possessed a
5' untranslated region (UTR) of 5 bp and 3' UTR of 518 bp, which harbored two mRNA
instability motifs Y""ATTTAY" and 2 ATTTA®"3, RbOMAVS protein analysis revealed a
CARD domain (residues 5-90), a proline rich domain (residues 119-216) and a
transmembrane domain (residues 566-582). RbMAVS protein also possessed a putative
TRAF2 binding motif, **PVQDT*? (Fig. 17). Multiple sequence alignment showed
conservation in the CARD region. The human and mouse homologues were 46 and 83 amino
acids shorter than the RoOMAVS, respectively. Even among the teleost MAVS sequences,
only limited conservation could be observed (Fig. 17). Pairwise alignment of RoOMAVS with
11 other MAVS members comprising of 6 sequences from fish and 5 sequences from other
vertebrates revealed that RobMAVS shared the highest identity and similarity with the
flounder MAV'S homologues (60-61 and 70-71% identity and similarity, respectively) (Table
9.). Alignment of the CARD regions of the homo- and orthologues revealed that the identity
and similarity is primarily because of the conservation in the CARD region. RoMAVS
CARD domain shared the maximum identity with the flounder CARD region. However,
when only the fish sequences were aligned, they revealed a reasonably higher degree of
similarity (figure not shown). The phylogenetic analysis stood as an averment with the closer
relationship of RoOMAVS with the flounder homologue. It clustered among the teleost MAVS
group, particularly closer to the flounder homologue. The high bootstrap values confirmed

the robustness and reliability of the tree (Fig. 18).
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Fig. 17. Multiple sequence alignment of RoMAVS with other homologues.

The rock bream species name is bold and red wave underlined. The homologous MAVS

sequences were obtained from NCBI and GenBank and the accession numbers are given in

Table 9. The N-terminal CARD domain is grey shaded. The proline rich domain is enclosed

in a box. The TRAF2 binding motifs are red and bold. The transmembrane helix is underlined.

The length of amino acids is denoted at the end.
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Table 9. Pairwise alignment of RoMAVS protein with MAVS homologues.

Identity (1) and similarity (S) percentages were derived using the whole protein and CARD

sequence of RbMAVS and homologues.

Full M
Common name Scientific name " R CARD Length ass Source/Accession#
Protein (Da)
I S I S
Rock bream Oplegnathus fasciatus 100 100 100 100 586 61868

Japanese flounder 1 Paralichthys olivaceus 61 71 78 88 671 68620 GenBank: ADI48370
Japanese flounder 2 Paralichthys olivaceus 60 71 78 88 673 68918 GenBank: ADI49715
Green spotted pufferfish  Tetraodon nigroviridis 51 67 69 80 578 58142 GenBank: ADL16494
Atlantic salmon Salmo salar 33 52 47 72 636 64826 NCBI: NP_001161824
Rainbow trout Oncorhynchus mykiss 25 40 51 73 422 43480 NCBI: NP_001182110
Common carp Cyprinus carpio 33 50 53 70 612 62810 GenBank: ADZ55453
Zebra fish Danio rerio 30 49 38 57 612 63490 GenBank: CAX48608
Human Homo sapiens 24 39 34 47 564 56589 GenBank: AAH44952
Cow Bos taurus 26 40 40 58 544 55170 NCBI: NP_001040085
House mouse Mus musculus 24 39 39 55 527 53398 NCBI: NP_659137
Pig Sus scrofa 26 41 40 53 548 55105 GenBank: BAF42542
Chicken Gallus gallus 24 39 30 46 671 67748 NCBI:NP_001012911
100] Japanese flounder 1
99 ‘]apanese flounder 2
100
Rock bream A
98 Green spotted pufferfish
— Atlantic salmon
100L— Rainbow trout
Common carp
100 Zebrafish
Chicken
99 House mouse
100 Human
95 Cow
98— Pig
—
0.2

91



Fig. 18. Phylogenetic analysis of RbMAVS with MAVS homologous sequences.

The tree was constructed by the minimum evolution method in MEGA 5.0 using the full-

length amino acid sequences. The accession numbers are denoted in Table 9.

4.4.2 Spatial expression of RoOMAVS in normal tissues

Spatial expression analysis of RbMAVS in normal tissues revealed ubiquitous
presence, with the maximum level of expression in blood (278-fold), followed by liver and
kidney. Gill, intestine and brain shared similar levels of expression. Head kidney and spleen
showed slightly lower levels of expression (Fig. 19).
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Fig. 19. Tissue distribution analysis of RoOMAVS.

RbMAVS tissue-specific expression in muscle, intestine, skin, kidney, head kidney, spleen,
gill, brain, liver tissues, and blood, collected from unchallenged rock bream was analyzed
using quantitative RT-PCR. Relative mRNA expression was calculated using the 244
method, with B-actin as the invariant control gene. In order to determine the tissue-specific
expression, the relative mRNA level was compared with muscle expression. Data are

presented as mean values (n=3) with error bars representing SD. Data shown with “*”

indicates significant expression levels at P<0.01.
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4.4.3 Temporal expression of RoMAVS after poly I:C challenge

RbMAVS expression was analyzed in blood, liver, spleen and head kidney isolated at
different time points from fish challenged with poly I:C. In blood, alternative upregulation
could be observed from 3 h p.i to 24 h p.i, with maximum level of expression at 12 h (1.9-
fold). In liver, spleen and head kidney, elevation in the transcript level could be observed
from 3 h p.i. In all these three tissues, maximum expression could be observed at 6 h p.i.
(liver: 4-fold; spleen: 3.8-fold; head kidney: 2.4-fold). In head kidney, almost equal level of

expression could be observed at 3 h p.i. (Fig. 20).
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Fig. 20. RbMAVS expression analysis after immune challenges.

RbMAVS expression was analyzed in liver, blood, spleen, and head kidney post poly I.C
challenge. Relative mRNA expression was calculated by the 2**“* method relative to PBS-
injected controls and normalized with the same, with -actin as the reference gene. Data are
presented as mean values (n=3) with error bars representing SD. Data shown with “*”

indicates significant expression levels at P<0.01.
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4.4.4 Antiviral activity of RbOMAVS

In order to evaluate the antiviral activity of the rock bream MAVS, rock bream heart
cells were transfected with either the empty vector (pcDNA™ 3.1/His B vector) or the
pcDNA3.1-RbMAVS and then infected with marine birnavirus. As described earlier, the
optimum amount of virus necessary to infect the cells and form CPE was identified earlier
(data not shown). When two different viral titers were employed, more than 90% of the cells
transfected with the empty vector showed CPE and were completely killed. Contrastingly,
cells transiently transfected with the recombinant pcDNA3.1-RbMAVS inhibited the
replication of the virus and protected the cells from infection. More than 90% of the cells

were protected against infection compared with the control (Fig. 21).

MAVS pcDNA Control
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Fig. 21. Antiviral activity of ROMAVS against MABV.
The empty pcDNA 3.1 vector and pcDNA3.1-RbMAVS were transfected into rock bream

heart cells. After 48 h of transfection, at 24 °C, the cells were infected with MABV at
indicated densities. After 7 days of infection, cells were fixed with 4% PFA and stained with

3% crystal violet.

4.5 Discussion
Antiviral signaling pathways including the TLR and RLR cascades have been well

documented in mammals. However, new facts about the regulation and signaling molecules
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involved in viral defense are still emerging (Eisenacher and Krug, 2012; Li et al., 2012). In
uninfected cells, the intramolecular interactions between the CARD and C-terminal
regulatory domain hold the cytosolic helicases RIG-I/MDAS5 in a closed, inactive
conformation. The recognition of viral nucleic acids by RIG-I/MDAS coupled with ATPase
activity induces conformational changes that relieve the repression induced by the C-terminal
regulatory domain, required to initiate the downstream signaling. The released CARD
domains of RIG-I/MDAS interact with the CARD domain of MAVS (Zemirli and Arnoult,
2012). Although, it is known that this interaction leads to the downstream activation of the
signaling cascade, the mechanism by which MAVS plays a central role in regulating the
complex events is still not fully elucidated. However, MAVS-deficient mice could not mount
a proper IFN response to poly I:C stimulation and against RNA virus infection; thus standing
as an evidence for the essential role of MAVS in antiviral innate immunity (Kumar et al.,
2006; Sun et al., 2006). MAVS is known to interact with various proteins which either
positively or negatively regulate various processes like antiviral, inflammatory responses, or
cell death (Belgnaoui et al., 2011). It is also known to interact with mitochondrial proteins,
kinases and E3 ubiquitin ligases that promote MAVS post-translational modifications
(Belgnaoui et al., 2011).

In silico characterization of RbMAVS deduced protein revealed the presence of a
MAVS-domain arrangement (CARD- Pro rich region- TM domain) with a conserved N-
terminal CARD, a proline rich region, a putative TRAF2 binding motif and a transmembrane
helix in the C-terminal region similar to the mammalian counterparts (Kawai et al., 2005;
Meylan et al., 2005; Seth et al., 2005a). The CARD of MAVS is significant in interacting
with the CARD of the active RIG-I/MDA5 and signaling the downstream cascade; and
constructs lacking this evolutionarily conserved signatures have dominant negative effects

and abolished activation of IFNB/NF-kB in mammals (Seth et al., 2005a) and antiviral
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function in fish (Biacchesi et al., 2009). Point mutations in CARD region inactivated the
MAVS, signifying the conservation of the residues in accordance with their function (Seth et
al., 2005a). Recent studies have demonstrated that MAVS forms detergent- and protease-
resistant prion-like aggregates which induced IRF3 activation. The aggregate formation was
solely dependent on CARD (Moresco et al., 2011). The C-terminal TM domain resembling
the TM of several other tail-anchored mitochondrial proteins is essential for the antiviral
function of MAVS and its localization to the outer mitochondrial membrane to exert its
function (Seth et al., 2005a). A similar phenomenon had been demonstrated in fish MAVS
where the truncated MAVS lacking TM domain revealed impaired activity (Biacchesi et al.,
2009). A putative TRAF2 binding motif with a consensus sequence (PVQ/RD/ET) was
observed in RbMAVS suggesting its interaction with the TRAF2. TRAF2 is required for
IRF3 and NF-«xB induction (Sasai et al., 2010). The interaction of TRAF domain of TRAF3
and TRAF binding motif of MAVS is significant for antiviral response (Saha et al., 2006; Xu
et al., 2005). MAVS is known to interact with the TRAF3/TRAF6 molecules which lead to
IRF3 and NF-«xB activation in mammals (Zemirli and Arnoult, 2012). However, further
studies are required to elucidate its interaction with TRAF2 and activation. Thus, the
presence of evolutionarily conserved and functionally significant domains in RbMAVS
portrays similar function like mammalian orthologues and fish homologues. Finally, the data
obtained by pairwise alignment and phylogenetic analysis which shows the closer
relationship of RbMAVS with the fish homologues (whose function has already been
demonstrated) together with the earlier synteny associated studies of salmon MAVS
(Biacchesi et al., 2009) confirms the expression of MAVS gene by a common ancestor of fish
and mammals and RbMAVS as a new member of the MAVS family.

The ubiquitous expression of RbOMAVS is not surprising since the protein is crucial in

antiviral defense of the organism. The highest expression of ROMAVS was detected in the
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immune organs of fish including blood and liver (Gao et al., 2008; Seki et al., 2012).
Flounder MAVS was also highly expressed in immune organs like head and trunk kidney and
spleen. Humnan IPS-1 showed ubiquitous expression including interferon-relevant tissues
such as spleen, lung and peripheral blood leukocytes (Kawai et al., 2005). Atlantic salmon
and carp MAVS also revealed high levels of expression in immune related tissues like spleen,
trunk and head kidney (Lauksund et al., 2009; Su et al., 2011). RoMAVS expression was
similar to that of green spotted pufferfish, where high expression was observed in liver
(Xiang et al., 2011). A basal expression level is necessary for viral surveillance while
induction of expression after viral entry provides protection from infection. The temporal
expression of ROMAVS was significantly upregulated in the immune related tissues like blood,
liver, and lymphoid organs like spleen and head kidney after poly I:C injection. The common
carp MAVS which was significantly upregulated in spleen at 12 h after GCRV injection and at
48 h p.i. in liver. When the common carp cells were stimulated with poly I:C, MAVS
transcripts were rapidly upregulated and recovered to control level. ROMAVS was rapidly
stimulated in the major immune organs upon poly I:C injection. The results could not be
comparatively discussed either with that of common carp or Atlantic salmon since those
studies reported the expressional modulation of MAVS homologues after poly I:C treatment in
cells. Fish MAVS plays a vital role in antiviral signaling against both RNA and DNA viruses
(Biacchesi et al., 2009). Since the viral RNA recognition by the cytosolic sensors RIG/IMDAS
bifurcate at the point of MAVS, upregulation of RoMAVS after poly I:C challenge, suggests
its potential involvement in antiviral defense.

Overexpression of RbMAVS in rock bream heart cells provoked an antiviral state
against the dsRNA virus, MABV. Rock bream fingerlings were determined to be infected by
MABYV (Kim et al., 2007). Mammalian MAVS provides potential antiviral effects against

various viruses (Kawai et al., 2005; Kumar et al., 2006; Seth et al., 2005b). The teleost and
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mammalian MAVS are effective against different viruses harboring ssRNA, dsRNA and
DNA genomes (Biacchesi et al., 2009; Kumar et al., 2006; Lauksund et al., 2009). Our results
demonstrate the antiviral potential of RbMAVS against MABYV, further standing as an
averment for the diversified viruses being recognized by the RLR system and protection
conferred by the activation of downstream signaling molecules.

The molecular and functional evidences for the existence of RLR surveillance system
and interferon system in teleost fish (Robertsen, 2006; Zhang and Gui, 2012; Zou and
Secombes, 2011) provide affirmation of the antiviral signaling pathway similar to that
present in mammals (Eisenacher and Krug, 2012) and other vertebrates (Schultz et al., 2004).
Furthermore, functional aspects of new genes/proteins involved in these pathways are still
emerging in teleosts and mammals, making this long road of innate immunity a never ending
one. A lot about ways could be understood from the mechanism of teleost fish to prevent
viral infection and exert its potential therapeutic applications (Ireton and Gale, 2011).

Conclusively, in this study, we have affirmed the molecular existence of MAVS gene
in rock bream, its transcriptional modulations post immunostimulant challenge and

demonstrated its antiviral signaling role against marine birnavirus.
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CHAPTER V

Characterization of the non-canonical kinases TBK1 and

IKKe
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5.0 Characterization of the non-canonical kinases TBK1 and IKKg

Abstract

Tank-binding kinase 1 (TBK1) and I-xB kinase ¢ (IKK-¢, also called IKK-i) are non-
canonical kinases which are determined to be pivotal regulators of type-l interferon
production. RbTBK1 genome possessed 21 exons interrupted by 20 introns. RbTBK1 and
RbIKKZe proteins possessed the conserved catalytic kinase and ubiquitin like domain involved
in phosphorylation and protein-protein interaction, respectively. RbTBK1 and RbIKKe
showed higher conservation with the other orthologues. Phylogenetic analysis revealed that
RbTBK1 and RbIKKe could have evolved from a common ancestor. Tissues distribution
profiling of RbTBK1 and RbIKKze revealed highest expression in immune related tissues like
liver and blood. Temporal expression analysis showed upregulation in liver and head kidney
post poly I:C challenge. The conservation of structure at the protein level, its common
ancestral origin and upregulation of RbTBK1 and RbIKKg upon immunostimulant challenge
like poly I:C together suggests the pivotal role of RbTBK1 and RblIKKe in antiviral defense

in rock bream, similar to the other orthologues.
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5.1 Introduction

Innate immune system relies on multitude of signaling molecules for an efficient
execution of defense against the invading microorganisms. The preliminary detection of
bacterial and viral components by the pattern recognition receptors including Toll-like
receptors, RIG like receptors triggers the assembly of signaling complexes that activate the
inhibitor of kB kinase (IKK) family of kinases. The defense function is accomplished through
the activation of transcription factors which induce the activation/synthesis of effector
molecules including interferons (IFNo/B), chemokines (Interleukin-8 (IL-8), monocyte
chemoattractant protein-1 (MCP-1), and proinflammatory cytokines (tumor necrosis factor- o
(TNF-a) and interleukin-1 B (IL-1B)) (Dinarello, 2007). The activation of transcription factors
is primarily performed by kinases. The human kinome possesses an extensive group of
intracellular signaling molecules involved in multiple cellular functions like metabolism,
transcription, cell cycle progression, cytoskeletal rearrangement and cell movement,
apoptosis, immunity and differentiation (Nousiainen et al., 2013; Pines, 1994). The conserved
reaction mechanism of catalysis and their involvement in multiple processes makes them the
potential targets for therapeutic applications in acute and chronic inflammation and cancer

(Zhang and Daly, 2012).

TNF-receptor-associated factor (TRAF) family member-associated NF-xB activator
(TANK)-binding kinase 1 [TBK1, also referred to as NF-kB-Activating Kinase (NAK) and
TRAF2-associated kinase (T2K)] and I-kappa-B kinase epsilon [IKKe; also called as IKK-
related kinase epsilon; Inducible | kappa-B kinase (IKKi)] are serine/threonine kinases that
play important roles in regulation of inflammatory responses against foreign molecules.
TBK1 and IKKe belonging to the IxB kinase (IKK)-activating kinase family are essentially
involved in innate immunity through signal-induced activation of NF-kB, IRF3 and IRF7.

TBK1 was first identified as a TNF (tumor necrosis factors) receptor associated factor (TRAF)
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binding protein functioning upstream of NF-xB-inducing kinase (NIK) and IKK in the
activation of NF-«B. Initially, TBK1 was identified to be NF-kB activating kinase, based on
the death observed in mice deficient for TBK1because of massive liver apoptosis in vitro. The
characterization of TBK1- deficient cells highlighted the crucial role of TBK1 in IFN gene
induction, through signal-induced phosphorylation of IRF3 and IRF7. IKKe was originally
discovered on the basis of its structural similarity to the IkxB kinases (IKKo and IKKf) and
transcriptional induction in response to lipopolysaccharide (Peters et al., 2000; Peters and
Maniatis, 2001; Shimada et al., 1999). TBK1 and IKKe phosphorylate IRF3 and IRF7
specific serine residues in the transcription factors IRF3 and IRF7 in response to virus
infection. This phosphorylation of IRF3 and IRF7 induces a conformational change,
promotes homodimerization and subsequent nuclear translocation where the factors bind to
the IFNP gene enhancer along with NF-kB and ATF2/cJUN to form the IFNB enhanceosome

(Fitzgerald et al., 2003; Hemmi et al., 2004; Perry et al., 2004; Sharma et al., 2003).

5.2 Materials and methods

5.2.1 Animal rearing, cDNA library construction and RbTBK1 and RbIKKe gene
identification

Healthy rock bream fish with average weight of ~50 g, procured from the Ocean and
fisheries Research institute (Jeju, Republic of Korea) were adapted to the laboratory
conditions (salinity 34 £ 1%o, pH 7.6 £ 0.5 at 24 £ 1 °C) in 400 L tanks. Blood samples were
harvested from the caudal fin of healthy, unchallenged fish using a 22 gauge needle and
centrifuged immediately for 10 min at 3000 x g at 4 °C, to collect the hematic cells. Gill,
liver, brain, kidney, head kidney, spleen, intestine, muscle, heart and skin tissues were
harvested on ice from three healthy animals and immediately flash-frozen in liquid nitrogen

and stored in -80 °C, until RNA extraction. Tri Reagent  (Sigma, USA) was employed to
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obtain total RNA from tissues. The concentration and purity of RNA were evaluated using a
UV-spectrophotometer (BioRad, USA) at 260 and 280 nm. Purified total RNA samples were
subjected to MRNA purification using Micro-FastTrack 2.0 mRNA isolation kit (Invitrogen).
First strand cDNA was synthesized from 1.5 pg of mRNA using Creator SMART " cDNA
library construction kit (Clontech, USA); amplification was performed with Advantage 2
polymerase mix (Clontech) under conditions of 95 °C for 7 s, 66 °C for 30 min and 72 °C for
6 min. Over-representation of the most commonly expressed transcripts was excluded by
normalizing the synthesized cDNA using Trimmer-Direct cDNA normalization kit (Evrogen,
Russia). A cDNA GS-FLX shotgun library was created from the sequencing data obtained by
using the GS-FLX titanium system (DNA Link, Republic of Korea). A cDNA contig showing
high homology to the earlier identified TBK1 homologues was identified using BLAST and

designated as RbTBK1.

5.2.2 BAC library creation and identification of RbTBK1 BAC clone

Rock bream obtained from the Jeju Special Self-Governing Province Ocean and
Fisheries Research Institute (Jeju, Republic of Korea) were accustomed to the laboratory
conditions. Blood was harvested aseptically from the caudal fin using a sterile 1 mL syringe
with 22 gauge needles, and a BAC library was constructed from the isolated blood cells
(Lucigen Corp., USA). Briefly, genomic DNA obtained from blood cells was randomly
sheared and the blunt ends of large inserts (>100 kb) were ligated to pPSMART BAC vector to
obtain an unbiased, full coverage library. Around 92160 clones, possessing an average insert

size of 110 kb, were arrayed in 240 microtiter plates with 384 wells.

A two-step PCR based screening method was used to identify the clone of interest
based on manufacturer’s instructions. Primers were designed based on the cDNA sequence
identified from the cDNA database. A gene specific clone was isolated and purified using

Qiagen Plasmid Midi Kit (Hidden, Germany). The sequence was confirmed by pyro-
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sequencing (GS-FLX titanium sequencing, Macrogen, Republic of Korea). The gene specific
primers employed in the identification of the clone from the BAC library are tabulated in

Table 10..

5.2.3 Sequence characterization and phylogenetic analysis of RoTBK1 and RbIKKg

A cDNA sequence portraying domain similarity with the TBK1 homologues available
in NCBI, was identified by BLAST and was subjected to DNAssist2.2 to predict the open
reading frame (ORF) and translate nucleotide to protein. The conserved domains were

identified using Expasy (http://www.expasy.org/), SMART (http://smart.embl-heidelberg.de/)

and conserved domain database search (CDD). Pairwise alignment and multiple sequence
alignment were executed using ClustalW (Thompson et al., 1994). A phylogenetic tree was
reconstructed using minimum evolution method available in MEGA 5.0, with bootstrap
values calculated with 5000 replications to estimate the robustness of internal branches
(Tamura et al., 2011). The amino acid identity percentages were calculated by MatGAT
program using default parameters (Campanella et al., 2003). The exon-intron structure was
determined by aligning mRNA to the genomic sequence of RbTBK1 using Spidey available

on NCBI (http://www.ncbi.nlm.nih.gov/spidey/) (Wheelan et al., 2001). The complete

genomic structure and putative promoter region were determined from the BAC sequencing
data. The genomic structures used for comparison were obtained from exon view of Ensembl

genome database.

5.2.4 Transcriptional profile of RoTBK1 and RblKKe gene in challenged and normal

tissues

5.2.4.1 Poly I:C challenge
In order to monitor the transcriptional changes of RbTBK1 and RbIKK ¢ post dSRNA

injection in vivo, poly I:C was employed as an immunostimulant. Sterile poly I:C stock was
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prepared by dissolving poly I:C at the rate of 1.5 mg/ml in PBS and filtered through a 0.2um
filter. A time course experiment was performed by intraperitoneally injecting the animals
with 100 pL suspension of poly I:C stock. The control animals were injected with an equal
volume of PBS. Liver and head kidney tissues were harvested from the un-injected, PBS-
injected and immune challenged animals at time points of 3, 6, 12, 24, and 48 h post

injection/infection (p.i.).

5.2.4.2 RNA isolation and cDNA synthesis

In order to perform the tissue distribution profiling of RbTBK1 and RbIKKzg, gills,
liver, brain, kidney, head kidney, spleen, intestine, muscle, heart and skin tissues and whole
blood cells were harvested from un-injected fish. After challenge with PBS and poly I:C,
liver, and head kidney tissues were harvested from challenged animals at the corresponding
time points. Total RNA was obtained from tissues using Tri Reagent” (Sigma, USA). The
concentration and purity of RNA were evaluated using a UV-spectrophotometer (BioRad,
USA) at 260 and 280 nm. The RNA was diluted to 1ug/uL and cDNA was transcribed from
2.5 pug of RNA from each tissue using a PrimeScript  first strand cDNA synthesis kit
(TaKaRa). Concisely, RNA was incubated with 1 puL of 50 uM oligo(dT), and 1 pL of 10
mM dNTPs for 5 min at 65 °C. After incubation, 4 uL of 5 PrimeScript " buffer, 0.5 uL of
RNase inhibitor (20 U), 1 uL of PrimeScript” RTase (200 U), were added and incubated for
1 h at 42 °C. The reaction was terminated by adjusting the temperature to 70 °C for 15 min.

Finally, synthesized cDNA was diluted 40-fold before storing at -20 °C for further use.

5.2.4.3 Tissue distribution
Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was used to
examine tissue distribution of RbTBK1 and RbIKKe mRNAs in various tissues of healthy

fish. gRT-PCR was performed in a 15 pL reaction volume containing 4 uL of diluted cDNA,
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7.5 pL of 2x SYBR Green Master Mix, 0.6 pL of each primer (10 pmol/uL) and 2.3 pL of
PCR grade water and subjected to the following conditions: one cycle of 95 °C for 3 min,
amplification for 40 cycles of 95 °C for 20 sec, 58 °C for 20 sec, 72 °C for 30 sec. The
baseline was automatically set by the Thermal Cycler Dice" Real Time System software
(version 2). In order to confirm that a single product was amplified by the primer pair used in
the reaction, a dissociation curve was generated at the end of the reaction by heating from
60 °C to 90 °C, with a continuous registration of changes in fluorescent emission intensity.
The Ct for the RbTBK1 and RbIKKe (target genes) and f-actin (internal control) were
determined for each sample. RbTBK1 and RbIKK e gene expression was determined by Livak
comparative Ct method. The relative expression level calculated in each tissue was compared

with respective expression level in muscle.

5.2.4.4 Temporal RobTBK1 mRNA expression analysis post poly 1:C challenge

gRT-PCR was performed with cDNA prepared from RNA obtained from liver, and
head kidney tissues isolated from PBS and poly I:C challenged animals. gRT-PCR conditions
were the same as used for tissue distribution profiling. The ACt for each sample was
determined by the method described above. The relative expression of RbTBK1 and RbIKKe
were determined by the Livak method. The relative fold change in expression after immune
challenges was obtained by comparing the relative expression to corresponding PBS-injected

controls. The expression normalized to PBS-injected controls is represented in the figures.

All experiments were performed in triplicate. All data have been presented in terms of
relative mRNA expressed as means * standard deviation (S.D.). Statistical analysis was
performed using un-paired two-tailed Student’s t-Test. Statistical significance was accepted

at a P-value below 0.01.
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Table 10. Primers used in RoTBK1 and RbIKKge characterization and qRT-PCR.

Gene Purpose Orientation  Primer sequences (5'-3")
RbTBK1 BAC screening & qRT-PCR Forward ACAGAGACACAAACTGCTCGTCGT
RbTBK1 BAC screening & qRT-PCR Reverse ACGGTATTGTTCACCGGGACATCA
RbIKKE qRT-PCR amplification Forward TGCCCTCTAAGCAGAAGGTGCT
RbIKKE qRT-PCR amplification Reverse CTTATAAACAGACTTGCCGTCCTCCCC
[B-actin qRT-PCR amplification Forward TCATCACCATCGGCAATGAGAGGT
[B-actin qRT-PCR amplification Reverse TGATGCTGTTGTAGGTGGTCTCGT
5.3 Results

5.3.1 Sequence characterization of RbTBK1 and RbIKKe

The partial cDNA sequences obtained from the rock bream cDNA library were
determined using BLASTX and were assembled to obtain the complete open reading frame
(ORF) and was further verified by sequencing. The 2169 bp ORF of RbTBK1 cDNA (3130
bp) coded for a protein of 723 amino acids with molecular mass of 83 kDa and isoelectric
point of 6.6. The RbTBK1 cDNA possessed two mRNA instability motifs (**’°ATTTA*"* and
BBATTTA®®) and a poly adenylation signal 13 bp upstream of the poly-A tail. RbIKKe
cDNA (3361 bp) possessed an ORF of 2163 bp coding for 721 amino acids with molecular
mass of 82 kDa and isoelectric point of 6.9. RbIKKe cDNA possessed two mRNA instability
motifs P ATTTA®® and 2°ATTTAZ®® in the 3' UTR. RbTBK1 and RbIKKe protein
revealed the presence of conserved protein kinases (PK), catalytic (c) domain (PKc domain)
in their N -terminal region [(RbTBKL1: residues 15-293) and (RbIKKe: residues 19-327)].
Both the protein revealed ubiquitin-like domain [(RbTBKZ1: residues 297-385) and (RbIKKZe:
residues 300-388)], characteristic of the similar kinase family proteins (Fig. 22). The pairwise
alignment performed with the predicted and characterized TBK1 proteins available in NCBI,
revealed that RoTBK1 shared the highest identity with the predicted TBK1 protein of Nile
tilapia (identity 96% and similarity 98%) and more than 70% identity with that of human and

mouse TBK1 (Table 11.). RbIKKze shared the highest identity with IKKe homologue of Nile
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tilapia (86%) and similar percentage of similarity with Zebra Mbuna and Nile tilapia (94%)
(Table 12.). The multiple sequence alignment of both RbTBK1 (Fig. 22) and RbIKKe
protein (Fig. 23) sequence with the orthologous proteins revealed high conservation in the
domain regions, compared to the C-terminal region. Phylogenetic analysis performed to
reveal the evolutionary ancestral relationship of RbTBK1 and RbIKKe revealed that the
kinase orthologues originated from a common ancestor and RbTBK1 and RbIKKe were
placed closer to the fish homologues that formed a separate cluster with the mammalian

orthologues forming a distinct cluster (Fig. 24).
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MNHLREYGIVHRDIKPGNIMRVIGEDGRSVYKLTDFGAARELEDDEQFVSLYGTEEYLHPD
MNHLREYGIVHRDIKPGNIMRVIGEDGRSVYKLTDFGAARELEDDEQFVSLYGTEEYLHPD
MNHLREYGIVHRDIKPGNIMRVIGDDGESVYKLTDFGAARELEDDEQFVSLYGTEEYLHPD
MNHLRENGIVHRDIKPGNIMRVIGEDGQSVYKLTDFGAARELEDDEQFVSLYGTEEYLHPD
MNHLRENGIVHRDIKPGNIMRVIGEDGQSVYKLTDFGAARELEDDEQFVSLYGTEEYLHPD
R I P R L R
MYERAVLRKDHQKKYGATVDLWSIGVTFYHAATGSLPFRPFEGPRRNKEVMYKIITEKPSG
MYERAVLRKDHQKKYGATVDLWSIGVTEFYHAATGSLPFRPFEGPRRNKEVMYKIITEKPSG
MYERAVLRKDHQKKYGATVDLWSIGVTEYHAATGSLPFRPFEGPRRNKEVMYKIITEKPPG
MYERAVLRKDHQKKYGATVDLWSVGVTEFYHAATGSLPFRPFEGPRRNKEVMYKIITGKPSG
MYERAVLRKDHQKKYGATVDLWSIGVTFYHAATGSLPFRPFEGPRRNKEVMYKIITGKPSG
R S
TISGHQKCENGKIEWSTEMPVSCSLSKGLOSLLTPVLANILEADQEKCWGFDQFFAETNDT
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ATISGVQKAENGPIDWSGDMPLSCSLSQGLOQALLTPVLANILEADQEKCWGEFDQFFAETSDV
ATISGVQKAENGPIDWSGDMPVSCSLSRGLOQVLLTPVLANILEADQEKCWGEFDQFFAETSDI
:**‘k * Kk Kk kK ‘k:‘k‘k :‘k*:**‘k‘k‘k:‘k‘k* ***************************.*:
LHRTVVYVESLOOATLHAVYTHEYNTAALFQELLSRRTSTPLHNQELLYEGRRLILDPNRQ
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Fig. 22. Multiple sequence alignment of RbTBK1 with other homologues.

TBK1 homologues were obtained from GenBank. Rock bream species name is inclined. The
accession numbers of the TBK1 is tabulated in Table 11. The protein kinase domain is grey
shaded and the active site residues are bold and underlined. The ubiquitin-like domain is

underlined and the hydrophobic patch (polypeptide binding sites) is grey shaded.
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Fig. 23. Multiple sequence alignment of RbIKKe with other homologues.

IKKe homologues were obtained from GenBank and the accession numbers are tabulated in
Table 12. Rock bream species name is inclined. The protein kinase domain is grey shaded
with the active site residues are bold and underlined. The ubiquitin-like domain is wave

underlined and the polypeptide binding sites are marked in red and circled.
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Fig. 24. Phylogenetic analysis of RbTBK1 and RbIKKEe.

The TBK1 and IKKe homologues were obtained from GenBank and tabulated in tables 5.2
and 5.3, respectively. The tree was constructed by the minimum evolution method in MEGA

5.0 using the full-length amino acid sequences.
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Table 11. Pairwise alignment of RbTBK1 protein with TBK1 homologues.

Identity (I) and similarity (S) percentages were derived using the whole protein sequence of

RbTBK1 and homologues.

Species Common name Taxonomy I% S% Source and accession no.
Oplegnathus fasciatus  Rock bream Actinopterygii 100 100  NCBI: KF267454
Oreochromis niloticus  Nile tilapia Actinopterygii 96 08 NCBI: XP_003458486
Gadus morhua Atlantic cod Actinopterygii 90 94 GenBank: ADL60136
Salmo salar Atlantic salmon Actinopterygii 88 95 NCBI: NP_001243651
Cyprinus carpio Common carp Actinopterygii 84 92 GenBank: ADZ55455
Danio rerio Zebrafish Actinopterygii 85 92 NCBI: NP_001038213
Carassius auratus Goldfish Actinopterygii 84 92 GenBank: AEN04475
Gallus gallus Chicken Aves 71 83 NCBI: NP_001186487
Mus musculus House mouse Mammalia 71 83 NCBI: NP_062760
Homo sapiens Human Mammalia 71 83 NCBI: NP_037386
Xenopus laevis African clawed frog  Amphibia 64 78 NCBI: NP_001086516
Crassostrea gigas Pacific oyster Bivalvia 29 49 GenBank: EKC41453
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Table 12. Pairwise alignment of RbIKKe protein with IKKe homologues.

Identity (I) and similarity (S) percentages were derived using the whole protein sequence of

RbIKKe and homologues.

Species Common name Taxonomy 1% S%  Source & accession no.
Oplegnathus fasciatus ~ Rock bream Actinopterygii 100 100  NCBI

Maylandia zebra Zebra Mbuna Actinopterygii 85 94 NCBI: XP_004545132
Oreochromis niloticus Nile tilapia Actinopterygii 86 94 NCBI: XP_003441417
Takifugu rubripes Pufferfish Actinopterygii 83 90 NCBI: XP_003973740
Oryzias latipes Japanese rice fish Actinopterygii 75 85 NCBI: XP_004069314
Danio rerio Zebrafish Actinopterygii 57 75 NCBI: NP_001002751
Homo sapiens Human Mammalia 50 67 NCBI: NP_054721
Mus musculus House mouse Mammalia 48 68 NCBI: NP_062751
Rattus norvegicus Norway Rat Mammalia 48 67 NCBI: NP_001102324
Bos taurus Cow Mammalia 50 67 NCBI: NP_001039810
Crassostrea gigas Pacific oyster Bivalvia 30 53 GenBank: EKC36402

5.3.2 Genome characterization of RbTBK1

RbTBK1 genome possessed 21 exons intervened by 20 introns. The first exon

composed of untranslated region in its entirety, similar to the other compared orthologues.

RbTBK1 genomic structure was similar to that of human and mouse genes in the number of

exons, while a little variation could be observed in the 19" and 21 exons, resulting in the

excess 6 amino acids in human and mouse TBK1 proteins. The genome size of RbTBK1

(13668 bp) was less than that of human TBK1 genome (50060 bp). The coding exons of

RbTBK1 were exactly similar to that of tilapia, with which it shared the highest level of

identity at the protein level as well (Fig. 25).
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5.3.3 Tissue distribution profiling of RoTBK1 and RbIKKg

Tissue distribution analysis of RbTBK1 and RblKKeg in tissues isolated from normal
unchallenged rock bream revealed ubiquitous presence of RbTBK1 and RbIKKeg in all the
examined tissues. RbTBK1 was highly expressed in blood (175-fold) followed by liver (74-
fold). RbIKKe was detected most in liver (155-fold) followed by blood (125-fold). Gill,
spleen, intestine and kidney showed relatively similar levels of expression of both RbTBK1

and RbIKK e (Fig. 26)
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Fig. 26. Tissue distribution analysis of RoTBK1 and RbIKKe.

RbTBK1 and RbIKKeg tissue-specific expression in muscle, intestine, skin, kidney, head
kidney, spleen, gill, brain, liver tissues, and blood, collected from unchallenged rock bream
was analyzed using quantitative RT-PCR. Relative mRNA expression was calculated using
the 22" method, with B-actin as the invariant control gene. In order to determine the tissue-
specific expression, the relative mRNA level was compared with muscle expression. Data are
presented as mean values (n=3) with error bars representing SD. Data shown with “*”

indicates significant expression levels at P<0.01.
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5.3.4 Temporal expression analysis post poly 1:C challenge

Temporal modifications of RbTBK1 and RbIKKeg expression post poly I:C challenge
was analyzed in different tissues including liver and head kidney tissues. In liver and head
kidney, early phase induction of RbTBK1 could be observed. In head kidney, highest level of
expression could be observed at 3 h (2.1-fold), while in liver, highest level of induction could
be observed at 6 h p.i. (2.5-fold). It is noteworthy to note that down regulation of RbTBK1
could be observed at 12 h p.i. in liver and also a second upregulation equivalent to 6 h was
seen at 48 h p.i. (2.4-fold) (Fig. 27A). RbIKK¢ revealed induction at all-time points in liver
except 12 h p.i. Maximum level of expression could be observed at 6 h (7.9-fold), while in
head kidney significant upregulation could be determined at 3 h p.i. (2-fold). In head kidney,
similar to RbTBK1, RbIKKe also showed down regulation revealing similar transcriptional

expression pattern of both kinases (Fig. 27B).
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Fig. 27. RbTBK1 and RblKKegexpression analysis after poly 1:C challenge.
RbTBK1 and RbIKK & expression was analyzed in liver (A) and head kidney (B) post poly I:.C

challenge. Relative mRNA expression was calculated by the 24*“* method relative to PBS-
injected controls and normalized with the same, with -actin as the reference gene. Data are
presented as mean values (n=3) with error bars representing SD. Data shown with “*”

indicates significant expression levels at P<0.01.

5.4 Discussion

Protein kinases are a large superfamily of homologous proteins related by virtue of
their kinases/catalytic domains and are key regulators of major cell functions. They act by
adding phosphate groups to substrate proteins and direct their activity and orchestrate the
activity of all cellular processes. Kinases are particularly in signal transduction and co-

ordination of complex cellular functions.

TBK1 and IKKe are non-canonical kinase family members involved in immune

defense mechanism through phosphorylation of transcription factors which drive the
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transcription of significant effector molecules. In this study, TBK1 and IKKe orthologues
isolated from rock bream was characterized. Eukaryotic TBK1 and IKKe have been
characterized from mammalian species including human, mouse and from zebrafish in
teleosts. The RbTBK1 and RbIKKze proteins shared a high conservation of the kinase domain
with their respective orthologous proteins. Pairwise and multiple sequence alignment
revealed higher identity and conservation at the amino acid level portraying the conservation
of function in all the species. The protein kinase domain, sharing the catalytic function of
kinases was conserved around 90% in all the orthologues. The glycine residues in the vicinity
of the lysine residue and aspartic residue significant for the protein kinase activity were found

to be conserved in RbTBK1 and RbIKKe (Yu et al., 2012Db).

The genome of RbTBK1 revealed 21exon/ 20 intron structures consistent with other
fish homologues and mammalian orthologues. The structural similarity observed in the
orthologues suggested a much conserved function of RbTBK1 like the other TBK1. The cod
promoter analysis has stood as an affirmation for the induction of TBK1and involvement in
immune defense (Chi et al., 2011). IKKe have not been characterized from any teleost except
zebrafish. However, detailed characterization of the teleost IKKe has not been performed to

avail a comparative understanding.

Tissue distribution profiling of both the kinases revealed high expression in immune
related tissues like blood and liver. Cod TBK1 was highly expressed in spleen, followed by
liver, gill, head kidney (Chi et al., 2011). Mouse TBK1 is ubiquitously expressed in stomach,
small intestine, lung, skin, brain, heart, kidney, spleen, thymus, and liver, and at especially
high levels in testis (Pomerantz and Baltimore, 1999; Tojima et al., 2000), whereas
IKKe exhibit differential expression patterns. IKKe expression is restricted to particular tissue

compartments, with higher levels detected in lymphoid tissues, peripheral blood lymphocytes,
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and the pancreas (Hammaker et al., 2012; Tojima et al., 2000). The ubiquitous presence of
RbTBK1 and RbIKKe, suggests their involvement in various physiological functions. Liver
and blood are major immune organs involved in multiple functions (Gao et al., 2008; Seki et
al., 2012). The abundant presence of RoTBK1 and RbIKKe in immune related tissues strongly

suggests their immune related functions.

Inflammation is the immune response of organisms to pathogens, or cell damage and
it is a protective mechanism to remove injurious stimuli (Ferrero-Miliani et al., 2007). During
an immune response against pathogens, inflammation that occurs is driven by
immunopathological events such as the overproduction of various proinflammatory cytokines,
including tumor necrosis factor (TNF-a), interleukin (IL-1p), interferon (IFN-B) (Qureshi et
al., 2005). The production of inflammatory mediators is dependent on the activation of
pattern recognition receptors PRRs like TLRs, RLRs and NLRs, which can recognize various
microbial ligands including lipopolysaccharide and poly I:C. The recognition of PAMPs by
these receptors leads to the activation of several intracellular proteins followed by the
activation of transcription factors such as nuclear factor (NF-kB), activator protein (AP)-1,
and interferon regulatory factors (IRF-3 and IRF-7) (Batbayar et al., 2012; Butchar et al.,
2006; Lee et al., 2011). TBK1 and IKKze are intracellular proteins which initiate the induction
of inflammatory responses. TBK1 and IKKe play vital roles in in the regulation of immune
response to bacterial and viral challenges and regulate the expression of inflammatory
mediators such as 1L-6, TNF-a, and IFN-B (Marchlik et al., 2010; Perry et al., 2004; Solis et
al., 2007; Xie et al., 2012; Yu et al., 2012a). Both TBK1 and IKKe are essential in the
activation of IRF3 signaling pathway (Fitzgerald et al., 2003). The significance of TBk1 in
antiviral immunity came into limelight when the viral mechanisms developed to raget or
hijack this enzyme was understood (AIff et al., 2008; Ma et al., 2012; Otsuka et al., 2005).

These studies from mammals suggest that TBK1 and IKKeg are critical players in various
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immuno-biological and immuno-pathological events. Atlantic cod TBK1 was induced upon
the various immuno stimulations inclusive of poly I:C (Chi et al., 2011). Our investigation on
the expression pattern of RoTBK1 and RblIKKe post poly I:C challenge revealed up-regulation

suggesting their activation and involvement in antiviral defense.

In conclusion, the structural conservation and induction upon viral ligand challenge
suggests the involvement of RbTBK1 and RbIKKe in the immune defense pathway of rock

bream.
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CHAPTER VI

Characterization of Interferon Regulatory Factor 3

(IRF3)
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6.0 Characterization of Interferon Regulatory Factor 3 (IRF3)

Abstract

Transcription factors are evolutionarily conserved DNA-binding proteins that bind to
DNA sequences and drive the transcription of genes involved in various physiological
processes including cell cycle, immunity, apoptosis, inflammation, differentiation and
metabolism. Interferon regulatory factor 3 (IRF3) is a significant transcription factor involved
in the regulation of interferon expression. RbIRF3 genome possessed 11 exon- 10 intron
structural organizations. RbIRF3 protein possessed a DNA-binding domain, IRF-associated
domain and serine rich domain. The DNA binding domain harbored the tryptophan repeats
characteristic of the IRF family proteins. Pairwise alignment and phylogenetic analysis
showed higher identity and closer relationship of RbIRF3 with the fish homologues, also
sharing reasonable identity with the mammalian orthologues. Tissue distribution analysis of
RbIRF3 showed ubiquitous expression with highest transcript level in liver, followed by skin.
Transcriptional modulations performed in liver, head kidney tissues and blood cells revealed
upregulation post poly I:C challenge, suggesting its activation upon viral challenge and its
regulation upon infection. Thus, RbIRF3 is a significant transcription factor involved in

antiviral defense of rock bream.
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6.1 Introduction

Interferons (IFNs) are cytokines, which are so called because of their ability to
interfere (inhibit) virus replication in a cell (Isaacs and Lindenmann, 1957; lIsaacs et al.,
1957). IFNs are classified into three distinct types namely type I, 1l and Ill. Type | IFNs
comprises of IFN-a, -B, -g, -x, -©, -6, -1, -(, of which IFN-a and -B, are extensively
investigated because of their antiviral characteristics. Human and mice possess
multifunctional IFN-a gene subtypes, whereas for IFN-f exists as a single gene (Weissmann
and Weber, 1986). Type Il IFN is referred to as IFN-y, which exists as a single copy and is
primarily induced in cells of the immune system such as T cells or natural killer cells (NK
cells). Recently, new IFN family members namely, IFN-A1, -A2, and -A3 (also known as
interleukin-29 (IL-29), IL-28A, and IL-28B, respectively) have been identified (Pestka et al.,
2004). The type Il IFNs are also induced in virally infected cells and the mechanism of
signal transduction may be similar to those of type | IFNs. The IFN expression is primarily
controlled at the transcriptional level and it occurs as a highly ordered process, regulated by

multiple transcription factors (Honda et al., 2006).

Interferon regulatory factors (IRFs) are a family of transcription factors, known to
play a pivotal role in the regulation of expression of IFNs and IFN-stimulated genes (ISGs).
IRF family in vertebrates comprises of 10 members, IRF-1 to -10. IRF1, IRF2, IRF3, IRF4
[also known as LSIRF (Lymphocyte-Specific Interferon Response Factor), PIP (PU.1
Interaction Partner) or ICSAT (IFN Consensus Sequence-binding protein in Adult T-cell
leukemia cell line or Activated T cells)], IRF5, IRF6, IRF7, IRF8 [also known as ICSBP
(Interferon Consensus Sequence-Binding Protein)] and IRF9 [also known as ISGF3y
(Interferon-Stimulated transcription Factor 3, Gamma or Interferon-Stimulated Gene Factor
3 gamma)] (Honda and Taniguchi, 2006). IFN-B gene promoter possesses at least four
regulatory cis elements, namely, the positive regulatory domains (PRDs) I, I, I1I, and 1V,
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whereas IFN-a gene promoter contain PRD I- and PRD llI-like elements (PRD-LEs). PRD |
and PRD Il are the binding sites for IRF family members, whereas PRD Il and PRD IV
elements are for NF-«xB and AP-1 (Honda et al.,, 2005). IRF family members are
characterized by well conserved N-terminal DNA binding domain (DBD) with five
tryptophan repeats, similar to the DBD of myb transcription factors. The DBD forms a helix-
turn-helix domain and recognizes similar DNA sequences. The helix-turn-helix domain of
IRFs bind to the consensus sequence 5-AANNGAAA-3' present in the PRDI and PRDIII
domains of the promoter region of the IFNs. The 5' flanking AA sequence was found to be
essential for the recognition by IRFs and, therefore, IRFs do not bind to the NF-xB binding
site, which contains the GAAA core sequence but no 5' flanking AA sequence (Honda et al.,
2006). In addition to the DBD, all IRFs (except IRF1 and IRF2) contains a unique C-terminal
domain, termed the IRF association domain (IAD), which enables the formation of
homodimers and interaction with other members of the IRF family and also recruitment of

other transcription factors to target promoters.

IRF3 and IRF7 play a crucial role in the transcriptional activation of type I IFN and
ISGs in mammals. Their regulatory role has a major impact on understanding the molecular
mechanism behind pathogen induced innate immune response against viruses. IRF3 is
constitutively expressed in the cytosol in latent form. Upon viral infection, it undergoes
phosphorylation at key serine residues in the regulatory domain and dimerization (Lin et al.,
1998). IRF3 as a homodimer or heterodimer with IRF7 translocate to the nucleus and forms a
complex with the co-activators CBP and/or p300. The complex then binds to its target DNA
sequence in type | IFN genes and certain cytokine and chemokine genes to alter the local
chromatin structure and switch on the gene expression. Inactive IRF3 is found to

constitutively shuttle in and out of the nucleus, whereas IRF3 and CBP/p300 complex is
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retained in the nucleus and engaged in the transcription induction of IFNs and other genes

(Kumar et al., 2000; Lin et al., 1999; Sato et al., 2000).

Identification of numerous genes involved in antiviral signaling pathways, including
PRRs (TLRs and cytosolic receptors), IFNs (Robertsen, 2006), I1SGs, transcription factors,
kinases like TBK1 and IKKs (Zou et al., 2010), suggests a similar mechanism of IFN
induction in teleosts as in mammals. IRF3 has been identified and characterized from large

yellow croaker, rainbow trout and Japanese flounder.
6.2 Materials and methods

6.2.1 Animal rearing, cDNA library construction and RbIRF3 gene identification
Healthy rock bream fish with average weight of ~50 g were obtained from the Ocean
and fisheries Research institute (Jeju, Republic of Korea). The animals were reconciled to the
laboratory conditions (salinity 34 + 1%., pH 7.6 £ 0.5 at 24 £ 1 °C) in 400 L tanks. Blood
samples were harvested from the caudal fin of healthy, unchallenged fish using a 22 gauge
needle and centrifuged immediately for 10 min at 3000 x g at 4 °C, to collect the hematic
cells. Tissues from gills, liver, heart, brain, kidney, head kidney, spleen, intestine, muscle and
skin were harvested on ice from three healthy animals and immediately snap-frozen in liquid
nitrogen and stored in -80 °C, until RNA extraction. Total RNA was obtained from tissues
using Tri Reagent” (Sigma, USA). The concentration and purity of RNA were evaluated
using a UV-spectrophotometer (BioRad, USA) at 260 and 280 nm. Purified total RNA
samples were subjected to mRNA purification (Micro-FastTrack 2.0 mRNA isolation Kit,
invitrogen). First strand cDNA was synthesized from 1.5 ug of mRNA using Creator
SMART " ¢cDNA library construction kit (Clontech, USA); amplification was performed with
Advantage 2 polymerase mix (Clontech) under conditions of 95 °C for 7 s, 66 °C for 30 min

and 72 °C for 6 min. In order to exclude the over-representation of the most commonly
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expressed transcripts, synthesized cDNA was normalized using Trimmer-Direct cDNA
normalization kit (Evrogen, Russia).

A cDNA GS-FLX shotgun library was created from the sequencing data obtained by
using the GS-FLX titanium system (DNA Link, Republic of Korea). A cDNA contig showing
high homology to the earlier identified IRF3 homologues was identified using BLAST and

designated as RbIRF3.

6.2.2 BAC library creation and identification of BAC clone

Rock bream were obtained from the Jeju Special Self-Governing Province Ocean and
Fisheries Research Institute (Jeju, Republic of Korea). Blood was harvested aseptically from
the caudal fin using a sterile 1 mL syringe with 22 gauge needles, and a BAC library was
constructed from the isolated blood cells (Lucigen Corp., USA). Briefly, genomic DNA
obtained from blood cells was randomly sheared and the blunt ends of large inserts (>100 kb)
were ligated to pSMART BAC vector to obtain an unbiased, full coverage library. Around
92160 clones, possessing an average insert size of 110 kb, were arrayed in 240 microtiter

plates with 384 wells.

A two-step PCR based screening method was used to identify the clone of interest
based on manufacturer’s instructions. Primers were designed based on the cDNA sequence
obtained from the cDNA database. A gene specific clone was isolated and purified using
Qiagen Plasmid Midi Kit (Hidden, Germany). The sequence was confirmed by pyro-
sequencing (GS-FLX titanium sequencing, Macrogen, Republic of Korea). The genomic
sequence of RbIRF3 was determined by aligning the available cDNA sequence using the

Spidey program available on NCBI (http://www.ncbi.nlm.nih.gov/spidey/). The complete

genomic structure and putative promoter region were determined from the sequencing data.
The gene specific primers employed in the identification of the clone from the BAC library

are tabulated in Table 6. 1.
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Table 13. Primers used in RbIRF3 identification and gRT-PCR.

Gene Purpose Orientation  Primer sequences (5'-3")

RbIRF3 BAC screening & qRT-PCR Forward ATGTCTCATTCCAAACCGCTGCTC
RbTBK1 BAC screening & qRT-PCR Reverse ATGGGATGGAGAACTCTGTTCGCT
[B-actin qRT-PCR amplification Forward TCATCACCATCGGCAATGAGAGGT
B-actin qRT-PCR amplification Reverse TGATGCTGTTGTAGGTGGTCTCGT

6.2.3 Sequence characterization and phylogenetic analysis of RbIRF3

The cDNA sequence of RbIRF3 was analyzed using BLAST and confirmed by
comparing with IRF3 homologues reported in other organisms. DNAssist2.2 was used to
predict the open reading frame (ORF) and translate nucleotide to protein. The conserved

domains were identified using Expasy (http://www.expasy.org/) and SMART

(http://smart.embl-heidelberg.de/). ClustalW was used to perform pairwise alignment and

multiple sequence alignment (Thompson et al., 1994). Phylogenetic analysis was performed
using minimum evolution method in MEGA 5.0, with bootstrap values calculated with 5000
replications to estimate the robustness of internal branches (Tamura et al., 2011). The amino
acid identity percentages were calculated by MatGAT program using default parameters
(Campanella et al., 2003). The transcription factor binding sites (TFBS) in the promoter
region were predicted using TFSEARCH, TESS and TRANSFAC. The exon-intron structure
was determined by aligning mRNA to the genomic sequence of RbIRF3 obtained from the

BAC library using Spidey available on NCBI (http://www.ncbi.nlm.nih.gov/spidey/)

(Wheelan et al., 2001). The mRNA and genomic sequences used for the comparison of the

genome structures were evaluated from the sequences obtained from GenBank.
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6.2.4 Expression profile of RbIRF3 gene in normal and challenged tissues

6.2.4.1 Poly I:C challenge
In order to evaluate the defense responses of RbIRF3, a time course experiment was
performed with immunostimulants like poly I:C. For poly I:C challenge, animals were

intraperitoneally injected with a 100 pL suspension of poly I:C in PBS (1.5 pg/uL; Sigma).

For the above challenge, PBS-injected animals were used as controls. Liver, head
kidney tissues and blood from the un-injected, PBS-injected and immune challenged animals

were collected at time points of 3, 6, 12, 24, and 48 h post injection/infection (p.i.).

6.2.4.2 RNA isolation and cDNA synthesis

To determine the expression pattern of RbIRF3 gene, gills, liver, heart, brain, kidney,
head kidney, spleen, intestine, muscle and skin tissues and blood cells, from un-injected fish
were harvested. After challenge with PBS, and poly I:C, liver, blood and head kidney tissues
were harvested from challenged animals at the corresponding time points. Total RNA was
obtained from tissues using Tri Reagent  (Sigma, USA). The concentration and purity of
RNA were evaluated using a UV-spectrophotometer (BioRad, USA) at 260 and 280 nm. The
RNA was diluted to 1ug/uL. Then, 2.5 pug of RNA was used to synthesize cDNA from each
tissue using a PrimeScript" first strand cDNA synthesis kit (TaKaRa). Concisely, RNA was
incubated with 1 pl of 50 uM oligo(dT)zo and 1 pl of 10 mM dNTPs for 5 min at 65°C. After

incubation, 4 pl of 5> PrimeScript” buffer, 0.5 pl of of RNase inhibitor (20 U), 1 pl of

PrimeScript” RTase (200 U), were added and incubated for 1 h at 42°C. The reaction was
terminated by adjusting the temperature to 70°C for 15 min. Finally, synthesized cDNA was

diluted 40-fold before storing at -20°C
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6.2.4.3 Tissue distribution

Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was used to
examine tissue distribution of RbIRF3 mRNAs in tissues from muscle, intestine, skin, kidney,
head kidney, spleen, gill, heart, brain, liver tissues and blood of healthy fish with gene
specific primers. gRT-PCR was performed in a 15 plL reaction volume containing 4 pL of
diluted cDNA, 7.5 pL of 2x SYBR Green Master Mix, 0.6 uL of each primer (10 pmol/ pL)
and 2.3 uL of PCR grade water and subjected to the following conditions: one cycle of 95°C
for 3 min, amplification for 35 cycles of 95°C for 20 sec, 58°C for 20 sec, 72°C for 30 sec.
The baseline was set automatically by the Thermal Cycler Dice™ Real Time System software
(version 2). In order to confirm that a single product was amplified by the primer pair used in
the reaction, a dissociation curve was generated at the end of the reaction by heating from
60°C to 90°C, with a continuous registration of changes in fluorescent emission intensity.
The Ct for the RbIRF3 (target gene) and S-actin (internal control) were determined for each
sample. The differences between the target and internal control Ct, called ACt were
calculated to normalize the differences in the amount of total cDNA added to each reaction
and the efficiency of the RT-PCR. The ACt for each sample was subtracted from ACt of the
calibrator and this difference was called AACt and the RDIRF3 gene expression was
determined by Livak comparative Ct method. The relative expression level calculated in each

tissue was compared with respective expression level in muscle.

6.2.4.4 Temporal RbIRF3 mRNA expression analysis post immune challenges
gRT-PCR was performed with liver, head kidney tissues and blood cells isolated from
poly I:C challenged animals. gRT-PCR conditions were the same as used for tissue

distribution profiling. The ACt for each sample was determined by the method described

above and subtracted from ACt of the un-injected control and this difference was called AACt.
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The relative expression of RbIRF3 was determined by the Livak method. The relative fold
change in expression after immune challenges was obtained by comparing the relative
expression to corresponding PBS-injected controls. The expression normalized to PBS-

injected controls is represented in the figures.

All data have been presented in terms of relative mMRNA expressed as means +
standard deviation (S.D.). All experiments were performed in triplicate. Statistical analysis
was performed using un-paired two-tailed Student’s t-Test. P-values of less than 0.01 were

considered to indicate statistical significance.

6.3 Results

6.3.1 Sequence characterization and phylogenetic analysis of RbIRF3

The cDNA sequence obtained from the cDNA library 1884 bp long consisting of ORF
of 1386 bp, 5' untranslated region (UTR) of 178 bp and 3' UTR of 320 bp. RbIRF3 cDNA
possessed a single mRNA instability motif in its 3' UTR. The ORF encoded a protein of 461
amino acids with molecular mass of 51 kDa with isoelectric point of 4.9. The complete
sequence was deposited in GenBank under the accession no KF267453. In silico
characterization of the RbIRF3 protein revealed the conserved IRF tryptophan pentad repeat
DNA-binding domain (DBD) at the N-terminal region, an IRF-associated domain (IAD) and
a serine-rich domain at the C-terminal region, similar to the other IRF3 proteins (Fig. 28).
Pairwise alignment showed that RbIRF3 had the highest identity and similarity of 87 and
92%, respectively with Dicentrarchus labrax. The molecular mass of RbIRF3 was also
similar to that of Dicentrarchus labrax. RbRIF3 share high identity with other teleosts except
for zebrafish, with which it shared an identity of 40%. It shares an identity of 29 to 33% with

vertebrates other than fish (Table 15.). Multiple sequence alignment showed revealed high

132



conservation in the DBD, IAD and SRD, whilst deletions could be found in the middle part of

the sequence of mammalian lineage making it diverse (Fig. 28).

A phylogenetic tree was reconstructed with members belonging to IRF subfamilies,
comprising of IRF 1 to 10. The IRF proteins group into four subfamilies: IRF1, IRF3, IRF4
and IRF5. The constructed tree also showed a similar pattern with four subfamilies forming
separate clusters, inside which the fish homologues formed a separate cluster. RbIRF3 was
closely associated with fish homologues in the IRF3 subfamily of IRFs. RbRIF3 was found

close to the sea bass homologue (Fig. 29).
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Fig. 28. Multiple sequence alignment of RbIRF3 with other homologues.
RbIRF3 is on the top of all sequences. The DNA binding domain (DBD), IRF associated

domain (IAD) and serine rich domain are indicated with arrow heads with corresponding
names on the top of them. The tryptophan repeats are boxed. The lysine-arginine residues
which serve as nuclear localization signal (NLS) in human IRF3 are indicated by red upward

facing arrows. The accession numbers of the orthologues are given in Table 14.
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Fig. 29. Phylogenetic analysis of RbIRF3 with IRF family proteins.

Phylogenetic tree was constructed with the homologous sequences aligned using clustalW
and applying it to the MEGAS using minimum evolution method. The accession numbers are

tabulated in Table 14..
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Table 14. Accession numbers of IRF orthologues obtained from NCBI and GenBank.

Common name Gene | Database | Accession No. Common name | Gene Database | Accession No.
Sea bass IRF3 | GenBank | CBN81356 House mouse IRF4 NCBI NP_038702
Large yellow IRF3 | GenBank | AFE88606 Norway rat IRF4 NCBI NP_001099578
croaker

Turbot IRF3 | GenBank | ADQ52415 Cow IRF4 NCBI NP_001193091
Rainbow trout IRF3 | NCBI NP_001244191 Chicken IRF4 NCBI NP_989630
Zebrafish IRF3 | NCBI NP_001137376 Zebrafish IRF4 NCBI NP_001116182
Atlantic salmon IRF3 | NCBI NP_001165753 Atlantic salmon | IRF4 NCBI NP_001133454
Common carp IRF3 | GenBank | AGC67025 Zebrafish IRF10 | NCBI NP_998044
House mouse IRF3 | NCBI NP_058545 Olive flounder IRF10 | NCBI BAI63220
Cow IRF3 | NCBI NP_001025016 Chicken IRF10 | NCBI NP_989889
Norway rat IRF3 | NCBI NP_001006970 Human IRF8 NCBI NP_002154
Pig IRF3 | GenBank | ABY26589 House mouse IRF8 NCBI NP_032346
Frog IRF3 | NCBI NP_001079588 Cow IRF8 NCBI NP_001077238
Human IRF3 | NCBI NP_001562 Chicken IRF8 NCBI NP_990747
House mouse IRF7 | GenBank | U73037.1 Frog IRF8 NCBI NP_001087097
Norway rat IRF7 | NCBI NP_001028863 Zebrafish IRF8 NCBI NP_001002622
Human IRF7 | GenBank | U73036.1 Olive flounder IRF8 GenBank | AFE18694
Cow IRF7 | NCBI NP_001098510 Human IRF9 NCBI NP_006075
Atlantic salmon IRF7 | NCBI NP_001130020 Norway Rat IRF9 NCBI NP_001012041
Olive flounder IRF7 | GenBank | ACY69214 Cow IRF9 NCBI NP_001019677
Turbot IRF5 | GenBank | JF913460.1 Frog IRF9 NCBI NP_001084846
Atlantic salmon IRF5 | NCBI NP_001133324.1 | Zebrafish IRF9 NCBI NP_991273
Japanese flounder | IRF5 | GenBank | JF312910.1 Atlantic salmon | IRF9 NCBI NP_001167190
Zebrafish IRF5 | GenBank | EU274624.1 Human IRF1 GenBank | X14454.1
Grass carp IRF5 | GenBank | FJ556994.1 Sheep IRF1 NCBI NP_001009751
House mouse IRF5 | NCBI NP_036187.1 House mouse IRF1 GenBank | M21065.1
Human IRF5 | NCBI NM_001242452.1 | Chicken IRF1 GenBank | L39766.1

Cow IRF6 | NCBI NP_001070402 Frog IRF1 GenBank | BC075398.1
House mouse IRF6 | NCBI NM_016851.2 Turbot IRF1 GenBank | AY962251.1
Human IRF6 | NCBI NM_006147.3 Zebrafish IRF1 NCBI NP_991310
Zebrafish IRF6 | NCBI NP 956892.1 Human IRF2 GenBank | X15949.1
Chicken IRF6 | GenBank | DQ250733.1 House mouse IRF2 NCBI NP_032417
Frog IRF6 | GenBank | D86492.1 Sheep IRF2 GenBank | AF228445.1
Orange-spotted IRF2 | GenBank | ACO81886 Chicken IRF2 NCBI NP_990527
grouper

Common carp IRF2 | GenBank | AFV99156 Frog IRF2 NCBI NP_001088726
Rainbow trout IRF2 | GenBank | AY034055.2 Atlantic salmon | IRF2 NCBI NM_001123615.1
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Table 15. Pairwise alignment of RbIRF3 with full length protein of IRF3 orthologues.

Identity (1) and similarity (S) percentages were obtained by MatGat.

Organisms I(%) S (%) f:(‘;;;‘o 1(\3;:) Accession No.
Oplegnathus fasciatus 100 100 461 51 KF267453
Dicentrarchus labrax  Sea bass 87 92 465 51 CBN81356
Larimichthys crocea 2B YElOWgs g 462 51 AFE88606
croaker
Scophthalmus maxcimus  "Turbot 80 89 466 51 ADQ52415
Oncorrynchus mykiss ~ Rainbow trout 63 76 464 52 NP_001244191
Danio rerio Zebrafish 40 54 426 48 NP_001137376
Cyprinus carpio Common carp 40 57 454 51 AGC67025
Mus musculus House mouse 30 46 419 47 NP_058545
Bos taurus Cow 29 46 417 47 NP_001025016
Sus scrofa Pig 30 45 419 47 ABY?26589
Gallus gallus Chicken 28 41 491 54 AAK58583
Xenopus laevis Frog 33 48 466 53 NP_001079588
Homo sapiens Human 29 43 427 47 NP_001562

6.3.2 Genomic characterization of RbRIF3

The genomic structure of RbIRF3 derived from the BAC clone revealed 11 exon -10

intron structural organization. RbIRF3 genome structure was similar to that of large yellow

croaker and turbot with 11 exons and 12 introns. The genome structure was not consistent

with any of the earlier identified mammalian and a few fish homologues (zebrafish, Fugu).

The introns followed different phases in RbIRF3 genome structure. All intron splice junctions

were consistent with GT-AG rule. The exon 1 consisted of untranslated region in its entirety.

The translation initiation site was present in the second exon. The RbIRF3 genome structure

was not consistent with the mammalian lineage homologues, in the number of exons and as

well as the coding region. Generally, the IRF3 homologues from mammals were shorter than

those identified from teleosts. This may be the reason for the shorter genome structure (Fig.
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30).
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Fig. 30. Genomic structure analysis of RbIRF3.

The genome structures of IRF3 homologues were obtained from the previously published
article (Huang et al., 2010a). The large yellow croaker genome sequence was obtained from
NCBI available under the accession number JQ249912. The coding exons are indicated by
shaded boxes while the untranslated regions are indicated by empty boxes. The introns are
indicated by lines with the length written below them. The exon sizes are indicated on the top

of boxes.

6.3.3 Promoter analysis of RbIRF3
In silico promoter analysis of the putative promoter region mapped to various putative

transcription factor binding sites. These included several PAMP-associated transcription
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factor binding sites like activator protein- 1 and -4 (AP-1 and AP-4), CCAAT-enhancer

binding protein (C/EBP), C/EBP -a and -B, hepatic nuclear factor (HNF)-3b, interferon-

sensitive response element (ISRE), cCAMP response element-binding protein (CREB), and

nuclear factor-kappa (NF-kappa), suggesting that these immune-related factors may play a

vital role in the regulation of RbIRF3 expression and function. In addition, other transcription

factor binding sites such as those for Lyf-1, HSF, Spl, Oct-1 Sox-5, E2F, RORa, AML-1a,

GATA-1, and upstream transcription factor (USF) were identified (Fig. 31).

TATCCAAGCCGTCTTCCCCT
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Fig. 31. Promoter analysis of RbIRF3.

The transcription factor binding sites are underlined with the corresponding names written
below. The transcription initiation site is bold and red. The intron between the 5' UTR and

ATG site in shaded. The ATG is orange colored.

6.3.5 Tissue distribution of RbIRF3

Tissue distribution profiling of RbIRF3 was performed in 11 different tissues isolated
from healthy rock bream maintained under normal conditions. The RbIRF3 expression was
normalized to the expression of B-actin transcript level and expressed as relative-fold with
respect to mMRNA level in muscle. The RbIRF3 expression was ubiquitous and high level of
transcripts were observed in liver, with the next level of abundance in skin and blood. Spleen,
head kidney, kidney and brain showed relatively similar levels of expression of RbIRF3

transcripts (Fig. 32).
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Fig. 32. Tissue distribution analysis of RbIRF3.

RbIRF3 tissue-specific expression in muscle, head kidney, brain, skin, kidney, spleen,
intestine, gill, liver, heart tissues, and blood collected from unchallenged rock bream was
analyzed using quantitative RT-PCR. Relative mRNA expression was calculated using the 2°

AACt method, with B-actin as the invariant control gene. In order to determine the tissue-
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specific expression, the relative mRNA level was compared with muscle expression. Data are
presented as mean values (n=3) with error bars representing SD. Data shown with “*”

indicates significant expression levels at P<0.01.

6.3.6 Temporal expression post immune challenges

The kinetic transcriptional pattern of RbIRF3 was analyzed by RT-PCR from blood,
liver and head kidney isolated from rock bream following in vivo challenge with poly I:C.
Post poly I:C challenge, all three tissues showed variable pattern of expression. Poly I:C
altered the RbIRF3 transcript level to a greater extent. In liver and head kidney, expressional
modulation was observed from 3 h to 12 h, with a second elevation at 48 h in liver. In liver,
RbIRF3 expression peaked at 6 h (4-fold), while in head kidney at 3 h (12-fold). In blood,
elevation in expression could be observed from 6 h to 24 h with maximum level being at 12 h

(16-fold) (Fig. 33).
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Fig. 33. RbIRF3 expression analysis after poly I:C challenge.

RbIRF3expression was analyzed in liver, blood, spleen, gill and head kidney post poly I.C
challenge. Relative mRNA expression was calculated by the 24" method relative to PBS-
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injected controls and normalized with the same, with -actin as the reference gene. Data are
presented as mean values (n=3) with error bars representing SD. Data shown with “*”

indicates significant expression levels at P<0.01.

6.4 Discussion

Interferon regulatory factors play a pivotal role in the initial induction of IFNs, during
infection. IRFs are also involved in cytokine signaling, haemopoietic development and cell
growth regulation. In this study, we have identified, characterized, and analyzed the
spatial/temporal expression pattern of RbIRF3 from rock bream. RbIRF3 cDNA was 1884 bp
long consisting of ORF of 1386 bp which encoded a protein of 462 amino acids with
molecular mass of 51 kDa. The pairwise and multiple sequence alignment showed high
identity and conservation, respectively with the other IRF3 homologues. Multiple sequence
alignment revealed highly conserved DBD with five tryptophan residues in the N-terminus
and IAD in the C-terminus. Unlike the large yellow croaker, RbIRF3 possessed five
tryptophan residues in the DBD. Three of the five tryptophan residues are crucial for DNA
binding. The C-terminal IAD is significant in activating the double-stranded RNA-activated
factor 1 (DRAF1) and defenses against the viral infection, and is also required for the
formation of IRF homo/heterodimers and association with other transcription factor, IAD was
conserved in RbIRF3 like other fish and vertebrate homologues. Similar to the mammalian,
chicken and other fish IRF3 subfamily members, the C-terminal SRD in RbIRF3 was found
but shorter (4 serine and no threonine residue) than the human IRF3 which contained 6 Ser
and 2 Thr residues. Human IRF3 possesses potential virus-mediated phosphorylation sites in
the C-terminal region (Ser 385, 386 [*“2 S site’’] and Ser 396, 398, 402, 405, and Thr 404
[“5 ST site’’]). The phosphorylation of Ser386 in human IRF3 is the critical determinant for
its activation, which in rock bream corresponds to Ser 443. Ser444 in RbIRF3 corresponds to

Ser 386 in human IRF3. Thus RbIRF3 possessed the 2S site, similar to the human IRF3.
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Almost all the Ser residues in the SRD including the SSL motif are phosphoacceptor sites in
human IRF7. RbIRF3 also possessed the SSL motif, while trout showed less conservation in
the SSL motif (Holland et al., 2008). RbIRF3 lacked the inhibitory domain which is
characteristic of the mammalian IRF3. Although two basic residues (lysine-arginine) which
serve as nuclear localization signal (NLS) in human IRF3 were found in RbIRF3, no nuclear
export signal (NES) and proline rich domain were found in the corresponding positions.
RbIRF3 shared high identity and similarity with Dicentrarchus labrax and a reasonable
identity with other fish homologues including rainbow trout, Japanese flounder, large yellow
croaker and turbot. Phylogenetic analysis revealed that RbIRF3 belonged to the IRF3
subfamily clustering with the IRF3 and IRF7 homologues, suggesting the notion that IRFs
emerged early in the vertebrate evolution and IRF3 subfamily comprising of IRF3/IRF7
originated from a single ancestral gene. The conserved DBD, IAD, SRD together with the
phylogenetic relationship suggests that RbIRF3 is a new member of the IRF3 subfamily,

which might play a vital role in immunity, similar to the other homologues.

RbIRF3 genome structure was similar to that of large yellow croaker and turbot with
11 exons and 12 introns. The first exon constituted of UTR in its entirety in both large yellow
croaker and rock bream. RbIRF3 gene structure was different from that of other fish like
zebrafish and stickleback. The genome length could be attributed both variation in the exon
and intron lengths among the species. The putative promoter region and 5' flanking region
analysis revealed a number of TFBS, like AP-1, AP-4, AML-1a, C/EBP, CREB which play
significant roles in the regulation of immune related genes. Also an ISRE could be found in
the close proximity to the transcription initiation site, which suggests its regulation by IFNSs.
RDbIRF3 gene neither possessed a TATA nor CCAAT box but was GC rich, similar to the
human IRF3 promoter (Lowther et al., 1999). The RbIRF3 promoter possessed Spl, E2F,

HSF, GATA-1, USF and NF-kappa sites similar to the human IRF3 (Ren et al., 2012; Xu et
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al., 2010). Mutation and over expression of Spl sites in human IRF3 promoter repressed and
increased the transcription activity of human IRF3, respectively (Ren et al., 2012). In contrast,
mouse IRF3 promoter which showed high homology to the human IRF3 promoter possessed
TATA and CCAAT box motifs, suggesting that, at least at the level of transcription initiation,
these genes may be differentially regulated. In chicken, poly I:C and IFN-mediated induction
is dependent on the NF-kB binding sites and overlapping ISREs, respectively, present in the
IRF3 promoter (May et al., 2000). The mammalian IRF7 promoter also possesses a single
NF-xB binding site and a single ISRE binding the ISGF3 complex (Lu et al., 2000; Lu et al.,

2002).

Spatial expression analysis of RbIRF3 showed ubiquitous expression in all the
examined tissues. IRF3 was detected in all the examined tissues in large yellow croaker (Yao
et al., 2012), rainbow trout (Holland et al., 2008) and Atlantic salmon (Hu et al., 2011b).
Constitutive expression of IRF3 was observed in rainbow trout, which did not reveal any
transcriptional modulation (Holland et al., 2008). In contrast to the constitutive expression of
mammalian and a few fish IRF3, Japanese flounder IRF3 was significantly expressed in the
immune tissues but not in brain, gonad, stomach, muscle and skin. Other known fish IRFs
including IRF-1, 2, 4, 5 and 8 were ubiquitously expressed in all the tested tissues of healthy
fish. IRF4 and 8 from rock bream revealed ubiquitous presence in all the examined tissues
(Bathige et al., 2012). IRF3 and IRF7 constitute the IRF3 subfamily of proteins. IRF7 in
several fish species were found to be ubiquitously expressed (Holland et al., 2008; Zhang et
al., 2003). IRF3 is constitutively expressed and resides in the cytosol in the latent form and
undergoes phosphorylation and activation upon viral infection. Constitutively expressed IRF
subfamily members are crucial for the early and late phases of IFN induction, post challenges

encountered by the host (Honda and Taniguchi, 2006; Honda et al., 2005). RbIRF3’s
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ubiquitous and constitutive expression in physiologically different tissues suggest that they

may involve in a wide range of functions, which in teleosts are yet to be demonstrated.

In order to understand the modulation of RbIRF3 by immunostimulants, RbIRF3
transcripts were investigated in blood, liver and head kidney tissues post poly I:C challenge
in vivo. Our results revealed modulation of the RbIRF3 transcripts in all the analyzed tissues,
suggesting that RbIRF3 played a crucial role in antiviral defense. Poly I:C is a synthetically-
derived mimic of the double-stranded RNA that is present in some viruses and has been
employed to understand the modulation of immune related genes in various organisms. Poly
I:C is a potent inducer of IRF3 subfamily proteins, IRF3/IRF7. IRF3 expression exhibited
different dynamics following poly I:C challenge. In mammals, poly I:C recognition through
the TLR and RIF-like receptors leads to the activation of the signaling cascades resulting in
the activation of IFN promoter through IRF3, IRF7 and NF-«B (Kawai and Akira, 2006,
2007; Takeuchi and Akira, 2009). Induction of the IRF3 and IRF7 transcripts were detected
in trout cells post poly I:C, type | IFN and IFN y treatment (Holland et al., 2008). Similarly,
elevation in the IRF3 transcripts could be observe din large yellow croaker after poly I:C
challenge (Yao et al., 2012), carp (Sun et al., 2010), flounder (Hu et al., 2011b), rainbow
trout (Holland et al., 2008) and Atlantic salmon (Bergan et al., 2010). In this study, blood and
head kidney, which are major immune organs in fish showed a dramatic change in RbIRF3

transcript levels, suggesting their active role in antiviral immunity.

The identification of IRFs belonging to different families and understanding their role
in the regulation of IFNs in anti-bacterial and -viral defense in fish is of great significance.
This study will further the functional roles of the IRF family members in different teleosts

and obtain a comparative understanding of mechanism of regulation in mammals.
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