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Abbreviations and notations

BC Boundary condition

BDS Boundary distributed source (method)
BEM Boundary element method

BNM Boundary node method

BPIM Boundary point interpolation method
CEM Complete electrode model

DLFS Double layer fundamental solution

ECT Electrical capacitance tomography
EFGM Element-free Galerkin method

EIT Electrical impedance tomography

FEM Finite element method

GFEM Generalized finite element method
IBDS Improved boundary distributed source (method)
1T Inverse interpolation technique

LBIE Local boundary integral equation
MLPG Meshless local Petrov-Galerkin

MLS Moving least-squares

MEFS Method of fundamental solution

MMEFS Modified method of fundamental solution
MMs Meshless methods or mesh-free methods
MWLS Meshless weighted least squares
PUFEM Partition of unity finite element method
RBF Radial basis functions

RKPM Reproducing kernel particle method
RMM Regularized meshless method

SBM Singular boundary method

SLES Single layer fundamental solution

SPH Smooth particle hydrodynamics

A Magnetic vector potential, Stiffness matrix
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Distance of the field point and source point in BDS

Radial basis functions in MMFS

Coefficient matrix
Magnetic induction, Component of stiffness matrix
Component of stiffness matrix

Constant used in RMM, SBM

Electric displacement, Component of stiffness matrix, Inclusion

Boundary of inclusion
Electric field, Electrode
[th electrode

Area of the jth electrode

[th gap

Fundamental solution of Laplace equation for Dirichlet

boundary condition, Gap

Integration of the G on a circular disk

Magnetic field

Identity matrix
Current applied to the [ th electrode

Indices
Current density

Current source

Matrix in BEM
Number of electrodes

Length of the jth segment on the boundary

Measurement matrix, Total number of segments

Number of segments on each electrode
Number of segments on each gap
Number of the segments of the inclusion boundaries

Total number of segments on electrodes

v



S =z 0z xR

3|

b, p

Pes P

u, u(p),u(x)

h

Total number of segments on gaps

Extended measurement matrix

Number of nodes in the finite element mesh

Extended mapping matrix

Normal vector at source point s;

Normal vector at field point x,

Number of current patterns

Field point used in FEM, BEM, IBDS and hybrid MM
Source point used in BEM, IBDS and hybrid MM

Expression of Neumann Boundary condition based on
fundamental solution of Laplace equation

Integration of the Q on a circular disk
Normal derivative of potential on the background
Normal derivative of potential on the inclusion

Diagonal elements of the SBM interpolation matrix for
Neumann boundary condition
Given continuous functions for Neumann boundary

Radius of the distributed source in BDS, IBDS and hybrid MM

Radius of the circular domain
Distance from field point and source point

Sizes of the electrode segments
Sizes of the gap segments
Source point used in MFS, MMFS, RMM, SBM and BDS

Index of the boundary in RMM

Potential distribution inside an object

Approximation of potential distribution

Fundamental solution of two-dimensional Laplace equation
used in RMM

Diagonal elements of the SBM interpolation matrix for
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Dirichlet boundary condition

Fundamental solution of the exterior problems
Potential distribution on the inclusion of the object
Potential distribution on the background of the object

Given continuous functions for Dirichlet boundary

Approximation of boundary voltages

Voltages from the measurement electrodes

Voltage on /th electrode

Coefficients which need to determined in MFS

Field point used in MFS, MMFS, RMM, SBM and BDS
An arbitrary point inside the domain

Two components of the points in 2D plane

Contact impedance of /th electrode

Parameters used in FEM and MMs formulation
Source densities for the points in SBM

Dirac delta function

Permittivity

Model parameters

Ratio between conductivity of Inclusion and background
Permeability

Source densities for the points on the background
Source densities for the points on the inclusion

Source densities for the arbitrary known particular solution in
IBDS

Density vector

Outward unit normal

Conductivity

Conductivity of inclusions

Background conductivity

vi



i

20
1)
90,
0
0
90"

907

E;

G;

Two-dimensional first-order basis function

Object to be considered in the EIT problem
Boundary of the object

Boundary of the object on gap region
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1. Introduction

1.1 Electrical impedance tomography

Electrical impedance tomography (EIT) is a non-intrusive method that reconstructs
the electric conductivity distribution inside the domain of interest (Vauhkonen 1997).
In EIT, a set of electrical currents is injected through an array of electrodes attached
on the boundary of the object and the voltages are measured from the surface of the
electrodes. Based on the current-voltage relationship, internal distribution inside the
object is reconstructed. Schematic diagram which explains the principle of EIT is

shown in figure 1.1.

l PC

Current |

| — —

Data Reconstruction

collection system

Figure 1.1. Schematic diagram which explains the principle of EIT.

EIT has lower spatial resolution, since EIT comes under soft field imaging
techniques as the electrical quantities are dispersed inside the object and are effected
by the inside objects. The main advantage with EIT is that it has low cost, convenient
and safe. Apart from that, EIT has high-speed data collection system thus has high

temporal characteristics. EIT has been applied in several fields of science and



engineering. In medical imaging, EIT can be used to detect tumors from breast tissue
(Osterman 2000, Kim 2007), and monitor physiological phenomena, such as cardiac,
pulmonary and respiratory functions (Harris 1991, Brown 1994, Deibele 2008,
Somersalo 1992). EIT has been applied to clinical applications, like lung imaging
(Brown 2001, Mueller 2001), head imaging (Holder 1992) and breast imaging
(Cherepenin 2001, Cherepenin 2002, Kerner 2002(a), Kerner 2002(b), Osterman
2000) for instance. The applications of EIT in the process industry include
monitoring of flow processes, monitoring of the mixing phenomenon and multiphase
flows and non destructive measurements (Mann 1997, Kim 2005, Khambampati
2009, Rashid 2010a, Dickin and Wang 1996, Pinheiro 1997, Jones 1993, Friedman
1989). In the application of EIT in geophysics, resistivity reconstruction is widely
used in exploring mineral resources, ground water, detection of fractures,
contaminant plumes, waste dumps, geological mapping, geotechnical and

environmental applications (Maillol 1999, Barker 1998, Daily 1992, Spies 1995).

In EIT, the physical relationship between the injected currents and the measured
boundary voltages is governed by a partial differential equation derived from
Maxwell equations. There are many physical models that can be considered, such as
continuum model (Cheng 1989, Somersalo 1992), average-gap model (Somersalo
1992), shunt model (Somersalo 1992) and complete electrode model (CEM)
(Somersalo 1992, Vauhkonen 1997). Compared to other physical models, CEM is
modeled by considering the discreteness, shunting and contact impedance between
electrode and electrolyte. Therefore, it is close to real situation and gives a better
approximation of boundary voltages on electrodes. EIT includes forward and inverse
problem. The forward problem is to calculate the potential distribution for a known
distribution of conductivity subjected to appropriate boundary conditions. The
inverse problem is to estimate the internal conductivity distribution inside the domain
based on the current-voltage relationship. For homogenous case, analytical solution
for EIT forward problem has been presented (Kim 2007). For complex geometry, it
is difficult to obtain analytical solution therefore numerical methods are often used.
Currently, the EIT forward problem solvers are mainly based on finite element

methods (FEM) (Vauhkonen 1997, Polydorides 2002, Andrew 2003). Another



numerical method which has been used for solving forward problem of EIT is the
boundary element method (BEM) (also known as the boundary integral method)
(Duraiswami 1997, de Munck 2000, Khampampati 2011, Khampampati 2012).

1.2 Meshless methods
The Finite Element Method (FEM) and Boundary Element Method (BEM) may be

the most well-known numerical methods of these thoroughly developed mesh-based
methods. In contrast, to avoid the disadvantages of numerical methods based on
mesh, a comparably new class of numerical methods has been developed which
approximates the solution of partial differential equations only based on a set of
nodes without the need for an additional mesh, called Meshfree Methods or Meshless

Methods (MMs).

Since only a cloud of nodes is required, the MMs are particularly suitable for
complex geometry problems. Zhang et al. (2010) had reported in their work about
the numerical simulation of forward problem for electrical capacitance tomography
(ECT) using element-free Garlerkin method (EFGM) in which a shape function is
constructed by moving least-squares (MLS) approximation, a variational equation
weak form of the studied problem is used to deduce the discrete equation, and

Lagrange multipliers are used to satisfy the essential boundary conditions.

One of the first MM is the smooth particle hydrodynamics (SPH) method
proposed by Lucy (1977) and Gingold and Monaghan (1977), which was used to
solve problems in astrophysics and in fluid dynamics (Monaghan 1982, Monaghan
1988, Bonet 2000). Since the original SPH version suffered from spurious
instabilities and inconsistencies (Swegle 1995, Xiao 2005, Belytschko 2000), many
improvements were incorporated into SPH (Belytschko 1996, Bonet 2000, Johnson
1996, Johnson 2000, Randles 1997, Vila 1999, Rabczuk 2004). Since SPH and their
corrected versions were based on a strong form, other methods based on a weak form

were developed in the 1990s (Belytschko 1996).



The MMs can be categorized in a number of ways. One possible categorization
is by the type of weak forms. The EFGM (Belytschko 1994) developed in 1994 was
one of the first MM based on a global weak form. The reproducing kernel particle
method (RKPM) (Liu 1995) was developed in 1995. RKPM has its origin in
wavelets, but the final equations of RKPM were very similar to the equations of the
EFGM. In contrast to RKPM and the EFGM, other methods were developed by using
an extrinsic basis and the partition of unity concept. This extrinsic basis was initially
used to increase the approximation order similar to a prefinement as, e.g. in the hp-
cloud method (Bonet 2000). Melenk and Babu“ska (1996) pointed out the similarities
between MMs and FEM and developed the partition of unity finite element method
(PUFEM). The method is very similar to the Ap-cloud method. Generally, PUFEM
shape functions are based on Lagrange polynomials, while the general form of the
hp-cloud method also includes the MLS-approximation. Strouboulis ef al.
(Strouboulis 2000) pointed out in their generalized finite element method (GFEM)
that different partition of unities can be used for the usual approximation and the

enrichment.

Most of the above MMs which based on global weak forms that usually require
background cells for integration. Strictly speaking, these MMs require background
cells for integration are not truly MMs (Wang 2009). In order to avoid any mesh with
both interpolation and integration, local weak forms or collocation methods was
involved such as those MMs based on a local boundary integral equation (LBIE)
(Atluri 1998, Zhu 1998) or collocation meshless methods (Kansa 1990, Wang 2009).
The most popular method is the meshless local Petrov—Galerkin (MLPG) method
(Atluri 1998, Wang 2002, Atluri 2005). The main difference of the MLLPG method to
methods such as EFG or RKPM is that local weak forms are generated on
overlapping subdomains other than using global weak forms. The integration of the
weak form is then carried out in these local subdomains. Atluri (2002) introduced the
notion “truly” meshless since no construction of a background mesh is needed for

integration purposes.

Another way of categorization is by the type of integration domain:



(i) boundary type methods such as the boundary node method (BNM) (Mukherjee
1997, Chati 1999), method of fundamental solution (MFS) (Young 2005, Young
2006, Chen 2006, Chen 2012) and boundary point interpolation method (BPIM) (Gu
2002) ;

(i) domain type methods which include all other MMs, like meshless weighted Least
squares (MWLS) method (Liu 2005, Bodin 2006).

The most attractive merits of the MMs are:
(i) they provide an alternative numerical tool, free from extensive and costly mesh
generation;
(ii) they can be used for dealing with complex geometries, and are easily extendible

to multi-dimensional problems.

Beside these merits, MMs are not without demerits. Some of the MMs shape
functions are rational functions which requires high-order integration scheme to be
correctly computed. The treatment of essential boundary conditions is not as
straightforward as in mesh-based methods. To avoid some difficulties inherent in
MMs, MMs were coupled successfully to mesh-based methods (Belytschko 1995,
Fernandez 2001, Fernandez 2003, Fernandez 2004, Huerta 2000, Huerta 2004,
Nguyen 2008). Meanwhile, hybrid methods are available that take the advantages of
both meshfree methods and finite elements (Hao 2006, Liu 2004, Idelsohn 2004,
Rabczuk 2004, Chinnaboon 2007) , e.g. the shape functions fulfill the Kronecker
delta property while simultaneously exploiting the smoothness and higher-order
continuity of meshfree shape functions. Common issues in MMs are approximation,
integration of the weak form, imposing essential boundary conditions, how to
compute shape functions and how to incorporate strong and weak discontinuities. In
addition, the weighted residual methods such as collocation and Galerkin procedures
are also stated with examples. Other surveys on MMs can be found in (Belytschko
1996) and in (Li 2002). Special issues of journals on various aspects of MMs may be
found in (Liu 1996, Chen 2000, Chen 2004). A few books on MMs are also available,
for e.g. (Alturi 2002, Griebel 2002, Liu 2002, Fries 2004) .



1.3 Aims and contents of the thesis

The purpose of this thesis is to develop novel meshless method (MM) for solving the
EIT forward problems. Among the mesh-free methods, the Method of Fundamental
Solutions (MFS) has gained an increasing attention in many engineering and science
fields (Mathon 1977, Rek 1999, Young 2005, Young 2006, Sarler 2009, Chen 2006,
Chen 2012). The MFS approximates the solution of the problem as a linear
combination of fundamental solutions of the governing differential operator.
However, the conventional MFS requires a fictitious boundary outside the problem
domain to place the source points due to singularity of the fundamental solution
(Mathon 1977, Young 2005, Sarler 2009). The determination of fictitious boundary
is not trivial (Sarler 2009). To overcome this main drawback of the MFS, several
methods such as the Modified Method of Fundamental Solutions (MMFES) (Young
2005, Young 2006, Chen 2006, Sarler 2009), the Singular Boundary Method (SBM)
(Chen 2010, Gu 2012, Chen 2012), and the Boundary Distributed Source (BDS)
method (Liu 2010, Perne 2012, Kim 2013) have been proposed. Among these, we
consider the BDS method for the EIT forward problem. The main idea of the BDS is
to avoid the singularities of the fundamental solution at source points by considering

a distributed source over circles in 2D or spheres in 3D.

In this study, the BDS methods extended to solve the forward problem of EIT.
The basic BDS formulation for solving EIT forward problems is developed. 2-D
examples including homogenous case and inhomogeneous case are presented with

the numerical results compared with BEM and FEM.

This thesis contains five chapters. Chapter 1 gives a brief introduction about
EIT, its applications and methodology. It also presents the introduction of MMs,

including characteristics of some widely used MMs.

Chapter 2 deals with the mathematical models used in solving EIT forward
problem. Complete electrode model which is used as the physical model in the thesis

is explained. Finite element formulation based on CEM is explained briefly.



Boundary element method for solving the forward problem of EIT is introduced with

CEM model, the numerical results is used for the comparison.

In chapter 3, different kinds of MMs are studied. Such as method of
fundamental solution (MFS), modified method of fundamental solution (MMES),

singular boundary method (SBM) and boundary distributed source (BDS) method.

Chapter 4 and 5 present the core part of the thesis. The formulation of IBDS and
the combination of IBDS and SBM are described. Chapter 4 deals with the derivation
of the formulas. Several examples of EIT forward problem are presented in Chapter
5, such as homogenous case, concentric case, Casinni oval anomaly case and multi-

anomaly case.

Finally, in chapter 6, the conclusions of the thesis are given and future work is

envisaged.



2. EIT forward problem

In EIT forward problem, the voltages inside the domain Q and on the surface dQ
are computed with the given current injection and known conductivity distribution.
First we should construct a physical model (mathematical model) to describe the
problem in EIT in order to derive the forward problem in EIT, the equations which
relate the current injections, voltage measurements and conductivity distributions
have to be modeled. The physical model for EIT can be derived through Maxwell
equations of electromagnetism (Nunez 1981, Malmivuo 1995, Doerstling 1995). In
this chapter, the governing equation which describes the potential distribution of the
domain and the boundary conditions needed to solve the governing equation are
discussed. In this chapter various physical models used in the EIT are described. In
this study, in solving the forward problem we use the CEM as a physical model,
since CEM 1i1s considered to be close to real situation, efficient and accurate
compared to other models (Cheng 1989, Somersalo 1992). The forward problem for
CEM is formulated using finite element method (FEM) and boundary element
method (BEM).

2.1 Background

The electromagnetic field in the domain Q € R’ can be described using the

Maxwell’s equation (Somersalo 1992, Ola 1993)

vxE=_98 @.1)
ot

vxH=J+2 2.2)
ot

where E is the electric field, H magnetic field, D electric displacement, B magnetic

induction, and J current density.



Assuming that the domain Q consists of linear and isotropic medium, thus we

have
D=¢E, 2.3)
B=uH, 2.4)
J=0E, (2.5)

where ¢ is permittivity, u permeability, and ¢ conductivity of the medium.

Assuming that the injected currents are time harmonic with frequency @, we have

E = Ee, 2.6)

B = Be™. 2.7

Substituting equations (2.3) ~ (2.7) into equations (2.1) and (2.2), we can obtain

VXE:—aa_Bz_a(Bae )
t i;a D 3B s (2.8)
——iwBe 9B _ iy - € 9B)
4 ot
VxH=J+a_D=J+a(€E)=J+£B(Ee’“”)
ot ot ot 00
=J+ia)£Eei“” +L8(E)=J+ia)gE+w.
ot ot

The current density J can be separated into two components, i.e. ohmic current
(J° =0E) and current source (J*). Putting the value of J and canceling out the
oscillatory exponential terms, we get the following simplified Maxwell equations

(Somersalo 1992, Ola 1993, Doerstling 1995)

VXE=-iwuH , (2.10)



VXH=(c+iwe)E+J". 2.11)

Now the electric field E can be expressed as

Ee_vu_2 2.12)
ot

where u is electric potential and A magnetic vector potential.

In EIT, we assume static conditions, where the effect of magnetic induction
which produces an induced electric field is neglected. Another assumption we make
is that the capacitive effects iweE in equation (2.9) can be neglected (Barber 1984,

Baker 1989). Using these assumptions, the above equations can be expressed as

E=-Vu, (2.13)
VXH=cE+J". (2.14)

Taking the divergence on both sides of equation (2.14), substituting equation (2.13)

into equation (2.14), and also because there is no current source in the given

frequency range in EIT, i.e. J° =0, we get

V- (0Vu) =0, 2.15)

where u=u(x,y), for x, ye Q. The equation (2.15) is considered as the governing

equation for forward problem of EIT. In order to solve the governing equation, a set
of boundary conditions is required. In the next section, different kinds of boundary

conditions, which related to different physical models in EIT, are presented.
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2.2 Physical models in EIT

2.2.1 Continuum model

Continuum model is the most basic physical model in EIT. It assumes the entire

surface as a conductor with no specific electrodes attached to the surface, with j as a

continuous source current

J(0) =Ccos(k0), (2.16)

where C is a constant.

2.2.2 Gap model

In gap model, it is assumed that the current density is constant over electrodes while

it is assumed to be zero in the gap, i.e.

1
ﬁ xee, [=12,....L
¢
j= L 2.17)
0 x€dQ\ U ¢,

[=1

where |e,| is the area of the [th electrode, I, is the current applied to the [ th

electrode ¢,, and L is the number of electrodes.

2.2.3 Average-gap model

The average-gap model is based on the same boundary conditions as shown in gap
model in equation (2.17). The main difference between the two models is that the
gap model considers the voltage values measured at the centre of each electrode
while the average-gap model considers the average value of potential at each
electrode. Since both the gap model and average-gap model ignore the shunting
effect as well as the contact impedance of the electrodes, they still overestimate the

potential distribution inside the body (Somersalo 1992).

11



2.2.4 Shunt model

In shunt model, the shunting effect of the electrode is taken into account, which
means that the potential on the electrode is assumed to be constant. The boundary

condition, is expressed as
ja—ds I, (xy)ee, =12, (2.18)

where v is the outward normal unit vector on the surface dQ . The shunting effect is

described by the following condition
u=U,, (x,y)eel, [=1,2,---,L, (2.19)

where U, is the measured voltage on the [th electrode. Since the contact impedances

are still ignored in this model, it underestimates the potential distribution.

2.2.5 Complete electrode model (CEM)

The complete electrode model (CEM) takes into account the shunting effect as well
as the contact impedance between the electrodes and the surface of the body. This

model comprises the following boundary conditions

ja—ds I, (x.y)ee, 1=1,2, (2.20)
ou L

0—=0, (x,y)e 0Q\Je. (2.21)
oV I=1

The current applied through electrodes attached on the boundary of the object is
given by equation (2.20) and equation (2.21) is the insulate condition where there is

no current applied except on the electrode surface.

12



Apart from equation (2.20) and equation (2.21), we have additional condition which

considers the contact impedance between the electrode and the surface of the body
du
u+z10'$=Ul, (x,y)ee, 1=1,2,-,L, (2.22)

where z; is the effective contact impedance. The CEM has better approximation of

the boundary voltages when compared to other models. Also, to ensure the existence

and uniqueness of the solution, we impose the following conditions (Somersalo

1992)

L L
=1 =1

2.3 Mathematical formulations for EIT forward problem

For the forward problem of EIT with CEM, as discussed in the previous subsection, a

set of discrete electrical currents I, (/ =1, 2, ---, L) is injected through an array of
electrodes ¢, (I=1, 2, ..., L) attached on the circumference of the domain dQ and

the voltages are measured on those electrodes. Assuming, inclusions of conductivity

o, that has a boundary dD occupying region D enclosed inside the domain Q with

background conductivity o, , as can be seen in figure 2.1.

13



gap (gp

electrode (er)

Figure 2.1. A schematic diagram of EIT domain with 16 electrodes.

The governing equation of the EIT forward problem can be expressed as

V-[o,+(0,-0,)x,(p)]Vu(p)=0 for pe Q and Dc Q,

subject to the boundary conditions

Ju(p)

oW =0 for pe dQ, =0Q\U/_ ¢,

J.O-” du (P)dS:I[ for pee, 1=12,---,L,
av

du (p)

u(p)+z,0, =U, for pee, [=1,2,---,L,

and interfacial conditions

_ . du(p)

b
. v

u(p)|aD, zu(p)w and o,

Ju(p)
v

oD*

14

(2.24)

(2.25)

(2.26)

2.27)

(2.28)



where x,(p) =1 if p located in D , otherwise y,(p) =0, 0Q=0Q, UdQ, ,

0Q, = U1L:1 e, and 0Q; = UIL:I 8-

Or, the governing equation can be expressed as

Viu,(p)=0 for pe Q\D,

Vu,(p)=0 for pe D,

subject to the boundary conditions

)
Li_’;_(vp)zo for pe 0Q, =0Q\U¢,,
J.O'b aup(P)dS:I[ for pee,, 1=12,---,L,
. oV
)
u,(p)+2z,0, ub(p)ZU, for pee, =12,

and interfacial conditions,

b

ud(p)|aD, zub(p)w and o

a

du,(p)
0

oD~

’L’

aub(p)
v

(2.29)

(2.30)

231)

(2.32)

(2.33)

(2.34)

Also, the current and the potentials should satisfy the constraints as described in

equation (2.23).

2.3.1 Finite element method formulation of EIT

In the FEM implementation of EIT forward problem described in the previous

subsection, the object () is discretized into small triangular elements (Vauhkonen

15



1997, Khampampati 2010). We assume that the resistivity is uniform within each
element. Suppose the number of nodes in the finite element mesh is N, then the

potential distribution » within the object can be approximated as

uzuh(p)=uh(x,y)=205iq)i(x,y), (2.35)

i=1

and the potential on the electrodes is represented as
. L
U :jzzlﬂjnj, (2.36)

where ¢ is two-dimensional first-order basis function, ¢; and f; are the
coefficients to be determined, and n ; are the bases for the measurements, is the jth

column of matrix n, and

1 1 1
-1 0 0
n={0 -1 - 0 |eRED, (2.37)
10 0 -1
ie.
n, =(1,-1,0,---,0)"
n, =(1,0,-1,0,---,0)" e R* .
The finite element formulation gives the following system of linear equations
Ab=1, (2.38)
where

16



B C o ~ (0
A:{CT Dj, b:{ﬁj and I:{CJ’ (2.39)

a=(a.a,,a,) R,

Bz(ﬁl’ﬁz’“"ﬁL—l)T e R,
0e RY, and

Cz(ll_lz’ll_13""’11_IL)T€mL_1 .

and the stiffness matrix A is of the form

L1 ..
B(i,j):jgo'Vg)i -V¢de+;ZLI¢i¢de, for i,j=12,---,N, (2.40)
.. 1 1 . .
C(i.j)=——[ @dS+——[ @ds, for i=12,+ N, j=12,---,L-1,
7 4 Zjyp O
(241)
ol s
Z
D(i,j)= 1 , for i,j=1,2,---,L—1, (2.42)
et |ef'+1|
_+_
4 Ijn

where ‘e j‘ is the area of the electrode ;.

In some cases, the voltages are measured only at some selected electrodes, not

every electrode. Also, the selected electrodes may be different at each current

pattern. The measured voltages at the measurement electrodes U can be obtained as

U=M"U"=M'Npe R*, (2.43)

17



where, E is the number of the measurement electrodes, P is the number of current
patterns and Me R“* is the measurement matrix. Furthermore, U" can be extracted

directly from b by introducing the extended mapping matrix N

N =(0,N)e RV and U" =Nb, (2.44)
where 0 RV . Therefore, we have

U=M"U"=M"Nb=Mb, (2.45)
where the extended measurement matrix is defined as

M =M'Ne RENLD (2.46)

2.3.2 Boundary element method formulation of EIT

The boundary element method formulation (Duraiswami 1997, de Munck 2000,
Khampampati 2011, Khampampati 2012) is based on the fundamental solution of the
Laplace equation. Here, we denote the fundamental solution of Laplace equation by

G, so that
AG(plp)=06(p-p,), (2.47)

where p is the field point, p, the source point.

The solution of Laplace equation G and its normal derivative Q in 2D are

1
p,—pl = n 2, (2.48)

1
G(plp)=—In
‘ 4z

18



0
Q(plps)za—G(plps)
1%

1L (p,=p)vp)__ 1 (p,=p)v(p)’

27 r’

(2.49)

where r :|ps - p|.

From (2.29), (2.30), and (2.23), and using Greens second identity, we have

J.G(plps)MdS+J.G( )ﬂds [ Vi, (p)-VG(pl p)a@=0,
Q v oD Q\D
(2.50)
[Gpip) Mds jvu (p)-VG(p| pdQ =0, 2.51)
oD
by using
[ G(pIp,Vou,(pra@=0, (2.52)
Q\D
[G(p1 pV2u,(prd@=0. (2.53)
D

Applying the Gauss theorem and substituting equation (2.50) and equation (2.51), we
can obtain

[ w,(»V?G(pIp)dQ= [ u,(p)6(p—p,dQ, (2.54
Q\D Q\D

[4.(PVG(p p)AQ = [u,(p)S(p—p,)dQ, (2.55)
D D

[ w,(PV?G(plp)ae

Q\D

= I u,(P)Q(p | p,)dS + j 1, (P)O(p| p)dS = [ Vu,(p)-VG(pl p)dQ

Q\D

19



(2.56)

[ w,(»)S(p=p)dQ=w,(p)u,(p,), for pje Q\D 2.57)

Q\D

[, (PVG(p1 p)dQ= [u,(p)O(p! p,)dS = [ Vi, (p)-VG(p! p,)dQ ,

D oD

(2.58)

[u,(8(p=p)dQ@=a,(pu,p,) , for p,eD (2:59)

D

here, @, and @, are the geometric coefficients on the boundaries. The geometric
coefficient is computed by the internal angle at the point divided by 27 .
Define

q(p) =M, (2.60)
ov

we have the identities:

@, (pu,(p) = [ u,(P)O(p, p,)dS + j u,(p)Q(p, p,)dS

Q

o (p) , (2.61)
j a,(P)G(p, p) =2 Fods - j%(p)G(p p,)ds
@, (p)u,(p) = [ u,(O(p! p,)dS - j%(p)G(plp )ds (2.62)
D
From the interfacial conditions
u, ()., =u,(p),, - (2.63)
and
~xq, (P, = 4, (D), e (2.64)

20



where k=0, /0,. Note that the outward unit normal vector on dD~ is opposed to

that on dD" . Hence, from the above representation formulas becomes

[a)b(pv)+ Ka)u(ps)ZBD(ps)] ub(ps)
= [u,(pQ(p! p)dS— [ 4,(P)G(p p)dS ,  forp,e Q\D (2.65)
oQ oQ

+(1=5) [ u,(pQ(p p,)dS
oD

and

[@,(p,)+x@,(p) Xsp (P)]u, (D))

Iub<p)Q<p|p s -3 [Uttp)

119 Zl b

G(p!p)dS+(1-x) j u,(P)Q(p| p,)dS

I u,(P)O(p1 p, )dS+Z— [4,(P)G(p1 p)dS +(1-x) I u,(P)O(p| p,)dS

=1 Zl b ¢
> U [G(p1p,)as
=1 Zlo-b ¢
(2.66)
for p.e Q\D.
The above representation formulas can be rewritten as
L
1
o(pu,(p,) = [ u,(pQ(p! p)dS +d —— [u,(P)G(p! p,)dS
0Q IS Zl b ¢ ’ (267)
+(1-K) j u,(P)Q(p| p,)dS - Z— [G(p1pas
=1 %1% ¢
for p,e Q\D, and
1 Z[ 1 cee
j u(p)dS +"L=U, for 1=1,2,---,L, (2.68)

|€1

€ |/|
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where

a(p,)=a,(p,)+k0,(p) ¥ (p,) - (2.69)

Assume that the electrodes are spaced equally on the boundary and has the same

size of |e|. Each electrode and each gap regions are uniformly discretized into m,
and m, segments, respectively. Hence, the total numbers of the electrode and the gap
segments are M, =Lm, and M, =Lm,, respectively. The i th segment of the
electrode region is denoted by BQEi (i=L2,---,M,) and by the same way, aQGi
(i=12,---,M, ) stands for the ith segment of the gap region. The sizes of the
electrode and gap segments are set to s, and s, . If the number of the segments of

the inclusion boundaries is M, , the total number of segments is

D

M=M,+M_+M,.

The discretized form will be

uE uE
D(®)|u; |-[K, K, (1-0)K,]lu;|+K,U=0, (2.70)
uD uD
U=Au,+D(z /eI, (2.71)
where
D(w) =diag[a(p) @(p,) - @(p,)]e R, 2.72)
0., )= | QpIp)dSe R, 2.73)
aQ
G, (G, j)= j G(p| p,)dS e R (2.74)
0y,

22



K,=0,+-G, [Da/z)®1, e R
6 E

b

Kol )= [ Q(p! p)dse R,

80,

Ky, )= [ Q(pIp)dSe R,
oD

KU(i,l)zLjG(mp,)dSe R

17D ¢

or

K, :O_LGE [D(1/z,) ®ones(m,,1)]e R,

b

U:[U1 U, UL]T ’

A :|S—E|IL ® ones(l,m,)e R*M= |
e

D(z, /|e|) =diag[ z, /|e,| z,/|e,]

Z /|eLH.

2.75)

(2.76)

2.77)

2.78)

(2.79)

(2.80)

@2.81)

2.82)

In this, ® denotes the Kronecker matrix product, /,, € RY=Me the identity matrix,

and ones(m,n) the m-by-n matrix with ones. In order to satisfy the constraint

L
ZU, =0, let’s define
=1

U, 11 1\ B

U, -1 0 01 A
U=|U, |=N,f=| 0 -1 01 B

UL 0 0 -1 ﬂL—l

where

23
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-5, , (2.83)
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N, =[ones(l,L—1);—1,_] . (2.84)

Then,

uE uE
D(®)|u; |-[K, K, (1-0)K,] u;|+K,N,B=0, (2.85)
uD uD
N,B=Au,+D(z /eI , (2.86)
B=[NiN, | N[ Au, +D(z, 1|eT ], (2.87)
uE uE
D(®)|u; |-[K, K, (1-x)K,] u;
" " (2.88)
+K,N,[NIN, | N} [ Au, +D(z,/|e) |=0
Finally, we have
uE
[D@-[K,~K,NA K; (1=10K, || ug |==K,ND(z,/|eI . (2.89)
uD
where
~ -1
N=N,[N/N,] NJ. (2.90)

Consider the m th boundary dS, where a local point p is contained and dS, is

approximated to a linear segment of length / .
t
P=pyt-(P=p), (2.91)

where the end points p, and p, are numbered counterclockwise on dQ and
clockwise on dD.
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ds,, =/(dx/dt)* +(dy/ dr)*dt :%"dt, 2.92)

2

r’= (x_xs)z +(y_ys)2 :{XO +é(xz _x1)_xs} +{yo +é(yz _yl)_ys:l
=(x, _xs)z +(y— ys)z +[(x0 = X)X = x)+ () =y )y, — yl)]t

+[()C2 _x1)2 +(yz _y1)2]%

(2.93)

2 ztz
=|po= .| + (o= p)-(p,— Pt +|p,— p)| 7
=a+bt+ct’

b\ dac—b’
=c|t+— | +

2c 4c
where
(1:|p0—p5220,
b:(Po_PS)'(Pz_Pl),
1 2
C:Z|pz_p1| >0.
The discriminate is
2 2 2 2 2 2 2 .2
d - =4ac-b =|p0—ps pz—p1| (I—cos 0)=|p0—ps pz—pl| sin” @
, .

:|(P0_PS)X(P2_P1)|

(2.94)
Thus,

1 1 > 1 1
G(plp)=—In|p—p|=—In|p— =—1Inr’=—In(a+bt+ct?),
(Plp)=o lp—p, . lp—p, . o )

(2.95)
_9G(plp) _(p=p)-v _(p=p)Vv_(p=p)(p,—p)
Q( | ;)_ - 2 2 - 2 ’
ov 2”|P_Ps 2zr 27l (a+bt+ct”)
(2.96)

since
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(P=p,) (py— Pt =(x=x )3, = y)~ (V=) %, —x) = (p—p)*x(p,— p)-k
{(xo —xs)+%(x2 —xl)}(yz - yl){(yo —ys)+é(y2 —yl)}(xz —x)

= (% = x)(3, = ) = = 2,6, = x) = (py — p,)X(py — p) -k

(2.97)
we can rewrite equation (2.97) as
IG(p1p,) _ (py=P)X(Ps—p)-k d
| — R S 1 = . 2.98
oplp.) ov 27l (a+bt+ct’) 27zl (a+bt+ct) 299
where d :(po—pj)x(pz—pl)-lg.
Finally, we can have
o(p,,,p,) = I O(plp,)ds
S
sign(d) tan™' b-’-zc—tan‘1 b=2c for |d|>0 (2.99)
= 2z |d| |d|
0 for |d|=0
and
l 1
G(p,>p,)= [ G(p! p,)dS == [ In(a~+bt+ct*)dt
S 8z -1
:li (1+ijln(a+b+c)+(l—ijln(a—b+c)—4 +MQ(pm,pY)
87 2c 2c 4c ‘
(2.100)

Once all the coefficients of equation (2.89) are determined, the potential at any point

on the boundary can be evaluated by solving equation (2.89).
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3. Method of fundamental solutions (MFS)

Among the MMs, the method of fundamental solutions (MFS) has gained an
increasing attention in many engineering and science fields (Mathon 1977, Rek 1999,
Young 2005, Young 2006, Sarler 2009, Chen 2006, Chen 2012). The MFS is the first
kind of boundary-type discretization MMs (Karageorghis 1992, Fairwaether 1998,
Chen 1998, Liu 2005, Young 2005). In order to avoid the singularity of fundamental
solutions with a strong-form collocation formulation, the MFS places the source
points on a fictitious boundary outside or inside the physical domain, corresponding
to interior or exterior problems, respectively. MFES is effective for solving the elliptic
well-posed direct problems in complex geometries (Shigeta 2009, Young 2005,
Young 2006, Chen 2006, Chen 2010, Chen 2012). Mathon and Johnston (Mathon
1977) first showed numerical results obtained by using the MFS. The papers
Bogomolny (1985), Katsurada (1996), Sarler (2009) and Liu (2010) had discussed

some mathematical theories regarding the MFS.

MFS has been used to solve the Laplace equation (Bogomolny 1985,
Fairweather 1998, Saavedra 2003). The error estimates, stability and convergence
analyses of the MFS for the Laplace equation in a circular domain are carried out by
Bogomolny (1985), and Smyrlis and Karageorghis (2001). The MFS has a wide
application in engineering fields, examples can be seen in Chio et al. (2004), Young
et al. (2005), Young and Ruan (2005), Chen et al. (2008), and Liu (2011).
Fairweather (1998) and Karageorghis et al. (2011) had given a comprehensive

review regarding the applications of MES to the linear inverse problems.

The MFS is very easy to numerically implement and it can avoid the
integrations on the boundary. However the MFS has a serious disadvantage that the
resulting linear equations system may become highly ill-conditioned when the
number of source points is increased (Young 2005, Chen 2006, Liu 2012) or when
the distances of source points are increased (Chen 2006). The convergence analysis

of MFS has demonstrated that the approximation improves when the source radius
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tends to infinity as reported by Smyrlis and Karageorghis (2004). Nevertheless, for
complex geometries, the MFS also requires large number of nodes to collocate the
boundary conditions, and in general it gives a better accuracy than that only using a
small number of nodes on the boundary. Besides, it is also known that the MFS may
produces some difficulties while dealing with complicated geometries with
discontinuous boundary conditions, which require special treatment by using the

technique of enrichment functions which was proposed by Alves and Leitao (2006).

Tsai et al. (2006) have proposed a numerical procedure to locate the source
points of the MFS. They proposed a practical procedure to locate the source points in
the use of MFS for various time independent operators. The location procedure was
developed through some systematically numerical experiments for the relations
among the accuracy, condition number, and location of source points in different
shapes of computational domains. By numerical experiments, they found that good
accuracy could be achieved when the condition number approaches the limit of
equation solver. In their numerical experiments, higher condition numbers and
smaller errors were obtained when the source points are located farther in some

proper way.

By using the super-singular double-layer fundamental solution, an alternative
collocation strong-form method, called the modified method of fundamental solution
(MMFS), was proposed by Young and his coworkers (Young 2005, Young 2006,
Chen 2006, Young 2007). The troublesome singularity was avoided by employing
the subtracting and adding-back techniques without a fictitious boundary as
contrasted to the conventional MFS. Therefore, the major difficulty of the
coincidence of the source points and collocation points in the conventional MFS is
thereby overcame. The method had been further extended to the single layer Laplace
equation fundamental solution in by Young et al. (2006). Sarler (2009) applied the
MMES to potential flow problems. The solution in two-dimensional Cartesian
coordinates was represented in terms of the single layer and the double layer
fundamental solutions. The desingularisation technique was put into the context of

potential flow problems by using and comparing the single layer fundamental
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solution (SLFS) and the double layer fundamental solution (DLFES). The calculation
of the desingularised values of the partial derivatives on the boundary was
represented as well, which was different from the case in the previous two cited
MMES pioneering papers by Young’s group. Based on the MMEFS, the regularized
meshless method (RMM) (Chen 2006) was developed to solve two-dimensional
Laplace problem with multiply-connected geometries. The approximate solution was
represented by using the double-layer fundamental solution. The source points was
located on the physical boundary as well as the MMFES by using the proposed

technique to regularize the singularity of the kernel functions.

Liu (2010) proposed a boundary distributed source (BDS) method, in which the
fundamental solution was integrated over small areas covering the source points so
that the fictitious boundary was avoided and the coefficients in the system equations
could be evaluated analytically. However, the analytical expression of the diagonal
elements for equations describe the Neumann boundary condition had to be
determined in a indirect way. And thus this method is still immature and under

further developments (Perne 2012).

The singular boundary meshless method (SBM), proposed by Chen and his
collaborators (Chen 2009a, Chen 2009b, Chen 2010, Gu 2011, Chen 2012) overcame
the artificial boundary in the conventional MFS by locating the source point to
coincide with the collocation points on the physical boundary. The key idea of SBM
was to introduce the concept of the origin intensity factor to isolate the singularity of
the fundamental solution. And an inverse interpolation technique was proposed to
evaluate the origin intensity factor. However, in order to carry out this technique, the
SBM had to place a cluster of sample nodes inside or outside the physical domain for
either interior or exterior problems. Chen et al. (2012) indicated that the solution
accuracy of this SBM formulation was sensitive to the placement of such sample
nodes. They developed a novel formulation of the SBM to avoid the above-
mentioned sample nodes in the ordinary SBM formulation, based on the subtracting
and adding-back technique as well as the inverse interpolation technique. The new

formulation circumvented the major shortcomings in the ordinary SBM while

29



retaining its advantages such as being mathematically simple, easy to program, high

accuracy, and free from integration.

In this section, the conventional MFS, MMEFS, RMM, BDS and SBM are

briefly reviewed and the main formulations of the MMs are presented.

3.1 Conventional method of fundamental solution (MFS)

The MFS (Karageorghis 1992, Fairwaether 1998, Chen 1998, Liu 2005, Shigeta
2009) based on the fundamental solution of a partial differential equation of interest,
is compromised by requiring a controversial fictitious boundary outside the physical
domain to refrain from the singularity of fundamental solution. The approximate
solution in MFS is a linear combination of fundamental solutions, which
automatically satisfy the governing equation. The coefficients used in the linear

combination are determined from the given boundary conditions.
Consider the Laplace equation
Au=0, 3.1

in a two-dimensional bounded domain Q enclosed by the boundary 0Q . We

prescribe Dirichlet and Neumann boundary conditions on a part of the boundary 0,

denoted by 0Q, and 0L, , as follows

u=u on 0Q,, (3.2)

ou _

—= on 0Q,, 33

5, 4 > (3.3)
where 7 and g denote given continuous functions defined on dQ , and v the unit
outward normal to dQ . Then, we need to find the boundary value u on the rest of

the boundary dQ, =dQ\0Q, or the potential « in the domain Q.
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The fundamental solution of the Laplace equation in two dimensions is defined

as

¢*(r)=—$lnr, (3.4)

where r =|x|=4/x*+y*, which is a solution to
Ad*=5(x), (3.5)

where 8 denotes Dirac delta function.

We distribute the collocation (field) points {X,}Z1 c dQ on the boundary, and the

N —
source points {s j}j:I < Q° on a fictitious boundary outside the domain. Generally,

there are two ways to locate the source points, one is distributed the source points on
a circle outside the domain (Tsai 2006, Shigeta 2009), as shown in figure 3.1.
Another way is to distribute the source point outside the domain with a certain

distance from each collocation points, as shown in figure 3.2.

© collocation (field) points
[ source points

Figure 3.1. Schematic diagram which explains the node distribution in MFS.
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Figure 3.2. Schematic diagram which explains the node distribution in conventional

MEFS.

The approximate solution is expressed as a linear combination of fundamental

solutions
u(x) = uy (X) =3 w,d,(x), (3.6)

where the basis function is defined as
9, = g*([x=s ). 3.7)

and {wj};vz1 are unknown coefficients which need to determined by using the

boundary conditions. Since the basis functions (3.7) have no singular points in Q,

the approximate function u, satisfies the Laplace equation (3.1). Substituting

equation (3.6) into equations (3.2) and (3.3), assuming that equations (3.2) and (3.3)

is satisfied at the collocation points, we have
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D owi(x)=iu(x,) for i=1,2, ... M, (3.8)

J=1

Zw}.agf'—fj):a(x,) for i=1, 2, ... M. (3.9)

N
j:
Or in matrix form

Aw =b, (3.10)

where A = (a,)e R*"" and the vectors w =(w,)e R",b=(b,)e R*" are defined

by
6,(x,), i=1,2, ..M, and j=1,2, ..N
¢ =196 (x. ERT)
171995 e) el M2, 2M and =1, 2, N
A%
7(x,), i=1,2, ..M
b=1" _ . (3.12)
q(X;_,), i=M+1, M+2, ...2M

3.2 Modified method of fundamental solution (MMEFS)

The Modified method of fundamental solution (MMEFES), was proposed by Young
and his coworkers (Young 2005, Young 2006a, Young 2006b). The solution in
MMES is represented by a distribution of the kernel functions of double layer
fundamental solutions. By using the desingularization technique to regularize the
singularity and hyper singularity of the kernel functions, the source points can be
located on the real boundary as well as the collocation points (figure 3.3) and
therefore the diagonal terms of influence matrices are determined. The main

difficulty of the coincidence of the source and collocation points then can be avoided.
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Figure 3.3. Schematic diagram which explains the node distribution in MMFS.

3.2.1 MMFS for solving the Laplace equation
Consider a boundary value problem with a potential u(x), which satisfies the

Laplace equation as described by equation (3.1)-(3.3), we denote the BCs here as

u(x)=u, xeoQ,, (3.13)
g(x)=¢q, x€0Q,, (3.14)
where
ou(x)
= . .1
q(x) () (3.15)

By employing the radial basis functions (RBF) technique (Chen 2002), the
representation of the solution for interior problem can be approximated in terms of

the coefficients ¢, of the source points s, as

u(x,) =ﬁ:A(i)(sj,x,)0{j, (3.16)

j=1
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N
q(x,):ZE”(sj,x,)aj , (3.17)

j=1
where A(i)(sj,x,.) is RBF, in which the superscript (i) denotes the interior domain,
@; is the jth unknown coefficients (strength of the singularities), s, is jth source

point, x, is ith observation point, N is the number of source points and the chosen

RBFs in Young's paper (2005) are the double layer potentials in the potential theory
and can be found in (Chen 2002a, Chen 2002b) as

A(i)(sj,xi)=_((Xi_—2Sj)’nj) , (3.18)
B
B(i)(Sj,Xi) — aA(i)(sj’xi) — ((xi _Sj)’nj)f(xi _Sj)’ﬁi) _ (nj’zﬁi) , (319)
ain ’;] ’;]
where
7=|s,—x. (3.20)

and (,) denotes the inner product of two vectors, n i is the normal vector at s i and 7,
is the normal vector at x, . The coefficients Q; (j=1, ...,N) are determined so that

BCs is satisfied at the boundary points x, (i =1, ..., N).

By collocating N field points to match with the BCs from equation (3.16) for
Dirichlet problems and equation (3.17) for the Neumann problems, we have the

following linear systems of the form

ay G o Gy
a?,l 612:,2 az:,N {aj} — |:A(i) ]{05;} — {17}’ (321)
ayy Gyp o Oyy
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b1,1 b1,2 bl,N

b2,1 bz,z o bZ,N i —
A {aj}=[B( )]{aj}={Q}, (3.22)
bN,l bN,Z bN,N
where
_ A s
a; ; =A"(s;,%;), i,j=12,...,N, (3.23)
b, =B"(s;,x;)),  i.j=L2..N. (3.24)

For the mixed-type problems, a linear combination of equations (3.21) and
(3.22) is made to satisfy the mixed-type boundary conditions (BCs). After solving

the unknown density coefficients &; (j =1, ..., N) with the linear algebraic solver,

the solutions for the interested domain are calculated from the field equations (3.16)

and (3.17).

When the collocation point x; coincide with the source point s;, equations

(3.16) and (3.17) will become singular. Equations (3.16) and (3.17) for the interior
problems need to be regularized by using special treatment of subtracting and

adding-back technique (Tournour 1999, Hwang 2002) as follows:

S A0
u(x;,)=2 A" (s;,x,);
=l

=T A x e+ 3 AV (s xpa, 3 €90 (3.25)
=1

j=i+l
N . .
+[ > A(')(sm,xi)—A(')(si,xi)}aj
m=1
N .
Q(X,) = ZIB(I)(S]"X,')“]'
iz
i—1 . N .
=Y BY(s;.xpa; + ¥ B (s;.x)a, x, € 0Q (3.26)
j=1 j=i+l

N . .
—[ > BY(s,,,X,) —B(’)(si,xi)}aj

m=1
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. _
z_ll Ay — Gy a,, a\n
5
a a, —a a
{M,-} — 2,1 = 2,m 2,2 2,N {aj}’ (327)
N
ay 1 ay, 2—1 aym — NN
_ N _
_( - bl,m bl,l) bl 2 bl N
b ( > b b ) b
{a.}= o = N {a)} (3.28)
N
le sz _( _le,m bN N)

In a similar way, the subtracting and adding-back technique was applied to the
exterior problems. The diagonal terms of the two influence matrices for both interior
and exterior problems can also be derived analytically for a circular domain as shown

in (Young 2005).

3.2.2 Regularized meshless method (RMM)
The regularized meshless method (RMM) (Chen 2006), which based on the MMFS,

is developed to solve two-dimensional Laplace problem with multiply-connected

domain.

Consider a Laplace equation as described by equation (3.1), subject to the BCs

as

u(x)=u, for xe dQ!', t=1,2,3,..m, (3.29)

gx)=¢q, for xe aQ?!, t=1,2,3,..m. (3.30)

where g(x)=0du(x)/dv(x), m is the total number of boundaries including m—1

numbers of inner boundaries and one outer boundary (the m th boundary), dQ" is the
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essential boundary (Dirichlet boundary) of the 7th boundary in which the potential is

prescribed by # and dQ7 is the natural boundary (Neumann boundary) of the ¢th
boundary in which the flux is prescribed by 7. Both 0Q; and QY construct the

whole boundary of the domain Q as shown in figure 3.4.

/

/. KJ
\Wlesy/
-

\__!__/!

® collocation (field) points
[ source points

Figure 3.4. Schematic diagram which explains the node distribution in RMM.

By employing the RBF technique (Chen 2002, Cheng 2000), the representation
of the solution for multiply-connected problem as shown in figure 3.4 can be

expressed in terms of the «; at s; as

u(x;)= ZT(s/,x )0{
. Ny+N,
—ZT(s/,x a; + Z T(s;,x,)a; (3.31)

Jj=N;+1

N
4ot > T(s;.x)e;,

J=N,+Ny+-+N, _+1
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q(x;)= %IM(sj,xi)aj
=

N, N+,
=X M@ x)a + X M(s;,x)Q, (3.32)
= J=N A
N
4ot > M(s;.x)a;,

J=N;+Ny+-+N,,_+1

where ¢, is the jth unknown coefficients (strength of the singularities), s, is jth

source point, x; is i th observation point, N,, N,, ..., N, _,, are the numbers of source

m—12

points on m—1 numbers of inner boundaries, respectively, N is the number of

m

source points on the outer boundary, while N is the total numbers of source points

N=N,+N,+ ..+N,_, +N, . The chosen bases are the double-layer potentials (Chen
2002a, Chen 2002b, Young 2005) as

T(s,»,x,-)=w : (3.33)
ij
_OT(s;5x)) _ ((Xi _sj)’”j)((xi _sj)’ﬁi) 3 (”j’ﬁi)
M(s;,x;)= v - Z (3.34)

where (,) denotes the inner product of two vectors, L =|sj —xl.|, n, is the normal

vector at s;, and 7, is the normal vector at x, .

As the field point x; coincide with the source point s, , equations. (3.33) and

(3.34) will become singular. Equations (3.33) and (3.34) for the multiply-connected
problems need to be regularized by using the regularization of subtracting and adding

back technique which same as MMFS (Young 2005):

; N, I N,+-+N, 11
u(x;)=2T(s;,%x;)0; +---+ > T(s;.x;)e;
j=1 J=N;+-+N,_ +1
Ny+-+N,,_, I N o 1
et > T(Sj’xi )aj+ > T(Sj,Xi )aj (335)
j=Ny+-+N,_,+1 Jj=N+-+N,,_+1

Ny+-+N, .
- Z T(Sj’xi )a,

J=N+-+N,_ +1
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for xeoQ,, t=1,2,3,....m—1, where x! is located on the inner boundary
(t=1, 2, ..., m—1) and the superscript I and O denote the inward and outward normal
vectors, respectively, and

Ny +-+N,

3 T(st,x)=0, x'edQ,, 1=1,2,3,....m—1. (3.36)
J i i t

j=N+--+N,_ +1

Therefore, we can obtain:

N, i—1
u(x))=XT(si.x)Da;++ ¥ T(si.x)a;

= J=N N4
NywookN, Nyt N, .

+ X T(sj.x)a;+-+ > T(s;,x;)e; (3.37)
fat) JEN AN, 41

N o I Nt N 1 1 I I
+ > T(sj,x,.)aj— > T(Sj,xi)—T(Si,Xi) a;,

JEN 4N, 41 J=N 4N, 41
I
for x; €0Q,, r=123,....m—1.

When the field point locates on the outer boundary ( p =m ), equation (3.35) becomes

0 il 1 ,0 MEN 1,0
u(x;y)=7> T(sj,xi )Otj+ > T(sj,xi )Otj+---
j=!

J=N,+
N;+-+N, I 0 N 0 0
+ S T(sj.x;)a; + > T(s7.x;)e; (3.38)
JEN et N+ JEN N, +

N
- ¥ T6lxDe,

J=N,+-+N, _+1

for x? e 0Q,, t=m, where

N
Y T(s;.x])a; =0, x;€0Q,, 1=m. (3.39)

J=N+-+N, +1

Hence, we obtain
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0y_ 1,0 M I 0
u(x;)=2T(s;.x0 )0+ 2 T(s;,%,7)0; ++
J=1

J=N,+
N AN I ,0 = o 0
+ > T(s;,x;)a; + > T(s;,x;)a; , (3.40)
JEN AN, 4 JEN AN, +

N N
+2T(s§?,x?>a,»—{ > T(sj,x,?)—T(sf’,x?)}a,-

j=i+l J=Ni+-+N,  +1
1 d O
for x; ™ “€dQ,, t=m.

Similarly, the Neumann boundary equations can be obtained as

N . Nyt--+N, .
q(x;) =2 M(s;,x; )0 +---+ > M(s;.x;)a; +--
= J=N N+

N &N I I y 0 I
+ X M(s;x)o+ X M(s7,x;)e;
J=N;+-+N, ,+1 Jj=N;+-+N, +1 , (341)
N,+--+N,

I I
+ > M(sj ,X; )0
J=N+ N, +1

for x! €0Q,, t=1,2,3,...,m-1.

Where

N,+--+N,

M(s§ , xil) =0
Jj=N;+-+N,_ +1 , (342)

for x! €9Q,, t=1,2,3,...,m—1. Thus, we have

N
qx)=XM(sj.xDa;++ X M(s;.x)a,
j=1

J=N,+-+N,_ +1
N,+-+N, Ny+-+N,,_,

+ 3 M(si.x)a;++ Y M(si.x)a; , (3.43)

j=i+l Jj=N+-+N, +1
N Ny+-+N,

+ > M(st,xf)aj—|: > M(sj,xil)—M(siI,xil)}ai

J=Ny+-+N,,_+1 J=Ny+-+N,_ +1
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for x! €9Q,, t=1,2,3,...,m—1.

When the field point locates on the outer boundary ( p =m ), equation (3.41) yields

0y_ U I 0 MM I 0
q(x;)=2X M(s;.x;7 )0+ X M(s;,x; )+
j=1

J=N,+1
N AN 1,0 N 0o 0
+ )y M(s;,x))a,; + > M (s ,x))e,
) PR jo i %
JEN AN+ J=N 44N, +1 i (3.44)

N 1 1
- Z M(Sj,Xi)ai

J=N,+--+N,,_+1

Where

N
> M(s§ , xil) =0
Jj=N;+-+N, _+1 . (345)

for x!/edQ,, t=m.Thus, we have

0y_ U I 0 MM I 0
q(x;)=2XM(s;.x; )+ X M(s;.x;,))a; +--
j=1

=N+
N ANy I 0 d o 0
+ > M(s;,x;)a; + Y M(s5.x;)a; , (3.46)
J=Ny AN, 4 J=N N+

N N
+ZM(s§’,xf’)a,»{ > M(sj,x,?)—M(s?,x?)}a,-

j=i+l J=Ni+-+N,, 4]

for x? e oQ,, t=m.
The detailed derivation of equations (3.36) and (3.39) are given in (Young 2005),
According to the dependence of the normal vectors for inner and outer boundaries,

their relationships are

(3.47)
M (sl. x.’):M (sjo, x.O), (3.48)
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where the left and right sides of the equal sign in equations (3.43) and (3.44) denote
the kernels for field point and source point with the unit inward and outward normal

vectors, respectively.

3.3 Boundary distributed source (BDS) method

The boundary distributed source (BDS) method (Liu 2010), is based on the same
concept in MFS. In the BDS method the source points and filds points coincide and
both are placed on the boundary of the problem domain directly, unlike the
traditional MFS that requires a fictitious boundary for placing the source points. To
remove the singularities of the fundamental solutions, the concentrated point sources
can be replaced by distributed sources over areas (for 2D problems) or volumes (for
3D problems) covering the source points. For Dirichlet boundary conditions, all the
coefficients (either diagonal or off-diagonal) in the systems of equations can be
determined analytically, however, the diagonal coefficients for Neumann boundary

conditions is determined indirectly.

Consider the Laplace equation in a 2D domain Q governed by equation (3.1),

under the BCs of (3.13) and (3.14). N distributed sources were placed at point s,

(=1, 2, ..., N) on boundary dQ, as shown in figure 3.5. Then u can be given by the

following expression satisfies the governing equation (3.1):

u(x)zi [ G(x.s)dA(s, u; for xe dQ,, (3.49)

J=l AGs;)

where A(s;)can be a line segment or an area covering point s, on the boundary, and

G(x.s/)) = —éln(r) , (3.50)
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is the fundamental solution for 2D Laplace equation, and r is the distance between

7

the field point x and source point s and x; an unknown intensity of the

j 0

distributed source at s .

Figure 3.5. A domain Q with boundary dQ, the collocation point x, and center s;

of a source.

In BDS, we consider the case that A(s) is a circular disk of radius R and
centered at point s; on the boundary 0Q (see figure 3.6) for 2D problems. The

integration of the fundamental solution G(x,s)on a circular disk A(s) yields the

following analytic results:

G(x, s) = I G(x,5)dA(s))

A(s)

R 1
“—In(—) fora=zR_ (3.51)
2 a ‘
2 2 _ 2
R, ln(i) _R —a fora<R,
2 R 4 ‘

5

in which a is the distance between x and s (center of the disk).
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2y |

Figure 3.6. A Distributed source on a circular disk centered at point s and with

radius R,.

By substituting equation (3.51), we can rewrite equation (3.50) as follows

N ~
u(x)=Y G(x,s,)u, for xe o9, (3.52)

j=1

The boundary conditions in equations (3.13) and (3.14) can be satisfied at the field

points x; by adjusting u; at the source points s;, that is, imposing the following

conditions:

M=

G,u; =u, for xe 0Q,,

<
N

M=

K,u, =g, for xe 0Q,,

~.
N

where

G, zé(xi, sj),

u

and

(3.53)

(3.54)

(3.55)
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K, =K(x,s,), (3.56)

ij

with
~ _3G(x, 5) , ,
K(x, )= v A(jy )K(X,s )A(s")
dG(x,s)) . 9G(x,s")
= | ==2274 =" 7 57
Az‘;) oV(x) dAly) oV(x) (357)
:—R“ da , fora>R
2a 9v(x) ‘

Since the valid expressions for K(x,s) when 0<a<R are still under
investigation, the diagonal term in equation (3.54) needs to be determined indirectly

for field points on 0, . In BDS, the method proposed by Sarler (2009) is applied to

determine the diagonal coefficient in equation (3.54). In this approach, the author

first assumes a constant solution, e.g., u =c everywhere. Then, from equation (3.53)

the corresponding densities ; can be solved for all the boundary points. Finally,

from equation (3.54) the following expression for the diagonal term using the known

density values 4 can be given:

1 & -
— > K (3.58)
e J=1

j#l

Igii =

Finally, the following standard linear system of equations is formed after

applying equations (3.53) or (3.54) at all the field points:

ay  qp o Q|| K b,
a a eoa y7i b

21 Gy 2N h )

; R 5 Sr= 00, (3.59)
ayy Ayy o Ay | My by
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or
Ap=b, (3.60)

where A is the coefficient matrix, pthe unknown density vector, and b the right-

hand side vector. Once all the values of u; are determined by solving this equation,

the potential at any point inside the domain or on the boundary can be evaluated

using equation(3.52).

3.4 Singular boundary method (SBM)
Like the MFS, the singular boundary method (SBM) (Chen 2009a, Chen 2009b Chen

2010, Gu 2011) employs the singular fundamental solution of the governing equation
of interest as the interpolation basis function. However, the source and field points of
the SBM coincide on the physical boundary without the requirement of introducing
fictitious boundary. In order to avoid the singularity, this method proposes an inverse
interpolation technique (IIT) to evaluate the singular diagonal elements of the MFS

coefficient matrix.

ou(x)

In SBM, the MFS solution u(x) and
oV(x)

of the Laplace problem can be

expressed by a linear combination of fundamental solutions with respect to different

source points s; as follows:

u(xi)ziaju*(xi,sj), (3.61)

au(x) ZN: ou’ (X,,S)

9, ov(x,)

(3.62)

j=1
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where x; is the i th field point, s, the jth source point, ¢, the jth unknown

intensity of the distributed source at s;, N the numbers of source points and
1
u'(x,,5;)=———In|x,—s,|, for x€0Q,, (3.63)
2r

is the fundamental solution of two-dimensional Laplace equation.

The SBM interpolation formula is given by (Chen 2010)

N
u(x,)= 3, au (x,,s,)+au,, (3.64)
j=lizj
du(x,) N ou’ (X5, )
(x;)= j .4, » (3.65)
D=3y~ 2% vy

where u, and ¢, are the diagonal elements of the SBM interpolation matrix.

When the field point x; coincide with the source point s;, the distance

between these two boundary nodes trends to zero. This would cause boundary
equations (3.64) and (3.65) present singularities. By using the subtracting and
adding-back technique, the regularized expressions for the Neumann boundary

equation (3.65) can be written as:

ou (x;,5,) QL ou'(x,,s;)
oS 55) 3.66
vy L v, G0

N
q(x)=> (a;,-a)
j=1
Note that, when i is equal to j,

ou’(x,,s,)

=0, 3.67
av(x,) 0 .67)

(aj_ai)
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so there is no singularity in the first right side term. To remove the singularity of the

second right side term, we rewrite equation (3.66) as follows:

Y au (xl,s) N (ou” (xl,s) ou'* (x;,5,)
0= 2 @ Z[ avix) | avis) j 568)
in which
N ou'’ (xl,s)
,Z‘ ) 0, (3.69)

and u*”(xi, S j) denotes the fundamental solution of the exterior problems. The detail

derivations of equation (3.69) are given in (Chen 2012).
According to the dependency of the outward normal vectors on the two kernel

functions of interior and exterior problems, we can obtain the following relationships

(Young 2005):

au*(xi,sj)_ ou(x,,s;)

= i#j
oV (s;) oV (s;) (3.70)
au*(xi,sj) au*c(xi,sj) ..
ov(s,) B av(s;) Y
au*(xi’sj) . au*(xi,sj)
Iv(x,) av(s;) , (3.71)

' (x,8) ' (x,.5))

S (3= (5))+ i ((x) =y (5)

where the indicial notation for the coordinates of points X, , i.e., (x?, x?) is
employed. For arbitrarily smooth boundary, we assume that the source point s;

moves gradually close to the field point x; along a line segment, thus we have
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abf(xi,sj) abf(xi,sj)
im +
si=n o dv(X,) av(s;)

0. (3.72)

From equations (3.70) and (3.72), equation (3.68) can be rewritten as

N au (x5, ) N 8u$(xi,sj)_8u*(xi,sj)
ax)= 2, @)= S Z( wv(x) | V(s j
o ( : o ( : . 3.73)
ol u (X, & ou (X,
:glf IV(x,) ,;% oV (s;)

It can be seen from the above equation (3.73) that the original singular term

du (X,
% in equation (3.68) under i = j has been transformed into the following
V(s
J

regular terms

ﬁl&l@”sx (3.74)

Jj=Li#j aV(S )

The regularized expressions for the Dirichlet boundary equation (3.64) can be
calculated by using the strategy proposed by Sarler (2009), in which the singular
value of u(x) is considered as an average of the fundamental solution over a portion
of the boundary. However, the integral calculation makes this strategy more complex
and less efficient. In SBM, the regularized expressions of the Dirichlet boundary
equation can be calculated in a new indirect way, namely an improved inverse
interpolation technique (IIT), which is different from the original IIT in that it does

not require the sampling nodes.

First, we assuming a pure Neumann problem with all the boundary values set as

i (x)
av(x)

q(x)= (3.75)
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where u(x) (named as sample solution in SBM) is an arbitrary known particular

solution of Laplace equation, such as

u(x)=x"-x?. (3.76)

Then, from the regularized Neumann boundary equation (3.73), we obtain:

Yoo ou (X))

7 (x,)= Z o, )

;& du(x,,,)

f , i1=1,2, .., N, 3.77)
=y aV(Sj)

where 05; are unknown coefficients and can be calculated directly by solving the

above equation (3.77).

Finally, substituting the calculated 0(; into the Dirichlet boundary equation

(3.64) we can get the following algebraic equations:

N
w(x)= Y ou'(x,,s,)+u,+c, i=1,2, ., N, (3.78)

Jj=Li#j

where ¢ is a constant and can be solved by using an arbitrary field point inside the
domain. For example, suppose x, =(x\,x\”)is an arbitrary point inside the domain

of interest, then the constant ¢ can be calculated by

c= ﬁ(xo)—ﬁ A (Xy,5,)
= (3.79)

N
2 %
=(x{ +x{7) - E ou (X,58;)
j=1
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Since the interior field point x, = (x{’,x{’) is chosen in side the domain and will

never coincide with the boundary source point S the function u$(x0,sj) can be

calculated directly.

Thus, diagonal terms of G( p »p;) for Dirichlet boundary equation can be calculated

as:

u; =

N
1, u(x)—c— ). du’(x,s) |, i=1,2, ., N. (3.80)
a’i

j=Lij

Using the procedure described above, the origin intensity factors for both Neumann
and Dirichlet boundary equations (3.64) and (3.65) can be calculated. And the

resulting system equations can be formed.
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4. Improved boundary distributed source method

for EIT forward problem

In the BDS method, all elements of the system matrix can be derived analytically for
the Dirichlet boundary conditions without singularity. For the Neumann boundary
conditions, however, while off-diagonal elements can be determined analytically the
diagonal elements should be obtained indirectly from the constant potential field
(Saler 2009). Hence, the indirect determination involves the solution of the system
equation. Recently, Kim (2013) suggested an improved BDS (IBDS) method for the
Laplace equations to determine the diagonal element for the Neumann boundary
conditions by using the fact that the integration of the normal derivative of the
potential function over the domain boundary should vanish. In doing so, the IBDS
method can remove the procedure to determine indirectly the diagonal elements for

the Neumann boundary conditions.

In this section, the IBDS formulation for the EIT forward problem is presented,
also a hybrid MM of IBDS and SBM is proposed, in which the regularized
expressions of the Dirichlet boundary equation is carried out in a new indirect way,
namely an improved inverse interpolation technique used in SBM by Chen et

al.(2012).

4.1 IBDS for EIT forward problem

4.1.1 Improved boundary distributed source method (IBDS)
In the BDS formulation (Liu 2010), a number of source points p; (j=L2,---,N)

are selected along the domain boundary. The solution u(p) at a certain field point p

is expressed as a linear combination of the fundamental solution integrated over a

circle A(p;) with radius of R; and centered at the selected source point p,:
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N N —
u(p)=> j G(p,s)dA(S),ujZZI:G(p,pj)luj,for peQ,and p, e dQ
=

=L Ap))

@.1)

where u; are the unknown source densities to be determined, Q is the closure of the

domain €, and G is the fundamental solution of Laplace equation. The fundamental

solution in 2D for the Laplace equation is of the form:

1 2
G(p,pj)zaln|p—pj| , for p,p,eR’. 4.2)

R;1s the radius of the distributed source. Although, the determination of R; is not
conclusive at present, it is reported that R, =/, /4 allows quite accurate and stable

numerical results in most cases (Liu 2009, Kim 2013). The integration of the

fundamental solution can be obtained in a simple form:

2
i %ln‘pj—p‘ for‘pj—p‘ZRj
G(p,p))= ) 4.3)
%lnRj—m for‘pj—p‘SRj

In order to impose the Neumann boundary conditions to evaluate the normal flux at
the boundary of interest, we should have the expression for the normal derivative of

the solution:

_du(p) dG(p, p, ) 4
“avip) ;A(Ip) av(p) APH,
:ﬁ: j O(p, p,)dA(p,)L, , for peQ and p,edQ.  (44)
J=tAp))
= 0(p.p)H,

j=1
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where

o(p,p,) =aiG(p, py)
1%
4.5)

27 |pY — p|2 27 r

2

The terms O( p.p;) for ‘ pPi— p‘z R;, which correspond to off-diagonal elements,

can be easily obtained as

R (p;—p)-v(p)

Q(P,P,-)Z— 3 , for‘pj—p‘ZRj. (4.6)
2lp; -4
Note that
~ Ri 2
G(p,pj)=71n\pj—p\anjG(p,pj) for |p,—p|2R,, 4.7
~ R} (p,—p)-v(p)
O(p,p;)=———- =7RQ(p.p;) for |p,—p|2R,, 4.8)

2
2"’/""

However, O( p,p,;) for ‘ pi— p‘ < R;, which correspond to diagonal elements, is not

available and Liu (2010) recommended to determine the terms indirectly from the

constant potential field as proposed by Sarler (2009). The IBDS method (Kim 2013)
suggests a simple way to determine Q( p;»p;) without any matrix inversion.

Considering the fact that the boundary integration of the normal gradient of the

potential function should vanish, we have

[a(prasipy=" [ Op, p)dS(pyu,; =0. (4.9)
Q

J=19Q
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Since equation (4.9) should be satisfied for arbitrary boundary conditions or

source density distributions, therefore we have
[ O(p. p)ds(p)=0, (4.10)
20Q

and Q( p;.p;) can be evaluated as

N

> O(p.p), 4.11)

j i=Li#j

| =

O(p;.p,)=—

~

where [, is the length of the ith line segment of the boundary.

4.1.2 IBDS Formulation for EIT with CEM

Considering that the electrodes are spaced equally around the circumference of the

outer domain with region boundaries with constant conductivities and has the same
size of |e|. Each electrode and each gap regions are uniformly placed with m, and
m,, source points, respectively. Hence, the numbers of the electrode and the gap
nodes are M, =Lm, and M, =Lm,;, respectively. If the number of the source points
of the inclusion boundaries is M, the total number of nodes is M =M, +M_,+M .
Here, the subscripts £, G, and D represent the electrode, gap, the anomaly

boundary, respectively. The node distributions of a circular domain Q with an

anomaly D located at the center is shown in figure 4.1.
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Figure 4.1. Node distributions of a circular domain with an anomaly located at the

center.

According to the IBDS formulation, the potential distribution and its normal

derivative on the background Q\ D and on the inclusion D can be expressed as

u,(p)=2 G(p.p,)u; and q,(p)=2 Op.p)H; . (4.12)
u,(p)=> G(p, st and q,(p)=3 O(p, pi’ 4.13)

j=1 j=1

where p is the field point where the potential and its normal derivative are
evaluated, p; are the source points, and ,u;? and 4] are the source densities on the

background and the anomaly boundaries, respectively. The diagonal elements for the
Neumann boundary condition, in the IBDS formulation, can be determined from the

characteristics of the potential function, i.e. equation (4.9), and can be expressed as:
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~ 1 & - _
Q(pj,pj)E—Z—lIZ'Q(pi,pj)li for p,e d(Q-D). (4.14)
j i=Li#]

It should be noted that for the determination of Q( p;>p;) corresponding to the

boundary of the anomaly the same procedure should be applied since the problem

domain under consideration is a piece-wise homogeneous:

- 1 My
Q(p,,p,)z—l—.Z‘Q(p,-,p,)l,- for p,edD. (4.15)
ji=Li#j

Thus, the EIT boundary conditions in the sense of the CEM, equations (2.31-2.33)

and interfacial conditions, equations (2.34), can be expressed as

M ~
4,(p)=Y.0(p,, p)i, =0 for p,e0Q,, (4.16)
Jj=1
I%q,,(p)dSﬂl for 1=1,2,---,L, 4.17)
u,(p,)+2,0,q,(p,)=U, for p.ee, and [=1,2,---,L, (4.18)
u,(p)=u,(p,) and gq,(p,)=-kq,(p,) for p,e 0Q,, 4.19)

where x=0,/0,.

Integrating equation (4.18) over an electrode and combining equations (4.12),

(4.13), and (4.17) we can have

|:GEEIUZ + GEGIUZ + GEDIUZ } + O-I7D~(Z1 )|:QEEIUZ + QEGIUZ + QEDIUZ J =CU.,
(4.20)

where
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G, =G(p,.p,) for pedQ,, p,e0Q, and I,Je{E,G,D}, (4.21)

D(z,) =diag[z,(p,).7,(Py)s--7, (py N ®T, € R¥e (4.22)

C, =eye(L)®ones(M,1). (4.23)

From the insulation condition, we have

QGEIUZ + QGGIUIG) + QGD:UZ =0. 4.24)

From the interfacial conditions, we have

G~DEIUZ + G~DGIUZ + G~DDlu]’_7) = G~DDlua : (4.25)

Oty + Ot + Oty = —K0, 1" (4.26)

Integrating the CEM over a certain electrode and imposing the applied current, we

have
iju,,(p)deril,:U, for [=1,2,,L, 4.27)
|e, o |e,|
G utth + Gt + G, oty + D(z, e )] =U =NB, (4.28)

U=NB=NWN"NY'N"| Gty +Gyotty, + Gty + Dz, /eI |

SdWal b ~ b —~ b T ’ (4.29)
= N[ G,utt} +Gyotty+Gpttyy + DAz, |e))T |

where N, =[ones(l, L—1);—eye(L—1)] and fe R“.

Thus the BDS formulation of the CEM becomes
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|:G~EE + O-I7D~(Z1 )QEE } :UZ + |:G~EG + O-bﬁ(zl )QEG :'ﬂg + |:G~ED + O-bﬁ(zl )QED } :uf)
= CyN |Gty + Gty + G ooty + D(z, /e |

bl

(4.30)

|:G~EE + 0-17D~(Z1 )QEE - CUNELE } :UZ + |:G~EG + O-bﬁ(zl )QEG - CUNELG :'ﬂg
+|:G~ED + O-I7D~(Z1)QED _CUNELD]IUII_; = CUND(ZI /|€1|)i

bl

(4.31)

we can express equation (4.31) as

Viely + Vool +Vep it = C,ND(z, /e, D1, (4.32)
where

VEE = G~EE + O-bﬁ(zl )QEE - CUNELE 5 4.33)

VEG = G~EG +O—hﬁ(Z1)QEG _CUﬁéLG ) (4.34)

Vi = G~ED + O-bﬁ(zl )QED - Cuﬁéw ) (4.35)

éL./(l’j):%Ié(p,Pj)dS for JG{E,G,D}, (4.36)

el

or

= s ~ -

G, :|_E|[IL ® ones(l, mE)]GEJ =AG,, for Je {E,G, D} . 4.37)

e

Finally, the system of linear equations can be constructed as
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Ve Vie Vo 0 :UZ CUND(ZI /|el|)i

Qor Qoo Qop O | Mo |_ 0 (4.38)
G Gpe Gpp =Gy ﬂg 0
Ope Opc op KOpp || M 0

4. 2 Hybrid MM of IBDS and SBM
In this section we present the formulation of Hybrid MM which combines IBDS and
SBM.

From the formulation of IBDS, equations (4.12) and (4.13) the potential
distribution and its normal derivative on the background Q\ D and on the inclusion

D can be expressed as

M M - -

w,(p) =2 G(ppIH] = Y Gy +Gupt) (4.39)
j=1 Jj=Lj#i
&~ b & A b A b

a,(p) =0 p I = D Qi) +0. (4.40)
j=1 Jj=L, j#i
My ~ My ~ ~

uu(pi):ZG(pi’pj)ﬂ/d' = Z Gijll'l/d'+Giill'liu’ (4.41)
j=1 Jj=L, j#i
My ~ My ~ ~

q.(p) =20 = Y Outts + O, (4.42)
j=1 Jj=L, j#i

where
- - R’
GU:G(pi,pj):?In‘pj—pi‘ for |p,—p|=R,, (4.43)

J(p;—p)v(p)
2\19,-—19\2

- - R
0,=0(p.p,)=~ for |p,—p|2R,, (4.44)
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~ ~ ) —
Q,-,-:Q(P,-’P,-):—l— Z Q(P,-’P,-)l,- for Piea(Q—D)’ (445)
i J=Lj#
and
~ o~ 1 Mo .
0, :Q(pi’pi):_l_ Z O(p;,p); for p,edD, (4.46)

i =L

here, the diagonal terms of G( p ,p;) will be determined in a new indirect way,

namely an improved inverse interpolation technique used in SBM by Chen et
al.(2012).
First, let us assume a pure Neumann problem with all the boundary values set

as

du(p)

q(p)=av(p) ,

(4.47)

where u(p) (named as sample solution in this paper) is an arbitrary known particular

solution, such as

u(p)=cx+c,y. (4.48)

Then, from the regularized Neumann boundary equation (4.40) or (4.42), we obtain:
M ~
= 2 O, QA (449)
Jj=Lj

where i, are unknown coefficients and can be calculated directly by solving the

above equation (4.49).

Finally, substituting the calculated g, into the Dirichlet boundary equation

(4.39) or (4.41), we can get the following algebraic equations:
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M ~
Z G,i, +G. [ +c,. (4.50)
j=Lj

where ¢, is a constant and can be solved by using an arbitrary field point inside the
domain. For example, suppose p, = (x,, y,)1s an arbitrary point inside the domain of

interest, then the constant ¢, can be calculated by

M ~
G = ”_t(po)_ZG(po’ P)H;
a : 451)
M ~
=(ex +Czy0)_zG(Po’ P)H,

j=1
Since the interior field point p, = (x,,y,) is chosen inside the domain and will never

coincide with the boundary source point p; , the function G(po,pj) can be

calculated directly

Thus, diagonal terms of G( p » p;) for Dirichlet boundary equation can be calculated

as:
. 1 Mo
G, =—|u(p)—cy— Z G,u; |, (4.52)
A, j=1, i
ie.,
~ 1 bry b < ~ b ~
G,=—|u,(p)—ct— Y, G, | for ped(Q-D), (4.53)
H; j=1, i
. 1 Mo
G,=—|u,(p)-cs— D, G, for p,e aD . (4.54)
ﬂi Jj=1,j#i
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Comparing the formulation of IBDS and Hybrid MM of IBDS and SBM, the
only difference is the determination of diagonal terms of G( p ,p;) for Dirichlet

boundary equations. Thus, in the calculation of Hybrid MM of IBDS and SBM for

EIT forward problems, we just need to replace the expressions of diagonal terms of
G( p »p;)n the formulation. Once the matrix of G and Q are determined then the

forward solution can be solved using the equation (4.38).
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5. Numerical results and discussion

In this chapter, to verify the feasibility of the IBDS method and the hybrid MM of
IBDS and SBM, the numerical results are compared with FEM and BEM. Some
numerical examples in 2D circular domain with 16 electrodes attached on the
circumference are considered. The background conductivity is set to 3mS/cm. The
injected current through electrode 1 is 1 mA and the opposite electrode (electrode 9)
is set to a sink, while others are insulated. This corresponds to so-called the opposite
current pattern, which is one of widely used current injection protocols. The contact
impedance is set to 8 Q-cm” for all electrodes. As a performance metric, the results
are compared to the BEM with more than 10,000 boundary nodes on the boundary.

The relative error is computed with respect to the BEM solution and defined as:

o =G|

_pem] 5.1)
| e

RE

where {7 is the calculated voltage on the electrode using the different forward

solvers mentioned before, U sey Teference BEM solution with more than 10,000

boundary nodes.

5.1 Homogenous case

Consider a circular domain with homogeneous conditions i.e, the conductivity inside
the domain is constant through out. The circular domain with outer boundary
discretized with 320 uniformly distributed source points is plotted in figure 5.1. The
FEM solution used in the comparison for this example is calculated using COMSOL

with MATLAB. Figure 5.2 shows the mesh structure used in FEM. The boundary
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voltages obtained by the BEM, IBDS and hybrid MM with 320 nodes compared with
the FEM solution are plotted in figure 5.3. Figure 5.4 shows the variation of the
relative error as the number of source points increases. The BEM solution used as the
reference for this example is calculated with 10016 boundary nodes. As seen in figure
5.4, the error for BEM, IBDS and hybrid MM decrease with the increase in number of
nodes on domain boundary. BEM involves computation of integrals of fundamental
solution over the line segments therefore BEM is computationally intensive compared

to IBDS and hybrid MM.

Figure 5.1. Homogenous case with 320 uniformly distributed source points.
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Figure 5.3. Boundary voltages obtained by the BEM, IBDS and hybrid MM with 320

nodes compared with the FEM solution for homogenous case.

67




—6— IBDS(R|)
1| —e— IBDS(RA/2)
IBDS(R,=1/3)
|| —o— IBDS(R,=| /4 B
IBDS(R,=1/5)
—— Hybrid MM(R,=1)
—— Hybrid VMR~ /2)
Hybrid MMR = /3)
—— Hybrid VMR~ /4) |
Hybrid MVMB= /5) |

Relative error

\
L ____ oo —— —
|
~
S~ |
_____ |
,,,,,,,,, T 2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
T S
R e ~—

Figure 5.4. Relative error w.r.t the number of elements in FEM and number of

boundary nodes in BEM, IBDS and hybrid MM of IBDS and SBM for homogenous

case.

As shown in figure 5.3, the voltage calculated from BEM, IBDS and hybrid MM
of IBDS and SBM matches well, however the voltage given by FEM has higher
deviation compared with the other methods used in the simulation. From figure 5.4, we
can find out that the solution given by IBDS is affected by the radius of the source

point. In this case, R;=1[,/4 gives the best result among all the radius of the source

point tested in the simulation. Compare to IBDS, the hybrid MM gives better and more
stable results. The radius of the source point only shows very small effect on the hybrid

MM of IBDS and SBM, it gives almost the same result for different radius of source

point.
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5.2 Concentric anomaly case

A concentric annular domain is considered as shown in figure 5.5. The concentric
case has a circular inclusion with a radius of 2 cm located at the center of the
domain. The inclusion is assumed to be a void i.e. x=0. Figure 5.6 shows the mesh
structure used in FEM. The boundary voltages obtained by the BEM, IBDS and hybrid
MM with 256 points on the outer boundary and 80 points on the inner boundary
compared with the FEM solution are plotted in figure 5.7. Figure 5.8 shows the
relative error in concentric case with increase in number of nodes in the domain, in
which the number of nodes on the boundary of the anomaly is proportional to the
number of nodes on the outer boundary, i.e. the ratio of node number on the inner
boundary and on the outer boundary is fixed. The BEM solution used as the

reference for this example is calculated with 10080 boundary nodes.

Figure 5.5. Concentric case with 256 source points on the outer boundary and 80

points on the inner boundary.
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Figure 5.6. Mesh structure used in FEM for concentric anomaly case.
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Figure 5.7. Boundary voltages obtained by the BEM, IBDS and hybrid MM compared
with the FEM solution for concentric anomaly case.
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Figure 5.8. Relative error w.r.t the number of elements in FEM and number of
boundary nodes in BEM, IBDS and hybrid MM of IBDS and SBM for concentric

anomaly case.

For concentric case, it shows the similar feature with the homogenous case. In
IBDS, R;=1;/3 and R, =1[;/4 give better results than others, but in the hybrid MM
of IBDS and SBM, R, =1/, gives more accurate result. However, differs form

homogenous case the result of hybrid MM of IBDS and SBM is also dependent on
the radius of source point like IBDS, this may because of the source points on the

outer boundary and inner boundary are not distributed uniformly.

5.3 Circular domain with a Cassini’s oval anomaly

As a third example, we select a Cassini’s oval as the inclusion (figure. 5.9). The oval

is described as
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r'+a* —2a*r* cos20=b". (5.2)

For {a,b} ={2,2.1}, the inclusion is assumed to be a void i.e. k¥ =0. Figure 5.10

shows the mesh structure used in FEM. The boundary voltages obtained by the BEM,
IBDS and hybrid MM with 256 points on the outer boundary and 100 points on the
inner boundary compared with the FEM solution are plotted in figure 5.11. Figure.
5.12 illustrate the relative error with increase in number of nodes in the domain, with
fixed ratio of node number on the inner boundary and on the outer boundary. The
BEM solution used as the reference for this example is calculated with 10011

boundary points.

Figure 5.9. Cassini's oval anomaly case with 256 source points on the outer

boundary and 100 points on the inner boundary.
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Figure 5.10. Mesh structure used in FEM for Cassini's oval anomaly case.
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Figure 5.11. Boundary voltages obtained by the BEM, IBDS and hybrid MM

compared with the FEM solution for Cassini's oval anomaly case.
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Figure 5.12. Relative error w.r.t the number of elements in FEM and number of

boundary nodes in BEM, IBDS and hybrid MM of IBDS and SBM for Cassini's oval

anomaly case.

As can be seen in figure 5.9, in this example, the source points are not

distributed uniformly and the radius of the distributed source area is not constant but

dependent on the location of the source point. From the numerical results, the

numerical solution of IBDS is not sensitive to the size of the distributed source area

and dependent on the length of the line segment containing the source point.

5.4 Multi-anomaly case

In this section, a circular domain with 3 anomalies is considered. The domain and

anomalies with distributed source nodes is plotted in figure. 5.13. As shown in the

figure, there are 3 anomalies: an ellipse located at (1, 0) with major and minor axes is
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(1, 2); a circle located at (-2, -2) with radius of 1; and a triangle with three vertices
located at (-3, 0), (-1, 0) and (-2, 2), respectively. The inclusions are assumed to be a
void i.e. k=0. The mesh structure used in FEM is shown in figure 5.14. The
boundary voltages obtained by the BEM, IBDS and hybrid MM with 192 source
points on the outer boundary and 204 source points on the inner boundary compared
with the FEM is shown in figure 5.15. Figure. 5.16 show the relative error with
increase in number of nodes in the domain, with fixed ratio of node number on the

inner boundary and on the outer boundary.

Figure 5.13. Multi-anomaly case with 192 source points on the outer boundary and

204 points on the inner boundary.
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compared with the FEM solution for multi-anomaly case.
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Figure 5.16. Relative error w.r.t the number of elements in FEM and number of

boundary points in BEM, IBDS and hybrid MM of IBDS and SBM for multi-anomaly

case.

From the numerical experiments reported above, the IBDS is found to be very
effective for any complex geometry problem. One limitation of the IBDS is that,
similar to the BEM, the system matrix is not sparse therefore this can lead to long
computational time when large number of source points is used in the numerical
simulation. Compare to IBDS, the hybrid MM of IBDS and SBM show higher
accuracy and it is less dependent on the radius of the source points, in other words,
we can say that the hybrid MM of IBDS and SBM is more effective and more stable.
But, the drawback of the hybrid MM of IBDS and SBM is the choice of the
particular solution, some times the result is sensitive to the particular solution we

used in the calculations of the diagonal terms for Dirichlet boundary equations.
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6. Conclusions

This study considers an improved formulation of the BDS method in order to obtain
the numerical solution for the forward problem of the EIT with the complete
electrode model, which corresponds to a combination of Laplace equations on a
piece-wise homogeneous media subject to the mixed boundary conditions with
integral constraints. By combining the inverse interpolation technique used in SBM,
a hybrid MM of IBDS and SBM is proposed and the formulation for forward
problem of EIT is derived.

Several numerical examples are tested to demonstrate the feasibility and
accuracy of the new formulation by comparing the simulation results with BEM and
the FEM with linear basis functions. The results show that the accuracy of the hybrid
MM is better than IBDS. Furthermore, the IBDS and the hybrid MM of IBDS and
SBM are found to be very effective for any complex geometry problem. One
limitation of the IBDS is that, similar to the BEM, the system matrix is not sparse
therefore this can lead to long computational time when large number of source
points is used in the numerical simulation. Compare to IBDS, the hybrid MM of
IBDS and SBM show higher accuracy and it is less dependent on the radius of the
source points, in other words, we can say that the hybrid MM of IBDS and SBM is

more effective and more stable.

But, the drawback of the hybrid MM of IBDS and SBM is, similar to SBM, the
choice of the particular solution. Some times the result is sensitive to the particular
solution we used in the calculations of the diagonal terms for Dirichlet boundary

equations.
The present work is focused on two-dimensional forward problem and it's
extending to 3D is straight forward. The currently employed numerical method for

forward problem of EIT is applicable to other kind of PDEs with complex geometry.
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Future work can include finding appropriate source radius, improvement of the IBDS
solution as still the BEM solution is found to have less error compared to IBDS
solution, and the extension of the IBDS and the hybrid MM to forward problem in

three dimension and inverse problem in EIT such as boundary estimation problems.
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Summary

Meshless methods or mesh-free methods (MMs) are a kind of numerical methods
developed with the objective of avoiding part of the disadvantages associated with
reliance on a mesh to construct the approximate solution. In MMs, the approximation
is built from nodes only, thus, the MMs are particularly suitable for problems with
complex geometries, like domains involving internal boundaries for instance. Among
the MMs, the method of fundamental solutions (MFS) has gained an increasing
attention in many engineering and science fields. In MFS, the solution of the problem
is approximated as a linear combination of fundamental solutions of the governing
equation. However, the conventional MES requires a fictitious boundary outside the
physical domain to place the source points due to singularities of the fundamental
solution, and the determination of fictitious boundary is momentous in solving the
problem. To overcome this main demerit of the conventional MFS, several methods
such as the modified method of fundamental solution (MMES), singular boundary
method (SBM) and the boundary distributed source (BDS) method have been
proposed. The MMFS, SBM and BDS overcome the artificial boundary in the
conventional MFS by distributing the source point on the physical boundary as well
as the field points. The key point of SBM is to evaluate the origin intensity factor to
isolate the singularity of the fundamental solution based on subtracting and adding-
back technique as well as the inverse interpolation technique (IIT). The main idea of
the BDS method is to avoid the singularities of the fundamental solution at source
points by considering integration over a distributed source within circles in two-
dimensional (2D) or spheres in three-dimensional (3D). The improved BDS method,
namely IBDS method uses a simpler way to determine the diagonal elements for the
Neumann boundary conditions by invoking the fact that the boundary integration of

the normal gradient of the potential should vanish.

Electrical Impedance Tomography (EIT) is an imaging technique which
reconstructs the shape and the location of inclusions with different electrical

conductivity based on the voltage measurements excited by the currents injected
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through the electrodes attached on the domain boundary. The EIT forward problem is
a sort of the Laplace equation on the piece-wise homogeneous domain subject to the
mixed boundary conditions with constraints of integral form, it can be applicable in
industrial and medical tomography applications where the interest is to determine the

distribution of conductivity in the domain or the shape reconstruction.

This study presents a novel meshless method (MM) which combines SBM and
IBDS to obtain the numerical solution for the EIT forward problem. The IIT used in
SBM is employed to determine the diagonal elements for the Dirichlet boundary
conditions. By employing the IBDS method and the novel MM which combines
SBM and IBDS, the mathematical formulation of EIT forward problem for complete
electrode model (CEM) is derived. Several numerical examples are tested to
demonstrate the feasibility and accuracy of the new formulation by comparing the

simulation results with BEM and FEM.

The results show that the accuracy of the hybrid MM is better than IBDS.
Furthermore, the IBDS and the hybrid MM of IBDS and SBM are found to be very
effective for any complex geometry problem. Compare to IBDS, the hybrid MM of
IBDS and SBM show higher accuracy and it is less dependent on the radius of the
source points, in other words, we can say that the hybrid MM of IBDS and SBM is
more effective and more stable. Therefore, it is expected that this method can be used

to solve wide variety of applications in EIT.
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