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BC Boundary condition 
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A  Magnetic vector potential, Stiffness matrix 
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G
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�N  Extended mapping matrix 
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*
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used in RMM 
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u  Diagonal elements of the SBM interpolation matrix for 
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u  Given continuous functions for Dirichlet boundary 

h
U  Approximation of boundary voltages 

Û  Voltages from the measurement electrodes 
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요약요약요약요약 
 

Meshless methods 또는 Mesh-free methods (MMs)는 Mesh 에 기반한 

방법들의 단점을 피하기 위해 계발된 수치적 방법들의 일종이다. MMs 에서, 

근사치는 Nodes 에서만 만들어지므로, MMs 는 내부 경계를 포함하는 

문제들에 특히 적합하다. MMs 중에서, Method of fundamental solutions 

(MFS)는 많은 공학 영역과 과학 영역에서 주목 받고 있다. MFS 에서는 지배 

미분 방정식의 기본해를 선형결합 시킴으로써 문제를 해결한다. 그러나, 기존 

MFS 는 물리 영역 외부에 소스점 (Source point)이 위치할 가상적인 경계가 

필요하기 때문에, 가상 경계를 결정하는 것은 문제를 푸는데 있어서 

중요하다. 기존 MFS 의 한계점을 극복하기 위해서, Modified method of 

fundamental solution (MMFS), Singular boundary method (SBM), Boundary 

distributed source (BDS) 방법 등과 같은 여러 수치 방법들이 제안되었다. 

MMFS, SBM, BDS 방법들은 물리 경계에 소스점들을 분포시킴으로써 기존 

MFS 의 가상 경계 문제를 해소할 수 있다. SBM 방법의 요점은 역보간법 

(Inverse interpolation method) 뿐만 아니라 Subtracting and adding-back 

technique 에 기반하는 기본해의 특이점을 구분시키는 Origin intensity 

factor 를 평가하는 것이다. BDS 방법의 핵심 개념은 이차원(2D)의 원 또는 

삼차원(3D)의 구 위에 분포소스 (distributed source)를 고려함으로써 

소스점들에서 기본해의 특이점들 (singularities)을 피하는 것이다. 향상된 

BDS 방법, 즉 IBDS 방법은 전압의 보통 기울기를 적분해서 Neumann 경계 

조건들에서의 대각 요소들을 결정하는 단순한 방법이다.  

 

전기 임피던스 단층촬영 (Electrical Impedance Tomography; EIT) 은 

영역 경계에 부착된 전극들에 전류를 인가하고, 이것으로부터 유도되는 전압 

측정값을 이용하여 다른 전기 전도도를 갖는 매질의 형태와 위치를 복원하는 

영상화 기술이다. EIT 정문제 (Forward problem)는 적분 형태의 제약들이 

있는 혼합 경계 조건들에 지배되는 Laplace 방정식의 일종이다. 이것은 영역 
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재구성 또는 형태 재구성을 통해 전도도 분포를 결정하는 산업 단층 장비와 

의료 단층 장비에 적용할 수 있다.  

 

이 연구는 EIT 정문제를 수치적으로 풀기 위해서 SBM 방법과 

IBDS 방법을 조합한 새로운 MM 을 제시하고 있다. SBM 방법에 쓰이는 

역보간법은 Dirichlet 경계 조건들의 대각 요소들을 결정하기 위해 사용된다. 

IBDS 방법 뿐만 아니라 SBM 방법과 IBDS 방법을 조합시킨 새로운 MM 도 

채택함으로써, Complete electrode model  (CEM)에 대한 EIT 정문제의 

수학적 공식을 얻을 수 있었다. 여러 수치적 예제들은 BEM 과 FEM 의 값과 

비교함으로써 새로운 공식의 실용성과 정확성을 입증하기 위해 쓰였다. 

 

결과들을 통해서 SBM 방법과 IBDS 방법을 조합한 MM 의 정확성이 

IBDS 방법보다 낫다는 것을 알 수 있다. 게다가, IBDS 방법과 조합한 MM 둘 

다 어떠한 복잡 기하구조 문제에 대해서도 아주 효과적이라는 것을 알 수 

있었다. IBDS 방법과 비교해보면, 조합한 MM 은 높은 정확성을 보였고 

소스점들의 반지름에 덜 의존적이었다. 바꿔 말해, 조합한 MM 이 더욱 

효과적이고 더욱 안정적이라고 할 수 있다. 그러므로, 이 방법이 EIT 의 

다양한 응용 사례에 적용될 수 있을 것으로 기대된다. 
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1.  Introduction 

        

1.1 Electrical impedance tomography 

Electrical impedance tomography (EIT) is a non-intrusive method that reconstructs 

the electric conductivity distribution inside the domain of interest (Vauhkonen 1997).  

In EIT, a set of electrical currents is injected through an array of electrodes attached 

on the boundary of the object and the voltages are measured from the surface of the 

electrodes. Based on the current-voltage relationship, internal distribution inside the 

object is reconstructed. Schematic diagram which explains the principle of EIT is 

shown in figure 1.1.  

 

 

Figure 1.1. Schematic diagram which explains the principle of EIT. 

 

 

EIT has lower spatial resolution, since EIT comes under soft field imaging 

techniques as the electrical quantities are dispersed inside the object and are effected 

by the inside objects. The main advantage with EIT is that it has low cost, convenient 

and safe. Apart from that, EIT has high-speed data collection system thus has high 

temporal characteristics. EIT has been applied in several fields of science and 
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engineering. In medical imaging, EIT can be used to detect tumors from breast tissue 

(Osterman 2000, Kim 2007), and monitor physiological phenomena, such as cardiac, 

pulmonary and respiratory functions (Harris 1991, Brown 1994, Deibele 2008, 

Somersalo 1992). EIT has been applied to clinical applications, like lung imaging 

(Brown 2001, Mueller 2001), head imaging (Holder 1992) and breast imaging 

(Cherepenin 2001, Cherepenin 2002, Kerner 2002(a), Kerner 2002(b), Osterman 

2000) for instance. The applications of EIT in the process industry include 

monitoring of flow processes, monitoring of the mixing phenomenon and multiphase 

flows and non destructive measurements (Mann 1997, Kim 2005, Khambampati 

2009, Rashid 2010a, Dickin and Wang 1996, Pinheiro 1997, Jones 1993, Friedman 

1989). In the application of EIT in geophysics, resistivity reconstruction is widely 

used in exploring mineral resources, ground water, detection of fractures, 

contaminant plumes, waste dumps, geological mapping, geotechnical and 

environmental applications (Maillol 1999, Barker 1998, Daily 1992, Spies 1995). 

  

In EIT, the physical relationship between the injected currents and the measured 

boundary voltages is governed by a partial differential equation derived from 

Maxwell equations. There are many physical models that can be considered, such as 

continuum model (Cheng 1989, Somersalo 1992), average-gap model (Somersalo 

1992), shunt model (Somersalo 1992) and complete electrode model (CEM) 

(Somersalo 1992, Vauhkonen 1997). Compared to other physical models, CEM is 

modeled by considering the discreteness, shunting and contact impedance between 

electrode and electrolyte. Therefore, it is close to real situation and gives a better 

approximation of boundary voltages on electrodes. EIT includes forward and inverse 

problem. The forward problem is to calculate the potential distribution for a known 

distribution of conductivity subjected to appropriate boundary conditions. The 

inverse problem is to estimate the internal conductivity distribution inside the domain 

based on the current-voltage relationship. For homogenous case, analytical solution 

for EIT forward problem has been presented (Kim 2007). For complex geometry, it 

is difficult to obtain analytical solution therefore numerical methods are often used. 

Currently, the EIT forward problem solvers are mainly based on finite element 

methods (FEM) (Vauhkonen 1997, Polydorides 2002, Andrew 2003). Another 
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numerical method which has been used for solving forward problem of EIT is the 

boundary element method (BEM) (also known as the boundary integral method) 

(Duraiswami 1997, de Munck 2000, Khampampati 2011, Khampampati 2012).  

 

1.2 Meshless methods  

The Finite Element Method (FEM) and Boundary Element Method (BEM) may be 

the most well-known numerical methods of these thoroughly developed mesh-based 

methods. In contrast, to avoid the disadvantages of numerical methods based on 

mesh, a comparably new class of numerical methods has been developed which 

approximates the solution of partial differential equations only based on a set of 

nodes without the need for an additional mesh, called Meshfree Methods or Meshless 

Methods (MMs). 

 

Since only a cloud of nodes is required, the MMs are particularly suitable for 

complex geometry problems. Zhang et al. (2010) had reported in their work about 

the numerical simulation of forward problem for electrical capacitance tomography 

(ECT) using element-free Garlerkin method (EFGM) in which a shape function is 

constructed by moving least-squares (MLS) approximation, a variational equation 

weak form of the studied problem is used to deduce the discrete equation, and 

Lagrange multipliers are used to satisfy the essential boundary conditions. 

  

One of the first MM is the smooth particle hydrodynamics (SPH) method 

proposed by Lucy (1977) and Gingold and Monaghan (1977), which was used to 

solve problems in astrophysics and in fluid dynamics (Monaghan 1982, Monaghan 

1988, Bonet 2000). Since the original SPH version suffered from spurious 

instabilities and inconsistencies (Swegle 1995, Xiao 2005, Belytschko 2000), many 

improvements were incorporated into SPH (Belytschko 1996, Bonet 2000, Johnson 

1996, Johnson 2000, Randles 1997, Vila 1999, Rabczuk 2004). Since SPH and their 

corrected versions were based on a strong form, other methods based on a weak form 

were developed in the 1990s (Belytschko 1996).  
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The MMs can be categorized in a number of ways. One possible categorization 

is by the type of weak forms. The EFGM (Belytschko 1994) developed in 1994 was 

one of the first MM based on a global weak form. The reproducing kernel particle 

method (RKPM) (Liu 1995) was developed in 1995. RKPM has its origin in 

wavelets, but the final equations of RKPM were very similar to the equations of the 

EFGM. In contrast to RKPM and the EFGM, other methods were developed by using 

an extrinsic basis and the partition of unity concept. This extrinsic basis was initially 

used to increase the approximation order similar to a prefinement as, e.g. in the hp-

cloud method (Bonet 2000). Melenk and Babuˇska (1996) pointed out the similarities 

between MMs and FEM and developed the partition of unity finite element method 

(PUFEM). The method is very similar to the hp-cloud method. Generally, PUFEM 

shape functions are based on Lagrange polynomials, while the general form of the 

hp-cloud method also includes the MLS-approximation. Strouboulis et al. 

(Strouboulis 2000) pointed out in their generalized finite element method (GFEM) 

that different partition of unities can be used for the usual approximation and the 

enrichment.  

 

Most of the above MMs which based on global weak forms that usually require 

background cells for integration. Strictly speaking, these MMs require background 

cells for integration are not truly MMs (Wang 2009). In order to avoid any mesh with 

both interpolation and integration, local weak forms or collocation methods was 

involved such as those MMs based on a local boundary integral equation (LBIE) 

(Atluri 1998, Zhu 1998) or collocation meshless methods (Kansa 1990, Wang 2009). 

The most popular method is the meshless local Petrov–Galerkin (MLPG) method 

(Atluri 1998, Wang 2002, Atluri 2005). The main difference of the MLPG method to 

methods such as EFG or RKPM is that local weak forms are generated on 

overlapping subdomains other than using global weak forms. The integration of the 

weak form is then carried out in these local subdomains. Atluri (2002) introduced the 

notion “truly” meshless since no construction of a background mesh is needed for 

integration purposes.  

 

Another way of categorization is by the type of integration domain:  
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(i) boundary type methods such as the boundary node method (BNM) (Mukherjee 

1997, Chati 1999), method of fundamental solution (MFS) (Young 2005, Young 

2006, Chen 2006, Chen 2012) and boundary point interpolation method (BPIM) (Gu 

2002) ;   

(ii) domain type methods which include all other MMs, like meshless weighted Least 

squares (MWLS) method (Liu 2005, Bodin 2006). 

 

         The most attractive merits of the MMs are: 

 (i) they provide an alternative numerical tool, free from extensive and costly mesh 

generation;  

 (ii) they can be used for dealing with complex geometries, and are easily extendible 

to multi-dimensional problems.  

 

Beside these merits, MMs are not without demerits. Some of the MMs shape 

functions are rational functions which requires high-order integration scheme to be 

correctly computed. The treatment of essential boundary conditions is not as 

straightforward as in mesh-based methods. To avoid some difficulties inherent in 

MMs, MMs were coupled successfully to mesh-based methods (Belytschko 1995, 

Fernandez 2001, Fernandez 2003, Fernandez 2004, Huerta 2000, Huerta 2004, 

Nguyen 2008). Meanwhile, hybrid methods are available that take the advantages of 

both meshfree methods and finite elements (Hao 2006, Liu 2004, Idelsohn 2004, 

Rabczuk 2004, Chinnaboon 2007) , e.g. the shape functions fulfill the Kronecker 

delta property while simultaneously exploiting the smoothness and higher-order 

continuity of meshfree shape functions. Common issues in MMs are approximation, 

integration of the weak form, imposing essential boundary conditions, how to 

compute shape functions and how to incorporate strong and weak discontinuities. In 

addition, the weighted residual methods such as collocation and Galerkin procedures 

are also stated with examples. Other surveys on MMs can be found in (Belytschko 

1996) and in (Li 2002). Special issues of journals on various aspects of MMs may be 

found in (Liu 1996, Chen 2000, Chen 2004). A few books on MMs are also available, 

for e.g. (Alturi 2002, Griebel 2002, Liu 2002, Fries 2004) . 
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1.3 Aims and contents of the thesis 

The purpose of this thesis is to develop novel meshless method (MM) for solving the 

EIT forward problems. Among the mesh-free methods, the Method of Fundamental 

Solutions (MFS) has gained an increasing attention in many engineering and science 

fields (Mathon 1977, Rek 1999, Young 2005, Young 2006, Sarler 2009, Chen 2006, 

Chen 2012). The MFS approximates the solution of the problem as a linear 

combination of fundamental solutions of the governing differential operator. 

However, the conventional MFS requires a fictitious boundary outside the problem 

domain to place the source points due to singularity of the fundamental solution 

(Mathon 1977, Young 2005, Sarler 2009). The determination of fictitious boundary 

is not trivial (Sarler 2009). To overcome this main drawback of the MFS, several 

methods such as the Modified Method of Fundamental Solutions (MMFS) (Young 

2005, Young 2006, Chen 2006, Sarler 2009), the Singular Boundary Method (SBM) 

(Chen 2010, Gu 2012, Chen 2012), and the Boundary Distributed Source (BDS) 

method (Liu 2010, Perne 2012, Kim 2013) have been proposed. Among these, we 

consider the BDS method for the EIT forward problem. The main idea of the BDS is 

to avoid the singularities of the fundamental solution at source points by considering 

a distributed source over circles in 2D or spheres in 3D.  

 

In this study, the BDS methods extended to solve the forward problem of EIT. 

The basic BDS formulation for solving EIT forward problems is developed. 2-D 

examples including homogenous case and inhomogeneous case are presented with 

the numerical results compared with BEM and FEM. 

 

This thesis contains five chapters. Chapter 1 gives a brief introduction about 

EIT, its applications and methodology. It also presents the introduction of MMs, 

including characteristics of some widely used MMs. 

 

Chapter 2 deals with the mathematical models used in solving EIT forward 

problem. Complete electrode model which is used as the physical model in the thesis 

is explained. Finite element formulation based on CEM is explained briefly. 
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Boundary element method for solving the forward problem of EIT is introduced with 

CEM model, the numerical results is used for the comparison.  

 

In chapter 3, different kinds of MMs are studied. Such as method of 

fundamental solution (MFS), modified method of fundamental solution (MMFS), 

singular boundary method (SBM) and boundary distributed source (BDS) method.  

 

Chapter 4 and 5 present the core part of the thesis. The formulation of IBDS and 

the combination of IBDS and SBM are described. Chapter 4 deals with the derivation 

of the formulas. Several examples of EIT forward problem are presented in Chapter 

5, such as homogenous case, concentric case, Casinni oval anomaly case and multi-

anomaly case. 

 

Finally, in chapter 6, the conclusions of the thesis are given and future work is 

envisaged.   

 



 

 8 

 

 

2.  EIT forward problem 

 

In EIT forward problem, the voltages inside the domain Ω  and on the surface ∂Ω  

are computed with the given current injection and known conductivity distribution. 

First we should construct a physical model (mathematical model) to describe the 

problem in EIT in order to derive the forward problem in EIT, the equations which 

relate the current injections, voltage measurements and conductivity distributions 

have to be modeled. The physical model for EIT can be derived through Maxwell 

equations of electromagnetism (Nunez 1981, Malmivuo 1995, Doerstling 1995). In 

this chapter, the governing equation which describes the potential distribution of the 

domain and the boundary conditions needed to solve the governing equation are 

discussed. In this chapter various physical models used in the EIT are described. In 

this study, in solving the forward problem we use the CEM as a physical model, 

since CEM is considered to be close to real situation, efficient and accurate 

compared to other models (Cheng 1989, Somersalo 1992). The forward problem for 

CEM is formulated using finite element method (FEM) and boundary element 

method (BEM).  

 

2.1 Background 

The electromagnetic field in the domain 2Ω ∈ ℜ
 can be described using the 

Maxwell’s equation (Somersalo 1992, Ola 1993) 

 

B
E

t

∂
∇ × = −

∂
,                                                              (2.1) 

,
D

H J
t

∂
∇ × = +

∂
                                                                                             (2.2) 

 

where E is the electric field, H magnetic field, D electric displacement, B magnetic 

induction, and J current density. 
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Assuming that the domain Ω consists of linear and isotropic medium, thus we 

have 

 

   D Eε= ,                                                                             (2.3) 

B Hµ= ,                                                       (2.4) 

J Eσ= ,                                                     (2.5) 

 

where ε  is permittivity, µ permeability, and σ conductivity of the medium. 

Assuming that the injected currents are time harmonic with frequencyω , we have 

 

   i tE E e ω= ɶ ,                                                        (2.6) 

  i t
B B e

ω= ɶ .                                                  (2.7) 

 

Substituting equations (2.3) ~ (2.7) into equations (2.1) and (2.2), we can obtain  

 

( )

( ) ( )

i t

i t i t

i t

BeB
E

t t

e B e B
iwBe i H

t t

ω

ω ω
ω ωµ

∂∂
∇ × = − = −

∂ ∂

∂ ∂
= − − = − −

∂ ∂

ɶ

ɶ ɶ
ɶ

,                                           (2.8) 

( ) ( )

( ) ( )
.

i t

i t i t

i t

E EeD
H J J J

t t t

e E e E
J i Ee J i E

t t

ω

ω ω
ω

ε ε

ε ε
ωε ωε

∂ ∂∂
∇ × = + = + = +

∂ ∂ ∂

∂ ∂
= + + = + +

∂ ∂

ɶ

ɶ ɶ
ɶ

                              (2.9) 

 

The current density J can be separated into two components, i.e. ohmic current 

( 0
J Eσ= ) and current source ( s

J ). Putting the value of J and canceling out the 

oscillatory exponential terms, we get the following simplified Maxwell equations 

(Somersalo 1992, Ola 1993, Doerstling 1995) 

 

E i Hωµ∇ × = − ,                                               (2.10) 
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( ) .s
H i E Jσ ωε∇ × = + +                                                                     (2.11) 

 

Now the electric field E can be expressed as 

 

,
A

E u
t

∂
= −∇ −

∂
                                                                                             (2.12) 

 

where u is electric potential and A magnetic vector potential. 

 

In EIT, we assume static conditions, where the effect of magnetic induction 

which produces an induced electric field is neglected. Another assumption we make 

is that the capacitive effects i Eωε  in equation (2.9) can be neglected (Barber 1984, 

Baker 1989). Using these assumptions, the above equations can be expressed as 

 

E u= −∇ ,                                                                                           (2.13) 

.s
H E Jσ∇ × = +                                                                                (2.14) 

 

Taking the divergence on both sides of equation (2.14), substituting equation (2.13) 

into equation (2.14), and also because there is no current source in the given 

frequency range in EIT, i.e. 0s
J = , we get 

 

( ) 0,uσ∇ ⋅ ∇ =                                                                                            (2.15) 

 

where ( , )u u x y= , for ,  x y ∈Ω . The equation (2.15) is considered as the governing 

equation for forward problem of EIT. In order to solve the governing equation, a set 

of boundary conditions is required. In the next section, different kinds of boundary 

conditions, which related to different physical models in EIT, are presented.  
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2.2 Physical models in EIT 

2.2.1 Continuum model 

Continuum model is the most basic physical model in EIT. It assumes the entire 

surface as a conductor with no specific electrodes attached to the surface, with j  as a 

continuous source current 

 

( ) cos( ),j C kθ θ=                                                                     (2.16) 

 

where C  is a constant.  

 

2.2.2 Gap model 

In gap model, it is assumed that the current density is constant over electrodes while 

it is assumed to be zero in the gap, i.e. 

 

, 1, 2,.....

0 \ ,
1

l

l

l

l

I
x e l L

e
j

L
x e

l


∈ =


= 
 ∈∂Ω


=
∪

                                               (2.17) 

 

where le  is the area of the l th electrode, lI  is the current applied to the l th 

electrode le , and L  is the number of electrodes. 

 

2.2.3 Average-gap model 

The average-gap model is based on the same boundary conditions as shown in gap 

model in equation (2.17). The main difference between the two models is that the 

gap model considers the voltage values measured at the centre of each electrode 

while the average-gap model considers the average value of potential at each 

electrode. Since both the gap model and average-gap model ignore the shunting 

effect as well as the contact impedance of the electrodes, they still overestimate the 

potential distribution inside the body (Somersalo 1992). 
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2.2.4 Shunt model 

In shunt model, the shunting effect of the electrode is taken into account, which 

means that the potential on the electrode is assumed to be constant. The boundary 

condition, is expressed as 

 

l
l

e

u
dS Iσ

ν

∂
=

∂∫ , ( ), lx y e∈ , 1, 2, , ,l L= ⋯                                  (2.18) 

 

where ν  is the outward normal unit vector on the surface Ω∂ . The shunting effect is 

described by the following condition 

 

( ),   , ,   1,2, ,l lu U x y e l L= ∈ = ⋯ ,                                 (2.19) 

 

where lU  is the measured voltage on the l th electrode. Since the contact impedances 

are still ignored in this model, it underestimates the potential distribution. 

 

2.2.5 Complete electrode model (CEM) 

The complete electrode model (CEM) takes into account the shunting effect as well 

as the contact impedance between the electrodes and the surface of the body. This 

model comprises the following boundary conditions 

 

l
l

e

u
dS Iσ

ν

∂
=

∂∫ , ( ), lx y e∈ , 1, 2, ,l L= ⋯ ,                                 (2.20) 

0
u

σ
ν

∂
=

∂
, ( )

1

, \ .
L

l

l

x y e
=

∈∂Ω ∪                                                     (2.21) 

 

The current applied through electrodes attached on the boundary of the object is 

given by equation (2.20) and equation (2.21) is the insulate condition where there is 

no current applied except on the electrode surface.  
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Apart from equation  (2.20) and equation  (2.21), we have additional condition which 

considers the contact impedance between the electrode and the surface of the body  

 

l l

u
u z Uσ

ν

∂
+ =

∂
, ( ), lx y e∈ ,  1, 2, , ,l L= ⋯                       (2.22) 

 

where lz  is the effective contact impedance. The CEM has better approximation of 

the boundary voltages when compared to other models. Also, to ensure the existence 

and uniqueness of the solution, we impose the following conditions (Somersalo 

1992) 

 

1 1

0 and  0
L L

l l
l l

I U
= =

= =∑ ∑ .                                   (2.23) 

 

 

2.3 Mathematical formulations for EIT forward problem 

For the forward problem of EIT with CEM, as discussed in the previous subsection, a 

set of discrete electrical currents  ( 1,  2,  ,  )
l

I l L= ⋯  is injected through an array of 

electrodes  ( 1,  2,  ...,  )
l

e l L=  attached on the circumference of the domain ∂Ω  and 

the voltages are measured on those electrodes. Assuming, inclusions of conductivity 

a
σ  that has a boundary D∂  occupying region D  enclosed inside the domain Ω  with 

background conductivity 
b

σ , as can be seen in figure 2.1.  
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Figure 2.1.  A schematic diagram of EIT domain with 16 electrodes. 

 

 

The governing equation of the EIT forward problem can be expressed as  

 

[ ]( ) ( ) ( ) 0b a b D p u pσ σ σ χ∇⋅ + − ∇ =   for p ∈Ω  and D ⊂ Ω ,                  (2.24) 

  

subject to the boundary conditions 

 

1

( )
0  for  \ L

G l l

u p
p e

ν
=

∂
= ∈∂Ω = ∂Ω

∂
∪ ,                                 (2.25) 

( )
   for  ,  1,2, ,

l

b l l

e

u p
dS I p e l Lσ

ν

∂
= ∈ =

∂∫ ⋯ ,                                (2.26) 

( )
( )    for  ,  1, 2, ,l b l l

u p
u p z U p e l Lσ

ν

∂
+ = ∈ =

∂
⋯  ,                                (2.27) 

 

and interfacial conditions 

 

( ) ( )
D D

u p u p− +∂ ∂
=  and 

( ) ( )
a b

D D

u p u p
σ σ

ν ν− +∂ ∂

∂ ∂
=

∂ ∂
 ,                            (2.28) 
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where ( )
D

pχ =1 if p  located in D , otherwise ( )
D

pχ =0,
G E

∂Ω = ∂Ω ∂Ω∪ , 

1
L

E l l
e=∂Ω = ∪ , and 1

L

G l l
g=∂Ω = ∪ . 

 

Or, the governing equation can be expressed as 

 

2 ( ) 0  for  \
b

u p p D∇ = ∈Ω ,                                                         (2.29) 

 2 ( ) 0  for  au p p D∇ = ∈ ,                                                          (2.30) 

  

subject to the boundary conditions 

 

1

( )
0  for  \ Lb

G l l

u p
p e

ν
=

∂
= ∈∂Ω = ∂Ω

∂
∪ ,                                 (2.31) 

 
( )

   for  ,  1, 2, ,
l

b

b l l

e

u p
dS I p e l Lσ

ν

∂
= ∈ =

∂∫ ⋯ ,                                   (2.32) 

 
( )

( )    for  ,  1,2, ,b
b l b l l

u p
u p z U p e l Lσ

ν

∂
+ = ∈ =

∂
⋯ ,                                   (2.33) 

  

and interfacial conditions,  

 

( ) ( )a bD D
u p u p− +∂ ∂

=  and 
( ) ( )a b

a b

D D

u p u p
σ σ

ν ν− +∂ ∂

∂ ∂
=

∂ ∂
.                        (2.34) 

  

Also, the current and the potentials should satisfy the constraints as described in 

equation (2.23). 

 

 

2.3.1 Finite element method formulation of EIT  

 

In the FEM implementation of EIT forward problem described in the previous 

subsection, the object Ω is discretized into small triangular elements (Vauhkonen 
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1997, Khampampati 2010). We assume that the resistivity is uniform within each 

element. Suppose the number of nodes in the finite element mesh is N, then the 

potential distribution u  within the object can be approximated as 

 

( ) ( )
1

( ) , , ,
N

h h

i i

i

u u p u x y x yα ϕ
=

≈ = =∑                                       (2.35) 

 

and the potential on the electrodes is represented as 

 

1

1

,
L

h
j j

j

U β
−

=

= ∑ n                                                                      (2.36) 

 

where   iφ  is two-dimensional first-order basis function, iα  and iβ  are the 

coefficients to be determined,  and jn  are the bases for the measurements, is the jth 

column of matrix n , and 

 

( 1)

1 1 1

1 0 0

0 1 0

0 0 1

L L× −

 
 − 
 = ∈ℜ−
 
 
 − 

n

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

,                                             (2.37) 

i.e. 

 

( )

( )

1

2

1, 1,0, ,0

1,0, 1,0, ,0

T

T L

= −

= − ∈ℜ

n

n

⋯

⋯

⋮

.    

 

The finite element formulation gives the following system of linear equations 

 

,=Ab Iɶ                                                 (2.38) 

 

where  
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







=

DC

CB
A T

,  







=
β

α
b    and    








=
ζ

0
I
~

,          (2.39) 

 

( )1 2, , ,
T N

Nα α α= ∈ℜα ⋯ ,  

( ) 1
1 2 1, , ,

T L

Lβ β β −
−= ∈ℜβ ⋯ , 

N∈ℜ0 , and 

( ) 1
1 2 1 3 1, , ,

T L

LI I I I I I
−= − − − ∈ℜζ ⋯  . 

 

and the stiffness matrix A  is of the form 

 

( )
1

1
,

l

L

i j i je
i j d dS

z
σ ϕ ϕ ϕ ϕ

Ω
=

= ∇ ⋅ ∇ Ω +∑∫ ∫B
ℓ ℓ

,  for  Nji ,,2,1, ⋯= ,        (2.40) 

          ( )
1 11 1

1 1
,

j
i ie e

j

i j dS dS
z z

ϕ ϕ
++

= − +∫ ∫C ,  for  1, 2, ,i N= ⋯ , 1,,2,1 −= Lj ⋯ ,  

(2.41) 

( )

1

1

11

1 1

,
j

j

e
i j

z
i j

ee
i j

z z

+

+


≠


= 


+ =


D   ,  for  , 1, 2, , 1,i j L= −⋯                      (2.42) 

 

where je  is the area of the electrode j . 

 

In some cases, the voltages are measured only at some selected electrodes, not 

every electrode. Also, the selected electrodes may be different at each current 

pattern. The measured voltages at the measurement electrodes Û  can be obtained as 

 

ˆ ,T h T E P×= = ∈ℜU M U M Nβ                                                                   (2.43) 
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where, E  is the number of the measurement electrodes, P is the number of current 

patterns and L E×∈ℜM is the measurement matrix. Furthermore, h
U  can be extracted 

directly from b  by introducing the extended mapping matrix Nɶ  

 

( 1)( , ) L N L× + −= ∈ℜN 0 Nɶ  and ,h =U Nbɶ                                                (2.44) 

 

where L N×∈ℜ0 . Therefore, we have 

 

ˆ ,T h T= = =U M U M Nb Mbɶ ɶ                                                         (2.45) 

 

where the extended measurement matrix is defined as 

 

( 1)T E N L× + −= ∈ℜM M Nɶ ɶ .                                                                               (2.46)  

 

2.3.2 Boundary element method formulation of EIT  

The boundary element method formulation (Duraiswami 1997, de Munck 2000, 

Khampampati 2011, Khampampati 2012) is based on the fundamental solution of the 

Laplace equation. Here, we denote the fundamental solution of Laplace equation by 

G, so that 

 

( | ) ( )p s sG p p p pδ∆ = − ,                                              (2.47) 

 

where p is the field point, 
s

p  the source point. 

The solution of Laplace equation G and its normal derivative Q in 2D are  

 

2 21 1
( | ) ln ln

4 4s sG p p p p r
π π

= − = ,                                   (2.48) 
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2 2

( | ) ( | )

( ) ( ) ( ) ( )1 1

2 2

s s

s s

s

Q p p G p p

p p p p p p

rp p

ν

ν ν

π π

∂
=

∂

− ⋅ − ⋅
= − = −

−

,                             (2.49) 

 

where sr p p= − . 

 

From (2.29), (2.30), and (2.23), and using Greens second identity, we have 

 

     
\

( ) ( )
( | ) ( | ) ( ) ( | ) 0b b

s s b s

D D

u p u p
G p p dS G p p dS u p G p p d

ν ν
∂Ω ∂ Ω

∂ ∂
+ − ∇ ⋅∇ Ω =

∂ ∂∫ ∫ ∫ ,  

                                                        (2.50) 

( )
( | ) ( ) ( | ) 0a

s a s

D D

u p
G p p dS u p G p p d

ν
∂

∂
− ∇ ⋅∇ Ω =

∂∫ ∫ ,                                    (2.51) 

 
by using 
 

2

\

( | ) ( ) 0s b

D

G p p u p d
Ω

∇ Ω =∫ ,                                                                               (2.52) 

2( | ) ( ) 0s a

D

G p p u p d∇ Ω =∫ .                                                                        (2.53) 

 
Applying the Gauss theorem and substituting equation (2.50) and equation (2.51), we 
can obtain 
 

2

\ \

( ) ( | ) ( ) ( )b s b s

D D

u p G p p d u p p p dδ
Ω Ω

∇ Ω = − Ω∫ ∫ ,                                           (2.54) 

2( ) ( | ) ( ) ( )a s a s

D D

u p G p p d u p p p dδ∇ Ω = − Ω∫ ∫ ,                                                (2.55) 

       

2

\

\

( ) ( | )

( ) ( | ) ( ) ( | ) ( ) ( | )

b s

D

b s b s b s

D D

u p G p p d

u p Q p p dS u p Q p p dS u p G p p d

Ω

∂Ω ∂ Ω

∇ Ω

= + − ∇ ⋅∇ Ω

∫

∫ ∫ ∫
 ,   
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                                                                  (2.56) 

\

( ) ( ) ( ) ( )b s b s b s

D

u p p p d p u pδ ω
Ω

− Ω =∫ ,      for \sp D∈Ω                            (2.57) 

          2( ) ( | ) ( ) ( | ) ( ) ( | )a s a s a s

D D D

u p G p p d u p Q p p dS u p G p p d
∂

∇ Ω = − ∇ ⋅∇ Ω∫ ∫ ∫  ,  

 (2.58) 

( ) ( ) ( ) ( )a s a s a s

D

u p p p d p u pδ ω− Ω =∫  ,  for 
sp D∈                          (2.59) 

 
here, 

b
ω  and 

a
ω  are the geometric coefficients on the boundaries. The geometric 

coefficient is computed by the internal angle at the point divided by 2π .  
 
Define 

 

( )
( )

u p
q p

ν

∂
=

∂
,                                                                          (2.60) 

 

we have the identities: 

( ) ( ) ( ) ( , ) ( ) ( , )

( )
( ) ( , ) ( ) ( , )

b s b s b s b s

D

b
b s b s

D

p u p u p Q p p dS u p Q p p dS

u p
q p G p p dS q p G p p dS

ω

ν

∂Ω ∂

∂Ω ∂

= +

∂
− −

∂

∫ ∫

∫ ∫
 ,    (2.61) 

( ) ( ) ( ) ( | ) ( ) ( | )a s a s a s a s

D D

p u p u p Q p p dS q p G p p dSω
∂ ∂

= −∫ ∫ ,                        (2.62) 

 

From the interfacial conditions 

 

( ) ( )a bD D
u p u p− +∂ ∂

= ,                                                           (2.63) 

 

and 

( ) ( )a bD D
q p q pκ − +∂ ∂

− = ,                                                         (2.64) 
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where /
a b

κ σ σ= . Note that the outward unit normal vector on D−∂  is opposed to 

that on D+∂ . Hence, from the above representation formulas becomes 

 

[ ]( ) ( ) ( ) ( )

( ) ( | ) ( ) ( | )

(1 ) ( ) ( | )

b s a s D s b s

b s b s

b s

D

p p p u p

u p Q p p dS q p G p p dS

u p Q p p dS

ω κω χ

κ

∂

∂Ω ∂Ω

∂

+

= −

+ −

∫ ∫

∫

  ,         for \sp D∈Ω                (2.65) 

 

and  

 

[ ]

1

1

1

( ) ( ) ( ) ( )

( )
( ) ( | ) ( | ) (1 ) ( ) ( | )

1
( ) ( | ) ( ) ( | ) (1 ) ( ) ( | )

( | )

l

l

l

b s a s D s b s

L
l b

b s s b s

l l be D

L

b s b s b s

l l b e D

L
l

s

l l b e

p p p u p

U u p
u p Q p p dS G p p dS u p Q p p dS

z

u p Q p p dS u p G p p dS u p Q p p dS
z

U
G p p dS

z

ω κω χ

κ
σ

κ
σ

σ

∂

=∂Ω ∂

=∂Ω ∂

=

+

−
= − + −

= + + −

−

∑∫ ∫ ∫

∑∫ ∫ ∫

∑ ∫

, 

(2.66) 

for \sp D∈Ω . 

 

The above representation formulas can be rewritten as 

 

1

1

1
( ) ( ) ( ) ( | ) ( ) ( | )

(1 ) ( ) ( | ) ( | )

l

l

L

s b s b s b s

l l b e

L
l

b s s

l l bD e

p u p u p Q p p dS u p G p p dS
z

U
u p Q p p dS G p p dS

z

ω
σ

κ
σ

=∂Ω

=∂

= +

+ − −

∑∫ ∫

∑∫ ∫
 ,          (2.67) 

 

for \sp D∈Ω , and  

 

1
( )

l

l l

l

l le

z I
u p dS U

e e
+ =∫    for  1, 2, ,l L= ⋯ ,                                              (2.68) 
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where 

 

( ) ( ) ( ) ( )
s b s a s D s

p p p pω ω κω χ∂= + .                                                          (2.69) 

 

 

Assume that the electrodes are spaced equally on the boundary and has the same 

size of e . Each electrode and each gap regions are uniformly discretized into 
E

m  

and 
G

m  segments, respectively. Hence, the total numbers of the electrode and the gap 

segments are 
E E

M Lm=  and 
G G

M Lm= , respectively. The i th segment of the 

electrode region is denoted by 
iE

∂Ω  ( 1,2, ,
E

i M= ⋯ ) and by the same way, 
iG

∂Ω  

( 1,2, ,
E

i M= ⋯ ) stands for the i th segment of the gap region. The sizes of the 

electrode and gap segments are set to 
E

s  and 
G

s . If the number of the segments of 

the inclusion boundaries is 
D

M , the total number of segments is 

E G D
M M M M= + + . 

 

The discretized form will be 

 

[ ]( ) (1 ) 0
E E

G E G D G U

D D

u u

D u K K K u K U

u u

ω κ

   
   − − + =   
      

,                               (2.70) 

( / )E l lU Au D z e I= + ɶ ,                                                                             (2.71) 

 

where 

 

[ ]1 2( ) diag ( ) ( ) ( ) M M

MD p p pω ω ω ω ×= ∈ℜ⋯  ,                                (2.72) 

( , ) ( | ) E

E j

M M

E iQ i j Q p p dS
×

∂Ω

= ∈ℜ∫  ,                                                          (2.73) 

( , ) ( | ) E

E j

M M

E iG i j G p p dS
×

∂Ω

= ∈ℜ∫ ,                                                          (2.74) 
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1
(1/ ) E

E

M M

E E E l m

b

K Q G D z I
σ

× = + ⊗ ∈ℜ   ,                                            (2.75) 

( , ) ( | ) G

G j

M M

G iK i j Q p p dS
×

∂Ω

= ∈ℜ∫ ,                                                         (2.76) 

( , ) ( | ) D

j

M M

D i

D

K i j Q p p dS
×

∂

= ∈ℜ∫  ,                                                          (2.77) 

1
( , ) ( | )

l

M L

U i

l b e

K i l G p p dS
z σ

×= ∈ℜ∫  ,                                                       (2.78) 

 

or  

[ ]
1

(1/ ) ones( ,1) M L

U E l E

b

K G D z m
σ

×= ⊗ ∈ℜ   ,                                          (2.79) 

[ ]1 2

T

L
U U U U= ⋯  ,                                                                         (2.80) 

 

ones(1, ) EL ME
L E

s
A I m

e

×= ⊗ ∈ℜ ,                                                              (2.81) 

1 1 2 2( / ) diag / / /
l l L L

D z e z e z e z e=   ⋯ .                                    (2.82) 

 

In this, ⊗  denotes the Kronecker matrix product, E E

E

M M

MI
×∈ℜ  the identity matrix, 

and ones( , )m n  the m-by-n matrix with ones. In order to satisfy the constraint 

1

0
L

l

l

U
=

=∑ , let’s define 

 

1 1 1 2 1

2 2 1

3 3 2

1 1

1 1 1

1 0 0

0 1 0

0 0 1

L

U

L L L

U

U

U NU

U

β β β β

β β

β β β

β β

−

− −

+ + +      
      

−−      
      = = = = −−
      
      

      −−      

⋯⋯

⋯

⋯

⋮ ⋮ ⋮⋮ ⋮ ⋱ ⋮

⋯

 ,   (2.83) 

 

where 
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[ ]1ones(1, 1);U LN L I −= − −  .                                                                      (2.84) 

 

Then, 

 

[ ]( ) (1 ) 0
E E

G E G D G U U

D D

u u

D u K K K u K N

u u

ω κ β

   
   − − + =   
      

,                          (2.85) 

( / )U E l lN Au D z e Iβ = + ɶ  ,                                                                        (2.86) 

1
( / )T T

U U U E l lN N N Au D z e Iβ
−

  = +   
ɶ ,                                                   (2.87) 

[ ]

1

( ) (1 )

( / ) 0

E E

G E G D G

D D

T T

U U U U U E l l

u u

D u K K K u

u u

K N N N N Au D z e I

ω κ

−

   
   − −   
      

  + + =   
ɶ

 .                                      (2.88) 

 

Finally, we have 

( ) (1 ) ( / )
E

E U G D G U l l

D

u

D K K NA K K u K ND z e I

u

ω κ

 
   − − − = −    
  

ɶ ɶ ɶ  ,      (2.89) 

where  

 

1
T T

U U U UN N N N N
−

 =  
ɶ .                                                                              (2.90) 

 

 

Consider the m th boundary 
m

dS  where a local point p  is contained and 
m

dS  is 

approximated to a linear segment of length 
m

l . 

 

0 2 1( )
2

t
p p p p= + − ,             (2.91) 

 

where the end points 1p  and 2p  are numbered counterclockwise on ∂Ω  and 

clockwise on D∂ . 
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2 2( / ) ( / )
2
m

m

l
dS dx dt dy dt dt dt= + = ,           (2.92) 

[ ]

2 2
2 2 2

0 2 1 0 2 1

2 2
0 0 0 2 1 0 2 1

2
2 2

2 1 2 1

2
2 2

0 0 2 1 2 1

2

2

( ) ( ) ( ) ( )
2 2

( ) ( ) ( )( ) ( )( )

( ) ( )
4

( ) ( )
4

4

2

s s s s

s s s s

s s

t t
r x x y y x x x x y y y y

x x y y x x x x y y y y t

t
x x y y

t
p p p p p p t p p

a bt ct

b ac
c t

c

   
= − + − = + − − + + − −      

= − + − + − − + − −

 + − + − 

= − + − ⋅ − + −

= + +

− 
= + + 

 

2

4

b

c

(2.93) 

where 
2

0 0
s

a p p= − ≥ ,   

0 2 1( ) ( )
s

b p p p p= − ⋅ − ,   

2

2 1

1
0

4
c p p= − > .  

 
The discriminate is  
 

2 2 2 22 2 2 2
0 2 1 0 2 1

2

0 2 1

4 (1 cos ) sin

( ) ( )

s s

s

d ac b p p p p p p p p

p p p p

θ θ= − = − − − = − −

= − × −
.  

(2.94) 

 

Thus, 
 

2 2 21 1 1 1
( | ) ln ln ln ln( )

2 4 4 4s s sG p p p p p p r a bt ct
π π π π

= − = − = = + + , 

(2.95) 

2 1
2 2 2

( | ) ( ) ( ) ( ) ( )
( | )

2 2 ( )2
s s s s

s

ms

G p p p p p p p p p p
Q p p

r l a bt ctp p

ν ν

ν π ππ

⊥∂ − ⋅ − ⋅ − ⋅ −
= = = =

∂ + +−
,  

(2.96) 

since 
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2 1 2 1 2 1 2 1

0 2 1 2 1 0 2 1 2 1

0 2 1 0 2 1 0 2 1

ˆ( ) ( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2 2

ˆ( )( ) ( )( ) ( ) ( )

s s s s

s s

s s s

p p p p x x y y y y x x p p p p k

t t
x x x x y y y y y y x x

x x y y y y x x p p p p k

⊥− ⋅ − = − − − − − = − × − ⋅

   
= − + − − − − + − −      

= − − − − − = − × − ⋅

,

 (2.97) 

we can rewrite equation (2.97) as 
 

0 2 1
2 2

ˆ( | ) ( ) ( )
( | )

2 ( ) 2 ( )
s s

s

m m

G p p p p p p k d
Q p p

l a bt ct l a bt ctν π π

∂ − × − ⋅
= = =

∂ + + + +
,      (2.98) 

 

where 0 2 1
ˆ( ) ( )sd p p p p k= − × − ⋅ .    

 

 

Finally, we can have 

1 1

( , ) ( | )

( ) 2 2
tan tan 0

2

0 0

m

m s s

S

Q p p Q p p dS

sign d b c b c
for d

d d

for d

π
− −

=

  + −
− >   =   


=

∫

.    (2.99) 

and  

 
1

2

1

( , ) ( | ) ln( )
8

1 ln( ) 1 ln( ) 4 ( , )
8 2 2 4

m

m
m s s

S

m m
m s

l
G p p G p p dS a bt ct dt

l l db b
a b c a b c Q p p

c c c

π

π

−

= = + +

    
= + + + + − − + − +    

    

∫ ∫
 . 

(2.100) 

 

Once all the coefficients of equation (2.89) are determined, the potential at any point 

on the boundary can be evaluated by solving equation (2.89). 

 



 

 27 

 

3.  Method of fundamental solutions (MFS) 

 

Among the MMs, the method of fundamental solutions (MFS) has gained an 

increasing attention in many engineering and science fields (Mathon 1977, Rek 1999, 

Young 2005, Young 2006, Sarler 2009, Chen 2006, Chen 2012). The MFS is the first 

kind of boundary-type discretization MMs (Karageorghis 1992, Fairwaether 1998, 

Chen 1998, Liu 2005, Young 2005). In order to avoid the singularity of fundamental 

solutions with a strong-form collocation formulation, the MFS places the source 

points on a fictitious boundary outside or inside the physical domain, corresponding 

to interior or exterior problems, respectively. MFS is effective for solving the elliptic 

well-posed direct problems in complex geometries (Shigeta 2009, Young 2005, 

Young 2006, Chen 2006, Chen 2010, Chen 2012). Mathon and Johnston (Mathon 

1977) first showed numerical results obtained by using the MFS. The papers 

Bogomolny (1985), Katsurada (1996), Sarler (2009) and Liu (2010) had discussed 

some mathematical theories regarding the MFS.  

 

MFS has been used to solve the Laplace equation (Bogomolny 1985, 

Fairweather 1998, Saavedra 2003). The error estimates, stability and convergence 

analyses of the MFS for the Laplace equation in a circular domain are carried out by 

Bogomolny (1985), and Smyrlis and Karageorghis (2001). The MFS has a wide 

application in engineering fields, examples can be seen in  Chio et al. (2004), Young 

et al. (2005), Young and Ruan (2005), Chen et al. (2008), and Liu (2011). 

Fairweather (1998) and Karageorghis et al. (2011) had given a comprehensive 

review regarding the applications of MFS to the linear inverse problems.  

 

The MFS is very easy to numerically implement and it can avoid the 

integrations on the boundary. However the MFS has a serious disadvantage that the 

resulting linear equations system may become highly ill-conditioned when the 

number of source points is increased (Young 2005, Chen 2006, Liu 2012) or when 

the distances of source points are increased (Chen 2006). The convergence analysis 

of MFS has demonstrated that the approximation improves when the source radius 
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tends to infinity as reported by Smyrlis and Karageorghis (2004). Nevertheless, for 

complex geometries, the MFS also requires large number of nodes to collocate the 

boundary conditions, and in general it gives a better accuracy than that only using a 

small number of nodes on the boundary. Besides, it is also known that the MFS may 

produces some difficulties while dealing with complicated geometries with 

discontinuous boundary conditions, which require special treatment by using the 

technique of enrichment functions which was proposed by Alves and Leitao (2006).  

 

Tsai et al. (2006) have proposed a numerical procedure to locate the source 

points of the MFS. They proposed a practical procedure to locate the source points in 

the use of MFS for various time independent operators. The location procedure was 

developed through some systematically numerical experiments for the relations 

among the accuracy, condition number, and location of source points in different 

shapes of computational domains. By numerical experiments, they found that good 

accuracy could be achieved when the condition number approaches the limit of 

equation solver. In their numerical experiments, higher condition numbers and 

smaller errors were obtained when the source points are located farther in some 

proper way.  

 

By using the super-singular double-layer fundamental solution, an alternative 

collocation strong-form method, called the modified method of fundamental solution 

(MMFS), was proposed by Young and his coworkers (Young 2005, Young 2006, 

Chen 2006, Young 2007). The troublesome singularity was avoided by employing 

the subtracting and adding-back techniques without a fictitious boundary as 

contrasted to the conventional MFS. Therefore, the major difficulty of the 

coincidence of the source points and collocation points in the conventional MFS is 

thereby overcame. The method had been further extended to the single layer Laplace 

equation fundamental solution in by Young et al. (2006).  Sarler (2009) applied the 

MMFS to potential flow problems. The solution in two-dimensional Cartesian 

coordinates was represented in terms of the single layer and the double layer 

fundamental solutions. The desingularisation technique was put into the context of 

potential flow problems by using and comparing the single layer fundamental 
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solution (SLFS) and the double layer fundamental solution (DLFS). The calculation 

of the desingularised values of the partial derivatives on the boundary was 

represented as well, which was different from the case in the previous two cited 

MMFS pioneering papers by Young’s group. Based on the MMFS, the regularized 

meshless method (RMM) (Chen 2006) was developed to solve two-dimensional 

Laplace problem with multiply-connected geometries. The approximate solution was 

represented by using the double-layer fundamental solution. The source points was 

located on the physical boundary as well as the MMFS by using the proposed 

technique to regularize the singularity of the kernel functions.    

 

Liu (2010) proposed a boundary distributed source (BDS) method, in which the 

fundamental solution was integrated over small areas covering the source points so 

that the fictitious boundary was avoided and the coefficients in the system equations 

could be evaluated analytically. However, the analytical expression of the diagonal 

elements for equations describe the Neumann boundary condition had to be 

determined in a indirect way. And thus this method is still immature and under 

further developments (Perne 2012). 

 

The singular boundary meshless method (SBM), proposed by Chen and his 

collaborators (Chen 2009a, Chen 2009b, Chen 2010, Gu 2011, Chen 2012) overcame 

the artificial boundary in the conventional MFS by locating the source point to 

coincide with the collocation points on the physical boundary. The key idea of SBM 

was to introduce the concept of the origin intensity factor to isolate the singularity of 

the fundamental solution. And an inverse interpolation technique was proposed to 

evaluate the origin intensity factor. However, in order to carry out this technique, the 

SBM had to place a cluster of sample nodes inside or outside the physical domain for 

either interior or exterior problems. Chen et al. (2012) indicated that the solution 

accuracy of this SBM formulation was sensitive to the placement of such sample 

nodes. They developed a novel formulation of the SBM to avoid the above-

mentioned sample nodes in the ordinary SBM formulation, based on the subtracting 

and adding-back technique as well as the inverse interpolation technique. The new 

formulation circumvented the major shortcomings in the ordinary SBM while 
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retaining its advantages such as being mathematically simple, easy to program, high 

accuracy, and free from integration. 

 

 In this section, the conventional MFS, MMFS, RMM, BDS and SBM are 

briefly reviewed and the main formulations of the MMs are presented.  

 

3.1 Conventional method of fundamental solution (MFS)  

The MFS (Karageorghis 1992, Fairwaether 1998, Chen 1998, Liu 2005, Shigeta 

2009) based on the fundamental solution of a partial differential equation of interest, 

is compromised by requiring a controversial fictitious boundary outside the physical 

domain to refrain from the singularity of fundamental solution. The approximate  

solution in MFS is a linear combination of fundamental solutions, which 

automatically satisfy the governing equation. The coefficients used in the linear 

combination are determined from the given boundary conditions.  

 

Consider the Laplace equation  

 

0=∆u ,                                                                                                            (3.1) 

 

in a two-dimensional bounded domain Ω  enclosed by the boundary Ω∂ . We 

prescribe Dirichlet and Neumann boundary conditions on a part of the boundary Ω∂ , 

denoted by 1∂Ω  and 2∂Ω , as follows 

 

u u=     on  1∂Ω ,                                                                                           (3.2) 

 
u

q
ν

∂
=

∂
    on  2∂Ω ,                                                                                        (3.3) 

 

where u  and q denote given continuous functions defined on ∂Ω , and ν  the unit 

outward normal to ∂Ω . Then, we need to find the boundary value u  on the rest of 

the boundary 2 1\∂Ω = ∂Ω ∂Ω or the potential u  in the domain Ω . 
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The fundamental solution of the Laplace equation in two dimensions is defined 

as 

 

rr ln
2

1
)(*

π
ϕ −= ,                                                                                            (3.4) 

 

where 2 2xr x y= = + , which is a solution to  

 

* (x)φ δ∆ = ,                                                                                                    (3.5) 

 

where δ  denotes Dirac delta function. 

We distribute the collocation (field) points { }
1

x
M

i i=
⊂ ∂Ω  on the boundary, and the 

source points { }
1

N
c

j j
s

=
⊂ Ω  on a fictitious boundary outside the domain. Generally, 

there are two ways to locate the source points, one is distributed the source points on 

a circle outside the domain (Tsai 2006, Shigeta 2009), as shown in figure 3.1. 

Another way is to distribute the source point outside the domain with a certain 

distance from each collocation points, as shown in figure 3.2.   

 

 

Figure 3.1. Schematic diagram which explains the node distribution in MFS.  
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Figure 3.2. Schematic diagram which explains the node distribution in conventional 

MFS. 

 

 

The approximate solution is expressed as a linear combination of fundamental 

solutions  

 

1

(x) (x) (x)
N

N j j

j

u u w φ
=

≈ =∑ ,                                                                            (3.6) 

 

where the basis function is defined as 

 

 (x) *( x- )j jsφ φ= ,                                                                                        (3.7) 

 

and { }N

jjw
1=

are unknown coefficients which need to determined by using the 

boundary conditions. Since the basis functions (3.7) have no singular points in Ω , 

the approximate function Nu  satisfies the Laplace equation (3.1). Substituting 

equation (3.6) into equations (3.2) and (3.3),  assuming that equations (3.2) and (3.3) 

is satisfied at the collocation points, we have 
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1

(x) (x )  for  1,  2,  ....,  
N

j j i

j

w u i Mφ
=

= =∑ ,                                                      (3.8) 

1

(x)
 (x )  for  1,  2,  ....,  

N
j

j i

j

w q i M
φ

ν=

∂
= =

∂
∑ .                                                   (3.9) 

 

Or in matrix form 

 

bbbbwwww =A ,                                                                                                     (3.10) 

 

where NM

ija
×ℜ∈= 2)(A  and the vectors M

i

N

j bw
2)(,)( ℜ∈=ℜ∈= bbbbwwww are defined  

by   

 

(x ),                1,  2,  ...., ,  and  1,  2,  ....,

(x )
,         1,  2,  ...., 2 ,  and  1,  2,  ....,

j i

ij j i M

i M j N

a
i M M M j N

φ

φ

ν
−

= =


= ∂
= + + =

∂

 ,    (3.11) 

     
(x ),                1,  2,  ....,

(x ),            1,  2,  ...., 2
i

i

i M

u i M
b

q i M M M−

=
= 

= + +
   .                                     (3.12) 

 

 

3.2 Modified method of fundamental solution (MMFS) 

The Modified method of fundamental solution (MMFS), was proposed by Young 

and his coworkers (Young 2005, Young 2006a, Young 2006b). The solution in 

MMFS is represented by a distribution of the kernel functions of double layer 

fundamental solutions. By using the desingularization technique to regularize the 

singularity and hyper singularity of the kernel functions, the source points can be 

located on the real boundary as well as the collocation points (figure 3.3) and 

therefore the diagonal terms of influence matrices are determined. The main 

difficulty of the coincidence of the source and collocation points then can be avoided.  
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Figure 3.3. Schematic diagram which explains the node distribution in MMFS. 

 

 

3.2.1 MMFS for solving the Laplace equation  

Consider a boundary value problem with a potential (x)u , which satisfies the 

Laplace equation as described by equation (3.1)-(3.3), we denote the BCs here as  

 

(x)u u= ,  1x ∈ ∂Ω ,                                                                                    (3.13) 

(x)q q= ,  2x ∈ ∂Ω ,                                                                                    (3.14) 

 

where 

 

 
(x)

(x)
(x)

u
q

ν

∂
=

∂
.                                                                                               (3.15) 

 

By employing the radial basis functions (RBF) technique (Chen 2002), the 

representation of the solution for interior problem can be approximated in terms of 

the coefficients 
j

α  of the source points 
j

s  as  

 

(i)

1

(x ) ( , x )
N

i j i j

j

u A s α
=

=∑ ,                                                                             (3.16) 
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(i)

1

(x ) ( , x )
N

i j i j

j

q B s α
=

=∑ ,                                                                             (3.17) 

 

where (i) ( , x )j iA s  is RBF, in which the superscript (i) denotes the interior domain, 

j
α  is the j th unknown coefficients (strength of the singularities), 

j
s  is j th source 

point, x
i
 is i th observation point, N is the number of source points and the chosen 

RBFs in Young's paper (2005) are the double layer potentials in the potential theory 

and can be found in (Chen 2002a, Chen 2002b) as 

 

( )(i)
2

(x ),
( , x )

i j j

j i

ij

s n
A s

r

− −
=  ,                                                                            (3.18) 

( )( ) ( )(i)
(i)

4 2
x

(x ), (x ), ,( , x )
( , x )

i

i j j i j i j ij i

j i

ij ij

s n s n n nA s
B s

r rν

− −∂
= = −

∂
,                          (3.19) 

 

where  

 

xij j ir s= − ,                                                                                               (3.20) 

 

and (, ) denotes the inner product of two vectors,  jn is the normal vector at js , and in  

is the normal vector at x i . The coefficients   ( 1,  ..., )j j Nα =  are determined so that 

BCs is satisfied at the boundary points x  ( 1,  ..., )
i

i N= . 

By collocating N field points to match with the BCs from equation (3.16) for 

Dirichlet problems and equation (3.17) for the Neumann problems, we have the 

following linear systems of the form 

 

{ } { } { }

1,1 1,2 1,

2,1 2,2 2, ( )

,1 ,2 ,

,

N

N i

j j

N N N N

a a a

a a a
A u

a a a

α α

 
 
   = =  
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

                                          (3.21) 
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{ } { } { }

1,1 1,2 1,

2,1 2,2 2, ( )

,1 ,2 ,

N

N i

j j

N N N N

b b b

b b b
B q

b b b

α α

 
 
   = =  
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

,                                          (3.22) 

 

where 

 

( )
, ( , x ), , 1,2, ,i

i j j ia A s i j N= = … ,                                                               (3.23) 

( )
, ( , x ), , 1, 2, ,i

i j j ib B s i j N= = … .                                                                (3.24) 

 

 

For the mixed-type problems, a linear combination of equations (3.21) and 

(3.22) is made to satisfy the mixed-type boundary conditions (BCs). After solving 

the unknown density coefficients  ( 1,  ..., )j j Nα =  with the linear algebraic solver, 

the solutions for the interested domain are calculated from the field equations (3.16) 

and (3.17). 

 

When the collocation point x
i
 coincide with the source point js , equations 

(3.16) and (3.17) will become singular. Equations (3.16) and (3.17) for the interior 

problems need to be regularized by using special treatment of subtracting and 

adding-back technique (Tournour 1999, Hwang 2002) as follows: 

 

( )

1

1
( ) ( )

1 1

( ) ( )

1

(x ) ( , x )

( , x ) ( , x )

( , x ) ( , x )

N
i

i j i j
j

i N
i i

j i j j i j
j j i

N
i i

m i i i j
m

u A s

A s A s

A s A s

α

α α

α

=

−

= = +

=

= ∑

= +∑ ∑

 
+ −∑  

 ,           
ix ∈∂Ω                             (3.25) 

     

( )

1

1
( ) ( )

1 1

( ) ( )

1

(x ) ( , x )

( , x ) ( , x )

( , x ) ( , x )

N
i

i j i j
j

i N
i i

j i j j i j
j j i

N
i i

m i i i j
m

q B s

B s B s

B s B s

α

α α

α

=

−

= = +

=

= ∑

= +∑ ∑

 
− −∑  

 ,          
ix ∈∂Ω                               (3.26) 
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     { } { }

1, 1,1 1,2 1,
1

2,1 2, 2,2 2,
1

,1 ,2 , ,
1

,

N

m N
m

N

m N
mi j

N

N N N m N N
m

a a a a

a a a a
u

a a a a

α

=

=

=

 
−∑ 

 
 −∑
 =
 
 
 

−∑  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

                          (3.27) 

{ } { }

1, 1,1 1,2 1,
1

2,1 2, 2,2 2,
1

,1 ,2 , ,
1

N

m N
m

N

m N
mi j

N

N N N m N N
m

b b b b

b b b b
q

b b b b

α

=

=

=

  
− −∑    
  − −∑  =  
 
 
   − −∑ 
   

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

.

           (3.28) 

 

                

 

In a similar way, the subtracting and adding-back technique was applied to the 

exterior problems. The diagonal terms of the two influence matrices for both interior 

and exterior problems can also be derived analytically for a circular domain as shown 

in (Young 2005).  

 

3.2.2 Regularized meshless method (RMM)  

The regularized meshless method (RMM) (Chen 2006), which based on the MMFS, 

is developed to solve two-dimensional Laplace problem with multiply-connected 

domain.   

 

Consider a Laplace equation as described by equation (3.1), subject to the BCs 

as  

 

(x)u u= ,  for x u

t
∈∂Ω ,  1,2,3,...t m= ,                                                          (3.29) 

(x)q q= ,  for x q

t
∈ ∂Ω ,  1,2,3,...t m= .                                                            (3.30) 

 

where (x) (x) / (x)q u ν= ∂ ∂ , m  is the total number of boundaries including 1m −  

numbers of inner boundaries and one outer boundary (the m th boundary), u

t∂Ω  is the 
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essential boundary (Dirichlet boundary) of the t th boundary in which the potential is 

prescribed by u  and q

t∂Ω  is the natural boundary (Neumann boundary) of the t th 

boundary in which the flux is prescribed by q . Both u

t
∂Ω  and q

t
∂Ω  construct the 

whole boundary of the domain Ω  as shown in figure 3.4. 

 

 

Figure 3.4. Schematic diagram which explains the node distribution in RMM.  

 

 

By employing the RBF technique (Chen 2002, Cheng 2000), the representation 

of the solution for multiply-connected problem as shown in figure 3.4 can be 

expressed in terms of the jα  at js  as 

 

1 1 2

1

1 2 1

1

1 1

1

(x ) ( , x )

( , x ) ( , x )

( , x ) ,
m

N

i j i j
j

N N N

j i j j i j
j j N

N

j i j
j N N N

u T s

T s T s

T s

α

α α

α
−

=

+

= = +

= + + + +

= ∑

= +∑ ∑

+ + ∑
⋯

⋯

                                                           (3.31) 
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1 1 2

1

1 2 1

1

1 1

1

(x ) ( , x )

( , x ) ( , x )

( , x ) ,
m

N

i j i j
j

N N N

j i j j i j
j j N

N

j i j
j N N N

q M s

M s M s

M s

α

α α

α
−

=

+

= = +

= + + + +

= ∑

= +∑ ∑

+ + ∑
⋯

⋯

                                                        (3.32) 

 

where 
jα  is the j th unknown coefficients (strength of the singularities), js  is j th 

source point, ix  is i th observation point, 1 2 1,  ,  ...,  mN N N − , are the numbers of source 

points on 1m −  numbers of inner boundaries, respectively, mN  is the number of 

source points on the outer boundary, while N  is the total numbers of source points 

1 2 1 ... m mN N N N N−= + + + +  . The chosen bases are the double-layer potentials (Chen 

2002a, Chen 2002b, Young 2005) as  

 

( )
2

(x ),
( , x )

i j j

j i

ij

s n
T s

r

− −
=  ,                                                                            (3.33) 

( )( ) ( )
4 2

(x ), (x ), ,( , x )
( , x )

(x )

i j j i j i j ij i

j i

i ij ij

s n s n n nT s
M s

r rν

− −∂
= = −

∂
,                          (3.34) 

 

where (, )  denotes the inner product of two vectors,  xij j ir s= − , jn  is the normal 

vector at js , and in  is the normal vector at xi . 

 

As the field point x i  coincide with the source point js , equations. (3.33) and 

(3.34) will become singular. Equations (3.33) and (3.34) for the multiply-connected 

problems need to be regularized by using the regularization of subtracting and adding 

back technique which same as MMFS (Young 2005): 

 

11

1 1

1 1

1 2 1 1

1

1 1

1 1

1 1

1

(x ) ( , x ) ( , x )

( , x ) ( , x )

( , x )

t

t

m

m m

t

t

N NN
I I I I I

i j i j j i j
j j N N

N N N
I I O I
j i j j i j

j N N j N N

N N
I I
j i i

j N N

u T s T s

T s T s

T s

α α

α α

α

−

−

− −

−

+ +

= = + + +

+ +

= + + + = + + +

+ +

= + + +

= + +∑ ∑

+ + +∑ ∑

− ∑

⋯

⋯

⋯

⋯ ⋯

⋯

⋯

⋯

⋯                             (3.35) 
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for x , 1,2,3, , 1,I

i t t m∈∂Ω = −… where x I

i  is located on the inner boundary 

( 1,  2,  ...,  1)t m= −  and the superscript I and O denote the inward and outward normal 

vectors, respectively, and 

 

1

1 1 1
( , x ) 0, x , 1, 2,3, , 1.

t

t

N N
I I I
j i i t

j N N

T s t m
−

+ +

= + + +

= ∈ ∂Ω = −∑
⋯

⋯

…                                      (3.36) 

 

Therefore, we can obtain: 

 

1

1 1

1 1 1

1 2

1

1 1 1 1

1

1 1

1 1

1 1

(x ) ( , x ) ( , x )

( , x ) ( , x )

( , x ) ( , x ) ( , x )

t

t m

m

t

m t

N i
I I I I I

i j i j j i j
j j N N

N N N N
I I I I
j i j j i j

j i j N N

N NN
O I I I I I

j i j j i i i i
j N N j N N

u T s T s

T s T s

T s T s T s

α α

α α

α α

−

−

−

− −

−

= = + + +

+ + + +

= + = + + +

+ +

= + + + = + + +

= + +∑ ∑

+ + +∑ ∑

 
+ − −∑ ∑ 

 

⋯

⋯ ⋯

⋯

⋯

⋯ ⋯

⋯

⋯

,

            (3.37) 

 

for x , 1,2,3, , 1.I

i t t m∈∂Ω = −…  

 

When the field point locates on the outer boundary ( p m= ), equation (3.35) becomes 

 

1 1 2

1

1 1

1 2 1 1

1 1

1 1

1 1

1

(x ) ( , x ) ( , x )

( , x ) ( , x )

( , x )

m

m m

m

N N N
O I O I O
i j i j j i j

j j N

N N N
I O O O

j i j j i j
j N N j N N

N
I I

j i i
j N N

u T s T s

T s T s

T s

α α

α α

α

−

− −

−

+

= = +

+ +

= + + + = + + +

= + + +

= + +∑ ∑

+ +∑ ∑

− ∑

⋯

⋯ ⋯

⋯

⋯

,                             (3.38) 

 

for x , ,O and I

i t t m∈ ∂Ω =  where 

 

      
1 1 1

( , x ) 0, x , .
m

N
I I I

j i i i t
j N N

T s t mα
−= + + +

= ∈∂Ω =∑
⋯

                                                (3.39) 

 

Hence, we obtain  
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1 1 2

1

1 1

1 2 1 1

1 1

1 1

1

1 1

1 1

(x ) ( , x ) ( , x )

( , x ) ( , x )

( , x ) ( , x ) ( , x )

m

m m

m

N N N
O I O I O
i j i j j i j

j j N

N N i
I O O O
j i j j i j

j N N j N N

N N
O O I I O O

j i j j i i i i
j i j N N

u T s T s

T s T s

T s T s T s

α α

α α

α α

−

− −

−

+

= = +

+ + −

= + + + = + + +

= + = + + +

= + +∑ ∑

+ +∑ ∑

 
+ − −∑ ∑ 

 

⋯

⋯ ⋯

⋯

⋯

,                     (3.40) 

 

for x ,I and O

i t t m∈∂Ω = . 

 

Similarly, the Neumann boundary equations can be obtained as 

 

11

1 1

1 1

1 2 1 1

1

1 1

1 1

1 1

1

(x ) ( , x ) ( , x )

( , x ) ( , x )

( , x )

t

t

m

m m

t

t

N NN
I I I I I

i j i j j i j
j j N N

N N N
I I O I
j i j j i j

j N N j N N

N N
I I
j i i

j N N

q M s M s

M s M s

M s

α α

α α

α

−

−

− −

−

+ +

= = + + +

+ +

= + + + = + + +

+ +

= + + +

= + + +∑ ∑

+ +∑ ∑

+ ∑

⋯

⋯

⋯

⋯ ⋯

⋯

⋯

⋯ ⋯

,                               (3.41) 

 

for x , 1,2,3, , 1I

i t t m∈∂Ω = −… . 

Where  

                        

1

1 1 1
( , x ) 0

t

t

N N
I I
j i

j N N

M s
−

+ +

= + + +

=∑
⋯

⋯ ,                                                                               (3.42) 

 

for x , 1,2,3, , 1I

i t t m∈∂Ω = −… . Thus, we have  

 

      

1

1 1

1 1 1

1 1

1

1 1 1 1

1

1 1

1 1

1 1

(x ) ( , x ) ( , x )

( , x ) ( , x )

( , x ) ( , x ) ( , x )

t

t m

m

t
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j i j j i j

j i j N N
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j i j j i i i i
j N N j N N

q M s M s

M s M s

M s M s M s
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α α
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−

−

−

− −

−

= = + + +

+ + + +

= + = + + +

+ +

= + + + = + + +

= + +∑ ∑

+ + +∑ ∑

 
+ − −∑ ∑ 

 

⋯

⋯ ⋯

⋯

⋯

⋯ ⋯

⋯

⋯ ,             (3.43) 
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for x , 1, 2,3, , 1.I

i t t m∈ ∂Ω = −…  

 

When the field point locates on the outer boundary ( p m= ), equation (3.41) yields 

 

1 1 2

1

1 1

1 2 1 1

1 1

1 1

1 1

1

(x ) ( , x ) ( , x )

( , x ) ( , x )

( , x )

m
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m
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N
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= + + + = + + +

= + + +

= + +∑ ∑

+ +∑ ∑

− ∑

⋯
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⋯

⋯

 ,                            (3.44) 

 

Where 

 

1 1 1
( , x ) 0

m

N
I I
j i

j N N

M s
−= + + +

=∑
⋯ ,                                                                            (3.45) 

 

for x ,I

i t t m∈∂Ω = . Thus, we have  
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 
+ − −∑ ∑ 

 

⋯

⋯ ⋯

⋯

⋯

,                    (3.46) 

 

for x , .O and I

i t t m∈ ∂Ω =  

The detailed derivation of equations (3.36) and (3.39) are given in (Young 2005), 

According to the dependence of the normal vectors for inner and outer boundaries, 

their relationships are 

 

( ) ( )
( ) ( )

, x , x , ,

, x , x , ,

I I O O

j i j i

I I O O

j i j i

T s T s i j

T s T s i j

 = − ≠


= =

                                                                (3.47) 

 ( ) ( ), x , xI I O O
j i j iM s M s= ,                                                                            (3.48) 
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where the left and right sides of the equal sign in equations (3.43) and (3.44) denote 

the kernels for field point and source point with the unit inward and outward normal 

vectors, respectively.  

 

3.3 Boundary distributed source (BDS) method  

The boundary distributed source (BDS) method (Liu 2010), is based on the same 

concept in MFS. In the BDS method the source points and filds points coincide and 

both are placed on the boundary of the problem domain directly, unlike the 

traditional MFS that requires a fictitious boundary for placing the source points. To 

remove the singularities of the fundamental solutions, the concentrated point sources 

can be replaced by distributed sources over areas (for 2D problems) or volumes (for 

3D problems) covering the source points. For Dirichlet boundary conditions, all the 

coefficients (either diagonal or off-diagonal) in the systems of equations can be 

determined analytically, however, the diagonal coefficients for Neumann boundary 

conditions is determined indirectly.  

 

Consider the Laplace equation in a 2D domain Ω  governed by equation (3.1), 

under the BCs of (3.13) and (3.14).  N distributed sources were placed at point js  

(j=1, 2, ..., N) on boundary ∂Ω , as shown in figure 3.5. Then u  can be given by the 

following expression satisfies the governing equation (3.1):  

 

1
1 ( )

(x) (x, ) ( )   for  j j

j

N

j

j A s

u G s dA s xµ
=

′ ′= ∈∂Ω∑ ∫ ,                                              (3.49) 

 

where ( )jA s can be a line segment or an area covering point js  on the boundary, and  

 

1
(x, ) ln( )

2
jG s r

π
′ = −  ,                                                                                   (3.50) 
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is the fundamental solution for 2D Laplace equation,  and r  is the distance between 

the field point x  and source point js ′ , and jµ  an unknown intensity of the 

distributed source at js .  

 

 

 

Figure 3.5. A domain Ω  with boundary ∂Ω , the collocation point x , and center sj  

of a source.  

 

 

In BDS, we consider the case that A( )s  is a circular disk of radius 
s

R  and 

centered at point js  on the boundary ∂Ω  (see figure 3.6) for 2D problems. The 

integration of the fundamental solution (x, )G s on a circular disk A( )s  yields the 

following analytic results:  

 

( )

2

2 2 2

(x, ) (x, ) ( )

1
ln( ) for

2

1
ln( ) for

2 4

A s

s
s

s s
s

s

G s G s dA s

R
a R

a

R R a
a R

R

′ ′=


≥


= 

− − ≤


∫ɶ

,                                                (3.51) 

 

in which a  is the distance between x  and s  (center of the disk). 
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Figure 3.6. A Distributed source on a circular disk centered at point s  and with 

radius Rs.  

  

By substituting equation (3.51), we can rewrite equation (3.50) as follows  

 

1
1

(x) (x, )   for  x
N

j j

j

u G s µ
=

= ∈∂Ω∑ ɶ ,                                                             (3.52) 

 

The boundary conditions in equations (3.13) and (3.14) can be satisfied at the field 

points x i  by adjusting jµ  at the source points js , that is, imposing the following 

conditions:   

 

1
1

  for  x
N

ij j i

j

G uµ
=

= ∈∂Ω∑ ɶ ,                                                                            (3.53) 

   2
1

  for  x
N

ij j i

j

K qµ
=

= ∈∂Ω∑ ɶ ,                                                                           (3.54) 

 

where  

 

(x , )ij i jG G s=ɶ ɶ ,                                                                                            (3.55) 

 

and 
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(x , )ij i jK K s=ɶ ɶ ,                                                                                           (3.56) 

 

 with  

 

(y)

(y)

2

(x, )
(x, ) (x, ) ( )

(x)

(x, ) (x, )
(y )

(x) (x)

,    for 
2 (x)

A

A

s
s

G s
K s K s dA s

G s G s
dA

R a
a R

a

ν

ν ν

ν

∂
′ ′= =

∂

′ ′∂ ∂
′= =

∂ ∂

∂
= − >

∂

∫

∫

ɶ
ɶ

ɶ
 .                                                   (3.57) 

 

Since the valid expressions for (x, )K sɶ  when 0 a R≤ ≤  are still under 

investigation, the diagonal term in equation (3.54) needs to be determined indirectly 

for field points on 2∂Ω  . In BDS, the method proposed by Sarler (2009) is applied to 

determine the diagonal coefficient in equation (3.54). In this approach, the author 

first assumes a constant solution, e.g., u c=  everywhere. Then, from equation (3.53) 

the corresponding densities c

j
µ  can be solved for all the boundary points. Finally, 

from equation (3.54) the following expression for the diagonal term using the known 

density values c

j
µ  can be given:  

 

  
1
1

1 N
c

ii ij jc
ji
j

K K µ
µ =

≠

= ∑ɶ ɶ .                                                                                      (3.58) 

 

Finally, the following standard linear system of equations is formed after 

applying equations (3.53) or (3.54) at all the field points:  

 

     

11 12 1 1 1

21 22 2 2 2

1 2

N

N

N N NN N N

a a a b

a a a b

a a a b

µ

µ

µ

    
    

     =               

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

⋯

 ,                                                             (3.59) 
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or 

 

=A bµµµµ ,                                                                                                        (3.60) 

 

where A  is the coefficient matrix, µµµµ the unknown density vector, and b  the right-

hand side vector. Once all the values of jµ  are determined by solving this equation, 

the potential at any point inside the domain or on the boundary can be evaluated 

using equation(3.52).  

 

3.4 Singular boundary method (SBM) 

Like the MFS, the singular boundary method (SBM) (Chen 2009a, Chen 2009b Chen 

2010, Gu 2011) employs the singular fundamental solution of the governing equation 

of interest as the interpolation basis function. However, the source and field points of 

the SBM coincide on the physical boundary without the requirement of introducing 

fictitious boundary. In order to avoid the singularity, this method proposes an inverse 

interpolation technique (IIT) to evaluate the singular diagonal elements of the MFS 

coefficient matrix.  

 

In SBM, the MFS solution (x)u  and 
(x)

(x)

u

ν

∂

∂
of the Laplace problem can be 

expressed by a linear combination of fundamental solutions with respect to different 

source points js  as follows: 

 

*

1

(x ) (x , )
N

i j i j

j

u u sα
=

=∑ ,                                                                               (3.61) 

  
*

1

(x , )(x )
(x )

(x ) (x )

N
i ji

i j

ji i

u su
q α

ν ν=

∂∂
= =

∂ ∂
∑ ,                                                             (3.62) 
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where x i
 is the i th field point, 

js  the j th source point, 
jα  the j th unknown 

intensity of the distributed source at js , N  the numbers of source points and 

 

         * 1
(x , ) ln x

2i j i ju s s
π

= − − , for 2x ∈∂Ω ,                                                     (3.63) 

 

is the fundamental solution of two-dimensional Laplace equation. 

 

The SBM interpolation formula is given by (Chen 2010) 

 

*

1,

(x ) (x , )
N

i j i j i ii

j i j

u u s uα α
= ≠

= +∑ ,                                                           (3.64) 

  
*

1,

(x , )(x )
(x )

(x ) (x )

N
i ji

i j i ii

j i ji i

u su
q qα α

ν ν= ≠

∂∂
= = +

∂ ∂
∑ ,                                         (3.65) 

 

where 
iiu  and 

iiq  are the diagonal elements of the SBM interpolation matrix. 

 

When the field point x
i
 coincide with the source point js , the distance 

between these two boundary nodes trends to zero. This would cause boundary 

equations (3.64) and (3.65) present singularities. By using the subtracting and 

adding-back technique, the regularized expressions for the Neumann boundary 

equation (3.65) can be written as: 

 

  
* *

1 1

(x , ) (x , )
(x ) ( )

(x ) (x )

N N
i j i j

i j i i

j ji i

u s u s
q α α α

ν ν= =

∂ ∂
= − +

∂ ∂
∑ ∑ ,                                         (3.66) 

 

Note that, when i  is equal to j ,  

 

*(x , )
( ) 0

(x )
i j

j i

i

u s
α α

ν

∂
− =

∂
,                                                                               (3.67) 
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so there is no singularity in the first right side term. To remove the singularity of the 

second right side term, we rewrite equation (3.66) as follows: 

 

* * *

1, 1

(x , ) (x , ) (x , )
(x ) ( )

(x ) (x ) ( )

cN N
i j i j i j

i j i i

j i j ji i j

u s u s u s
q

s
α α α

ν ν ν= ≠ =

 ∂ ∂ ∂
= − + +  ∂ ∂ ∂ 
∑ ∑ ,           (3.68) 

 

in which  

 

*

1

(x , )
0

( )

cN
i j

j j

u s

sν=

∂
=

∂
∑ ,                                                                                        (3.69) 

 

and * (x , )c

i ju s  denotes the fundamental solution of the exterior problems. The detail 

derivations of equation (3.69) are given in (Chen 2012). 

 

According to the dependency of the outward normal vectors on the two kernel 

functions of interior and exterior problems, we can obtain the following relationships 

(Young 2005): 

 

* *

* *

(x , ) (x , )
,     

( ) ( )

(x , ) (x , )
,     

( ) ( )

c

i j i j

j j

c

i j i j

j j

u s u s
i j

s s

u s u s
i j

s s

ν ν

ν ν

∂ ∂
= − ≠

∂ ∂


∂ ∂
= = ∂ ∂

,                                                          (3.70) 

 

* *

* *

1 1 2 2(1) (2)

(x , ) (x , )

(x ) ( )

(x , ) (x , )
( (x ) ( )) ( (x ) ( ))

x x

i j i j

i j

i j i j

i j i j

u s u s

s

u s u s
n n s n n s

ν ν

∂ ∂
+

∂ ∂

∂ ∂
= − + −

∂ ∂

,                       (3.71) 

 

where the indicial notation for the coordinates of points x
i
, i.e., ( (1)x , (2)x ) is 

employed. For arbitrarily smooth boundary, we assume that the source point js  

moves gradually close to the field point x
i
 along a line segment, thus we have 



 

 50 

 

* *(x , ) (x , )
lim 0

(x ) ( )j i

i j i j

s x
i j

u s u s

sν ν→

∂ ∂
+ =

∂ ∂
,                                                                (3.72) 

 

From equations (3.70) and (3.72), equation (3.68) can be rewritten as 

 

* * *

1, 1,

* *

1, 1,

(x , ) (x , ) (x , )
(x ) ( )

(x ) (x ) ( )

(x , ) (x , )

(x ) ( )

N N
i j i j i j

i j i i

j i j j i ji i j

N N
i j i j

j i

j i j j i ji j

u s u s u s
q

s

u s u s

s

α α α
ν ν ν

α α
ν ν

= ≠ = ≠

= ≠ = ≠

 ∂ ∂ ∂
= − + −  ∂ ∂ ∂ 

∂ ∂
= −

∂ ∂

∑ ∑

∑ ∑

.        (3.73) 

 

It can be seen from the above equation (3.73) that the original singular term 

* (x , )

( )

c

i j

j

u s

sν

∂

∂
 in equation (3.68) under i j=  has been transformed into the following 

regular terms 

 

*

1,

(x , )

( )

N
i j

ii

j i j j

u s
q

sν= ≠

∂
= −

∂
∑ ,                                                                                (3.74) 

 

The regularized expressions for the Dirichlet boundary equation (3.64) can be 

calculated by using the strategy proposed by Sarler (2009), in which the singular 

value of (x)u  is considered as an average of the fundamental solution over a portion 

of the boundary. However, the integral calculation makes this strategy more complex 

and less efficient. In SBM, the regularized expressions of the Dirichlet boundary 

equation can be calculated in a new indirect way, namely an improved inverse 

interpolation technique (IIT), which is different from the original IIT in that it does 

not require the sampling nodes. 

 

First, we assuming a pure Neumann problem with all the boundary values set as  

(x)
(x)

(x)

u
q

ν

∂
=

∂
 ,                                                                               (3.75) 
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where ( )u x  (named as sample solution in SBM) is an arbitrary known particular 

solution of Laplace equation, such as 

 

(1) (2)(x) x xu = − .                                                                              (3.76) 

 
Then, from the regularized Neumann boundary equation (3.73), we obtain: 

 

* *

1, 1,

(x , ) (x , )
(x ) ,   1,  2,  ...,  

(x ) ( )

N N
i j i j

i j i

j i j j i ji j

u s u s
q i N

s
α α

ν ν= ≠ = ≠

∂ ∂
′ ′= − =

∂ ∂
∑ ∑ ,       (3.77) 

 
where 

j
α ′  are unknown coefficients and can be calculated directly by solving the 

above equation (3.77). 

 

Finally, substituting the calculated 
jα ′  into the Dirichlet boundary equation 

(3.64) we can get the following algebraic equations: 

 

*

1,

(x ) (x , ) ,   1,  2,  ...,  
N

i j i j i ii

j i j

u u s u c i Nα α
= ≠

′ ′= + + =∑ ,                                      (3.78) 

 

where c  is a constant and can be solved by using an arbitrary field point inside the 

domain. For example, suppose (1) (2)
0 0 0x (x , x )= is an arbitrary point inside the domain 

of interest, then the constant c  can be calculated by 

 

*
0 0

1

(1) (2) *
0 0 0

1

(x ) (x , )

(x x ) (x , )

N

j j

j

N

j j

j

c u u s

u s

α

α

=

=

′= −

′= + −

∑

∑
 .                                                  (3.79) 
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Since the interior field point (1) (2)
0 0 0x (x , x )=  is chosen in side the domain and will 

never coincide with the boundary source point js , the function *
0(x , )ju s  can be 

calculated directly. 

Thus, diagonal terms of ( , )
j

G p pɶ  for Dirichlet boundary equation can be calculated 

as: 

*

1,

1
(x ) (x , ) ,   1,  2,  ...,  

N

ii i j i j

j i ji

u u c u s i Nα
α = ≠

 
′= − − = 

′  
∑ .                    (3.80) 

 

Using the procedure described above, the origin intensity factors for both Neumann 

and Dirichlet boundary equations (3.64) and (3.65) can be calculated. And the 

resulting system equations can be formed. 
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4.  Improved boundary distributed source method 

for EIT forward problem 

 

In the BDS method, all elements of the system matrix can be derived analytically for 

the Dirichlet boundary conditions without singularity. For the Neumann boundary 

conditions, however, while off-diagonal elements can be determined analytically the 

diagonal elements should be obtained indirectly from the constant potential field 

(Saler 2009). Hence, the indirect determination involves the solution of the system 

equation. Recently, Kim (2013) suggested an improved BDS (IBDS) method for the 

Laplace equations to determine the diagonal element for the Neumann boundary 

conditions by using the fact that the integration of the normal derivative of the 

potential function over the domain boundary should vanish. In doing so, the IBDS 

method can remove the procedure to determine indirectly the diagonal elements for 

the Neumann boundary conditions. 

 

In this section, the IBDS formulation for the EIT forward problem is presented, 

also a hybrid MM of IBDS and SBM is proposed, in which the regularized 

expressions of the Dirichlet boundary equation is carried out in a new indirect way, 

namely an improved inverse interpolation technique used in SBM by Chen et 

al.(2012). 

 

4.1 IBDS for EIT forward problem 

4.1.1 Improved boundary distributed source method (IBDS) 

In the BDS formulation (Liu 2010), a number of source points jp  ( 1, 2, ,j N= ⋯ ) 

are selected along the domain boundary. The solution ( )u p  at a certain field point p  

is expressed as a linear combination of the fundamental solution integrated over a 

circle ( )
j

A p  with radius of 
j

R  and centered at the selected source point 
j

p :  
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1 1( )

( ) ( , ) ( ) ( , )
j

N N

j j j

j jA p

u p G p s dA s G p pµ µ
= =

= =∑ ∑∫ ɶ , for p ∈Ω , and 
jp ∈∂Ω  

     (4.1) 

 

where 
jµ  are the unknown source densities to be determined, Ω  is the closure of the 

domain Ω , and G  is the fundamental solution of Laplace equation. The fundamental 

solution in 2D for the Laplace equation is of the form:  

 

21
( , ) ln

4j jG p p p p
π

= − ,   for 2, jp p ∈ℜ .                                                  (4.2) 

 

jR is the radius of the distributed source. Although, the determination of 
jR  is not 

conclusive at present, it is reported that / 4
j j

R l=  allows quite accurate and stable 

numerical results in most cases (Liu 2009, Kim 2013). The integration of the 

fundamental solution can be obtained in a simple form: 

 

2

222

ln for
2

( , )

ln for
2 4

j

j j j

j

j jj

j j j

R
p p p p R

G p p
R p pR

R p p R


− − ≥


= 

− −
− − ≤

ɶ .                        (4.3) 

 
In order to impose the Neumann boundary conditions to evaluate the normal flux at 

the boundary of interest, we should have the expression for the normal derivative of 

the solution: 

 

1 ( )

1 ( )

1

( , )( )
( ) ( )

( ) ( )

( , ) ( )

( , )

j

j

N
s

s j

j A p

N

s s j

j A p

N

j j

j

G p pu p
q p dA p

p p

Q p p dA p

Q p p

µ
ν ν

µ

µ

=

=

=

∂∂
= =

∂ ∂

=

=

∑ ∫

∑ ∫

∑ ɶ

,  for p ∈Ω  and jp ∈ ∂Ω .   (4.4) 
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where  

2 2

( , ) ( , )

( ) ( ) ( ) ( )1 1

2 2

s s

s s

s

Q p p G p p

p p p p p p

rp p

ν
ν ν

π π

∂
=

∂

− ⋅ − ⋅
= − = −

−

 .                               (4.5) 

 
The terms ( , )

j
Q p pɶ  for j jp p R− ≥ , which correspond to off-diagonal elements, 

can be easily obtained as 

 

2

2

( ) ( )
( , )

2

j j

j

j

R p p p
Q p p

p p

ν− ⋅
= −

−

ɶ ,   for j jp p R− ≥ .                                 (4.6) 

 
Note that 

 

2
2( , ) ln ( , )   for   

2
j

j j j j j j

R
G p p p p R G p p p p Rπ= − = − ≥ɶ ,                        (4.7) 

2
2

2

( ) ( )
( , ) ( , )   for  

2

j j

j j j j j

j

R p p p
Q p p R Q p p p p R

p p

ν
π

− ⋅
= − = − ≥

−

ɶ ,                (4.8) 

 

However, ( , )jQ p pɶ  for j jp p R− < , which correspond to diagonal elements, is not 

available and Liu (2010) recommended to determine the terms indirectly from the 

constant potential field as proposed by Šarler (2009). The IBDS method (Kim 2013) 

suggests a simple way to determine ( , )
j j

Q p pɶ  without any matrix inversion. 

Considering the fact that the boundary integration of the normal gradient of the 

potential function should vanish, we have 

 

1

( ) ( ) ( , ) ( ) 0
N

j j

j

q p dS p Q p p dS p µ
=∂Ω ∂Ω

= =∑∫ ∫ ɶ .                            (4.9) 
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Since equation (4.9) should be satisfied for arbitrary boundary conditions or 

source density distributions, therefore we have 

 

( , ) ( ) 0jQ p p dS p
∂Ω

=∫ ɶ ,                                                               (4.10) 

 
and ( , )

j j
Q p pɶ  can be evaluated as 

 

1,

1
( , ) ( , )

N

j j i j i

i i jj

Q p p Q p p l
l = ≠

≅ − ∑ɶ ɶ ,                             (4.11) 

 
where 

i
l  is the length of the i th line segment of the boundary. 

 

4.1.2 IBDS Formulation for EIT with CEM  

 

Considering that the electrodes are spaced equally around the circumference of the 

outer domain with region boundaries with constant conductivities and has the same 

size of e . Each electrode and each gap regions are uniformly placed with 
E

m  and 

G
m  source points, respectively. Hence, the numbers of the electrode and the gap 

nodes are E EM Lm=  and G GM Lm= , respectively. If the number of the source points 

of the inclusion boundaries is DM , the total number of nodes is E G DM M M M= + + . 

Here, the subscripts E , G , and D represent the electrode, gap, the anomaly 

boundary, respectively. The node distributions of a circular domain Ω  with an 

anomaly D located at the center is shown in figure 4.1.  
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Figure 4.1. Node distributions of a circular domain with an anomaly located at the 

center. 

 

 

 

According to the IBDS formulation, the potential distribution and its normal 

derivative on the background \ DΩ  and on the inclusion D  can be expressed as 

 

1 1

( ) ( , )   and  ( ) ( , )
M M

b b

b j j b j j

j j

u p G p p q p Q p pµ µ
= =

= =∑ ∑ɶ ɶ ,                     (4.12) 

1 1

( ) ( , )   and  ( ) ( , )
D DM M

a a

a j j a j j

j j

u p G p p q p Q p pµ µ
= =

= =∑ ∑ɶ ɶ ,                     (4.13) 

 
where p  is the field point where the potential and its normal derivative are 

evaluated, 
jp  are the source points, and b

jµ  and a

jµ  are the source densities on the 

background and the anomaly boundaries, respectively. The diagonal elements for the 

Neumann boundary condition, in the IBDS formulation, can be determined from the 

characteristics of the potential function, i.e. equation (4.9), and can be expressed as: 
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1,

1
( , ) ( , )

M

j j i j i

i i jj

Q p p Q p p l
l = ≠

≅ − ∑ɶ ɶ   for ( )jp D∈ ∂ Ω − .                (4.14) 

 
It should be noted that for the determination of ( , )

j j
Q p pɶ  corresponding to the 

boundary of the anomaly the same procedure should be applied since the problem 

domain under consideration is a piece-wise homogeneous: 

 

1,

1
( , ) ( , )

DM

j j i j i

i i jj

Q p p Q p p l
l = ≠

≅ − ∑ɶ ɶ  for 
jp D∈∂ .                  (4.15) 

 
Thus, the EIT boundary conditions in the sense of the CEM, equations (2.31-2.33) 

and interfacial conditions, equations (2.34), can be expressed as 

 

1

( ) ( , ) 0  for  
M

b

b i i j j i G

j

q p Q p p pµ
=

= = ∈∂Ω∑ ɶ ,                                 (4.16) 

( )   for  1, 2, ,
l

b b l

e

q p dS I l Lσ = =∫ ⋯ ,                                             (4.17) 

( ) ( )   for    and  1,2, ,
b i l b b i l i l

u p z q p U p e l Lσ+ = ∈ = ⋯ ,                    (4.18) 

( ) ( )  and  ( ) ( )  for  
b i a i b i a i i D

u p u p q p q p pκ= = − ∈ ∂Ω ,                     (4.19) 

 

where /
a b

κ σ σ= . 

Integrating equation (4.18) over an electrode and combining equations (4.12), 

(4.13), and (4.17) we can have  

 

( )b b b b b b

EE E EG G ED D b l EE E EG G ED D U
G G G D z Q Q Q C Uµ µ µ σ µ µ µ   + + + + + =   
ɶ ɶ ɶ ɶ ɶ ɶɶ ,     

(4.20) 

where 
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{ }( , )  for  ,    and  , , ,IJ i j i I j JG G p p p p I J E G D= ∈ ∂Ω ∈ ∂Ω ∈ɶ ɶ ,       (4.21) 

1 2( ) diag[ ( ), ( ),... ( )] E E

E E

M M

l l l l M mD z z p z p z p I
×= ⊗ ∈ℜɶ  ,                   (4.22) 

eye( ) ones( ,1)
U E

C L M= ⊗ .                                                        (4.23) 

 
From the insulation condition, we have  

 

0b b b

GE E GG G GD DQ Q Qµ µ µ+ + =ɶ ɶ ɶ .                                                        (4.24) 

 
From the interfacial conditions, we have 

 

b b b a

DE E DG G DD D DDG G G Gµ µ µ µ+ + =ɶ ɶ ɶ ɶ .                                             (4.25) 

b b b a

DE E DG G DD D DDQ Q Q Qµ µ µ κ µ+ + = −ɶ ɶ ɶ ɶ .                                             (4.26) 

 
Integrating the CEM over a certain electrode and imposing the applied current, we 

have 

 

1
( )   for  1, 2, ,

l

l

b l l

l le

z
u p dS I U l L

e e
+ = =∫ ⋯ ,                                 (4.27) 

( / )b b b

LE E LG G LD D l lG G G D z e I U Nµ µ µ β+ + + = =ɶ ,                     (4.28) 

1( ) ( / )

( / )

T T b b b

LE E LG G LD D l l

b b b

LE E LG G LD D l l

U N N N N N G G G D z e I

N G G G D z e I

β µ µ µ

µ µ µ

−  = = + + + 

 = + + + 

ɶ

ɶ ɶ
,        (4.29) 

 
where [ ]ones(1, 1); eye( 1)UN L L= − − −  and ( 1) 1Lβ − ×∈ℜ . 

 

Thus the BDS formulation of the CEM becomes 
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( ) ( ) ( )

( / )

b b b

EE b l EE E EG b l EG G ED b l ED D

b b b

U LE E LG G LD D l l

G D z Q G D z Q G D z Q

C N G G G D z e I

σ µ σ µ σ µ

µ µ µ

     + + + + +     

 = + + + 

ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ

ɶ ɶ
,       

(4.30) 

      
( ) ( )

( ) ( / )

b b

EE b l EE U LE E EG b l EG U LG G

b

ED b l ED U LD D U l l

G D z Q C NG G D z Q C NG

G D z Q C NG C ND z e I

σ µ σ µ

σ µ

   + − + + −   

 + + − = 

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶɶ ɶ ɶ ɶ
,           

(4.31) 

we can express equation (4.31) as  

 

( / )b b b

EE E EG G ED D U l lV V V C ND z e Iµ µ µ+ + = ɶ ɶ ,                              (4.32) 

 
where 

 

( )EE EE b l EE U LEV G D z Q C NGσ= + −ɶ ɶɶ ɶ ,                                          (4.33) 

( )EG EG b l EG U LGV G D z Q C NGσ= + −ɶ ɶɶ ɶ ,                                          (4.34) 

( )ED ED b l ED U LDV G D z Q C NGσ= + −ɶ ɶɶ ɶ ,                                          (4.35) 

1
( , ) ( , )

l

LJ j

l e

G l j G p p dS
e

= ∫ ɶ   for { }, ,J E G D∈ ,     (4.36) 

 
or  

 

[ ] { }(1, )   for  , ,E
LJ L E EJ EJ

s
G I ones m G AG J E G D

e
= ⊗ = ∈ɶ ɶ .      (4.37) 

 
Finally, the system of linear equations can be constructed as 
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0 ( / )

0 0

0

0

b
EE EG ED E U l l

b
GE GG GD G

b
DE DG DD DD D

a
DE DG DD DD D

V V V C ND z e I

Q Q Q

G G G G

Q Q Q Q

µ

µ

µ

κ µ

    
    
     =
    −
    

      

ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

.                  (4.38) 

 
 

4. 2 Hybrid MM of IBDS and SBM 

In this section we present the formulation of Hybrid MM which combines IBDS and 

SBM. 

From the formulation of IBDS, equations (4.12) and (4.13) the potential 

distribution and its normal derivative on the background \ DΩ  and on the inclusion 

D  can be expressed as 

 

1 1,

( ) ( , )
M M

b b b

b i i j j ij j ii i

j j j i

u p G p p G Gµ µ µ
= = ≠

= = +∑ ∑ɶ ɶ ɶ  ,                               (4.39) 

1 1,

( ) ( , )
M M

b b b

b i i j j ij j ii i

j j j i

q p Q p p Q Qµ µ µ
= = ≠

= = +∑ ∑ɶ ɶ ɶ ,                                           (4.40) 

1 1,

( ) ( , )
D DM M

a a a

a i i j j ij j ii i

j j j i

u p G p p G Gµ µ µ
= = ≠

= = +∑ ∑ɶ ɶ ɶ ,                                 (4.41) 

1 1,

( ) ( , )
D DM M

a a a

a i i j j ij j ii i

j j j i

q p Q p p Q Qµ µ µ
= = ≠

= = +∑ ∑ɶ ɶ ɶ ,                                (4.42) 

 
where 

 

2

( , ) ln   for  
2

j

ij i j j i j i j

R
G G p p p p p p R= = − − ≥ɶ ɶ ,                         (4.43) 

2

2

( ) ( )
( , )   for  

2

j j

ij j j j

j

R p p p
Q Q p p p p R

p p

ν− ⋅
= = − − ≥

−

ɶ ɶ ,                       (4.44) 
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1,

1
( , ) ( , )    for  ( )

M

ii i i j i j i

j j ii

Q Q p p Q p p l p D
l = ≠

= = − ∈ ∂ Ω −∑ɶ ɶ ɶ ,       (4.45) 

 
and   

1,

1
( , ) ( , )

DM

ii i i j i j

j j ii

Q Q p p Q p p l
l = ≠

= = − ∑ɶ ɶ ɶ  for 
i

p D∈∂ ,                   (4.46) 

 
here, the diagonal terms of ( , )

j
G p pɶ  will be determined in a new indirect way, 

namely an improved inverse interpolation technique used in SBM by Chen et 

al.(2012).  

First, let us assume a pure Neumann problem with all the boundary values set 

as 

 

( )
( )

( )

u p
q p

pν

∂
=

∂
 ,                                                                              (4.47) 

 
where ( )u p  (named as sample solution in this paper) is an arbitrary known particular 

solution, such as 

 

1 2( )u p c x c y= + .                                                                  (4.48) 

 
Then, from the regularized Neumann boundary equation (4.40) or (4.42), we obtain: 

 

1,

( )
M

i ij j ii i

j j i

q p Q Qµ µ
= ≠

= +∑ ɶ ɶ ,                                                         (4.49) 

 
where jµ  are unknown coefficients and can be calculated directly by solving the 

above equation (4.49). 

Finally, substituting the calculated jµ into the Dirichlet boundary equation 

(4.39) or (4.41), we can get the following algebraic equations: 
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0
1,

( )
M

i ij j ii i

j j i

u p G G cµ µ
= ≠

= + +∑ ɶ ɶ ,                                                 (4.50) 

 

where 0c  is a constant and can be solved by using an arbitrary field point inside the 

domain. For example, suppose 0 0 0( , )p x y= is an arbitrary point inside the domain of 

interest, then the constant 0c  can be calculated by 

 

0 0 0
1

1 0 2 0 0
1

( ) ( , )

( ) ( , )

M

j j

j

M

j j

j

c u p G p p

c x c y G p p

µ

µ

=

=

= −

= + −

∑

∑

ɶ

ɶ

 .                                               (4.51) 

 

Since the interior field point 0 0 0( , )p x y=  is chosen inside the domain and will never 

coincide with the boundary source point 
j

p , the function 0( , )
j

G p pɶ  can be 

calculated directly 

Thus, diagonal terms of ( , )jG p pɶ  for Dirichlet boundary equation can be calculated 

as: 

 

0
1,

1
( )

M

ii i ij j

j j ii

G u p c G µ
µ = ≠

 
= − − 

 
∑ɶ ɶ ,                                           (4.52) 

 
i.e.,  

 

 0
1,

1
( )

M
b b

ii b i ij jb
j j ii

G u p c G µ
µ = ≠

 
= − − 

 
∑ɶ ɶ     for ( )

i
p D∈∂ Ω −  ,                      (4.53) 

0
1,

1
( )

M
a a

ii a i ij ja
j j ii

G u p c G µ
µ = ≠

 
= − − 

 
∑ɶ ɶ        for 

i
p D∈ ∂ .                     (4.54) 
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Comparing the formulation of IBDS and Hybrid MM of IBDS and SBM, the 

only difference is the determination of diagonal terms of ( , )
j

G p pɶ  for Dirichlet 

boundary equations. Thus, in the calculation of Hybrid MM of IBDS and SBM for 

EIT forward problems, we just need to replace the expressions of diagonal terms of 

( , )
j

G p pɶ in the formulation. Once the matrix of Gɶ  and Qɶ  are determined then the 

forward solution can be solved using the equation (4.38).  
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5.  Numerical results and discussion  

 

In this chapter, to verify the feasibility of the IBDS method and the hybrid MM of 

IBDS and SBM, the numerical results are compared with FEM and BEM. Some 

numerical examples in 2D circular domain with 16 electrodes attached on the 

circumference are considered. The background conductivity is set to 3mS/cm. The 

injected current through electrode 1 is 1 mA and the opposite electrode (electrode 9) 

is set to a sink, while others are insulated. This corresponds to so-called the opposite 

current pattern, which is one of widely used current injection protocols. The contact 

impedance is set to 8 2cmΩ⋅  for all electrodes. As a performance metric, the results 

are compared to the BEM with more than 10,000 boundary nodes on the boundary. 

The relative error is computed with respect to the BEM solution and defined as: 

 

BEM

BEM

U U
RE

U

−
= ,                                      (5.1) 

 
where U  is the calculated voltage on the electrode using the different forward 

solvers mentioned before, BEMU  reference BEM solution with more than 10,000 

boundary nodes. 

 

 

5.1 Homogenous case  

 

Consider a circular domain with homogeneous conditions i.e, the conductivity inside 

the domain is constant through out. The circular domain with outer boundary 

discretized with 320 uniformly distributed source points is plotted in figure 5.1. The 

FEM solution used in the comparison for this example is calculated using COMSOL 

with MATLAB. Figure 5.2 shows the mesh structure used in FEM. The boundary 
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voltages obtained by the BEM, IBDS and hybrid MM with 320 nodes compared with 

the FEM solution are plotted in figure 5.3. Figure 5.4 shows the variation of the 

relative error as the number of source points increases. The BEM solution used as the 

reference for this example is calculated with 10016 boundary nodes. As seen in figure 

5.4, the error for BEM, IBDS and hybrid MM decrease with the increase in number of 

nodes on domain boundary. BEM involves computation of integrals of fundamental 

solution over the line segments therefore BEM is computationally intensive compared 

to IBDS and hybrid MM. 
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Figure 5.1. Homogenous case with 320 uniformly distributed source points. 
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Figure 5.2. Mesh structure used in FEM for homogenous case. 
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Figure 5.3. Boundary voltages obtained by the BEM, IBDS and hybrid MM with 320 

nodes compared with the FEM solution for homogenous case. 
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Figure 5.4. Relative error w.r.t the number of elements in FEM and number of 

boundary nodes in BEM, IBDS and hybrid MM of IBDS and SBM for homogenous 

case. 

 

          As shown in figure 5.3, the voltage calculated from BEM, IBDS and hybrid MM 

of IBDS and SBM matches well, however the voltage given by FEM has higher 

deviation compared with the other methods used in the simulation. From figure 5.4, we 

can find out that the solution given by IBDS is affected by the radius of the source 

point. In this case,  / 4j pR l=  gives the best result among all the radius of the source 

point tested in the simulation. Compare to IBDS, the hybrid MM gives better and more 

stable results. The radius of the source point only shows very small effect on the hybrid 

MM of IBDS and SBM, it gives almost the same result for different radius of source 

point.  
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5.2 Concentric anomaly case   

A concentric annular domain is considered as shown in figure 5.5. The concentric 

case has a circular inclusion with a radius of 2 cm located at the center of the 

domain. The inclusion is assumed to be a void i.e. 0κ = . Figure 5.6 shows the mesh 

structure used in FEM. The boundary voltages obtained by the BEM, IBDS and hybrid 

MM with 256 points on the outer boundary and 80 points on the inner boundary 

compared with the FEM solution are plotted in figure 5.7. Figure 5.8 shows the 

relative error in concentric case with increase in number of nodes in the domain, in 

which the number of nodes on the boundary of the anomaly is proportional to the 

number of nodes on the outer boundary, i.e. the ratio of node number on the inner 

boundary and on the outer boundary is fixed. The BEM solution used as the 

reference for this example is calculated with 10080 boundary nodes.  
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Figure 5.5. Concentric case with 256 source points on the outer boundary and 80 

points on the inner boundary. 
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Figure 5.6. Mesh structure used in FEM for concentric anomaly case. 
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Figure 5.7. Boundary voltages obtained by the BEM, IBDS and hybrid MM compared 

with the FEM solution for concentric anomaly case. 
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Figure 5.8. Relative error w.r.t the number of elements in FEM and number of 

boundary nodes in BEM, IBDS and hybrid MM of IBDS and SBM for concentric 

anomaly case. 

  

         For concentric case, it shows the similar feature with the homogenous case.  In 

IBDS,  / 3j jR l=  and / 4j jR l= give better results than others, but in the hybrid MM 

of IBDS and SBM, 
j jR l=  gives more accurate result. However, differs form 

homogenous case the result of hybrid MM of IBDS and SBM is also dependent on 

the radius of source point like IBDS, this may because of the source points on the 

outer boundary and inner boundary are not distributed uniformly.  

 

 

5.3 Circular domain with a Cassini’s oval anomaly   

As a third example, we select a Cassini’s oval as the inclusion (figure. 5.9). The oval 

is described as 
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4 4 2 2 42 cos 2r a a r bθ+ − = .                                   (5.2) 

 

For { , } {2,2.1}a b = , the inclusion is assumed to be a void i.e. 0κ = . Figure 5.10 

shows the mesh structure used in FEM. The boundary voltages obtained by the BEM, 

IBDS and hybrid MM with 256 points on the outer boundary and 100 points on the 

inner boundary compared with the FEM solution are plotted in figure 5.11. Figure. 

5.12 illustrate the relative error with increase in number of nodes in the domain, with 

fixed ratio of node number on the inner boundary and on the outer boundary. The 

BEM solution used as the reference for this example is calculated with 10011 

boundary points. 
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Figure 5.9. Cassini's oval anomaly case with 256 source points on the outer 

boundary and 100 points on the inner boundary. 
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Figure 5.10. Mesh structure used in FEM for Cassini's oval anomaly case. 
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Figure 5.11. Boundary voltages obtained by the BEM, IBDS and hybrid MM 

compared with the FEM solution for Cassini's oval anomaly case. 
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Figure 5.12. Relative error w.r.t the number of elements in FEM and number of 

boundary nodes in BEM, IBDS and hybrid MM of IBDS and SBM for Cassini's oval 

anomaly case. 

 

           As can be seen in figure 5.9, in this example, the source points are not 

distributed uniformly and the radius of the distributed source area is not constant but 

dependent on the location of the source point. From the numerical results, the 

numerical solution of IBDS is not sensitive to the size of the distributed source area 

and dependent on the length of the line segment containing the source point.   

 

 

5.4 Multi-anomaly case  

In this section, a circular domain with 3 anomalies is considered. The domain and 

anomalies with distributed source nodes is plotted in figure. 5.13. As shown in the 

figure, there are 3 anomalies: an ellipse located at (1, 0) with major and minor axes is 
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(1, 2); a circle located at (-2, -2) with radius of 1; and a triangle with three vertices 

located at (-3, 0), (-1, 0) and (-2, 2), respectively. The inclusions are assumed to be a 

void i.e. 0κ = . The mesh structure used in FEM is shown in figure 5.14. The 

boundary voltages obtained by the BEM, IBDS and hybrid MM with 192 source 

points on the outer boundary and 204 source points on the inner boundary compared 

with the FEM is shown in figure 5.15. Figure. 5.16 show the relative error with 

increase in number of nodes in the domain, with fixed ratio of node number on the 

inner boundary and on the outer boundary.    
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Figure 5.13. Multi-anomaly case with 192 source points on the outer boundary and 

204 points on the inner boundary. 
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Figure 5.14. Mesh structure used in FEM for multi-anomaly case 
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Figure 5.15. Boundary voltages obtained by the BEM, IBDS and hybrid MM 

compared with the FEM solution for multi-anomaly case. 
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Figure 5.16. Relative error w.r.t the number of elements in FEM and number of 

boundary points in BEM, IBDS and hybrid MM of IBDS and SBM for multi-anomaly 

case. 

 

 

From the numerical experiments reported above, the IBDS is found to be very 

effective for any complex geometry problem. One limitation of the IBDS is that, 

similar to the BEM, the system matrix is not sparse therefore this can lead to long 

computational time when large number of source points is used in the numerical 

simulation. Compare to IBDS, the hybrid MM of IBDS and SBM show higher 

accuracy and it is less dependent on the radius of the source points, in other words, 

we can say that the hybrid MM of IBDS and SBM is more effective and more stable. 

But, the drawback of the hybrid MM of IBDS and SBM is the choice of the 

particular solution, some times the result is sensitive to the particular solution we 

used in the calculations of the diagonal terms for Dirichlet boundary equations.  
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6.  Conclusions 

 

This study considers an improved formulation of the BDS method in order to obtain 

the numerical solution for the forward problem of the EIT with the complete 

electrode model, which corresponds to a combination of Laplace equations on a 

piece-wise homogeneous media subject to the mixed boundary conditions with 

integral constraints.  By combining the inverse interpolation technique used in SBM, 

a hybrid MM of IBDS and SBM is proposed and the formulation for forward 

problem of EIT is derived.  

 

Several numerical examples are tested to demonstrate the feasibility and 

accuracy of the new formulation by comparing the simulation results with BEM and 

the FEM with linear basis functions. The results show that the accuracy of the hybrid 

MM is better than IBDS. Furthermore, the IBDS and the hybrid MM of IBDS and 

SBM are found to be very effective for any complex geometry problem. One 

limitation of the IBDS is that, similar to the BEM, the system matrix is not sparse 

therefore this can lead to long computational time when large number of source 

points is used in the numerical simulation. Compare to IBDS, the hybrid MM of 

IBDS and SBM show higher accuracy and it is less dependent on the radius of the 

source points, in other words, we can say that the hybrid MM of IBDS and SBM is 

more effective and more stable.   

 

But, the drawback of the hybrid MM of IBDS and SBM is, similar to SBM, the 

choice of the particular solution. Some times the result is sensitive to the particular 

solution we used in the calculations of the diagonal terms for Dirichlet boundary 

equations.  

 

The present work is focused on two-dimensional forward problem and it's 

extending to 3D is straight forward. The currently employed numerical method for 

forward problem of EIT is applicable to other kind of PDEs with complex geometry. 
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Future work can include finding appropriate source radius, improvement of the IBDS 

solution as still the BEM solution is found to have less error compared to IBDS 

solution, and the extension of the IBDS and the hybrid MM to forward problem in 

three dimension and inverse problem in EIT such as boundary estimation problems.   
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Summary 

 

Meshless methods or mesh-free methods (MMs) are a kind of numerical methods 

developed with the objective of avoiding part of the disadvantages associated with 

reliance on a mesh to construct the approximate solution. In MMs, the approximation 

is built from nodes only, thus, the MMs are particularly suitable for problems with 

complex geometries, like domains involving internal boundaries for instance. Among 

the MMs, the method of fundamental solutions (MFS) has gained an increasing 

attention in many engineering and science fields. In MFS, the solution of the problem 

is approximated as a linear combination of fundamental solutions of the governing 

equation. However, the conventional MFS requires a fictitious boundary outside the 

physical domain to place the source points due to singularities of the fundamental 

solution, and the determination of fictitious boundary is momentous in solving the 

problem. To overcome this main demerit of the conventional MFS, several methods 

such as the modified method of fundamental solution (MMFS), singular boundary 

method (SBM) and the boundary distributed source (BDS) method have been 

proposed. The MMFS, SBM and BDS overcome the artificial boundary in the 

conventional MFS by distributing the source point on the physical boundary as well 

as the field points. The key point of SBM is to evaluate the origin intensity factor to 

isolate the singularity of the fundamental solution based on subtracting and adding-

back technique as well as the inverse interpolation technique (IIT). The main idea of 

the BDS method is to avoid the singularities of the fundamental solution at source 

points by considering integration over a distributed source within circles in two-

dimensional (2D) or spheres in three-dimensional (3D). The improved BDS method, 

namely IBDS method uses a simpler way to determine the diagonal elements for the 

Neumann boundary conditions by invoking the fact that the boundary integration of 

the normal gradient of the potential should vanish.   

 

Electrical Impedance Tomography (EIT) is an imaging technique which 

reconstructs the shape and the location of inclusions with different electrical 

conductivity based on the voltage measurements excited by the currents injected 
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through the electrodes attached on the domain boundary. The EIT forward problem is 

a sort of the Laplace equation on the piece-wise homogeneous domain subject to the 

mixed boundary conditions with constraints of integral form, it can be applicable in 

industrial and medical tomography applications where the interest is to determine the 

distribution of conductivity in the domain or the shape reconstruction. 

 

This study presents a novel meshless method (MM) which combines SBM and 

IBDS to obtain the numerical solution for the EIT forward problem. The IIT used in 

SBM is employed to determine the diagonal elements for the Dirichlet boundary 

conditions. By employing the IBDS method and the novel MM which combines 

SBM and IBDS, the mathematical formulation of EIT forward problem for complete 

electrode model (CEM) is derived. Several numerical examples are tested to 

demonstrate the feasibility and accuracy of the new formulation by comparing the 

simulation results with BEM and FEM.   

 

The results show that the accuracy of the hybrid MM is better than IBDS. 

Furthermore, the IBDS and the hybrid MM of IBDS and SBM are found to be very 

effective for any complex geometry problem. Compare to IBDS, the hybrid MM of 

IBDS and SBM show higher accuracy and it is less dependent on the radius of the 

source points, in other words, we can say that the hybrid MM of IBDS and SBM is 

more effective and more stable. Therefore, it is expected that this method can be used 

to solve wide variety of applications in EIT. 
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