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Abstract 

Quercetin is one of the dietary flavonoids known to have antitumor effect against several 

types of cancer by promoting apoptotic cell death and inducing cell cycle arrest. In this study, 

anticancer effect of quercetin has been evaluated against p53-mutant human glioblastoma cells 

U373MG. Quercetin exhibited time- and concentration-dependent cytotoxicity against U373MG. 

Induction of apoptotic cell death by quercetin was observed by fragmented nuclei, increased 

sub-G1 population and decreased mitochondrial membrane potential. Further, proteolytic 

activation of caspase-3, -7, and cleavage of PARP (Poly (ADP-Ribose) Polymerase) 

substantiated the occurrence of apoptotic cell death. Also, translocation of p53 from cytosol to 

mitochondria lead to release of cytochrome C from mitochondria into cytosol. Concomitantly, 

quercetin induced formation of acidic vesicular organelles, conversion of LC3II, indicating that 

quercetin also induced autophagy. Importantly, pre-treatment with chloroquine, an autophagy 

inhibitor, enhanced quercetin-mediated apoptotic cell death. These results show that quercetin 

caused protective autophagy in U373MG and the ability of quercetin in association of 

autophagy inhibitor may improve the ultimate outcome of glioblastoma therapy. 
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요약문 

Flavonoid의 일종인 quercetin은 다양한 암세포 주에 대하여 항암효능이 있는 것

으로 알려져 있다. 본 연구는 교모세포종인 U373MG에 대한 quercetin의 세포사멸효

능과 그 기작에 대해 연구하였다. Quercetin 처리 시간과 농도 의존적으로 세포죽음

이 일어났다. Hoechst 33342 염색을 통한 apoptotic body 형성, flow cytometic analysis를 

통한 Sub-G1기의 축적과 mitochondrial membrane potential 감소, apoptosis 관련 단백질

의 발현증가와 caspase-3, 9 의 활성 증가로 인한 apoptosis에 의한 세포죽음을 확인

하였다. 또한 acridine orange 염색과 immunoblot analysis를 통하여 autophagy 현상도 

일어나고 있음을 확인하였다. Autophagy inhibitor인 chloroquine 전처리를 통하여 

autophagy 현상이 세포를 보호하기 위한 protective autophagy임을 확인하였으며, 이러

한 autophagy를 억제하였을 때 apoptosis가 증진되어 세포죽음을 더욱 유도하는 것을 

확인할 수 있었다. 
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1. Introduction 

Apoptosis is the programmed cell death which is mediated by caspases, cystein proteases that 

cleave target proteins at specific aspartic acid. It is known to have two different pathways; cell surface 

death receptor activated extrinsic pathway and mitochondria involving intrinsic pathway. Apoptosis is 

responsible for cell death during development as well as in adult stage of multicellular organisms to 

keep balanced cellular homeostasis. On the other hand, autophagy is an evolutionary conserved and 

genetically programmed process degrading long-lived cellular proteins and organelles. The role of 

autophagy in cancer is quite complicated and controversial. It is assumed to be tumor suppressive 

during cancer development, but contributes to tumor cell survival during cancer progression [1]. 

Alternatively, during nutritional deprivation, autophagy prevents the tumor cells from dying by 

inhibiting apoptosis and when autophagy is prevented, the cells undergo apoptosis [2,3,4]. Regardless 

of promoting cell survival or cell death characteristic, autophagy is intimately linked with apoptosis, 

and the two processes engage in a complex and poorly understood molecular crosstalk [5]. Therefore, 

induction of apoptosis and inhibition of protective autophagy has become an effective means of 

cancer therapy [6, 7]. 

 

Quercetin is an antioxidative flavonoid ubiquitously distributed in the plant kingdom. Quercetin 

and related flavonoids present in fruits and vegetables have attracted much attention in recent years as 

potential anti cancer agents. Their anticancer effects have been attributed to anti-oxidative activity, 

inhibition of enzymes activating carcinogens, the modification of signal transduction pathways, and 

interactions with receptors and other proteins [8]. Quercetin has been reported as anticancer agent in 

many cancer models, such as lymphoma, ovary, endometrial, prostate, liver, and gastric cancer [9, 10, 

11, 12]. Furthermore, antitumor activity of quercetin was shown by inducing apoptosis in leukemic 

cells, pancreatic tumor, breast cancer, hepatoma cells and prostate cancer [10, 13-17]. Several papers 

showed that quercetin has effect on the glioma cell line. Quercetin induced apoptosis through reduced 

XIAP (X-linked Inhibitor of Apoptosis Protein) and surviving protein which is related to anti-
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apoptosis protein in  glioblastoma cell line A172 [18]. Previous study, Michaud-Levesque et al., 

2012 reported that STAT3 (Signal Transducer and Activator of Transcription 3), one of the highly 

expressed oncogenes in glioblastoma was blocked by IL-6 which induced by quercetin [19]. 

Quercetin also has anti proliferative effect on U138MG glioma cell line through arrest in the G2 

checkpoint of cell cycle and decrease of the mitotic index [20]. Such effects of quercetin in 

glioblastoma cells seemed to be dependent on the cell type; it promote degradation of survivin and 

caused apoptotic cell death in U87MG, U251, A172 and LN229 but not much in U373MG [21]. 

 

Glioblastoma are the most common type of primary brain tumors in adults and the most lethal and 

least successfully treated tumors. This low absolute incidence combined with high morbidity, poor 

response rates and short survival times pose practical problems for clinical trial execution, particularly 

if therapy is anticipated to target a molecularly-defined subset of tumors [22]. Less than 30% patients 

suffered from this devastating diseases, even receiving multimodal treatments such as maximal 

surgical resection, combined chemotherapy and radiotherapy and adjuvant chemotheraphy, can 

survive only 12-15 month [23]. This scary fact underscores the need of alternative therapies for the 

prevention and effective treatment of glioblastoma. Previously, it has been found that methylating 

agent temozolomide (TMZ), the most widely used anticancer agents to treat glioblastoma, produced 

ROS (Reactive Oxygen Species) and activated the AMP-activated protein kinase (AMPK) which 

contribute to p53 activation and mTORC1 (mammalian Target Of Rapamycin Complex 1) inhibition, 

thereby causing apoptosis [24]. Another anticancer reagent, bevacizumab inhibits the binding of 

VEGF (Vascular Endothelial Growth Factor) to its receptors, Flt-1 and KDR (Kinase Domain 

Receptor), on the surface of endothelial cells [25]. However, glioblastoma patients survival rate still 

low, so urgently need to improved methods of treatment glioblastoma. Mutations of p53 are present in 

more than 30% of gliomas, which are the most common tumors of the brain, and constitute an early 

genetic event, suggesting that abnormalities of p53 are involved in development of gliomas [26]. In 

U373MG, p53 was mutated in R273H and it is a classic DNA contact mutant. This mutation increased 

malignancy and tumorigenicity from loss of the function of wild type p53 [27] although mutant and 
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wt p53 has conformationally same structure [28]. The mutant p53 R273H can translocate to 

mitochondria, then induce decrease of MOMP (Mitochondrial Outer Membrane Permeablilization), 

release of cytochrome C and activate caspase same as wild type of p53 [29, 30]. In this study, with the 

aim of exploring effective anticancer activity of quercetin, the induction of cell death mechanism by 

quercetin against p53-mutant human glioblastoma U373 MG cells were evaluated. 
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2. Materials and Methods 

 

2. 1. Reagents 

Dulbecco’s modified Eagle’s medium (DMEM), trypsin/EDTA, fetal bovine serum (FBS), 

penicillin and streptomycin were acquired from Gibco. Hoechst 33342 dye was purchased from 

Invitrogen Life Technologies, Inc. (Grand Island, NY, USA). Dimethyl sulfoxide (DMSO) and MTT 

were from amresco (Cleveland, OH, USA). Quercetin, Chloroquine, propidium iodide (PI), RNase A, 

Acridine orange and β-actin were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Bax, 

cytochrome c, caspase-3, -7 and -9 antibodies were purchased from Cell Signaling Technology 

(Beverly, MA, USA). Anti-caspase-8 was obtained from R&D Systems (Minneapolis, MN, USA). 

BD
TM

 Mitoscreen (JC-1) kit was purchased from BD Biosciences (Franklin Lakes, NJ). A BCA 

protein assay kit was purchased from Pierce (Rockford, IL, USA), and polyvinylidene fluoride 

(PVDF) membranes were purchased from Millipore (Bedford, MA, USA). All other reagents used 

were of analytical grade. 

 

2. 2. Cell culture 

Human glioblastoma U373MG cell was kindly provided by Professor Tae-Hoo Yi in the 

Department of Biotechnology, Kyunghee University, Korea. U373MG cell was cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) containing 10% (v/v) heat inactivated Fetal Bovine Serum (FBS), 

100 units/ml penicillin, and 100 µg/ml streptomycin. Cell was maintained in a humidified incubator at 

37 °C in a 5% CO2 atmosphere. 

 

2. 3. Cell viability 

The effect of the Quercetin on the viability of U373MG cell lines was determined using an MTT-
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based assay [32]. Briefly, exponential-phase cells were collected and transferred to a microtiter plate 

(3  10
4 
cells/ml). The cells were then incubated for 24 h, 48 h, and 72 h with various concentrations 

of the Quercetin and/or chloroquine. Afterwards, 0.1 mg of MTT (Amresco, Cleveland, OH, USA) 

was added to each well, and incubated at 37 °C for 4 h. The medium was carefully removed and 

DMSO (150 l) was added to each well to dissolve the formazan crystals. The plates were read 

immediately at 570 nm on a Sunrise microplate reader (Sunrise, Tecan, Salzburg, Austria). The 

percentage of cell viability was calculated based on the following formula: mean value of (control 

group - treated group/control group) × 100%. All results were assessed in triplicate for each 

concentration. 

 

2. 4. Flow cytometric analysis 

To analyze the cell cycle distribution, apoptosis, autophagy, and mitochondrial membrane 

potentials, cells (3×10
4
 cells/ml) were plated in 60 mm plates and treated with Quercetin (0-100 μM) 

for 48 h. For cell cycle analysis, cells were harvested, washed with PBS, fixed in 70% ethanol, 

rehydrated in 2 mM EDTA-PBS, treated with RNase A (25 ng/mL), and stained with PI (40 μg/ml). 

For the detection of autophagy, cells were stained with 10 μM AO, harvested, and kept in 2 mM 

EDTA-PBS containing 10% FBS. For JC-1 mitochondrial membrane detection, we followed the 

manufacturer’s protocol. In brief, treated cells were trypsinized and washed with 1X assay buffer, 

stained with JC-1 for 15 min at 37 °C in a CO2 incubator, and washed twice with 1X assay buffer at 

RT. All analyses were performed using a FACSCaliber flow cytometer (BD Biosciences). Data from 

10,000 cells per sample were analyzed with CellQuest Software (BD Biosciences). Each experiment 

was repeated at least three times. 

 

2. 5. Caspase activity 

Caspase-3, -9 activity was measured by colormetric assay following the protocol of the 

commercially available kit from Sigma and Biovision respectively. Briefly, cells were lysed after 48h 
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quercetin treatment with or without chloroquine, aliquots (50 μl) of the supernatant were placed in a 

96-well microplate containing reaction buffer. After added substrate, all mixtures were incubated 

overnight in a humidified environment at 37 °C, and the concentration of the ρ-nitroanyline (ρ-NA) 

released from the substrate was measured with a Sunrise microplate reader at 405 nm. 

 

2. 6. Cellular fraction and immunoblot analysis 

After treatment with various concentration of quercetin, the U373MG cells were collected and 

washed twice with cold PBS. The cells were then lysed in lysis buffer (50 mM Tris-HCl, pH 7.5, 150 

mM NaCl, 1% Nonidet P-40, 2 mM EDTA, 1 mM EGTA, 1 mM NaVO3, 10 mM NaF, 1 mM DTT, 1 

mM PMSF, 25 g/ml aprotinin, and 25 g/ml leupeptin) and kept in ice for 30 min. The lysates were 

centrifuged for 30 min at 13,000 rpm and 4 °C, and the supernatants were stored at -70 °C until use. 

Cytosolic and mitochondrial extracts were prepared using the fraction lysis buffer (75 mM NaCl, 8 

mM Na2HPO4, 1 mM Na2H2PO4, 250 mM sucrose, 1 mM EDTA, 350 g/ml digitonin). After lysed 

the cell, kept in ice for 10 min then centrifuged for 15 min at 15,000 rpm and 4 °C. The supernants 

were cytosolic fraction. After pellet washed by lysis buffer, pellets were lysed in lysis buffer same as 

make whole lysates. The protein concentration was measured using a bicinchoninic acid (BCA) 

protein assay kit (Pierce, Rockford, IL, USA). Aliquots of the lysates (30–60 g of protein) were 

separated via 10–15% SDS-PAGE and transferred onto a polyvinylidine difluoride (PVDF) 

membrane (Millipore, Billerica, MA, USA) using a glycine transfer buffer (192 mM glycine, 25 mM 

Tris-HCl, pH 8.8, and 20% methanol, v/v). After blocking with 5% nonfat dried milk, the membranes 

were incubated for 4 h with primary antibodies, followed by an additional 30 min of incubation with 

secondary antibodies in milk containing Tris-buffered saline (TBS) and 0.1% Tween 20. Human anti-

caspase-3, caspase-7, cleaved PARP, cytochrome c, HSP60, LC-II, beclin-1, and DRAM antibodies 

were used at a 1:1,000 dilution as the primary antibodies, and horseradish peroxidase-conjugated goat 

anti-human IgG (Vector Laboratories, Burlingame, CA, USA) at a 1:5,000 dilution was utilized as the 

secondary antibody. The membrane was then exposed to X-ray film. Protein bands were detected 
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using the WEST-ZOL
®
 plus western blot detection system (Intron, Gyeonggi-do, Korea). 

 

2. 7. Statistical analysis 

All results are expressed as means ± standard deviations (SDs). A one-way analysis of variance 

was conducted using the Statistical Package for the Social Sciences software (SPSS 17.0 for Windows, 

2008, SPSS Inc., Chicago, IL, USA). A p < 0.05 and 0.01 were considered statistically significant. All 

assays were performed in triplicate. 
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3. Results  

3.1. Effect of quercetin on cell viability in U373MG 

To investigate the cytotoxic effects of quercetin on human glioblastoma U373MG, MTT assays 

were conducted. As shown in Fig. 1, quercetin reduced the viability of U373MG cells in a time- and 

dose-dependent manner. IC50 values of quercetin against U373MG at 48 h and 72 h were 125.70 μM 

and 78.04 μM, respectively. These results indicated that quercetin caused cytotoxicity in U373MG 

cells in long time exposure. 
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Figure 1. Quercetin inhibits cell growth and induces apoptosis. Cells were seeded, incubated for 

24 h and then incubated with the indicated concentrations of quercetin for additional 48 h. Viability 

was determined on the basis of MTT reduction. U373MG human glioblastoma cells were treated with 

increasing doses of quercetin for varying lengths of time (24-72 h). The data shown represent the 

mean ± S.E. for one experiment performed in triplicate. ■; 24h, ■; 48h, ■ ; 72h. Values are the mean 

± SD of three independent experiments. 
a
P<0.05, 

b
P<0.01, compared to the control. 
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3. 2. Effect of quercetin on the cell morphology  

In apoptotic cell death, various morphological changes such as cell shrinkage and condensation 

and fragmentation of chromatin can be clearly noted. To evaluate the effect of quercetin in the 

induction of apoptosis, U373MG cells treated with various concentrations of quercetin were examined 

by fluorescence microscopy after Hoechst 33342 staining. As depicted in Fig. 2, after treatment with 

25, 50, 75 and 100 μM quercetin, cells showed marked morphological changes such as condensed and 

fragmented chromatin and formation of apoptotic bodies (Fig. 2, white arrows).  
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Figure 2. Effect of quercetin on the cell morphology of U373MG cells. Treated cells were stained 

with nuclear Hoechst 33342 and visualized under a fluorescence microscope after 48 h treatment. 

White arrows are indicating apoptotic bodies. 
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3. 3. Effect of quercetin on cell cycle distribution 

Furthermore, induction of apoptosis was indicated by the accumulation of sub-G1 U373MG cells 

after quercetin treatment. A significant increase in sub-G1 cells were not noted in 24 h treatment; from 

1.02% (0 μM) to 2.05% (100 μM). However, after 48 h of treatment, quercetin significantly increased 

the sub-G1 population concentration-dependently; from 0.46% (0 μM) to 31.75% (100 μM) (Table 1). 

Analysis of disruption of mitochondrial membrane potentials is also one of the apoptosis phenomenon.  
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Table 1. The percentage of U373MG cells in the sub-G1 fraction after 24 h and 48 h 

incubation with quercetin. 

 

Concentration (μM) 

Sub-G1 (%) 

24 h 48 h 

0 1.02 ± 0.35 0.5 ± 0.31 

25 1.78 ± 0.89 1.71 ± 0.53 

50 2.33 ± 1.17 2.26 ± 0.86 

75 1.65 ± 0.65 6.66 ± 0.79
a
 

100 2.05 ± 0.93 8.48 ± 0.40
a
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3. 4. Effect of quercetin on expression of apoptosis related protein 

Apoptosis is form of the cell death characterized by morphological change and activation of 

cystein-asparate protease (caspase) and pro-apoptotic protein. In intrinsic pathway, caspase-9 was 

cleavage by Apaf-1 and cytochrome C then finally executioner caspase-3 and -7 were activated [33]. 

The apoptotic caspases can be classified as either initiator caspases or effector caspases. Initiator 

caspases, which include caspases-2, -8, -9 and -10, activate the caspase cascade through the removal 

of the inactive prodomains of the effector caspases. Once activated, effector caspases, including 

caspases-3, -6 and -7, cleave several dozen key substrates within the cell in order to carry out the 

apoptotic process [34, 35]. Caspase-3 is a key member of the effector caspases which it can be 

activated by apoptotic signals from both intrinsic and extrinsic pathway [36]. In the intrinsic pathway, 

apoptosis was mediated by release of cytochrome C from mitochondria to cytosol which interacts 

with monomeric APAF-1 to facilitate a conformational change in the latter, leading to its 

oligomerization and recruitment of caspase-9 to form the apoptosome [37, 38]. Western blot analysis 

showed that quercetin promoted cleavage of procaspase-3, -7 and increased cleaved form PARP, 

suggesting that apoptosis was cause of quercetin-induced cell death in U373MG (Fig. 3A). However, 

the pro-apoptotic protein Bax and anti-apoptotic protein Bcl-2 were not detected in whole lysate. 

Previous report showed that mutant p53 could induce apoptosis by transcription independent signaling 

[28]. Nevertheless U373MG has no p53 transcriptional activity, our results showed that p53 

expression level was does dependently increased. Under a variety cell death stress condition, p53 

rapidly moves to the mitochondria and induce apoptosis [39]. In cellular fraction results showed that 

p53 translocated to mitochondria (Fig. 3B). In cytosolic fraction, cytochrome C was increased 

whereas cytochrome C was decrease in mitochondrial fraction (Fig. 3B). Collectively, these data 

indicate that quercetin activated the caspase cascade by translocate p53 from cytosol to mitochondria, 

release of cytochrome C from mitochondria, that leading to apoptotic cell death. 

 



25 

 

(A) 

 

(B) 
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Figure 3. Expression level of apoptosis related protein in various concentrations. (A) The cellular 

proteins were separated by SDS-PAGE and transferred onto PVDF membranes. The membranes were 

probed with the indicated primary antibodies against caspase-7, -3, and cleaved PARP, p53, 

phosphorylated p53 then with horseradish peroxidase conjugated goat anti-rabbit IgG. Actin was used 

as an internal control. (B) Cytochrome c translocation were estimated by western blotting with actin 

and HSP60 serving as loading controls for mitochondrial and cytosolic proteins, respectively. 

Mitochondrial and cytosolic fractions were isolated from cells as indicated in the methods section. 
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3. 5. Effect of quercetin on caspase activities 

In immunoblot results showed cleaved caspase-3 and -9 signals were too weak to detect. So we 

quantified its enzymetic activity using commercially available kit. Quercetin treatment does-

dependently increased caspase-3 activity (Fig 4B). Caspase-9 activity also increased does dependent 

manner in quercetin treatement (Fig 4A). 
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(A) 

 

(B) 

 

Figure 4. Activities of caspase-9 and -3 in U373MG cells. Cell lysates prepared from cells that had 

been treated with quercetin for 48 h were assayed for in vitro Caspase-9, -3 activity. The rate of 

cleavage of the caspase substrate LEHD-pNA, Ac-DEVD-pNA was determined by measuring the 

absorbance at 405 nm. (A) Caspase-9 activity. (B) Caspase-3 activity. All data correspond to the mean 

± SD of three independent experiments.  a= significantly different from the control, p < 0.05. 
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3. 6. Effect of quercetin on mitochondrial membrane potential. 

Mitochondria may play a key part of apoptosis. Due to decrease of mitochondria membrane 

potential, certain apoptogenic factors released from intermembrane space to cytosol [40]. Since 

cellular fraction results showed cytochrome C released from mitochondria to cytosol, we presumed 

that mitochondrial membrane potential also decreased after quercetin treatment. JC-1 staining, one of 

the methods for measuring  mitochondrial membrane potential, showed quercetin treatment 

disrupted membrane potential in 48 h treatment in does dependent manner (Fig. 5A, B). 
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 (A) 

 

(B) 

 

Figure 5. Mitochondrial membrane potential analysis by FACS. Flow cytometry analysis of JC-1 

staining. Treated cells were trypsinized, stained with JC-1, washed, and analyzed by flow cytometric 

analysis. (A) Dot plot illustrating. (B) The decrease of mitochondria membrane potential % indicated 

that cells were undergoing mitochondrial dysfunction. 
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3. 7. Effect of quercetin on autophagosome formation 

Quercetin was induced autophagy in U87MG, p53 wild type, but not in T98G, p53 mutant. So we 

investigated whether quercetin induce autophagy in one of the p53 mutant glioblastoma U373MG. 

We first confirmed that induction of autophagy in U373MG glioblastoma cell by quercetin through 

acridine orange staining. It was found that there were many red fluorescent in quercetin treatment 

whereas little red fluorescent were observed in control (Fig. 6A). FACS analysis also showed same 

phenomenon that up to 75 μM, acridine stained cell were increased. However in 100 μM, acridine 

orange stained cells were slightly decreased (Fig. 6B, C). 
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(A) 

 

 

 (B) 
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(C) 

 

 

Figure 6. Formation of autophagosome by quercetin in U373MG cells. The cells were treated 

quercetin with various concentrations in 48h. (A) Formation of autophagosome and autolysosome. (B) 

Analysis of AVO-positive cells by AO staining and flow cytometry analysis. (C) Quantification of 

AVO-positive cell. All data correspond to the mean ± SD of three independent experiments.  a= 

significantly different from the control, p < 0.05, b= significantly different from the control, p < 0.01, 
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3.8. Effect of quercetin on expression level of autophagy related protein 

Similarly, it was further confirmed by up regulation of autophagy related proteins DRAM and 

LC3IIB. But Beclin-1 expression level was not increased. Even though Beclin-1 plays an important 

role in autophagy, several studies have revealed that autophagy can occur in a Beclin-1 independent 

manner [41]. In neurons, Beclin 1-independent autophagy might be an important contributor to 

caspase dependent apoptosis. [42].  
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(A) 

 

(B) 

 

 

Figure 7. Expression level of autophagy related protein in various concentrations. (A) The 

cellular proteins were separated by SDS-PAGE and transferred onto PVDF membranes. The 

membranes were probed with the indicated primary antibodies against LC3IIB, Beclin-1, DRAM, and 

actin and then with horseradish peroxidase conjugated goat anti-rabbit IgG. Actin was used as an 

internal control. (B) Densitometry analysis of LC3IIB expression level using Image J. 
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3. 9. Inhibition of autophagy by chloroquine promote cell death in U373MG 

To further analyze whether the autophagy signal induced by quercetin was pro-survival or pro-

death, we used chloroquine, as an inhibitor of autophagy. Chloroquine was treated for 2 h before 

quercetin treatment. Chloroquine treatment alone showed no effect on cell viability, but the treatment 

with quercetin showed decreased cell viability compared to that of quercetin alone treatment (Fig. 8). 
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Figure 8. Inhibition of autophagy by chloroquine increase apoptotic cell death. (A) Cell viability 

measured by MTT Assay. Chloroquine was treated 2 h before quercetin treatment. Chloroquine 

concentration was 50 μM. ■; Quercetin, ■; Chloroquine, ■ ; Quercetin with Chloroquine 50 μM 2 h 

pre-treatment. Values are the mean ± SD of three independent experiments. a= significantly different 

from the control, p < 0.05, b= significantly different from the control, p < 0.01,  
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3. 10. Inhibition of autophagy by chloroquine promote apoptosis in U373MG 

Chloroquine is the worldwide used anti-malarial drug and recently used as a potential anti-cancer 

agent when used in combination with anti-cancer drugs [43]. Cell cycle distribution also showed that 

quercetin with chloroquine more increased sub-G1 phase rather than only quercetin treatment (Table 

2). Mitochondrial membrane potential was 68.0% and 54.3% in the cell treated with quercetin 75 μM 

alone and pretreatment of chloroquine 50 μM with quercetin 75 μM, respectively. We confirmed that 

inhibition of autophagy induction by quercetin was enhance apoptosis through cleavage of caspase-3, 

-7 and PARP.  
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Table 2. The percentage of U373MG cells in the sub-G1 fraction after 2 h pretreatment 

with chloroquine followed by incubation with quercetin for 48 h. 

 

Concentration (μM) Sub-G1 (%) 

0 2.21 ± 1.1 

CQ 50  1.45 ± 0.21 

Q 75  5.18 ± 0.96 

CQ 50 + Q 75  18.68 ± 3.02 
a
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Figure 9. Flow cytometry analysis of mitochondrial membrane potential. Quercetin treated cells 

were trypsinized, stained with JC-1, washed, and analyzed by flow cytometric analysis. (A) Dot plot 

illustrating. (B) The decrease of mitochondria membrane potential % indicated that cells were 

undergoing mitochondrial dysfunction. CQ ; Chloroquine, Q ; Quercetin 
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(A) 

 

(B) 

 

Figure 10. Enhancement of caspase-9 and -3 activity with pre-treatment of chloroquine. Cell 

lysates prepared from cells that had been treated with quercetin with or without chloroquine for 48 h 

were assayed for in vitro Caspase-9, -3 activity. The rate of cleavage of the caspase substrate LEHE-

pNA, DEVD-pNA was determined by measuring the absorbance at 405 nm. (A) Caspase-9 activity. 

(B) Caspase-3 activity. All data correspond to the mean ± SD of three independent experiments.  a= 

significantly different from the control, p < 0.05. CQ ; Chloroquine, Q ; Quercetin
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Figure 11. Western blot analysis of apoptosis related protein expression. Cells were lysed after 

incubation with quercetin in pretreatment of chloroquine 50 μM. After 48 h, cell lysates were 

subjected to western blotting with antibodies against caspase-7, -3, cleaved PARP and actin. Proteins 

were separated by SDS-PAGE and transferred onto PVDF membranes. The membranes were probed 

with the indicated primary antibodies. actin was used as an loading control. CQ ; Chloroquine, Q ; 

Quercetin. 
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4. Conclusion 

Our results indicated that quercetin exhibited cytotoxicity against U373MG time- and 

concentration-dependently. Quercetin treatment showed increase of sub-G1 cell cycle distribution, 

apoptotic body, cleavage of caspase-7 and PARP, and decrease of mitochondrial membrane potential 

which were characteristic of apoptosis. The results showed that translocation of p53 from cytosol to 

mitochondria and release of cytochrome C from mitochondria into cytosol indicating that quercetin 

induced mitochondria mediated apoptosis. Concomitantly, quercetin induced formation of acidic 

vesicular organelles, conversion of LC3II, elevation of DRAM, indicating that quercetin also induced 

autophagy. Importantly, pre-treatment with chloroquine, an autophagy inhibitor, enhanced quercetin-

mediated apoptotic cell death. 

In summary, we demonstrated that one of the famous flavonoid, quercetin induced cell death in 

human glioblastoma U373MG through mitochondria mediated apoptosis. Also quercetin induced 

protective autophagy in U373MG. Inhibition of autophagy induced by quercetin was promoted 

apoptosis in U373MG. 
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