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<Abstract >
Extended Quotient—-Remainder

Theorem on a Polynomial Ring

There have been many researches on the polynomial division. With the fast
development of computer calculation, the classical problem of a polynomial

division with a remainder has been changed to find fast algorithms to

computing the coefficients of the quotients ¢(x)= Zqixi and of remainder
i=0

Zrm on the division of f(z Zam by g(z be‘, n=m. In [3],

D. Bimni and V. Pan introduced various known polynomial division
algorithms(see [2], [4], [5], [8]), and compared them with their new algorithm.
From these algorithms, we obtain motivation to consider extended division
algorithm of polynomials with related to the remainder theorem.

In this thesis, we shall be interested in the dividing f(z) by g(x) of degree
higher than 1. Moreover, we use the determinant of coefficient matrix to
obtain extended quotient and remainder theorems in a polynomial ring. The
main theorem 1s the following.

Extended Quotient—-Remainder Theorem :

If b, are all distinct, and we divide f(a:) =aytax+ a2a:2 + ... +a

g(a:) = (x— bl)ml(a: — b2)m2- v (x— bs)m‘s‘, then we obtain quotient

s—1 J
qlx)=ax" "+r,(x) and remainder r(z —r0+2r )1
j_l i=1

mji (z— bjﬂ)iqé” (bj+1)

where rj(x)z T j=0,1,--,s.



Extended Quotient—-Remainder

Theorem on a Polynomial Ring

1. Introduction and Preliminaries

There have been many researches on the polynomial division. With
the fast development of computer calculation, the classical problem of a

polynomial division with a remainder has been changed to find fast

algorithms to computing the coefficients of the quotients ¢(z)= Zqixi
i=0
n—1 ) n )
and of remainder r(z)=>»,ra’ on the dividing f(z)=Y,az’ by
i=0 i=0

g@)=Yba", n=m. 1In [3], D. Bini and V. Pan introduced various
=1

known polynomial division algorithms(see [2], [4], [5], [8]), and
compared them with their new algorithm. From these algorithms, we
obtain motivation to consider extended division algorithm of

polynomials with related to the remainder theorem.

We introduce some definitions and well-known facts.

A ring 1s a nonempty set K with equipped with two binary
operations, addition and multiplication, that satisfy the following
axioms. For all a,b,cER:

1. If aER and bER, then a+bER. [closure for addition]

2. a+(b+c)=(a+b)+e. [associative addition]

3. a+b=0b+a. [commutative addition]



4. There is an element Op in R such that a+0;=a=0p+a for

every a€ R. [additive identity or zero element]
5. For each a=R, the equation a+x = Op has a solution in R.
6. If aE R and bER, then abER. [closure for multiplication]

7. a(bc) = (ab)e. [associative multiplication]

8. alb+c¢)=ab+ac and (a+b)c=ac+be. [distributive laws]

A commutative ring 1s a ring R that satisfies this axiom:

9. ab="ba for all a,b€ R.[commutative multiplication]

A ring with identity is a ring R that contains an element 1p
satisfying this axiom:

10. alp = a = 1za a for all aER. [multiplicative identity]

We have many examples of rings, say Z, the set of integers, Z,
the set of integers modulo n, R, the set of reals, and so on.
An integral domain 1s a commutative ring with identity 1, # Op

that satisfies this axiom

11. For each a,b&E R, ab=0 implies a =0 or b=0.

A field is a commutative ring R with identity 1 # 0 that satisfies
this axiom :

12. For each a # 0y in R, the equation ax = 1 has a solution in R.

For examples of field, we have the set of reals, the set of integers

modulo prime number p, the set of complex numbers, and so on.



Theorem 1.1 (The Division Algorithm for Integers) [4] Let Z be a
ring of integers. Let a and b be elements in Z. Then there exist q
and r in Z such that a=0bq+r, where q is the quotient and r is the

remainder with 0 < r<b.

Definition 1.2 Let F be a field and z be an indeterminate. A

polynomial with coefficients in F' i1s an expression of the form
f(x) Za0+a1x+a2x2—l— ...... +a,x", where n is a nonnegative integer
and a;<F. The ring of polynomials with coefficients in F will be

denoted by Flz], that is

Flz]= {f(a:)|f(a:)=a0+ala:—|— ...... —i—anx",aiEF}

In this polynomial ring, we have the addition of two polynomials

flz)=ay+ax+ax®+...+a,z" and

g(z) =by+ b+ bya” +...... +0,, 2"

as

flz)+gz)="(ag+b,)+(a;+b)r+.... +(a, +0
and the multiplication of them as

f(af)g(3?) = a’()b() + (a’()bl + alb())x 4+ .. + CL,,mewm+n,
Definition 1.3 Let F' be a field and x be an indeterminate. Let
flz)=ay+ax+ax®+....4+a,z" be a polynomial in Flz] with

n

a, # 0. Then a, is called the leading coefficient of f(x). The degree



of f(x) is the integer m; it is denoted “deg f(x)”. The elements of

F, considered as polynomials in Flz], are called constant polynomials.

In the followings, we denote a field of reals as F.

Theorem 1.4 (The Division Algorithm in Flz])[4].
Let f(z), gx)eFlx] with g(x)=0. Then there exist unique
polynomials q(x) and r(z) in Flz| such that f(xz)=g(x)q(x)+r(z) and

either r(z)=0 or deg r(z) <deg ¢(z).

Definition 1.5 Let f(z), ¢(z)EF(z) with f(z) nonzero. We say
that f(x) divides g(x) lor f(x) is a factor of g¢(x)], and write
f@lg(z), if g(z)=f(z)h(z) for some h(z)E Flz]

Definition 1.6 Let f(z)EF[z]. An element a of F is said to be a

root of the polynomial f(z) if f(a)=0.

Theorem 1.7 (The Remainder Theorem)l4] Let f(z)EFlx] and
a € F. Then the remainder when f(x) is divided by polynomial x—a is

f(a).

This theorem says, for example, that the remainder when the
polynomial f(a:) = 2% — 42+ 32 +5 is divided by x—2 1s

f(2)=2"—4-224+3-2+5=3.

Theorem 1.8 (The Factor Theorem)[4] Let f(x)E Flx] and aEF.



Then a is a root of the polynomial f () if and only if T—a is a

factor of f(x).

Lemma 1.9 Let gl(as) be the polynomial

b b b1,
g, (z)= b—g(a:) = b—O—l— b—lx—i— ...... + Tlxm Y4 2™ If we divide

m m m m

f(z) by g,(x) and g(z) respectively, that is,

fl@)=g,(x)q(x) +r(z) and f(z)=g(z)q(z)+r(z)
then the quotients and remainders are related as

q(z)=0b,,9() and r(z)=r (x). (1.1)

Proof. By Theorem 1.4 (the Division Algorithm), there exist a unique

q,(z) and r,(z) in Flz] such that
f(@)=g,(x)q (z) +r (2),
where r,(x) =0 or degr,(z) < degg,(z). Thus

b b b b?rL* _
fla) :ql(a:)(bo + bl z+ 52 22—l Y o ()

m m m

ql(a:)bi(bg + bzt by’ e+ b, ™ b ™)+ ()

m

1
{ bm

q(x)g(x)+r (x)

q(az)g(az) +r(x).

! ql(a:) and T($):7“1($). [ |

m

Therefore q(a:) =

Example 1.10 Let us consider f(a:) =42’ + 32"+ 323 + o+ 5,

_10_



5 3
g(az)=2$3+4$2+5x+3 and gl($)=$3+2x2+5m+ o Then
1 1
C](ﬂi):2$2—£x+§, T(a:)z—a:2+a:—l——, ql(a:)=4a:2—5a:+3
2 2 2 2
1 1
and 7“1(35)253524—3:—1—5. |

This Lemma 1.9 implies that we may use some monic polynomial
g(a:) as a divisor on polynomial divisions without loss of generality.

So we use the monic polynomial g(a:) as a divisor in the following.

In this thesis, we shall be interested in the dividing f(z) by ¢(x)
and use this dividing method to extend the remainder theorem to
polynomials g¢(x) of degree higher than 1. Moreover, we use the
determinant of coefficient matrix to obtain extended quotient and

remainder theorems in a polynomials ring Flz].

_11_



2. The remainder on dividing f(z) by (x—5)"

In this section we give the method for calculating the remainder on

dividing f (z) of degree n by the divisor g(a:) of degree m < n:
flz)=ag+ax+ax’+...+a,z" (2.1)

n

and

glz)=(z—b)". (2.2)

Moreover, we obtain the extended theorem for the Remainder Theorem.

In this section we use the two polynomials f (a:), g(a:) as 1n the

notation in (2.1) and (2.2), respectively.

Now, Theorem 1.4 (the Division Algorithm in Flz]) gives us

f(aj) :g(aj)q(aj)+<co+claj+ ...... +C,m,1$m71) (23)
for some ¢(x)€E Flx] and c, = F for 1=0,1, ...... , m—1.
d _ ) d’ _ )
Let us denote %f(a:) = (), Ff(a:) = f“ (), and so on.
x

If we differentiate f(x) in (2.3) at =0, then we have a system of

linear equations of m equations and m unknowns over F' as follows :

_12_



In order to express this system of m linear equations as a matrix

equation, we write

and the coefficient matrix A is the Wronskian matrix

1 b b2 b3 e bm*l

01126302 (m—1)p" 2
A=10026b-(m—1)(m—2)""3 (2.5)

000 0 - (m—1)!

Then AC=Y, that is

1bp? - pm ! ¢ f(b)

012636%+  (m—1)p"2 ¢ )
002 6b- (m—1)m—2p" 2| & | =|f70)
000 0 - (m—1)! ) ()

_13_



Lemma 2.1 Let C = | ... .. - w.land D = | 7 o =
Q1 Ao Ay, Uy,
Qpy Qo -+ Ay,
Uy Uy n
- t = t
where u=1[u; u, u,]” and v=I[v, v, v, ]
Then detD=—0v"e adjC e u+w * det C.
Proof. Expanding det D from the last row,
1 v Op—1 Apppq -ee Gy Uy
det D= Z T, det | . e e e e +wdet C
r=1 am, am‘lam+1 nu
n Ay eee Qpp—q Uy Qppgy oo Gy
Z "+1+T+" r)vr det | ... ... e e +wdet C .
- anl am" 1un am"+1 an

Expanding each determinant here from the column containing the u's

detD=— Zvr Z u,C,, +wdetC

r=1 s=1

= —(vyen,)| T +wdet C

u,C+u,C o+ ... +u,C

Uy
011 012"' Cln Uy
=— (W v)| o e e || L HwdetC .
Cnl Cn? Cn .
U

_14_



Lemma 2.2 For the f(z) and g(z), the remainder on dividing f(z)

by g(z) is r(x)Zf(x)—jgzi, where B=(§t fi(;)), Y in (24), A in
(25) and X'=[1 = -~ 2™

Proof. The determinant of B is
det B=—X"e adjA « Y+f(z) » det A (2.6)

from Lemma 2.1. Since the determinant of A is 01!12!--- (m—1)! =

adjA.

m—1
.. ) . o . - 1
= I Ik! =0, A is invertible matrix and its inverse is A~ '=
k=0 detA

Now, AC=Y implies that C=A 'Y= dei I adjA « Y. Multiply both
side by X', then we have
¢ 1 AV — yio—
X detAade Y =X'C=r(x). (2.7)
detB
Therefore we have r(z)=f(z)— ot A from (2.6) and (2.7). [ |

Now, we calculate the remainder on dividing f(z) by ¢(z).

Theorem 2.3 If we write f(x)=g(x)q(x)+r(x) then

m—1 R AYYO)
rz)- 3 b0 (2.8)
i=0

7.

Proof. From Lemma 2.2, we need to calculate the determinant of

_15_



the matrix B. Consider the (m+1)-square matrix

0l b p2 b3 - p! FO)

0 1126 3p2--- (m—1)p"2 FU )

A oy oy 00206 (m—1)(m—2)p"" 2 (p)
B=(XT f(x))= o 00 3 (m—1)(m—2)(m—3)p"""* )
000 0 - (m—1)! £ (p)

1z ZCQ £C3 xm—l f(ZC)

In order to obtain detB we apply the elementary column operations as

follows :

Add (—b) times the (j —1)*th column of B to the j-th column
from j=2 to m, and add —% f9(b) times the first column of B to

the (m+1)-th column. And then expand the determinant on the first
row. In each step we reduce a common factor in every row out of the

determinant. Then after m—1 steps we have

_ nf[lkl f(x)—(x—b)mmi]l 1)

Zoille—b)m )

By (2.4), we obtain that

ST (1m—1)! (11213 (m— 1D {f (2) = £ (b)

_16_



(1) (2)
— / 1‘b) (x—b)— / 2‘(17) (af;—b)Q—"-— (mil)'f(ml)(b)(x_b)m IH
(1) (2)
:f(O)(b)-i- f 1!(b) (x—b)+f 2!(b) (z—b)*+
ey A Ol
(m—1)!
L ) S =0 0)
=0 i!(x—b)mﬂ( brre) Z;) il ’
which is the required. [ |

Example 2.4 For the detailed calculation of the detB we show the

case m=4. Let

Add (—b)times the (j—1)th column of By to the jth column from

j=2 to 4, and — f9®) times the first column of By to the 5th

column. Thus

1 0 0 0 0
0 1! b b FV ()

detB, = det|/0 0 2! 4b ()
0 0 0 3! o)

1 2—b 22—bx 2°—b2? f(ac)—f(O)(b)
If we expand detB, in the Ist row, we get

_17_



1! b b’
0 21 4b
0 0 3!
z=b z(@—b) 2a—b) fla)—f0)

detB, = 1« det

T T W
5

TN TN TN

S o O

N’ N N

Similarly, we repeat the above method.
Add (—b)times the ( J— 1)column of the above matrix to the jth

column from j7=2 to 3, and — f(l)(b) times the first column to the 4th

column
1! 0 0 ( ?
2! 2b 2(b)
det B, =det 0 0 31 :))Z(?)) b)
z=b (z=b)? (@—=b) flz)—fO0)— Y 0)(z—0b)

If we expand detB, in the Ist row, we get

2! 2b
detB, = 1'detf 0 3l
(z—b)% (2 —b)* f(z)— FO

Also, repeat the above method.

SO
NS
—
S
N—

Add (—b)times the 1st column of above matrix to the 2nd column,

1
and — or f(Q) (b)times the 1st column to the 3rd column. Then

2! 0 0

detB,=1!det 5 ()
(@=0)* (x—0)* flx)— V) —fYB)(x—b)—

_18_



If we expand detB, in the Ist row, we get

3! )

b F(a)— FOB)— V) —p)— L

detB,=1 !2!det{
2!

@ (b) 2
! o1 (@—b)

= 1!2!3!{f<x>—f<°> ) — Y )z —b)—

which 1s the required value in the proof of Theorem 2.3.

_19_
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3. The quotient on dividing f(z) by (z—5)"

In this section we give the method for calculating the quotient on
dividing f (z) of degree n by the divisor g(a:) of degree m < n:

flz)=ag+ax+ax’+...+a,z" (3.1)

and

glz)=(z—b)". (3.2)
Moreover, we obtain the extended theorem for the Remainder Theorem.

In this section we use the two polynomials f (x), g(a:) as 1n the

notation in (3.1) and (3.2), respectively.
Lemma 3.1 For a given f(x), we have a unique expression as
f(x)Zco—f—cl(x—b)—l—cQ(I—b)Q-l—----l—cn(x—b)n (3.3)
with ¢,€F, i= 0, 1, -, n
Proof. By the Theorem 14 (the division algorithm in F [:U]) with
g(x)=x—b, we obtain the unique quotient ¢,(z) of degree m—1, and

the unique remainder ¢, in F such that

flz)=(z=b)g(z) +¢, .

_20_



Similarly we get

¢ (z) = (z=b)g(x)+e, ,
where the unique quotient ¢, (x) in Flz] is of degree n—2, and the
unique remainder is ¢; in F.

Continuing this process, we have
qn,g(x) = (x—b)qn,l(x) +c¢,_, and qn,l(x) = (x—b)qn(x) +c, 4,

where deg ¢,(z)=0, and the unique ¢, , ¢, EF.

n—

Let ¢,(z)=c which is a constant in F. Then combining these

n

equations by backward substitution, we obtain the required formula
f(x)ch(x—b)"—l—cn,l(x—b)n*l—|—---—|—cl(x—b)—|—co ,
where each ¢; is the unique constant in F. |

Theorem 3.2 If we divide f(z) by g(z), then the quotient is
7b(ac—b)i . (3.4)

Proof. Let h(z)=g¢g(z)(x—b)" "™ =(z—b)". Using Theorem 2.3, the

remainder on dividing f(z) by h(z) is

_21_



n=1(_ 7 Vip(i)
r(2) = Zw—f(b). (3.5)
i=0

i
From (3.3), we have the unique expression
flx)=cyt+e,(x—b)+e,(x—b)++¢, (x—b)"++c,(x—b)" (3.6)
and f(z)=a2"+-+ax+a, Thus we have
¢, =a (3.7)

From (3.6), we have f(x)=a,h(z)+r, (),
where 7, (z) =c,+¢,(@—b)++¢,_,(x—b)""", which is the same as the

value in (3.5) by the uniqueness of the remainder. Thus we obtain

¢ = , (38)

where 7=0,1, ---, n—1 .

Now, we also have the following form from (3.6)

flz)= {cm(x—b)m —l—---—l—cn,l(x—b)n*l —l—an(x—b)n}
—f—{co +c,(z—b) —I—-"—I—cm,l(ac—b)m*l}
= {cm oot (x—b) ! —l—an(:c—b)”*m}(zc—b)m

+ {CO +C1 (ZC_b) ~+- "+Cm—1(fl/’_b)m_1}

_22_



=q(z)g(z)+r(z),

where r(z) =cy+e (x—b)++c,(z—b)""" and

q(x)Zcm—i—---—i—cn,l(x—b)"*m*l-i—an(x—b)n*m (3.9

n—m—1

=a,(z—0b)"""+ Z Cppai(— b)'
=0

Substituting each ¢; in (3.9) by the value in (3.8), we have

n—m-— m+z)
o(z) = a,(z— ; “” (x—bY". -

m—i—z

Corollary 3.3 (The Quotient Theorem) If we divide f(x) by (x—b),

then the quotient is

q(x)_a (x bn 1_|_Zf;+—:()

1=0 ]‘) _b)l

Proof. In the above Theorem 3.2, we replace m by 1 to obtain the

result. [ |

Corollary 3.4 For a polynomial f(x), we have a unique expression

_23_



IO O N Sl () - Ry
flz)= ol + T (x—b)+ -+ =11 (z—b)"""+a,(z—0)
SO0
Zan(:c—b)n—l-z 5 (x—0)’.
j=0 J:
Proof. In the equation (3.3), we replace all ¢, (i=1, -+, n—1) the

value in (3.8) and ¢, =a, from (3.6). This expression is the Taylor

Expansion for polynomials in Flz].

_24_



4. The remainders on dividing f(z) by the factors of

(z—b)™ (—by)™....(x—b,)™

In this section we obtain an expression of f () by the factors of

(a:—bl)ml(a:—b2)m2....(x—bs)m‘* of degree m=m;+my+ ...... +m

for positive integers m, , where

]

flz)=ay+az+ a2x2 + ... +a, x" . (4.1)

n

Theorem 4.1 If n<m,+my+--+m,=m, and b, are all distinct

reals for i=1,--,s, then there exists unique expression of f (z) as

follows -

flx)=r,(z) +r (@) (@—b)" +ry(x)x—b) " (x—by)" +- (42)

+Ts(5€)($_bl)ml (gc—bQ)mZ (w—bs)m‘*.

my, —1 (x—b )i q(l) (b )
where r(z)= Y, AR A

J > J ) Ly 9.
=0 il

Proof. If we divide f(z) by (z—b,)™ , then we have the form

f(x)Z(x—bl)mlql(x)-l—rO(x) for some ql(x) of deg n—m, and

ro(x) of degree m;—1 or less. Using Theorem 2.3 and 3.2, we obtain

m 1 («T - b1)iQ(()i) (b1)

rola) = 33

i=0 il

(4.3)

_25_



and
n—m; — (m1+i)
! q (bl)

o . n—m, 0
ql(x)—an(x bl) + i;) 7(7711_“,)

(z—b,)" . (4.4)
Now, if we divide ¢(z) by (z—b,)"™, then we have the form
q (z) = (z—by)"qy(x) +7 (z) for some ¢,(z) of deg n—m,—m, and

T (x) of degree m,—1 or less. Using Theorem 2.3 and 3.2, we obtain

my—1 —b i (i) b
(o) = § Lt (b) 45)

|
i=1 v

and
n—m, —my—1 (m; +i)
— 16] ( 2)

)n*mlfmz 1

tN ey ). 48

qg(x) Zan(av—b2

Since n < m, there exists k, with 1<k<s, such that this proceed may

stop at k—2 steps yielding

qkfg(x) = («T_bkfl)mkﬂqkfl(x)""kag(x) (4.7)

G (@) = (x=0,) " (z) +7y (2), (4.8)

, (i)
)= . (49)

and

_26_



n—m, —m, —-—m,—1 (m;+i)
n*mlf-“*mj_}_ ! Zz] ! 1%‘—1 (bj)
0 (mj-l—i)!

¢;(x) =a,(z—b)) (z—b,)". (4.10)

i

for j=1,2,---,k. Moreover, we have deg ¢.(z)<m,.,. So

q.(x)=(x—0b,, )™ » 04+r,(z) and hence
r.(z) =q,(z), (4.11)
and define 7, ,(x)= - =r(2)=0.
Now, substituting (4.11) into (4.8), substituting (4.8) into (4.7), and so

on, we have

f(x) Zro(x) —f—(x—bl)ml (m—bg)mzqg(x) —l—rl(x)

= ro(ac) +r (af;)(ac—bl)ml + (:c—bl)m1 (:U—bQ)mqu (x)

= fl@)=ry(z)+r (@)@—0)" +ry(z)(@—b)" (2 —by)"™ +-

+r ()@ —b) " (x—by)"™ - (z—b,)™,

which is the equation (4.2). In each step, the remainder rj(.r) were

determined uniquely. [ |

Example 4.2 In order to show the justification of the result in

Theorem 4.1, consider

f(z) =28 — 22" — 4254+ 82° + 52 — 23— 102° — 122 —3 and

g(x) = (x—1)3(x+1)2(x—2)(x+2)3.
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To find the unique expression of f(z) by the factors of g(z), we apply
the method of the Theorem 4.1. Then

flx)=ryz)+r (@) (z—2)+rx)z—2)z+1)*+ry(z)(z—2)(z+1)*(z—1)°
+r, @) z+2)* (z—2)(x+1)*(x—1)°

=5+ 122+3)(xz—2)+(@*+22+2)(z—2)(z+1)?

+(@P+z+1)(@—2)z+1)*(x—1)2+0 « (z+22@—2)(z+1)*(z—1)3

where 7,(z)=0 degr3(x):deg(x2+x+1), degrg(x):(x2+2x+2):2,

degr,(x) =deg(20+3) =1 and degr,(x)=degh = 0. [ ]
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5. Extended Quotient—-Remainder Theorem

In this section we give the extended quotient-remainder theorem on
dividing f (z) of degree n by the divisor g(a:) of degree m < n such
that:

flz)=ay+ax+ax’+...+a,z" (5.1)

n

and

glz)=(z—b)" (x—by)"* - (x—b,)", (5.2)

with m=m, +my+.....+m,.

Throughout this section, we use the two polynomials f (z), g(a:) as

in the equations in (5.1) and (5.2), respectively.

Theorem 5.1 (Extended Quotient-Remainder Theorem) If b, are all

distinct, and we divide f(x) by g(z), then we obtain the quotient

qlz)=ax"""+r (x) and the remainder

s—1 7
?“(.I) =71yt rj(x) (x - bj)mi; (5.3)
j=1 i=1

M1 —1 (.I —b. )Zq(l)(b )
where rj(x)z jHZ,'j h , 7=0,1, -+, s.
i=0 :
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Proof. Let g,(z)=(z—b,)" (=)™ - (x—b)" (z—0)™ ", with
mg;=n—m and m=m;+my+....+m, Then by Theorem 4.1 we

obtain the unique expression of f(z) as follows :

fla)=ry(z)+r (@) @z—0b)" +ry(z)(@—b)" (x—by)" 4+

+r ()@ —b) " (x—by)"™ - (z—b)™

+r @) @—b) " (x—by)"™ - (x—b,)™ (:L‘—O)m‘“’Jrl , (5.4)
Myt (x_ijrl)iqy)(ijrl) )
where r;(z) = f with j=0,1,--,s.
i=0 :

s+1

Since degf(z)=n=m+m, , = Y, ,m, we have the leading coefficient of
i=1

f(xz) must be r,.,(z), which is a,,.

From (5.4), let us express the quotient and the remainder differently

according to the degree as follows:

f(x) = {?“S(.I)(x—bl)ml(x—bQ)ml (I—bs)m”
ta,(z—b) " (x—by)"™ - (x—b,)™ (x—0)"""}
+{ro(@) 7y (@)@ —by)™ 41y ()@ —by)™ (2 —by)"™ +

“'+T’—1(x)(x_b1)ml (x_bQ)’an (x_bs_l)msfl}

B

= {r.@) e " Ha—b)" = by)" o (20"}
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=q(z)g(z)+r(z).

Thus we have quotient ¢(z)=aax" "+r (z), and the remainder

n S

s—1

r(x)Zro(x)—f—er(x)]f[(ac—bi)m’. [ |

j=1 i=0

Example 5.2 In order to find the unique quotient and remainder by

the method in the proof of Theorem 5.1, consider

flz) =42 — 112" — 22°+292° — 42* — 312° — 202° — 112 —2 and

g(x) = (x+1)2(x—2)(x+2)3.

To find the unique quotient and remainder of the division f (:E) - g(:c),

we apply the method of the Theorem 5.1. Then

f(x) Zro(x)—1—7"1(96)(96—2)—1—7"2(36)(96—2)(36—1—1)2
—l—(4962—l—r3(ac))(ac—2)(ac+1)2(ac—1)3
=5+12z+3)(z—2)+@*+2:+2)(xz—2)(z+1)?

—l—(4302—1-30—1-1)(:0—2)(50—1-1)2(:0—1)3,

where a3 =4, r3(x)=x+1, rg(x)=x2+2x+2, rl(x)=2x+3 and
ro(x)=5. Thus the quotient is a,z" " +ry(z) =42’ +2+1,

the remainder is 5+ (2z+3)(x —2)+ (z*+ 22 +2)(z —2)(z + 1)~ [ ]
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