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1. ABSTRACT 

 

 

Recent studies reported that overexpression of phospho-AKT leads to resistance of 

apoptosis via phospho-AKT modulation of a variety of cellular processes.  In this study, we 

investigated the resistance mechanism of SNU-C5/5-FU, fluorouracil-resistant human colon 

cancer cells, and the possible involvement of phospho-AKT for acquired resistance to 5-

fluorouracil (5-FU). First, we confirmed that SNU-C5/5-FU overexpress phospho-AKT 

compared with SNU-C5/WT and SNU-C5/OXT. Interestingly, the loss of PTEN induced 

phosphorylation of AKT in SNU-C5/5-FU. When treated with LY294002 (PI3 kinase 

inhibitor), we could observe the expression of E-cadherin increased and the phospho-GSK-

3β decreased, which are known proteins downstream of phospho-AKT. Thereby, it decreased 

the nuclear translocation of β-catenin. Furthermore, the NF-κB signaling was activated by 

the increased AKT phosphorylation and promoted the formation of COX-2. In cytoplasm, 

COX-2 contributes to the stabilization of survivin, an anti-apoptotic protein that directly 

interacts with procaspase-3. Also, the treatment of LY294002 down regulated NF-κB 

signaling and the COX-2. Treatment with LY294002 or Vioxx (COX-2 inhibitor) reduced the 

interaction between survivin and procaspase-3. Under combination treatment with LY294002 
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and 5-FU, the apoptotic characteristics, such as apoptotic bodies, cleavage of procaspase-9, 

cleavage of procaspase-3 and cleavage of poly(ADP-ribose) polymerase (PARP), were 

observed in SNU-C5/5-FU. Furthermore, apoptosis was also induced by combination 

treatment with Vioxx and 5-FU. These findings provide evidence that overexpression of 

phosphorylated AKT is an important mechanism of resistance in SNU-C5/5-FU. The results 

suggest that inhibition of phosphorylated AKT may overcome fluorouracil-resistant in the 

SNU-C5/5-FU cells. 

 

Keywords: SNU-C5/5-FU, 5-Fluorouracil, resistant, PI3K/Akt, E-cadherin, GSK-3β, β-

catenin, NF-κB signaling, COX-2, survivin 
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2. INTRODUCTION 

 

 

Colon cancer is one of the most prevalent cancers in the United States, and incidence rates 

of colon cancer have been increasing steadily worldwide (Jemal et al. 2008). Moreover, 

because of the change to Westernized dietary pattern, incidence rates of colon cancer also 

have steadily increased in Korea (Park et al. 2012).  

In recent years, because of increased colon cancer incidence, a variety of treatments have 

been developed. However, 80% of cancer-related deaths were related to resistance to 

anticancer-drugs (Luqmani 2005, Ichihashi, Kitajima 2001). Thus, we need to examine 

closely the mechanisms of resistance.  

5-Fluorouracil (5-FU) is an anti-cancer drug that prevents DNA synthesis by targeting 

thymidylate synthase (TS). TS catalyzes the conversion of deoxyuridine monophosphate 

(dUMP) to deoxythymidine monophosphate (dTMP) in DNA synthesis. The well-known 

resistance mechanism of 5-FU is increased TS (Jette et al. 2008). But recent studies report 

that SNU-C5/5-FU colorectal resistance cancer cells which have acquired resistance to 5-FU 

did not increase TS (Jung 2006, Kim et al. 2005).  

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway regulates a variety of cellular 
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processes, such as cell growth and cell survival (Kim, Chung 2002). In addition, it has been 

reported that this signal promotes the proliferation and survival of colon cancer cells (Bao et 

al. 2004).  Phosphorylation of AKT inhibits GSK-3β (Do et al. 2008) and induces 

instability of E-cadherin expression by activating mdm2, an anti-apoptotic protein (Zhou et 

al. 2009). Also, activation of AKT modulated NF-κB signaling promotes survival and 

resistance apoptosis in cancer cells, via activation of IκB kinase (IKK) (Ahn, Aggarwal 2005, 

Dan et al. 2008, Wang et al. 2009). The activation of AKT is strongly related to inactivation 

of PTEN, tumor suppressor gene, in breast cancer cells (Clark et al. 2002). Therefore, the 

activation of AKT contributes to maintaining immortality in cancer cells via regulating the 

various apoptosis factors, which involved apoptosis, even they were exposed to stressful 

conditions such as anticancer drug treatment (Clark et al. 2002, Seal et al. 2012).  

Phosphatase and tensin homolog deletion on chromosome ten (PTEN) is a well-

recognized negative regulator of PI3K/AKT pathway (Gupta, Dey 2012, Kerr et al. 2006). 

PTEN suppresses the PI3K/AKT cell survival pathway via dephosphorylation of 

phosphatidylinositol 3,4,5-triphosphate (PIP3)(Tamura et al. 1999). Unfortunately, recent 

studies reported that it showed the loss of PTEN expression in colon cancer (Colakoglu et al. 

2008, Sawai et al. 2008). In addition, loss of PTEN expression led not only to increasing risk 

of relapse of colon cancer (Colakoglu et al. 2008), but also metastasis of colorectal cancer 
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and poor survival in colon cancer patients (Sawai et al. 2008). Interestingly, low expression 

of PTEN was associated the resistance of treatment with anticancer drug (Oki et al. 2005, 

Sherbakova et al. 2008). 

E-cadherin is a transmembrane glycoprotein which has an important function involving 

cell-cell adhesion. Generally, the cytoplasmic domain of E-cadherin is combined with β-

catenin, α-catenin and several ancillary proteins (Fanelli et al. 2008, Mohamet, Hawkins & 

Ward 2011, Huber, Weis 2001). When E-cadherin was loosed, β-catenin was translocated to 

the nucleus and activated the capacity of transcription factor (Huber, Weis 2001).  

In the nucleus, β-catenin forms a transcription factor complex with Tcf/Lef proteins 

(Sparks et al. 1998, Akiyama 2000). The transcription factor complex activates the 

expression of target genes such as cyclin D1 and c-myc, which have important roles of cell 

growth, proliferation and survival (Sparks et al. 1998, Akiyama 2000, Li et al. 2005, Gotoh 

et al. 2003). Interestingly, recent studies reported that β-catenin was associated with 

resistance to apoptosis by modulating the c-myc, cyclin D1 and other proteins, which are 

involved with cell cycle and apoptosis, in various cancer cells (Yeung et al. 2010, Woodward 

et al. 2007, Cui et al. 2012).  

In wnt/β-catenin signaling, glycogen synthase kinase-3β (GSK-3β) led to ubiquitination 

and degradation of β-catenin in the absence of wnt signal. However, in the presence of Wnt 
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signal, β-catenin accumulated at a high-level in cytoplasm because of inactivated GSK-3β 

and translocated to the nucleus (Akiyama 2000, Woodward et al. 2007, Cui et al. 2012).  

Nuclear factor kappa B (NF-κB) is a protein transcription factor that is associated with 

oncogenesis (Ahn, Aggarwal 2005, Mayo, Baldwin 2000), cell survival and proliferation 

(Ahn, Aggarwal 2005, Yang et al. 2012). In addition, it has been reported that activated NF-

κB contributed to resistance for anti-cancer drugs in colon cancer cells (Wang et al. 2009). 

Interestingly, NF-κB was activated by phosphorylated AKT that promoted activation of IκB 

kinase (IKK). Thereby, inhibition of NF-κB (IκB), which is combined with a NF-κB, was 

phosphorylated and then degraded by activated IKK. Sequentially, activated NF-κB was 

translocated to the nucleus and acted as a transcription factor that induced gene expression 

of anti-apoptotic proteins and enzymes including COX-2 (Ahn, Aggarwal 2005, Dan et al. 

2008).  

Cyclooxygenase-2 (COX-2) is an enzyme that forms prostaglandins (PGs) from 

arachidonic acid. Generally, COX-2 is an inducible form generated by inflammation and 

tumors (Abrahao et al. 2010, Asting et al. 2011). Various studies showed that overexpression 

of COX-2 was involved in cell survival, development of tumors (Grosch et al. 2006, 

Cervello, Montalto 2006) and resistance to apoptosis (Redondo et al. 2011, Chen et al. 2010). 

It has been reported that COX-2 is overexpressed and PGE2 increased in SNU-C5/5-FU 
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(Choi et al. 2011). Furthermore, when co-treated 5-FU with COX-2 inhibitor, the viability of 

SNU-C5/5-FU cells decreased by co-treatment of 5-FU in a dose dependent manner (Choi et 

al. 2011). Recent studies reported that survivin was stabilized by PGE2, which suppressed 

the ubiquitination of survivin that is anti-apoptotic protein (Krysan et al. 2004).  

Survivin, one of the IAP (inhibitor of apoptosis proteins) family, suppressed apoptosis 

and promoted development of tumor via modulated microtubule dynamics (Pennati, Folini & 

Zaffaroni 2007). Survivin is mainly present in the nucleus, but is simultaneously present in 

the nucleus and cytoplasm in carcinogenic cells (Samuel et al. 2005). In cytoplasm, survivin 

directly inhibits caspase-3 and caspase-7 (Shin et al. 2001, Chai et al. 2001). Over-expressed 

survivin shows resistance to anti-cancer drug and radiation therapy (Pennati, Folini & 

Zaffaroni 2007). 

  Here, we demonstrated the characteristic of SNU-C5/5-FU, fluorouracil resistant 

human colon cancer cells, on 5-FU resistance mechanism. We examined the resistance 

reversal in SNU-C5/5-FU. 
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3. MATERIALS AND METHODS 

 

 

3.1. Reagents 

5-Fluorouracil (5-FU), Oxaliplatin (OXT) and trypan blue were purchased from Sigma 

(Sigma Chemical Co., St. Louis, MO, USA). Mouse monoclonal anti-E-cadherin, anti-PTEN, 

anti-α Tubulin and anti-Ub, rabbit polyclonal anti-caspase-3, anti-β-catenin and anti-IκB-α 

and goat polyclonal anti-COX-2 and anti-survivin antibodies were purchased from Santa 

Cruz Biotechnology (Santa Cruz Biotech, CA, USA); rabbit monoclonal anti-p-NF-κB, anti-

GSK-3β and anti-cleaved caspase-3, Rabbit polyclonal anti-phospho-GSK-3β, anti-Akt, anti-

phospho-Akt, anti-cleaved caspase-9, anti-phospho-mTOR, anti-mTOR and anti-poly (ADP-

ribose) polymerase (PARP) antibodies were purchased from Cell Signaling Technology (Cell 

signaling Technology, Beverly, MA, USA); mouse monoclonal anti-Cyclin D1 antibodies 

were purchased form BD biosciences (BD biosciences, USA); mouse monoclonal β-actin 

was purchased from Sigma; PI3 kinase inhibitor (LY294002) was purchased from 

Calbiochem (Merck KGaA, Germany); COX-2 inhibitor (Vioxx) was purchased from Santa 

Cruz Biotechnology (Santa Cruz Biotech, CA, USA); Dynabeads® Protein G was purchased 

from NOVEX® (Invitrogen, Norway), Aprotinin, leupeptin, Nonidet P-40 were obtained 
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from Roche (Roche Applied Science, Indianapolis, IN); Western blotting reagent, West-zol 

enhanced chemilumin, was obtained from Intron (iNtROn Biotechnology, Korea). 

 

3.2. Cell culture 

SNU-C5/WT, a human colon cancer cell line, was obtained from the Korean Cell Line 

Bank (KCLB). SNU-C5/5-FU and SNU-C5/OXT, a human resistant colon cancer cell line, 

were obtained the Research Center for Resistant Cells. SNU-C5/WT,SNU-C5/5-FU and 

SNU-C5/OXT cells cultured in RPMI 1640 (Hyclone, UT, USA) medium supplemented with 

10% heat inactivated fetal bovine serum (Hyclone, UT, USA), 100 U/mL penicillin and 100 

mg/mL streptomycin (GIBCO Inc, Grand Island, NY, USA) at 37°C in a humidified 

atmosphere with 5% CO2. After 2 days, SNU-C5/5-FU and SNU-C5/OXT cells were 

changed Medium, RPMI 1640 medium supplemented with 10% heat inactivated fetal bovine 

serum, 100 U/mL penicillin, 100 mg/mL streptomycin and 140 μM of 5-FU or 7.14 μM of 

OXT. 

 

3.3. Cell viability assay (trypan blue staining) 

The effect of 5-FU, oxaliplatin or combined treatment of LY294002 (PI3 kinase inhibitor) 

and 5-FU on the growth of SNU-C5/WT, SNU-C5/5-FU and SNU-C5/OXT cells was 



 

- 10 - 

 

evaluated using the trypan blue staining (Comes et al. 2007).Cells were seeded at 2×105 

cells/mL in 1 ㎖ on 24-well plates at 37°C in 5% CO2 gas to allow cell attachment. After 24 

h, cells were treated with 5-FU (1, 10, 50, 100 and 200 μM) or combined treatment of 

LY294002 (20μM)and 5-FU (1, 10, 50, 100 and 200 μM)for 72 h. At the end of 

experimental incubation, cells were detached using 0.25% trypsin-EDTA. Cell pellets were 

then suspended with PBS. 100 μL of suspended cells were mixed with identical volume of 

0.01% trypan blue solutions for 4 min. Unstained cells (viable cells) in the mixture were 

counted using a hemacytometer.  

 

3.4. Morphological analysis of apoptosis by Hoechst 33342 staining 

SNU-C5/5-FU cells were seeded at 2×105 cells/mL in 1 mL on 24-well microplates. After 

24 h of incubation, cells were treated with LY294002 (20 μM) and/or 5-FU (100 μM) for 24 

h. The cells were incubated in a Hoechst 33342 (10 μg/ml medium at final) at 37°C for 30 

min. SNU-C5/5-FU cells were observed with an inverted fluorescent microscope equipped 

with an IX-71 Olympus camera and photographed (magnification ×200). 

 

3.5. Western blot analysis 

SNU-C5/WT, SNU-C5/5-FU and SNU-C5/OXT cells were seeded at 2×105 cells/mL. 
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After 24h, cells were lysed with lysis buffer (50 mMTris-HCl [pH 7.5], 150 mMNaCl, 2 mM 

EDTA, 1 mM EGTA, 1 mM NaVO3, 10 mMNaF, 1 mMdithiothreitol, 1 mM 

Phenylmethylsulfonylfluoride, 25 μg/mL aprotinin, 25 μg/mL leupeptin, 1 mM DTT, 1% 

Nonidet P-40) for 30min at 4°C. SNU-C5/5-FU cells were seeded 2×105 cells/mL for 24h 

and treated with LY294002 (20μM) and/or 5-FU (10, 50 and 100μM) for 15min ~ 24h. After 

treatment, SNU-C5/5-FU cells were lysed with lysis buffer for 30min at 4°C. The lysates 

were centrifuged at 15,000 rpm, 4°C for 15min. Protein content was determined according to 

the method of Bradford assay (Bradford 1976). The cell lysates were separated by 6~15% 

SDS-PAGE gels and then transferred used to polyvinylidene fluoride (PVDF) membrane 

(BIO-RAD, Hercules, CA, USA) by glycine transfer buffer (192 mM glycine, 25 mM Tris-

HCl [pH 8.8], and 20% MeOH [v/v]) at 200mA for 2 h. After blocking with 5% skim milk 

solution, the membrane was incubated with primary antibody against PARP (1:2000), 

caspase-3 (1:1000), cleaved caspase-3 (1:1000), caspase-9 (1:1000), cleaved caspase-9 

(1:1000), Akt (1:1000), phospho-Akt (1:1000), GSK-3β (1:1000), phosphor-GSK-3β 

(1:1000), β-catenin (1:2000), E-cadherin (1:1000), mTor (1:1000), phospho-mTor (1:1000), 

phohpho-NF-κB (1:1000), IκB (1:1000), COX-2 (1:1000), Survivin (1:1000), PTEN 

(1:1000), Ub (1:1000), Cyclin D1 (1:1000), α-Tubulin (1:1000) and β-actin (1:5000) 

antibodies at 4°C overnight and incubated with a secondary HRP antibody (1:5000; Vector 
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Laboratories, Burlingame, VT, USA) at room temperature for 1h. Protein bands were 

detected using a WEST-ZOL® plus Western Blot Detection System (iNtRON., Gyeonggi-do, 

Korea) with subsequent exposure to X-ray films (AGFA, Belgium). 

 

3.6. Co-immunoprecipitation assay 

SNU-C5/5-FU cells were seeded 2×105 cells/mL for 24h and treated with LY294002 

(20μM) for 24h. After treatment, SNU-C5/5-FU cells were lysed with lysis buffer for 30min 

at 4°C. The lysates were centrifuged at 15,000 rpm, 4°C for 15min. 50 μL of Dynabeads® 

Protein G transfer to tube and remove the supernatant by placing the tube on the magnet to 

separate the beads. Separated beads were added directly to antibody in 200 μL PBS with 

0.02% Tween-20 and incubated with rotation for 10 min at room temperature. The 

supernatant was then removed. The beads - antibody complex was washed using 200 μL PBS 

with 0.02% Tween-20 and remove the supernatant. The beads - antibody complex was added 

directly to the cell lysates and incubated with rotation for 10 min at room temperature. The 

supernatant was removed and the beads - antibody - Ag complex was washed using 200 μL 

PBS with 0.02% Tween-20 at 3 times and the supernatant removed. The beads – antibody – 

Ag complex was added 20 μL of elution buffer (50 mM Glycine [Ph 2.8]) and 10 μL of 

NuPAGE LDS Sample buffer and then heated for 100min at 70 °C. The supernatant was 
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separated from the beads using a magnet and loaded onto an SDS-PAGE gel. 

 

3.7. Confocal microscopy 

SNU-C5/WT, SNU-C5/5-FU and SNU-C5/OXT cells were fixed in 3.5% formaldehyde for 

30 min. The fixed cells permeabilized in 0.1% triton X-100. Cells were blocked in 3% BSA 

for 1h at room temperature. Cells were treated with primary antibodies (1:100) overnight at 

4°C. Immunofluorescences stain of primary antibodies was stained with Alexa Fluor 488 

goat anti-rabbit IgG, Alexa Fluor 488 goat anti-mouse IgG and Alexa Fluor 594 rabbit anti-

goat IgG secondary antibody. The fluorescence was identified using confocal microscopy 

(FV500, OLYMPUS) and the images were acquired at constant PMT, gain, offset, 

magnification (40X oil immersion objective with zoom factor of 4) and resolution.  

 

3.8. Statistical analysis 

Results are shown as means ± standard deviation (SD) from three independent 

experiments. Student’s t-test was used to determine the data with the following significance 

levels: *p<0.05, **p<0.01, ***<0.001. All assays were performed with at least three 

independent experiments. 
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Table 1. Antibodies used in Western blot analysis. 

 

Antibody Origin Company 

Akt rabbit polyclonal Cell signaling Technology 

phospho-Akt rabbit polyclonal Cell signaling Technology 

mTor rabbit polyclonal Cell signaling Technology 

phospho-mTor rabbit polyclonal Cell signaling Technology 

GSK-3β rabbit monoclonal Cell signaling Technology 

phospho-GSK-3β rabbit polyclonal Cell signaling Technology 

phospho-NF-κB rabbit monoclonal Cell signaling Technology 

caspase-9 rabbit polyclonal Cell signaling Technology 

Cleaved caspase-9 rabbit polyclonal Cell signaling Technology 

Cleaved caspase-3 rabbit monoclonal Cell signaling Technology 

poly-(ADP-ribose) 

polymerase (PARP) 
rabbit polyclonal Cell signaling Technology 

E-cadherin mouse monoclonal Santa Cruz Biotechnology 

β-catenin rabbit polyclonal Santa Cruz Biotechnology 

COX-2 goat polyclonal Santa Cruz Biotechnology 
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IκB-α rabbit polyclonal Santa Cruz Biotechnology 

survivin goat polyclonal Santa Cruz Biotechnology 

Caspase-3 rabbit polyclonal Santa Cruz Biotechnology 

Ub mouse monoclonal Santa Cruz Biotechnology 

PTEN mouse monoclonal Santa Cruz Biotechnology 

α-Tubulin mouse monoclonal Santa Cruz Biotechnology 

Cyclin D1 mouse monoclonal BD biosciences, USA 

β-actin mouse monoclonal Sigma 
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4. RESULTS 

 

 

4.1. SNU-C5/5-FU stably acquired resistance on 5-fluorouracil 

To evaluate the effect of 5-FU on the viability in SNU-C5/WT and SNU-C5/5-FU, cell 

viability was demonstrated using trypan blue staining assay. SNU-C5/WT and SNU-C5/5-

FU were treated with 5-FU (1, 10, 50, 100 and 200μM) for 72h,SNU-C5/WT cells were 

decreased significantly cell viability (Figure 1; 1μM, 54.3%; 10μM, 18.5%; 50μM, 13.3%; 

100μM, 11.09% and 200μM, 6.8%), but SNU-C5/5-FU cells did not decrease significantly 

compared to SNU-C5/WT cells (Fig.1; 1μM, 85.9%; 10μM, 84.7%; 50μM, 74.8%; 100μM, 

67.8% and 200μM, 46.1%). IC50 of SNU-C5/5-FU was more than 40 times higher (Fig.1; 

IC50 of SNU-C5/WT, 4.84 μM and IC50 of SNU-C5/5-FU, 182.66 μM). 
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Figure 1. Cytotoxicity of 5-Fluorouracil on SNU-C5/WT and SNU-C5/5-FU SNU-

C5/WT and SNU-C5/5-FU cells were plated in 6-well (2Χ105cells/ml) and treated with 5-FU 

(1, 10, 50, 100 and 200 μM) for 72h. The results are expressed as percentages of viable cells 

compared with control by trypan blue staining. The data are presented as the mean ± SD 

from experiments representative of three independent trials. *p<0.05, **p<0.01, and 

***p<0.001 compared with the control. 
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4.2. SNU-C5/5FU has the characteristic of overexpression of phospho-AKT. 

To determine that exceptional characteristic of SNU-C5/5-FU cells, we compared with SNU-

C5/WT, SNU-C5/5-FU and SNU-C5/OXT. Interestingly, phospho-AKT was overexpressed 

in SNU-C5/5-FU (Figure 2A). Furthermore, over-phosphorylated AKT of SNU-C5/5-FU 

cells were identified at confocal microscopy (Figure 2B). Also, mTor, a protein modulated 

by phospo-AKT (LoPiccolo et al. 2008), was over-phosphorylated in SNU-C5/5-FU (Figure 

3). 
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4.3. SNU-C5/5-FU down-regulates E-cadherin and up-regulates phospho-GSK-3β 

Recent studies reported that phosphorylated AKT leads to decreased E-cadherin (Zhou et 

al. 2009) and phosphorylation of GSK-3β (Son et al. 2012). Therefore, we investigated 

expression of E-cadherin and phospho-GSK-3β in SNU-C5/5-FU cells, which has over-

phosphorylated AKT. As a result, expression of E-cadherin was suppressed (Figure 4) and 

expression of phospho-GSK-3β was increased (Figure 5) in SNU-C5/5-FU compared with 

SNU-C5/WT and SNU-C5/OXT. 
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4.4. Phosphorylated AKT led to down-regulation of E-cadherin and phosphorylation of 

GSK-3β in SNU-C5/5-FU 

To establish whether expression of E-cadherin (Figure 4) and phospo-GSK-3β (Figure 5) 

depended on overexpression of phospho-AKT, SNU-C5/5-FU cells were treated with 

LY294002 (PI3 kinase inhibitor). As a result, E-cadherin expression was increased (Figure 

6) and phospho-GSK-3β expression was decreased (Figure 7) by treatment of LY294002 in 

time dependent manner. Furthermore, treatment of LY294002 induced down-regulation of β-

catenin and cyclin D1 (Figure 7). These results suggested that phospho-AKT regulates GSK-

3β and E-cadherin in SNU-C5/5-FU. 
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Figure 6. The effect of LY294002 on the expression of E-cadherin in SNU-C5/5-FU (A) 

The SNU-C5/5-FU cells (2 x 105 cells/mL) were pre-incubated for 24h and then cells were 

treated with LY294002 (20 μM) for the indicated time. Lysates were prepared from these 

cells, and the expression of AKT, Phospho-AKT, mTor, phospho-mTor and E-cadherin 

measured by Western blot analysis using specific antibodies. (B) Data represent the 

percentage of E-cadherin expression in SNU-C5/5-FU cells. The data are presented as the 

mean ± SD from experiments representative of three independent trials. *p<0.05, **p<0.01, 

and ***p<0.001 compared with the control.  
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Figure 7. The effect of LY294002 on the expression of GSK-3β, phospho-GSK-3β, cyclin 

D1, and β-catenin in SNU-C5/5-FU (A) The SNU-C5/5-FU cells (2 x 105 cells/mL) were 

pre-incubated for 24h and then cells were treated with LY294002 (20 μM) for the indicated 

time. Lysates were prepared from these cells, and the expression of AKT, Phospho-AKT, 

phospho-GSK-3β, GSK-3β, cyclin D1, and β-catenin measured by Western blot analysis 

using specific antibodies. (B) Data represent the percentage of β-catenin, phospho-GSK-3β, 

and GSK-3β expression in SNU-C5/5-FU cells. The data are presented as the mean ± SD 

from experiments representative of three independent trials. *p<0.05, **p<0.01, and 

***p<0.001 compared with the control. 
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4.5. SNU-C5/5-FU has characteristic to translocation of β-catenin in cytoplasm and 

nucleus 

Various studies showed that β-catenin was involved the cell-cell adhesion by interaction of 

E-cadherin in plasma membrane (Fanelli et al. 2008, Mohamet, Hawkins & Ward 2011). But, 

loss of E-cadherin led to discharge of β-catenin into the cytoplasm (Huber, Weis 2001). β-

catenin was degraded by activated GSK-3β in cytoplasm. If GSK-3β was inactivated, β-

catenin acted as a transcription factor in the nucleus (Akiyama 2000). In other words, 

activated GSK-3β and stabilization of E-cadherin prevents β-catenin from acting on 

transcription factor. Thus, we determined the expression and location of β-catenin. As a 

result, we found no significant difference on expression of β-catenin (Figure 8A). However, 

β-catenin located the cytoplasm and nuclear in the SNU-C5/5-FU comported with SNU-

C5/WT and SNU-C5/OXT (Figure 8B).  
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4.6. Phospho-AKT led to the nuclear translocation of β-catenin  

We determined whether localization of β-catenin in cytoplasm and nucleus were associated 

with down-regulation of E-cadherin and inactivated GSK-3β by over-phosphorylated AKT. 

E-cadherin was increased in plasma membrane and phospho-GSK-3β was decreased by 

treatment of LY294002 (Figure 9). Interestingly, treatment of LY294002 induced not only 

decreased expression of β-catenin in the cytoplasm and nucleus but also increased expression 

of β-catenin in plasma membrane (Figure 9). Therefore, we determined that the interaction of 

E-cadherin and β-catenin were regulated by phospho-AKT. β-catenin was decreased but the 

interaction of β-catenin and E-cadherin was increased by treatment of LY294002 in a dose 

dependent manner (Figure 10). This result indicated that phospho-AKT led to the nuclear 

translocation of β-catenin via loss of E-cadherin and inactivated GSK-3β (Figure 11A). As a 

resultant, inhibition of phosphorylated AKT prevents β-catenin from entering the nucleus for 

cell survival (Figure 11B).  
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Figure 10. The effect of LY294002 on β-catenin interacts with E-cadherin in SNU-C5/5-

FU (A) The SNU-C5/5-FU cells (2 x 105 cells/mL) were pre-incubated for 24h and then cells 

were treated with LY294002 (10, 15 and 20 μM) for 24h. The lysate of SNU-C5/5-FU cells 

was immunoprecipitated with anti-β-catenin antibody, and was immunoblotted with anti-β-

catenin and anti-E-cadherin antibody. (B) Data represent the percentage of E-cadherin 

expression in SNU-C5/5-FU cells. The data are presented as the mean ± SD from 

experiments representative of three independent. *p<0.05, **p<0.01, and ***p<0.001 

compared with the control. 
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Figure 11. The characteristics of SNU-C5/5-FU on E-cadherin, GSK-3β, and β-catenin 

(A) phosphorylated AKT led to nuclear translocation of β-catenin via loss of E-cadherin and 

inactivated GSK-3β. (B) Inhibition of phospho-AKT prevents nuclear translocation of β-

catenin 
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4.7. SNU-C5/5FU has characteristic to overexpression of Cyclooxygenase-2 

To find other properties of SNU-C5/5-FU cells, we compared with SNU-C5/WT, SNU-

C5/5-FU and SNU-C5/OXT. SNU-C5/5-FU cells markedly overexpress COX-2 compared to 

SNU-C5/WT and SNU-C5/OXT (Figure 12A). Moreover, overexpression of COX-2 was 

identified by confocal microscopy (Figure 12B).  
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4.8. Over-activated NF-κB signaling led to overexpression of COX-2 

NF-κB signaling modulated COX-2 expression (Abrahao et al. 2010). Therefore, we 

examined whether that COX-2 was overexpressed by NF-κB signaling in SNU-C5/5-FU. 

Interestingly, IκB-α was suppressed and phospho-NF-κB was overexpressed in SNU-C5/5-

FU (Figure 13). Thus, we investigated the involvement of over-activated NF-κB signaling 

and over-expressed COX-2. The treatment of TPCK (IκB protease inhibitor) decreased the 

COX-2 level in dose dependent manner (Figure 14). These data suggest that over-activated 

NF-κB signaling led to over-expression of COX-2 in SNU-C5/5-FU cells.  
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Figure 14. The effect of TPCK on the expression of COX-2 in SNU-C5/5-FU (A) The 

SNU-C5/5-FU cells (2 x 105 cells/mL) were pre-incubated for 24h and then cells were 

treated with TPCK (10, 15 and 20 μM). Lysates were prepared from these cells, and the 

expression of COX-2 measured by Western blot analysis using specific antibodies. (B) Data 

represent the percentage of COX-2 expression in SNU-C5/5-FU cells. The data are presented 

as the mean ± SD from experiments representative of three independent. *p<0.05, **p<0.01, 

and ***p<0.001 compared with the control. 
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4.9 phospho-AKT led to activation of NF-κB signaling in SNU-C5/5-FU 

IκB kinase (IKK) was activated by phospho-AKT and it act NF-κB signaling by 

phosphorylation of IκB (Ahn, Aggarwal 2005, Dan et al. 2008). Thus, we examined whether 

that phosphorylation of AKT modulates the NF-κB signaling in SNU-C5/5-FU. As a result, 

COX-2 and phospho-NF-κB were decreased by treatment of LY294002 in a dose and time 

dependent manner (Figure 15). These data indicated that phospho-AKT modulates NF-κB 

signaling in SNU-C5/5-FU. 
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4.10. phospho-AKT led to stabilization of survivin via overexpression of COX-2 

Previous studies reported that SNU-C5/5-FU was showed with overexpression of PGE2 by 

overexpression of COX-2 (Choi et al. 2011). In addition, it has been reported that PGE2 

affect the resistance to apoptosis via inhibiting ubiquitination of survivin in lung cancer cells 

(Krysan et al. 2004). Thus, we confirmed that COX-2 contributes to the stabilization of 

survivin expression in SNU-C5/5-FU. Survivin showed overexpression in SNU-C5/5-FU 

(Figure 16). Also, it was decreased by treatment with LY294002 or Vioxx (COX-2 selective 

inhibitor) in a dose and time dependent manner (Figure 17A and B). Furthermore, treatment 

of LY294002 or Vioxx led to the ubiquitination of survivin in a dose dependent manner 

(Figure 17C). These results indicated that phospho-AKT induces the stabilization of survivin 

by up-regulation of COX-2. 
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Figure 17. The effects of LY294002 and Vioxx on the expression of survivin in SNU-

C5/5-FU (A and B) The SNU-C5/5-FU cells (2 x 105 cells/mL) were pre-incubated for 24h 

and then cells were treated with LY294002 and Vioxx (10, 15 and/or 20 μM) for the 

indicated time or 24h. Lysates were prepared from these cells, and the expression of survivin 

measured by Western blot analysis using specific antibodies. (C) The SNU-C5/5-FU cells (2 

x 105 cells/mL) were pre-incubated for 24h and then cells were treated with LY294002 and 

Vioxx (10, 15 and 20 μM) for 24h. The lysate of SNU-C5/5-FU cells was 

immunoprecipitated with anti-survivin antibody, and was immunoblotted with anti-survivin 

and anti-ubiquitin antibody. 
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4.11 phospho-AKT led to expression of survivin in cytoplasm via up-regulation of 

COX-2 

Recent studies reported that nucleus expression of survivin regulated cell cycle but, 

cytoplasm expression of survivin induced resistance on apoptosis ((Krysan et al. 2004)). 

Interestingly, we identified that survivin expression was increased in the cytoplasm (Figure 

15) and that it was stabilized via COX-2 (Figure 17). Thus, we observed that cytoplasm 

expression of survivin was involved with COX-2. When treated with 5-FU, we could not 

observe a change in expression on survivin. But treatment with Vioxx or LY294002 

decreased expression of survivin in cytoplasm (Figure 18). These results indicated that 

cytoplasm expression of survivin was modulated by COX-2 and phospho-AKT. 

Consequentially, phospho-AKT induces the cytoplasm expression of survivin via 

overexpression of COX-2. 
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4.12 Phospho-AKT led to resistance on apoptosis via stabilization of survivin  

In cytoplasm, stabilized survivin contributes the resistance on apoptosis by interaction 

with caspase-3 or caspase-7 (Shin et al. 2001, Chai et al. 2001). Thus, we examined whether 

survivin was associated with caspase-3. While treatment of 5-FU did not increase the 

activation of caspase-3, co-treatment with Vioxx and 5-FU increased the activation of 

caspase-3 (Figure 19A). In addition, treatment of LY294002 or Vioxx reduced the 

interaction of porcaspase-3 with survivin and increased the interaction of cleaved-caspase-3 

with survivin (Figure 19B). This indicated that survivin avoids apoptosis by direct 

interaction of caspase-3 in SNU-C5/5-FU. Consequentially, phospho-AKT induced the 

expression of COX-2 via activation of NF-κB signaling. COX-2 contributes to stabilization 

of survivin, leading to resistance of apoptosis by direct interaction of caspase-3 in SNU-

C5/5-FU. kinase (Figure 20A). Therefore, inhibition of COX-2 or inhibition of phospho-

AKT induced apoptosis by degradation of survivin (Figure 20B).  
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Figure 19. The effect of LY294002 and Vioxx on survivin interacts with caspase-3 in 

SNU-C5/5-FU (A) The SNU-C5/5-FU cells (2 x 105 cells/mL) were pre-incubated for 24h 

and then cells were treated with 5-FU (10, 50 and 100 μM) and/or Vioxx (20 μM) for the 

indicated time or 24h. Lysates were prepared from these cells, and the expression of AKT, p-

AKT, COX-2, and caspase-3 measured by Western blot analysis using specific antibodies. 
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(B) The SNU-C5/5-FU cells (2 x 105 cells/mL) were pre-incubated for 24h and then cells 

were treated with LY294002 or Vioxx (10, 15 and 20 μM) for 24h. The lysate of SNU-C5/5-

FU cells was immunoprecipitation with anti-survivin antibody, and was immunoblotted with 

anti-survivin and anti-caspase-3 antibody. 
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Figure 20. The characteristics of SNU-C5/5-FU on NF-κB signaling and survivin (A) 

phosphorylated AKT led to activation of NF-κB signaling via activation of IκB kinase. 

COX-2, which is formation by NF-κB signaling, contributes stabilization of survivin. (B) 

Inhibition of phospho-AKT prevents stabilization of survivin in cytoplasm. 
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4.13 phospho-AKT contributes resistance on 5-fluorouracil in SNU-C5/5-FU  

We examined whether that overexpression of phospho-AKT contributes the resistance on 

5-FU in SNU-C5/5-FU. Treatment of 5-FU did not showed characteristics of apoptosis 

(Figure 21A, B and C). However, co-treatment with 5-FU and LY294002 showed the 

features of apoptosis, for example, nuclear morphologic changes (Figure 21A), increased 

apoptosis related proteins such as cleavage of proaspase-9, cleavage of procaspase-3 and 

cleavage of poly(ADP-ribose)polymerase (PARP) (Figure 21B and C). Furthermore, when 

co-treated 5-FU with LY294002, the viability of SNU-C5/5-FU cells decreased by co-

treatment of 5-FU in a dose dependent manner (Fig.21D; 5-FU 1μM, 85.3%; 10μM, 63.3%; 

50μM, 54.12%; 100μM, 45.87% and 200μM, 38.35%) compared with treatment of 5-FU 

(Figure 1). In addition, combination treatment of 5-FU and Vioxx also were decreased cell 

viability (Fig.21D; 5-FU 20 1μM, 90.17%; 10μM, 83.23%; 50μM, 66.14%; 100μM, 49.69% 

and 200μM, 44.53%). In addition, IC50 of combination treatments in SNU-C5/5-FU was 

significantly reduced (IC50 of co-treatments with LY294002 and 5-FU, 76.342 μM and IC50 

of co-treatments with Vioxx and 5-FU, 97.427 μM). These data indicated that over-

expressed phospho-AKT contributes resistance on 5-FU. Moreover, survivin, which was one 

of the downstreams of phospho-AKT, was a major resistance mechanism on 5-FU.   
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Figure 21. The effect of LY294002 or Vioxx on induction of apoptosis in SNU-C5/5-FU 

(A) The SNU-C5/5-FU cells (2 x 105 cells/mL) were pre-incubated for 24h and then cells 

were treated with 5-FU (10, 50 and 100 μM) and/or LY294002 (20 μM) for the indicated 

time or 24h. The cells were stained with Hoechst 33342 (10 μg/ml medium at final) 

apoptotic bodies were observed with an inverted fluorescent microscope equipped with an 

IX-71 Olympus camera and photographed (magnification ×200). (B) The SNU-C5/5-FU 

cells (2 x 105 cells/mL) were pre-incubated for 24h and then cells were treated with 

LY294002 (20 μM) and/or 5-FU (10, 50 and 100 μM) for 24h. Lysates were prepared from 

these cells, and the expression of caspase-9, caspase-3, PARP, AKT and phospho-AKT 

measured by Western blot analysis using specific antibodies. (C) The SNU-C5/5-FU cells (2 

x 105 cells/mL) were pre-incubated for 24h and then cells were treated with LY294002 (20 

μM) and/or 5-FU (100 μM) for 24h. Immunofluorescent stain of cleaved caspase-3 and 

cleaved caspase-9 was performed with Alexa Fluor 488 goat anti-rabbit IgG secondary 

antibody and the fluorescence was identified using confocal microscopy (FV500, 

OLYMPUS). (D) SNU-C5/5-FU cells were plated in 6-well (2 Χ 105cells/ml) and treated 

LY294002 or Vioxx (20 μM) and/or 5-FU (1, 10, 50, 100 and 200 μM) for 72h. The results 

are expressed as percentages of viable cells compared with control by trypan blue staining. 

The data are presented as the mean ± SD from experiments representative of three 

independent trials. *p<0.05, **p<0.01, and ***p<0.001 compared with the control. 
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4.14 Loss of PTEN was cause of the over-phosphorylated AKT in SNU-C5/5-FU  

Previous studies reported that loss of PTEN promotes the phosphorylation of AKT in 

colon cancer (Colakoglu et al. 2008, Sawai et al. 2008). Therefore, we confirmed the PTEN 

level of SNU-C5/5-FU. As a result, PTEN expression was down-regulated in SNU-C5/5-FU 

compared with SNU-C5/WT and SNU-C5/OXT (Figure 22). This result suggested that loss 

of PTEN led to over-phosphorylation of AKT in SNU-C5/5-FU. 

Finally, in SNU-C5/5-FU, overexpression of phospho-AKT, which by loss of PTEN, 

modulates a variety of downstream effects such as nuclear translocation of β-catenin via loss 

of E-cadherin, inactivation of GSK-3β and it led to stabilization of survivin in cytoplasm via 

activated NF-κB signaling. Thus, stabilized survivin inhibits apoptosis by interaction of 

caspase-3 (Figure 23A). Consequently, inhibition of phospho-AKT was increased sensitive 

on apoptosis (Figure 23B). 
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5. DISCUSSION 

 

 

In this study, we investigated the resistance mechanism and resistance reversal in SNU-

C5/5-FU, 5-fluorouracil (5-FU) resistance human colon cancer cells. SNU-C5/5-FU has 

characteristic that over-phosphorylation of AKT. In SNU-C5/5-FU, phospho-AKT regulates 

a variety of cellular processes such as down-regulation of E-cadherin, inactivation of GSK-

3β and activation of NF-κB signaling. Moreover, treatment of LY294002 (PI3 kinase 

inhibitor) led to not only reversal of these cellular processes but also increased apoptosis by 

5-FU. 5-FU is an anti-cancer drug that prevents DNA synthesis by inhibiting the 

biosynthesis of thymine. Variety studied showed that increased thymidylate synthase (TS) 

led to resistance of 5-FU (Jette et al. 2008, Peters et al. 2002, Van der Wilt et al. 1992). 

Interestingly, TS expression did not increase in SNU-C5/5-FU (Jung 2006, Kim et al. 2005).  

 The PI3K/AKT pathway regulates cell growth and survival in cancer cells (Kim, Chung 

2002). Moreover, phospho-AKT was induced resistance of apoptosis via modulate other 

cellular processes (Kim, Chung 2002). The phospho-AKT led to unstable E-cadherin by 

activation of mdm2 that known is anti-apoptotic protein (Zhou et al. 2009). E-cadherin is a 

transmembrane protein, which is involved in cell-cell adhesion. Cytoplasmic domain of E-

cadherin has been binding β-catenin and other proteins (Fanelli et al. 2008, Mohamet, 
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Hawkins & Ward 2011, Huber, Weis 2001). Thus, loss of E-cadherin led to release of β-

catenin and it could act as transcription factor on cell survival and proliferation (Huber, Weis 

2001). However, activated GSK-3β induced degradation of β-catenin in cytoplasm. 

Unfortunately, phospho-AKT led to inactivation GSK-3β (Akiyama 2000, Woodward et al. 

2007, Cui et al. 2012). In other words, phospho-AKT induced that down-regulation of E-

cadherin and inactivation of GSK-3β. Resultantly, phosphorylated AKT induced activation 

to β-catenin transcription factor via down-regulation of E-cadherin and inactivation of GSK-

3β. Actually, we confirmed the previous result that β-catenin was discharged by loss of E-

cadherin (Figure 4 and 8). In addition, because of inactivated GSK-3β (Figure 5), it did not 

degrade β-catenin in cytoplasm, translocates into the nucleus and acts as a trans-factor on 

cell survival (Figure 8 and 9). The upper mechanism on these series of events was excessive 

phosphorylation of AKT (Figure 9 and 11A). Therefore, inhibition of phosphorylation of 

AKT can suppresses that β-catenin discharge to the cytoplasm by increased of E-cadherin 

and it also promoted the degradation of β-catenin via activated GSK-3β. Conclusively, 

inhibition of phosphorylated AKT suppressed β-catenin action as a trans-factor in SNU-

C5/5-FU cells (Figure 9 and 11B).  

  Various studies show that phospho-AKT promotes the activation of NF-κB signaling via 

stimulation of IκB kinase (Ahn, Aggarwal 2005, Dan et al. 2008, Wang et al. 2009). 
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Activated NF-κB induced enzymes such as COX-2 and variety proteins (Ahn, Aggarwal 

2005). Our result indicated the overexpression of cox-2 in SNU-C5/5-FU compared with 

SNU-C5/WT and SNU-C5/OXT (Figure 12). As expected, NF-κB signaling was over-

activated in SNU-C5/5-FU and blocked by treatment of LY294002 as well as expression of 

COX-2 (Figure 13 and 15). It has been reported that COX-2 modulates the resistance to 

apoptosis by inhibition to ubiquitination of survivin, anti-apoptotic protein (Krysan et al. 

2004). Therefore, activation of NF-κB by phospho-AKT presumably regulated resistance of 

apoptosis via stabilization of survivin. We confirmed the overexpression of survivin (Figure 

16). Thus, we identified whether that survivin is regulated by COX-2 and phospho-AKT. 

Treatment with LY294002 or Vioxx decreases survivin expression in time- and dose- 

dependent manner (Figure 17A and B). Moreover, the ubiquitination of survivin was induced 

by LY294002 and Vioxx (Figure 17C). Previous studies showed that survivin modulates the 

cell cycle in the nucleus. However, in carcinogenic cells, survivin is located in the nucleus 

and cytoplasm (Samuel et al. 2005). In the cytoplasm, survivin directly suppresses the 

caspase-3 and caspase-7 leading to resistance of apoptosis (Shin et al. 2001, Chai et al. 2001). 

Unfortunately, PGE2 contributes the remaining survivin after half-life in cytoplasm (Krysan 

et al. 2004). SNU-C5/5-FU has over-expressed survivin in cytoplasm (Figure 16). Therefore, 

we guessed that overexpression of survivin in cytoplasm was an indirect cause of over-
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expressed COX-2 that was modulated by phospho-AKT. The over-expressed survivin in the 

cytoplasm was decreased by LY294002 or Vioxx compared with treatment of 5-FU (Figure 

18). These results suggested that COX-2 and phospho-AKT led to stabilization of survivin. 

Thus, we examined whether survivin was associated with caspase-3 expression. Inhibition of 

COX-2 was induced the cleavage of caspase-3 (Figure 19A). Moreover, treatment of Vioxx 

not only decreased the interaction of survivin and procaspase-3 but also increased the 

interaction of survivin and cleaved caspase-3. Also, treatment of LY294002 decreased the 

interaction of survivin and procaspase-3 (Figure 19B). This result indicates that inhibition of 

COX-2 induces the cleavage of caspase-3 via ubiquitination of survivin. In SNU-C5/5-FU, 

phospho-AKT indirectly modulates COX-2 expression via activation of NF-κB signaling. 

Over-expressed COX-2 regulated PGE2 expression and contributed the stabilization of 

survivin. In cytoplasm, accumulated survivin controlled the resistance of apoptosis through a 

correction with procaspase-3 (Figure 20A) Therefor the inhibition of phospho-AKT 

prevented the resistance to apoptosis by promotes to degradation of survivin (Figure 20B). 

  Eventually, SNU-C5/5-FU avoids apoptosis that was induced by 5-FU. Thus, we 

investigated whether that overexpression of phospho-AKT is associated with the resistance 

of 5-FU. Combination treatment of LY294002 and 5-FU led to characteristics of apoptosis 

such as nuclear morphologic changes (Figure 21A) and expression of apoptosis-related 
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proteins (Figure 21B and C). Moreover, combination treatment of LY294002 and 5-FU 

significantly inhibited cell viability (Figure 21D). Interestingly, combination treatment of 

Vioxx and 5-FU showed the inhibited cell viability (Figure 21D). These results suggested 

that over-expressed AKT contributes to resistance to apoptosis by 5-FU in SNU-C5/5-FU. In 

addition, survivin, which was one of the downstream of phospho-AKT, was an important 

mechanism of resistance by phospho-AKT.  

Previous studies reported that loss of PTEN could explain the phosphorylation of AKT in 

colorectal cancer cells (Tamura et al. 1999, Colakoglu et al. 2008, Sawai et al. 2008) and in 

this study, we confirmed that expression of PTEN was down-regulated in SNU-C5/5-FU 

compared with SNU-C5/WT and SNU-C5/OXT (Figure 22). This result indicated that loss 

of PTEN led to over-phosphorylation of AKT in SNU-C5/5-FU.  

  In summary, SNU-C5/5-FU has over-expressed phospho-AKT by loss of PTEN. Thus, 

over-phosphorylation of AKT contributes to resistance to 5-FU by regulating a variety of 

downstream such as E-cadherin, GSK-3β and NF-κB signaling (Figure 23A). Therefore, 

inhibition of phospho-AKT increase sensitivity on 5-FU (Figure 23B). Taken together, these 

results demonstrate that 5-FU resistance mechanism in SNU-C5/5-FU and the inhibition of 

phospho-AKT may be a therapeutic target in SNU-C5/5-FU, 5-fluorouracil resistance colon 

cancer treatment. 
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